References |
1. |
Fleming BP.
Innervation of the microcirculation.
J Reconstr Microsurg
4:
237–240,
1988.
|
2. |
Luff SE.
Ultrastructure of sympathetic axons and their structural relationship with vascular smooth muscle.
Anat Embryol (Berl)
193:
515–531,
1996.
|
3. |
Tsuru H,
Tanimitsu N and
Hirai T.
Role of perivascular sympathetic nerves and regional differences in the features of sympathetic innervation of the vascular system.
Jpn J Pharmacol
88:
9–13,
2002.
|
4. |
Young MA,
Knight DR and
Vatner SF.
Autonomic control of large coronary arteries and resistance vessels.
Prog Cardiovasc Dis
30:
211–234,
1987.
|
5. |
Christ GJ.
Modulation of alpha 1‐adrenergic contractility in isolated vascular tissues by heptanol: a functional demonstration of the potential importance of intercellular communication to vascular response generation.
Life Sci
56:
709–721,
1995.
|
6. |
Hill CE,
Phillips JK and
Sandow SL.
Heterogeneous control of blood flow amongst different vascular beds.
Med Rex Rev
21:
1–60,
2001.
|
7. |
Anderson RL,
Gibbins IL and
Morris JL.
Non‐noradrenergic sympathetic neurons project to extramuscular feed arteries and proximal intramuscular arteries of skeletal muscles in guinea‐pig hindlimbs.
J Auton New Syst
61:
51–60,
1996.
|
8. |
Anderson CR and
McLachlan EM.
The time course of the development of the sympathetic innervation of the vasculature of the rat tail.
J Auton Nerv Syst
35:
117–132,
1991.
|
9. |
Briggs L,
Garcia JH,
Conger KA,
Pinto DM,
Geer JC and
Hollander W.
Innervation of brain intraparenchymal vessels in subhuman primates: ultrastructural observations.
Stroke
16:
297–301,
1985.
|
10. |
Argyle SA and
McGrath JC.
An alpha(1A)/alpha(1L)‐adrenoceptor mediates contraction of canine subcutaneous resistance arteries.
J Pharmacol Exp Ther
295:
627–633,
2000.
|
11. |
Baines AD.
Is there a role for renal alpha2‐adrenoceptors in the pathogenesis of hypertension?
Can J Physiol Pharmacol
65:
1638–1643,
1987.
|
12. |
Baraka A,
Haroun S,
Baroody M,
Nawfal M and
Sibai A.
Action of adrenergic agonists on resistance N capacitance vessels during cardiopulmonary bypass.
J Cardiothorac Anesth
3:
193–195,
1989.
|
13. |
Belloli C,
Badino P,
Arioli F,
Odore R and
Re G.
Adrenergic regulation of vascular smooth muscle tone in calf digital artery.
J Vet Pharmacol Ther
27:
247–254,
2004.
|
14. |
Bockman CS,
Jeffries WB and
Abel PW.
Binding and functional characterization of alpha‐2 adrenergic receptor subtypes on pig vascular endothelium.
J Pharmacol Exp Ther
267:
1126–1133,
1993.
|
15. |
Chen DC,
Duckles SP and
Krause DN.
Postjunctional alpha2‐adrenoceptors in the rat tail artery: effect of sex and castration.
Eur J Pharmacol
372:
247–252,
1999.
|
16. |
Chilian WM.
Adrenergic vasomotion in the coronary microcirculation.
Basic Res Cardiol
85
(Suppl 1):
111–120,
1990.
|
17. |
Chilian WM.
Functional distribution of alpha1‐ and alpha2‐adrenergic receptors in the coronary microcirculation.
Circulation
84:
2108–2122,
1991.
|
18. |
Cooke JP,
Creager SJ,
Scales KM,
Ren C,
Tsapatsaris NP,
Beetham WP, Jr and
Creager MA.
Role of digital artery adrenoceptors in Raynaud's disease.
Vasc Med
2:
1–7,
1997.
|
19. |
De Leeuw PW,
van Es PN,
de Bos R and
Birkenhager WH.
Role of alpha 1 ‐ and alpha 2‐adrenergic receptors in the human hypertensive kidney.
Hypertension
9:
III210–III212,
1987.
|
20. |
Dessy C,
Moniotte S,
Ghisdal P,
Havaux X,
Noirhomme P and
Balligand JL.
Endothelial beta3‐adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium‐dependent hyperpolarization.
Circulation
110:
948–954,
2004.
|
21. |
Dunn WR,
McGrath JC and
Wilson VG.
Postjunctional alpha‐adrenoceptors in the rabbit isolated distal saphenous artery: indirect sensitivity to prazosin of responses to noradrenaline mediated via postjunctional alpha 2‐adrenoceptors.
Br J Pharmacol
103:
1484–1492,
1991.
|
22. |
Feigl EO.
Neural control of coronary blood flow.
J Vasc Res
35:
85–92,
1998.
|
23. |
Ferrer M and
Osol G.
Estrogen replacement modulates resistance artery smooth muscle and endothelial alpha2‐adrenoceptor reactivity.
Endothelium
6:
133–141,
1998.
|
24. |
Freedman RR,
Baer RP and
Mayes MD.
Blockade of vasospastic attacks by alpha2‐adrenergic but not alpha1‐adrenergic antagonists in idiopathic Raynaud's disease.
Circulation
92:
1448–1451,
1995.
|
25. |
Struijker‐Boudier HA,
Messing MW and
van Essen H.
Alpha‐adrenergic reactivity of the microcirculation in conscious spontaneously hypertensive rats.
Mol Cell Biochem
157:
239–244,
1996.
|
26. |
Toda N.
Responsiveness of isolated monkey coronary arteries contracted with alpha 1‐ and alpha 2‐adrenoceptor agonists to diltiazem.
Eur J Pharmacol
147:
291–293,
1988.
|
27. |
Bylund DB,
Regan JW,
Faber JE,
Hieble JP,
Triggle CR and
Ruffolo RR, Jr.
Vascular alpha‐adrenoceptors: from the gene to the human.
Can J Physiol Pharmacol
73:
533–543,
1995.
|
28. |
Civantos CB and
Aleixandre DA.
Alpha‐adrenoceptor subtypes.
Pharmacol Res
44:
195–208,
2001.
|
29. |
Guimaraes S and
Moura D.
Vascular adrenoceptors: an update.
Pharmacol Rev
53:
319–356,
2001.
|
30. |
Holtz J.
Alpha‐adrenoceptor subtypes in the coronary circulation.
Basic Res Cardiol
85
(Suppl 1):
81–95,
1990.
|
31. |
Zacharia J,
Hillier C and
MacDonald A.
Alpha 1‐adrenoceptor subtypes involved in vasoconstrictor responses to exogenous and neurally released noradrenaline in rat femoral resistance arteries.
Br J Pharmacol
141:
915–924,
2004.
|
32. |
Haug SJ,
Welsh DG and
Segal SS.
Sympathetic nerves inhibit conducted vasodilatation along feed arteries during passive stretch of hamster skeletal muscle.
J Physiol
552:
273–282,
2003.
|
33. |
Fukui D,
Yang XP and
Chiba S.
Neurogenic double‐peaked vasoconstriction of human gastroepiploic artery is mediated by both alpha1‐and alpha2‐adrenoceptors.
Br J Pharmacol
144:
737–742,
2005.
|
34. |
Gauthier C,
Langin D and
Balligand JL.
Beta3‐adrenoceptors in the cardiovascular system.
Trends Pharmacol Sci
21:
426–431,
2000.
|
35. |
Hillman J and
Lundvall J.
Classification of beta‐adrenoceptors in the microcirculation of skeletal muscle.
Acta Physiol Scand
113:
67–71,
1981.
|
36. |
Nakane T,
Tsujimoto G,
Hashimoto K and
Chiba S.
Beta adrenoceptors in the canine large coronary arteries: beta‐1 adrenoceptors predominate in vasodilation.
J Pharmacol Exp Ther
245:
936–943,
1988.
|
37. |
Steinberg SF,
Jaffe EA and
Bilezikian JP.
Endothelial cells contain beta adrenoceptors.
Naunyn Schmiedebergs Arch Pharmacol
325:
310–313,
1984.
|
38. |
Sun D,
Huang A,
Mital S,
Kichuk MR,
Marboe CC,
Addonizio LJ,
Michler RE,
Koller A,
Hintze TH and
Kaley G.
Norepinephrine elicits beta2‐receptor‐mediated dilation of isolated human coronary arterioles.
Circulation
106:
550–555,
2002.
|
39. |
Hawrylyshyn KA,
Michelotti GA,
Coge F,
Guenin S‐P and
Schwinn DA.
Update on human a1‐adrenoceptor subtype signaling and genomic organization.
Trends Pharmacol Sci
25:
449–455,
2004.
|
40. |
Wier WG and
Morgan KG.
Alpha 1‐adrenergic signaling mechanisms in contraction of resistance arteries.
Rev Physiol Biochem Pharmacol
150:
91–139,
2003.
|
41. |
Blayney LM,
Gapper PW and
Newby AC.
Vasoconstrictor agonists activate G‐protein‐dependent receptor‐operated calcium channels in pig aortic microsomes.
Biochem J
282
(Pt 1):
81–84,
1992.
|
42. |
Chiu AT,
MCCall DE and
Timmermans PB.
Pharmacological characteristics of receptor‐operated and potential‐operated Ca2+ channels in rat aorta.
Eur J Pharmacol
127:
1–8,
1986.
|
43. |
Lee JY,
Warner RB,
Brune ME and
DeBernardis JF.
Calcium‐induced vasocontractions after alpha‐2 adrenergic receptor activation in the dog saphenous vein: comparison to calcium‐induced contractions after potassium‐depolarization.
Gen Pharmacol
21:
647–654,
1990.
|
44. |
Pucovsky V,
Gordienko DV and
Bolton TB.
Effect of nitric oxide donors and noradrenaline on Ca2+ release sites and global intracellular Ca2+ in myocytes from guinea‐pig small mesenteric arteries.
J Physiol
539:
25–39,
2002.
|
45. |
Erami C,
Zhang H,
Ho JG,
French DM and
Faber JE.
Alpha(1)‐adrenoceptor stimulation directly induces growth of vascular wall in vivo.
Am J Physiol Heart Circ Physiol
283:
H1577–H1587,
2002.
|
46. |
Zhang H and
Faber JE.
Trophic effect of norepinephrine on arterial intima‐media and adventitia is augmented by injury and mediated by different alpha 1‐adrenoceptor subtypes.
Circ Res
89:
815–822,
2001.
|
47. |
Salomonsson M,
Oker M,
Kim S,
Zhang H,
Faber JE and
Arendshorst WJ.
Alpha 1‐adrenoceptor subtypes on rat afferent arterioles assessed by radioligand binding and RT‐PCR.
Am J Physiol Renal Physiol
281:
F172–F178,
2001.
|
48. |
Yang XP and
Chiba S.
Existence of different alpha(1)‐adrenoceptor subtypes in junctional and extrajunctional neurovascular regions in canine splenic arteries.
Br J Pharmacol
132:
1852–1858,
2001.
|
49. |
Piascik MT,
Hrometz SL,
Edelmann SE,
Guarino RD,
Hadley RW and
Brown RD.
Immunocytochemical localization of the alpha‐1B adrenergic receptor and the contribution of this and the other subtypes to vascular smooth muscle contraction: analysis with selective ligands and antisense oligonucleotides.
J Pharmacol Exp Ther
283:
854–868,
1997.
|
50. |
Piascik MT,
Smith MS,
Soltis EE and
Perez DM.
Identification of the mRNA for the novel alpha 1D‐adrenoceptor and two other alpha 1‐adrenoceptors in vascular smooth muscle.
Mol Pharmacol
46:
30–40,
1994.
|
51. |
Chalothorn D,
McCune DF,
Edelmann SE,
Tobita K,
Keller BB,
Lasley RD,
Perez DM,
Tanoue A,
Tsujimoto G,
Post GR and
Piascik MT.
Differential cardiovascular regulatory activities of the alpha 1B‐ and alpha 1D‐adrenoceptor subtypes.
J Pharmacol Exp Ther
305:
1045–1053,
2003.
|
52. |
Rokosh DG and
Simpson PC.
Knockout of the alpha 1A/C‐adrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure.
Proc Natl Acad Sci USA
99:
9474–9479,
2002.
|
53. |
Tanoue A,
Koshimizu TA and
Tsujimoto G.
Transgenic studies of alpha(1)‐adrenergic receptor subtype function.
Life Sci
71:
2207–2215,
2002.
|
54. |
Philipp M,
Brede M and
Hein L.
Physiological significance of alpha(2)‐adrenergic receptor subtype diversity: one receptor is not enough.
Am J Physiol Regul Integr Comp Physiol
283:
R287–R295,
2002.
|
55. |
Carter RW and
Kanagy NL.
Tyrosine kinases regulate intracellular calcium during alpha(2)‐adrenergic contraction in rat aorta.
Am J Physiol Heart Circ Physiol
283:
H1673–H1680,
2002.
|
56. |
Lee JY and
DeBernardis JF.
Alpha 2‐adrenergic receptors and calcium: alpha 2‐receptor blockade in vascular smooth muscle as an approach to the treatment of hypertension.
Methods Find Exp Clin Pharmacol
12:
213–225,
1990.
|
57. |
McNeill AM,
Leslie FM,
Krause DN and
Duckles SP.
Gender difference in levels of alpha2‐adrenoceptor mRNA in the rat tail artery.
Eur J Pharmacol
366:
233–236,
1999.
|
58. |
Phillips JK,
Vidovic M and
Hill CE.
Variation in mRNA expression of alpha‐adrenergic, neurokinin and muscarinic receptors amongst four arteries of the rat.
J Auton Nerv Syst
62:
85–93,
1997.
|
59. |
Xu K and
Han C.
Quantification of mRNAs for three alpha 1‐adrenoceptor subtypes in rat aorta by solution hybridization.
Life Sci
59:
L343–L347,
1996.
|
60. |
Bockman CS,
Gonzalez‐Cabrera I and
Abel PW.
Alpha‐2 adrenoceptor subtype causing nitric oxide‐mediated vascular relaxation in rats.
J Pharmacol Exp Ther
278:
1235–1243,
1996.
|
61. |
Ishibashi Y,
Duncker DJ and
Bache RJ.
Endogenous nitric oxide masks alpha 2‐adrenergic coronary vasoconstriction during exercise in the ischemic heart.
Circ Res
80:
196–207,
1997.
|
62. |
Zou AP and
Cowley AW, Jr.
Alpha(2)‐adrenergic receptor‐mediated increase in NO production buffers renal medullary vasoconstriction.
Am J Physiol Regul Integr Comp Physiol
279:
R769–R777,
2000.
|
63. |
Jones CJ,
DeFily DV,
Patterson JL and
Chilian WM.
Endothelium‐dependent relaxation competes with alpha 1‐ and alpha 2‐adrenergic constriction in the canine epicardial coronary microcirculation.
Circulation
87:
1264–1274,
1993.
|
64. |
Vanhoutte PM.
Endothelial adrenoceptors.
J Cardiovasc Pharmacol
38:
796–808,
2001.
|
65. |
Arner M,
Hogestatt ED and
Andersson KE.
Effects of nimodipine, Bay K 8644 and pinacidil on alpha1‐ and alpha2‐adrenoceptor‐mediated vasoconstriction in human hand veins.
Acta Physiol Scand
133:
417–422,
1988.
|
66. |
Lepretre N and
Mironneau J.
Alpha 2‐adrenoceptors activate dihydropyridine‐sensitive calcium channels via Gi‐proteins and protein kinase C in rat portal vein myocytes.
Pflugers Arch
429:
253–261,
1994.
|
67. |
Nielsen H,
Mortensen FV and
Mulvany MJ.
Differential distribution of postjunctional alpha 2 adrenoceptors in human omental small arteries.
J Cardiovasc Pharmacol
16:
34–40,
1990.
|
68. |
McGillivray‐Anderson KM and
Faber JE.
Effect of acidosis on contraction of microvascular smooth muscle by alpha 1‐ and alpha 2‐adrenoceptors. Implications for neural and metabolic regulation.
Circ Res
66:
1643–1657,
1990.
|
69. |
Link RE,
Desai K,
Hein L,
Stevens ME,
Chruscinski A,
Bernstein D,
Barsh GS and
Kobilka BK.
Cardiovascular regulation in mice lacking alpha2‐adrenergic receptor subtypes b and c.
Science
273:
803–805,
1996.
|
70. |
Duka I,
Gavras I,
Johns C,
Handy DE and
Gavras H.
Role of the postsynaptic alpha(2)‐adrenergic receptor subtypes in catecholamine‐induced vasoconstriction.
Gen Pharmacol
34:
101–106,
2000.
|
71. |
Faber JE,
Yang N and
Xin X.
Expression of alpha‐adrenoceptor subtypes by smooth muscle cells and adventitial fibroblasts in rat aorta and in cell culture.
J Pharmacol Exp Ther
298:
441–452,
2001.
|
72. |
Richman JG and
Regan JW.
Alpha 2‐adrenergic receptors increase cell migration and decrease F‐actin labeling in rat aortic smooth muscle cells.
Am J Physiol
274:
C654–C662,
1998.
|
73. |
Asano Y,
Koehler RC,
Kawaguchi T and
McPherson RW.
Pial arteriolar constriction to alpha 2‐adrenergic agonist dexmedetomidine in the rat.
Am J Physiol
272:
H2547–H2556,
1997.
|
74. |
Bolli P,
Erne P,
Kiowski W,
Amman FW and
Buhler FR.
The adrenaline‐alpha 2‐adrenoceptor‐mediated vasoconstrictor axis.
Clin Sci (Lond)
68
(Suppl 10):
141s–146s,
1985.
|
75. |
Jarajapu YP,
Coats P,
McGrath JC,
MacDonald A and
Hillier C.
Increased alpha(1)‐ and alpha(2)‐adrenoceptor‐mediated contractile responses of human skeletal muscle resistance arteries in chronic limb ischemia.
Cardiovasc Res
49:
218–225,
2001.
|
76. |
Taddei S,
Salvetti A and
Pedrinelli R.
Further evidence for the existence of alpha 2‐mediated adrenergic vasoconstriction in human vessels.
Eur J Clin Pharmacol
34:
407–410,
1988.
|
77. |
Bolli P,
Erne P,
Ji BH,
Block LH,
Kiowski W and
Buhler FR.
Adrenaline induces vasoconstriction through post‐junctional alpha 2 adrenoceptors and this response is enhanced in patients with essential hypertension.
J Hypertens Suppl
2:
S115–S118,
1984.
|
78. |
Bodmer CW,
Schaper NC,
Janssen M,
De Leeuw PW and
Williams G.
Selective enhancement of alpha 2‐adrenoceptor‐mediated vasoconstriction in insulin‐dependent diabetic patients with microalbuminuria.
Clin Sci (Lond)
88:
421–426,
1995.
|
79. |
Handy DE,
Johns C,
Bresnahan MR,
Tavares A,
Bursztyn M and
Gavras H.
Expression of alpha2‐adrenergic receptors in normal and atherosclerotic rabbit aorta.
Hypertension
32:
311–317,
1998.
|
80. |
Snapir A,
Mikkelsson J,
Perola M,
Penttila A,
Scheinin M and
Karhunen PJ.
Variation in the alpha2B‐adrenoceptor gene as a risk factor for prehospital fatal myocardial infarction and sudden cardiac death.
J Am Coll Cardiol
41:
190–194,
2003.
|
81. |
Heinonen P,
Jartti L,
Jarvisalo MJ,
Pesonen U,
Kaprio JA,
Ronnemaa T,
Raitakari OT and
Scheinin M.
Deletion polymorphism in the alpha2B‐adrenergic receptor gene is associated with flow‐mediated dilatation of the brachial artery.
Clin Sci (Lond)
103:
517–524,
2002.
|
82. |
Bailey SR,
Eid AH,
Mitra S,
Flavahan S and
Flavahan NA.
Rho kinase mediates cold‐induced constriction of cutaneous arteries: role of alpha2C‐adrenoceptor translocation.
Circ Res
94:
1367–1374,
2004.
|
83. |
Chotani MA,
Flavahan S,
Mitra S,
Daunt D and
Flavahan NA.
Silent alpha(2C)‐adrenergic receptors enable cold‐induced vasoconstriction in cutaneous arteries.
Am J Physiol Heart Circ Physiol
278:
H1075–H1083,
2000.
|
84. |
Chotani MA,
Mitra S,
Su BY,
Flavahan S,
Eid AH,
Clark KR,
Montague CR,
Paris H,
Handy DE and
Flavahan NA.
Regulation of alpha(2)‐adrenoceptors in human vascular smooth muscle cells.
Am J Physiol Heart Circ Physiol
286:
H59–H67,
2004.
|
85. |
Jeyaraj SC,
Chotani MA,
Mitra S,
Gregg HE,
Flavahan NA and
Morrison KJ.
Cooling evokes redistribution of alpha2C‐adrenoceptors from Golgi to plasma membrane in transfected human embryonic kidney 293 cells.
Mol Pharmacol
60:
1195–1200,
2001.
|
86. |
Faber JE.
Effect of local tissue cooling on microvascular smooth muscle and postjunctional alpha 2‐adrenoceptors.
Am J Physiol
255:
H121–H130,
1988.
|
87. |
Lindblad LE and
Ekenvall L.
Alpha 2‐adrenoceptor inhibition in patients with vibration white fingers.
Kurume Med J
37
(Suppl):
S95–S99,
1990.
|
88. |
Briones AM,
Daly CJ,
Jimenez‐Altayo F,
Martinez‐Revelles S,
Gonzalez JM,
McGrath JC and
Vila E.
Direct demonstration of beta1‐ and evidence against beta2‐ and beta3‐adrenoceptors, in smooth muscle cells of rat small mesenteric arteries.
