References |
1. |
Gnepp DR.
Lymphatics. In:
Edema,
eds Staub NC and
Taylor AE.
New York:
Raven Press,
1984,
pp. 263–298.
|
2. |
Barrowman JA.
Physiology of the Gastrointestinal Lymphatic System.
London:
Cambridge University Press.
1978.
|
3. |
Schipp R.
Structure and ultrastructure of mesenteric lymphatic vessels. In:
New Trends in Basic Lymphology, Experentia Suppl.
ed. Collette, J.M.,
Jantet, G. and
Schoffeniels, E.
Basel,
Birkhauser.
1967.
pp. 50–67.
|
4. |
Florey H.
Observations on the contractility of lacteals. Part I.
J Physiol
62:
267–272,
1927.
|
5. |
Florey H.
Observations on the contractility of lacteals. Part II.
J Physiol
63:
1–18,
1927.
|
6. |
McHale NG.
Innervation of the lymphatic circulation. In:
Experimental Biology of the Lymphatic Circulation,
ed. Johnston MG.
Amsterdam, The Netherlands:
Elsevier Science.
1985,
pp. 121–140.
|
7. |
van Helden DF,
von der Weid P‐Y and
Crowe MJ.
Electrophysiology of lymphatic smooth muscle. In:
Interstitium, Connective Tissue, and Lymphatics,
eds Bert J,
Laine GA,
McHale NG,
Reed R and
Winlove P.
London:
Portland Press,
1995,
pp. 221–236.
|
8. |
Johnston MG.
Involvement of lymphatic collecting ducts in the physiology and pathophysiology of lymph flow. In:
Experimental Biology of the Lymphatic Circulation,
ed. Johnston MG.
New York:
Elsevier Science Publishers,
1985,
pp. 81–210.
|
9. |
Benoit JN and
Zawieja DC.
Gastrointestinal lymphatics. In:
Physiology of the Gastrointestinal Tract,
ed. Johnson L.
New York:
Raven Press,
1994,
pp. 1669–1692.
|
10. |
von der Weid P.
Review article: lymphatic vessel pumping and inflammation‐the role of spontaneous constrictions and underlying electrical pacemaker potentials.
Aliment Pharmacol Ther
15
(8):
1115–1129,
2001.
|
11. |
Wilting J,
Neeff H and
Christ B.
Embryonic lymphangiogenesis.
Cell Tissue Res
297
(1):
1–11,
1999.
|
12. |
Partanen TA and
Paavonen K.
Lymphatic versus blood vascular endothelial growth factors and receptors in humans.
Microsc Res Tech
55
(2):
108–121,
2001.
|
13. |
Bridenbaugh EA,
Gashev AA and
Zawieja DC.
Lymphatic muscle: a review of contractile function.
Lymphat Res Biol
1
(2):
147–158,
2003.
|
14. |
Jussila L and
Alitalo K.
Vascular growth factors and lymphangiogenesis.
Physiol Rev
82
(3):
673–700,
2002.
|
15. |
Wilting J,
Papoutsi M,
Othman‐Hassan K,
Rodriguez‐Niedenfuhr M,
Prols F,
Tomarev SI and
Eichmann A.
Development of the avian lymphatic system.
Microsc Res Tech
55
(2):
81–91,
2001.
|
16. |
Oliver G and
Alitalo K.
The lymphatic vasculature: recent progress and paradigms.
Annu Rev Cell Dev Biol
21:
457–83,
2005.
|
17. |
Oliver G.
Lymphatic vasculature development.
Nat Rev Immunol
4
(1):
35–45,
2004.
|
18. |
Casley‐Smith J and
Florey H.
The structure of normal small lymphatics.
Q J Exptl Physiol
46:
101–107,
1961.
|
19. |
Leak LV.
The structure of lymphatic capillaries in lymph formation.
Fed Proc
35
(8):
1863–1871,
1976.
|
20. |
Ushiki T.
The three‐dimensional organization and ultrastructure of lymphatics in the rat intestinal mucosa as revealed by scanning electron microscopy after KOH‐collagenase treatment.
Arch Histol Cytol
53
(Suppl):
127–136,
1990.
|
21. |
Lee J.
Lymph capillary pressure of rat intestinal villi during fluid absorption.
Am J Physiol
237
(3):
E301–E307,
1979.
|
22. |
Webb R.
Behavior of lymphatic vessels in the living bat.
Anat Rec
88:
351–367,
1944.
|
23. |
Casley‐Smith JR.
How the lymphatic system works.
Lymphology
1:
77–80,
1968.
|
24. |
Azzali G and
Arcari ML.
Ultrastructural and three dimensional aspects of the lymphatic vessels of the absorbing peripheral lymphatic apparatus in Peyer's patches of the rabbit.
Anat Rec
258
(1):
71–79,
2000.
|
25. |
Azzali G.
The lymphatic vessels and the so‐called “lymphatic stomata” of the diaphragm: a morphologic ultrastructural and three‐dimensional study.
Microvasc Res
57
(1):
30–43,
1999.
|
26. |
Castenholz A.
Morphological characteristics of initial lymphatics in the tongue as shown by scanning electron microscopy.
Scan Electron Microsc(Pt 3):
1343–1352,
1984.
|
27. |
Collan Y and
Kalima TV.
Topographic relations of lymphatic endothelial cells in the initial lymphatic of the intestinal villus.
Lymphology
7
(4):
175–184,
1974.
|
28. |
Ohtani O.
Three‐dimensional organization of lymphatics and its relationship to blood vessels in rat small intestine.
Cell Tissue Res
248
(2):
365–374,
1987.
|
29. |
Wenzel‐Hora BI,
Berens von Rautenfeld D,
Majewski A and
Lubach D.
Scanning electron microscopy of the initial lymphatics of the skin after use of the indirect application technique with glutaraldehyde and mercox as compared to clinical findings.
Lymphology
20:
126–133,
1987.
|
30. |
Casley‐Smith JR.
The role of the endothelial intercellular junctions in the functioning of the initial lymphatics.
Angiologica
9
(2):
106–131,
1972.
|
31. |
Sauter B,
Foedinger D,
Sterniczky B,
Wolff K and
Rappersberger K.
Immunoelectron microscopic characterization of human dermal lymphatic microvascular endothelial cells: differential expression of CD31, CD34, and type IV collagen with lymphatic endothelial cells vs blood capillary endothelial cells in normal human skin, lymphangioma, and hemangioma in situ.
J Histochem Cytochem
46
(2):
165–176,
1998.
|
32. |
Schmelz M,
Moll R,
Kuhn C and
Franke WW.
Complexus adhaerentes, a new group of desmoplakin‐containing junctions in endothelial cells: II. Different types of lymphatic vessels.
Differentiation
57
(2):
97–117,
1994.
|
33. |
Gerli R,
Solito R,
Weber E and
Agliano M.
Specific adhesion molecules bind anchoring filaments and endothelial cells in human skin initial lymphatics.
Lymphology
33
(4):
148–157,
2000.
|
34. |
Trzewik J,
Mallipattu SK,
Artmann GM,
Delano FA and
Schmid‐Schonbein GW.
Evidence for a second valve system in lymphatics: endothelial microvalves.
FASEB J
15
(10):
1711–1717,
2001.
|
35. |
Casley‐Smith JR.
Varying total tissue pressures and the concentration of initial lymphatic lymph.
Microvasc Res
25
(3):
369–379,
1983.
|
36. |
Gerli R,
Ibba L and
Fruschelli C.
Ultrastuctural cytochemistry of anchoring filaments of human lymphatic capillaries and their relation to elastic fibers.
Lymphology
24:
105–112,
1991.
|
37. |
Pullinger B and
Florey H.
Some observation on the structure and functions of lymphatics: their behavior in local oedema.
Br J Exp Pathol
16:
49,
1935.
|
38. |
Casley‐Smith J.
Electron microscopical observations on the dilated lymphatics in oedematous regions and their collapse following hyaluronidase administration.
Br J Exp Pathol
48:
680–686,
1967.
|
39. |
Taylor AE.
The lymphatic edema safety factor: the role of edema dependent lymphatic factors (EDLF).
Lymphology
23
(3):
111–123,
1990.
|
40. |
Taylor AE,
Gibson WH,
Granger HJ and
Guyton AC.
The interaction between intracapillary and tissue forces in the overall regulation of interstitial fluid volume.
Lymphology
6
(4):
192–208,
1973.
|
41. |
Yoffey JM and
Courtice FC.
Lymphatics, Lymph and the Lymphomyeloid Complex.
London. New York:
Academic Press,
1970.
|
42. |
Aukland K and
Reed RK.
Interstitial‐lymphatic mechanisms in the control of extracellular fluid volume.
Physiol Rev
73
(1):
1–78,
1993.
|
43. |
Horstmann E.
Uber die funktinelle Struktur der mesenterialen Lymphgefasse [German].
Morphologisches Jachrbuch
91:
483–510,
1952.
|
44. |
Ohhashi T,
Fukushima S and
Azuma T.
Vasa vasorum within the media of bovine mesenteric lymphatics.
Proc Soc Exp Biol Med
154:
582–586,
1977.
|
45. |
Jeltsch M,
Kaipainen A,
Joukov V,
Meng X,
Lakso M,
Rauvala H,
Swartz M,
Fukumura D,
Jain RK and
Alitalo K.
Hyperplasia of lymphatic vessels in VEGF‐C transgenic mice.
Science
276
(5317):
1423–1425,
1997.
|
46. |
Oh SJ,
Jeltsch MM,
Birkenhager R,
McCarthy JE,
Weich HA,
Christ B,
Alitalo K and
Wilting J.
VEGF and VEGF‐C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane.
Dev Biol
188
(1):
96–109,
1997.
|
47. |
Cao Y,
Linden P,
Farnebo J,
Cao R,
Eriksson A,
Kumar V,
Qi J‐H,
Claesson‐Welsh L and
Alitalo K.
Vascular endothelial growth factor C induces angiogenesis in vivo.
Proc Nat Acad Sci USA
95:
14389–14394,
1998.
|
48. |
Lymboussaki A.
Olofsson B,
Eriksson U and
Alitalo K.
Vascular endothelial growth factor (VEGF) and VEGF‐C show overlapping binding sites in embryonic endothelia and distinct sites in differentiated adult endothelia.
Circ Res
85
(11):
992–999,
1999.
|
49. |
Mandriota SJ and
Pepper MS.
Lymphangiogenesis and biological activity ov vascular endothelial growth factor‐C.
J Soc Biol
193
(2):
159–163,
1999.
|
50. |
Olofsson B,
Jeltsch M,
Eriksson U and
Alitalo K.
Current biology of VEGF‐B and VEGF‐C.
Curr Opin Biotechnol
10
(6):
528–535,
1999.
|
51. |
Skobe M,
Brown LF,
Tognazzi K,
Ganju RK,
Dezube BJ,
Alitalo K and
Detmar M.
