References |
1. |
Daniels BS.
Regional versus systemic modulation of the microcirculation in diabetes mellitus.
J Lab Clin Med
121:
375–376,
1993.
|
2. |
Jaap AJ and
Tooke JE.
Pathophysiology of microvascular disease in non‐insulin‐dependent diabetes.
Clin Sci (Lond)
89:
3–12,
1995.
|
3. |
Mazzoni MC and
Schmid‐Schonbein GW.
Mechanisms and consequences of cell activation in the microcirculation.
Cardiovasc Res
32:
709–719,
1996.
|
4. |
McDonagh PF and
Hokama JY.
Microvascular perfusion and transport in the diabetic heart.
Microcirculation
7:
163–181,
2000.
|
5. |
Michel CC and
Curry FE.
Microvascular permeability.
Physiol Rev
79:
703–761,
1999.
|
6. |
Yamaji T,
Fukuhara T and
Kinoshita M.
Increased capillary permeability to albumin in diabetic rat myocardium.
Circ Res
72:
947–957,
1993.
|
7. |
Yuan SY,
Breslin JW,
Perrin R,
Gaudreault N,
Guo M,
Kargozaran H and
Wu MH.
Microvascular permeability in diabetes and insulin resistance.
Microcirculation
14:
363–373,
2007.
|
8. |
Yuan SY,
Ustinova EE,
Wu MH,
Tinsley JH,
Xu W,
Korompai FL and
Taulman AC.
Protein kinase C activation contributes to microvascular barrier dysfunction in the heart at early stages of diabetes.
Circ Res
87:
412–417,
2000.
|
9. |
Groeneveld AB.
Vascular pharmacology of acute lung injury and acute respiratory distress syndrome.
Vascul Pharmacol
39:
247–256,
2002.
|
10. |
Groeneveld AB,
van Lambalgen TA and
Thijs LG.
Microvascular permeability in endotoxin and bacterial shock.
Acute Care
12:
195–218,
1986.
|
11. |
Lush CW and
Kvietys PR.
Microvascular dysfunction in sepsis.
Microcirculation
7:
83–101,
2000.
|
12. |
Arturson G.
Forty years in burns research‐the postburn inflammatory response.
Burns
26:
599–604,
2000.
|
13. |
Cioffi WG.
What's new in burns and metabolism.
J Am Coll Surg
192:
241–254,
2001.
|
14. |
Gibran NS and
Heimbach DM.
Current status of burn wound pathophysiology.
Clin Plast Surg
27:
11–22,
2000.
|
15. |
Lund T,
Onarheim H and
Reed RK.
Pathogenesis of edema formation in burn injuries.
World J Surg
16:
2–9,
1992.
|
16. |
Renkin EM.
Capillary transport of macromolecules: pores and other endothelial pathways.
J Appl Physiol
58:
315–325,
1985.
|
17. |
Bates DO and
Harper SJ.
Regulation of vascular permeability by vascular endothelial growth factors.
Vascul Pharmacol
39:
225–237,
2003.
|
18. |
Curry FE.
Mechanics and thermodynamics of transcapillary exchange. In:
Handbook of Physiology: The Cardiovascular System. Microcirculation,
eds Renkin EM and
Michel CC.
Bethesda, MD:
American Physiological Society,
1984,
pp. 411–466.
|
19. |
Crone C and
Levitt DG.
Capillary permeability to small solutes.
Handbook of Physiology: The Cardiovascular System. Microcirculation.
Bethesda, MD:
American Physiological Society,
1984,
pp. 411–466.
|
20. |
Michel CC.
Fluid movements through capillary walls.
Handbook of Physiology: The Cardiovascular System. Microcirculation.
Bethesda, MD:
American Physiological Society,
1984,
pp. 375–409.
|
21. |
Taylor AE and
Granger DN.
Exchange of macrfomolecules across the microcirculation. In:
Handbook of Physiology: The Cardiovascular System. Microcirculation,
eds Renkin EM and
Michel CC.
Bethesda, MD:
American Physiological Society,
1984,
pp. 467–520.
|
22. |
Starling EH.
On the absorption of fluids from the connective tissue spaces.
J Physiol
19:
312–326,
1896.
|
23. |
Landis EM.
Microinjection studies of capillary permeability. II. The relation between capillary pressure and the rate at which fluid passes through the walls of single capillaries.
Am J Physiol
82:
217–238,
1927.
|
24. |
Kedem O and
Katchalsky A.
Thermodynamic analysis of the permeability of biological membranes to non‐electrolytes.
Biochim Biophys Acta
27:
229–246,
1958.
|
25. |
Patlak CS,
Goldstein DA and
Hoffman JF.
The flow of solute and solvent across a two‐membrane system.
J Theor Biol
5:
426–442,
1963.
|
26. |
Adamson RH,
Lenz JF,
Zhang X,
Adamson GN,
Weinbaum S and
Curry FE.
Oncotic pressures opposing filtration across nonfenestrated rat microvessels.
J Physiol
557:
889–907,
2004.
|
27. |
Huxley VH and
Williams DA.
Basal and adenosine‐mediated protein flux from isolated coronary arterioles.
Am J Physiol
271:
H1099–H1108,
1996.
|
28. |
Bingaman S,
Huxley VH and
Rumbaut RE.
Fluorescent dyes modify properties of proteins used in microvascular research.
Microcirculation
10:
221–231,
2003.
|
29. |
Huang Q and
Yuan Y.
Interaction of PKC and NOS in signal transduction of microvascular hyperpermeability.
Am J Physiol
273:
H2442–H2451,
1997.
|
30. |
Wu HM,
Huang Q,
Yuan Y and
Granger HJ.
VEGF induces NO‐dependent hyperpermeability in coronary venules.
Am J Physiol
271:
H2735–H2739,
1996.
|
31. |
Wu HM,
Yuan Y,
Zawieja DC,
Tinsley J and
Granger HJ.
Role of phospholipase C, protein kinase C, and calcium in VEGF‐induced venular hyperpermeability.
Am J Physiol
276:
H535–H542,
1999.
|
32. |
Yuan SY,
Wu MH,
Ustinova EE,
Guo M,
Tinsley JH,
De Lanerolle P and
Xu W.
Myosin light chain phosphorylation in neutrophil‐stimulated coronary microvascular leakage.
Circ Res
90:
1214–1221,
2002.
|
33. |
Yuan Y,
Chilian WM,
Granger HJ and
Zawieja DC.
Permeability to albumin in isolated coronary venules.
Am J Physiol
265:
H543–H552,
1993.
|
34. |
Yuan Y,
Granger HJ,
Zawieja DC and
Chilian WM.
Flow modulates coronary venular permeability by a nitric oxide‐related mechanism.
Am J Physiol
263:
H641–H646,
1992.
|
35. |
Yuan Y,
Granger HJ,
Zawieja DC,
DeFily DV and
Chilian WM.
Histamine increases venular permeability via a phospholipase C‐NO synthase‐guanylate cyclase cascade.
Am J Physiol
264:
H1734–H1739,
1993.
|
36. |
Yuan Y,
Huang Q and
Wu HM.
Myosin light chain phosphorylation: modulation of basal and agonist‐stimulated venular permeability.
Am J Physiol
272:
H1437–H1443,
1997.
|
37. |
Yuan Y,
Meng FY,
Huang Q,
Hawker J and
Wu HM.
Tyrosine phosphorylation of paxillin/pp125FAK and microvascular endothelial barrier function.
Am J Physiol
275:
H84–H93,
1998.
|
38. |
Yuan Y,
Mier RA,
Chilian WM,
Zawieja DC and
Granger HJ.
Interaction of neutrophils and endothelium in isolated coronary venules and arterioles.
Am J Physiol
268:
H490–H498,
1995.
|
39. |
Crone C and
Christensen O.
Electrical resistance of a capillary endothelium.
J Gen Physiol
77:
349–371,
1981.
|
40. |
Olesen SP,
de Saint‐Aubain ML and
Bundgaard M.
Permeabilities of single arterioles and venules in the frog skin: a functional and morphological study.
Microvasc Res
28:
1–22,
1984.
|
41. |
Majno G,
Palade GE and
Schoefl GI.
Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study.
J Biophys Biochem Cytol
11:
607–626,
1961.
|
42. |
Cotran RS and
Majno G.
The delayed and prolonged vascular leakage in inflammation. I. topography of the leaking vessels after thermal injury.
Am J Pathol
45:
261–281,
1964.
|
43. |
Boric MP,
Roblero JS and
Durán WN.
Quantitation of bradykinin‐induced microvascular leakage of FITC‐dextran in rat cremaster muscle.
Microvasc Res
33:
397–412,
1987.
|
44. |
Dillon PK and
Durán WN.
Effect of platelet‐activating factor on microvascular permselectivity: dose‐response relations and pathways of action in the hamster cheek pouch microcirculation.
Circ Res
62:
732–740,
1988.
|
45. |
Fox J,
Galey F and
Wayland H.
Action of histamine on the mesenteric microvasculature.
Microvasc Res
19:
108–126.
1980.
|
46. |
Gawlowski DM and
Durán WN.
Dose‐related effects of adenosine and bradykinin on microvascular permselectivity to macromolecules in the hamster cheek pouch.
Circ Res
58:
348–355,
1986.
|
47. |
Gawlowski DM,
Ritter AB and
Durán WN.
Reproducibility of microvascular permeability responses to successive topical applications of bradykinin in the hamster cheek pouch.
Microvasc Res
24:
354–363,
1982.
|
48. |
Horan KL,
Adamski SW,
Ayele W,
Langone JJ and
Grega GJ.
Evidence that prolonged histamine suffusions produce transient increases in vascular permeability subsequent to the formation of venular macromolecular leakage sites. Proof of the Majno‐Palade hypothesis.
Am J Pathol
123:
570–576,
1986.
|
49. |
Lindbom L.
Regulation of vascular permeability by neutrophils in acute inflammation.
Chem Immunol Allergy
83:
146–166,
2003.
|
50. |
Svensjo E.
The hamster cheek pouch as a model in microcirculation research.
Eur Respir J Suppl
12:
595s–600s,
1990, discussion, 600s‐601s.
|
51. |
Svensjo E and
Joyner WL.
The effects of intermittent and continuous stimulation of microvessels in the cheek pouch of hamsters with histamine and bradykinin on the development of venular leaky sites.
Microcirc Endothelium Lymphatics
1:
381–396,
1984.
|
52. |
Wu NZ and
Baldwin AL.
Transient venular permeability increase and endothelial gap formation induced by histamine.
Am J Physiol
262:
H1238–H1247,
1992.
|
53. |
Allen TH and
Dralpvats PD.
Spectrophotometric measurement of traces of the dye T‐1824 by extraction with cellophane from both blood serum and urine of normal dogs.
Am J Physiol
154:
27–38,
1948.
|
54. |
Rawson RA.
The binding of T‐1824 and structurally related diazo dyes by plasma proteins.
Am J Physiol
138:
708–717,
1943.
|
55. |
Miles AA and
Miles EM.
Vascular reactions to histamine, histamine‐liberator and leukotaxine in the skin of guinea‐pigs.
J Physiol
118:
228–257,
1952.
|
56. |
Saria A and
Lundberg JM.
Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues.
J Neurosci Methods
8:
41–49,
1983.
|
57. |
Udaka K,
Takeuchi Y and
Movat HZ.
Simple method for quantitation of enhanced vascular permeability.
Proc Soc Exp Biol Med
133:
1384–1387,
1970.
|
58. |
Evans TW,
Chung KF,
Rogers DF and
Barnes PJ.
Effect of platelet‐activating factor on airway vascular permeability: possible mechanisms.
J Appl Physiol
63:
479–484,
1987.
|
59. |
Sheppard D,
Scypinski L,
Horn J,
Gordon T and
Thompson JE.
Granulocyte‐mediated airway edema in guinea pigs.
J Appl Physiol
60:
1213–1220,
1986.
|
60. |
Sirois MG and
Edelman ER.
VEGF effect on vascular permeability is mediated by synthesis of platelet‐activating factor.
Am J Physiol
272:
H2746–H2756,
1997.
|
61. |
Dvorak HF,
Nagy JA,
Feng D,
Brown LF and
Dvorak AM.
Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis.
Curr Top Microbiol Immunol
237:
97–132,
1999.
|
62. |
Bates DO and
Curry FE.
Vascular endothelial growth factor increases hydraulic conductivity of isolated perfused microvessels.
Am J Physiol
271:
H2520–H2528,
1996.
|
63. |
Bates DO,
Lodwick D and
Williams B.
Vascular endothelial growth factor and microvascular permeability.
Microcirculation
6:
83–96,
1999.
|
64. |
Taylor A,
Townsley MI and
Korthuis RJ.
Macromolecule transport across the pulmonary microvessel walls.
Exp Lung Res
8:
97–123,
1985.
|
65. |
Levick JR and
Michel CC.
The permeability of individually perfused frog mesenteric capillaries to T1824 and T1824‐albumin as evidence for a large pore system.
Q J Exp Physiol Cogn Med Sci
58:
67–85,
1973.
|
66. |
Durán WN and
Dillon PK.
Acute microcirculatory effects of platelet‐activating factor.
J Lipid Mediat
2
(Suppl):
S215–S227,
1990.
|
67. |
Mayhan WG and
Joyner WL.
The effect of altering the external calcium concentration and a calcium channel blocker, verapamil, on microvascular leaky sites and dextran clearance in the hamster cheek pouch.
Microvasc Res
28:
159–179,
1984.
|
68. |
Duling BR.
The preparation and use of the hamster cheek pouch for studies of the microcirculation.
Microvasc Res
5:
423–429,
1973.
|
69. |
Kim D,
Armenante PM and
Durán WN.
Transient analysis of macromolecular transport across microvascular wall and into interstitium.
Am J Physiol
265:
H993–H999,
1993.
|
70. |
Ramirez MM,
Quardt SM,
Kim D,
Oshiro H,
Minnicozzi M and
Durán WN.