Br J Pharmacol
146:
679–691,
2005.
|
89. |
Chruscinski A,
Brede ME,
Meinel L,
Lohse MJ,
Kobilka BK and
Hein L.
Differential distribution of beta‐adrenergic receptor subtypes in blood vessels of knockout mice lacking beta(1)‐ or beta(2)‐adrenergic receptors.
Mol Pharmacol
60:
955–962,
2001.
|
90. |
Wellstein A,
Belz GG and
Palm D.
Beta adrenoceptor subtype binding activity in plasma and beta blockade by propranolol and beta‐1 selective bisoprolol in humans. Evaluation with Schild‐plots.
J Pharmacol Exp Ther
246:
328–337,
1988.
|
91. |
Dawes M,
Chowienczyk PJ and
Ritter JM.
Effects of inhibition of the 1‐arginine/nitric oxide pathway on vasodilation caused by beta‐adrenergic agonists in human forearm.
Circulation
95:
2293–2297,
1997.
|
92. |
Garovic VD,
Joyner MJ,
Dietz NM,
Boerwinkle E and
Turner ST.
Beta(2)‐adrenergic receptor polymorphism and nitric oxide‐dependent forearm blood flow responses to isoproterenol in humans.
J Physiol
546:
583–589,
2003.
|
93. |
Barbe P,
Millet L,
Galitzky J,
Lafontan M and
Berlan M.
In situ assessment of the role of the beta 1‐, beta 2‐ and beta 3‐adrenoceptors in the control of lipolysis and nutritive blood flow in human subcutaneous adipose tissue.
Br J Pharmacol
117:
907–913,
1996.
|
94. |
Blaak EE,
van Baak MA,
Kemerink GJ,
Pakbiers MT,
Heidendal GA and
Saris WH.
Total forearm blood flow as an indicator of skeletal muscle blood flow: effect of subcutaneous adipose tissue blood flow.
Clin So (Lond)
87:
559–566,
1994.
|
95. |
Meredith IT,
Currie KE,
Anderson TJ,
Roddy MA,
Ganz P and
Creager MA.
Postischemic vasodilation in human forearm is dependent on endothelium‐derived nitric oxide.
Am J Physiol
270:
H1435–H1440,
1996.
|
96. |
Meisheri KD and
van Breemen C.
Effects of beta‐adrenergic stimulation on calcium movements in rabbit aortic smooth muscle: relationship with cyclic AMP.
J Physiol
331:
429–441,
1982.
|
97. |
Scheid CR.
Beta‐adrenergic relaxation of smooth muscle: differences between cells and tissues.
Am J Physiol
253:
C369–C374,
1987.
|
98. |
Scheid CR,
Honeyman TW and
Fay FS.
Mechanism of beta‐adrenergic relaxation of smooth muscle.
Nature
277:
32–36,
1979.
|
99. |
Chang HY.
The involvement of ATP‐sensitive potassium channels in beta 2‐adrenoceptor agonist‐induced vasodilatation on rat diaphragmatic microcirculation.
Br J Pharmacol
121:
1024–1030,
1997.
|
100. |
Marin J and
Balfagon G.
Effect of clenbuterol on non‐endothelial nitric oxide release in rat mesenteric arteries and the involvement of beta‐adrenoceptors.
Br J Pharmacol
124:
473–478,
1998.
|
101. |
Schindler C,
Dobrev D,
Grossmann M,
Francke K,
Pittrow D and
Kirch W.
Mechanisms of beta‐adrenergic receptor‐mediated venodilation in humans.
Clin Pharmacol Ther
75:
49–59,
2004.
|
102. |
Nieuw Amerongen GP and
van Hinsbergh VW.
Targets for pharmacological intervention of endothelial hyperpermeability and barrier function.
Vascul Pharmacol
39:
257–272,
2002.
|
103. |
Xu B and
Huang Y.
Different mechanisms mediate beta adrenoceptor stimulated vasorelaxation of coronary and femoral arteries.
Acta Pharmacol Sin
21:
309–312,
2000.
|
104. |
Chang HY.
Role of nitric oxide in vasodilator response induced by salbutamol in rat diaphragmatic microcirculation.
Am J Physiol
272:
H2173–H2179,
1997.
|
105. |
Ferro A,
Queen LR,
Priest RM,
Xu B,
Ritter JM,
Poston L and
Ward JP.
Activation of nitric oxide synthase by beta 2‐adrenoceptors in human umbilical vein endothelium in vitro.
Br J Pharmacol
126:
1872–1880,
1999.
|
106. |
Hamdad N,
Ming Z,
Parent R and
Lavallee M.
Beta 2‐adrenergic dilation of conductance coronary arteries involves flow‐dependent NO formation in conscious dogs.
Am J Physiol
271:
H1926–H1937,
1996.
|
107. |
Queen LR,
Xu B,
Horinouchi K,
Fisher I and
Ferro A.
beta(2)‐adrenoceptors activate nitric oxide synthase in human platelets.
Circ Res
87:
39–44,
2000.
|
108. |
Whalen EJ,
Johnson AK and
Lewis SJ.
Beta‐adrenoceptor dysfunction after inhibition of NO synthesis.
Hypertension
36:
376–382,
2000.
|
109. |
Iaccarino G,
Cipolletta E,
Fiorillo A,
Annecchiarico M,
Ciccarelli M,
Cimini V,
Koch WJ and
Trimarco B.
Beta(2)‐adrenergic receptor gene delivery to the endothelium corrects impaired adrenergic vasorelaxation in hypertension.
Circulation
106:
349–355,
2002.
|
110. |
Okajima M,
Takamura M,
Vequaud P,
Parent R and
Lavallee M.
Beta‐adrenergic receptor blockade impairs NO‐dependent dilation of large coronary arteries during exercise.
Am J Physiol Heart Circ Physiol
284:
H501–H510,
2003.
|
111. |
Jayachandran M,
Hayashi T,
Sumi D,
Thakur NK,
Kano H,
Ignarro LJ and
Iguchi A.
Up‐regulation of endothelial nitric oxide synthase through beta(2)‐adrenergic receptor ‐ the role of a beta‐blocker with NO‐releasing action.
Biochem Biophys Res Commun
280:
589–594,
2001.
|
112. |
Coleman AJ and
Somerville AR.
The selective action of beta‐adrenoceptor blocking drugs and the nature of beta1 and beta2 adrenoceptors.
Br J Pharmacol
59:
83–93,
1977.
|
113. |
Piercy V.
The beta‐adrenoreceptors mediating uterine relaxation throughout the oestrous cycle of the rat are predominantly of the beta 2‐subtype.
J Auton Pharmacol
8:
11–18,
1988.
|
114. |
Chamberlain PD,
Jennings KH,
Paul F,
Cordell J,
Berry A,
Holmes SD,
Park J,
Chambers J,
Sennitt MV,
Stock MJ,
Cawthorne MA,
Young PW and
Murphy GJ.
The tissue distribution of the human beta3‐adrenoceptor studied using a monoclonal antibody: direct evidence of the beta3‐adrenoceptor in human adipose tissue, atrium and skeletal muscle.
Int J Obes Relat Metab Disord
23:
1057–1065,
1999.
|
115. |
Rautureau Y,
Toumaniantz G,
Serpillon S,
Jourdon P,
Trochu JN and
Gauthier C.
Beta 3‐adrenoceptor in rat aorta: molecular and biochemical characterization and signalling pathway.
Br J Pharmacol
137:
153–161,
2002.
|
116. |
de Groot AA,
Mathy MJ,
van Zwieten PA and
Peters SL.
Involvement of the beta3 adrenoceptor in nebivolol‐induced vasorelaxation in the rat aorta.
J Cardiovasc Pharmacol
42:
232–236,
2003.
|
117. |
Mallem MY,
Gogny M,
Gautier F,
Bucas V and
Desfontis JC.
Evaluation of beta3‐adrenoceptor‐mediated relaxation in intact and endotoxin‐treated equine digital veins.
Am J Vet Res
64:
708–714,
2003.
|
118. |
Pourageaud F,
Leblais V,
Bellance N,
Marthan R and
Muller B.
Role of beta2‐adrenoceptors (beta‐AR), but not beta1‐, beta3‐AR and endothelial nitric oxide, in beta‐AR‐mediated relaxation of rat intrapulmonary artery.
Naunyn Schmiedebergs Arch Pharmacol
372:
14–23,
2005.
|
119. |
Johnson M.
The beta‐adrenoceptor.
Am J Respir Crit Care Med
158:
S146–S153,
1998.
|
120. |
Lefkowitz RJ,
Hausdorff WP and
Caron MG.
Role of phosphorylation in desensitization of the beta‐adrenoceptor.
Trends Pharmacol Sci
11:
190–194,
1990.
|
121. |
Diviani D,
Lattion AL,
Larbi N,
Kunapuli P,
Pronin A,
Benovic JL and
Cotecchia S.
Effect of different G protein‐coupled receptor kinases on phosphorylation and desensitization of the alpha1B‐adrenergic receptor.
J Biol Chem
271:
5049–5058,
1996.
|
122. |
Dong ED and
Han QD.
Differences of desensitization and hypersensitization between alpha 1A‐ and alpha 1B‐adrenoceptors in rat isolated blood vessels.
Zhongguo Yao Li Xue Bao
16:
481–484,
1995.
|
123. |
Garcia‐Sainz JA,
Vazquez‐Prado J and
del Carmen ML.
Alpha 1‐adrenoceptors: function and phosphorylation.
Eur J Pharmacol
389:
1–12,
2000.
|
124. |
Casas‐Gonzalez P and
Garcia‐Sainz JA.
Role of epidermal growth factor receptor transactivation in alpha1B‐adrenoceptor phosphorylation.
Eur J Pharmacol
542:
31–36,
2006.
|
125. |
Vaughan DJ,
Millman EE,
Godines V,
Friedman J,
Tran TM,
Dai W,
Knoll BJ,
Clark RB and
Moore RH.
Role of the G protein‐coupled receptor kinase site serine cluster in beta2‐adrenergic receptor internalization, desensitization, and beta‐arrestin translocation.
J Biol Chem
281:
7684–7692,
2006.
|
126. |
Perrino C,
Rockman HA and
Chiariello M.
Targeted inhibition of phosphoinositide 3‐kinase activity as a novel strategy to normalize beta‐adrenergic receptor function in heart failure.
Vascul Pharmacol
45:
77–85,
2006.
|
127. |
Alcantara‐Hernandez R and
Garcia‐Sainz JA.
Okadaic acid increases the phosphorylation state of alpha1A‐adrenoceptors and induces receptor desensitization.
Eur J Pharmacol
525:
18–23,
2005.
|
128. |
Gonzalez‐Arenas A,
Aguilar‐Maldonado B,
Avendano‐Vazquez SE and
Garcia‐Sainz JA.
Estrogens cross‐talk to alpha1b‐adrenergic receptors.
Mol Pharmacol
70:
154–162,
2006.
|
129. |
Carman CV and
Benovic JL.
G‐protein‐coupled receptors: turn‐ons and turn‐offs.
Curr Opin Neurohiol
8:
335–344,
1998.
|
130. |
Garcia‐Sainz JA,
Vazquez‐Cuevas FG and
Romero‐Avila MT.
Phosphorylation and desensitization of alpha1d‐adrenergic receptors.
Biochem J
353:
603–610,
2001.
|
131. |
Freedman RR,
Girgis R and
Mayes MD.
Endothelial and adrenergic dysfunction in Raynaud's phenomenon and scleroderma.
J Rheumatol
26:
2386–2388,
1999.
|
132. |
Kurose H and
Lefkowitz RJ.
Differential desensitization and phosphorylation of three cloned and transfected alpha 2‐adrenergic receptor subtypes.
J Biol Chem
269:
10093–10099,
1994.
|
133. |
Lalchandani SG,
Zhang X,
Hong SS,
Liggett SB,
Li W,
Moore BM,
Miller DD and
Feller DR.
Medetomidine analogs as selective agonists for the human alpha2‐adrenoceptors.
Biochem Pharmacol
67:
87–96,
2004.
|
134. |
Heck DA and
Bylund DB.
Mechanism of down‐regulation of alpha‐2 adrenergic receptor subtypes.
J Pharmacol Exp Ther
282:
1219–1227,
1997.
|
135. |
Craig CR and
Stitzel RE.
Modern Pharmacology.
Boston:
Little. Brown, and Company,
1994.
|
136. |
Kalant H and
Roschlau WHE.
Principles of Medical Pharmacology.
New York:
Oxford University Press,
1998.
|
137. |
Wu DM,
Kawamura H,
Li Q and
Puro DG.
Dopamine activates ATP‐sensitive K+ currents in rat retinal pericytes.
Vis Neurosci
18:
935–940,
2001.
|
138. |
Velasco M,
Contreras F,
Cabezas GA,
Bolivar A,
Fouillioux C and
Hernandez R.
Dopaminergic receptors: a new antihypertensive mechanism.
J Hypertens
20
(Suppl 3):
S55–S58,
2002.
|
139. |
Pawlik W,
Mailman D,
Shanbour LL and
Jacobson ED.
Dopamine effects on the intestinal circulation.
Am Heart J
91:
325–331,
1976.
|
140. |
Clark ES and
Granger DN.
Effects of fenoldopam on feline intestinal microcirculation.
J Pharmacol Exp Ther
244:
983–986,
1988.
|
141. |
Germann R,
Haisjackl M,
Schwarz B,
Salak N,
Deusch E,
Pajk W,
Wolf HJ,
Riedmann B and
Hasibeder W,
Dopamine and intestinal mucosal tissue oxygenation in a porcine model of haemorrhage.
Br J Anaesth
79:
357–362,
1997.
|
142. |
Pajk W,
Schwarz B,
Knotzer H,
Friesenecker B,
Mayr A,
Dunser M and
Hasibeder W.
Jejunal tissue oxygenation and microvascular flow motion during hemorrhage and resuscitation.
Am J Physiol Heart Circ Physiol
283:
H2511–H2517,
2002.
|
143. |
Schmidt H,
Secchi A,
Wellmann R,
Bohrer H,
Bach A and
Martin E.
Effect of low‐dose dopamine on intestinal villus microcirculation during normotensive endotoxaemia in rats.
Br J Anaesth
76:
707–712,
1996.
|
144. |
Head RJ,
Hjelle JT,
Jarrott B,
Berkowitz B,
Cardinale G and
Spector S.
Isolated brain microvessels: preparation, morphology, histamine and catecholamine contents.
Blood Vessels
17:
173–186,
1980.
|
145. |
Bacic F,
Uematsu S,
McCarron RM and
Spatz M.
Dopaminergic receptors linked to adenylate cyclase in human cerebromicrovascular endothelium.
J Neurochem
57:
1774–1780,
1991.
|
146. |
Edvinsson L,
McCulloch J and
Sharkey J.
Vasomotor responses of cerebral arterioles in situ to putative dopamine receptor agonists.
Br J Pharmacol
85:
403–410,
1985.
|
147. |
Edvinsson L,
Hardcbo JE,
McCulloch J and
Owman C.
Effects of dopaminergic agonists and antagonists on isolated cerebral blood vessels.
Acta Physiol Scand
104:
349–359,
1978.
|
148. |
Busija DW and
Leffler CW.
Effects of dopamine on pial arteriolar diameter and CSF prostanoid levels in piglets.
J Cereb Blood Flow Metab
9:
264–267,
1989.
|
149. |
Krimer LS,
Muly EC, III,
Williams GV and
Goldman‐Rakic PS.
Dopaminergic regulation of cerebral cortical microcirculation.
Nat Neurosci
1:
286–289,
1998.
|
150. |
Iadecola C.
Neurogenic control of the cerebral microcirculation: Is dopamine minding the store?
Nat Neurosci
1:
263–265,
1998.
|
151. |
Seri I.
Dopamine and natriuresis. Mechanism of action and developmental aspects.
Am J Hypertens
3:
82S–86S,
1990.
|
152. |
Pollock DM and
Arendshorst WJ.
Tubuloglomerular feedback and blood flow autoregulation during DA1‐induced renal vasodilation.
Am J Physiol
258:
F627–F635,
1990.
|
153. |
Edwards RM.
Response of isolated renal arterioles to acetylcholine, dopamine, and bradykinin.
Am J Physiol
248:
F183–F189,
1985.
|
154. |
Steinhausen M,
Weis S,
Fleming J,
Dussel R and
Parekh N.
Responses of in vivo renal microvessels to dopamine.
Kidney Int
30:
361–370,
1986.
|
155. |
Takenaka T,
Forster H and
Epstein M.
Characterization of the renal microvascular actions of a new dopaminergic (DA1) agonist, YM435.
J Pharmacol Exp Ther
264:
1154–1159,
1993.
|
156. |
Tamaki T,
Hura CE and
Kunau RT, Jr.
Dopamine stimulates cAMP production in canine afferent arterioles via DA1 receptors.
Am J Physiol
256:
H626–H629,
1989.
|
157. |
Hoyer D,
Clarke DE,
Fozard JR,
Hartig PR,
Martin GR,
Mylecharane EJ,
Saxena PR and
Humphrey PP.
International union of pharmacology classification of receptors for 5‐hydroxytryptamine (Serotonin).
Pharmacol Rev
46:
157–203,
1994.
|
158. |
Yu CY,
Boyd NM,
Cringle SJ,
Su EN,
Alder VA and
Yu DY.
An in vivo and in vitro comparison of the effects of vasoactive mediators on pulpal blood vessels in rat incisors.
Arch Oral Biol
47:
723–732,
2002.
|
159. |
Mandala M,
Gokina N and
Osol G.
Contribution of nonendothelial nitric oxide to altered rat uterine resistance artery serotonin reactivity during pregnancy.
Am J Obstet Gynecol
187:
463–468,
2002.
|
160. |
Alsip NL,
Hornung JW,
Saha PR,
Hill JB and
Asher EF.
A new technique for studying the uterine microvasculature in the rat.
Am J Obstet Gynecol
175:
388–395,
1996.
|
161. |
Janiak P,
Lainee P,
Grataloup Y,
Luyt CE,
Bidouard JP,
Michel JB,
O'Connor SE and
Herbert JM.
Serotonin receptor blockade improves distal perfusion after lower limb ischemia in the fatty Zucker rat.
Cardiovasc Res
56:
293–302,
2002.
|
162. |
Calama E,
Fernandez MM,
Moran A,
Martin ML and
San Roman L.
Vasodilator and vasoconstrictor responses induced by 5‐hydroxytryptamine in the in situ blood autoperfused hindquarters of the anaesthetized rat.
Naunyn Schmiedebergs Arch Pharmacol
366:
110–116,
2002.
|
163. |
Kurita H,
Ernberg M,
Tominaga K,
Alstergren P and
Kopp S.
Effect of 5‐hydroxytryptamine‐2 and alpha‐adrenergic receptor antagonists on the 5‐hydroxytryptamine‐induced decrease in rabbit masseter muscle blood flow.
Arch Oral Biol
44:
651–656,
1999.
|
164. |
Pacher P,
Ungvari Z,
Kecskemeti V and
Koller A.
Serotonin reuptake inhibitor, fluoxetine, dilates isolated skeletal muscle arterioles. Possible role of altered Ca2+ sensitivity.
Br J Pharmacol
127:
740–746,
1999.
|
165. |
Alsip NL and
Harris PD.
Serotonin‐induced dilation of small arterioles is not mediated via endothelium‐derived relaxing factor in skeletal muscle.
Eur J Pharmacol
229:
117–124,
1992.
|
166. |
Razzaque Z,
Pickard JD,
Ma QP,
Shaw D,
Morrison K,
Wang T and
Longmore J.
5‐HT1B‐receptors and vascular reactivity in human isolated blood vessels: assessment of the potential craniovascular selectivity of sumatriptan.
Br J Clin Pharmacol
53:
266–274,
2002.
|
167. |
Williamson DJ,
Shepheard SL,
Cook DA,
Hargreaves RJ,
Hill RG and
Cumberbatch MJ.
Role of opioid receptors in neurogenic dural vasodilation and sensitization of trigeminal neurones in anaesthetized rats.
Br J Pharmacol
133:
807–814,
2001.
|
168. |
Ishine T,
Bocheiet I,
Hamel E and
Lee TJ.
Serotonin 5‐HT(7) receptors mediate relaxation of porcine pial veins.
Am J Physiol Heart Circ Physiol
278:
H907–H912,
2000.
|
169. |
Thorin E,
Nguyen TD and
Bouthillier A.
Control of vascular tone by endogenous endothelin‐1 in human pial arteries.
Stroke
29:
175–180,
1998.
|
170. |
Yakubu MA,
Shibata M and
Leffler CW.
Subarachnoid hematoma attenuates vasodilation and potentiates vasoconstriction induced by vasoactive agents in newborn pigs.
Pediatr Res
36:
589–594,
1994.
|
171. |
Nakamura N,
Hamada N,
Murata R,
Kobayashi A,
Ishizaki N,
Taira A and
Sakata R.
Contribution of serotonin to liver injury following canine small‐intestinal ischemia and reperfusion.
J Surg Res
99:
17–24,
2001.
|
172. |
Elhusseiny A and
Hamel E.
Sumatriptan elicits both constriction and dilation in human and bovine brain intracortical arterioles.
Br J Pharmacol
132:
55–62,
2001.
|
173. |
Fernandez MM,
Moran A,
Martin ML and
San Roman L.
Mesenteric vasoconstrictor response to 5‐hydroxytryptamine in the in situ blood autoperfused rat mesentery: involvement of 5‐HT(2B) and/or 5‐HT(2C) receptor activation.
Eur J Pharmacol
401:
221–227,
2000.
|
174. |
Looft‐Wilson RC and
Gisolfi CV.
Rat small mesenteric artery function after hindlimb suspension.
J Appl Physiol
88:
1199–1206,
2000.
|
175. |
Sato K,
Li J,
Metais C,
Bianchi C and
Sellke F.