Vascular endothelial growth factor‐C (VEGF‐C) and its receptors KDR and flt‐4 are expressed in AIDS‐associated Kaposi's sarcoma.
J Invest Dermatol
113
(6):
1047–1053,
1999.
|
52. |
Niki T,
Iba S,
Tokunou M,
Yamada T,
Matsuno Y and
Hirohashi S.
Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma [In Process Citation].
Clin Cancer Res
6
(6):
2431–2439,
2000.
|
53. |
Enholm B,
Karpanen T,
Jeltsch M,
Kubo H,
Stenback F,
Prevo R,
Jackson DG,
Yla‐Herttuala S and
Alitalo K.
Adenoviral expression of vascular endothelial growth factor‐C induces lymphangiogenesis in the skin.
Circ Res
88
(6):
623–629,
2001.
|
54. |
Mandriota SJ,
Jussila L,
Jeltsch M,
Compagni A,
Baetens D,
Prevo R,
Banerji S,
Huarte J,
Montesano R,
Jackson DG,
Orci L,
Alitalo K,
Christofori G and
Pepper MS.
Vascular endothelial growth factor‐C‐mediated lymphangiogenesis promotes tumour metastasis.
EMBO J
20
(4):
672–682,
2001.
|
55. |
Skobe M,
Hawighorst T,
Jackson DG,
Prevo R,
Janes L,
Velasco P,
Riccardi L,
Alitalo K,
Claffey K and
Detmar M.
Induction of tumor lymphangiogenesis by VEGF‐C promotes breast cancer metastasis.
Nat Med
7
(2):
192–198,
2001.
|
56. |
Veikkola T,
Jussila L,
Makinen T,
Karpanen T,
Jeltsch M,
Petrova TV,
Kubo H,
Thurston G,
McDonald DM,
Achen MG,
Stacker SA and
Alitalo K.
Signalling via vascular endothelial growth factor receptor‐3 is sufficient for lymphangiogenesis in transgenic mice.
EMBO J
20
(6):
1223–1231,
2001.
|
57. |
Kubo H,
Cao R,
Brakenhielm E,
Makinen T,
Cao Y and
Alitalo K.
Blockade of vascular endothelial growth factor receptor‐3 signaling inhibits fibroblast growth factor‐2‐induced lymphangiogenesis in mouse cornea.
Proc Natl Acad Sci USA
99
(13):
8868–8873,
2002.
|
58. |
Mattila MM,
Ruohola JK,
Karpanen T,
Jackson DG,
Alitalo K and
Harkonen PL.
VEGF‐C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF‐7 tumors.
Int J Cancer
98
(6):
946–951,
2002.
|
59. |
Szuba A,
Skobe M,
Karkkainen MJ,
Shin WS,
Beynet DP,
Rockson NB,
Dakhil N,
Spilman S,
Goris ML,
Strauss HW,
Quertermous T,
Alitalo K and
Rockson SG.
Therapeutic lymphangiogenesis with human recombinant VEGF‐C.
FASEB J
16
(14):
1985–1987,
2002.
|
60. |
Hamrah P,
Chen L,
Zhang Q and
Dana MR.
Novel expression of vascular endothelial growth factor receptor (VEGFR)‐3 and VEGF‐C on corneal dendritic cells.
Am J Pathol
163
(1):
57–68,
2003.
|
61. |
Krishnan J,
Kirkin V,
Steffen A,
Hegen M,
Weih D,
Tomarev S,
Wilting J and
Sleeman JP.
Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)‐C and VEGF‐D in tumors and its relationship to lymphatic metastasis in immunocompetent rats.
Cancer Res
63
(3):
713–722,
2003.
|
62. |
Rubbia‐Brandt L,
Terris B,
Giostra E,
Dousset B,
Morel P and
Pepper MS.
Lymphatic vessel density and vascular endothelial growth factor‐C expression correlate with malignant behavior in human pancreatic endocrine tumors.
Clin Cancer Res
10
(20):
6919–6928,
2004.
|
63. |
Saaristo A,
Tammela T,
Timonen J,
Yla‐Herttuala S,
Tukiainen E,
Asko‐Seljavaara S and
Alitalo K.
Vascular endothelial growth factor‐C gene therapy restores lymphatic flow across incision wounds.
FASEB J:
1707‐1709,
2004.
|
64. |
Goldman J,
Le TX,
Skobe M and
Swartz MA.
Overexpression of VEGF‐C causes transient lymphatic hyperplasia but not increased lymphangiogenesis in regenerating skin.
Circ Res
96
(11):
1193–1199,
2005.
|
65. |
Pytowski B,
Goldman J,
Persaud K,
Wu Y,
Witte L,
Hicklin DJ,
Skobe M,
Boardman KC and
Swartz MA.
Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR‐3 neutralizing antibody.
J Natl Cancer Inst
97
(1):
14–21,
2005.
|
66. |
Vlahakis NE,
Young BA,
Atakilit A and
Sheppard D.
The lymphangiogenic vascular endothelial growth factors VEGF‐C and ‐D are ligands for the integrin alpha9betal.
J Biol Chem
280
(6):
4544–4552,
2005.
|
67. |
Yong C,
Bridenbaugh EA,
Zawieja DC and
Swartz MA.
Microarray analysis of VEGF‐C responsive genes in human lymphatic endothelial cells.
Lymphat Res Biol
3
(4):
183–207,
2005.
|
68. |
Rutkowski JM,
Boardman KC and
Swartz MA.
Characterization of lymphangiogenesis in a model of adult skin regeneration.
Am J Physiol Heart Circ Physiol:
00038,
2006.
|
69. |
Whitehurst B,
Flister M,
Eversgerd C,
Bivens CM,
Zawieja DC and
Ran S.
Characterization of proliferative responses of rat lymphatic endothelial cells RMLEC in vitro.
AACR Meeting Abstracts
2006
(1):
439a,
2006.
|
70. |
Cao R,
Bjorndahl M,
Religa P,
Clasper S,
Garvin S,
Galter D,
Meister B,
Ikomi F,
Tritsaris K,
Dissing S,
Ohhashi T,
Jackson D and
Cao Y.
PDGF‐BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis.
Cancer Cell
6
(4):
333–345,
2004.
|
71. |
Thurston G.
Role of Angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis.
Cell Tissue Res
314
(1):
61–68,
2003.
|
72. |
Cao Y.
Direct role of PDGF‐BB in lymphangiogenesis and lymphatic metastasis.
Cell Cycle
4
(2):
228–230,
2005.
|
73. |
Hirakawa S,
Kodama S,
Kunstfeld R,
Kajiya K,
Brown LF and
Detmar M.
VEGF‐A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis.
J Exp Med
201
(7):
1089–1099,
2005.
|
74. |
Chang LK,
Garcia‐Cardena G,
Farnebo F,
Fannon M,
Chen EJ,
Butterfield C,
Moses MA,
Mulligan RC,
Folkman J and
Kaipainen A.
Dose‐dependent response of FGF‐2 for lymphangiogenesis.
Proc Natl Acad Sci USA
101
(32):
11658–11663,
2004.
|
75. |
Cursiefen C,
Chen L,
Borges LP,
Jackson D,
Cao J,
Radziejewski C,
D'Amore PA,
Dana MR.
Wiegand SJ and
Streilein JW.
VEGF‐A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment.
J Clin Invest
113
(7):
1040–1050,
2004.
|
76. |
Hong YK,
Lange‐Asschenfeldt B,
Velasco P,
Hirakawa S,
Kunstfeld R,
Brown LF,
Bohlen P,
Senger DR and
Detmar M.
VEGF‐A promotes tissue repair‐associated lymphatic vessel formation via VEGFR‐2 and the alpha1beta1 and alpha2beta1 integrins.
FASEB J
18
(10):
1111–1113,
2004.
|
77. |
Shin JW,
Min M,
Larrieu‐Lahargue F,
Canron X,
Kunstfeld R,
Nguyen L,
Henderson JE,
Bikfalvi A,
Detmar M and
Hong YK.
Prox1 promotes lineage‐specific expression of FGF receptor‐3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis.
Mol Biol Cell
1,
2005.
|
78. |
Swartz MA and
Boardman KC.
The role of interstitial stress in lymphatic function and lymphangiogenesis.
Ann N Y Acad Sci
979:
197–210,
2002, discussion 229‐34.
|
79. |
Witte MH,
Bernas MJ,
Martin CP and
Witte CL.
Lymphangiogenesis and lymphangiodysplasia: from molecular to clinical lymphology.
Microsc Res Tech
55
(2):
122–145,
2001.
|
80. |
Pepper MS.
Lymphangiogenesis and tumor metastasis: myth or reality?
Clin Cancer Res
7
(3):
462–468,
2001.
|
81. |
Oliver G and
Harvey N.
A stepwise model of the development of lymphatic vasculature.
Ann N Y Acad Sci
979:
159–165,
2002, discussion 188‐96.
|
82. |
Tille JC,
Nisato R and
Pepper MS.
Lymphangiogenesis and tumour metastasis.
Novartis Found Symp
256:
112–131,
2004, discussion 132‐6, 259‐69.
|
83. |
Nisato RE,
Tille JC and
Pepper MS.
Lymphangiogenesis and tumor metastasis.
Thromb Haemost
90
(4):
591–597,
2003.
|
84. |
Pepper MS,
Tille JC,
Nisato R and
Skobe M.
Lymphangiogenesis and tumor metastasis.
Cell Tissue Res
314
(1):
167–177,
2003.
|
85. |
Harvey NL,
Srinivasan RS,
Dillard ME,
Johnson NC,
Witte MH,
Boyd K,
Sleeman MW and
Oliver G.
Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult‐onset obesity.
Nat Genet
37
(10):
1072–1081,
2005.
|
86. |
Boardman KC and
Swartz MA.
Interstitial flow as a guide for lymphangiogenesis.
Circ Res
92
(7):
801–808,
2003.
|
87. |
Ng CP,
Helm C‐LE and
Swartz MA.
Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro.
Microvasc Res
68
(3):
258–264,
2004.
|
88. |
Maruyama K,
Ii M,
Cursiefen C,
Jackson DG,
Keino H,
Tomita M,
Van Rooijen N,
Takenaka H,
D'Amore PA,
Stein‐Streilein J,
Losordo DW and
Streilein JW.
Inflammation‐induced lymphangiogenesis in the cornea arises from CD11b‐positive macrophages.
J Clin Invest
115
(9):
2363–2372,
2005.
|
89. |
Chen L,
Cursiefen C,
Barabino S,
Zhang Q and
Dana MR.
Novel expression and characterization of lymphatic vessel endothelial hyaluronate receptor 1 (LYVE‐1) by conjunctival cells.
Invest Ophthalmol Vis Sci
46
(12):
4536–4540,
2005.
|
90. |
Angeli V,
Ginhoux F,
Llodra J,
Quemeneur L,
Frenette PS,
Skobe M,
Jessberger R,
Merad M and
Randolph GJ.
B cell‐driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization.