Platelet activating factor modulates microvascular permeability through nitric oxide synthesis.
Microvasc Res
50:
223–234,
1995.
|
71. |
Svensjo E,
Arfors KE,
Arturson G and
Rutili G.
The hamster cheek pouch preparation as a model for studies of macromolecular permeability of the microvasculature.
Ups J Med Sci
83:
71–79,
1978.
|
72. |
Bekker AY,
Ritter AB and
Durán WN.
Analysis of microvascular permeability to macromolecules by video‐image digital processing.
Microvasc Res
38:
200–216,
1989.
|
73. |
Armenante PM,
Kim D and
Durán WN.
Experimental determination of the linear correlation between in vivo TV fluorescence intensity and vascular and tissue FITC‐DX concentrations.
Microvasc Res
42:
198–208,
1991.
|
74. |
Hatakeyama T,
Pappas PJ,
Hobson RW, II,
Boric MP,
Sessa WC and
Durán WN.
Endothelial nitric oxide synthase regulates microvascular hyperpermeability in vivo.
J Physiol
574:
275–281,
2006.
|
75. |
Bekker AY,
Ritter AB and
Durán WN.
Reduction of pressure in postcapillary venules induced by EPI‐fluorescent illumination of FITC‐dextrans.
Microcirc Endothelium Lymphatics
3:
411–423,
1986.
|
76. |
Bekker AY,
Dillon PK,
Paul J,
Ritter AB and
Durán WN.
Dose‐response relationships between platelet activating factor and permeability‐surface area product of FITC‐dextran 150 in the hamster cheek pouch.
Microcirc Endothelium Lymphatics
4:
433–446,
1988.
|
77. |
Svensjo E,
Adamski SW,
Su K and
Grega GJ.
Quantitative physiological and morphological aspects of microvascular permeability changes induced by histamine and inhibited by terbutaline.
Acta Physiol Scand
116:
265–273,
1982.
|
78. |
Gerlowski LE and
Jain RK.
Microvascular permeability of normal and neoplastic tissues.
Microvasc Res
31:
288–305,
1986.
|
79. |
Huxley VH,
Curry FE and
Adamson RH.
Quantitative fluorescence microscopy on single capillaries: alpha‐lactalbumin transport.
Am J Physiol
252:
H188–H197,
1987.
|
80. |
Ley K and
Arfors KE.
Changes in macromolecular permeability by intravascular generation of oxygen‐derived free radicals.
Microvasc Res
24:
25–33,
1982.
|
81. |
Ley K and
Arfors KE.
Segmental differences of microvascular permeability for FITC‐dextrans measured in the hamster cheek pouch.
Microvasc Res
31:
84–99,
1986.
|
82. |
Ritter AB,
Braun W,
Stein A and
Durán W.
Visualization of the coronary microcirculation using digital image processing.
Comput Biol Med
15:
361–374,
1985.
|
83. |
Nugent LJ and
Jain RK.
Plasma pharmacokinetics and interstitial diffusion of macromolecules in a capillary bed.
Am J Physiol
246:
H129–H137,
1984.
|
84. |
Fox JR and
Wayland H.
Interstitial diffusion of macromolecules in the rat mesentery.
Microvasc Res
18:
255–276,
1979.
|
85. |
Kim D,
Armenante PM and
Durán WN.
Mathematical modeling of mass transfer in microvascular wall and interstitial space.
Microvasc Res
40:
358–378,
1990.
|
86. |
Noel AA,
Fallek SR,
Hobson RW, II and
Durán WN.
Inhibition of nitric oxide synthase attenuates primed microvascular permeability in the in vivo microcirculation.
J Vasc Surg
22:
661–669,
1995, discussion 669‐670, 1995.
|
87. |
Suval WD,
Durán WN,
Boric MP,
Hobson RW, III,
Berendsen PB and
Ritter AB.
Microvascular transport and endothelial cell alterations preceding skeletal muscle damage in ischemia and reperfusion injury.
Am J Surg
154:
211–218,
1987.
|
88. |
Suval WD,
Hobson RW, II,
Boric MP,
Ritter AB and
Durán WN.
Assessment of ischemia reperfusion injury in skeletal muscle by macromolecular clearance.
J Surg Res
42:
550–559,
1987.
|
89. |
Yasuhara H,
Hobson RW, II,
Dillon PK and
Durán WN.
A new model for studying ischemia‐reperfusion injury in hamster cheek pouch.
Am J Physiol
261:
H1626–H1629,
1991.
|
90. |
Suzuki Y,
Deitch EA,
Mishima S,
Durán WN and
Xu DZ.
Endotoxin‐induced mesenteric microvascular changes involve iNOS‐derived nitric oxide: results from a study using iNOS knock out mice.
Shock
13:
397–403,
2000.
|
91. |
Yuan SY.
Signal transduction pathways in enhanced microvascular permeability.
Microcirculation
7:
395–403,
2000.
|
92. |
Tinsley JH,
Ustinova EE,
Xu W and
Yuan SY.
Src‐dependent, neutrophil‐mediated vascular hyperpermeability and beta ‐catenin modification.
Am J Physiol Cell Physiol
283:
C1745–C1751,
2002.
|
93. |
Tinsley JH,
Zawieja DC,
Wu MH,
Ustinova EE,
Xu W and
Yuan SY.
Protein transfection of intact microvessels specifically modulates vasoreactivity and permeability.
J Vasc Res
38:
444–452,
2001.
|
94. |
Jaffe EA,
Nachman RL,
Becker CG and
Minick CR.
Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria.
J Clin Invest
52:
2745–2756,
1973.
|
95. |
Gumbleton M and
Audus KL.
Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood‐brain barrier.
J Pharm Sci
90:
1681–1698,
2001.
|
96. |
Albelda SM,
Sampson PM,
Haselton FR,
McNiff JM,
Mueller SN,
Williams SK,
Fishman AP and
Levine EM.
Permeability characteristics of cultured endothelial cell monolayers.
J Appl Physiol
64:
308–322,
1988.
|
97. |
Schelling ME,
Meininger CJ,
Hawker JR, Jr. and
Granger HJ.
Venular endothelial cells from bovine heart.
Am J Physiol
254:
H1211–H1217,
1988.
|
98. |
Breslin JW and
Yuan SY.
Involvement of RhoA and Rho kinase in neutrophil‐stimulated endothelial hyperpermeability.
Am J Physiol Heart Circ Physiol
286:
H1057–H1062,
2004.
|
99. |
Tinsley JH,
Wu MH,
Ma W,
Taulman AC and
Yuan SY.
Activated neutrophils induce hyperpermeability and phosphorylation of adherens junction proteins in coronary venular endothelial cells.
J Biol Chem
274:
24930–24934,
1999.
|
100. |
Tilling T,
Korte D,
Hoheisel D and
Galla HJ.
Basement membrane proteins influence brain capillary endothelial barrier function in vitro.
J Neurochem
71:
1151–1157,
1998.
|
101. |
Furie MB,
Cramer EB,
Naprstek BL and
Silverstein SC.
Cultured endothelial cell monolayers that restrict the transendothelial passage of macromolecules and electrical current.
J Cell Biol
98:
1033–1041,
1984.
|
102. |
Navab M,
Hough GP,
Berliner JA,
Frank JA,
Fogelman AM,
Haberland ME and
Edwards PA.
Rabbit beta‐migrating very low density lipoprotein increases endothelial macromolecular transport without altering electrical resistance.
J Clin Invest
78:
389–397,
1986.
|
103. |
Shasby DM and
Shasby SS.
Effects of calcium on transendothelial albumin transfer and electrical resistance.
J Appl Physiol
60:
71–79,
1986.
|
104. |
Territo M,
Berliner JA and
Fogelman AM.
Effect of monocyte migration on low density lipoprotein transport across aortic endothelial cell monolayers.
J Clin Invest
74:
2279–2284,
1984.
|
105. |
Abbruscato TJ and
Davis TP.
Combination of hypoxia/aglycemia compromises in vitro blood‐brain barrier integrity.
J Pharmacol Exp Ther
289:
668–675,
1999.
|
106. |
Raub TJ,
Kuentzel SL and
Sawada GA.
Permeability of bovine brain microvessel endothelial cells in vitro: barrier tightening by a factor released from astroglioma cells.
Exp Cell Res
199:
330–340,
1992.
|
107. |
Olesen SP and
Crone C.
Electrical resistance of muscle capillary endothelium.
Biophys J
42:
31–41,
1983.
|
108. |
Crone C and
Olesen SP.
Electrical resistance of brain microvascular endothelium.
Brain Res
241:
49–55,
1982.
|
109. |
Giaever I and
Keese CR.
Micromotion of mammalian cells measured electrically.
Proc Natl Acad Sci USA
88:
7896–7900,
1991.
|
110. |
Giaever I and
Keese CR.
A morphological biosensor for mammalian cells.
Nature
366:
591–592,
1993.
|
111. |
Moy AB,
Blackwell K and
Kamath A.
Differential effects of histamine and thrombin on endothelial barrier function through actin‐myosin tension.
Am J Physiol Heart Circ Physiol
282:
H21–H29,
2002.
|
112. |
Moy AB,
Blackwell K,
Wang N,
Haxhinasto K,
Kasiske MK,
Bodmer J,
Reyes G and
English A.
Phorbol ester‐mediated pulmonary artery endothelial barrier dysfunction through regulation of actin cytoskeletal mechanics.
Am J Physiol Lung Cell Mol Physiol
287:
L153–L167,
2004.
|
113. |
Moy AB,
Van Engelenhoven J,
Bodmer J,
Kamath J,
Keese C,
Giaever I,
Shasby S and
Shasby DM.
Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces.
J Clin Invest
97:
1020–1027,
1996.
|
114. |
Moy AB,
Winter M.
Kamath A,
Blackwell K,
Reyes G,
Giaever I,
Keese C and
Shasby DM.
Histamine alters endothelial barrier function at cell‐cell and cell‐matrix sites.
Am J Physiol Lung Cell Mol Physiol
278:
L888–L898,
2000.
|
115. |
Tiruppathi C,
Malik AB,
Del Vecchio PJ,
Keese CR and
Giaever I.
Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function.
Proc Natl Acad Sci USA
89:
7919–7923,
1992.
|
116. |
Lum H and
Malik AB.
Regulation of vascular endothelial barrier function.
Am J Physiol
267:
L223–L241,
1994.
|
117. |
McDonagh PF and
Williams SK.
The preparation and use of fluorescent‐protein conjugates for microvascular research.
Microvasc Res
27:
14–27,
1984.
|
118. |
Martin JP and
Logsdon N.
Oxygen radicals mediate cell inactivation by acridine dyes, fluorescein, and lucifer yellow CH.
Photochem Photobiol
46:
45–53,
1987.
|
119. |
Gawlowski DM,
Harding NR and
Granger HJ.
Leukocyte phagocytosis and alterations in microvascular integrity elicited by FITC‐dextran 150 and epi‐illumination in the microcirculation of the hamster cheek pouch.
Microvasc Res
37:
1–15,
1989.
|
120. |
Reed MW and
Miller FN.
Importance of light dose in fluorescent microscopy.
Microvasc Res
36:
104–107,
1988.
|
121. |
Vink H and
Duling BR.
Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries.
Circ Res
79:
581–589,
1996.
|
122. |
Zhang JL,
Yokoyama S and
Ohhashi T.
Inhibitory effects of fluorescein isothiocyanate photoactivation on lymphatic pump activity.
Microvasc Res
54:
99–107,
1997.
|
123. |
Rumbaut RE,
Harris NR,
Sial AJ,
Huxley VH and
Granger DN.
Leakage responses to L‐NAME differ with the fluorescent dye used to label albumin.
Am J Physiol
276:
H333–H339,
1999.
|
124. |
Rumbaut RE and
Sial AJ.
Differential phototoxicity of fluorescent dye‐labeled albumin conjugates.
Microcirculation
6:
205–213,
1999.
|
125. |
Pappenheimer JR,
Renkin EM and
Borrero LM.
Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability.
Am J Physiol
167:
13–46,
1951.
|
126. |
Renkin EM.
Cellular aspects of transvascular exchange: a 40‐year perspective.
Microcirculation
1:
157–167,
1994.
|
127. |
Rippe B and
Haraldsson B.
Transport of macromolecules across microvascular walls: the two‐pore theory.
Physiol Rev
74:
163–219.
1994.
|
128. |
Renkin EM,
Gustafson Sgro M and
Sibley L.
Coupling of albumin flux to volume flow in skin and muscles of anesthetized rats.
Am J Physiol
255:
H458–H466,
1998.
|
129. |
Curry FE and
Michel CC.
A fiber matrix model of capillary permeability.
Microvasc Res
20:
96–99,
1980.
|
130. |
Palade GE.
Transport in quanta across the endothelium of blood capillaries.
Anat Rec
116:
254,
1960, (Abstract).
|
131. |
Bruns RR and
Palade GE.
Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries.
J Cell Biol
37:
277–299,
1968.
|
132. |
Clough G and
Michel CC.
The role of vesicles in the transport of ferritin through frog endothelium.
J Physiol
315:
127–142,
1981.
|
133. |
Jennings MA and
Florey L.
An investigation of some properties of endothelium related to capillary permeability.
Proc R Soc Lond B Biol Sci
167:
39–63,
1967.
|
134. |
Johansson BR.
Size and distribution of endothelial plasmalemmal vesicles in consecutive segments of the microvasculature in cat skeletal muscle.
Microvasc Res
17:
107–117,
1979.
|
135. |
Simionescu N,
Siminoescu M and
Palade GE.
Permeability of muscle capillaries to small heme‐peptides. Evidence for the existence of patent transendothelial channels.
J Cell Biol
64:
586–607,
1975.
|
136. |
Predescu D,
Horvat R,
Predescu S and
Palade GE.