Increased pulmonary vascular contraction to serotonin after cardiopulmonary bypass: role of cyclooxygenase.
J Surg Res
90:
138–143,
2000.
|
176. |
Vicaut E,
Laemmel E and
Stucker O.
Impact of serotonin on tumour growth.
Ann Med
32:
187–194,
2000.
|
177. |
Laemmel E,
Stucker O,
Darmon PL and
Vicaut E.
Characterization of the specific response to serotonin of mouse tumour‐feeding arterioles.
Int J Radial Biol
74:
379–386,
1998.
|
178. |
Stucker O,
Laemmel E,
Teisseire B and
Vicaut E.
Specific response of mouse tumor‐feeding arterioles to stimulation by 5‐HT1 agonists.
Int J Radiat Oncol Biol Phys
37:
1125–1131,
1997.
|
179. |
Keegan A,
Morecroft I,
Smillie D,
Hicks MN and
MacLean MR.
(Contribution of the 5‐HT(1B) receptor to hypoxia‐induced pulmonary hypertension: converging evidence using 5‐HT(1B)‐receptor knockout mice and the 5‐HT(1B/1D)‐receptor antagonist GR1279 35.
Circ Res
89:
1231–1239,
2001.
|
180. |
Watts SW,
Baez M and
Webb RC.
The 5‐hydroxytryptamine2B receptor and 5‐HT receptor signal transduction in mesenteric arteries from deoxycorticosterone acetate‐salt hypertensive rats.
J Pharmacol Exp Ther
277:
1103–1113,
1996.
|
181. |
De Vries P,
De Visser PA,
Heiligers JP,
Villalon CM and
Saxena PR.
Changes in systemic and regional haemodynamics during 5‐HT7 receptor‐mediated depressor responses in rats.
Naunyn Schmiedebergs Arch Pharmacol
359:
331–338,
1999.
|
182. |
Hedlund PB and
Sutcliffe JG.
Functional, molecular and pharmacological advances in 5‐HT7 receptor research.
Trends Pharmacol Sci
25:
481–486,
2004.
|
183. |
Martin GR and
Humphrey PP.
Receptors for 5‐hydroxytryptamine: current perspectives on classification and nomenclature.
Neuropharmacology
33:
261–273,
1994.
|
184. |
Lincoln J.
Innervation of cerebral arteries by nerves containing 5‐hydroxytryptamine and noradrenaline.
Pharmacol Ther
68:
473–501,
1995.
|
185. |
Murphy DL,
Lerner A,
Rudnick G and
Lesch KP.
Serotonin transporter: gene, genetic disorders, and pharmacogenetics.
Mol Interv
4:
109–123,
2004.
|
186. |
Caulfield MP and
Birdsall NJ.
International union of pharmacology XVII. Classification of muscarinic acetylcholine receptors.
Pharmacol Rev
50:
279–290,
1998.
|
187. |
Wickman K and
Clapham DE.
Ion channel regulation by G proteins.
Physiol Rev
75:
865–885,
1995.
|
188. |
Tracey WR and
Peach MJ.
Differential muscarinic receptor mRNA expression by freshly isolated and cultured bovine aortic endothelial cells.
Circ Res
70:
234–240,
1992.
|
189. |
Duckles SP.
p‐Fluoro‐hexahydro‐sila‐difenidol: affinity for vascular muscarinic receptors.
Eur J Pharmacol
185:
227–230,
1990.
|
190. |
McCormack DG,
Mak JC,
Minette P and
Barnes PJ.
Muscarinic receptor subtypes mediating vasodilation in the pulmonary artery.
Eur J Pharmacol
158:
293–297,
1988.
|
191. |
O'Rourke ST and
Vanhoutte PM.
Adrenergic and cholinergic responsiveness of isolated canine bronchial arteries.
Am J Physiol
259:
H156–H161,
1990.
|
192. |
Felder CC.
Muscarinic acetylcholine receptors: signal transduction through multiple effectors.
FASEB J
9:
619–625,
1995.
|
193. |
Falcone JC,
Kuo L and
Meininger GA.
Endothelial cell calcium increases during flow‐induced dilation in isolated arterioles.
Am J Physiol
264:
H653–H659,
1993.
|
194. |
Yip KP and
Marsh DJ.
[Ca2+]i in rat afferent arteriole during constriction measured with confocal fluorescence microscopy.
Am J Physiol
271 :
F1004–F1011,
1996.
|
195. |
Robertson BE,
Schubert R,
Hescheler J and
Nelson MT.
cGMP‐dependent protein kinase activates Ca‐activated K channels in cerebral artery smooth muscle cells.
Am J Physiol
265:
C299–C303,
1993.
|
196. |
Elhusseiny A,
Cohen Z,
Olivier A,
Stanimirovic DB and
Hamel E.
Functional acetylcholine muscarinic receptor subtypes in human brain microcirculation: identification and cellular localization.
J Cereb Blood Flow Metab
19:
794–802,
1999.
|
197. |
Moro V,
Kacem K,
Springhetti V,
Seylaz J and
Lasbennes F.
Microvessels isolated from brain: localization of muscarinic sites by radioligand binding and immunofluorescent techniques.
J Cereb Blood Flow Metab
15:
1082–1092,
1995.
|
198. |
Linville DG and
Hamel E.
Pharmacological characterization of muscarinic acetylcholine binding sites in human and bovine cerebral microvessels.
Naunyn Schmiedebergs Arch Pharmacol
352:
179–186,
1995.
|
199. |
Shimizu T,
Rosenblum WI and
Nelson GH.
M3 and M1 receptors in cerebral arterioles in vivo: evidence for downregulated or ineffective M1 when endothelium is intact.
Am J Physiol
264:
H665–H669,
1993.
|
200. |
Dauphin F and
Hamel E.
Muscarinic receptor subtype mediating vasodilation feline middle cerebral artery exhibits M3 pharmacology.
Eur J Pharmacol
178:
203–213,
1990.
|
201. |
Garcia‐Villalon AL,
Krause DN,
Ehlert FJ and
Duckles SP.
Heterogeneity of muscarinic receptor subtypes in cerebral blood vessels.
J Pharmacol Exp Ther
258:
304–310,
1991.
|
202. |
Bungardt E,
Vockert E,
Feifel R,
Moser U,
Tacke R,
Mutschler E,
Lambrecht G and
Surprenant A.
Characterization of muscarinic receptors mediating vasodilation in guinea‐pig ileum submucosal arterioles by the use of computer‐assisted videomicroscopy.
Eur J Pharmacol
213:
53–61,
1992.
|
203. |
Eltze M,
Ullrich B,
Mutschler E,
Moser U,
Bungardt E,
Friebe T,
Gubitz C,
Tacke R and
Lambrecht G.
Characterization of muscarinic receptors mediating vasodilation in rat perfused kidney.
Eur J Pharmacol
238:
343–355,
1993.
|
204. |
Elhusseiny A and
Hamel E.
Muscarinic ‐ but not nicotinic ‐acetylcholine receptors mediate a nitric oxide‐dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype.
J Cereb Blood Flow Metab
20:
298–305,
2000.
|
205. |
Rosenblum WI.
Endothelial dependent relaxation demonstrated in vivo in cerebral arterioles.
Stroke
17:
494–497,
1986.
|
206. |
Faraci FM.
Role of endothelium‐derived relaxing factor in cerebral circulation: large arteries vs. microcirculation.
Am J Physiol
261:
H1038–H1042,
1991.
|
207. |
Imaeda K,
Yamamoto Y,
Fukuta H,
Koshita M and
Suzuki H.
Hyperpolarization‐induced dilatation of submucosal arterioles in the guinea‐pig ileum.
Br J Pharmacol
131:
1121–1128,
2000.
|
208. |
Hungerford JE,
Sessa WC and
Segal SS.
Vasomotor control in arterioles of the mouse cremaster muscle.
FASEB J
14:
197–207,
2000.
|
209. |
Segal SS,
Welsh DG and
Kurjiaka DT.
Spread of vasodilatation and vasoconstriction along feed arteries and arterioles of hamster skeletal muscle.
J Physiol
516
(Pt 1):
283–291,
1999.
|
210. |
Welsh DG and
Segal SS.
Endothelial and smooth muscle cell conduction in arterioles controlling blood flow.
Am J Physiol
274:
H178–H186,
1998.
|
211. |
Yu CY,
Boyd NM,
Cringle SJ,
Su EN,
Alder VA and
Yu DY.
Acetylcholine‐induced vasodilation of isolated pulpal arterioles.
J Dent Res
80:
1995–1999,
2001.
|
212. |
Miller FJ, Jr.,
Dellsperger KC and
Gutterman DD.
Pharmacologic activation of the human coronary microcirculation in vitro: endothelium‐dependent dilation and differential responses to acetylcholine.
Cardiovasc Res
38:
744–750,
1998.
|
213. |
Wu DM,
Kawamura H,
Sakagami K,
Kobayashi M and
Puro DG.
Cholinergic regulation of pericyte‐containing retinal microvessels.
Am J Physiol Heart Circ Physiol
284:
H2083–H2090,
2003.
|
214. |
Crane GJ,
Neild TO and
Segal SS.
Contribution of active membrane processes to conducted hyperpolarization in arterioles of hamster cheek pouch.
Microcirculation
11:
425–433,
2004.
|
215. |
Dora KA,
Xia J and
Duling BR.
Endothelial cell signaling during conducted vasomotor responses.
Am J Physiol Heart Circ Physiol
285:
H119–H126,
2003.
|
216. |
Yamamoto Y,
Imaeda K and
Suzuki H.
Endothelium‐dependent hyperpolarization and intercellular electrical coupling in guinea‐pig mesenteric arterioles.
J Physiol
514
(Pt 2):
505–513,
1999.
|
217. |
Hashitani H and
Suzuki H.
K+ channels which contribute to the acetylcholine‐induced hyperpolarization in smooth muscle of the guinea‐pig submucosal arteriole.
J Physiol
501
(Pt 2):
319–329,
1997.
|
218. |
Duling BR and
Berne RM.
Propagated vasodilation in the microcirculation of the hamster cheek pouch.
Circ Res
26:
163–170,
1970.
|
219. |
Hoepfl B,
Rodenwaldt B,
Pohl U and
de Wit C.
EDHF, but not NO or prostaglandins, is critical to evoke a conducted dilation upon ACh in hamster arterioles.
Am J Physiol Heart Circ Physiol
283:
H996–H1004,
2002.
|
220. |
Segal SS,
Damon DN and
Duling BR.
Propagation of vasomotor responses coordinates arteriolar resistances.
Am J Physiol
256:
H832–H837,
1989.
|
221. |
McGahren ED,
Beach JM and
Duling BR.
Capillaries demonstrate changes in membrane potential in response to pharmacological stimuli.
Am J Physiol
274:
H60–H65,
1998.
|
222. |
Andriantsitohaina R and
Surprenant A.
Acetylcholine released from guinea‐pig submucosal neurones dilates arterioles by releasing nitric oxide from endothelium.
J Physiol
453:
493–502,
1992.
|
223. |
Dornyei G,
Kaley G and
Koller A.
Release of nitric oxide and prostaglandin H2 to acetylcholine in skeletal muscle venules.
Am J Physiol
272:
H2541–H2546,
1997.
|
224. |
Falcone JC and
Meininger GA.
Arteriolar dilation produced by venule endothelium‐derived nitric oxide.
Microcirculation
4:
303–310,
1997.
|
225. |
de Wit C,
von Bismarck P and
Pohl U.
Mediator role of prostaglandins in acetylcholine‐induced vasodilation and control of resting vascular diameter in the hamster cremaster microcirculation in vivo.
J Vasc Res
30:
272–278,
1993.
|
226. |
Kotecha N and
Neild TO.
Vasodilatation and smooth muscle membrane potential changes in arterioles from the guinea‐pig small intestine.
J Physiol
482
(Pt 3):
661–667,
1995.
|
227. |
Shirai M,
Ninomiya I and
Sada K.
Thromboxane A2/endoperoxide receptors mediate cholinergic constriction of rabbit lung microvessels.
J Appl Physiol
72:
1179–1185,
1992.
|
228. |
Carvalho MH,
Fortes ZB,
Nigro D,
Oliveira MA and
Scivoletto R.
The role of thromboxane A2 in the altered microvascular reactivity in two‐kidney, one‐clip hypertension.
Endothelium
5:
167–178,
1997.
|
229. |
Mayhan WG.
Role of prostaglandin H2‐thromboxane A2 in responses of cerebral arterioles during chronic hypertension.
Am J Physiol
262:
H539–H543,
1992.
|
230. |
Suzuki H,
Ikezaki H,
Hong D and
Rubinstein I.
PGH(2)‐TxA(2)‐receptor blockade restores vasoreactivity in a new rodent model of genetic hypertension.
J Appl Physiol
88:
1983–1988,
2000.
|
231. |
Bakker EN and
Sipkema P.
Components of acetylcholine‐induced dilation in isolated rat arterioles.
Am J Physiol
273:
H1848–H1853,
1997.
|
232. |
de Wit C,
Esser N,
Lehr HA,
Bolz SS and
Pohl U.
Pentobarbital‐sensitive EDHF comediates ACh‐induced arteriolar dilation in the hamster microcirculation.
Am J Physiol
276:
H1527–H1534,
1999.
|
233. |
Huang A,
Sun D,
Smith CJ,
Connetta JA,
Shesely EG,
Koller A and
Kaley G.
In eNOS knockout mice skeletal muscle arteriolar dilation to acetylcholine is mediated by EDHF.
Am J Physiol Heart Circ Physiol
278:
H762–H768,
2000.
|
234. |
Widmann MD,
Weintraub NL,
Fudge JL,
Brooks LA and
Dellsperger KC.
Cytochrome P‐450 pathway in acetylcholine‐induced canine coronary microvascular vasodilation in vivo.
Am J Physiol
274:
H283–H289,
1998.
|
235. |
Nishikawa Y,
Stepp DW and
Chilian WM.
In vivo location and mechanism of EDHF‐mediated vasodilation in canine coronary microcirculation.
Am J Physiol
277:
H1252–H1259,
1999.
|
236. |
Tanaka M,
Kanatsuka H,
Ong BH,
Tanikawa T,
Uruno A,
Komaru T,
Koshida R and
Shirato K.
Cytochrome P‐450 metabolites but not NO, PGI2, and H202 contribute to ACh‐induced hyperpolarization of pressurized canine coronary microvessels.
Am J Physiol Heart Circ Physiol
285:
H1939–H1948,
2003.
|
237. |
Wang X and
Loutzenhiser R.
Determinants of renal microvascular response to ACh: afferent and efferent arteriolar actions of EDHF.
Am J Physiol Renal Physiol
282:
F124–F132,
2002.
|
238. |
Wang D,
Borrego‐Conde LJ,
Falck JR,
Sharma KK,
Wilcox CS and
Umans JG.
Contributions of nitric oxide, EDHF, and EETs to endothelium‐dependent relaxation in renal afferent arterioles.
Kidney Int
63:
2187–2193,
2003.
|
239. |
Vanner S and
Surprenant A.
Neural reflexes controlling intestinal microcirculation.
Am J Physiol
271:
G223–G230,
1996.
|
240. |
Pierzga JM and
Segal SS.
Spatial relationships between neuromuscular junctions and microvessels in hamster cremaster muscle.
Microvasc Res
48:
50–67,
1994.
|
241. |
Welsh DG and
Segal SS.
Coactivation of resistance vessels and muscle f bers with acetylcholine release from motor nerves.
Am J Physiol
273:
H156–H163,
1997.
|
242. |
Klassen GA,
Armour JA and
Garner JB.
The effects of propranolol, phentolamine, and atropine on canine coronary vascular gradients.
Can J Physiol Pharmacol
67:
140–151,
1989.
|
243. |
Coffman JD and
Cohen RA.
Cholinergic vasodilator mechanism in human fingers.
Am J Physiol
252:
H594–H597,
1987.
|
244. |
Kemme MJ,
Bruning TA,
Chang PC and
van Zwieten PA.
Cholinergic receptor‐mediated responses in the arteriolar and venous vascular beds of the human forearm.
Blood Press
4:
293–299,
1995.
|
245. |
Rossi M,
Taddei S,
Fabbri A,
Tintori G,
Credidio L,
Virdis A,
Ghiadoni L,
Salvetti A and
Giusti C.
Cutaneous vasodilation to acetylcholine in patients with essential hypertension.
J Cardiovasc Pharmacol
29:
406–411,
1997.
|
246. |
Carey RM,
Wang ZQ and
Siragy HM.
Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function.
Hypertension
35:
155–163,
2000.
|
247. |
Pueyo ME and
Michel JB.
Angiotensin II receptors in endothelial cells.
Gen Pharmacol
29:
691–696,
1997.
|
248. |
Sandberg K,
Ji H,
Clark AJ,
Shapira H and
Catt KJ.
Cloning and expression of a novel angiotensin II receptor subtype.
J Biol Chem
267:
9455–9458,
1992.
|
249. |
Fontes MA,
Silva LC,
Campagnole‐Santos MJ,
Khosla MC,
Guertzenstein PG and
Santos RA.
Evidence that angiotensin‐(1–7) plays a role in the central control of blood pressure at the ventrolateral medulla acting through specific receptors.
Brain Res
665:
175–180,
1994.
|
250. |
Chiu AT,
Dunscomb J,
Kosierowski J,
Burton CR,
Santomenna LD,
Corjay MH and
Benfield P.
The ligand binding signatures of the rat AT1A, AT1B and the human AT1 receptors are essentially identical.
Biochem Biophys Res Commun
197:
440–449,
1993.
|
251. |
Kakar SS,
Sellers JC,
Devor DC,
Musgrove LC and
Neill JD.
Angiotensin II type‐1 receptor cDNAs: differential tissue expression and hormonal regulation.
Biochem Biophys Res Commun
183:
1090–1096,
1992.
|
252. |
de Gasparo M,
Catt KJ,
Inagami T,
Wright JW and
Unger T.
International union of pharmacology. XXIII. The angiotensin II receptors.
Pharmacol Rev
52:
415–472,
2000.
|
253. |
Whitebread S,
Mele M,
Kamber B and
de Gasparo M.
Preliminary biochemical characterization of two angiotensin II receptor subtypes.
Biochem Biophys Res Commun
163:
284–291,
1989.
|
254. |
Dudley DT,
Panek RL,
Major TC,
Lu GH,
Bruns RF,
Klinkefus BA,
Hodges JC and
Weishaar RE.
Subclasses of angiotensin II binding sites and their functional significance.
Mol Pharmacol
38:
370–377,
1990.
|
255. |
Fernandez LA,
Twickler J and
Mead A.
Neovascularization produced by angiotensin II.
J Lab Clin Med
105:
141–145,
1985.
|
256. |
Le Noble FAC,
Schreurs NHJS,
Van Straaten HWM,
Slaaf DW,
Smits JFM,
Rogg H and
Struijker‐Boudier HAJ.
Evidence for a novel angiotensin II receptor involved in angiogenesis in chick embryo chorioallantoic membrane.
Am J Physiol
264:
R460–R465,
1993.
|
257. |
Munzenmaier DH and
Greene AS.
Opposing actions of angiotensin II on microvascular growth and arterial blood pressure.
Hypertension
27
(Pt 2):
760–765,
1996.
|
258. |
Crawford KW,
Frey EA and
Cote TE.
Angiotensin II receptor recognized by DuP753 regulates two distinct guanine nucleotide‐binding protein signaling pathways.
Mol Pharmacol
41:
154–162,
1992.
|
259. |
Yan C,
Kim D,
Aizawa T and
Berk BC.
Functional interplay between angiotensin II and nitric oxide: cyclic GMP as a key mediator.
Arterioscler Thromb Vasc Biol
23:
26–36,
2003.
|
260. |
Saito Y and
Berk BC.
Transactivation: a novel signaling pathway from angiotensin II to tyrosine kinase receptors.
J Mol Cell Cardiol
33:
3–7,
2001.
|
261. |
Chen KD,
Li YS,
Kim M,
Li S,
Yuan S,
Chien S and
Shyy JY.
Mechanotransduction in response to shear stress: roles of receptor tyrosine kinases, integrins, and Shc.
J Biol Chem
274:
18393–18400,
1999.
|
262. |
Guo DF,
Sun YL,
Hamet P and
Inagami T.
The angiotensin II type 1 receptor and receptor‐associated proteins.
Cell Res
11:
165–180,
2001.
|
263. |
Grady EF,
Sechi LA,
Griffin CA,
Schambelan M and
Kalinyak JE.
Expression of AT2 receptors in the developing rat fetus.
J Clin Invest
88:
921–933,
1991.
|
264. |
Shanmugam S,
Corvol P and
Gasc J.
Angiotensin II type 2 receptor mRN expression in the developing cariopulmonary system of the rat.
Hypertension
28:
91–97,
1996.
|
265. |
Kambayashi Y,
Bardhan S,
Takahashi K,
Tsuzuki S,
Inui H,
Hamakubo T and
Inagami T.
Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition.
J Biol Chem
268:
24543–24546,
1993.
|
266. |
Mukoyama M,
Nakajima M,
Horiuchi M,
Sasamura H,
Pratt RE and
Dzau VJ.
Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven‐transmembrane receptors.
J Biol Chem
268:
24539–24542,
1993.
|
267. |
Scheuer DA and
Perrone MH.
Angiotensin type 2 receptors mediate depressor phase of biphasic pressure response to angiotensin.
Am J Physiol
264:
R917–R923,
1993.
|
268. |
Siragy HM and
Carey RM.
Protective role of the angiotensin AT2 receptor in a renal wrap hypertension model.
Hypertension
33:
1237–1242,
1999.
|
269. |
Kang J,
Posner P and
Sumners C.
Angiotensin II type 2 receptor stimulation of neuronal K+ currents involves an inhibitory GTP binding protein.