Immunity
24
(2):
203–215,
2006.
|
91. |
Sleeman JP,
Krishnan J,
Kirkin V and
Baumann P.
Markers for the lymphatic endothelium: in search of the holy grail?
Microsc Res Tech
55
(2):
61–69,
2001.
|
92. |
Sawa Y,
Shibata K,
Braithwaite MW,
Suzuki M and
Yoshida S.
Expression of immunoglobulin superfamily members on the lymphatic endothelium of inflamed human small intestine.
Microvasc Res
57
(2):
100–106,
1999.
|
93. |
Kaipainen A,
Korhonen J,
Mustonen T,
van Hinsbergh VW,
Fang GH,
Dumont D,
Breitman M and
Alitalo K.
Expression of the fms‐like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development.
Proc Natl Acad Sci USA
92
(8):
3566–3570,
1995.
|
94. |
Banerji S,
Ni J,
Wang SX,
Clasper S,
Su J,
Tammi R,
Jones M and
Jackson DG.
LYVE‐1, a new homologue of the CD44 glycoprotein, is a lymph‐specific receptor for hyaluronan.
J Cell Biol
144
(4):
789–801,
1999.
|
95. |
Breiteneder‐Geleff S,
Soleiman A,
Horvat R,
Amann G,
Kowalski H and
Kerjaschki D.
Podoplanin‐a specific marker for lymphatic endothelium expressed in angiosarcoma.
Verh Dtsch Ges Pathol
83:
270–275,
1999.
|
96. |
Gannon BJ and
Carati CJ.
Endothelial distribution of the membrane water channel molecule aquaporin‐1: implications for tissue and lymph fluid physiology?
Lymphat Res Biol
1
(1):
55–66,
2003.
|
97. |
Kato S.
Histochemical localisation of 5′‐nucleotidase in the lymphatic endothelium.
Acta Histochem Cytochem
23:
613–620,
1990.
|
98. |
Nishida S and
Ohkuma M.
Enzyme‐histochemical identification of the human lymphatic capillary by adenylate cyclase.
Lymphology
25
(4):
184–190,
1992.
|
99. |
Nishida S and
Ohkuma M.
Enzyme‐histochemical staining of dermal lymphatic capillaries by guanylate cyclase.
Lymphology
26
(4):
195–199,
1993.
|
100. |
Marchetti C,
Casasco A,
Di Nucci A,
Reguzzoni M,
Rosso S,
Piovella F,
Calligaro A and
Polak JM.
Endothelin and nitric oxide synthase in lymphatic endothelial cells: immunolocalization in vivo and in vitro.
Anat Rec
248
(4):
490–497,
1997.
|
101. |
Hayes H,
Kossmann E,
Wilson E,
Meininger C and
Zawieja D.
Development and characterization of endothelial cells from rat microlymphatics.
Lymphat Res Biol
1
(2):
101–119,
2003.
|
102. |
Ito Y,
Magari S and
Sakanaka M.
Prostaglandin I2 synthase in the lymphatic endothelium of rat liver as revealed by preembedding immunoelectron microscopy.
Lymphology
22
(1):
51–55,
1989.
|
103. |
Ohhashi T and
Takahashi N.
Acetylcholine‐induced release of endothelium‐derived relaxing factor from lymphatic endothelial cells.
Am J Physiol
260
(4 Pt 2):
H1172–1178,
1991.
|
104. |
Ferguson MK.
Modulation of lymphatic smooth muscle contractile responses by the endothelium.
J Surg Res
52
(4):
359–363,
1992.
|
105. |
Mizuno R,
Koller A and
Kaley G.
Regulation of the vasomotor activity of lymph microvessels by nitric oxide and prostaglandins.
Am J Physiol
274
(3 Pt 2):
R790–R796,
1998.
|
106. |
Reeder L,
Yang L and
Ferguson M.
Modulation of lymphatic spontaneous contractions by EDRF.
J Surg Res
56
(6):
620–625,
1994.
|
107. |
von der Weid PY,
Crowe MJ and
Van Helden DF.
Endothelium‐dependent modulation of pacemaking in lymphatic vessels of the guinea‐pig mesentery.
J Physiol
493
(Pt 2):
563–575,
1996.
|
108. |
Yokoyama S and
Ohhashi T.
Effects of acetylcholine on spontaneous contractions in isolated bovine mesenteric lymphatics.
Am J Physiol
264
(5 Pt 2):
H1460–H1464,
1993.
|
109. |
Gashev AA,
Davis MJ and
Zawieja DC.
Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct.
J Physiol
540
(Pt 3):
1023–1037,
2002.
|
110. |
Shirasawa Y,
Ikomi F and
Ohhashi T.
Physiological roles of endogenous nitric oxide in lymphatic pump activity of rat mesentery in vivo.
Am J Physiol
278
(4):
G551–G556,
2000.
|
111. |
Rayner SE and
Van Helden DF.
Evidence that the substance P‐induced enhancement of pacemaking in lymphatics of the guinea‐pig mesentery occurs through endothelial release of thromboxane A2.
Br J Pharmacol
121
(8):
1589–1596,
1997.
|
112. |
Gao J,
Zhao J,
Rayner SE and
van Helden DF.
Evidence that the ATP‐induced increase in vasomotion of guinea‐pig mesenteric lymphatics involves an endothelium‐dependent release of thromboxane A2.
Br J Pharmacol
127
(7):
1597–1602,
1999.
|
113. |
Chan AK,
Vergnolle N,
Hollenberg MD and
von der Weid PY.
Proteinase‐activated receptor 2 activation modulates guinea‐pig mesenteric lymphatic vessel pacemaker potential and contractile activity.
J Physiol
560
(2):
563–576,
2004.
|
114. |
Reeder LB and
Ferguson MK.
Endothelin‐1 synthesis and receptor‐mediated activity in porcine lymph vessels.
J Surg Res
63
(1):
215–219,
1996.
|
115. |
Sakai H,
Ikomi F and
Ohhashi T.
Effects of endothelin on spontaneous contractions in lymph vessels.
Am J Physiol
277
(2 Pt 2):
H459–H466,
1999.
|
116. |
Dobbins DE and
Dabney JM.
Endothelin‐mediated constriction of prenodal lymphatic vessels in the canine forelimb.
Regul Pept
35
(1):
81–91,
1991.
|
117. |
Doboszynska T,
Andronowska A and
Modzelewska B.
Endothelin‐1 and endothelial nitric oxide synthase immunoreactivity in lymphatic vessels of the uterine broad ligament during the estrous cycle in the pig.
Cells Tissues Organs
171
(2‐3):
152–161,
2002.
|
118. |
Zhao J and
van Helden DF.
ET‐1‐associated vasomotion and vasospasm in lymphatic vessels of the guinea‐pig mesentery.
Br J Pharmacol
140
(8):
1399–1413,
2003.
|
119. |
Marchetti C,
Casasco A,
Di Nucci A,
Reguzzoni M,
Rosso S,
Piovella F,
Calligaro A and
Polak J.
Endothelin and nitric oxide synthase in lymphatic endothelial cells: immunolocalization in vivo and in vitro.
Anat Rec
248
(4):
490–497,
1997.
|
120. |
Mislin H.
Active contractility of the lymphangion and coordination of lymphangion chains.
Experientia
32
(7):
820–822,
1976.
|
121. |
Allen JM and
McHale NG.
Neuromuscular transmission in bovine mesenteric lymphatics.
Microvasc Res
31
(1):
77–83,
1986.
|
122. |
Hargens AR and
Zweifach BW.
Contractile stimuli in collecting lymph vessels.
Am J Physiol
233
(1):
H57–H65,
1977.
|
123. |
Orlov RS,
Borisova RP and
Mandryko ES.
The contractile and electrical activity of the smooth muscles of the major lymph vessels.
Fiziol Zh SSSR Im I M Sechenova
61
(7):
1045–1053,
1975.
|
124. |
Zweifach B and
Prather J.
Micromanipulation of pressure in terminal lymphatics in the mesentery.
Am J Physiol
228
(5):
1326–1335,
1975.
|
125. |
Mislin H.
Structural and functional relations of the mesenteric lymph vessels. New Trends in Basic Lymphology;
Proceedings of a Symposium held at Charleroi (Belgium), July 11‐13, 1966. Experientia (Suppl. 14):
87–96,
1966.
|
126. |
Allen JM and
McHale NG.
The effect of known K+‐channel blockers on the electrical activity of bovine lymphatic smooth muscle.
Pflugers Arch
411
(2):
167–172,
1988.
|
127. |
Ohhashi T,
Azuma T and
Sakaguchi M.
Active and passive mechanical characteristics of bovine mesenteric lymphatics.
Am J Physiol
239
(1):
H88–H95,
1980.
|
128. |
Van Helden DF.
Pacemaker potentials in lymphatic smooth muscle of the guinea‐pig mesentery.
J Physiol
471:
465–479,
1993.
|
129. |
Van Helden DF and
Zhao J.
Lymphatic vasomotion.
Clin Exp Pharmacol Physiol
27
(12):
1014–1018,
2000.
|
130. |
von der Weid PY,
Zhao J and
Van Helden DF.
Nitric oxide decreases pacemaker activity in lymphatic vessels of guinea pig mesentery.
Am J Physiol
280
(6):
H2707–H2716,
2001.
|
131. |
McCloskey K,
Hollywood M,
Thornbury K,
Ward S and
McHale N.
Kit‐like immunopositive cells in sheep mesenteric lymphatic vessels.
Cell Tissue Res
310
(1):
77–84,
2002.
|
132. |
Zawieja DC,
Kossman E and
Pullin J.
Dynamics of the microlymphatic system.
J Prog Appl Microcirc
23:
100–109,
1999.
|
133. |
von der Weid PY and
Zawieja DC.
Lymphatic smooth muscle: the motor unit of lymph drainage.
Int J Biochem Cell Biol
36
(7):
1147–1153,
2004.
|
134. |
Kuo L,
Davis MJ and
Chilian WM.
Endothelium‐dependent, flow‐induced dilation of isolated coronary arterioles.
Am J Physiol
259
(4 Pt 2):
H1063–H1070,
1990.
|
135. |
Allen JM,
McHale NG and
Rooney BM.
Effect of norepinephrine on contractility of isolated mesenteric lymphatics.
Am J Physiol
244
(4):
H479–H486,
1983.
|
136. |
Azuma T,
Ohnashi T and
Sakaguchi M.
Electrical activity of lymphatic smooth muscles.
Proc Soc Exp Biol Med
155:
270–273,
1977.
|
137. |
Kirkpatrick CT and
McHale NG.
Electrical and mechanical activity of isolated lymphatic vessels [proceedings].
J Physiol
272
(1):
33P–34P,
1977.
|
138. |
Mislin H.
The lymphangion. In:
Lymphangiology,
eds Foldi M and
Casley‐Smith JR,
Stuttgart. New York:
Schattauer Verlag,
1983,
pp. 165–175.
|
139. |
Mislin H.