Transcytosis in the continuous endothelium of the myocardial microvasculature is inhibited by N‐ethylmaleimide.
Proc Natl Acad Sci USA
91:
3014–3018,
1994.
|
137. |
Schnitzer JE,
Oh P,
Pinney E and
Allard J.
Filipin‐sensitive caveolae‐mediated transport in endothelium: reduced transcytosis. scavenger endocytosis, and capillary permeability of select macromolecules.
J Cell Biol
127:
1217–1232,
1994.
|
138. |
Simionescu M and
Simionescu N.
Ultrastructure of the microvascular wall: functional correlations. In:
Handbook of Physiology: The Cardiovascular System. Microcirculation,
2nd Ed,
eds Renkin EM and
Michel CC.
Bethesda, MD:
American Physiological Society,
1984,
pp. 41–101.
|
139. |
Bundgaard M,
Frokjaer‐Jensen J and
Crone C.
Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface.
Proc Natl Acad Sci USA
76:
6439–6442,
1979.
|
140. |
Frokjaer‐Jensen J.
Three‐dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries.
J Ultrastruct Res
73:
9–20,
1980.
|
141. |
Crone C.
Recent Advances in Physiology.
London:
Chruchill Livingstone,
1984.
|
142. |
Reed RK.
Transcapillary albumin extravasation in rat skin and skeletal muscle: effect of increased venous pressure.
Acta Physiol Scand
134:
375–382,
1988.
|
143. |
Carlsson O,
Rosengren BI and
Rippe B.
Transcytosis inhibitor N‐ethylmaleimide increases microvascular permeability in rat muscle.
Am J Physiol Heart Circ Physiol
281:
H1728–H1733,
2001.
|
144. |
Rippe B and
Taylor A.
NEM and filipin increase albumin transport in lung microvessels.
Am J Physiol Heart Circ Physiol
280:
H34–H41,
2001.
|
145. |
Haraldsson B and
Johansson BR.
Changes in transcapillary exchange induced by perfusion fixation with glutaraldehyde, followed by measurements of capillary filtration coefficient, diffusion capacity and albumin clearance.
Acta Physiol Scand
124:
99–106,
1985.
|
146. |
Clough G.
Relationship between microvascular permeability and ultrastructure.
Prog Biophys Mol Biol
55:
47–69,
1991.
|
147. |
Dvorak AM and
Feng D.
The vesiculo‐vacuolar organelle (VVO). A new endothelial cell permeability organelle.
J Histochem Cytochem
49:
419–432,
2001.
|
148. |
Feng D,
Nagy JA,
Brekken RA,
Pettersson A,
Manseau EJ,
Pyne K,
Mulligan R,
Thorpe PE,
Dvorak HF and
Dvorak AM.
Ultrastructural localization of the vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) receptor‐2 (FLK‐1, KDR) in normal mouse kidney and in the hyperpermeable vessels induced by VPF/VEGF‐expressing tumors and adenoviral vectors.
J Histochem Cytochem
48:
545–556,
2000.
|
149. |
Vasile E,
Qu H,
Dvorak HF and
Dvorak AM.
Caveolae and vesiculo‐vacuolar organelles in bovine capillary endothelial cells cultured with VPF/VEGF on floating Matrigel‐collagen gels.
J Histochem Cytochem
47:
159–167,
1999.
|
150. |
Minshall RD,
Tiruppathi C,
Vogel SM,
Niles WD,
Gilchrist A,
Hamm HE and
Malik AB.
Endothelial cell‐surface gp60 activates vesicle formation and trafficking via G(i)‐coupled Src kinase signaling pathway.
J Cell Biol
150:
1057–1070,
2000.
|
151. |
Vogel SM,
Minshall RD,
Pilipovic M,
Tiruppathi C and
Malik AB.
Albumin uptake and transcytosis in endothelial cells in vivo induced by albumin‐binding protein.
Am J Physiol Lung Cell Mol Physiol
281:
L1512–L1522,
2001.
|
152. |
Holmang A,
Bjorntorp P and
Rippe B.
Tissue uptake of insulin and inulin in red and white skeletal muscle in vivo.
Am J Physiol
263:
H1170–H1176,
1992.
|
153. |
Vasile E,
Simionescu M and
Simionescu N.
Visualization of the binding, endocytosis. and transcytosis of low‐density lipoprotein in the arterial endothelium in situ.
J Cell Biol
96:
1677–1689,
1983.
|
154. |
Rutledge JC.
Temperature and hydrostatic pressure‐dependent pathways of low‐density lipoprotein transport across microvascular barrier.
Am J Physiol
262:
H234–H245,
1992.
|
155. |
Chambers R and
Zweifach BW.
Intercellular cement and capillary permeability.
Physiol Rev
27:
436–463,
1947.
|
156. |
Majno G and
Palade G.
Studies on inflammation I. The effect of histamine and serotonin on vascular permeability: An electron microscopic study.
J Biophys Cytol
11:
597–605,
1961.
|
157. |
Dudek SM and
Garcia JG.
Cytoskeletal regulation of pulmonary vascular permeability.
J Appl Physiol
91:
1487–1500,
2001.
|
158. |
Garcia JG,
Davis HW and
Patterson CE.
Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation.
J Cell Physiol
163:
510–522,
1995.
|
159. |
Moy AB,
Sheldon R,
Lindsley K,
Shasby S and
Shasby DM.
Centripetal tension and endothelial retraction.
Chest
105:
107S–108S,
1994.
|
160. |
Yuan SY.
Protein kinase signaling in the modulation of microvascular permeability.
Vascul Pharmacol
39:
213–223,
2003.
|
161. |
Hixenbaugh EA,
Goeckeler ZM,
Papaiya NN,
Wysolmerski RB,
Silverstein SC and
Huang AJ.
Stimulated neutrophils induce myosin light chain phosphorylation and isometric tension in endothelial cells.
Am J Physiol
213:
H981–H988,
1997.
|
162. |
Kolodney MS and
Wysolmerski RB.
Isometric contraction by fibroblasts and endothelial cells in tissue culture: A quantitative study.
J Cell Biol
117:
73–82,
1992.
|
163. |
Harhaj NS and
Antonetti DA.
Regulation of tight junctions and loss of barrier function in pathophysiology.
Int J Biochem Cell Biol
36:
1206–1237,
2004.
|
164. |
Bazzoni G and
Dejana E.
Endothelial cell‐to‐cell junctions: molecular organization and role in vascular homeostasis.
Physiol Rev
84:
869–901,
2004.
|
165. |
Beyer EC,
Gemel J,
Seul KH,
Larson DM,
Banach K and
Brink PR.
Modulation of intercellular communication by differential regulation and heteromeric mixing of co‐expressed connexins.
Braz J Med Biol Res
33:
391–397,
2000.
|
166. |
Kevil CG,
Okayama N,
Trocha SD,
Kalogeris TJ,
Coe LL,
Specian RD,
Davis CP and
Alexander JS.
Expression of zonula occludens and adherens junctional proteins in human venous and arterial endothelial cells: role of occludin in endothelial solute barriers.
Microcirculation
5:
197–210,
1998.
|
167. |
Hirase T,
Staddon JM,
Saitou M,
Ando‐Akatsuka Y,
Itoh M,
Furuse M,
Fujimoto K,
Tsukita S and
Rubin LL.
Occludin as a possible determinant of tight junction permeability in endothelial cells.
J Cell Sci
110
(Pt 14):
1603–1613,
1997.
|
168. |
DeMaio L,
Chang YS,
Gardner TW,
Tarbell JM and
Antonetti DA.
Shear stress regulates occludin content and phosphorylation.
Am J Physiol Heart Circ Physiol
281:
H105–H113,
2001.
|
169. |
Antonetti DA,
Barber AJ,
Khin S,
Lieth E,
Tarbell JM and
Gardner TW.
Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group.
Diabetes
47:
1953–1959,
1998.
|
170. |
Muresan Z,
Paul DL and
Goodenough DA.
Occludin 1B, a variant of the tight junction protein occludin.
Mol Biol Cell
11:
627–634,
2000.
|
171. |
Antonetti DA,
Barber AJ,
Hollinger LA,
Wolpert EB and
Gardner TW.
Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors.
J Biol Chem
274:
23463–23467,
1999.
|
172. |
Nitta T,
Hata M,
Gotoh S,
Seo Y,
Sasaki H,
Hashimoto N,
Furuse M and
Tsukita S.
Size‐selective loosening of the blood‐brain barrier in claudin‐5‐deficient mice.
J Cell Biol
161:
653–660,
2003.
|
173. |
Corada M,
Liao F,
Lindgren M,
Lampugnani MG,
Breviario F,
Frank R,
Muller WA,
Hicklin DJ,
Bohlen P and
Dejana E.
Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability.
Blood
97:
1679–1684,
2001.
|
174. |
Corada M,
Mariotti M,
Thurston G,
Smith K,
Kunkel R,
Brockhaus M,
Lampugnani MG,
Martin‐Padura I,
Stoppacciaro A,
Ruco L,
McDonald DM,
Ward PA and
Dejana E.
Vascular endothelial‐cadherin is an important determinant of microvascular integrity in vivo.
Proc Natl Acad Sci USA
96:
9815–9820,
1999.
|
175. |
Guo M,
Wu MH,
Granger HJ and
Yuan SY.
Transference of recombinant VE‐cadherin cytoplasmic domain alters endothelial junctional integrity and porcine microvascular permeability.
J Physiol
554:
78–88,
2004.
|
176. |
Simon AM and
McWhorter AR.
Role of connexin37 and connexin40 in vascular development.
Cell Commun Adhes
10:
379–385,
2003.
|
177. |
Simon AM and
McWhorter AR.
Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40.
Dev Biol
251:
206–220,
2002.
|
178. |
Suarez S and
Ballmer‐Hofer K.
VEGF transiently disrupts gap junctional communication in endothelial cells.
J Cell Sci
114:
1229–1235,
2001.
|
179. |
Thuringer D.
The vascular endothelial growth factor‐induced disruption of gap junctions is relayed by an autocrine communication via ATP release in coronary capillary endothelium.
Ann N Y Acad Sci
1030:
14–27,
2004.
|
180. |
Agre P,
Homer, W.
Smith award lecture. Aquaporin water channels in kidney.
J Am Soc Nephrol
11:
764–777,
2000.
|
181. |
King LS,
Nielsen S,
Agre P and
Brown RH.
Decreased pulmonary vascular permeability in aquaporin‐1‐null humans.
Proc Natl Acad Sci USA
99:
1059–1063,
2002.
|
182. |
Verkman AS.
Aquaporin water channels and endothelial cell function.
J Anat
200:
617–627,
2002.
|
183. |
de Weerd WF and
Leeb‐Lundberg LM.
Bradykinin sequesters B2 bradykinin receptors and the receptor‐coupled Galpha subunits Galphaq and Galphai in caveolae in DDT1 MF‐2 smooth muscle cells.
J Biol Chem
272:
17858–17866,
1997.
|
184. |
Snyder F.
Platelet‐activating factor and related acetylated lipids as potent biologically active cellular mediators.
Am J Physiol
259:
C697–C708,
1990.
|
185. |
Millauer B,
Wizigmann‐Voos S,
Schnurch H,
Martinez R,
Moller NP,
Risau W and
Ullrich A.
High affinity VEGF binding and developmental expression suggest Flk‐1 as a major regulator of vasculogenesis and angiogenesis.
Cell
72:
835–846,
1993.
|
186. |
Quinn TP,
Peters KG,
De Vries C,
Ferrara N and
Williams LT.
Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium.
Proc Natl Acad Sci USA
90:
7533–7537,
1993.
|
187. |
Izumi T and
Shimizu T.
Platelet‐activating factor receptor: gene expression and signal transduction.
Biochim Biophys Acta
1259:
317–333,
1995.
|
188. |
Kuruvilla A,
Pielop C and
Shearer WT.
Platelet‐activating factor induces the tyrosine phosphorylation and activation of phospholipase C‐gamma 1, Fyn and Lyn kinases, and phosphatidylinositol 3‐kinase in a human B cell line.
J Immunol
153:
5433–5442,
1994.
|
189. |
Kroll J and
Waltenberger J.
The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells.
J Biol Chem
272:
32521–32527,
1997.
|
190. |
Guo D,
Jia Q,
Song HY,
Warren RS and
Donner DB.
Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation.
J Biol Chem
270:
6729–6733,
1995.
|
191. |
Mukhopadhyay D,
Nagy JA,
Manseau EJ and
Dvorak HF.
Vascular permeability factor/vascular endothelial growth factor‐mediated signaling in mouse mesentery vascular endothelium.
Cancer Res
58:
1278–1284,
1998.
|
192. |
Breslin JW,
Gaudreault N,
Watson KD,
Reynoso R,
Yuan SY and
Wu MH.
Vascular endothelial growth factor‐C stimulates the lymphatic pump by a VEGF receptor‐3‐dependent mechanism.
Am J Physiol Heart Circ Physiol
293:
H709–H718,
2007.
|
193. |
Breslin JW,
Yuan SY and
Wu MH.
VEGF‐C alters barrier function of cultured lymphatic endothelial cells through a vEGFR‐3 dependent mechanism.
Lymphat Res Biol
5:
105–113,
2007.
|
194. |
Hillman NJ,
Whittles CE,
Pocock TM,
Williams B and
Bates DO.
Differential effects of vascular endothelial growth factor‐C and placental growth factor‐1 on the hydraulic conductivity of frog mesenteric capillaries.
J Vasc Res
38:
176–186,
2001.
|
195. |
Tomeo AC and
Durán WN.
Resistance and exchange microvessels are modulated by different PAF receptors.
Am J Physiol
261:
H1648–H1652,
1991.
|
196. |
McLeod RL,
Mingo GG,
Herczku C,
DeGennaro‐Culver F,
Kreutner W,
Egan RW and
Hey JA.
Combined histamine H1 and H3 receptor blockade produces nasal decongestion in an experimental model of nasal congestion.