Am J Physiol
267:
C1389–C1397,
1994.
|
270. |
Zhang J and
Pratt RE.
The AT2 receptor selectively associates with Gialpha2 and Gialpha3 in the rat fetus.
J Biol Chem
271:
15026–15033,
1996.
|
271. |
Lokuta AJ,
Cooper C,
Gaa ST,
Wang HE and
Rogers TB.
Angiotensin II stimulates the release of phospholipid‐derived second messengers through multiple receptor subtypes in heart cells.
J Biol Chem
269:
4832–4838,
1994.
|
272. |
Bottari SP,
King IN,
Reichlin S,
Dahlstroem I,
Lydon N and
de Gasparo M.
The angiotensin AT2 receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate guanylate cyclase.
Biochem Biophys Res Commun
183:
206–211,
1992.
|
273. |
Huang XC,
Richards EM and
Sumners C.
Angiotensin II type 2 receptor‐mediated stimulation of protein phosphatase 2A in rat hypothalamic/brainstem neuronal cocultures.
J Neurochem
65:
2131–2137,
1995.
|
274. |
Nora EH,
Munzenmaier DH,
Hansen‐Smith FM,
Lombard JH and
Greene AS.
Localization of the ANG II type 2 receptor in the microcirculation of skeletal muscle.
Am J Physiol
275:
H1395–H1403,
1998.
|
275. |
Viswanathan M,
Tsutsumi K,
Correa FM and
Saavedra JM.
Changes in expression of angiotensin receptor subtypes in the rat aorta during development.
Biochem Biophys Res Commun
179:
1361–1367,
1991.
|
276. |
Linderman JR and
Greene AS.
Distribution of angiotensin ii receptor expression in the microcirculation of striated muscle.
Microcirculation
8:
275–281,
2001.
|
277. |
Zhang C,
Hein TW,
Wang W and
Kuo L.
Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function.
Circ Res
92:
322–329,
2003.
|
278. |
Yamada H,
Akishita M,
Ito M,
Tamura K,
Daviet L,
Lehtonen JY,
Dzau VJ and
Horiuchi M.
AT2 receptor and vascular smooth muscle cell differentiation in vascular development.
Hypertension
33:
1414–1419,
1999.
|
279. |
Levy BI,
Benessiano J,
Henrion D,
Caputo L,
Heymes C,
Duriez M,
Poitevin P and
Samuel JL.
Chronic blockade of AT2‐subtype receptors prevents the effect of angiotensin II on the rat vascular structure.
J Clin Invest
98:
418–425,
1996.
|
280. |
Nio Y,
Matsubara H,
Murasawa S,
Kanasaki M and
Inada M.
Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction.
J Clin Invest
95:
46–54,
1995.
|
281. |
Chaki S and
Inagami T.
Identification and characterization of a new binding site for angiotensin II in mouse neuroblastoma neuro‐2A cells.
Biochem Biophys Res Commun
182:
388–394,
1992.
|
282. |
Wright JW,
Miller‐Wing AV,
Shaffer MJ,
Higginson C,
Wright DE,
Hanesworth JM and
Harding JW.
Angiotensin II(3–8) (ANG IV) hippocampal binding: potential role in the facilitation of memory.
Brain Res Bull
32:
497–502,
1993.
|
283. |
Stroth U and
Unger T.
The renin‐angiotensin system and its receptors.
J Cardiovasc Pharmacol
33
(Suppl 1):
S21–S28,
1999.
|
284. |
Pucell AG,
Hodges JC,
Sen I,
Bumpus FM and
Husain A.
Biochemical properties of the ovarian granulosa cell type 2‐angiotensin II receptor.
Endocrinology
128:
1947–1959,
1991.
|
285. |
Fink GD and
Bruner CA.
Hypertension during chronic peripheral and central infusion of angiotensin III.
Am J Physiol
249:
E201–E208,
1985.
|
286. |
Tonnaer JA,
Wiegant VM,
de Jong W and
De Wied D.
Central effects of angiotensins on drinking and blood pressure: structure‐activity relationships.
Brain Res
236:
417–428,
1982.
|
287. |
Wright JW,
Morseth SL,
Abhold RH and
Harding JW.
Pressor action and dipsogenicity induced by angiotensin II and III in rats.
Am J Physiol
249:
R514–R521,
1985.
|
288. |
Zini S,
Fournie‐Zaluski MC,
Chauvel E,
Roques BP,
Corvol P and
Llorens‐Cortes C.
Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release.
Proc Natl Acad Sci USA
93:
11968–11973,
1996.
|
289. |
Schiavone MT,
Santos RA,
Brosnihan KB,
Khosla MC and
Ferrario CM.
Release of vasopressin from the rat hypothalamo‐neurohypophysial system by angiotensin‐(1–7) heptapeptide.
Proc Natl Acad Sci USA
85:
4095–4098,
1988.
|
290. |
Li P,
Chappell MC,
Ferrario CM and
Brosnihan KB.
Angiotensin‐(1–7) augments bradykinin‐induced vasodilation by competing with ACE and releasing nitric oxide.
Hypertension
29:
394–400,
1997.
|
291. |
Greene AS.
Life and death in the microcirculation: a role for angiotensin II.
Microcirculation
5:
101–107,
1998.
|
292. |
Weber DS and
Lombard JH,
Angiotensin II AT1 receptors preserve vasodilator reactivity in skeletal muscle resistance arteries.
Am J Physiol Heart Circ Physiol
280:
H2196–H2202,
2001.
|
293. |
Chatziantoniou C,
Dussaule JC,
Arendshorst WJ and
Ardaillou R.
Angiotensin II receptors and renin release in rat glomerular afferent arterioles.
Kidney Int
46:
1570–1573,
1994.
|
294. |
Siragy HM,
AT(1) and AT(2) receptors in the kidney: role in disease and treatment.
Am J Kidney Dis
36:
S4–S9,
2000.
|
295. |
Arendshorst WJ,
Brannstrom K and
Ruan X.
Actions of angiotensin II on the renal microvasculature.
J Am Soc Nephrol
10
(Suppl 11):
S149–S161,
1999.
|
296. |
Fleming JT,
Harris PD and
Joshua IG.
Endogenous prostaglandins selectively mask large arteriole constriction to angiotensin II.
Am J Physiol
253:
H1573–H1580,
1987.
|
297. |
Fleming JT and
Joshua IG.
Mechanism of the biphasic arteriolar response to angiotensin II.
Am J Physiol
247:
H88–H94,
1984.
|
298. |
Vicaut E,
Montalescot G,
Hou X,
Stucker O and
Teisseire B.
Arteriolar vasoconstriction and tachyphylaxis with intraarterial angiotensin II.
Microvasc Res
37:
28–41,
1989.
|
299. |
Gerstberger R,
Meyer JU,
Rettig R,
Printz M and
Intaglietta M.
Regulatory role of vasoactive peptides in subcutaneous skin microcirculation of the hamster.
Int J Microcirc Clin Exp
7:
3–14,
1988.
|
300. |
Ziogas J and
Vessey K.
Angiotensin‐induced enhancement of excitatory junction potentials evoked by periarteriolar nerve stimulation and vasoconstriction in rat mesenteric arteries are both mediated by the angiotensin AT1 receptor.
Pharmacology
63:
103–111,
2001.
|
301. |
Batenburg WW,
Garrelds IM,
Bernasconi CC,
Juillerat‐Jeanneret L,
van Kats JP,
Saxena PR and
Danser AH.
Angiotensin II type 2 receptor‐mediated vasodilation in human coronary microarteries.
Circulation
109:
2296–2301,
2004.
|
302. |
Didion SP and
Faraci FM.
Angiotensin II produces superoxidemediated impairment of endothelial function in cerebral arterioles.
Stroke
34:
2038–2042,
2003.
|
303. |
Haberl RL,
Anneser F,
Villringer A and
Einhaupl KM.
Angiotensin II induces endothelium‐dependent vasodilation of rat cerebral arterioles.
Am J Physiol
258:
H1840–H1846,
1990.
|
304. |
Haberl RL.
Role of angiotensin receptor subtypes in the response of rabbit brain arterioles to angiotensin.
Stroke
25:
1476–1479,
1994.
|
305. |
Takao M,
Kobari M,
Tanahashi N,
Tomita M,
Yokoyama M,
Tomita Y,
Otomo M,
Inoue K and
Fukuuchi Y.
Dilatation of cerebral parenchymal vessels mediated by angiotensin type 1 receptor in cats.
Neurosci Lett
318:
108–112,
2002.
|
306. |
Joyner WL,
Young R,
Blank D,
Eccleston‐Joyner CA and
Gilmore JP.
In vivo microscopy of the cerebral microcirculation using neonatal allografts in hamsters.
Circ Res
63:
758–766,
1988.
|
307. |
Wei EP,
Kontos HA and
Patterson JL, Jr.
Vasoconstrictor effect of angiotensin on pial arteries.
Stroke
9:
487–489,
1978.
|
308. |
Anwar Z,
Albert JL,
Gubby SE,
Boyle JP,
Roberts JA,
Webb TE and
Boarder MR.
Regulation of cyclic AMP by extracellular ATP in cultured brain capillary endothelial cells.
Br J Pharmacol
128:
465–471,
1999.
|
309. |
Ichihara A,
Imig JD,
Inscho EW and
Navar LG,
Interactive nitric oxide‐angiotensin II influences on renal microcirculation in angiotensin II‐induced hypertension.
Hypertension
31:
1255–1260,
1998.
|
310. |
Ikenaga H,
Fallet RW and
Carmines PK.
Basal nitric oxide production curtails arteriolar vasoconstrictor responses to ANG II in rat kidney.
Am J Physiol
271:
F365–F373,
1996.
|
311. |
Imig JD,
Cook AK and
Inscho EW.
Postglomerular vasoconstriction to angiotensin II and norepinephrine depends on intracellular calcium release.
Gen Pharmacol
34:
409–415,
2000.
|
312. |
Imig JD and
Deichmann PC.
Afferent arteriolar responses to ANG II involve activation of PLA2 and modulation by lipoxygenase and P‐450 pathways.
Am J Physiol
273:
F274–F282,
1997.
|
313. |
Inscho EW,
Imig JD and
Cook AK.
Afferent and efferent arteriolar vasoconstriction to angiotensin II and norepinephrine involves release of Ca2+ from intracellular stores.
Hypertension
29:
222–227,
1997.
|
314. |
Loutzenhiser R,
Chilton L and
Trottier G.
Membrane potential measuremenls in renal afferent and efferent arterioles: actions of angiotensin II.
Am J Physiol
273:
F307–F314,
1997.
|
315. |
Patzak A,
Mrowka R,
Storch E,
Hocher B and
Persson PB.
Interaction of angiotensin II and nitric oxide in isolated perfused afferent arterioles of mice.
J Am Soc Nephrol
12:
1122–1127,
2001.
|
316. |
Kimura K,
Inokuchi S,
Sugaya T,
Suzuki N,
Yoneda H,
Shirato I,
Mise N,
Oba S,
Miyashita K,
Tojo A,
Hirata Y,
Goto A,
Sakai T,
Murakami K and
Omata M.
Location and action of angiotensin II type 1 receptor in the renal microcirculation.
Kidney Int Suppl
63:
S201–S204,
1997.
|
317. |
Harrison‐Bernard LM,
Cook AK,
Oliverio MI and
Coffman TM.
Renal segmental microvascular responses to ANG II in AT1A receptor null mice.
Am J Physiol Renal Physiol
284:
F538–F545,
2003.
|
318. |
Patzak A,
Kleinmann F,
Lai EY,
Kupsch E,
Skelweit A and
Mrowka R.
Nitric oxide counteracts angiotensin II induced contraction in efferent arterioles in mice.
Acta Physiol Scand
181:
439–444,
2004.
|
319. |
Kohagura K,
Arima S,
Endo Y,
Chiba Y,
Ito O,
Abe M,
Omata K and
Ito S.
Involvement of cytochrome P450 metabolites in the vascular action of angiotensin II on the afferent arterioles.
Hypertens Res
24:
551–557,
2001.
|
320. |
Kohagura K,
Endo Y,
Ito O,
Arima S,
Omata K and
Ito S.
Endogenous nitric oxide and epoxyeicosatrienoic acids modulate angiotensin II‐induced constriction in the rabbit afferent arteriole.
Acta Physiol Scand
168:
107–112,
2000.
|
321. |
Inscho EW,
Mason MJ,
Schroeder AC,
Deichmann PC,
Stiegler KD and
Imig JD.
Agonist‐induced calcium regulation in freshly isolated renal microvascular smooth muscle cells.
J Am Soc Nephrol
8:
569–579,
1997.
|
322. |
Iversen BM and
Arendshorst WJ.
ANG II and vasopressin stimulate calcium entry in dispersed smooth muscle cells of preglomerular arterioles.
Am J Physiol
274:
F498–F508,
1998.
|
323. |
Loutzenhiser K and
Loutzenhiser R.
Angiotensin II‐induced Ca(2+) influx in renal afferent and efferent arterioles: differing roles of voltage‐gated and store‐operated Ca(2+) entry.
Circ Res
87:
551–557,
2000.
|
324. |
Wang DH and
Prewitt RL.
Captopril reduces aortic and microvascular growth in hypertensive and normotensive rats.
Hypertension
15:
68–77,
1990.
|
325. |
Wang DH and
Prewitt RL.
Longitudinal effect of Captopril on aortic and arteriolar development in normotensive rats.
Am J Physiol
260:
H1959–H1965,
1991.
|
326. |
Wang DH and
Prewitt RL.
Reduced aortic and arteriolar growth by Captopril in normotensive and renal hypertensive rats.
Adv Exp Med Biol
308:
217–221,
1991.
|
327. |
Black MJ,
Bertram JF,
Campbell JH and
Campbell GR.
Angiotensin [I induces cardiovascular hypertrophy in perindopril‐treated rats.
J Hypertens
13:
683–692,
1995.
|
328. |
Wang DH,
Prewitt RL and
Beebe SJ.
Regulation of PDGF‐A: a possible mechanism for angiotensin II‐induced vascular growth.
Am J Physiol
269:
H356–H364,
1995.
|
329. |
Griffin SA,
Brown WC,
MacPherson F,
McGrath JC,
Wilson VG,
Korsgaard N,
Mulvany MJ and
Lever AF.
Angiotensin II causes vascular hypertrophy in part by a non‐pressor mechanism.
Hypertension
17:
626–635,
1991.
|
330. |
Simon G,
Cserep G and
Limas C.
Development of structural vascular changes with subpressor angiotensin II administration in rats.
Am J Hypertens
8:
67–73,
1995.
|
331. |
le Noble FA,
Kessels‐van Wylick LC,
Hacking WJ,
Slaaf DW,
oude Egbrink MG and
Struijker‐Boudier HA.
The role of angiotensin II and prostaglandins in arcade formation in a developing microvascular network.
J Vasc Res
33:
480–488,
1996.
|
332. |
Nadal JA,
Scicli GM,
Carbini LA and
Scicli AG.
Angiotensin II stimulates migration of retinal microvascular pericytes: involvement of TGF‐beta and PDGF‐BB.
Am J Physiol Heart Circ Physiol
282:
H739–H748,
2002.
|
333. |
Amaral SL,
Papanek PE and
Greene AS.
Angiotensin II and VEGF are involved in angiogenesis induced by short‐term exercise training.
Am J Physiol Heart Circ Physiol
281:
H1163–H1169,
2001.
|
334. |
Amaral SL,
Roman RJ and
Greene AS.
Renin gene transfer restores angiogenesis and vascular endothelial growth factor expression in Dahl S rats.
Hypertension
37:
386–390,
2001.
|
335. |
Rieder MJ,
Roman RJ and
Greene AS.
Reversal of microvascular rarefaction and reduced renal mass hypertension.
Hypertension
30:
120–127,
1997.
|
336. |
Hernandez I,
Cowley AW, Jr.,
Lombard JH and
Greene AS.
Salt intake and angiotensin II alter microvessel density in the cremaster muscle of normal rats.
Am J Physiol
263:
H664–H667,
1992.
|
337. |
McKinley MJ,
Mathai ML,
McAllen RM,
McClear RC,
Miselis RR,
Pennington GL,
Vivas L,
Wade JD and
Oldfield BJ.
Vasopressin secretion: osmotic and hormonal regulation by the lamina terminalis.
J Neuroendocrinol
16:
340–347,
2004.
|
338. |
Oliveira GR,
Franci CR,
Rodovalho GV,
Franci JA,
Morris M and
Rocha MJ.
Alterations in the central vasopressin and oxytocin axis after lesion of a brain osmotic sensory region.
Brain Res Bull
63:
515–520,
2004.
|
339. |
Zingg HH,
Lefebvre D and
Almazan G.
Regulation of vasopressin gene expression in rat hypothalamic neurons. Response to osmotic stimulation.
J Biol Chem
261:
12956–12959,
1986.
|
340. |
Yambe Y,
Arima H,
Kakiya S,
Murase T and
Oiso Y.
Diurnal changes in arginine vasopressin gene transcription in the rat supra‐chiasmatic nucleus.
Brain Res Mol Brain Res
104:
132–136,
2002.
|
341. |
Mechaly I,
Macari F,
Lautier C,
Serrano JJ,
Cros G and
Grigorescu F.
Identification and sequence analysis of arginine vasopressin mRNA in normal and Brattleboro rat aortic tissue.
Eur J Endocrinol
139:
123–126,
1998.
|
342. |
Nagano K,
Toba K,
Akishita M,
Kozaki K,
Eto M,
Hashimoto M,
Sudoh N,
Yoshizumi M and
Ouchi Y.
Identification of arginine vasopressin mRNA in rat aortic smooth muscle cells.
Biochem Biophys Res Commun
231:
831–834,
1997.
|
343. |
Simon J and
Kasson BG.
Identification of vasopressin mRNA in rat aorta.
Hypertension
25:
1030–1033,
1995.
|
344. |
Ishiguro S,
Iwasaki T,
Miyamoto A,
Mori T and
Nishio A.
Vasopressin receptor subtypes on mesenteric and cremasteric arterioles in rat.
Eur J Pharmacol
400:
121–125,
2000.
|
345. |
Harrison‐Bernard LM and
Carmines PK.
Juxtamedullary microvascular responses to arginine vasopressin in rat kidney.
Am J Physiol
267:
F249–F256,
1994.
|
346. |
Spatz M,
Stanimirovic D,
Bacic F,
Uematsu S and
McCarron RM.
Vasoconstrictive peptides induce endothelin‐1 and prostanoids in human cerebromicrovascular endothelium.
Am J Physiol
266:
C654–C660,
1994.
|
347. |
Marshall JM,
Lloyd J and
Mian R.
The influence of vasopressin on the arterioles and venules of skeletal muscle of the rat during systemic hypoxia.
J Physiol
470:
473–484,
1993.
|
348. |
Segal MB,
Chodobski A,
Szmydynger‐Chodobska J and
Cammish H.
Effect of arginine vasopressin on blood vessels of the perfused choroid plexus of the sheep.
Prog Brain Res
91:
451–453,
1992.
|
349. |
Weihprecht H,
Lorenz JN,
Briggs JP and
Schnermann J.
Vasoconstrictor effect of angiotensin and vasopressin in isolated rabbit afferent arterioles.
Am J Physiol
261:
F273–F282,
1991.
|
350. |
Fuhr W,
Russo K and
Weiss HR.
Effect of vasopressin on myocardial capillary recruitment and coronary blood flow in the anesthetized rabbit.
Can J Physiol Pharmacol
69:
170–175,
1991.
|
351. |
Vanner S,
Jiang MM,
Brooks VL and
Surprenant A.
Characterization of vasopressin actions in isolated submucosal arterioles of the intestinal microcirculation.
Circ Res
67:
1017–1026,
1990.
|
352. |
Faraci FM.
Effects of endothelin and vasopressin on cerebral blood vessels.
Am J Physiol
257:
H799–H803,
1989.
|
353. |
Faraci FM,
Mayhan WG,
Schmid PG and
Heistad DD.
Effects of arginine vasopressin on cerebral microvascular pressure.
Am J Physiol
255:
H70–H76,
1988.
|
354. |
Armstead WM,
Mirro R,
Busija DW and
Leffler CW.
Vascular responses to vasopressin are tone‐dependent in the cerebral circulation of the newborn pig.
Circ Res
64:
136–144,
1989.
|
355. |
Rossberg MI and
Armstead WM.
Role of cyclic nucleotides in vasopressin‐induced piglet pial artery dilation and opioid release.
Pediatr Res
41:
498–504,
1997.
|
356. |
Takayasu M,
Kajita Y,
Suzuki Y,
Shibuya M,
Sugita K and
Hidaka H.
A role of nitric oxide in vasomotor control of cerebral parenchymal arterioles in rats.
J Auton Nerv Syst
49
(Suppl):
S63–S66,
1994.
|
357. |
Eichinger MR and
Walker BR.
Enhanced pulmonary arterial dilation to arginine vasopressin in chronically hypoxic rats.
Am J Physiol
267:
H2413–H2419,
1994.
|
358. |
Eichinger MR and
Walker BR.
Segmental heterogeneity of NO‐mediated pulmonary vasodilation in rats.
Am J Physiol
267:
H494–H499,
1994.
|
359. |
Medina P,
Vila JM,
Martinez MC,
Aldasoro M,
Chuan P and
Lluch S.
Effects of vasopressin on human renal arteries.
Eur J Clin Invest
26:
966–972,
1996.
|
360. |
Tsuji T and
Cook DA.
Vasoconstrictor mechanism of neuropeptides augmented after endothelial removal in isolated, perfused canine basilar arteries.
Neurol Res
17:
193–200,
1995.
|
361. |
Aldasoro M,
Medina P,
Vila JM,
Otero E,
Martinez‐Leon JB and
Lluch S.
Endothelium‐dependent relaxation of human saphenous veins in response to vasopressin and desmopressin.