Die motorik Lymphgefässe und der Regulation der Lymphherzen. In:
Handbuch der Algemeinen Pathologie,
ed. Meessen H.
Berlin, Heidelberg, New York:
Springer‐Verlag,
1973,
pp. 219–238.
|
140. |
Orlov RS,
Borigora RP and
Mundriko ES.
Investigation of contractile and electrical activity of smooth muscle of lymphatic vessels. In:
Physiology of Smooth Muscle,
ed. Bulbring EaS MF.
New York:
Ranon,
1976,
pp. 147–152.
|
141. |
Ohhashi T and
Azuma T.
Effect of potassium on membrane potential and tension development in bovine mesenteric lymphatics.
Microvasc Res
23
(1):
93–98,
1982.
|
142. |
Ohhashi T,
Azuma T and
Sakaguchi M.
Transmembrane potentials in bovine lymphatic smooth muscle.
Proc Soc Exp Biol Med
159
(3):
350–352,
1978.
|
143. |
Ward SM,
McHale NG and
Sanders KM.
A method for recording transmembrane potentials in bovine mesenteric lymphatics [abstract].
Ir J Med Sci
158:
129,
1989.
|
144. |
von der Weid PY and
Van Helden DF.
Beta‐adrenoceptor‐mediated hyperpolarization in lymphatic smooth muscle of guinea pig mesentery.
Am J Physiol
270
(5 Pt 2):
H1687–H1695,
1996.
|
145. |
Cotton KD,
Hollywood MA,
McHale NG and
Thornbury KD.
Outward currents in smooth muscle cells isolated from sheep mesenteric lymphatics.
J Physiol (Lond)
503
(Pt 1):
1–11,
1997.
|
146. |
Toland HM,
McCloskey KD,
Thornbury KD,
McHale NG and
Hollywood MA.
Ca2+‐activated Cl‐current in sheep lymphatic smooth muscle.
Am J Physiol Cell Physiol
279
(5):
C1327–C1335,
2000.
|
147. |
von der Weid P.
ATP‐sensitive K+ channels in smooth muscle cells of guinea‐pig mesenteric lymphatics: role in nitric oxide and beta‐adrenoceptor agonist‐induced hyperpolarizations.
Br J Pharmacol
125
(1):
17–22,
1998.
|
148. |
Atchison DJ and
Johnston MG.
Role of extra‐ and intracellular Ca2+ in the lymphatic myogenic response.
Am J Physiol
272
(1 Pt 2):
R326–R333,
1997.
|
149. |
McHale NG,
Allen JM and
Iggulden HL.
Mechanism of alpha‐adrenergic excitation in bovine lymphatic smooth muscle.
Am J Physiol
252
(5 Pt 2):
H873–H878,
1987.
|
150. |
Hollywood MA,
Cotton KD,
Thornbury KD and
McHale NG.
Tetrodotoxin‐sensitive sodium current in sheep lymphatic smooth muscle.
J Physiol
503
(Pt 1):
13–20,
1997.
|
151. |
Zawieja DC,
Davis KL,
Schuster R,
Hinds WM and
Granger HJ.
Distribution, propagation, and coordination of contractile activity in lymphatics.
Am J Physiol
264
(4 Pt 2):
H1283–H1291,
1993.
|
152. |
Ward SM,
Sanders KM,
Thornbury KD and
McHale NG.
Spontaneous electrical activity in isolated bovine lymphatics recorded by intracellular microelectrodes.
J Physiol
438:
168,
1991.
|
153. |
McCloskey KD,
Toland HM,
Hollywood MA,
Thornbury KD and
McHale NG.
Hyperpolarisation‐activated inward current in isolated sheep mesenteric lymphatic smooth muscle.
J Physiol
521
(Pt 1):
201–211,
1999.
|
154. |
Fox JLR and
von der Weid P‐Y.
Effects of histamine on the contractile and electrical activity in isolated lymphatic vessels of the guinea‐pig mesentery.
Br J Pharmacol
136
(8):
1210–1218,
2002.
|
155. |
van Helden DF,
von der Weid P‐Y and
Crowe MJ.
Intracellular Ca2+ release: a basis for electrical pacemaking in lymphatic smooth muscle. In:
Smooth Muscle Excitation,
eds Tomita T and
Bolton TB.
London:
Academic Press,
1996,
pp. 355–373.
|
156. |
van Helden DF.
An alpha‐adrenoceptor‐mediated chloride conductance in mesenteric veins of the guinea‐pig.
J Physiol (Lond)
401
(489):
489–501,
1988.
|
157. |
van Helden DF,
Imtiaz MS,
Nurgaliyeva K,
von der Weid P and
Dosen PJ.
Role of calcium stores and membrane voltage in the generation of slow wave action potentials in guinea‐pig gastric pylorus.
J Physiol
524
(Pt 1):
245–265,
2000.
|
158. |
Hashitani H,
van Helden DF and
Suzuki H.
Properties of spontaneous depolarizations in circular smooth muscle cells of rabbit urethra.
Br J Pharmacol
118
(7):
1627–1632,
1996.
|
159. |
Holman ME,
Kasby CB,
Suthers MB and
Wilson JA.
Some properties of the smooth muscle of rabbit portal vein.
J Physiol (Lond)
196
(1):
111–132,
1968.
|
160. |
Suzuki H.
Effects of endogenous and exogenous noradrenaline on the smooth muscle of guinea‐pig mesenteric vein.
J Physiol (Lond)
321
(495):
495–512,
1981.
|
161. |
van Helden DF.
Spontaneous and noradrenaline‐induced transient depolarizations in the smooth muscle of guinea‐pig mesenteric vein.
J Physiol
437
(511):
511–541,
1991.
|
162. |
Wang Q,
Hogg RC and
Large WA.
Properties of spontaneous inward currents recorded in smooth muscle cells isolated from the rabbit portal vein.
J Physiol (Lond)
451:
525–537,
1992.
|
163. |
Janssen LJ and
Sims SM.
Acetylcholine activates non‐selective cation and chloride conductances in canine and guinea‐pig tracheal myocytes.
J Physiol (Lond)
453:
197–218,
1992.
|
164. |
Janssen LJ and
Sims SM.
Spontaneous transient inward currents and rhythmicity in canine and guinea‐pig tracheal smooth muscle cells.
Pflugers Arch
427
(5‐6):
473–480,
1994.
|
165. |
Hogg RC,
Wang Q,
Helliwell RM and
Large WA.
Properties of spontaneous inward currents in rabbit pulmonary artery smooth muscle cells.
Pflugers Arch
425
(3‐4):
233–240,
1993.
|
166. |
Large WA and
Wang Q.
Characteristics and physiological role of the Ca(2+)‐activated Cl‐conductance in smooth muscle.
Am J Physiol Cell Physiol
271
(2):
C435–C454,
1996.
|
167. |
Zhuge R,
Sims SM,
Tuft RA,
Fogarty KE and
Walsh JV.
Ca2+ sparks activate K+ and Cl‐channels, resulting in spontaneous transient currents in guinea‐pig tracheal myocytes.
J Physiol (Lond)
513
(3):
711–718,
1998.
|
168. |
Lamb FS and
Barna TJ.
Chloride ion currents contribute functionally to norepinephrine‐induced vascular contraction.
Am J Physiol
275
(1):
H151–H160,
1998.
|
169. |
Yuan XJ.
Role of calcium‐activated chloride current in regulating pulmonary vasomotor tone.
Am J Physiol
272
(5):
L959–1L968,
1997.
|
170. |
Atchison DJ,
Rodela H and
Johnston MG.
Intracellular calcium stores modulation in lymph vessels depends on wall stretch.
Can J Physiol Pharmacol
76
(4):
367–372,
1998.
|
171. |
Ferrusi I,
Zhao J,
van Helden D and
von der Weid P‐Y.
Cyclopiazonic acid decreases spontaneous transient depolarizations in guinea pig mesenteric lymphatic vessels in endothelium‐dependent and ‐independent manners.
Am J Physiol Heart Circ Physiol
286
(6):
H2287–H2295,
2004.
|
172. |
McHale NG and
Allen JM.
The effect of external Ca2+ concentration on the contractility of bovine mesenteric lymphatics.
Microvasc Res
26
(2):
182–192,
1983.
|
173. |
Shirasawa Y and
Benoit JN.
Stretch‐induced calcium sensitization of rat lymphatic smooth muscle.
Am J Physiol Heart Circ Physiol
285
(6):
H2573–H2577,
2003.
|
174. |
Benoit JN,
Zawieja DC,
Goodman AH and
Granger HJ.
Characterization of intact mesenteric lymphatic pump and its responsiveness to acute edemagenic stress.
Am J Physiol
257
(6 Pt 2):
H2059–H2069,
1989.
|
175. |
Zhang R,
Gashev AA,
Zawieja DC,
Lane MM and
Davis MJ.
Length‐dependence of lymphatic phasic contractile activity under isometric and isobaric conditions.
Microcirculation
14
(6):
613–625,
2007.
|
176. |
Zhang RZ,
Gashev AA,
Zawieja DC and
Davis MJ.
Length‐tension relationships of small arteries, veins, and lymphatics from the rat mesenteric microcirculation.
Am J Physiol Heart Circ Physiol
292
(4):
H1943–H1952,
2007.
|
177. |
Babu GJ,
Warshaw DM and
Periasamy M.
Smooth muscle myosin heavy chain isoforms and their role in muscle physiology.
Microsc Res Tech
50
(6):
532–540,
2000.
|
178. |
Eddinger TJ.
Myosin heavy chain isoforms and dynamic contractile properties: skeletal versus smooth muscle.
Comp Biochem Physiol B Biochem Mol Biol
119
(3):
425–434,
1998.
|
179. |
Rubenstein PA.
The functional importance of multiple actin isoforms.
Bioessays
12
(7):
309–315,
1990.
|
180. |
Herman IM.
Actin isoforms.
Curr Opin Cell Biol
5
(1):
48–55,
1993.
|
181. |
Owens GK.
Regulation of differentiation of vascular smooth muscle cells.
Physiol Rev
75
(3):
487–517,
1995.
|
182. |
Zawieja DC,
Gashev AA and
Muthuchamy M.
Lymphatic function and contractile proteins.
22nd Meeting of the European Society for Microcirculation.
2002.
Exeter, Devon, UK,
Monduzzi Editore S.p.A.
|
183. |
Babij P and
Periasamy M.
Myosin heavy chain isoform diversity in smooth muscle is produced by differential RNA processing.
J Mol Biol
210
(3):
673–679,
1989.
|
184. |
Nagai R,
Kuro‐o M,
Babij P and
Periasamy M.
Identification of two types of smooth muscle myosin heavy chain isoforms by cDNA cloning and immunoblot analysis.
J Biol Chem
264
(17):
9734–9737,
1989.
|
185. |
Rovner AS,
Thompson MM and
Murphy RA.
Two different heavy chains are found in smooth muscle myosin.