Am J Rhinol
13:
391–399,
1999.
|
197. |
McLeod RL,
Mingo GG,
Kreutner W and
Hey JA.
Effect of combined histamine H1 and H3 receptor blockade on cutaneous microvascular permeability elicited by compound 48/80.
Life Sci
76:
1787–1794,
2005.
|
198. |
Lampugnani MG,
Zanetti A,
Breviario F,
Balconi G,
Orsenigo F,
Corada M,
Spagnuolo R,
Betson M,
Braga V and
Dejana E.
VE‐cadherin regulates endothelial actin activating Rac and increasing membrane association of Tiam.
Mol Biol Cell
13:
1175–1189,
2002.
|
199. |
Kim D and
Durán WN.
Platelet‐activating factor stimulates protein tyrosine kinase in hamster cheek pouch microcirculation.
Am J Physiol
268:
H399–H403,
1995.
|
200. |
Newton AC.
Regulation of protein kinase C.
Curr Opin Cell Biol
9:
161–167,
1997.
|
201. |
Tinsley JH,
Teasdale NR and
Yuan SY.
Involvement of PKCdelta and PKD in pulmonary microvascular endothelial cell hyperpermeability.
Am J Physiol Cell Physiol
286:
C105–C111,
2004.
|
202. |
Johnson A,
Hocking DC and
Ferro TJ.
Mechanisms of pulmonary edema induced by a diacylglycerol second messenger.
Am J Physiol
258:
H85–H91,
1990.
|
203. |
Kobayashi I,
Kim D,
Hobson RW, II and
Durán WN.
Platelet‐activating factor modulates microvascular transport by stimulation of protein kinase C.
Am J Physiol
266:
H1214–H1220,
1994.
|
204. |
Lynch JJ,
Ferro TJ,
Blumenstock FA,
Brockenauer AM and
Malik AB.
Increased endothelial albumin permeability mediated by protein kinase C activation.
J Clin Invest
85:
1991–1998,
1990.
|
205. |
Pocock TM,
Foster RR and
Bates DO.
Evidence of a role for TRPC channels in VEGF‐mediated increased vascular permeability in vivo.
Am J Physiol Heart Circ Physiol
286:
H1015–H1026,
2004.
|
206. |
Ramirez MM,
Kim DD and
Durán WN.
Protein kinase C modulates microvascular permeability through nitric oxide synthase.
Am J Physiol
271:
H1702–H1705,
1996.
|
207. |
Aramoto H,
Breslin JW,
Pappas PJ,
Hobson RW, II and
Durán WN.
Vascular endothelial growth factor stimulates differential signaling pathways in in vivo microcirculation.
Am J Physiol Heart Circ Physiol
287:
H1590–H1598,
2004.
|
208. |
Murray MA,
Heistad DD and
Mayhan WG.
Role of protein kinase C in bradykinin‐induced increases in microvascular permeability.
Circ Res
68:
1340–1348,
1991.
|
209. |
Johnson A,
Phillips P,
Hocking D,
Tsan MF and
Ferro T.
Protein kinase inhibitor prevents pulmonary edema in response to H2O2.
Am J Physiol
256:
H1012–H1022,
1989.
|
210. |
Tanita T,
Song C,
Kubo H,
Ono S and
Fujimura S.
Endothelial signal transduction system enhances neutrophil‐induced pulmonary vascular permeability.
Eur Respir J
15:
452–458,
2000.
|
211. |
Breslin JW,
Pappas PJ,
Cerveira JJ,
Hobson RW, II and
Durán WN.
VEGF Increases endothelial permeability by separate signaling pathways involving ERK‐1/2 and nitric oxide.
Am J Physiol Heart Circ Physiol
284:
H92–H100,
2003.
|
212. |
Siflinger‐Birnboim A,
Goligorsky MS,
Del Vecchio PJ and
Malik AB.
Activation of protein kinase C pathway contributes to hydrogen peroxide‐induced increase in endothelial permeability.
Lab Invest
67:
24–30,
1992.
|
213. |
Tinsley JH,
Breslin JW,
Teasdale NR and
Yuan SY.
PKC‐dependent. burn‐induced adherens junction reorganization and barrier dysfunction in pulmonary microvascular endothelial cells.
Am J Physiol.
2005, ePub ahead of print, PMID: 15821015,
2005.
|
214. |
Xia P,
Aiello LP,
Ishii H,
Jiang ZY,
Park DJ,
Robinson GS,
Takagi H,
Newsome WP,
Jirousek MR and
King GL.
Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth.
J Clin Invest
98:
2018–2026,
1996.
|
215. |
Kim DD,
Ramirez MM and
Durán WN.
Platelet‐activating factor modulates microvascular dynamics through phospholipase C in the hamster cheek pouch.
Microvasc Res
59:
7–13,
2000.
|
216. |
Bates DO and
Curry FE.
Vascular endothelial growth factor increases microvascular permeability via a Ca(2 + (‐dependent pathway.
Am J Physiol
273:
H687–H694,
1997.
|
217. |
Sandoval R,
Malik AB,
Minshall RD,
Kouklis P,
Ellis CA and
Tiruppathi C.
Ca(2 +) signalling and PKCalpha activate increased endothelial permeability by disassembly of VE‐cadherin junctions.
J Physiol
533:
433–445,
2001.
|
218. |
Sandoval R,
Malik AB,
Naqvi T,
Mehta D and
Tiruppathi C.
Requirement for Ca2+ signaling in the mechanism of thrombin‐induced increase in endothelial permeability.
Am J Physiol Lung Cell Mol Physiol
280:
L239–L247,
2001.
|
219. |
He P,
Pagakis SN and
Curry FE.
Measurement of cytoplasmic calcium in single microvessels with increased permeability.
Am J Physiol
258:
H1366–H1374,
1990.
|
220. |
Glass CA,
Pocock TM,
Curry FE and
Bates DO.
Cytosolic Ca2+ concentration and the rate of increase of the cytosolic Ca2+ concentration in the regulation of vascular permeability in Rana in vivo.
J Physiol,
2005.
|
221. |
Pocock TM,
Williams B,
Curry FE and
Bates DO.
VEGF and ATP act by different mechanisms to increase microvascular permeability and endothelial [Ca(2 +](i).
Am J Physiol Heart Circ Physiol
279:
H1625–H1634,
2000.
|
222. |
Ferro T,
Neumann P,
Gertzberg N,
Clements R and
Johnson A.
Protein kinase C‐alpha mediates endothelial barrier dysfunction induced by TNF‐alpha.
Am J Physiol Lung Cell Mol Physiol
278:
L1107–L1117,
2000.
|
223. |
Mehta D,
Rahman A and
Malik AB.
Protein kinase C‐alpha signals rho‐guanine nucleotide dissociation inhibitor phosphorylation and rho activation and regulates the endothelial cell barrier function.
J Biol Chem
276:
22614–22620,
2001.
|
224. |
Nagpala PG,
Malik AB,
Vuong PT and
Lum H.
Protein kinase C beta 1 overexpression augments phorbol ester‐induced increase in endothelial permeability.
J Cell Physiol
166:
249–255,
1996.
|
225. |
Jirousek MR,
Gillig JR,
Gonzalez CM,
Heath WF,
McDonald JH, III,
Neel DA,
Rito CJ,
Singh U,
Stramm LE,
Melikian‐Badalian A,
Baevsky M,
Ballas LM,
Hall SE,
Winneroski LL and
Faul MM.
(S)‐13‐[dimethylamino)methyl]‐10,11,14,15‐tetrahydro‐4,9:16, 21‐dimetheno‐1H, 13H‐dibenzo[e,k]pyrrolo[3,4‐h][1,4,13]oxadi azacyclohexadecene‐l,3(2H)‐d ione (LY333531) and related analogues: isozyme selective inhibitors of protein kinase C beta.
J Med Chem
39:
2664–2671,
1979.
|
226. |
Aiello LP,
Bursell SE,
Clermont A,
Duh E,
Ishii H,
Takagi C,
Mori F,
Ciulla TA,
Ways K,
Jirousek M,
Smith LE and
King GL.
Vascular endothelial growth factor‐induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta‐isoform‐selective inhibitor.
Diabetes
46:
1473–1480,
1997.
|
227. |
Ishii H,
Jirousek MR,
Koya D,
Takagi C,
Xia P,
Clermont A,
Bursell SE,
Kern TS,
Ballas LM,
Heath WF,
Stramm LE,
Feener EP and
King GL.
Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor.
Science
272:
728–731,
1996.
|
228. |
Koya D,
Haneda M,
Nakagawa H,
Isshiki K,
Sato H,
Maeda S,
Sugimoto T,
Yasuda H,
Kashiwagi A,
Ways DK,
King GL and
Kikkawa R.
Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes.
FASEB J
14:
439–447,
2000.
|
229. |
Guo M,
Wu MH,
Korompai F and
Yuan SY.
Upregulation of PKC genes and isozymes in cardiovascular tissues during early stages of experimental diabetes.
Physiol Genomics
12:
139–146,
2003.
|
230. |
Comer GM and
Ciulla TA.
Pharmacotherapy for diabetic retinopathy.
Curr Opin Ophthalmol
15:
508–518,
2004.
|
231. |
Tuttle KR and
Anderson PW.
A novel potential therapy for diabetic nephropathy and vascular complications: protein kinase C beta inhibition.
Am J Kidney Dis
42:
456–465,
2003.
|
232. |
Kim H,
Sasaki T,
Maeda K,
Koya D,
Kashiwagi A and
Yasuda H.
Protein kinase Cbeta selective inhibitor LY333531 attenuates diabetic hyperalgesia through ameliorating cGMP level of dorsal root ganglion neurons.
Diabetes
52:
2102–2109,
2003.
|
233. |
Stasek JE, Jr.,
Patterson CE and
Garcia JG.
Protein kinase C phosphorylates caldesmon77 and vimentin and enhances albumin permeability across cultured bovine pulmonary artery endothelial cell monolayers.
J Cell Physiol
153:
62–75,
1992.
|
234. |
Abedi H and
Zachary I.
Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells.
J Biol Chem
272:
15442–15451,
1997.
|
235. |
Alexander JS,
Jackson SA,
Chaney E,
Kevil CG and
Haselton FR.
The role of cadherin endocytosis in endothelial barrier regulation: involvement of protein kinase C and actin‐cadherin interactions.
Inflammation
22:
419–433,
1998.
|
236. |
Moore TM,
Chetham PM,
Kelly JJ and
Stevens T.
Signal transduction and regulation of lung endothelial cell permeability. Interaction between calcium and cAMP.
Am J Physiol
275:
L203–L222,
1998.
|
237. |
He P,
Zeng M and
Curry FE.
Dominant role of cAMP in regulation of microvessel permeability.
Am J Physiol Heart Circ Physiol
278:
H1124–H1133,
2000.
|
238. |
Adamson RH,
Liu B,
Fry GN,
Rubin LL and
Curry FE.
Microvascular permeability and number of tight junctions are modulated by cAMP.
Am J Physiol
274:
H1885–H1894,
1998.
|
239. |
Cobb MH.
MAP kinase pathways.
Prog Biophys Mol Biol
71:
479–500,
1999.
|
240. |
Hood J and
Granger HJ.
Protein kinase G mediates vascular endothelial growth factor‐induced Raf‐1 activation and proliferation in human endothelial cells.
J Biol Chem
273:
23504–23508,
1998.
|
241. |
Parenti A.
Morbidelli L,
Cui XL,
Douglas JG,
Hood JD,
Granger HJ,
Ledda F and
Ziche M.
Nitric oxide is an upstream signal of vascular endothelial growth factor‐induced extracellular signal‐regulated kinase 1/2 activation in postcapillary endothelium.
J Biol Chem
273:
4220–4226,
1998.
|
242. |
Kooistra MR,
Corada M,
Dejana E and
Bos JL.
Epacl regulates integrity of endothelial cell junctions through VE‐cadherin.
FEBS Lett
579:
4966–4972,
2005.
|
243. |
DeFouw LM and
DeFouw DO.
Differential phosphodiesterase activity contributes to restrictive endothelial barrier function during angiogenesis.
Microvasc Res
62:
263–270,
2001.
|
244. |
Sarker MH and
Fraser PA.
The role of guanylyl cyclases in the permeability response to inflammatory mediators in pial venular capillaries in the rat.
J Physiol
540:
209–218,
2002.
|
245. |
Mayhan WG.
Nitric oxide accounts for histamine‐induced increases in macromolecular extravasation.
Am J Physiol
266:
H2369–H2373,
1994.
|
246. |
Meyer DJ, Jr. and
Huxley VH.
Capillary hydraulic conductivity is elevated by cGMP‐dependent vasodilators.
Circ Res
70:
382–391,
1992.
|
247. |
He P,
Zeng M and
Curry FE.
cGMP modulates basal and activated microvessel permeability independently of [Ca2 +]i.
Am J Physiol
274:
H1865–H1874,
1998.
|
248. |
Varma S,
Breslin JW,
Lal BK,
Pappas PJ,
Hobson RW, II and
Durán WN.
p42/44MAPK regulates baseline permeability and cGMP‐induced hyperpermeability in endothelial cells.
Microvasc Res
63:
172–178,
2002.
|
249. |
Thakker GD,
Hajjar DP,
Muller WA and
Rosengart TK.
The role of phosphatidylinositol 3‐kinase in vascular endothelial growth factor signaling.
J Biol Chem
274:
10002–10007,
1999.
|
250. |
Conus NM,
Hannan KM,
Cristiano BE,
Hemmings BA and
Pearson RB.
Direct identification of tyrosine 474 as a regulatory phosphorylation site for the Akt protein kinase.
J Biol Chem
277:
38021–38028,
2002.
|
251. |
Downward J.
Mechanisms and consequences of activation of protein kinase B/Akt.
Curr Opin Cell Biol
10:
262–267,
1998.
|
252. |
Hemmings BA.