J Vasc Surg
25:
696–703,
1997.
|
362. |
Medina P,
Acuna A.
Martinez‐Leon JB,
Otero E,
Vila JM.
Aldasoro M and
Lluch S.
Arginine vasopressin enhances sympathetic constriction through the V1 vasopressin receptor in human saphenous vein.
Circulation
97:
865–870,
1998.
|
363. |
Evora PR,
Pearson PJ and
Schaff HV.
Arginine vasopressin induces endothelium‐dependent vasodilatation of the pulmonary artery V1‐receptor‐mediated production of nitric oxide.
Chest
103:
1241–1245,
1993.
|
364. |
Holmes CL,
Landry DW and
Granton JT.
Science review: vasopressin and the cardiovascular system part I ‐ receptor physiology.
Crit Care
7:
427–434,
2003.
|
365. |
Thibonnier M,
Berti‐Mattera LN,
Dulin N,
Conarty DM and
Mattera R.
Signal transduction pathways of the human V1‐vascular, V2‐renal, V3‐pituitary vasopressin and oxytocin receptors.
Prog Brain Res
119:
147–161,
1998.
|
366. |
Evora PR,
Pearson PJ,
Rodrigues AJ,
Viaro F and
Schaff HV.
Effect of arginine vasopressin on the canine epicardial coronary artery: experiments on V1‐receptor‐mediated production of nitric oxide.
Arq Bras Cardiol
80:
483–494,
2003.
|
367. |
Medina P,
Segarra G,
Vila JM,
Chuan P,
Domenech C and
Lluch S.
V2‐receptor‐mediated relaxation of human renal arteries in response to desmopressin.
Am J Hypertens
12:
188–193,
1996.
|
368. |
Resta TC and
Walker BR.
Enhanced renal vasoconstrictor responsiveness to vasopressin after renal denervation.
J Cardiovasc Pharmacol
33:
711–717,
1999.
|
369. |
Tahara A,
Tsukada J,
Tomura Y,
Kusayama T,
Wada K,
Ishii N,
Yatsu T,
Uchida W,
Taniguchi N and
Tanaka A.
Effect of YM471, an orally active non‐peptide arginine vasopressin receptor antagonist, on human vascular smooth muscle cells.
J Hypertens
20:
1807–1814,
2002.
|
370. |
Tamaki T,
Kiyomoto K,
He H,
Tomohiro A,
Nishiyama A,
Aki Y,
Kimura S and
Abe Y.
Vasodilation induced by vasopressin V2 receptor stimulation in afferent arterioles.
Kidney Int
49:
722–729,
1996.
|
371. |
Cowley AW.
Control of the renal medullary circulation by vasopressin V1 and V2 receptors in the rat.
Exp Physiol
85S:
223S–231S,
2000.
|
372. |
Cavarape A,
Bauer J,
Bartoli E,
Endlich K and
Parekh N.
Effects of angiotensin II, arginine vasopressin and tromboxane A2 in renal vascular bed: role of rho‐kinase.
Nephrol Dial Transplant
18:
1764–1769,
2003.
|
373. |
Koshimizu TA,
Nasa Y,
Tanoue A,
Oikawa R,
Kawahara Y,
Kiyono Y,
Adachi T,
Tanaka T,
Kuwaki T,
Mori T,
Takeo S,
Okamura H and
Tsujimoto G.
Vla vasopressin receptors maintain normal blood pressure by regulating circulating blood volume and baroreflex sensitivity.
Proc Natl Acad Sci USA
103:
7807–7812,
2006.
|
374. |
Thibonnier M,
Coles P,
Thibonnier A and
Shoham M.
Molecular pharmacology and modeling of vasopressin receptors.
Prog Brain Res
139:
179–196,
2002.
|
375. |
Feng JJ and
Arendshorst WJ.
Calcium signaling mechanisms in renal vascular responses to vasopressin in genetic hypertension.
Hypertension
30:
1223–1231,
1997.
|
376. |
Saito T,
Ishikawa SE,
Sasaki S,
Fujita N,
Fushimi K,
Okada K,
Takeuchi K,
Sakamoto A,
Ookawara S,
Kaneko T,
Marumo F and
Saito T.
Alteration in water channel AQP‐2 by removal of AVP stimulation in collecting duct cells of dehydrated rats.
Am J Physiol
272:
F183–F191,
1997.
|
377. |
Russ RD and
Walker BR.
Role of nitric oxide in vasopressinergic pulmonary vasodilatation.
Am J Physiol
262:
H743–H747,
1992.
|
378. |
Park F,
Mattson DL,
Skelton MM and
Cowley AW, Jr.
Localization of the vasopressin V1a and V2 receptors within the renal cortical and medullary circulation.
Am J Physiol
273:
R243–R251,
1997.
|
379. |
Ventura MA,
Rene P,
de Keyzer Y,
Bertagna X and
Clauser E.
Gene and cDNA cloning and characterization of the mouse V3/V1b pituitary vasopressin receptor.
J Mol Endocrinol
22:
251–260,
1999.
|
380. |
Thibonnier M,
Preston JA,
Dulin N,
Wilkins PL,
Berti‐Mattera LN and
Mattera R.
The human V3 pituitary vasopressin receptor: ligand binding profile and density‐dependent signaling pathways.
Endocrinology
138:
4109–4122,
1997.
|
381. |
Ludwig M.
Dendritic release of vasopressin and oxytocin.
J Neuroendocrinol
10:
881–895,
1998.
|
382. |
Murphy D,
Waller S,
Fairhall K,
Carter DA and
Robinson CA.
Regulation of the synthesis and secretion of vasopressin.
Prog Brain Res
119:
137–143,
1998.
|
383. |
Kim JK,
Summer SN,
Wood WM and
Schrier RW.
Role of glucocorticoid hormones in arginine vasopressin gene regulation.
Biochem Biophys Res Commun
289:
1252–1256,
2001.
|
384. |
Burbach JP.
Regulation of gene promoters of hypothalamic peptides.
Front Neuroendocrinol
23:
342–369,
2002.
|
385. |
Stocker SD,
Schiltz JC and
Sved AF.
Acute increases in arterial blood pressure do not reduce plasma vasopressin levels stimulated by angiotensin II or hyperosmolality in rats.
Am J Physiol Regul Integr Comp Physiol
287:
R127–R137,
2004.
|
386. |
King KA,
Courneya CA,
Tang C,
Wilson N and
Ledsome JR.
Pharmacokinetics of vasopressin and atrial natriuretic peptide in anesthetized rabbits.
Endocrinology
124:
77–83,
1989.
|
387. |
Cottet‐Maire F,
Avdonin PV,
Roulet E,
Buetler TM,
Mermod N and
Ruegg UT.
Upregulation of vasopressin V1A receptor mRNA and protein in vascular smooth muscle cells following cyclosporin A treatment.
Br J Pharmacol
132:
909–917,
2001.
|
388. |
Wong NL,
Sonntag M and
Tsui JK.
Attenuation of renal vasopressin V2 receptor upregulation by bosentan, an ETA/ETB receptor antagonist.
Metabolism
52:
1141–1146,
2003.
|
389. |
Volpi S,
Rabadan‐Diehl C and
Aguilera G.
Regulation of vasopressin V1b receptors and stress adaptation.
Ann NY Acad Sci
1018:
293–301,
2004.
|
390. |
D'Orleans‐Juste P,
Plante M,
Honore JC,
Carrier E and
Labonte J.
Synthesis and degradation of endothelin‐1.
Can J Physiol Pharmacol
81:
503–510,
2003.
|
391. |
Masaki T.
Historical review: endothelin.
Trends Pharmacol Sci
25:
219–224,
2004.
|
392. |
Bakker EN,
van der Meulen ET,
van den Berg BM,
Everts V,
Spaan JA and
VanBavel E.
Inward remodeling follows chronic vasoconstriction in isolated resistance arteries.
J Vasc Res
39:
12–20,
2002.
|
393. |
Palmes D,
Badny TB,
Stratmann U,
Herbst H and
Spiegel HU.
Endothelin‐A receptor antagonist reduces microcirculatory disturbances and transplant dysfunction after partial liver transplantation.
Liver Transplant
9:
929–939,
2003.
|
394. |
Tsuchiya Y,
Suzuki S,
Inaba K,
Sakaguchi T,
Baba S,
Miwa M,
Konno H and
Nakamura S.
Impact of endothelin‐1 on microcirculatory disturbance after partial hepatectomy under ischemia/reperfusion in thioacetamide‐induced cirrhotic rats.
J Surg Res
111:
100–108,
2003.
|
395. |
Mizunuma K,
Ohdan H,
Tashiro H,
Fudaba Y,
Ito H and
Asahara T.
Prevention of ischemia‐reperfusion‐induced hepatic microcirculatory disruption by inhibiting stellate cell contraction using rock inhibitor.
Transplantation
75:
579–586,
2003.
|
396. |
Zhang XY,
Francis RJ,
Sun CK and
Wheatley AM.
Endothelin receptor A blockade ameliorates hypothermic ischemia‐reperfusion‐related microhemodynamic disturbances during liver transplantation in the rat.
J Surg Res
102:
63–70,
2002.
|
397. |
Pannen BH,
Schroll S,
Loop T,
Bauer M,
Hoetzel A and
Geiger KK.
Hemorrhagic shock primes the hepatic portal circulation for the vasoconstrictive effects of endothelin‐1.
Am J Physiol Heart Circ Physiol
281:
H1075–H1084,
2001.
|
398. |
Witzigmann H,
Ludwig S,
Armann B,
Gabel G,
Teupser D,
Kratzsch J,
Pietsch UC,
Tannapfel A,
Geissler F,
Hauss J and
Uhlmann D.
Endothelin(A) receptor blockade reduces ischemia/reperfusion injury in pig pancreas transplantation.
Ann Surg
238:
264–274,
2003.
|
399. |
Plusczyk T,
Witzel B,
Menger MD and
Schilling M.
ETA and ETB receptor function in pancreatitis‐associated microcirculatory failure, inflammation, and parenchymal injury.
Am J Physiol Gastrointest Liver Physiol
285:
G145–G153,
2003.
|
400. |
Inoue K,
Hirota M,
Kimura Y,
Kuwata K,
Ohmuraya M and
Ogawa M.
Further evidence for endothelin as an important mediator of pancreatic and intestinal ischemia in severe acute pancreatitis.
Pancreas
26:
218–223,
2003.
|
401. |
Plusczyk T,
Bersal B,
Menger MD and
Feifel G.
Differential effects of ET‐1, ET‐2, and ET‐3 on pancreatic microcirculation, tissue integrity, and inflammation.
Dig Dis Sci
46:
1343–1351,
2001.
|
402. |
King‐VanVlack CE,
Mewburn JD,
Chapler CK and
MacDonald PH.
Hemodynamic and proinflammatory actions of endothelin‐1 in guinea pig small intestine submucosal microcirculation.
Am J Physiol Gastrointest Liver Physiol
284:
G940–G948,
2003.
|
403. |
de Carvalho MH,
Nigro D,
Scivoletto R,
Barbeiro HV,
de Oliveira MA,
de Nucci G and
Fortes ZB.
Comparison of the effect of endothelin on microvessels and macrovessels in Goldblatt II and deoxycorticosterone acetate‐salt hypertensive rats.
Hypertension
15:
168–171,
1990.
|
404. |
Victorino GP,
Wisner DH and
Tucker VL.
Basal release of endothelin‐1 and the influence of the ETB receptor on single vessel hydraulic permeability.
J Trauma
49:
314–319,
2000.
|
405. |
David FL,
Carvalho MH,
Cobra AL,
Nigro D,
Fortes ZB,
Reboucas NA and
Tostes RC.
Ovarian hormones modulate endothelin‐1 vascular reactivity and mRNA expression in DOCA‐salt hypertensive rats.
Hypertension
38:
692–696,
2001.
|
406. |
Merkus D,
Duncker DJ and
Chilian WM.
Metabolic regulation of coronary vascular tone: role of endothelin‐1.
Am J Physiol Heart Circ Physiol
283:
H1915–H1921,
2002.
|
407. |
Oltman CL,
Kane NL,
Miller FJ, Jr.,
Spector AA,
Weintraub NL and
Dellsperger KC.
Reactive oxygen species mediate arachidonic acid‐induced dilation in porcine coronary microvessels.
Am J Physiol Heart Circ Physiol
285:
H2309–H2315,
2003.
|
408. |
Oltman CL,
Kane NL,
Gutterman DD,
Bar RS and
Dellsperger KC.
Mechanism of coronary vasodilation to insulin and insulin‐like growth factor I is dependent on vessel size.
Am J Physiol Endocrinol Metab
279:
E176–E181,
2000.
|
409. |
Wang Y,
Kanatsuka H,
Akai K,
Sugimura A,
Kumagai T,
Komaru T,
Sato K and
Shirato K.
Effects of low doses of endothelin‐1 on basal vascular tone and autoregulatory vasodilation in canine coronary microcirculation in vivo.
Jpn Circ J
63:
617–623,
1999.
|
410. |
Homma S,
Miyauchi T,
Goto K,
Sugishita Y,
Sato M and
Ohshima N.
Effects of endothelin‐1 on coronary microcirculation in isolated beating hearts of rats.
J Cardiovasc Pharmacol
17
(Suppl 7);
S276–S278,
1991.
|
411. |
Boric MP,
Donoso V,
Fournier A,
St Pierre S and
Huidobro‐Toro JP.
Endothelin reduces microvascular blood flow by acting on arterioles and venules of the hamster cheek pouch.
Eur J Pharmacol
190:
123–133,
1990.
|
412. |
Mayhan WG,
Irvine SD and
Sharpe GM.
Constrictor responses of resistance arterioles during diabetes mellitus.
Diabetes Res Clin Pract
44:
147–156,
1999.
|
413. |
Leach RM,
Twort CH,
Cameron IR and
Ward JP.
The mechanism of action of endothelin‐1 on small pulmonary arterial vessels.
Pulm Pharmacol
3:
103–109,
1990.
|
414. |
Zhao H,
Joshua IG and
Porter JP.
Microvascular responses to endothelin in deoxycorticosterone acetate‐salt hypertensive rats.
Am J Hypertens
13:
819–826,
2000.
|
415. |
Falcone JC and
Meininger GA.
Endothelin mediates a component of the enhanced myogenic responsiveness of arterioles from hypertensive rats.
Microcirculation
6:
305–313,
1999.
|
416. |
Lougee L,
Hinojosa‐Laborde C,
Harder DR and
Lombard JH.
Effect of nifedipine on endothelin induced contractions of skeletal muscle arterioles of spontaneously hypertensive rats.
Microcirc Endothelium Lymphatics
6:
355–368,
1990.
|
417. |
Hergenroder S,
Munter K and
Kirchengast M.
Effects of endothelin and endothelin receptor antagonism in arteriolar and venolar microcirculation.
Vasa
27:
216–219,
1998.
|
418. |
Didier N,
Romero IA,
Creminon C,
Wijkhuisen A,
Grassi J and
Mabondzo A.
Secretion of interleukin‐1beta by astrocytes mediates endothelin‐1 and tumour necrosis factor‐alpha effects on human brain microvascular endothelial cell permeability.
J Neurochem
86:
246–254,
2003.
|
419. |
Douglas SA and
Ohlstein EH.
Vascular and cardiac effects of endothelin. In:
Endothelin and its Inhibitors
ed. Warner TD.
London, UK:
Springer‐Verlag Telos,
2001,
pp. 405–451.
|
420. |
Simonson MS.
Cell Signaling by endothelin peptides. In:
Endothelin and its Inhibitors,
ed. Warner TD.
London, UK:
Springer‐Verlag Telos.
2003,
pp. 115–140.
|
421. |
Chang CL,
Roh J and
Hsu SY.
Intermedin, a novel calcitonin family peptide that exists in teleosts as well as in mammals: a comparison with other calcitonin/intermedin family peptides in vertebrates.
Peptides
25:
1633–1642,
2004.
|
422. |
Wimalawansa SJ.
Amylin, calcitonin gene‐related peptide, calcitonin, and adrenomedullin: a peptide superfamily.
Crit Rev Neurobiol
11:
167–239,
1997.
|
423. |
Kuwasako K,
Cao YN,
Nagoshi Y,
Tsuruda T,
Kitamura K and
Eto T.
Characterization of the human calcitonin gene‐related peptide receptor subtypes associated with receptor activity‐modifying proteins.
Mol Pharmacol
65:
207–213,
2004.
|
424. |
Eguchi S,
Tezuka S,
Hobara N,
Akiyama S,
Kurosaki Y and
Kawasaki H.
Vanilloid receptors mediate adrenergic nerve‐ and CGRP‐containing nerve‐dependent vasodilation induced by nicotine in rat mesenteric resistance arteries.
Br J Pharmacol
142:
1137–1146,
2004.
|
425. |
Hagner S,
Haberberger R,
Kummer W,
Springer J,
Fischer A,
Bohm S,
Goke B and
McGregor GP.
Immunohistochemical detection of calcitonin gene‐related peptide receptor (CGRPR)‐1 in the endothelium of human coronary artery and bronchial blood vessels.
Neuropeptides
35:
58–64,
2001.
|
426. |
Merhi M,
Dusting GJ and
Khalil Z.
CGRP and nitric oxide of neuronal origin and their involvement in neurogenic vasodilatation in rat skin microvasculature.
Br J Pharmacol
123:
863–868,
1998.
|
427. |
Shiraki H,
Kawasaki H,
Tezuka S,
Nakatsuma A and
Kurosaki Y.
Endogenous calcitonin gene‐related peptide (CGRP) mediates adrenergic‐dependent vasodilation induced by nicotine in mesenteric resistance arteries of the rat.
Br J Pharmacol
130:
1083–1091,
2000.
|
428. |
Kitamura K,
Kangawa K and
Eto T.
Adrenomedullin and PAMP: discovery, structures, and cardiovascular functions.
Microsc Res Tech
57:
3–13,
2002.
|
429. |
Sugo S,
Minamino N,
Shoji H,
Kangawa K and
Matsuo H.
Effects of vasoactive substances and cAMP related compounds on adrenomedullin production in cultured vascular smooth muscle cells.
FEBS Lett
369:
311–314,
1995.
|
430. |
Sikora L,
Johansson AC,
Rao SP,
Hughes GK,
Broide DH and
Sriramarao P.
A murine model to study leukocyte rolling and intravascular trafficking in lung microvessels.
Am J Pathol
162:
2019–2028,
2003.
|
431. |
Roberts AM,
Slaaf DW and
Joshua IG.
Potentiation of pulmonary arteriolar vasoconstriction to endothelin‐1 by inhibition of nitric oxide synthesis in the intact lung.
Microcirculation
5:
289–298,
1998.
|
432. |
Ozawa Y,
Hasegawa T,
Tsuchiya K,
Yoshizumi M and
Tamaki T.
Effect of endothelin‐1 (1–31) on the renal resistance vessels.
J Med Invest
50:
87–94,
2003.
|
433. |
Hercule HC and
Oyekan AO.
Cytochrome P450 omega/omega‐1 hydroxylase‐derived eicosanoids contribute to endothelin(A) and endothelin(B) receptor‐mediated vasoconstriction to endothelin‐1 in the rat preglomerular arteriole.
J Pharmacol Exp Ther
292:
1153–1160,
2000.
|
434. |
Imig JD,
Pham BT,
LeBlanc EA,
Reddy KM,
Falck JR and
Inscho EW.
Cytochrome P450 and cyclooxygenase metabolites contribute to the endothelin‐1 afferent arteriolar vasoconstrictor and calcium responses.
Hypertension
35:
307–312,
2000.
|
435. |
Edwards RM,
Trizna W and
Ohlstein EH.
Renal microvascular effects of endothelin.
Am J Physiol
259:
F217–F221,
1990.
|
436. |
Cavarape A,
Endlich N,
Assaloni R,
Bartoli E,
Steinhausen M,
Parekh N and
Endlich K.
Rho‐kinase inhibition blunts renal vasoconstriction induced by distinct signaling pathways in vivo.
J Am Soc Nephrol
14:
37–45,
2003.
|
437. |
Loutzenhiser R,
Epstein M,
Hayashi K and
Horton C.
Direct visualization of effects of endothelin on the renal microvasculature.
Am J Physiol
258:
F61–F68,
1990.
|
438. |
Edwards R and
Trizna W.
Response of isolated intracerebral arterioles to endothelins.
Pharmacology
41:
149–152,
1990.
|
439. |
Guibert C and
Beech DJ.
Positive and negative coupling of the endothelin ETA receptor to Ca2+‐permeable channels in rabbit cerebral cortex arterioles.
J Physiol
514
(Pt 3):
843–856,
1999.
|
440. |
Lehmberg J,
Putz C,
Furst M,
Beck J,
Baethmann A and
Uhl E.
Impact of the endothelin‐A receptor antagonist BQ 610 on microcirculation in global cerebral ischemia and reperfusion.
Brain Res
961:
277–286,
2003.
|
441. |
Godfraind T,
Morel N and
Dessy C.
Calcium antagonists and vasoconstrictor effects in intracerebral microarterioles.
Stroke
21:
IV59–IV63,
1990.
|
442. |
Bhardwaj A,
Wu Y,
Hum PD,
Kirsch JR and
Traystman RJ.
Administration of selective endothelin receptor type A antagonist Ro 61‐1790 does not improve outcome in focal cerebral ischemia in cat.
J Cereb Blood Flow Metab
20:
499–504,
2000.
|
443. |
Willette RN,
Sauermelch C,
Ezekiel M,
Feuerstein G and
Ohlstein EH.
Effect of endothelin on cortical microvascular perfusion in rats.
Stroke
21:
451–458,
1990.
|
444. |
Dawson DA,
Sugano H,
McCarron RM,
Hallenbeck JM and
Spatz M.
Endothelin receptor antagonist preserves microvascular perfusion and reduces ischemic brain damage following permanent focal ischemia.