Am J Physiol
250
(6 Pt 1):
C861–C870,
1986.
|
186. |
White S,
Martin AF and
Periasamy M.
Identification of a novel smooth muscle myosin heavy chain cDNA: isoform diversity in the S1 head region.
Am J Physiol
264
(5 Pt 1):
C1252–C1258,
1993.
|
187. |
Lauzon AM,
Tyska MJ,
Rovner AS,
Freyzon Y,
Warshaw DM and
Trybus KM.
A 7‐amino‐acid insert in the heavy chain nucleotide binding loop alters the kinetics of smooth muscle myosin in the laser trap.
J Muscle Res Cell Motil
19
(8):
825–837,
1998.
|
188. |
Khromov AS,
Somlyo AV and
Somlyo AP.
Nucleotide binding by actomyosin as a determinant of relaxation kinetics of rabbit phasic and tonic smooth muscle.
J Physiol
492
(Pt 3):
669–673,
1996.
|
189. |
Sweeney HL,
Rosenfeld SS,
Brown F,
Faust L,
Smith J,
Xing J,
Stein LA and
Sellers JR.
Kinetic tuning of myosin via a flexible loop adjacent to the nucleotide binding pocket.
J Biol Chem
273
(11):
6262–6270,
1998.
|
190. |
Hosaka K,
Mizuno R and
Ohhashi T.
Rho‐Rho kinase pathway is involved in the regulation of myogenic tone and pump activity in isolated lymph vessels.
Am J Physiol Heart Circ Physiol
284
(6):
H2015–H2025,
2003.
|
191. |
von der Weid PY.
ATP‐sensitive K+ channels in smooth muscle cells of guinea‐pig mesenteric lymphatics: role in nitric oxide and beta‐adrenoceptor agonist‐induced hyperpolarizations.
Br J Pharmacol
125
(1):
17–22,
1998.
|
192. |
Crowe MJ,
von der Weid PY,
Brock JA and
Van Helden DF.
Co‐ordination of contractile activity in guinea‐pig mesenteric lymphatics.
J Physiol
500
(Pt 1):
235–244,
1997.
|
193. |
Harty HR,
Thornbury KD and
McHale NG.
Neurotransmission in isolated sheep mesenteric lymphatics.
Microvasc Res
46
(3):
310–319,
1993.
|
194. |
Kelly J,
Brazil D,
Clyne C,
McHale NG,
Gierschik P and
Keenan AK.
Evidence for the presence of G‐proteins, adenylyl cyclase and phospholipase C activities in lymphatic smooth muscle cell membranes.
Cell Signal
8
(6):
425–432,
1996.
|
195. |
Nishida S and
Ohkuma M.
Enzyme‐histochemical staining of dermal lymphatic capillaries by guanylate cyclase.
Lymphology
26
(4):
195–199,
1993.
|
196. |
Serbeniuk Ts V and
Lelekova TV.
[Participation of cGMP in inhibitory mechanisms of the center of amphibian lymph hearts].
Fiziol Zh SSSR Im I M Sechenova
73
(4):
506–511,
1987.
|
197. |
Serbeniuk Ts V and
Lelekova TV.
[The effect of cyclic nucleotides on the rhythmogenicity of the lymphatic center in the frog Rana temporaria].
Zh Evol Biokhim Fiziol
26
(5):
680–687,
1990.
|
198. |
Reeder LB,
DeFilippi VJ and
Ferguson MK.
Characterization of the effects of histamine in porcine tracheobronchial lymph vessels.
Am J Physiol
271
(6 Pt 2):
H2501–H2507,
1996.
|
199. |
Ferguson MK and
DeFilippi VJ.
Nitric oxide and endothelium‐dependent relaxation in tracheobronchial lymph vessels.
Microvasc Res
47
(3):
308–317,
1994.
|
200. |
Nix JT,
Mann FC,
Bollman JL,
Grindlay JH and
Flock EV.
Alterations of protein constituents of lymph by specific injury to the liver.
Am J Physiol
164:
119–122,
1951.
|
201. |
Zawieja DC and
Barber BJ.
Lymph protein concentration in initial and collecting lymphatics of the rat.
Am J Physiol
252
(5 Pt 1):
G602–G606,
1987.
|
202. |
Keiding NR.
The alkaline phosphatase fractions of human lymph.
Clin Sci
26:
291–297,
1964.
|
203. |
Keiding NR.
Intestinal alkaline phosphatase in human lymph and serum.
Scand J Clin Lab Invest
18
(2):
134–140,
1966.
|
204. |
Tso P and
Balint JA.
Formation and transport of chylomicrons by enterocytes to the lymphatics.
Am J Physiol
250
(6 Pt 1):
G715–G726,
1986.
|
205. |
Tso P,
Pitts V and
Granger DN.
Role of lymph flow in intestinal chylomicron transport.
Am J Physiol
249
(1 Pt 1):
G21–G28,
1985.
|
206. |
Oussoren C and
Storm G.
Liposomes to target the lymphatics by subcutaneous administration.
Adv Drug Deliv Rev
50
(1‐2):
143–156,
2001.
|
207. |
Porter CJ and
Charman WN.
Intestinal lymphatic drug transport: an update.
Adv Drug Deliv Rev
50
(1‐2):
61–80,
2001.
|
208. |
Nordskog BK,
Phan CT,
Nutting DF and
Tso P.
An examination of the factors affecting intestinal lymphatic transport of dietary lipids.
Adv Drug Deliv Rev
50
(1‐2):
21–44,
2001.
|
209. |
van Greevenbroek MM and
de Bruin TW.
Chylomicron synthesis by intestinal cells in vitro and in vivo.
Atherosclerosis
141
(Suppl 1):
S9–S16,
1998.
|
210. |
Casley‐Smith JR.
The identification of chylomicra and lipoproteins in tissue sections and their passage into jejunal lacteals.
J Cell Biol
15:
259–277,
1962.
|
211. |
Granger DN,
Korthuis RJ,
Kvietys PR and
Tso P.
Intestinal microvascular exchange during lipid absorption.
Am J Physiol
255
(5 Pt 1):
G690–G695,
1988.
|
212. |
Casley‐Smith J.
Calculations relating to the passage of fluid and protein out of arterial‐limb fenestrae. through basement membranes and connective tissue channels, and into venous‐limb fenestrae and lymphatics.
Microvasc Res
12:
13–34,
1976.
|
213. |
Casley‐Smith JR.
A fine structural study of variations in protein concentration in lacteals during compression and relaxation.
Lymphology
12
(2):
59–65,
1979.
|
214. |
Casley‐Smith JR and
Sims MA.
Protein concentration in regions with fenestrated and continuous blood capillaries and in initial and collecting lymphatics.
Microvasc Res
12:
245–257,
1976.
|
215. |
Hargens AR and
Zweifach BW.
Transport between blood and peripheral lymph in intestine.
Microvascular Res
11:
89–101,
1976.
|
216. |
Bohlen HG and
Unthank JL.
Rat intestinal lymph osmolarity during glucose and oleic acid absorption.
Am J Physiol
257:
G438–G446,
1989.
|
217. |
Grimaldi A,
Moriondo A,
Sciacca L,
Guidali ML,
Tettamanti G and
Negrini D.
Functional arrangement of rat diaphragmatic initial lymphatic network.
Am J Physiol Heart Circ Physiol
291
(2):
H876–H885,
2006.
|
218. |
Moriondo A,
Mukenge S and
Negrini D.
Transmural pressure in rat initial subpleural lymphatics during spontaneous or mechanical ventilation.
Am J Physiol Heart Circ Physiol
289
(1):
H263–H269,
2005.
|
219. |
Negrini D,
Ballard ST and
Benoit JN.
Contribution of lymphatic myogenic activity and respiratory movements to pleural lymph flow.
J Appl Physiol
76
(6):
2267–2274,
1994.
|
220. |
Negrini D and
Fabbro MD.
Subatmospheric pressure in the rabbit pleural lymphatic network.
J Physiol
520
(Pt 3):
761–769,
1999.
|
221. |
Negrini D,
Moriondo A and
Mukenge S.
Transmural pressure during cardiogenic oscillations in rodent diaphragmatic lymphatic vessels.
Lymphat Res Biol
2
(2):
69–81,
2004.
|
222. |
Nicoll PA and
Hogan RD.
Pressures associated with lymphatic capillary contraction.
Microvasc Res
15:
257–258,
1978.
|
223. |
Mendoza E and
Schmid‐Schonbein GW.
A model for mechanics of primary lymphatic valves.
J Biomech Eng
125
(3):
407–414,
2003.
|
224. |
Higuchi M,
Fokin A,
Masters TN,
Robicsek F and
Schmid‐Schonbein GW.
Transport of colloidal particles in lymphatics and vasculature after subcutaneous injection.
J Appl Physiol
86
(4):
1381–1387,
1999.
|
225. |
Ikomi E,
Zweifach BW and
Schmid‐Schonbein GW.
Fluid pressures in the rabbit popliteal afferent lymphatics during passive tissue motion.
Lymphology
30
(1):
13–23,
1997.
|
226. |
Schmid‐Schonbein G and
Zweifach B.
Fluid pump mechanisms in initial lymphatics.
News Physiol Sci
9
(2):
67,
1994.
|
227. |
Schmid‐Schonbein GW.
Mechanisms causing initial lymphatics to expand and compress to promote lymph flow.
Arch Histol Cytol
53
(Suppl):
107–114,
1990.
|
228. |
Mazzoni MC,
Skalak TC and
Schmid‐Schonbein GW.
Structure of lymphatic valves in the spinotrapezius muscle of the rat.
Blood Vessels
24
(6):
304–312,
1987.
|
229. |
McHale NG and
Roddie IC.
The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels.
J Physiol
261
(2):
255–269,
1976.
|
230. |
Armenio S,
Cetta F,
Tanzini G and
Guercia C.
Spontaneous contractility in the human lymph vessels.
Lymphology
14
(4):
173–178,
1981.
|
231. |
Armenio S,
Cetta F,
Tanzini G,
Guercia C and
Burroni F.
[Spontaneous contractility of the lymphatic vessels in man] [Spanish].
Angilogia
33
(6):
325–327,
1981.
|
232. |
Gashev AA,
Orlov RS,
Borisov AV,
Kliuchin'ski T,
Andreevskaya MV,
Bubnova NA,
Borisova RP,
Andreev YA,
Erofeev NP and
Priklonskaya EG.
The mechanisms of lymphangion interaction in the process of the lymph movement [Russian].
Fiziol Zh SSSR Im I M Sechenova
76
(11):
1489–1508,
1990.
|
233. |
Gashev AA.
The mechanism of the formation of a reverse fluid filling in the lymphangions [Russian].
Fiziol Zh SSSR Im I M Sechenova
77
(7):
63–69,
1991.
|
234. |
Gashev AA,
Orlov RS and
Zawieja DC.
Contractions of the lymphangion under low filling conditions and in absence of distension stimuli. A possibility of the suction effect [Russian].