Akt signaling: linking membrane events to life and death decisions.
Science
275:
628–630,
1997.
|
253. |
Schlessinger J.
Cell signaling by receptor tyrosine kinases.
Cell
103:
211–225,
2000.
|
254. |
Lal BK,
Varma S,
Pappas PJ,
Hobson RW, II and
Durán WN.
VEGF increases permeability of the endothelial cell monolayer by activation of PKB/akt, endothelial nitric‐oxide synthase, and MAP kinase pathways.
Microvasc Res
62:
252–262,
2001.
|
255. |
Bauer PM,
Yu J,
Chen Y,
Hickey R,
Bernatchez PN,
Looft‐Wilson R,
Huang Y,
Giordano F,
Stan RV and
Sessa WC.
Endothelial‐specific expression of caveolin‐1 impairs microvascular permeability and angiogenesis.
Proc Natl Acad Sci USA
102:
204–209,
2005.
|
256. |
Chang L and
Karin M.
Mammalian MAP kinase signalling cascades.
Nature
410:
37–40,
2001.
|
257. |
Chuang E,
Barnard D,
Hettich L,
Zhang XF,
Avruch J and
Marshall MS.
Critical binding and regulatory interactions between Ras and Raf occur through a small, stable N‐terminal domain of Raf and specific Ras effector residues.
Mol Cell Biol
14:
5318–5325,
1994.
|
258. |
English J,
Pearson G,
Wilsbacher J,
Swantek,
Karandikar M,
Xu S and
Cobb MH.
New insights into the control of MAP kinase pathways.
Exp Cell Res
253:
255–270,
1999.
|
259. |
Garrington TP and
Johnson GL.
Organization and regulation of mitogen‐activated protein kinase signaling pathways.
Curr Opin Cell Biol
11:
211–218,
1999.
|
260. |
Mischak H,
Seitz T,
Janosch P,
Eulitz M,
Steen H,
Schellerer M,
Philipp A and
Kolch W.
Negative regulation of Raf‐1 by phosphorylation of serine 621.
Mol Cell Biol
16:
5409–5418,
1996.
|
261. |
Wu J,
Dent P,
Jelinek T,
Wolfman A,
Weber MJ and
Sturgill TW.
Inhibition of the EGF‐activated MAP kinase signaling pathway by adenosine 3′.5′‐monophosphate.
Science
262:
1065–1069,
1993.
|
262. |
Hagemann C and
Rapp UR.
Isotype‐specific functions of Raf kinases.
Exp Cell Res
253:
34–46,
1999.
|
263. |
Becker PM,
Verin AD,
Booth MA,
Liu F,
Birukova A and
Garcia JG.
Differential regulation of diverse physiological responses to VEGF in pulmonary endothelial cells.
Am J Physiol Lung Cell Mol Physiol
281:
L1500–1511,
2001.
|
264. |
Kevil CG,
Oshima T,
Alexander B,
Coe LL and
Alexander JS.
H(2)O(2)‐mediated permeability: role of MAPK and occludin.
Am J Physiol Cell Physiol
279:
C21–30,
2000.
|
265. |
Kevil CG,
Payne DK,
Mire E and
Alexander JS.
Vascular permeability factor/vascular endothelial cell growth factor‐mediated permeability occurs through disorganization of endothelial junctional proteins.
J Biol Chem
273:
15099–15103,
1998.
|
266. |
Yu P,
Hatakeyama T,
Aramoto H,
Miyata T,
Shigematsu H,
Nagawa H,
Hobson RW and
Durán WN.
Mitogen‐activated protein kinases regulate platelet‐activating factor‐induced hyperpermeability.
Microcirculation
12:
637–643,
2005.
|
267. |
Verin AD,
Liu F,
Bogatcheva N,
Borbiev T,
Hershenson MB,
Wang P and
Garcia JG.
Role of ras‐dependent ERK activation in phorbol ester‐induced endothelial cell barrier dysfunction.
Am J Physiol Lung Cell Mol Physiol
279:
L360–370,
2000.
|
268. |
Wu MH,
Yuan SY and
Granger HJ.
The protein kinase MEK1/2 mediate vascular endothelial growth factor‐ and histamine‐induced hyperpermeability in porcine coronary venules.
J Physiol
563:
95–104,
2005.
|
269. |
Garcia JG,
Wang P,
Schaphorst KL,
Becker PM,
Borbiev T,
Liu F,
Birukova A,
Jacobs K,
Bogatcheva N and
Verin AD.
Critical involvement of p38 MAP kinase in pertussis toxin‐induced cytoskeletal reorganization and lung permeability.
FASEB J
16:
1064–1076,
2002.
|
270. |
Issbrucker K,
Marti HH,
Hippenstiel S,
Springmann G,
Voswinckel R,
Gaumann A,
Breier G,
Drexler HC,
Suttorp N and
Clauss M.
p38 MAP kinase ‐ a molecular switch between VEGF‐induced angiogenesis and vascular hyperpermeability.
FASEB J
17:
262–264,
2003.
|
271. |
Niwa K,
Inanami O,
Ohta T,
Ito S,
Karino T and
Kuwabara M.
p38 MAPK and Ca2+ contribute to hydrogen peroxide‐induced increase of permeability in vascular endothelial cells but ERK does not.
Free Radic Res
35:
519–527,
2001.
|
272. |
Nwariaku FE,
Chang J,
Zhu X,
Liu Z,
Duffy SL,
Halaihel NH,
Terada L and
Turnage RH.
The role of p38 map kinase in tumor necrosis factor‐induced redistribution of vascular endothelial cadherin and increased endothelial permeability.
Shock
18:
82–85.
2002.
|
273. |
Kiemer AK,
Weber NC,
Furst R,
Bildner N,
Kulhanek‐Heinze S and
Vollmar AM.
Inhibition of p38 MAPK activation via induction of MKP‐1: atrial natriuretic peptide reduces TNF‐alpha‐induced actin polymerization and endothelial permeability.
Circ Res
90:
874–881,
2002.
|
274. |
Shi S,
Garcia JG,
Roy S,
Parinandi NL and
Natarajan V.
Involvement of c‐Src in diperoxovanadate‐induced endothelial cell barrier dysfunction.
Am J Physiol Lung Cell Mol Physiol
279:
L441–451,
2000.
|
275. |
Thomas SM and
Brugge JS.
Cellular functions regulated by Src family kinases.
Annu Rev Cell Dev Biol
13:
513–609,
1997.
|
276. |
Kevil CG,
Okayama N and
Alexander JS.
H(2)O(2)‐mediated permeability II: importance of tyrosine phosphatase and kinase activity.
Am J Physiol Cell Physiol
281:
C1940–1947,
2001.
|
277. |
Nwariaku FE,
Liu Z,
Zhu X,
Turnage RH,
Sarosi GA and
Terada LS.
Tyrosine phosphorylation of vascular endothelial cadherin and the regulation of microvascular permeability.
Surgery
132:
180–185,
2002.
|
278. |
Eliceiri BP,
Paul R,
Schwartzberg PL,
Hood JD,
Leng J and
Cheresh DA.
Selective requirement for Src kinases during VEGF‐induced angiogenesis and vascular permeability.
Mol Cell
4:
915–924,
1999.
|
279. |
Paul R,
Zhang ZG,
Eliceiri BP,
Jiang Q,
Boccia AD,
Zhang RL,
Chopp M and
Cheresh DA.
Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke.
Nat Med
7:
222–227,
2001.
|
280. |
Tiruppathi C,
Song W,
Bergenfeldt M,
Sass P and
Malik AB.
Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase‐dependent pathway.
J Biol Chem
272:
25968–25975,
1997.
|
281. |
Shajahan AN,
Timblin BK,
Sandoval R,
Tiruppathi C,
Malik AB and
Minshall RD.
Role of Src‐induced dynamin‐2 phosphorylation in caveolae‐mediated endocytosis in endothelial cells.
J Biol Chem
279:
20392–20400,
2004.
|
282. |
Birukov KG,
Csortos C,
Marzilli L,
Dudek S.
Ma SF,
Bresnick AR.
Verin AD,
Cotter RJ and
Garcia JG.
Differential regulation of alternatively spliced endothelial cell myosin light chain kinase isoforms by p60(Src).
J Biol Chem
276:
8567–8573,
2001.
|
283. |
Dudek SM,
Birukov KG,
Zhan X and
Garcia JG.
Novel interaction of cortactin with endothelial cell myosin light chain kinase.
Biochem Biophys Res Commun
298:
511–519,
2002.
|
284. |
Garcia JG,
Verin AD,
Schaphorst K,
Siddiqui R,
Patterson CE,
Csortos C and
Natarajan V.
Regulation of endothelial cell myosin light chain kinase by Rho, cortactin, and p60(src).
Am J Physiol
276:
L989–998,
1999.
|
285. |
Mucha DR,
Myers CL and
Schaeffer RC, Jr.
Endothelial contraction and monolayer hyperpermeability are regulated by Src kinase.
Am J Physiol Heart Circ Physiol
284:
H994–H1002,
2003.
|
286. |
Gumbiner BM.
Signal transduction of beta‐catenin.
Curr Opin Cell Biol
7:
634–640,
1995.
|
287. |
Eliceiri BP,
Puente XS,
Hood JD,
Stupack DG,
Schlaepfer DD,
Huang XZ,
Sheppard D and
Cheresh DA.
Src‐mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling.
J Cell Biol
157:
149–160,
2002.
|
288. |
Garcia JG,
Schaphorst KL,
Verin AD,
Vepa S,
Patterson CE and
Natarajan V.
Diperoxovanadate alters endothelial cell focal contacts and barrier function: role of tyrosine phosphorylation.
J Appl Physiol
89:
2333–2343,
2000.
|
289. |
Wang P,
Verin AD,
Birukova A,
Gilbert‐McClain LI,
Jacobs K and
Garcia JG.
Mechanisms of sodium fluoride‐induced endothelial cell barrier dysfunction: role of MLC phosphorylation.
Am J Physiol Lung Cell Mol Physiol
281:
L1472–1483,
2001.
|
290. |
Cruz A,
DeFouw LM and
DeFouw DO.
Restrictive endothelial barrier function during normal angiogenesis in vivo: partial dependence on tyrosine dephosphorylation of beta‐catenin.
Microvasc Res
59:
195–203,
2000.
|
291. |
Birukova AA,
Smurova K,
Birukov KG,
Kaibuchi K,
Garcia JG and
Verin AD.
Role of Rho GTPases in thrombin‐induced lung vascular endothelial cells barrier dysfunction.
Microvasc Res
67:
64–77,
2004.
|
292. |
Verin AD,
Patterson CE,
Day MA and
Garcia JG.
Regulation of endothelial cell gap formation and barrier function by myosin‐associated phosphatase activities.
Am J Physiol
269:
L99–108,
1995.
|
293. |
Tar K,
Birukova AA,
Csortos C,
Bako E,
Garcia JG and
Verin AD.
Phosphatase 2A is involved in endothelial cell microtubule remodeling and barrier regulation.
J Cell Biochem
92:
534–546,
2004.
|
294. |
Lum H,
Podolski JL,
Gurnack ME,
Schulz IT,
Huang F and
Holian O.
Protein phosphatase 2B inhibitor potentiates endothelial PKC activity and barrier dysfunction.
Am J Physiol Lung Cell Mol Physiol
281:
L546–555,
2001.
|
295. |
Abbi S and
Guan JL.
Focal adhesion kinase: protein interactions and cellular functions.
Histol Histopathol
17:
1163–1171,
2002.
|
296. |
Wojciak‐Stothard B and
Ridley AJ.
Rho GTPases and the regulation of endothelial permeability.
Vascul Pharmacol
39:
187–199,
2002.
|
297. |
Wojciak‐Stothard B,
Potempa S,
Eichholtz T and
Ridley AJ.
Rho and Rac but not Cdc42 regulate endothelial cell permeability.
J Cell Sci
114:
1343–1355,
2001.
|
298. |
Kouklis P,
Konstantoulaki M,
Vogel S,
Broman M and
Malik AB.
Cdc42 regulates the restoration of endothelial barrier function.
Circ Res
94:
159–166,
2004.
|
299. |
Amano M,
Chihara K,
Kimura K,
Fukata Y,
Nakamura N,
Matsuura Y and
Kaibuchi K.
Formation of actin stress fibers and focal adhesions enhanced by Rho‐kinase.
Science
275:
1308–1311,
1997.
|
300. |
Flinn HM and
Ridley AJ.
Rho stimulates tyrosine phosphorylation of focal adhesion kinase, p130 and paxillin.
J Cell Sci
109
(Pt 5):
1133–1141,
1996.
|
301. |
Hall A.
Rho GTPases and the actin cytoskeleton.
Science
279:
509–514,
1998.
|
302. |
Needham LK and
Rozengurt E.
Galpha12 and Galpha13 stimulate Rho‐dependent tyrosine phosphorylation of focal adhesion kinase, paxillin, and p130 Crk‐associated substrate.
J Biol Chem
273:
14626–14632,
1998.
|
303. |
Sinnett‐Smith J,
Lunn JA,
Leopoldt D and
Rozengurt E.
Y‐27632, an inhibitor of Rho‐associated kinases, prevents tyrosine phosphorylation of focal adhesion kinase and paxillin induced by bombesin: dissociation from tyrosine phosphorylation of p130(CAS).
Exp Cell Res
266:
292–302,
2001.
|
304. |
Carbajal JM and
Schaeffer RC, Jr.
RhoA inactivation enhances endothelial barrier function.
Am J Physiol
277:
C955–964,
1999.
|
305. |
Clements RT,
Minnear FL,
Singer HA,
Keller RS and
Vincent PA.
RhoA and Rho‐kinase dependent and independent signals mediate TGF‐β‐induced pulmonary endothelial cytoskeletal reorganization and permeability.