Neurochem Res
24:
1499–1505,
1999.
|
445. |
Wolfard A,
Csaszar J,
Gera L,
Petri A,
Simonka JA,
Balogh A and
Boros M.
Endothelin‐a receptor antagonist treatment improves the periosteal microcirculation after hindlimb ischemia and reperfusion in the rat.
Microcirculation
9:
471–476,
2002.
|
446. |
Joshua IG.
Endothelin‐induced vasoconstriction of small resistance vessels in the microcirculation of the rat cremaster muscle.
Microvasc Res,
40:
191–198,
1990.
|
447. |
Eto T,
Kato J and
Kitamura K.
Regulation of production and secretion of adrenomedullin in the cardiovascular system.
Regul Pept
112:
61–69,
2003.
|
448. |
Minamino N,
Kikumoto K and
Isumi Y.
Regulation of adrenomedullin expression and release.
Microsc Res Tech
57:
28–39,
2002.
|
449. |
Taylor MM and
Samson WK.
Adrenomedullin and the integrative physiology of fluid and electrolyte balance.
Microsc Res Tech
57:
105–109,
2002.
|
450. |
Roh J,
Chang CL,
Bhalla A,
Klein C and
Hsu SY.
Intermedin is a calcitonin/calcitonin gene‐related peptide family peptide acting through the calcitonin receptor‐like receptor/receptor activity‐modifying protein receptor complexes.
J Biol Chem
279:
7264–7274,
2004.
|
451. |
Tam C and
Brain SD.
The assessment of vasoactive properties of CGRP and adrenomedullin in the microvasculature: a study using in vivo and in vitro assays in the mouse.
J Mol Neurosci
22:
117–124,
2004.
|
452. |
Jansen‐Olesen I,
Jorgensen L,
Engel U and
Edvinsson L.
In‐depth characterization of CGRP receptors in human intracranial arteries.
Eur J Pharmacol
481:
207–216,
2003.
|
453. |
Loaiza LA,
Yamaguchi S,
Ito M and
Ohshima N.
Vasodilatation of muscle microvessels induced by somatic afferent stimulation is mediated by calcitonin gene‐related peptide release in the rat.
Neurosci Lett
333:
136–140,
2002.
|
454. |
Moreno MJ,
Terron JA,
Stanimirovic DB,
Doods H and
Hamel E.
Characterization of calcitonin gene‐related peptide (CGRP) receptors and their receptor‐activity‐modifying proteins (RAMPs) in human brain microvascular and astroglial cells in culture.
Neuropharmacology
42:
270–280,
2002.
|
455. |
Phillips JK,
Hickey H and
Hill CE.
Heterogeneity in mechanisms underlying vasodilatory responses in small arteries of the rat hepatic mesentery.
Auton Neurosci
83:
159–170,
2000.
|
456. |
Matsumoto Y,
Kanamoto K,
Kawakubo K,
Aomi H,
Matsumoto T,
Ibayashi S and
Fujishima M.
Gastroprotective and vasodilatory effects of epidermal growth factor: the role of sensory afferent neurons.
Am J Physiol Gastrointest Liver Physiol
280:
G897–G903,
2001.
|
457. |
Terata K,
Miura H,
Liu Y,
Loberiza F and
Gutterman DD.
Human coronary arteriolar dilation to adrenomedullin: role of nitric oxide and K(+) channels.
Am J Physiol Heart Circ Physiol
279:
H2620–H2626,
2000.
|
458. |
Kobayashi H,
Minami S,
Yamamoto R,
Masumoto K,
Yanagita T,
Uezono Y,
Tsuchiya K,
Mohri M,
Kitamura K,
Eto T and
Wada A.
Adrenomedullin receptors in rat cerebral microvessels.
Brain Res Mol Brain Res
81:
1–6,
2000.
|
459. |
Moreno MJ,
Cohen Z,
Stanimirovic DB and
Hamel E.
Functional calcitonin gene‐related peptide type 1 and adrenomedullin receptors in human trigeminal ganglia, brain vessels, and cerebro‐microvascular or astroglial cells in culture.
J Cereb Blood Flow Metab
19:
1270–1278,
1999.
|
460. |
Berggreen E and
Heyeraas KJ.
The role of sensory neuropeptides and nitric oxide on pulpal blood flow and tissue pressure in the ferret.
J Dent Res
78:
1535–1543,
1999.
|
461. |
Takao M,
Tomita M,
Tanahashi N,
Kobari M and
Fukuuchi Y.
Transient vasodilatory effects of adrenomedullin on cerebral parenchymal microvessels in cats.
Neurosci Lett
268:
147–150,
1999.
|
462. |
Hall JM and
Brain SD.
Interaction of amylin with calcitonin gene‐related peptide receptors in the microvasculature of the hamster cheek pouch in vivo.
Br J Pharmacol
126:
280–284,
1999.
|
463. |
Hall JM,
Siney L,
Lippton H,
Hyman A,
Kang‐Chang J and
Brain SD.
Interaction of human adrenomedullin 13‐52 with calcitonin gene‐related peptide receptors in the microvasculature of the rat and hamster.
Br J Pharmacol
114:
592–597,
1995.
|
464. |
Reslerova M and
Loutzenhiser R.
Renal microvascular actions of calcitonin gene‐related peptide.
Am J Physiol
274:
F1078–F1085,
1998.
|
465. |
Hill CE and
Gould DJ.
Modulation of sympathetic vasoconstriction by sensory nerves and nitric oxide in rat irideal arterioles.
J Pharmacol Exp Ther
273:
918–926,
1995.
|
466. |
Ferrell WR,
McDougall JJ and
Bray RC.
Spatial heterogeneity of the effects of calcitonin gene‐related peptide (CGRP) on the microvasculature of ligaments in the rabbit knee joint.
Br J Pharmacol
121:
1397–1405,
1997.
|
467. |
Lang MG,
Paterno R,
Faraci FM and
Heistad DD.
Mechanisms of adrenomedullin‐induced dilatation of cerebral arterioles.
Stroke
28:
181–185,
1997.
|
468. |
Hong KW,
Kim CD,
Rhim BY and
Lee WS.
Effect of omega‐conotoxin GVIA and omega‐agatoxin IVA on the capsaicin‐sensitive calcitonin gene‐related peptide release and autoregulatory vasodilation in rat pial arteries.
J Cereb Blood Flow Metab
19:
53–60,
1999.
|
469. |
Hong KW,
Yoo SE,
Yu SS,
Lee JY and
Rhim BY.
Pharmacological coupling and functional role for CGRP receptors in the vasodilation of rat pial arterioles.
Am J Physiol
270:
H317–H323,
1996.
|
470. |
Lin HY,
Harris TL,
Flannery MS,
Aruffo A,
Kaji EH,
Gorn A,
Kolakowski LF, Jr.,
Lodish HF and
Goldring SR.
Expression cloning of an adenylate cyclase‐coupled calcitonin receptor.
Science
254:
1022–1024,
1991.
|
471. |
Smith DM,
Coppock HA,
Withers DJ,
Owji AA,
Hay DL,
Choksi TP,
Chakravarty P,
Legon S and
Poyner DR.
Adrenomedullin: receptor and signal transduction.
Biochem Soc Trans
30:
432–437,
2002.
|
472. |
Schini‐Kerth VB,
Fisslthaler B and
Busse R.
CGRP enhances induction of NO synthase in vascular smooth muscle cells via a cAMP‐dependent mechanism.
Am J Physiol
267:
H2483–H2490,
1994.
|
473. |
Beltowski J and
Jamroz A.
Adrenomedullin ‐ What do we know 10 years since its discovery?
Pol J Pharmacol
56:
5–27,
2004.
|
474. |
Cheung BM,
Li CY and
Wong LY.
Adrenomedullin: its role in the cardiovascular system.
Semin Vasc Med
4:
129–134,
2004.
|
475. |
Fernandez‐Sauze S,
Delfino C,
Mabrouk K,
Dussert C,
Chinot O,
Martin PM,
Grisoli F,
Ouafik L and
Boudouresque F.
Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors.
Int J Cancer
108:
797–804,
2004.
|
476. |
Shichiri M,
Fukai N,
Ozawa N,
Iwasaki H and
Hirata Y.
Adrenomedullin is an autocrine/paracrine growth factor for rat vascular smooth muscle cells.
Regul Pept
112:
167–173,
2003.
|
477. |
Kurtz A,
Muff R and
Fischer JA.
Calcitonin gene products and the kidney.
Klin Wochenschr
67:
870–875,
1989.
|
478. |
Hay DL,
Conner AC,
Howitt SG,
Smith DM and
Poyner DR.
The pharmacology of adrenomedullin receptors and their relationship to CGRP receptors.
J Mol Neurosci
22:
105–113,
2004.
|
479. |
Hay DL,
Conner AC,
Howitt SG,
Takhshid MA,
Simms J,
Mahmoud K and
Poyner DR.
The pharmacology of CGRP‐responsive receptors in cultured and transfected cells.
Peptides
25:
2019–2026,
2004.
|
480. |
Mallee JJ,
Salvatore CA,
LeBourdelles B,
Oliver KR,
Longmore J,
Koblan KS and
Kane SA.
Receptor activity‐modifying protein@@@@@ 140 determines the species selectivity of non‐peptide CGRP receptor antagonists.
J Biol Chem
277:
14294–14298,
2002.
|
481. |
Brain SD and
Grant AD.
Vascular actions of calcitonin gene‐related peptide and adrenomedullin.
Physiol Rev
84:
903–934,
2004.
|
482. |
Abdelrahman AM and
Pang CC.
Effect of intermedin/adrenomedullin‐2 on venous tone in conscious rats.
Naunyn Sehmiedebergs Arch Pharmacol
373:
376–380,
2006.
|
483. |
Miyashita K,
Itoh H,
Sawada N,
Fukunaga Y,
Sone M,
Yamahara K,
Yurugi T and
Nakao K.
Adrenomedullin promotes proliferation and migration of cultured endothelial cells.
Hypertens Res
26
(Suppl):
S93–S98,
2003.
|
484. |
Schwarz N,
Renshaw D,
Kapas S and
Hinson JP.
Adrenomedullin increases the expression of calcitonin‐like receptor and receptor activity modifying protein 2 mRNA in human microvascular endothelial cells.
J Endocrinol
190:
505–514,
2006.
|
485. |
Sata M,
Kakoki M,
Nagata D,
Nishimatsu H,
Suzuki E,
Aoyagi T,
Sugiura S,
Kojima H,
Nagano T,
Kangawa K,
Matsuo H,
Omata M,
Nagai R and
Hirata Y.
Adrenomedullin and nitric oxide inhibit human endothelial cell apoptosis via a cyclic GMP‐independent mechanism.
Hypertension
36:
83–88,
2000.
|
486. |
Shichiri M and
Hirata Y.
Regulation of cell growth and apoptosis by adrenomedullin.
Hypertens Res
26
(Suppl):
S9–S14,
2003.
|
487. |
Born W,
Muff R and
Fischer JA.
Functional interaction of G protein‐coupled receptors of the adrenomedullin peptide family with accessory receptor‐activity‐modifying proteins (RAMP).
Microsc Res Tech
57:
14–22,
2002.
|
488. |
Hay DL and
Smith DM.
Adrenomedullin receptors: molecular identity and function.
Peptides
22:
1753–1763,
2001.
|
489. |
Aldecoa A,
Gujer R,
Fischer JA and
Born W.
Mammalian calcitonin receptor‐like receptor/receptor activity modifying protein complexes define calcitonin gene‐related peptide and adrenomedullin receptors in Drosophila Schneider 2 cells.
FEBS Lett
471:
156–160,
2000.
|
490. |
Born W,
Fischer JA and
Muff R.
Receptors for calcitonin gene‐related peptide, adrenomedullin, and amylin: the contributions of novel receptor‐activity‐modifying proteins.
Recept Channels
8:
201–209,
2002.
|
491. |
Muff R,
Born W and
Fischer JA.
Adrenomedullin selectivity of calcitonin‐like receptor/receptor activity modifying proteins.
Hypertens Res
26
(Suppl):
S3–S8,
2003.
|
492. |
Shimekake Y,
Nagata K,
Ohta S,
Kambayashi Y,
Teraoka H,
Kitamura K,
Eto T,
Kangawa K and
Matsuo H.
Adrenomedullin stimulates two signal transduction pathways. cAMP accumulation and Ca2+ mobilization, in bovine aortic endothelial cells.
J Biol Chem
270:
4412–4417,
1995.
|
493. |
Herzog M,
Scherer EQ,
Albrecht B,
Rorabaugh B,
Scofield MA and
Wangemann P.
CGRP receptors in the gerbil spiral modiolar artery mediate a sustained vasodilation via a transient cAMPmediated Ca2 +‐decrease.
J Membr Biol
189:
225–236,
2002.
|
494. |
Szokodi I,
Kinnunen P,
Tavi P,
Weckstrom M,
Toth M and
Ruskoaho H.
Evidence for cAMP‐independent mechanisms mediating the effects of adrenomedullin, a new inotropic peptide.
Circulation
97:
1062–1070,
1998.
|
495. |
Champion HC,
Pierce RL,
Bivalacqua TJ,
Murphy WA,
Coy DH and
Kadowitz PJ.
Analysis of responses to hAmylin, hCGRP, and hADM in isolated resistance arteries from the mesenteric vascular bed of the rat.
Peptides
22:
1427–1434,
2001.
|
496. |
Haug T and
Storm JF.
Protein kinase A mediates the modulation of the slow Ca(2+)‐dependent K(+) current. I(sAHP). by the neuropeptides CRF, VIP, and CGRP in hippocampal pyramidal neurons.
J Neurophysiol
83:
2071–2079,
2000.
|
497. |
Dettmann ES,
Vysniauskiene I,
Wu R,
Flammer J and
Haefliger IO.
Adrenomedullin‐induced endothelium‐dependent relaxation in porcine ciliary arteries.
Invest Ophthalmol Vis Sci
44:
3961–3966,
2003.
|
498. |
Wangensteen R,
Quesada A,
Sainz J,
Duarte J,
Vargas F and
Osuna A.
Role of endothelium‐derived relaxing factors in adrenomedullin‐induced vasodilation in the rat kidney.
Eur J Pharmacol
444:
97–102,
2002.
|
499. |
Boussery K,
Delaey C and
Van de Voorde J.
Influence of adrenomedullin on tone of isolated bovine retinal arteries.
Invest Ophthalmol Vis Sci
45:
552–559,
2004.
|
500. |
Nikitenko LL.
Blucher N, Fox SB, Bicknell R, Smith DM and Rees MC. Adrenomedullin and CGRP interact with endogenous calcitonin‐receptor‐like receptor in endothelial cells and induce its desensitiation by different mechanisms.
J Cell Sci
119:
910–922,
2006.
|
501. |
Chu DQ,
Smith DM and
Brain SD.
Studies of the microvascular effects of adrenomedullin and related peptides.
Peptides
22:
1881–1886,
2001.
|
502. |
Katayama M,
Nadel JA,
Bunnett NW,
Di Maria GU,
Haxhiu M and
Borson DB.
Catabolism of calcitonin gene‐related peptide and substance P by neutral endopeptidase.
Peptides
12:
563–567,
1991.
|
503. |
Wilkinson IB,
McEniery CM,
Bongaerts KH,
MacCallum H,
Webb DJ and
Cockcroft JR.
Adrenomedullin (ADM) in the human forearm vascular bed: effect of neutral endopeptidase inhibition and comparison with proadrenomedullin NH2‐terminal 20 peptide (PAMP).
Br J Clin Pharmacol
52:
159–164,
2001.
|
504. |
Ozawa N,
Shichiri M,
Fukai N,
Yoshimoto T and
Hirata Y.
Regulation of adrenomedullin gene transcription and degradation by the c‐myc gene.
Endocrinology
145:
4244–4250,
2004.
|
505. |
Cormier‐Regard S,
Nguyen SV and
Claycomb WC.
Adrenomedullin gene expression is developmentally regulated and induced by hypoxia in rat ventricular cardiac myocytes.
J Biol Chem
273:
17787–17792,
1998.
|
506. |
Garayoa M,
Martinez A,
Lee S,
Pio R,
An WG,
Neckers L,
Trepel J,
Montuenga LM,
Ryan H,
Johnson R,
Gassmann M and
Cuttitta F.
Hypoxia‐inducible factor‐1 (HIF‐1) up‐regulates adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis.
Mol Endocrinol
14:
848–862,
2000.
|
507. |
Piehl F,
Ji RR,
Cullheim S,
Hokfelt T,
Lindholm D and
Hughes RA.
Fibroblast growth factors regulate calcitonin gene‐related peptide mRNA expression in rat motoneurons after lesion and in culture.
Eur J Neurosci
7:
1739–1750,
1995.
|
508. |
Jenkins DW,
Langmead CJ,
Parsons AA and
Strijbos PJ.
Regulation of calcitonin gene‐related peptide release from rat trigeminal nucleus caudalis slices in vitro.
Neurosci Lett
366:
241–244,
2004.
|
509. |
Kitamuro T,
Takahashi K,
Totsune K,
Nakayama M,
Murakami O,
Hida W,
Shirato K and
Shibahara S.
Differential expression of adrenomedullin and its receptor component, receptor activity modifying protein (RAMP) 2 during hypoxia in cultured human neuroblastoma cells.
Peptides
22:
1795–1801,
2001.
|
510. |
Ramkumar V,
Hallam DM and
Nie Z.
Adenosine, oxidative stress and cytoprotection.
Jpn J Pharmacol
86:
265–274,
2001.
|
511. |
Tabrizchi R and
Bedi S.
Pharmacology of adenosine receptors in the vasculature.
Pharmacol Ther
91:
133–147,
2001.
|
512. |
Auchampach JA and
Bolli R.
Adenosine receptor subtypes in the heart: therapeutic opportunities and challenges.
Am J Physiol
276:
H1113–H1116,
1999.
|
513. |
Li B,
Yang C,
Rosenbaum DM and
Roth S.
Signal transduction mechanisms involved in ischemic preconditioning in the rat retina in vivo.
Exp Eye Res
70:
755–765,
2000.
|
514. |
Fredholm BB,
IJzerman AP,
Jacobson KA,
Klotz KN and
Linden J.
International union of pharmacology XXV. Nomenclature and classification of adenosine receptors.
Pharmacol Rev
53:
527–552,
2001.
|
515. |
Kalaria RN and
Harik SI.
Adenosine receptors and the nucleoside transporter in human brain vasculature.
J Cereb Blood Flow Metab
8:
32–39,
1938.
|
516. |
Shryock JC and
Belardinelli L.
Adenosine and adenosine receptors in the cardicvascular system: biochemistry, physiology, and pharmacology.
Am J Cardiol
79:
2–10,
1997.
|
517. |
Fredholm BB,
Abbracchio MP,
Burnstock G,
Dubyak GR,
Harden TK,
Jacobson KA,
Schwabe U and
Williams M.
Towards a revised nomenclature for P1 and P2 receptors.
Trends Pharmacol Sci
18:
79–82,
1997.
|
518. |
Hardman JG,
Limbird LF and
Gilman AG.
Goodman and Gilman's The Pharmacological Basis of Therapeutics.
New York:
McGraw‐Hill,
2005.
|
519. |
de Jong JW,
de Jonge R,
Keijzer E and
Bradamante S.
The role of adenosine in preconditioning.
Pharmacol Ther
87:
141–149,
2000.
|
520. |
Kroll K and
Schrader J.
Myocardial adenosine stimulates release of cyclic adenosine monophosphate from capillary endothelial cells in guinea pig heart.
Pflugers Arch
423:
330–337,
1993.
|
521. |
Li YO and
Fredholm BB.
Adenosine analogues stimulate cyclic AMP formation in rabbit cerebral microvessels via adenosine A2‐receptors
Acta Physiol Scand
124:
253–259,
1985.
|
522. |
Bryan PT and
Marshall JM.
Adenosine receptor subtypes and vasodilatation in rat skeletal muscle during systemic hypoxia: a role for A1 receptors.
J Physiol
514
(Pt 1):
151–162,
1999.
|
523. |
Danialou G,
Vicaut E,
Sambe A,
Aubier M and
Boczkowski J.
Predominant role of A1 adenosine receptors in mediating adenosine induced vasodilatation of rat diaphragmatic arterioles: involvement of nitric oxide and the ATP‐dependent K+ channels.
Br J Pharmacol
121:
1355–1363,
1997.
|
524. |
Kuo L and
Chancellor JD.
Adenosine potentiates flow‐induced dilation of coronary arterioles by activating KATP channels in endothelium.
Am J Physiol
269:
H541–H549,
1995.
|
525. |
Li Q and
Puro DG.
Adenosine activates ATP‐sensitive K(+) currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors.
Brain Res
907:
93–99,
2001.
|
526. |
Baraldi PG,
Cacciari B,
Romagnoli R,
Merighi S,
Varani K,
Borea PA and
Spalluto G.
A(3) adenosine receptor ligands: history and perspectives.
Med Res Rev
20:
103–128,
2000.
|
527. |
Palmer TM and
Stiles GL.
Structure‐function analysis of inhibitory adenosine receptor regulation.
Neuropharmacology
36:
1141–1147,
1997.
|
528. |
Poulsen SA and
Quinn RJ.
Adenosine receptors: new opportunities for future drugs.
Bioorg Med Chem
6:
619–641,
1998.
|
529. |
Klinger M,
Freissmuth M and
Nanoff C.
Adenosine receptors: G protein‐mediated signalling and the role of accessory proteins.
Cell Signal
14:
99–108,
2002.
|
530. |
Linden J.
Molecular approach to adenosine receptors: receptor‐mediated mechanisms of tissue protection.
Annu Rev Pharmacol Toxicol
41:
775–787,
2001.
|
531. |
Marala RB and
Mustafa SJ.