Ross Fiziol Zh SSSR Im I M Sechenova
87
(1):
97–109,
2001.
|
235. |
Gashev AA.
Physiologic aspects of lymphatic contractile function: current perspectives.
Ann N Y Acad Sci
979:
178–187,
2002, discussion 188‐96.
|
236. |
Olszewski WL and
Engeset A.
Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg.
Am J Physiol Heart Circ Physiol
239
(6):
H775–H783,
1980.
|
237. |
Szabo G and
Magyar Z.
Pressure measurements in various parts of the lymphatic system.
Acta Med Acad Sci Hung
23
(3):
237–241,
1967.
|
238. |
Olszewski WL and
Engeset A.
Lymphatic contractions.
N Engl J Med
300
(6):
316,
1979.
|
239. |
Olszewski WL and
Engeset A.
Intrinsic contractility of leg lymphatics in man. Preliminary communication.
Lymphology
12
(2):
81–84,
1979.
|
240. |
Krylov VS,
Milanov NO,
Abalmasov KG,
Sadovnikov VI and
Pozharnov AS.
[Endolymphatic pressure in the evaluation of the status of peripheral lymph flow in the extremities] [Russian].
Khirurgiia
6:
63–69,
1991.
|
241. |
Zaugg‐Vesti B,
Dorffler‐Melly J,
Spiegel M,
Wen S,
Franzeck UK and
Bollinger A.
Lymphatic capillary pressure in patients with primary lymphedema.
Microvasc Res
46
(2):
128–134,
1993.
|
242. |
Franzeck UK,
Fischer M,
Costanzo U,
Herrig I and
Bollinger A.
Effect of postural changes on human lymphatic capillary pressure of the skin.
J Physiol
494
(Pt 2):
595–600,
1996.
|
243. |
Tilney NL and
Murray JE.
Chronic thoracic duct fistula: operative technic and physiological effects in man.
Ann Surg
167
(1):
1–8,
1968.
|
244. |
Kinnaert P.
Pressure measurements in the cervical portion of the thoracic duct in man.
Br J Surg
60
(7):
558–561,
1973.
|
245. |
Lee JS.
Intestinal transudation, secretion, and lymph flow during volume expansion in the rat.
Am J Physiol
244:
G668–G674,
1983.
|
246. |
Lee JS.
Lymph flow during fluid absorption from rat jejunum.
Am J Physiol
240:
G312–G316,
1981.
|
247. |
Smith R.
Lymphatic contractility. A possible intrinsic mechanism of lymphatic vessels for the transport of lymph.
J Exp Med
90:
497–509,
1949.
|
248. |
Horstmann E.
Beobachtungen zur Motorik der Lymphgefasse [German].
Pflugers Arch
269:
511–519,
1959.
|
249. |
McHale NG and
Roddie IC.
Pumping activity in isolated segments of bovine mesenteric lymphatics.
J Physiol
244
(1):
70P–72P,
1975.
|
250. |
Orlov RS and
Lobacheva TA.
Intravascular pressure and spontaneous lymph vessels contractions [Russian].
Bull Exp Biol Med
83
(4):
392–394,
1977.
|
251. |
Reddy NP and
Staub NC.
Intrinsic propulsive activity of thoracic duct perfused in anesthetized dogs.
Microvasc Res
21
(2):
183–192,
1981.
|
252. |
Hayashi A,
Johnston MG,
Nelson W,
Hamilton S and
McHale NG.
Increased intrinsic pumping of intestinal lymphatics following hemorrhage in anesthetized sheep.
Circ Res
60
(2):
265–272,
1987.
|
253. |
Gashev AA.
The pump function of the lymphangion and the effect on it of different hydrostatic conditions [Russian].
Fiziol Zh SSSR Im I M Sechenova
75
(12):
1737–1743,
1989.
|
254. |
Eisenhoffer J,
Lee S and
Johnston MG.
Pressure‐flow relationships in isolated sheep prenodal lymphatic vessels.
Am J Physiol
267
(3 Pt 2):
H938–H943,
1994.
|
255. |
Gashev AA,
Davis MJ,
Delp MD and
Zawieja DC.
Regional variations of contractile activity in isolated rat lymphatics.
Microcirculation
11
(6):
477–492,
2004.
|
256. |
Mawhinney HJ and
Roddie IC.
Spontaneous activity in isolated bovine mesenteric lymphatics.
J Physiol
229
(2):
339–348,
1973.
|
257. |
Mislin H and
Rathenow D.
Eksperimentelle Untersuchungen uber die bewegungskoordination der Lymphangione [German].
Revue Suisse de Zoologie
69:
334–344,
1962.
|
258. |
McHale NG and
Meharg MK.
Co‐ordination of pumping in isolated bovine lymphatic vessels.
J Physiol
450:
503–512,
1992.
|
259. |
Gashev AA and
Zawieja DC.
Lymphatic contractions: the role of distension mechanisms.
FASEB J
13:
A11,
1999.
|
260. |
Dixon JB,
Greiner ST,
Gashev AA,
Cote G,
Moore J and
Zawieja DC.
Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics.
Microcirculation
13
(7):
597–610,
2006.
|
261. |
Gashev AA.
Pumping function of lymphangion depending on various hydrostatic gradients [Russian].
Doklady Akademii Nauk SSSR
308
(5):
1261–1264,
1989.
|
262. |
Nusbaum M,
Baum S,
Hedges RC and
Blakemore WS.
Roentgenographic and direct visualization of thoracic duct.
Arch Surg
88
(1):
127–135,
1964.
|
263. |
Campbell T and
Heath T.
Intrinsic contractility of lymphatics in sheep and in dogs.
Q J Exp Physiol
58:
207–217,
1973.
|
264. |
Orlov RS and
Borisova RP.
Contractions of the lymphatic vessels, their regulation and functional role.
Vestnik Akademii Meditsinskikh Nauk SSSR(7):
74–83,
1982.
|
265. |
Browse NL,
Doig RL and
Sizeland D.
The resistance of a lymph node to lymph flow.
J Physiol
208
(2):
77P–78P,
1970.
|
266. |
Muthuchamy M,
Gashev A,
Boswell N,
Dawson N and
Zawieja D.
Molecular and functional analyses of the contractile apparatus in lymphatic muscle.
FASEB J
17
(8):
920–922,
2003.
|
267. |
Fleming I and
Busse R.
NO: the primary EDRF.
J Mol Cell Cardiol
31
(1):
5–14,
1999.
|
268. |
Vanhoutte PM.
Say NO to ET.
J Auton Nerv Syst
81
(1‐3):
271–277,
2000.
|
269. |
Andrews KL,
Triggle CR and
Ellis A.
NO and the vasculature: where does it come from and what does it do?
Heart Fail Rev
7
(4):
423–445,
2002.
|
270. |
Griffith TM.
Endothelial control of vascular tone by nitric oxide and gap junctions: a haemodynamic perspective.
Biorheology
39
(3‐4):
307–318,
2002.
|
271. |
Gasheva OY,
Zawieja DC and
Gashev AA.
Contraction‐initiated NO‐dependent lymphatic relaxation: a self‐regulatory mechanism in rat thoracic duct.
J Physiol
575
(Pt 3):
821–832,
2006.
|
272. |
Tsunemoto H,
Ikomi F and
Ohhashi T.
Flow‐mediated release of nitric oxide from lymphatic endothelial cells of pressurized canine thoracic duct.
Jpn J Physiol
53
(3):
157–163,
2003.
|
273. |
Koller A,
Mizuno R and
Kaley G.
Flow reduces the amplitude and increases the frequency of lymphatic vasomotion: role of endothelial prostanoids.
Am J Physiol
277
(6 Pt 2):
R1683–R1689,
1999.
|
274. |
Granger DN and
Barrowman JA.
Gastrointestinal and liver edema. In:
Edema,
eds Staub NC and
Taylor AE.
New York:
Raven Press,
1984,
pp. 615–656.
|
275. |
Gashev AA. and
Zawieja DC.
Comparison of the active lymph pumps of the rat thoracic duct and mesenteric lymphatics.
7th World Congress for Microcirculation. Sydney, Australia,
2001.
|
276. |
McHale NG and
Roddie IC.
The effect of intravenous adrenaline and noradrenaline infusion of peripheral lymph flow in the sheep.
J Physiol
341:
517–526,
1983.
|
277. |
McHale NG and
Roddie IC.
The effects of catecholamines on pumping activity in isolated bovine mesenteric lymphatics.
J Physiol
338:
527–536,
1983.
|
278. |
Carleton HM and
Florey HW.
The mammalian lacteal: its histological structure and relation to its physiological properties.
Proc Roy Soc Land B
102:
110–118,
1928.
|
279. |
Furness JB.
Arrangement of blood vessels and their relation with adrenergic nerves in the rat mesentery.
J Anat
115:
347–364,
1973.
|
280. |
Alessandrini C,
Gerli R,
Sacchi G,
Ibba L,
Pucci AM and
Fruschelli C.
Cholinergic and adrenergic innervation of mesenterial lymph vessels in guinea pig.
Lymphology
14
(1):
1–6,
1981.
|
281. |
Todd GL and
Bernard GR.
The sympathetic innervation in the cervical lymphatic duct of the dog.
Anat Rec
177:
303–316,
1973.
|
282. |
Ohhashi T,
Kobayashi S,
Tsukahara S and
Azuma T.
Innervation of bovine mesenteric lymphatics: from the histochemical point of view.
Microvasc Res
24:
377–385,
1982.
|
283. |
Guarna M,
Pucci A,
Alessandrini C,
Volpi N,
Fruschelli M,
D'Antona D and
Fruschelli C.
Peptidergic innervation of mesenteric lymphatics in guinea pigs: an immunocytochemical and pharmacological study.
Lymphology
24
(4):
161–167,
1991.
|
284. |
Wang X,
Wong W and
Ling E.
Studies of the lymphatic vessel‐associated neurons in the intestine of the guinea pig.
J Anat
185
(Pt 1):
65–74,
1994.
|
285. |
Ohhashi T,
Olschowka JA and
Jacobowitz DM.
Vasoactive intestinal peptide inhibitory innervation in bovine mesenteric lymphatics. A histochemical and pharmacological study.
Circ Res
53
(4):
535–538,
1983.
|
286. |
Sacchi G,
Weber E,
Agliano M and
Comparini L.
Subendothelial nerve fibers in bovine mesenteric lymphatics: an ultrastructural and immunohistochemical study.
Lymphology
27
(2):
90–96,
1994.
|
287. |
Ichikawa S,
Kasahara D,
Iwanaga T,
Uchino S and
Fujita T.
Peptidergic nerve terminals associated with the central lacteal lymphatics in the ileal villi of dogs.
Arch Histol Cytol
54
(3):
311–320,
1991.
|
288. |
Ichikawa S,
Shiozawa M,
Iwanaga T and
Uchino S.
Immunohistochemical demonstration of peptidergic nerve fibers associated with the central lacteal lymphatics in the duodenal villi of dogs.