Am J Physiol Lung Cell Mol Physiol
288:
294–306,
2005.
|
306. |
Nwariaku FE,
Rothenbach P,
Liu Z,
Zhu X,
Turnage RH and
Terada LS.
Rho inhibition decreases TNF‐induced endothelial MAPK activation and monolayer permeability.
J Appl Physiol
95:
1889–1895,
2002.
|
307. |
Breslin JW.
Sun H,
Xu W,
Rodarte C,
Moy AB,
Wu MH and
Yuan SY.
Involvement of ROCK‐mediated endothelial tension development in neutrophil‐stimulated microvascular leakage.
Am J Physiol Heart Circ Physiol
290:
H741–750,
2006.
|
308. |
Carbajal JM,
Gratrix ML,
Yu CH and
Schaeffer RC, Jr.,
ROCK mediates thrombin's endothelial barrier dysfunction.
Am J Physiol Cell Physiol
279:
C195–204,
2000.
|
309. |
van Nieuw Amerongen GP,
van Delft S,
Vermeer MA,
Collard JG and
van Hinsbergh VW.
Activation of RhoA by thrombin in endothelial hyperpermeability: Role of Rho kinase and protein tyrosine kinases.
Circ Res
87:
335–340,
2000.
|
310. |
Adamson RH,
Curry FE,
Adamson G,
Liu B,
Jiang Y,
Aktories K,
Barth H,
Daigeler A,
Golenhofen N,
Ness W and
Drenckhahn D.
Rho and rho kinase modulation of barrier properties: cultured endothelial cells and intact microvessels of rats and mice.
J Physiol
539:
295–308,
2002.
|
311. |
Tokuyama K,
Nishimura H,
Iizuka K,
Kato M,
Arakawa H,
Saga R,
Mochizuki H and
Morikawa A.
Effects of Y‐27632, a Rho/Rho kinase inhibitor, on leukotriene D(4)‐ and histamine‐induced airflow obstruction and airway microvascular leakage in guinea pigs in vivo.
Pharmacology
64:
189–195,
2002.
|
312. |
Sun H,
Breslin JW,
Zhu J,
Yuan SY and
Wu MH.
Rho and ROCK signaling in VEGF‐induced microvascular endothelial hyperpermeability.
Microcirculation
13:
237–247,
2006.
|
313. |
Tinsley JH,
Teasdale NR and
Yuan SY.
Myosin light chain phosphorylation and pulmonary endothelial cell hyperpermeability in burns.
Am J Physiol Lung Cell Mol Physiol
286:
L841–847,
2004.
|
314. |
Zheng HZ,
Zhao KS,
Zhou BY and
Huang QB.
Role of Rho kinase and actin filament in the increased vascular permeability of skin venules in rats after scalding.
Burns
29:
820–827,
2003.
|
315. |
Hirase T,
Kawashima S,
Wong EY,
Ueyama T,
Rikitake Y,
Tsukita S,
Yokoyama M and
Staddon JM.
Regulation of tight junction permeability and occludin phosphorylation by Rhoa‐p160ROCK‐dependent and ‐independent mechanisms.
J Biol Chem
276:
10423–10431,
2001.
|
316. |
Petrache I,
Verin AD,
Crow MT,
Birukova A,
Liu F and
Garcia JG.
Differential effect of MLC kinase in TNF‐alpha‐induced endothelial cell apoptosis and barrier dysfunction.
Am J Physiol Lung Cell Mol Physiol
280:
L1168–1178,
2001.
|
317. |
Wojciak‐Stothard B,
Entwistle A,
Garg R and
Ridley AJ.
Regulation of TNF‐alpha‐induced reorganization of the actin cytoskeleton and cell‐cell junctions by Rho, Rac, and Cdc42 in human endothelial cells.
J Cell Physiol
176:
150–165,
1998.
|
318. |
Garcia JG,
Liu F,
Verin AD,
Birukova A,
Dechert MA,
Gerthoffer WT,
Bamberg JR and
English D.
Sphingosine 1‐phosphate promotes endothelial cell barrier integrity by Edg‐dependent cytoskeletal rearrangement.
J Clin Invest
108:
689–701,
2001.
|
319. |
Hippenstiel S,
Tannert‐Otto S,
Vollrath N,
Krull M,
Just I,
Aktories K,
von Eichel‐Streiber C and
Suttorp N.
Glucosylation of small GTP‐binding Rho proteins disrupts endothelial barrier function.
Am J Physiol
272:
L38–43,
1997.
|
320. |
Waschke J,
Baumgartner W,
Adamson RH,
Zeng M,
Aktories K,
Barth H,
Wilde C,
Curry FE and
Drenckhahn D.
Requirement of Rac activity for maintenance of capillary endothelial barrier properties.
Am J Physiol Heart Circ Physiol
286:
H394–401,
2004.
|
321. |
Thurston G and
Baldwin AL.
Endothelial actin cytoskeleton in rat mesentery microvasculature.
Am J Physiol
266:
H1896–1909,
1994.
|
322. |
Baldwin AL and
Thurston G.
Changes in endothelial actin cytoskeleton in venules with time after histamine treatment.
Am J Physiol
269:
H1528–1537,
1995.
|
323. |
Thurston G,
Baldwin AL and
Wilson LM.
Changes in endothelial actin cytoskeleton at leakage sites in the rat mesenteric microvasculature.
Am J Physiol
268:
H316–329,
1995.
|
324. |
Korthuis RJ,
Carden DL,
Kvietys PR,
Shepro D and
Fuseler J.
Phalloidin attenuates postischemic neutrophil infiltration and increased microvascular permeability.
J Appl Physiol
71:
1261–1269,
1991.
|
325. |
Baldwin AL and
Thurston G.
Mechanics of endothelial cell architecture and vascular permeability.
Crit Rev Biomed Eng
29:
247–278,
2001.
|
326. |
McDonald DM,
Thurston G and
Baluk P.
Endothelial gaps as sites for plasma leakage in inflammation.
Microcirculation
6:
7–22,
1999.
|
327. |
Schnittler HJ,
Wilke A,
Gress T,
Suttorp N and
Drenckhahn D.
Role of actin and myosin in the control of paracellular permeability in pig. rat and human vascular endothelium.
J Physiol
431:
379–401,
1990.
|
328. |
Moy AB,
Shasby SS,
Scott BD and
Shasby DM.
The effect of histamine and cyclic adenosine monophosphate on myosin light chain phosphorylation in human umbilical vein endothelial cells.
J Clin Invest
92:
1198–1206,
1993.
|
329. |
Sheldon R,
Moy A,
Lindsley K,
Shasby S and
Shasby DM.
Role of myosin light‐chain phosphorylation in endothelial cell retraction.
Am J Physiol
265:
L606–612,
1993.
|
330. |
Shi S,
Verin AD,
Schaphorst KL,
Gilbert‐McClain LI,
Patterson CE,
Irwin RP,
Natarajan V and
Garcia JG.
Role of tyrosine phosphorylation in thrombin‐induced endothelial cell contraction and barrier function.
Endothelium
6:
153–171,
1998.
|
331. |
Reynoso R,
Perrin RM,
Breslin JW,
Daines DA,
Watson KD,
Watterson DM,
Wu MH and
Yuan S.
A Role for Long Chain Myosin Light Chain Kinase (Mlck‐210) in Microvascular Hyperpermeability During Severe Burns.
Shock
28:
589–595,
2007.
|
332. |
Tinsley JH,
De Lanerolle P,
Wilson E,
Ma W and
Yuan SY.
Myosin light chain kinase transference induces myosin light chain activation and endothelial hyperpermeability.
Am J Physiol Cell Physiol
279:
C1285–1289,
2000.
|
333. |
Amano M,
Fukata Y and
Kaibuchi K.
Regulation and functions of Rho‐associated kinase.
Exp Cell Res
261:
44–51,
2000.
|
334. |
Wong RK,
Baldwin AL and
Heimark RL.
Cadherin‐5 redistribution at sites of TNF‐alpha and IFN‐gamma‐induced permeability in mesenteric venules.
Am J Physiol
276:
H736–748,
1999.
|
335. |
Shasby DM,
Ries DR,
Shasby SS and
Winter MC.
Histamine stimulates phosphorylation of adherens junction proteins and alters their link to vimentin.
Am J Physiol Lung Cell Mol Physiol
282:
L1330–1338,
2002.
|
336. |
Birukova AA,
Smurova K,
Birukov KG,
Usatyuk P,
Liu F,
Kaibuchi K,
Ricks‐Cord A,
Natarajan V,
Alieva I,
Garcia JG and
Verin AD.
Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction: role of Rho‐dependent mechanisms.
J Cell Physiol
201:
55–70,
2004.
|
337. |
Cattan CE and
Oberg KC.
Vinorelbine tartrate‐induced pulmonary edema confirmed on rechallenge.
Pharmacotherapy
19:
992–994,
1999.
|
338. |
Birukova AA,
Birukov KG,
Smurova K,
Adyshev D,
Kaibuchi K,
Alieva I,
Garcia JG and
Verin AD.
Novel role of microtubules in thrombin‐induced endothelial barrier dysfunction.
FASEB J
18:
1879–1890,
2004.
|
339. |
Birukova AA,
Adyshev D,
Gorshkov B,
Bokoch GM,
Birukov KG and
Verin AD.
GEF‐H1 is involved in agonist‐induced human pulmonary endothelial barrier dysfunction.
Am J Physiol Lung Cell Mol Physiol
290:
L540–548,
2006.
|
340. |
Dejana E,
Lampugnani MG,
Martinez‐Estrada O and
Bazzoni G.
The molecular organization of endothelial junctions and their functional role in vascular morphogenesis and permeability.
Int J Dev Biol
44:
743–748,
2000.
|
341. |
Vittet D,
Buchou T,
Schweitzer A,
Dejana E and
Huber P.
Targeted null‐mutation in the vascular endothelial‐cadherin gene impairs the organization of vascular‐like structures in embryoid bodies.
Proc Natl Acad Sci USA
94:
6273–6278,
1997.
|
342. |
Caveda L,
Martin‐Padura I,
Navarro P,
Breviario F,
Corada M,
Gulino D,
Lampugnani MG and
Dejana E.
Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin‐5/VE‐cadherin).
J Clin Invest
98:
886–893,
1996.
|
343. |
Shay‐Salit A,
Shushy M,
Wolfovitz E,
Yahav H,
Breviario F,
Dejana E and
Resnick N.
VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells.
Proc Natl Acad Sci USA
99:
9462–9467,
2002.
|
344. |
Lampugnani MG,
Corada M,
Caveda L,
Breviario F,
Ayalon O,
Geiger B and
Dejana E.
The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta‐catenin, and alpha‐catenin with vascular endothelial cadherin (VE‐cadherin).
J Cell Biol
129:
203–217,
1995.
|
345. |
Lampugnani MG,
Corada M,
Andriopoulou P,
Esser S,
Risau W and
Dejana E.
Cell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells.
J Cell Sci
110
(Pt 17):
2065–2077,
1997.
|
346. |
Andriopoulou P,
Navarro P,
Zanetti A,
Lampugnani MG and
Dejana E.
Histamine induces tyrosine phosphorylation of endothelial cell‐to‐cell adherens junctions.
Arterioscler Thromb Vasc Biol
19:
2286–2297,
1999.
|
347. |
Cohen AW,
Carbajal JM and
Schaeffer RC, Jr.
VEGF stimulates tyrosine phosphorylation of beta‐catenin and small‐pore endothelial barrier dysfunction.
Am J Physiol
277:
H2038–2049,
1999.
|
348. |
Esser S,
Lampugnani MG,
Corada M,
Dejana E and
Risau W.
Vascular endothelial growth factor induces VE‐cadherin tyrosine phosphorylation in endothelial cells.
J Cell Sci
111
(Pt 13):
1853–1865,
1998.
|
349. |
Alexander JS,
Alexander BC,
Eppihimer LA,
Goodyear N,
Haque R,
Davis CP,
Kalogeris TJ,
Carden DL,
Zhu YN and
Kevil CG.
Inflammatory mediators induce sequestration of VE‐cadherin in cultured human endothelial cells.
Inflammation
24:
99–113,
2000.
|
350. |
Tinsley JH,
Hawker J and
Yuan Y.
Efficient protein transfection of cultured coronary venular endothelial cells.
Am J Physiol
275:
H1873–1878,
1998.
|
351. |
Brady‐Kalnay SM,
Mourton T,
Nixon JP,
Pietz GE,
Kinch M,
Chen H,
Brackenbury R,
Rimm DL,
Del Vecchio RL and
Tonks NK.
Dynamic interaction of PTPmu with multiple cadherins in vivo.
J Cell Biol
141:
287–296,
1998.
|
352. |
Downing JR and
Reynolds AB.
PDGF, CSF‐1, and EGF induce tyrosine phosphorylation of p120. a pp60src transformation‐associated substrate.
Oncogene
6:
607–613,
1991.
|
353. |
Hoschuetzky H,
Aberle H and
Kemler R.
Beta‐catenin mediates the interaction of the cadherin‐catenin complex with epidermal growth factor receptor.
J Cell Biol
127:
1375–1380,
1994.
|
354. |
Tsukita S,
Oishi K,
Akiyama T,
Yamanashi Y and
Yamamoto T.
Specific proto‐oncogenic tyrosine kinases of src family are enriched in cell‐to‐cell adherens junctions where the level of tyrosine phosphorylation is elevated.
J Cell Biol
113:
867–879,
1991.
|
355. |
Ukropec JA,
Hollinger MK,
Salva SM and
Woolkalis MJ.
SHP2 association with VE‐cadherin complexes in human endothelial cells is regulated by thrombin.