Modulation of protein kinase C by adenosine: involvement of adenosine A1 receptor‐pertussis toxin sensitive nucleotide binding protein system.
Mol Cell Biochem
149‐150:
51–58,
1995.
|
532. |
Bryan PT and
Marshall JM.
Cellular mechanisms by which adenosine induces vasodilatation in rat skeletal muscle: significance for systemic hypoxia.
J Physiol
514
(Pt 1):
163–175,
1999.
|
533. |
Jackson WF.
Arteriolar tone is determined by activity of ATP‐sensitive potassium channels.
Am J Physiol
265:
H1797–H1803,
1993.
|
534. |
Dubey RK,
Gillespie DG,
Shue H and
Jackson EK.
A(2B) receptors mediate antimitogenesis in vascular smooth muscle cells.
Hypertension
35:
267–272,
2000.
|
535. |
Dubey RK,
Gillespie DG,
Zacharia LC,
Mi Z and
Jackson EK.
A(2b) receptors mediate the antimitogenic effects of adenosine in cardiac fibroblasts.
Hypertension
37:
716–721,
2001.
|
536. |
Stojanov I and
Proctor KG.
Pharmacological evidence for A1 and A2 adenosine receptors in the skin microcirculation.
Circ Res
65:
176–184,
1989.
|
537. |
Nicholls J,
Hourani SM and
Hall JM.
Characterization of adenosine receptors mediating the vasodilator effects of adenosine receptor agonists in the microvasculature of the hamster cheek pouch in vivo.
Auton Autacoid Pharmacol
22:
209–214,
2002.
|
538. |
Proctor KG.
Reduction of contraction‐induced arteriolar vasodilation by adenosine deaminase or theophylline.
Am J Physiol
247:
H195–H205,
1984.
|
539. |
Proctor KG and
Duling BR.
Adenosine and free‐flow functional hyperemia in striated muscle.
Am J Physiol
242:
H688–H697,
1982.
|
540. |
Radegran G and
Hellsten Y.
Adenosine and nitric oxide in exercise‐induced human skeletal muscle vasodilatation.
Acta Physiol Scand
168:
575–591,
2000.
|
541. |
Nishigaki K,
Faber JE and
Ohyanagi M.
Interactions between alpha‐adrenoceptors and adenosine receptors on microvascular smooth muscle.
Am J Physiol
260:
H1655–H1666,
1991.
|
542. |
Persson MG,
Ohlen A,
Lindbom L,
Hedqvist P and
Gustafsson LE.
Role of adenosine in functional hyperemia in skeletal muscle as indicated by pharmacological tools.
Naunyn Schmiedebergs Arch Pharmacol
343:
52–57,
1991.
|
543. |
Cohen KD and
Sarelius IH.
Muscle contraction under capillaries in hamster muscle induces arteriolar dilatation via K(ATP) channels and nitric oxide.
J Physiol
539:
547–555,
2002.
|
544. |
Berne RM,
Winn HR and
Rubio R.
The local regulation of cerebral blood flow.
Prog Cardiovasc Dis
24:
243–259,
1981.
|
545. |
Winn HR,
Rubio R and
Berne RM.
Brain adenosine production in the rat during 60 seconds of ischemia.
Circ Res
45:
486–492,
1979.
|
546. |
Beck DW,
Vinters HV,
Moore SA,
Hart MN,
Henn FA and
Cancilla PA.
Demonstration of adenosine receptors on mouse cerebral smooth muscle membranes.
Stroke
15:
725–727,
1984.
|
547. |
Kalaria RN and
Harik SI.
Adenosine receptors of cerebral microvessels and choroid plexus.
J Cereb Blood Flow Metab
6:
463–470,
1986.
|
548. |
Phillis JW.
Adenosine in the control of the cerebral circulation.
Cerebrovasc Brain Metab Rev
1:
26–54,
1989.
|
549. |
Ngai AC and
Winn HR.
Effects of adenosine and its analogues on isolated intracerebral arterioles. Extraluminal and intraluminal application.
Circ Res
73:
448–457,
1993.
|
550. |
Bari F,
Louis TM and
Busija DW.
Effects of ischemia on cerebral arteriolar dilation to arterial hypoxia in piglets.
Stroke
29:
222–227,
1998.
|
551. |
Ilift JJ,
D'Ambrosio R,
Ngai AC and
Winn HR.
Adenosine receptors mediate glutamate‐evoked arteriolar dilation in the rat cerebral cortex.
Am J Physiol Heart Circ Physiol
284:
H1631–H1637,
2003.
|
552. |
Berne RM.
Autoregulation of coronary blood flow; possible role of adenosine. In:
Problems in Laboratory Evaluation of Antianginal Agents,
ed. Winbury MW.
Amsterdam:
North‐Holland Publishing Company,
1967,
pp. 8–16.
|
553. |
Berne RM and
Rubio R.
Challenges to the adenosine hypothesis for the regulation of coronary blood flow. In:
Current Topics in Coronary Research,
eds Bloor CM and
Olsson RA.
New York:
Plenum Publishing,
1991,
pp. 3–10.
|
554. |
Rubio R and
Berne RM.
Release of adenosine by the normal myocardium in dogs and its relationship to the regulation of coronary resistance.
Circ Res
25:
407–415,
1969.
|
555. |
Rubio R,
Berne RM and
Katori M.
Release of adenosine in reactive hyperemia of the dog heart.
Am J Physiol
216:
56–62,
1969.
|
556. |
Rubio R,
Wiedmeier VT and
Berne RM,
Relationship between coronary flow and adenosine production and release.
J Mol Cell Cardiol
6:
561–566,
1974.
|
557. |
Kroll K and
Schrader J.
Myocardial adenosine stimulates release of cyclic adenosine monophosphate from capillary endothelial cells in guinea pig heart.
Pflugers Arch
423:
330–337,
1993.
|
558. |
DeFily DV,
Patterson JL and
Chilian WM.
Endogenous adenosine modulates alpha 2‐ but not alpha 1‐adrenergic constriction of coronary arterioles.
Am J Physiol
268:
H2487–H2494,
1995.
|
559. |
Ishibashi Y,
Duncker DJ,
Zhang J and
Bache RJ.
ATP‐sensitive K+ channels, adenosine, and nitric oxide‐mediated mechanisms account for coronary vasodilation during exercise.
Circ Res
82:
346–359,
1998.
|
560. |
Jackson EK and
Dubey RK.
Role of the extracellular cAMP‐adenosine pathway in renal physiology.
Am J Physiol Renal Physiol
281:
F597–F612,
2001.
|
561. |
Modiinger PS and
Welch WJ.
Adenosine A1 receptor antagonists and the kidney.
Curr Opin Nephrol Hypertens
12:
497–502,
2003.
|
562. |
Jackson EK,
Zhu C and
Tofovic SP.
Expression of adenosine receptors in the preglomerular microcirculation.
Am J Physiol Renal Physiol
283:
F41–F51,
2002.
|
563. |
Inscho EW,
Carmines PK and
Navar LG.
Juxtamedullary afferent arteriolar responses to P1 and P2 purinergic stimulation.
Hypertension
17:
1033–1037,
1991.
|
564. |
Sun D,
Samuelson LC,
Yang T,
Huang Y,
Paliege A,
Saunders T,
Briggs J and
Schnermann J.
Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors.
Proc Natl Acad Sci USA
98:
9983–9988,
2001.
|
565. |
Hansen PB,
Hashimoto S,
Briggs J and
Schnermann J.
Attenuated renovascular constrictor responses to angiotensin II in adenosine 1 receptor knockout mice.
Am J Physiol Regul Integr Comp Physiol
285:
R44–R49,
2003.
|
566. |
Hansen PB,
Castrop H,
Briggs J and
Schnermann J.
Adenosine induces vasoconstriction through Gi‐dependent activation of phospholipase C in isolated perfused afferent arterioles of mice.
J Am Soc Nephrol
14:
2457–2465,
2003.
|
567. |
Asako H,
Wolf RE and
Granger DN.
Leukocyte adherence in rat mesenteric venules: effects of adenosine and methotrexate.
Gastroenterology
104:
31–37,
1993.
|
568. |
Cronstein BN.
Adenosine, an endogenous anti‐inflammatory agent.
J Appl Physiol
76:
5–13,
1994.
|
569. |
Rosengren S,
Arfors KE and
Proctor KG.
Potentiation of leukotriene B4‐mediated inflammatory response by the adenosine antagonist, 8‐phenyl theophylline.
Int J Microcirc Clin Exp
10:
345–357,
1991.
|
570. |
Nguyen DK,
Montesinos MC,
Williams AJ,
Kelly M and
Cronstein BN.
Th1 cytokines regulate adenosine receptors and their downstream signaling elements in human microvascular endothelial cells.
J Immunol
171:
3991–3998,
2003.
|
571. |
Jin IX,
Shepherd RK,
Duling BR and
Linden J.
Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation.
J Clin Invest
100:
2849–2857,
1997.
|
572. |
Shepherd RK,
Linden J and
Duling BR.
Adenosine‐induced vasoconstriction in vivo. Role of the mast cell and A3 adenosine receptor.
Circ Res
78:
627–634,
1996.
|
573. |
Dusseau JW and
Hutchins PM.
Hypoxia‐induced angiogenesis in chick chorioallantoic membranes: a role for adenosine.
Respir Physiol
71:
33–44,
1988.
|
574. |
Gu JW,
Ito BR,
Sartin A,
Frascogna N,
Moore M and
Adair TH.
Inhibition of adenosine kinase induces expression of VEGF mRNA and protein in myocardial myoblasts.
Am J Physiol Heart Circ Physiol
279:
H2116–H2123,
2000.
|
575. |
Marshall JM.
Roles of adenosine and nitric oxide in skeletal muscle in acute and chronic hypoxia.
Adv Exp Med Biol
502:
349–363,
2001.
|
576. |
Montesinos MC,
Desai A,
Chen JF,
Yee H,
Schwarzschild MA,
Fink JS and
Cronstein BN.
Adenosine promotes wound healing and mediates angiogenesis in response to tissue injury via occupancy of A(2A) receptors.
Am J Pathol
160:
2009–2018,
2002.
|
577. |
Feoktistov I,
Ryzhov S,
Goldstein AE and
Biaggioni I.
Mast cell‐mediated stimulation of angiogenesis: cooperative interaction between A2B and A3 adenosine receptors.
Circ Res
92:
485–492,
2003.
|
578. |
Feoktistov I,
Ryzhov S.
Zhong H,
Goldstein AE,
Matafonov A,
Zeng D and
Biaggioni I.
Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an A2B angiogenic phenotype.
Hypertension
44:
649–654,
2004.
|
579. |
Feoktistov I,
Goldstein AE,
Ryzhov S,
Zeng D,
Belardinelli L,
Voyno‐Yasenetskaya T and
Biaggioni I.
Differential expression of adenosine receptors in human endothelial cells: role of A2B receptors in angiogenic factor regulation.
Circ Res
90:
531–538,
2002.
|
580. |
Khakh BS,
Burnstock G,
Kennedy C,
King BF,
North RA,
Seguela P,
Voigt M and
Humphrey PP.
International union of pharmacology XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits.
Pharmacol Rev
53:
107–118,
2001.
|
581. |
Revest PA,
Abbott NJ and
Gillespie JI.
Receptor‐mediated changes in intracellular [Ca2+] in cultured rat brain capillary endothelial cells.
Brain Res
549:
159–161,
1991.
|
582. |
Ehring GR,
Szabo IL,
Jones MK,
Sarfeh IJ and
Tarnawski AS.
ATP‐induced CA2+‐signaling enhances rat gastric microvascular endothelial cell migration.
J Physiol Pharmacol
51:
799–811,
2000.
|
583. |
Robertson PL,
Ar D and
Goldstein GW.
Phosphoinositide metabolism and prostacyclin formation in retinal microvascular endothelium: stimulation by adenine nucleotides.
Exp Eye Res
50:
37–44,
1990.
|
584. |
Evans RJ and
Surprenant A.
Vasoconstriction of guinea‐pig submucosal arterioles following sympathetic nerve stimulation is mediated by the release of ATP.
Br J Pharmacol
106:
242–249,
1992.
|
585. |
Galligan JJ,
Herring A and
Harpstead T.
Pharmacological characterization of purinoceptor‐mediated constriction of submucosal arterioles in guinea pig ileum.
J Pharmacol Exp Ther
274:
1425–1430,
1995.
|
586. |
Saino T,
Matsuura M and
Satoh YI.
Comparison of the effect of ATP on intracellular calcium ion dynamics between rat testicular and cerebral arteriole smooth muscle cells.
Cell Calcium
32:
153–163,
2002.
|
587. |
Inscho EW,
Mitchell KD and
Navar LG.
Extracellular ATP in the regulation of renal microvascular function.
FASEB J
8:
319–328,
1994.
|
588. |
Inscho EW.
Renal microvascular effects of P2 receptor stimulation.
Clin Exp Pharmacol Physiol
28:
332–339,
2001.
|
589. |
Inscho EW,
Cook AK,
Mui V and
Miller J.
Direct assessment of renal microvascular responses to P2‐purinoceptor agonists.
Am J Physiol
274:
F718–F727,
1998.
|
590. |
Inscho EW.
Purinoceptor‐mediated regulation of the renal microvasculature.
J Auton Pharmacol
16:
385–388,
1996.
|
591. |
Campbell DJ.
The renin‐angiotensin and the kallikrein‐kinin systems.
Int J Biochem Cell Biol
35:
784–791,
2003.
|
592. |
Campbell DJ.
Towards understanding the kallikrein‐kinin system: insights from measurement of kinin peptides.
Braz J Med Biol Res
33:
665–677,
2000.
|
593. |
Sharma JN and
Sharma J.
Cardiovascular properties of the kallikrein‐kinin system.
Curr Med Res Opin
18:
10–17,
2002.
|
594. |
Shariat‐Madar Z,
Mahdi F,
Warnock M,
Homeister JW,
Srikanth S,
Krijanovski Y,
Murphey LJ,
Jaffa AA and
Schmaier AH.
Bradykinin B2 receptor knockout mice are protected from thrombosis by increased nitric oxide and prostacyclin.
Blood
108:
192–199,
2006.
|
595. |
Cervenka L,
Vaneckova I,
Maly J,
Horacek V and
El Dahr SS.
Genetic inactivation of the B2 receptor in mice worsens two‐kidney, one‐clip hypertension: role of NO and the AT2 receptor.
J Hypertens
21:
1531–1538,
2003.
|
596. |
Chao J,
Bledsoe G,
Yin H and
Chao L.
The tissue kallikrein‐kinin system protects against cardiovascular and renal diseases and ischemic stroke independently of blood pressure reduction.
Biol Chem
387:
665–675,
2006.
|
597. |
Araujo RC,
Mori MA,
Merino VF,
Bascands JL,
Schanstra JP,
Zollner RL,
Villela CA,
Nakaie CR,
Paiva AC,
Pesquero JL,
Bader M and
Pesquero JB.
Role of the kinin Bl receptor in insulin homeostasis and pancreatic islet function.
Biol Chem
387:
431–436,
2006.
|
598. |
Cayla C,
Todiras M,
Iliescu R,
Saul W,
Gross V,
Pilz B,
Chai G,
Merino VF,
Pesquero JB,
Baltatu OC and
Bader M.
Mice deficient for both kinin receptors are normotensive and protected from endotoxin‐ induced hypotension.
FASEB J,
2007.
|
599. |
He GW,
Ge ZD,
Yim AP,
Yang Q and
Zhang RZ.
Electrophysiologic and mechanical evidence of superiority of hyperpolarizing versus depolarizing cardioplegia in protection of endothelium‐derived hyperpolarizing factor‐mediated endothelial function: a study in coronary resistance arteries.
J Thorac Cardiovasc Surg
127:
1773–1780,
2004.
|
600. |
De Moraes R,
Gioseffi G,
Nobrega AC and
Tibirica E.
Effects of exercise training on the vascular reactivity of the whole kidney circulation in rabbits.
J Appl Physiol
97:
683–688,
2004.
|
601. |
Batenburg WW,
Popp R,
Fleming I,
de Vries R,
Garrelds IM,
Saxena PR and
Danser AH.
Bradykinin‐induced relaxation of coronary micioarteries: S‐nitrosothiols as EDHF?
Br J Pharmacol
142:
125–135,
2004.
|
602. |
Batenburg WW,
Garrelds IM,
van Kats JP,
Saxena PR and
Danser AH.
Mediators of bradykinin‐induced vasorelaxation in human coronary microarteries.
Hypertension
43:
488–492,
2004.
|
603. |
Plante GE,
Perreault M,
Lanthier A,
Marette A and
Maheux P.
Reduction of endothelial NOS and bradykinin‐induced extravasation of macromolecules in skeletal muscle of the fructose‐fed rat model.
Cardiovasc Res
59:
963–970,
2003.
|
604. |
Abdouh M,
Khanjari A,
Abdelazziz N,
Ongali B,
Couture R and
Hassessian HM.
Early upregulation of kinin B1 receptors in retinal microvessels of the streptozotocin‐diabetic rat.
Br J Pharmacol
140:
33–40,
2003.
|
605. |
Lehmberg J,
Beck J,
Baethmann A and
Uhl E.
Influence of the bradykinin B1/B2‐receptor‐antagonist B 9430 on the cerebral microcirculation and outcome of gerbils from global cerebral ischemia.
Acta Neurochir Suppl
76:
39–41,
2000.
|
606. |
Lehmberg J,
Beck J,
Baethmann A and
Uhl E.
Bradykinin antagonists reduce leukocyte‐endothelium interactions after global cerebral ischemia.
J Cereb Blood Flow Metab
23:
441–448,
2003.
|
607. |
Ren Y,
Garvin JL,
Falck JR,
Renduchintala KV and
Carretero OA.
Glomerular autacoids stimulated by bradykinin regulate efferent arteriole tone.
Kidney Int
63:
987–993,
2003.
|
608. |
Shigematsu S,
Ishida S,
Gute DC and
Korthuis RJ.
Concentration‐dependent effects of bradykinin on leukocyte recruitment and venular hemodynamics in rat mesentery.
Am J Physiol
277:
H152–H160,
1999.
|
609. |
Shigematsu S,
Ishida S,
Gute DC and
Korthuis RJ.
Bradykinin‐induced proinflammatory signaling mechanisms.
Am J Physiol Heart Circ Physiol
283:
H2676–H2686,
2002.
|
610. |
Sato A,
Miura H,
Liu Y,
Somberg LB,
Otterson MF,
Demeure MJ,
Schulte WJ,
Eberhardt LM,
Loberiza FR,
Sakuma I and
Gutterman DD.
Effect of gender on endothelium‐dependent dilation to bradykinin in human adipose microvessels.
Am J Physiol Heart Circ Physiol
283:
H845–H852,
2002.
|
611. |
Cao T,
Brain SD,
Khodr B and
Khalil Z.
B1 and B2 antagonists and bradykinin‐induced blood flow in rat skin inflammation.
Inflamm Res
51:
295–299,
2002.
|
612. |
Jeppesen P,
Aalkjaer C and
Bek T.
Bradykinin relaxation in small porcine retinal arterioles.
Invest Ophthalmol Vis Sci
43:
1891–1896,
2002.
|
613. |
Thuringer D,
Maulon L and
Freiin C.
Rapid transactivation of the vascular endothelial growth factor receptor KDR/Flk‐1 by the bradykinin B2 receptor contributes to endothelial nitric‐oxide synthase activation in cardiac capillary endothelial cells.
J Biol Chem
277:
2028–2032,
2002.
|
614. |
Silvestre JS,
Bergaya S,
Tamarat R,
Duriez M,
Boulanger CM and
Levy BI.
Proangiogenic effect of angiotensin‐converting enzyme inhibition is mediated by the bradykinin B(2) receptor pathway.
Circ Res
89:
678–683,
2001.
|
615. |
Mashito Y,
Ichinose M and
Shirato K.
Bradykinin B2 antagonist HOE 140 inhibits late allergic microvascular leakage in guinea pig airways.
Immunopharmacology
43:
249–253,
1999.
|
616. |
Tsuchida S,
Miyazaki Y,
Matsusaka T,
Hunley TE,
Inagami T,
Fogo A and
Ichikawa I.
Potent antihypertrophic effect of the bradykinin B2 receptor system on the renal vasculature.
Kidney Int
56:
509–516,
1999.
|
617. |
Shigematsu S,
Ishida S,
Gute DC and
Korthuis RJ.
Bradykinin prevents postischemic leukocyte adhesion and emigration and attenuates microvascular barrier disruption.
Am J Physiol
277:
H161–H171,
1999.
|
618. |
Yu H,
Carretero OA,
Juncos LA and
Garvin JL.
Biphasic effect of bradykinin on rabbit afferent arterioles.
Hypertension
32:
287–292,
1998.
|
619. |
Kon V,
Fogo A and
Ichikawa I.
Bradykinin causes selective efferent arteriolar dilation during angiotensin I converting enzyme inhibition.
Kidney Int
44:
545–550,
1993.
|
620. |
Kontos HA,
Wei EP,
Kukreja RC,
Ellis EF and
Hess ML.
Differences in endothelium‐dependent cerebral dilation by bradykinin and acetylcholine.
Am J Physiol
258:
H1261–H1266,
1990.
|
621. |
Edwards RM.
Response of isolated renal arterioles to acetylcholine, dopamine, and bradykinin.
Am J Physiol
248:
F183–F189,
1985.
|
622. |
Resende AC,
Ballejo G and
Salgado MC.
Role of non‐nitric oxide non‐prostaglandin endothelium‐derived relaxing factor(s) in bradykinin vasodilation.
Braz J Med Biol Res
31:
1229–1235,
1998.
|
623. |
Tsukada M and
Chiba S.
Bradykinin‐induced vascular responses in dog isolated lingual artery.