Arch Histol Cytol
54
(2):
241–248,
1991.
|
289. |
McHale N. and
Peripheral lymph flow during intravenous noradrenaline infusion in sheep.
J Physiol;
edited for The Physiological Society
334:
50,
1983.
|
290. |
Mahe L,
Chapelain B,
Neliat G and
Gargouil Y‐M.
The Role of a‐ and b‐Adrenoceptors in the Response to Noradrenaline of Lymphatic Vessels Isolated from the Bovine Mesentery.
Eur J Pharmacol
167:
31–39,
1989.
|
291. |
Ohhashi T and
Azuma T.
Pre‐ and postjunctional alpha‐adrenoceptors at sympathetic neuroeffector junction in bovine mesenteric lymphatics.
Microvasc Res
31
(1):
31–40,
1986.
|
292. |
Benoit JN.
Effects of alpha‐adrenergic stimuli on mesenteric collecting lymphatics in the rate.
Am J Physiol
273
(1 Pt 2):
R331–R336,
1997.
|
293. |
Watanabe N,
Kawai Y and
Ohhashi T.
Demonstration of both beta 1‐and beta 2‐adrenoceptors mediating negative chronotropic effects on spontaneous activity in isolated bovine mesenteric lymphatics.
Microvasc Res
39
(1):
50–59,
1990.
|
294. |
Allen JM,
Iggulden HL and
McHale NG.
Beta‐adrenergic inhibition of bovine mesenteric lymphatics.
J Physiol
374:
401–411,
1986.
|
295. |
von der Weid P‐Y and
van Helden DF.
β‐Adrenoceptor‐mediated hyperpolarization in lymphatic smooth muscle of guinea pig mesentery.
Am J Physiol
270
(5):
H1687–H1695,
1996.
|
296. |
Hollywood MA and
McHale NG.
Mediation of excitatory neurotransmission by the release of ATP and noradrenaline in sheep mesenteric lymphatic vessels.
J Physiol
481
(Pt 2):
415–423,
1994.
|
297. |
Zhao J and
van Helden DF.
ATP‐induced endothelium‐independent enhancement of lymphatic vasomotion in guinea‐pig mesentery involves P2X and P2Y receptors.
Br J Pharmacol
137
(4):
477–487,
2002.
|
298. |
Zawieja DC.
Lymphatic microcirculation.
Microcirculation
3
(2):
241–243,
1996.
|
299. |
Amerini S,
Ziche M,
Greiner ST and
Zawieja DC.
Effects of substance P on mesenteric lymphatic contractility in the rat.
Lymphat Res Biol
2
(1):
2–10,
2004.
|
300. |
Foy W,
Allen J,
McKillop J,
Goldsmith J,
Johnston C and
Buchanan K.
Substance P and gastrin releasing peptide in bovine mesenteric lymphatic vessels: chemical characterization and action.
Peptides
10
(3):
533–537,
1989.
|
301. |
Hosaka K,
Rayner SE,
on der Weid P‐Y.
Zhao J,
Imtiaz MS and
van Helden DF.
Calcitonin gene‐related peptide activates different signaling pathways in mesenteric lymphatics of guinea pigs.
Am J Physiol Heart Circ Physiol
290
(2):
H813–H822,
2006.
|
302. |
McHale NG,
Roddie IC and
Thornbury KD.
Nervous modulation of spontaneous contractions in bovine mesenteric lymphatics.
J Physiol
309:
461–472,
1980.
|
303. |
Allen JM,
McCarron JG,
McHale NG and
Thornbury KD.
Release of [3 H]‐noradrenaline from the sympathetic nerves to bovine mesenteric lymphatic vessels and its modification by alpha‐agonists and antagonists.
Br J Pharmacol
94
(3):
823–833,
1988.
|
304. |
Marchetti C,
Casasco A,
Di Nucci A,
Cornaglia AI,
Reguzzoni M,
Rosso S,
Piovella F,
Calligaro A and
Polak JM.
Immunolocalization of endothelin and nitric oxide‐synthase in lymphatic vessels and cultured lymphatic endothelial cells.
Microvasc Res
53
(3):
282–285,
1997.
|
305. |
Dabney JM,
Buehn MJ and
Dobbins DE.
Perfused prenodal lymphatics are constricted by prostaglandins.
Am J Physiol
260
(1 Pt 2):
H1–H5,
1991.
|
306. |
Johnston MG and
Gordon JL.
Regulation of lymphatic contractility by arachidonate metabolites.
Nature
293
(5830):
294–297,
1981.
|
307. |
Sjoberg T and
Steen S.
Contractile properties of lymphatics from the human lower leg.
Lymphology
24
(1):
16–21,
1991.
|
308. |
Takahashi N,
Kawai Y and
Ohhashi T.
Effects of vasoconstrictive and vasodilative agents on lymphatic smooth muscles in isolated canine thoracic ducts.
J Pharmacol Exp Ther
254
(1):
165–170,
1990.
|
309. |
Bohlen HG.
Protein kinase betall in Zucker obese rats compromises oxygen and flow‐mediated regulation of nitric oxide formation.
Am J Physiol Heart Circ Physiol
286
(2):
H492–H497,
2004.
|
310. |
Fortes Z,
Scivoletto R and
Garcia‐Leme J.
Endothelin‐1 induces potent constriction of lymphatic vessels in situ.
Eur J Pharmacol
170
(1‐2):
69–73,
1989.
|
311. |
Zhao J and
van Helden DF.
ET‐1‐associated vasomotion and vasospasm in lymphatic vessels of the guinea‐pig mesentery.
Br J Pharmacol
140
(8):
1399–1413,
2003.
|
312. |
Zawieja DC and
Davis KL.
Inhibition of the active lymph pump in rat mesenteric lymphatics by hydrogen peroxide.
Lymphology
26
(3):
135–142,
1993.
|
313. |
Zawieja DC,
Greiner ST,
Davis KL,
Hinds WM and
Granger HJ.
Reactive oxygen metabolites inhibit spontaneous lymphatic contractions.
Am J Physiol
260
(6 Pt 2):
H1935–H1943,
1991.
|
314. |
Ahlqvist J.
Endocrine influences on lymphatic organs, immune responses, inflammation and autoimmunity.
Acta Endocrinol Suppl (Copenh)
206:
3,
1976.
|
315. |
Lelekova TV and
Sanzhieva L.
[Role of adrenoreceptors in the effect of thyroliberin on lymphatic vessels].
Ross Fiziol Zh Im I M Sechenova
90
(1):
32–39,
2004.
|
316. |
Sanzhieva L,
Lelekova TV and
Ashmarin IP.
[Direct and prolonged effect of thyroliberin in ultra small doses on contractility of the white rat mesentery lymphatic vessels].
Radiats Biol Radioecol
43
(3):
334–336,
2003.
|
317. |
Shimanko II,
Limarev VM,
Ashmarin IP,
Lelekova TV and
Sanzhieva L.
The use of thyrotropin‐releasing hormone in clinical practice as a lymphatic stimulator in the treatment of acute pancreatitis.
Khirurgiia (Mosk)
(1):
64–66,
1992.
|
318. |
Lelekova TV,
Sanzhieva L and
Ashmarin IP.
Thyrotrophin‐releasing hormone‐a powerful stimulator of lymphatic vessel contraction in rat mesentery.
Biomed Sci
1
(1):
99,
1990.
|
319. |
Lelekova TV,
Romanovskii P,
Aleksandrov PN and
Ashmarin IP.
[Effects of femto‐ and picomolar concentrations of thyroliberin and tuftsin on the contractile activity of lymphatic vessels of the rat mesentery].
Biull Eksp Biol Med
108
(7):
8–10,
1989.
|
320. |
Papp M,
Stark E,
Foeldes J and
Krasznai I.
[The importance of the lymphatic circulation for the transport of thyroid gland hormone in experimental conditions].
Z Gesamte Exp Med
136:
169–173,
1962.
|
321. |
Beilhack A and
Rockson S.
Immune traffic: a functional overview.
Lymphat Res Biol
1
(3):
219–234,
2003.
|
322. |
Randolph GJ.
Dendritic cell migration to lymph nodes: cytokines, chemokines. and lipid mediators.
Semin Immunol
13
(5):
267–274,
2001.
|
323. |
Randolph GJ,
Angeli V and
Swartz MA.
Dendritic‐cell trafficking to lymph nodes through lymphatic vessels.
Nat Rev Immunol
5
(8):
617–628,
2005.
|
324. |
Caux C,
Ait‐Yahia S,
Chemin K,
de Bouteiller O,
Dieu‐Nosjean M,
Homey B,
Massacrier C,
Vanbervliet B,
Zlotnik A and
Vicari A.
Dendritic cell biology and regulation of dendritic cell trafficking by chemokines.
Springer Semin Immunopathol
22
(4):
345–369,
2000.
|
325. |
Cumberbatch M,
Dearman R,
Griffiths C and
Kimber I.
Langerhans cell migration.
Clin Exp Dermatol
25
(5):
413–418,
2000.
|
326. |
Cyster J.
Chemokines, sphingosine‐1‐phosphate, and cell migration in secondary lymphoid organs.
Annu Rev Immunol
23:
127–159,
2004.
|
327. |
Gunn MD,
Kyuwa S,
Tam C,
Kakiuchi T,
Matsuzawa A,
Williams LT and
Nakano H.
Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization.
J Exp Med
189
(3):
451–460,
1999.
|
328. |
Iwasaki A and
Kelsall BL.
Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)‐3α, MIP‐3β, and secondary lymphoid organ chemokine.
J Exp Med
191
(8):
1381–1394,
2000.
|
329. |
Jakob T,
Ring J and
Udey M.
Multistep navigation of Langerhans/dendritic cells in and out of the skin.
J Allergy Clin Immunol
108
(5):
688–696,
2001.
|
330. |
Kimber I,
Cumberbatch M,
Dearman R,
Bhushan M and
Griffiths C.
Cytokines and chemokines in the initiation and regulation of epidermal Langerhans cell mobilization.
Br J Dermatol
142
(3):
401–412,
2000.
|
331. |
Romani N,
Ratzinger G,
Pfaller K,
Salvenmoser W,
Stossel H,
Koch F and
Stoitzner P.
Migration of dendritic cells into lymphatics‐the Langerhans cell example: routes, regulation, and relevance.
Jnt Rev Cytol
207:
237–270,
2001.
|
332. |
Sozzani S,
Allavena P,
Vecchi A and
Mantovani A.
Chemokines and dendritic cell traffic.
J Clin Immunol
20
(3):
151–160,
2000.
|
333. |
Kriehuber E,
Breiteneder‐Geleff S,
Groeger M,
Soleiman A,
Schoppmann SF,
Stingl G,
Kerjaschki D and
Maurer D.
Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages.
J Exp Med
194
(6):
797–808,
2001.
|
334. |
Wigle JT,
Harvey N,
Detmar M,
Lagutina I,
Grosveld G,
Gunn MD,
Jackson DG and
Oliver G.