J Biol Chem
275:
5983–5986,
2000.
|
356. |
Carmeliet P,
Lampugnani MG,
Moons L,
Breviario F,
Compernolle V,
Bono F,
Balconi G,
Spagnuolo R,
Oostuyse B,
Dewerchin M,
Zanetti A,
Angellilo A,
Mattot V,
Nuyens D,
Lutgens E,
Clotman F,
de Ruiter MC,
Gittenberger‐de Groot A,
Poelmann R,
Lupu F,
Herbert JM,
Collen D and
Dejana E.
Targeted deficiency or cytosolic truncation of the VE‐cadherin gene in mice impairs VEGF‐mediated endothelial survival and angiogenesis.
Cell
98:
147–157,
1999.
|
357. |
Zanetti A,
Lampugnani MG,
Balconi G,
Breviario F,
Corada M,
Lanfrancone L and
Dejana E.
Vascular endothelial growth factor induces SHC association with vascular endothelial cadherin: a potential feedback mechanism to control vascular endothelial growth factor receptor‐2 signaling.
Arterioscler Thromb Vasc Biol
22:
617–622,
2002.
|
358. |
Anastasiadis PZ and
Reynolds AB.
Regulation of Rho GTPases by p120‐catenin.
Curr Opin Cell Biol
13:
604–610,
2001.
|
359. |
Sander EE,
ten Klooster JP,
van Delft S,
van der Kammen RA and
Collard JG.
Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior.
J Cell Biol
147:
1009–1022,
1999.
|
360. |
Zondag GC,
Evers EE,
ten Klooster JP,
Janssen L,
van der Kammen RA and
Collard JG.
Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial‐mesenchymal transition.
J Cell Biol
149:
775–782,
2000.
|
361. |
Braga VM,
Betson M,
Li X and
Lamarche‐Vane N.
Activation of the small GTPase Rac is sufficient to disrupt cadherin‐dependent cell‐cell adhesion in normal human keratinocytes.
Mol Biol Cell
11:
3703–3721,
2000.
|
362. |
Braga VM,
Machesky LM,
Hall A and
Hotchin NA.
The small GTPases Rho and Rac are required for the establishment of cadherin‐dependent cell‐cell contacts.
J Cell Biol
137:
1421–1431,
1997.
|
363. |
Kaibuchi K,
Kuroda S,
Fukata M and
Nakagawa M.
Regulation of cadherin‐mediated cell‐cell adhesion by the Rho family GTPases.
Curr Opin Cell Biol
11:
591–596,
1999.
|
364. |
Takaishi K,
Sasaki T,
Kotani H,
Nishioka H and
Takai Y.
Regulation of cell‐cell adhesion by rac and rho small G proteins in MDCK cells.
J Cell Biol
139:
1047–1059,
1997.
|
365. |
Mariner DJ,
Anastasiadis P,
Keilhack H,
Bohmer FD,
Wang J and
Reynolds AB.
Identification of Src phosphorylation sites in the catenin p120ctn.
J Biol Chem
276:
28006–28013,
2001.
|
366. |
Murphy JT and
Duffy S.
ZO‐1 redistribution and F‐actin stress fiber formation in pulmonary endothelial cells after thermal injury.
J Trauma
54:
81–89,
2003, discussion 89‐90.
|
367. |
Leeb‐Lundberg LM,
Song XH and
Mathis SA.
Focal adhesion‐associated proteins p125FAK and paxillin are substrates for bradykinin‐stimulated tyrosine phosphorylation in Swiss 3T3 cells.
J Biol Chem
269:
24328–24334,
1994.
|
368. |
Guo M,
Wu MH,
Granger HJ and
Yuan SY.
Focal adhesion kinase in neutrophil‐induced microvascular hyperpermeability.
Microcirculation
12:
223–232,
2005.
|
369. |
Wu MH,
Guo M,
Yuan SY and
Granger HJ.
Focal adhesion kinase mediates porcine venular hyperpermeability elicited by vascular endothelial growth factor.
J Physiol
552:
691–699,
2003.
|
370. |
Guan JL and
Shalloway D.
Regulation of focal adhesion‐associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation.
Nature
358:
690–692,
1992.
|
371. |
Hanks SK,
Calalb MB,
Harper MC and
Patel SK.
Focal adhesion protein‐tyrosine kinase phosphorylated in response to cell attachment to fibronectin.
Proc Natl Acad Sci USA
89:
8487–8491,
1992.
|
372. |
Huang MM,
Lipfert L,
Cunningham M,
Brugge JS,
Ginsberg MH and
Shattil SJ.
Adhesive ligand binding to integrin alpha IIb beta 3 stimulates tyrosine phosphorylation of novel protein substrates before phosphorylation of pp125FAK.
J Cell Biol
122:
473–483,
1993.
|
373. |
Frisch SM,
Vuori K,
Ruoslahti E and
Chan‐Hui PY.
Control of adhesion‐dependent cell survival by focal adhesion kinase.
J Cell Biol
134:
793–799,
1996.
|
374. |
van Nieuw Amerongen GP,
Natarajan K,
Yin G,
Hoefen RJ,
Osawa M,
Haendeler J,
Ridley AJ,
Fujiwara K,
van Hinsbergh VW and
Berk BC.
GIT1 mediates thrombin signaling in endothelial cells: role in turnover of RhoA‐type focal adhesions.
Circ Res
94:
1041–1049,
2004.
|
375. |
Govers R and
Rabelink TJ.
Cellular regulation of endothelial nitric oxide synthase.
Am J Physiol Renal Physiol
280:
F193–206,
2001.
|
376. |
Liu J,
Hughes TE and
Sessa WC.
The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the Golgi region of cells: a green fluorescent protein study.
J Cell Biol
137:
1525–1535,
1997.
|
377. |
Sessa WC,
Garcia‐Cardena G,
Liu J,
Keh A,
Pollock JS,
Bradley J,
Thiru S,
Braverman IM and
Desai KM.
The Golgi association of endothelial nitric oxide synthase is necessary for the efficient synthesis of nitric oxide.
J Biol Chem
270:
17641–17644,
1995.
|
378. |
Shaul PW,
Smart EJ,
Robinson U,
German Z,
Yuhanna IS,
Ying Y,
Anderson RG and
Michel T.
Acylation targets emdothelial nitric‐oxide synthase to plasmalemmal caveolae.
J Biol Chem
271:
6518–6522,
1996.
|
379. |
Zhang Q,
Church JE,
Jagnandan D,
Catravas JD,
Sessa WC and
Fulton D.
Functional relevance of Golgi‐ and plasma membrane‐localized endothelial NO synthase in reconstituted endothelial cells.
Arterioscler Thromb Vasc Biol
26:
1015–1021,
2006.
|
380. |
Liu J,
Garcia‐Cardena G and
Sessa WC.
Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: Implications for caveolae localization.
Biochemistry
35:
13277–13281,
1996.
|
381. |
Sakoda T,
Hirata K,
Kuroda R,
Miki N,
Suematsu M,
Kawashima S and
Yokoyama M.
Myristoylation of endothelial cell nitric oxide synthase is important for extracellular release of nitric oxide.
Mol Cell Biochem
152:
143–148,
1995.
|
382. |
Garcia‐Cardena G,
Oh P,
Liu J,
Schnitzer JE and
Sessa WC.
Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling.
Proc Natl Acad Sci USA
93:
6448–6453,
1996.
|
383. |
Pobiner BF,
Northup JK,
Bauer PH,
Fraser ED and
Garrison JC.
Inhibitory GTP‐binding regulatory protein Gi3 can couple angiotensin II receptors to inhibition of adenylyl cyclase in hepatocytes.
Mol Pharmacol
40:
156–167,
1991.
|
384. |
Fleming I and
Busse R.
Signal transduction of eNOS activation.
Cardiovasc Res
43:
532–541,
1999.
|
385. |
Feron O,
Saldana F,
Michel JB and
Michel T.
The endothelial nitric‐oxide synthase‐caveolin regulatory cycle.
J Biol Chem
273:
3125–3128,
1998.
|
386. |
Garcia‐Cardena G,
Martasek P,
Masters BS,
Skidd PM,
Couet J,
Li S,
Lisanti MP and
Sessa WC.
Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo.
J Biol Chem
272:
25437–25440,
1997.
|
387. |
Michel JB,
Feron O,
Sacks D and
Michel T.
Reciprocal regulation of endothelial nitric‐oxide synthase by Ca2+‐calmodulin and caveolin.
J Biol Chem
272:
15583–15586,
1997.
|
388. |
Michel JB,
Feron O,
Sase K,
Prabhakar P and
Michel T.
Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase.
J Biol Chem
272:
25907–25912,
1997.
|
389. |
Blatter LA,
Taha Z,
Mesaros S,
Shacklock PS,
Wier WG and
Malinski T.
Simultaneous measurements of Ca2+ and nitric oxide in bradykinin‐stimulated vascular endothelial cells.
Circ Res
76:
922–924,
1995.
|
390. |
Kanai AJ,
Strauss HC,
Truskey GA,
Crews AL,
Grunfeld S and
Malinski T.
Shear stress induces ATP‐independent transient nitric oxide release from vascular endothelial cells, measured directly with a porphyrinic microsensor.
Circ Res
77:
284–293,
1995.
|
391. |
Feng Y,
Venema VJ,
Venema RC,
Tsai N and
Caldwell RB.
VEGF induces nuclear translocation of Flk‐1/KDR, endothelial nitric oxide synthase, and caveolin‐1 in vascular endothelial cells.
Biochem Biophys Res Commun
256:
192–197,
1999.
|
392. |
Goetz RM,
Thatte HS,
Prabhakar P,
Cho MR,
Michel T and
Golan DE.
Estradiol induces the calcium‐dependent translocation of endothelial nitric oxide synthase.
Proc Natl Acad Sci USA
96:
2788–2793,
1999.
|
393. |
Prabhakar P,
Thatte HS,
Goetz RM,
Cho MR,
Golan DE and
Michel T.
Receptor‐regulated translocation of endothelial nitric‐oxide synthase.
J Biol Chem
273:
27383–27388,
1998.
|
394. |
Venema VJ,
Marrero MB and
Venema RC.
Bradykinin‐stimulated protein tyrosine phosphorylation promotes endothelial nitric oxide synthase translocation to the cytoskeleton.
Biochem Biophys Res Commun
226:
703–710,
1996.
|
395. |
Wang Q,
Patton WF,
Hechtman HB and
Shepro D.
A novel antiinflammatory peptide inhibits endothelial cell cytoskeletal rearrangement, nitric oxide synthase translocation, and paracellular permeability increases.
J Cell Physiol
172:
171–182,
1997.
|
396. |
Yeh DC,
Duncan JA,
Yamashita S and
Michel T.
Depalmitoylation of endothelial nitric‐oxide synthase by acyl‐protein thioesterase 1 is potentiated by Ca(2+(‐calmodulin.
J Biol Chem
274:
33148–33154,
1999.
|
397. |
Dedio J,
Konig P,
Wohlfart P,
Schroeder C,
Kummer W and
Muller‐Esterl W.
NOSIP, a novel modulator of endothelial nitric oxide synthase activity.
FASEB J
15:
79–89,
2001.
|
398. |
Zimmermann K,
Opitz N,
Dedio J,
Renne C,
Muller‐Esterl W and
Oess S.
NOSTRIN: a protein modulating nitric oxide release and subcellular distribution of endothelial nitric oxide synthase.
Proc Natl Acad Sci USA
99:
17167–17172,
2002.
|
399. |
Furchgott RF.
The role of endothelium in the responses of vascular smooth muscle to drugs.
Annu Rev Pharmacol Toxicol
24:
175–197,
1984.
|
400. |
Furchgott RF and
Zawadzki JV.
The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.
Nature
288:
373–376,
1980.
|
401. |
Ignarro LJ.
Biosynthesis and metabolism of endothelium‐derived nitric oxide.
Annu Rev Pharmacol Toxicol
30:
535–560,
1990.
|
402. |
Crone C.
The Malpighi lecture. From “Porositates carnis” to cellular microcirculation.
Int J Microcirc Clin Exp
6:
101–122,
1987.
|
403. |
Ialenti A,
Ianaro A,
Moncada S and
Di Rosa M.
Modulation of acute inflammation by endogenous nitric oxide.
Eur J Pharmacol
211:
177–182,
1992.
|
404. |
Kurose I,
Kubes P,
Wolf R,
Anderson DC,
Paulson J,
Miyasaka M and
Granger DN.
Inhibition of nitric oxide production. Mechanisms of vascular albumin leakage.
Circ Res
73:
164–171,
1993.
|
405. |
Kurose I,
Wolf R,
Grisham MB,
Aw TY,
Specian RD and
Granger DN.
Microvascular responses to inhibition of nitric oxide production. Role of active oxidants.
Circ Res
76:
30–39,
1995.
|
406. |
Kurose I,
Wolf R,
Grisham MB and
Granger DN.
Modulation of ischemia/reperfusion‐induced microvascular dysfunction by nitric oxide.
Circ Res
74:
376–382,
1994.
|
407. |
Durán WN,
Seyama A,
Yoshimura K,
Gonzalez DR,
Jara PI,
Figueroa XF and
Boric MP.
Stimulation of NO production and of eNOS phosphorylation in the microcirculation in vivo.
Microvasc Res
60:
104–111,
2000.
|
408. |
Zhu L,
Castranova V and
He P.
fMLP‐stimulated neutrophils increase endothelial [Ca2+]i and microvessel permeability in the absence of adhesion: role of reactive oxygen species.
Am J Physiol Heart Circ Physiol
288:
H1331–1338,
2005.
|
409. |
Fukumura D,
Gohongi T,
Kadambi A,
Izumi Y,
Ang J,
Yun CO,
Buerk DG,
Huang PL and
Jain RK.
Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor‐induced angiogenesis and vascular permeability.
Proc Natl Acad Sci USA
98:
2604–2609,
2001.
|
410. |
Durán WN,
Hatakeyama T and
Sanchez FA.
Endothelial nitric oxide synthase‐derived NO signals regulate microvascular permeability.