An essential role for Prox 1 in the induction of the lymphatic endothelial cell phenotype.
EMBO J
21
(7):
1505–1513,
2002.
|
335. |
Gunn MD,
Tangemann K,
Tam C,
Cyster JG,
Rosen SD and
Williams LT.
A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive Tlymphocytes.
PNAS
95
(1):
258–263,
1998.
|
336. |
Fagarasan S,
Shinkura R,
Kamata T,
Nogaki F,
Ikuta K,
Tashiro K and
Honjo T.
Alymphoplasia (aly)‐type nuclear factor {kappa}B‐inducing kinase (NIK) causes defects in secondary lymphoid tissue chemokine receptor signaling and homing of peritoneal cells to the gut‐associated lymphatic tissue system.
J Exp Med
191
(9):
1477–1486,
2000.
|
337. |
Mancardi S,
Vecile E,
Dusetti N,
Calvo E,
Stanta G,
Burrone OR and
Dobrina A.
Evidence of CXC, CC and C chemokine production by lymphatic endothelial cells.
Immunology
108
(4):
523–530,
2003.
|
338. |
Vicari A,
Vanbervliet B,
Massacrier C,
Chiodoni C,
Vaure C,
Ait‐Yahia S,
Dercamp C,
Matsos F,
Reynard O,
Taverne C,
Merle P,
Colombo M,
O'Garra A,
Trinchieri G and
Caux C.
In vivo manipulation of dendritic cell migration and activation to elicit antitumour immunity.
Novartis Found Symp
256:
241–254,
2004, discussion 254‐69.
|
339. |
Saeki H,
Moore AM,
Brown MJ and
Hwang ST.
Cutting edge: secondary lymphoid‐tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes.
J Immunol
162
(5):
2472–2475,
1999.
|
340. |
Hay J and
Andrade W.
Lymphocyte recirculation, exercise, and immune responses.
Can J Physiol Pharmacol
76
(5):
490–496,
1998.
|
341. |
McComb JG.
Recent research into the nature of cerebrospinal fluid formation and absorption.
J Neurosurg
59
(3):
369–383,
1983.
|
342. |
Johnston M and
Papaiconomou C.
Cerebrospinal fluid transport: a lymphatic perspective.
News Physiol Sci
17:
227–230,
2002.
|
343. |
Zakharov A,
Papaiconomou C,
Koh L,
Djenic J,
Bozanovic‐Sosic R and
Johnston M.
Integrating the roles of extracranial lymphatics and intracranial veins in cerebrospinal fluid absorption in sheep.
Microvasc Res
67
(1):
96–104,
2004.
|
344. |
Osaka K,
Handa H,
Matsumoto S and
Yasuda M.
Development of the cerebrospinal fluid pathway in the normal and abnormal human embryos.
Childs Brain
6
(1):
26–38,
1980.
|
345. |
Calvo A,
Hernandez P,
Spagnuolo E and
Johnston E.
Surgical treatment of intracranial hypertension in encephalic cryptococcosis.
Br J Neurosurg
17
(5):
450–455,
2003.
|
346. |
Johnston M.
The importance of lymphatics in cerebrospinal fluid transport.
Lymphat Res Biol
1
(1):
41–44,
2003, discussion 45.
|
347. |
Mollanji R,
Papaiconomou C,
Boulton M,
Midha R and
Johnston M.
Comparison of cerebrospinal fluid transport in fetal and adult sheep.
Am J Physiol Regul Integr Comp Physiol
281
(4):
R1215–R1223,
2001.
|
348. |
Bradbury MW.
The blood‐brain barrier. Transport across the cerebral endothelium.
Circ Res
57
(2):
213–222,
1985.
|
349. |
Courtice FC and
Simmonds WJ.
The removal of protein from the subarachnoid space.
Aust J Exp Biol Med Sci
29
(4):
255–263,
1951.
|
350. |
Bradbury MWB and
Westrop RJ.
Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit.
J Physiol
339:
519–534,
1983.
|
351. |
Kida S,
Pantazis A and
Weller RO.
CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance.
Neuropathol Appl Neurobiol
19
(6):
480–488,
1993.
|
352. |
Boulton M,
Young A,
Hay J,
Armstrong D,
Flessner M,
Schwartz M and
Johnston M.
Drainage of CSF through lymphatic pathways and arachnoid villi in sheep: measurement of 125I‐albumin clearance.
Neuropathol Appl Neurobiol
22
(4):
325–333,
1996.
|
353. |
Boulton M,
Flessner M,
Armstrong D,
Hay J and
Johnston M.
Lymphatic drainage of the CNS: effects of lymphatic diversion/ligation on CSF protein transport to plasma.
Am J Physiol
272
(5 Pt 2):
R1613–R1619,
1997.
|
354. |
Boulton M,
Armstrong D,
Flessner M,
Hay J,
Szalai JP and
Johnston M.
Raised intracranial pressure increases CSF drainage through arachnoid villi and extracranial lymphatics.
Am J Physiol
275
(3 Pt 2):
R889–R896,
1998.
|
355. |
Mollanji R,
Bozanovic‐Sosic R,
Silver I,
Li B,
Kim C,
Midha R and
Johnston M.
Intracranial pressure accommodation is impaired by blocking pathways leading to extracranial lymphatics.
Am J Physiol Regul Integr Comp Physiol
280
(5):
R1573–R1581,
2001.
|
356. |
Silver I,
Kim C,
Mollanji R and
Johnston M.
Cerebrospinal fluid outflow resistance in sheep: impact of blocking cerebrospinal fluid transport through the cribriform plate.
Neuropathol Appl Neurobiol
28
(1):
67–74,
2002.
|
357. |
Mollanji R,
Bozanovic‐Sosic R,
Zakharov A,
Makarian L and
Johnston MG.
Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure.
Am J Physiol Regul Integr Comp Physiol
282
(6):
R1593–R1599,
2002.
|
358. |
Johnston M,
Zakharov A,
Papaiconomou C,
Salmasi G and
Armstrong D.
Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non‐human primates and other mammalian species.
Cerebrospinal Fluid Res
1
(1):
2,
2004.
|
359. |
Papaiconomou C,
Zakharov A,
Azizi N,
Djenic J and
Johnston M.
Reassessment of the pathways responsible for cerebrospinal fluid absorption in the neonate.
Childs Nerv Syst
20
(1):
29–36,
2004.
|
360. |
Zakharov A,
Papaiconomou C,
Djenic J,
Midha R and
Johnston M.
Lymphatic cerebrospinal fluid absorption pathways in neonatal sheep revealed by subarachnoid injection of Microfil.
Neuropathol Appl Neurobiol
29
(6):
563–573,
2003.
|
361. |
Zakharov A,
Papaiconomou C and
Johnston M.
Lymphatic vessels gain access to cerebrospinal fluid through unique association with olfactory nerves.
Lymphat Res Biol
2
(3):
139–146,
2004.
|
362. |
Borgstrom B and
Laurell CB.
Studies of lymph and lymph‐proteins during absorption of fat and saline by rats.
Acta Physiol Scand
29
(2‐3):
264–280,
1953.
|
363. |
Simmonds WJ.
The effect of fluid, electrolyte and food intake on thoracic duct lymph flow in unanaesthetized rats.
Aust J Exp Biol
32:
285–300,
1954.
|
364. |
Miura S,
Sekizuka E,
Nagata H,
Oshio C,
Minamitani H,
Suematsu M,
Suzuki M,
Hamada Y,
Kobayashi K,
Asakura H, et al.
Increased lymphocyte transport by lipid absorption in rat mesenteric lymphatics.
Am J Physiol
253
(5 Pt 1):
G596–G600,
1987.
|
365. |
Rothkotter HJ,
Hriesik C and
Pabst R.
Many newly formed T lymphocytes leave the small intestinal mucosa via lymphatics.
Adv Exp Med Biol
355:
261–263,
1994.
|
366. |
Husband AJ and
Dunkley ML.
Lack of site of origin effects on distribution of IgA antibody‐containing cells.
Immunology
54
(2):
215–221,
1985.
|
367. |
Kovi J,
Duong HD and
Hoang CT.
Ultrastructure of intestinal lymphatics in Crohn's disease.
Am J Clin Pathol
76
(4):
385–394,
1981.
|
368. |
Robb‐Smith ATH.
Symposium on Crohn's Disease.
Proc Roy Soc Med
64:
157–167,
1971.
|
369. |
Heatley RV,
Bolton PM,
Hughes LE and
Owen EW.
Mesenteric lymphatic obstruction in Crohn's disease.
Digestion
20
(5):
307–313,
1980.
|
370. |
Kalima TV,
Saloniemi H and
Rahko T.
Experimental regional enteritis in pigs.
Scand J Gastroenterol
11
(4):
353–362,
1976.
|
371. |
Reichert FL and
Mathes ME.
Experiental lymphedema of the intestinal tract and its relation to regional cicatrizing enteritis.
Ann Surg
104:
601–616,
1936.
|
372. |
Mooney EE,
Walker J and
Hourihane DO.
Relation of granulomas to lymphatic vessels in Crohn's disease.
J Clin Pathol
48
(4):
335–338,
1995.
|
373. |
Fogt F,
Pascha TL,
Zhang PJ,
Gausas RE,
Rahemtulla A and
Zimmerman RL.
Proliferation of D2‐40‐expressing intestinal lymphatic vessels in the lamina propria in inflammatory bowel disease.
Int J Mol Med
13
(2):
211–214,
2004.
|
374. |
Kaiserling E,
Krober S and
Geleff S.
Lymphatic vessels in the colonic mucosa in ulcerative colitis.
Lymphology
36
(2):
52–61,
2003.
|
375. |
Geleff S,
Schoppmann SF and
Oberhuber G.
Increase in podoplanin‐expressing intestinal lymphatic vessels in inflammatory bowel disease.
Virchows Arch
442
(3):
231–237,
2003.
|
376. |
Baluk P,
Tammela T,
Ator E,
Lyubynska N,
Achen MG,
Hicklin DJ,
Jeltsch M,
Petrova TV,
Pytowski B,
Stacker SA,
Yla‐Herttuala S,
Jackson DG,
Alitalo K and
McDonald DM.
Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation.
J Clin Invest
115
(2):
247–257,
2005.
|
377. |
Mouta C and
Heroult M.
Inflammatory triggers of lymphangiogenesis.
Lymphat Res Biol
1
(3):
201–218,
2003.
|
378. |
Tonelli P.
New developments in Crohn's disease: solution of doctrinal mysteries and reinstatement as a surgically treatable disease. 1. The process is not a form of enteritis but lymphedema contaminated by intestinal contents.
Chir Ital
52
(2):
109–121,
2000.
|
379. |
Wu TF,
Carati CJ,
Macnaughton WK and
von der Weid PY.
Contractile activity of lymphatic vessels is altered in the TNBS model of guinea pig ileitis.
Am J Physiol Gastrointest Liver Physiol
291
(4):
G566–G574,
2006.
|