Physiol News
65:
21–23,
2006.
|
411. |
Arnal JF,
Dinh‐Xuan AT,
Pueyo M,
Darblade B and
Rami J.
Endothelium‐derived nitric oxide and vascular physiology and pathology.
Cell Mol Life Sci
55:
1078–1087,
1999.
|
412. |
Garcia‐Cardena G,
Fan R,
Shah V,
Sorrentino R,
Cirino G,
Papapetropoulos A and
Sessa WC.
Dynamic activation of endothelial nitric oxide synthase by Hsp90.
Nature
392:
821–824,
1998.
|
413. |
He H,
Venema VJ,
Gu X,
Venema RC,
Marrero MB and
Caldwell RB.
Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk‐1/KDR activation of c‐Src.
J Biol Chem
274:
25130–25135,
1999.
|
414. |
Hood JD,
Meininger CJ,
Ziche M and
Granger HJ.
VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells.
Am J Physiol
274:
H1054–1058,
1998.
|
415. |
Ju H,
Venema VJ,
Marrero MB and
Venema RC.
Inhibitory interactions of the bradykinin B2 receptor with endothelial nitric‐oxide synthase.
J Biol Chem
273:
24025–24029,
1998.
|
416. |
Dimmeler S,
Fleming I,
Fisslthaler B,
Hermann C,
Busse R and
Zeiher AM.
Activation of nitric oxide synthase in endothelial cells by Akt‐dependent phosphorylation.
Nature
399:
601–605,
1999.
|
417. |
Fleming I,
Fisslthaler B,
Dimmeler S,
Kemp BE and
Busse R.
Phosphorylation of Thr(495) regulates Ca(2 +)/calmodulin‐dependentendothelial nitric oxide synthase activity.
Circ Res
88:
E68–75,
2001.
|
418. |
Fulton D,
Gratton JP,
McCabe TJ,
Fontana J,
Fujio Y,
Walsh K,
Franke TF,
Papapetropoulos A and
Sessa WC.
Regulation of endothelium‐derived nitric oxide production by the protein kinase Akt.
Nature
399:
597–601,
1999.
|
419. |
Garcia‐Cardena G,
Fan R,
Stern DF,
Liu J and
Sessa WC.
Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin‐1.
J Biol Chem
271:
27237–27240,
1996.
|
420. |
Gratton JP,
Fontana J,
O'Connor DS,
Garcia‐Cardena G,
McCabe TJ and
Sessa WC.
Reconstitution of an endothelial nitric‐oxide synthase (eNOS), hsp90, and caveolin‐1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin‐1.
J Biol Chem
275:
22268–22272,
2000.
|
421. |
Luo Z,
Fujio Y,
Kureishi Y,
Rudic RD,
Daumerie G,
Fulton D,
Sessa WC and
Walsh K.
Acute modulation of endothelial Akt/PKB activity alters nitric oxide‐dependent vasomotor activity in vivo.
J Clin Invest
106:
493–499,
2000.
|
422. |
Michell BJ,
Griffiths JE,
Mitchelhill KI,
Rodriguez‐Crespo I,
Tiganis T,
Bozinovski S,
de Montellano PR,
Kemp BE and
Pearson RB.
The Akt kinase signals directly to endothelial nitric oxide synthase.
Curr Biol
9:
845–848,
1999.
|
423. |
Michell BJ,
Chen Z,
Tiganis T,
Stapleton D,
Katsis F,
Power DA,
Sim AT and
Kemp BE.
Coordinated control of endothelial nitric‐oxide synthase phosphorylation by protein kinase C and the cAMP‐dependent protein kinase.
J Biol Chem
276:
17625–17628,
2001.
|
424. |
Marsen TA,
Egink G,
Suckau G and
Baldamus CA.
Tyrosine‐kinase‐dependent regulation of the nitric oxide synthase gene by endothelin‐1 in human endothelial cells.
Pflugers Arch
438:
538–544,
1999.
|
425. |
Ohara Y,
Sayegh HS,
Yamin JJ and
Harrison DG.
Regulation of endothelial constitutive nitric oxide synthase by protein kinase C.
Hypertension
25:
415–420,
1995.
|
426. |
Shen BQ,
Lee DY and
Zioncheck TF.
Vascular endothelial growth factor governs endothelial nitric‐oxide synthase expression via a KDR/Flk‐1 receptor and a protein kinase C signaling pathway.
J Biol Chem
274:
33057–33063,
1999.
|
427. |
Wedgwood S,
Bekker JM and
Black SM.
Shear stress regulation of endothelial NOS in fetal pulmonary arterial endothelial cells involves PKC.
Am J Physiol Lung Cell Mol Physiol
281:
L490–498,
2001.
|
428. |
Ignarro LJ,
Cirino G,
Casini A and
Napoli C.
Nitric oxide as a signaling molecule in the vascular system: an overview.
J Cardiovasc Pharmacol
34:
879–886,
1999.
|
429. |
Yonemaru M,
Ishii K,
Murad F and
Raffin TA.
Atriopeptin‐induced increases in endothelial cell permeability are associated with elevated cGMP levels.
Am J Physiol
263:
L363–369,
1992.
|
430. |
Mayhan WG.
VEGF increases permeability of the blood‐brain barrier via a nitric oxide synthase/cGMP‐dependent pathway.
Am J Physiol
276:
C1148–1153,
1999.
|
431. |
Corson MA,
James NL,
Latta SE,
Nerem RM,
Berk BC and
Harrison DG.
Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress.
Circ Res
79:
984–991,
1996.
|
432. |
Michel T and
Feron O.
Nitric oxide synthases: which, where, how, and why?
J Clin Invest
100:
2146–2152,
1997.
|
433. |
Michel T,
Li GK and
Busconi L.
Phosphorylation and subcellular translocation of endothelial nitric oxide synthase.
Proc Natl Acad Sci USA
90:
6252–6256,
1993.
|
434. |
Sanchez FA,
Savalia NB,
Durán RG,
Lal BK,
Boric MP and
Durán WN.
Functional significance of differential eNOS translocation.
Am J Physiol Heart Circ Physiol
291:
H1058–1064,
2006.
|
435. |
Erwin PA,
Lin AJ,
Golan DE and
Michel T.
Receptor‐regulated dynamic S‐nitrosylation of endothelial nitric‐oxide synthase in vascular endothelial cells.
J Biol Chem
280:
19888–19894,
2005.
|
436. |
Figueroa XF,
Gonzalez DR,
Martinez AD,
Durán WN and
Boric MP.
ACh‐induced endothelial NO synthase translocation, NO release and vasodilatation in the hamster microcirculation in vivo.
J Physiol
544:
883–896,
2002.
|
437. |
Pober JS,
Kluger MS and
Schechner JS.
Human endothelial cell presentation of antigen and the homing of memory/effector T cells to skin.
Ann N Y Acad Sci
941:
12–25,
2001.
|
438. |
Beynon HL,
Davies KA,
Haskard DO and
Walport MJ.
Erythrocyte complement receptor type 1 and interactions between immune complexes, neutrophils, and endothelium.
J Immunol
153:
3160–3167,
1994.
|
439. |
Burns AR,
Walker DC,
Brown ES,
Thurmon LT,
Bowden RA,
Keese CR,
Simon SI,
Entman ML and
Smith CW.
Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners.
J Immunol
159:
2893–2903,
1997.
|
440. |
Kubes P,
Grisham MB,
Barrowman JA,
Gaginella T and
Granger DN.
Leukocyte‐induced vascular protein leakage in cat mesentery.
Am J Physiol
261:
H1872–1879,
1991.
|
441. |
Minnicozzi M,
Durán WN,
Gleich GJ and
Egan RW.
Eosinophil granule proteins increase microvascular macromolecular transport in the hamster cheek pouch.
J Immunol
153:
2664–2670,
1994.
|
442. |
Minnicozzi M,
Ramirez MM,
Egan RW,
Gleich GJ,
Kobayashi I,
Kim D and
Durán WN.
Polyarginine and eosinophil‐derived major basic protein increase microvascular permeability independently of histamine or nitric oxide release.
Microvasc Res
50:
56–70,
1995.
|
443. |
Garcia JG,
Verin AD,
Herenyiova M and
English D.
Adherent neutrophils activate endothelial myosin light chain kinase: role in transendothelial migration.
J Appl Physiol
84:
1817–1821,
1998.
|
444. |
Tomeo AC,
Egan RW and
Durán WN.
Priming interactions between platelet activating factor and histamine in the in vivo microcirculation.
FASEB J
5:
2850–2855,
1991.
|
445. |
Curry FE,
Zeng M and
Adamson RH.
Thrombin increases permeability only in venules exposed to inflammatory conditions.
Am J Physiol Heart Circ Physiol
285:
H2446–H2453,
2003.
|
446. |
Fan J and
Malik AB.
Toll‐like receptor‐4 (TLR4) signaling augments chemokine‐induced neutrophil migration by modulating cell surface expression of chemokine receptors.
Nat Med
9:
315–321,
2003.
|
447. |
Mollen KP,
Anand RJ,
Tsung A,
Prince JM,
Levy RM and
Billiar TR.
Emerging paradigm: toll‐like receptor 4‐sentinel for the detection of tissue damage.
Shock
26:
430–437,
2006.
|
448. |
Breslin JW,
Wu MH,
Guo M,
Reynoso R and
Yuan SY.
Toll‐like receptor‐4 contributes to microvascular inflammation and barrier dysfunction in thermal injury.
Shock
29:
349–355,
2008.
|
449. |
Dudzinski DM,
Igarashi J,
Greif D and
Michel T.
The regulation and pharmacology of endothelial nitric oxide synthase.
Annu Rev Pharmacol Toxicol
46:
235–276,
2006.
|
450. |
de Rooij J,
Zwartkruis FJ,
Verheijen MH,
Cool RH,
Nijman SM,
Wittinghofer A and
Bos JL.
Epac is a Rap1 guanine‐nucleotide‐exchange factor directly activated by cyclic AMP.
Nature
396:
474–477,
1998.
|
451. |
Christensen AE,
Selheim F,
de Rooij J,
Dremier S,
Schwede F,
Dao KK,
Martinez A,
Maenhaut C,
Bos JL,
Genieser HG and
Doskeland SO.
cAMP analog mapping of Epac 1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC‐12 cell neurite extension.
J Biol Chem
278:
35394–35402,
2003.
|
452. |
DiPilato LM,
Cheng X and
Zhang J.
Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments.
Proc Natl Acad Sci USA
101:
16513–16518,
2004.
|
453. |
Enserink JM,
Christensen AE,
de Rooij J,
van Triest M,
Schwede F,
Genieser HG,
Doskeland SO,
Blank JL and
Bos JL.
A novel Epac‐specific cAMP analogue demonstrates independent regulation of Rap1 and ERK.
Nat Cell Biol
4:
901–906,
2002.
|
454. |
Kramer GC,
Harms BA,
Bodai BI,
Demling RH and
Renkin EM.
Mechanisms for redistribution of plasma protein following acute protein depletion.
Am J Physiol
243:
H803–809,
1982.
|
455. |
Cullere X,
Shaw SK,
Andersson L,
Hirahashi J,
Luscinskas FW and
Mayadas TN.
Regulation of vascular endothelial barrier function by Epac, a cAMP‐activated exchange factor for Rap GTPase.
Blood
105:
1950–1955,
2005.
|
456. |
Fukuhara S,
Sakurai A,
Sano H,
Yamagishi A,
Somekawa S,
Takakura N,
Saito Y,
Kangawa K and
Mochizuki N.
Cyclic AMP potentiates vascular endothelial cadherin‐mediated cell‐cell contact to enhance endothelial barrier function through an Epac‐Rap1 signaling pathway.
Mol Cell Biol
25:
136–146,
2005.
|
457. |
Zwartkruis FJ and
Bos JL.
Ras and Rap1: two highly related small GTPases with distinct function.
Exp Cell Res
253:
157–165,
1999.
|
458. |
Minnear FL,
Zhu L and
He P.
Sphingosine 1‐phosphate prevents platelet‐activating factor‐induced increase in hydraulic conductivity in rat mesenteric venules: pertussis toxin sensitive.
Am J Physiol Heart Circ Physiol
289:
H840–844,
2005.
|
459. |
Kim DD,
Pica AM,
Durán RG and
Durán WN.
Acupuncture reduces experimental renovascular hypertension through mechanisms involving nitric oxide synthases.
Microcirculation
13:
577–585,
2006.
|
460. |
Kim DD,
Sanchez FA,
Durán RG,
Kanetaka T and
Durán WN.
Endothelial nitric oxide synthase is a molecular vascular target for the Chinese herb Danshen in hypertension.
Am J Physiol Heart Circ Physiol
292:
H2131–2137,
2007.
|
461. |
Huang Q,
Wu M.
Meininger C,
Kelly K, and
Yuan Y.
Neutrophil‐dependent augmentation of PAF‐induced vasoconstriction and albumin flux in coronary arterioles.
Am J Physiol
275:
H1138–1147,
1998.
|
462. |
Huxley VH and
Williams DA.
Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments.
Am J Physiol Heart Circ Physiol
278:
H1177–1185,
2000.
|
463. |
Wu MH,
Ustinova E, and
Granger HJ.
Integrin binding to fibronectin and vitronectin maintains the barrier function of isolated porcine coronary venules.
J Physiol
532:
785–791,
2001.
|
464. |
Rumbaut RE and
Huxley VH.
Similar permeability responses to nitric oxide synthase inhibitors of venules from three animal species.
Microvasc Res
64:
21–31,
2002.
|
465. |
Garlick DG and
Renkin EM.
Transport of large molecules from plasma to interstitial fluid and lymph in dogs.
Am J Physiol
219:
1595–1605,
1970.
|
466. |
Baxter LT,
Jain RK,
Svensjö E.
Vascular permeability and interstitial diffusion of macromolecules in the hamster cheek pouch: effects of vasoactive drugs.
Microvasc Res
34:
336–348,
1987.
|