Clin Exp Pharmacol Physiol
26:
456–460,
1999.
|
624. |
Zhang X,
Scicli GA,
Xu X,
Nasjletti A and
Hintze TH.
Role of endothelial kinins in control of coronary nitric oxide production.
Hypertension
30:
1105–1111,
1997.
|
625. |
Kichuk MR,
Seyedi N,
Zhang X,
Marboe CC,
Michler RE,
Addonizio LJ,
Kaley G,
Nasjletti A and
Hintze TH.
Regulation of nitric oxide production in human coronary microvessels and the contribution of local kinin formation.
Circulation
94:
44–51,
1996.
|
626. |
Miyamoto A,
Ishiguro S and
Nishio A.
Stimulation of bradykinin B2‐receptors on endothelial cells induces relaxation and contraction in porcine basilar artery in vitro.
Br J Pharmacol
128:
241–247,
1999.
|
627. |
Hargreaves KM,
Troullos ES,
Dionne RA,
Schmidt EA,
Schafer SC and
Joris JL.
Bradykinin is increased during acute and chronic inflammation: therapeutic implications.
Clin Pharmacol Ther
44:
613–621,
1988.
|
628. |
Pizurki L,
Zhou Z,
Glynos K,
Roussos C and
Papapetropoulos A.
Angiopoietin‐1 inhibits endothelial permeability, neutrophil adherence and IL‐8 production.
Br J Pharmacol
139:
329–336,
2003.
|
629. |
Emanuelia C and
Madeddu P.
Human tissue kallikrein: a new bullet for the treatment of ischemia.
Curr Pharm Des
9:
589–597,
2003.
|
630. |
Plendl J,
Snyman C,
Naidoo S,
Sawant S,
Mahabeer R and
Bhoola KD.
Expression of tissue kallikrein and kinin receptors in angiogenic microvascular endothelial cells.
Biol Chem
381:
1103–1115,
2000.
|
631. |
Pesquero JB and
Bader M.
Molecular biology of the kallikrein—kinin system: from structure to function.
Braz J Med Biol Res
31:
1197–1203,
1998.
|
632. |
Fleming I,
Michaelis UR,
Bredenkotter D,
Fisslthaler B,
Dehghani F,
Brandes RP and
Busse R.
Endothelium‐derived hyperpolarizing factor synthase {Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries.
Circ Res
88:
44–51,
2001.
|
633. |
Mombouli JV and
Vanhoutte PM.
Kinins and endothelial control of vascular smooth muscle.
Annu Rev Pharmacol Toxicol
35:
679–705,
1995.
|
634. |
Wahl M,
Gorlach C,
Hortobagyi T and
Benyo Z.
Effects of bradykinin in the cerebral circulation.
Acta Physiol Hung
86:
155–160,
1999.
|
635. |
Greene EL,
Velarde V and
Jaffa AA.
Role of reactive oxygen species in bradykinin‐induced mitogen‐activated protein kinase and c‐fos induction in vascular cells.
Hypertension
35:
942–947,
2000.
|
636. |
Shimizu S,
Ishii M,
Yamamoto T,
Kawanishi T,
Momose K and
Kuroiwa Y.
Bradykinin induces generation of reactive oxygen species in bovine aortic endothelial cells.
Res Commun Chem Pathol Pharmacol
84:
301–314,
1994.
|
637. |
Velarde V,
de la Cerda PM,
Duarte C,
Arancibia F,
Abbott E,
Gonzalez A,
Moreno F and
Jaffa AA.
Role of reactive oxygen species in bradykinin‐induced proliferation of vascular smooth muscle cells.
Biol Res
37:
419–430,
2004.
|
638. |
Drummond GR and
Cocks TM.
Endothelium‐dependent relaxation to the B1 kinin receptor agonist des‐Arg9‐bradykinin in human coronary arteries.
Br J Pharmacol
116:
3083–3085,
1995.
|
639. |
Kamitani T,
Little MH and
Ellis EF.
Evidence for a possible role of the brain kallikrein‐kinin system in the modulation of the cerebral circulation.
Circ Res
57:
545–552,
1985.
|
640. |
Lapointe N and
Rouleau JL.
Cardioprotective effects of vaso‐peptidase inhibitors.
Can J Cardiol
18:
415–420,
2002.
|
641. |
Prado GN,
Mierke DF,
LeBlanc T,
Manseau M,
Taylor L,
Yu J,
Zhang R,
Pal‐Ghosh R and
Polgar P.
Role of hydroxyl containing residues in the intracellular region of rat bradykinin B(2) receptor in signal transduction, receptor internalization, and resensitization.
J Cell Biochem
83:
435–447,
2001.
|
642. |
Bachvarov DR,
Houle S,
Bachvarova M,
Bouthillier J,
Adam A and
Marceau F.
Bradykinin B(2) receptor endocytosis, recycling, and down‐regulation assessed using green fluorescent protein conjugates.
J Pharmacol Exp Ther
297:
19–26,
2001.
|
643. |
Sabourin T,
Bastien L,
Bachvarov DR and
Marceau F.
Agonist‐induced translocation of the kinin B(1) receptor to caveolae‐related rafts.
Mol Pharmacol
61:
546–553,
2002.
|
644. |
Cabrini DA,
Campos MM,
Tratsk KS,
Merino VF,
Silva JA, Jr.,
Souza GE,
Avellar MC,
Pesquero JB and
Calixto JB.
Molecular and pharmacological evidence for modulation of kinin B(1) receptor expression by endogenous glucocorticoids hormones in rats.
Br J Pharmacol
132:
567–577,
2001.
|
645. |
Medeiros R,
Cabrini DA,
Ferreira J,
Fernandes ES,
Mori MA,
Pesquero JB,
Bader M,
Avellar MC,
Campos MM and
Calixto JB.
Bradykinin B1 receptor expression induced by tissue damage in the rat portal vein: a critical role for mitogen‐activated protein kinase and nuclear factor‐kappaB signaling pathways.
Circ Res
94:
1375–1382,
2004.
|
646. |
MacGlashan D, Jr.
Histamine: a mediator of inflammation.
J Allergy Clin Immunol
112:
S53–S59,
2003.
|
647. |
Hill SJ,
Ganellin CR,
Timmerman H,
Schwartz JC,
Shankley NP,
Young JM,
Schunack W,
Levi R and
Haas HL.
International union of pharmacology. XIII. Classification of histamine receptors.
Pharmacol Rev
49:
253–278,
1997.
|
648. |
Chester AH,
Borland JA,
Morrison KJ,
Amrani M,
Thom SM and
Yacoub MH.
Reactivity of small intramyocardial arteries from atherosclerotic and non‐atherosclerotic human hearts.
J Vasc Res
35:
170–178,
1998.
|
649. |
Yuan Y,
Granger HJ,
Zawieja DC,
DeFily DV and
Chilian WM.
Histamine increases venular permeability via a phospholipase C‐NO synthase‐guanylate cyclase cascade.
Am J Physiol
264:
H1734–H1739,
1993.
|
650. |
Rosenblum WI and
Nelson GH.
Tone regulates opposing endothelium‐dependent and ‐independent forces: resistance brain vessels in vivo.
Am J Physiol
259:
H243–H247,
1990.
|
651. |
Rosenblum WI,
Nelson GH and
Weinbrecht P.
Histamine elicits competing endothelium‐dependent constriction and endofhelium‐independent dilation in vivo in mouse cerebral arterioles.
Stroke
21:
305–309,
1990.
|
652. |
Mayhan WG.
Role of nitric oxide in histamine‐induced increases in permeability of the blood‐brain barrier.
Brain Res
743:
70–76,
1996.
|
653. |
Mirra R,
Busija DW,
Armstead WM and
Leffler CW.
Histamine dilates pial arterioles of newborn pigs through prostanoid production.
Am J Physiol
254:
H1023–H1026,
1988.
|
654. |
Yong T,
Bebo BF, Jr.,
Sapatino BV,
Welsh CJ,
Orr EL and
Linthicum DS.
Histamine‐induced microvascular leakage in pial venules: differences between the SJL/J and BALB/c inbred strains of mice.
J Neurotrauma
11:
161–171,
1994.
|
655. |
Schilling L and
Wahl M.
Opening of the blood‐brain barrier during cortical superfusion with histamine.
Brain Res
653:
289–296,
1994.
|
656. |
Kaley G,
Rotlenburg JM,
Messina EJ and
Wolin MS.
Endothelium‐associated vasodilators in rat skeletal muscle microcirculation.
Am J Physiol
256:
H720–H725,
1989.
|
657. |
Payne GW,
Madri JA,
Sessa WC and
Segal SS.
Abolition of arteriolar dilation but not constriction to histamine in cremaster muscle of eNOS−/− mice.
Am J Physiol Heart Circ Physiol
285:
H493–H498,
2003.
|
658. |
Karnes JL,
Mendel FC,
Fish DR and
Burton HW.
High‐voltage pulsed current: its influence on diameters of histamine‐dilated arterioles in hamster cheek pouches.
Arch Phys Med Rehabil
76:
381–386,
1995.
|
659. |
Mayhan WG and
Sharpe GM.
Generation of superoxide anion impairs histamine‐induced increases in macromolecular efflux.
Microvasc Res
61:
275–281,
2001.
|
660. |
Thorlacius H,
Raud J,
Xie X,
Hedqvist P and
Lindbom L.
Microvascular mechanisms of histamine‐induced potentiation of leukocyte adhesion evoked by chemoattractants.
Br J Pharmacol
116:
3175–3180,
1995.
|
661. |
Friedman M,
Johnson RG,
Wang SY,
Dai HB,
Thurer RL,
Weintraub RM and
Sellke FW.
Pulmonary microvascular responses to protamine and histamine. Effects of cardiopulmonary bypass.
J Thorac Cardiovasc Surg
108:
1092–1099,
1994.
|
662. |
Breil I,
Koch T,
Belz M,
Van Ackern K and
Neuhof H.
Effects of bradykinin, histamine and serotonin on pulmonary vascular resistance and permeability.
Acta Physiol Scand
159:
189–198,
1997.
|
663. |
Jancso G,
Santha P,
Horvath V and
Pierau F.
Inhibitory neurogenic modulation of histamine‐induced cutaneous plasma extravasation in the pigeon.
Regul Pept
95:
75–80,
2000.
|
664. |
Van d V,
Delaey C,
Depypere H and
Vanheel B.
Mechanisms involved in the vasorelaxing influence of histamine on isolated human subcutaneous resistance arteries.
Eur J Pharmacol
349:
61–66,
1998.
|
665. |
Harper EI,
Beck JS,
Spence VA and
Brown RA.
Effect of histamine and prostaglandin E2 on the microcirculation in the skin.
Agents Actions
24:
102–108,
1988.
|
666. |
Colditz IG.
The induction of plasma leakage in skin by histamine, bradykinin. activated complement, platelet‐activating factor and serotonin.
Immunol Cell Biol
69
(Pt 3):
215–219,
1991.
|
667. |
Suzuki H,
Zweifach BW and
Schmid‐Schonbein GW.
Glucocorticoid moculates vasodilator response of mesenteric arterioles in spontaneously hypertensive rats.
Hypertension
27:
114–118,
1996.
|
668. |
Bungardt E,
Buschauer A,
Moser U,
Schunack W,
Lambrecht G and
Mutschler E.
Histamine H1 receptors mediate vasodilation in guinea‐pig ileum resistance vessels: characterization with computer‐assisted videomicroscopy and new selective agonists.
Eur J Pharmacol
221:
91–98,
1992.
|
669. |
Thorlacius H,
Lindbom L,
Hedqvist P and
Raud J.
Microvascular actions of histamine: synergism with leukotriene B4 and role in allergic leucocyte recruitment.
Clin Exp Allergy
27:
445–451,
1997.
|
670. |
Kraneveld AD,
Koster AS and
Nijkamp FP.
Microvascular permeability in isolated vascularly perfused small intestine of rats.
Am J Physiol
266:
G1170–G1178,
1994.
|
671. |
Asako H,
Kurose I,
Wolf R,
DeFrees S,
Zheng ZL,
Phillips ML,
Paulson JC and
Granger DN.
Role of H1 receptors and P‐selectin in histamine‐induced leukocyte rolling and adhesion in postcapillary venules.
J Clin Invest
93:
1508–1515,
1994.
|
672. |
Al Naemi H and
Baldwin AL.
Nitric oxide protects venules against histamine‐induced leaks.
Microcirculation
7:
215–223,
2003.
|
673. |
Michel CC and
Kendall S.
Differing effects of histamine and serotonin on microvascular permeability in anaesthetized rats.
J Physiol
501
(Pt 3):
657–662,
1997.
|
674. |
Rothe CF and
Maass‐Moreno R.
Hepatic venular resistance responses to norepinephrine, isoproterenol, adenosine, histamine, and ACh in rabbits.
Am J Physiol
274:
H777–H785,
1998.
|
675. |
Wolf MB,
Scott DR and
Watson PD.
Microvascular permeability transients due to histamine in cat limb.
Am J Physiol
261:
H220–H228,
1991.
|
676. |
Davidge ST.
Prostaglandin H synthase and vascular function.
Circ Res
89:
650–660,
2001.
|
677. |
Schror K.
The effect of prostaglandins and thromboxane A2 on coronary vessel tone ‐ mechanisms of action and therapeutic implications.
Eur Heart J
14
(Suppl I):
34–41,
1993.
|
678. |
Tsuboi K,
Sugimoto Y and
Ichikawa A.
Prostanoid receptor subtypes.
Prostaglandins Other Lipid Mediat
68‐69:
535–556,
2002.
|
679. |
Breyer RM,
Kennedy CR,
Zhang Y and
Breyer MD.
Structure‐function analyses of eicosanoid receptors: physiologic and therapeutic implications.
Ann NY Acad Sci
905:
221–231,
2000.
|
680. |
Wright DH,
Abran D,
Bhattacharya M,
Hou X,
Bernier SG,
Bouayad A,
Fouron JC,
Vazquez‐Tello A,
Beauchamp MH,
Clyman RI,
Peri K,
Varma DR and
Chemtob S.
Prostanoid receptors: ontogeny and implications in vascular physiology.
Am J Physiol Regul Integr Comp Physiol
281:
R1343–R1360,
2001.
|
681. |
Breyer RM,
Bagdassarian CK,
Myers SA and
Breyer MD.
Prostanoid receptors: subtypes and signaling.
Annu Rev Pharmacol Toxicol
41:
661–690,
2001.
|
682. |
Breyer MD.
Prostaglandin receptors in the kidney: a new route for intervention?
Exp Nephrol
6:
180–188,
1998.
|
683. |
Coleman RA,
Smith WL and
Narumiya S.
International union of pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes.
Pharmacol Rev
46:
205–229,
1994.
|
684. |
Negishi M,
Sugimoto Y and
Ichikawa A.
Molecular mechanisms of diverse actions of prostanoid receptors.
Biochim Biophys Acta
1259:
109–119,
1995.
|
685. |
Pierce KL and
Regan JW.
Prostanoid receptor heterogeneity through alternative mRNA splicing.
Life Sci
62:
1479–1483,
1998.
|
686. |
Kobayashi T and
Narumiya S.
Function of prostanoid receptors: studies on knockout mice.
Prostaglandins Other Lipid Mediat
68‐69:
557–573,
2002.
|
687. |
Fredricks KT,
Liu Y and
Lombard JH.
Response of extraparenchymal resistance arteries of rat skeletal muscle to reduced PO2.
Am J Physiol
267:
H706–H715,
1994.
|
688. |
Lombard JH,
Liu Y,
Fredricks KT,
Bizub DM,
Roman RJ and
Rusch NJ.
Electrical and mechanical responses of rat middle cerebral arteries to reduced PO2 and prostacyclin.
Am J Physiol
276:
H509–H516,
1999.
|
689. |
Messina EJ,
Sun D,
Koller A,
Wolin MS and
Kaley G.
Role of endothelium‐derived prostaglandins in hypoxia‐elicited arteriolar dilation in rat skeletal muscle.
Circ Res
71:
790–796,
1992.
|
690. |
Ward ME.
Dilation of rat diaphragmatic arterioles by flow and hypoxia: roles of nitric oxide and prostaglandins.
J Appl Physiol
86:
1644–1650,
1999.
|
691. |
Versteeg HH,
van Bergen en Henegouwen PM,
van Deventer SJ and
Peppelenbosch MP.
Cyclooxygenase‐dependent signalling: molecular events and consequences.
FEBS Lett
445
(1‐5),
1999.
|
692. |
Gobeil F,
Vazquez‐Tello A,
Marrache AM,
Bhattacharya M,
Checchin D,
Bkaily G,
Lachapelle P.
Ribeiro‐da‐Silva A and
Chemtob S.
Nuclear prostaglandin signaling system: biogenesis and actions via heptahelical receptors.
Can J Physiol Pharmacol
81:
196–204,
2003.
|
693. |
Lim H and
Dey SK.
A novel pathway of prostacyclin signaling‐hanging out with nuclear receptors.
Endocrinology
143:
3207–3210,
2002.
|
694. |
Messina EJ,
Rodenburg J and
Kaley G.
Microcirculatory effects of leukotrienes, LTC4 and LTD4, in rat cremaster muscle.
Microcirc Endothelium Lymphatics
4:
355–376,
1988.
|
695. |
Rosenblum WI.
Constricting effect of leukotrienes on cerebral arterioles of mice.
Stroke
16:
262–263,
1985.
|
696. |
Rosenblum WI,
Nelson GH and
Nishimura H.
Leukotriene constriction of mouse pial arterioles in vivo is endothelium‐dependent and receptor‐mediated.
Stroke
21:
1618–1620,
1990.
|
697. |
Hedqvist P,
Gautam N and
Lindbom L.
Interactions between leukotrienes and other inflammatory mediators/modulators in the microvasculature.
Am J Respir Crit Care Med
161:
S117–S119,
2000.
|
698. |
Brink C,
Dahlen SE,
Drazen J,
Evans JF,
Hay DW,
Nicosia S,
Serhan CN,
Shimizu T and
Yokomizo T,
International union of pharmacology XXXVII. Nomenclature for leukotriene and lipoxin receptors.
Pharmacol Rev
55:
195–227,
2003.
|
699. |
Raud J,
Palmertz U,
Dahlen SE and
Hedqvist P.
Lipoxins inhibit microvascular inflammatory actions of leukotriene B4.
Adv Exp Med Biol
314:
185–192,
1991.
|
700. |
Tager AM,
Dufour JH,
Goodarzi K,
Bercury SD,
von Andrian UH and
Luster AD.
BLTR mediates leukotriene B(4)‐induced Chemotaxis and adhesion and plays a dominant role in eosinophil accumulation in a murine model of peritonitis.
J Exp Med
192:
439–446,
2000.
|
701. |
Yonei Y and
Guth PH.
Effect of a leukotriene receptor antagonist on LTC4 vasoconstriction in rat stomach.
Am J Physiol
259:
G147–G154,
1990.
|
702. |
Frisbee JC,
Maier KG,
Falck JR,
Roman RJ and
Lombard JH.
Integration of hypoxic dilation signaling pathways for skeletal muscle resistance arteries.
Am J Physiol Regul Integr Comp Physiol
283:
R309–R319,
2002.
|
703. |
Harder DR,
Gebremedhin D,
Narayanan J,
Jefcoat C,
Falck JR,
Campbell WB and
Roman R.
Formation and action of a P‐450 4A metabolite of arachidonic acid in cat cerebral microvessels.
Am J Physiol
266:
H2098–H2107,
1994.
|
704. |
Harder DR,
Narayanan J,
Birks EK,
Liard JF,
Imig JD,
Lombard JH,
Lange AR and
Roman RJ.
Identification of a putative microvascular oxygen sensor.
Circ Res
79:
54–61,
1996.
|
705. |
Kunert MP,
Roman RJ,
Alonso‐Galicia M,
Falck JR and
Lombard JH.
Cytochrome P‐450 omega‐hydroxylase: a potential O(2) sensor in rat arterioles and skeletal muscle cells.
Am J Physiol Heart Circ Physiol
280:
H1840–H1845,
2001.
|
706. |
Roman RJ.
P‐450 metabolites of arachidonic acid in the control of cardiovascular function.
Physiol Rev
82:
131–185,
2002.
|
707. |
Jiang M,
Mezentsev A,
Kemp R,
Byun K,
Falck JR,
Miano JM,
Nasjletti A,
Abraham NG and
Laniado‐Schwartzman M.
Smooth muscle ‐ specific expression of CYP4A1 induces endothelial sprouting in renal arterial microvessels.
Circ Res
94:
167–174,
2004.
|
708. |
Amaral SL,
Maier KG,
Schippers DN,
Roman RJ and
Greene AS.
CYP4A metabolites of arachidonic acid and VEGF are mediators of skeletal muscle angiogenesis.
Am J Physiol Heart Circ Physiol
284:
H1528–H1535,
2003.
|
709. |
Medhora M,
Narayanan J and
Harder D.
Dual regulation of the cerebral microvasculature by epoxyeicosatrienoic acids.
Trends Cardiovasc Med
11:
38–42,
2001.
|
710. |
Harder DR,
Alkayed NJ,
Lange AR,
Gebremedhin D and
Roman RJ.
Functional hyperemia in the brain: hypothesis for astrocyte‐derived vasodilator metabolites.
Stroke
29:
229–234,
1998.
|
711. |
Oltman CL,
Weintraub NL,
VanRollins M and
Dellsperger KC.
Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation.
Circ Res
83:
932–939,
1998.
|
712. |
Miura H,
Wachtel RE,
Liu Y,
Loberiza FR, Jr.,
Saito T,
Miura M and
Gutterman DD.
Flow‐induced dilation of human coronary arterioles: important role of Ca(2+)‐activated K(+) channels.
Circulation
103:
1992–1998,
2001.
|
713. |
Zhang C and
Harder DR.
Cerebral capillary endothelial cell mitogenesis and morphogenesis induced by astrocytic epoxyeicosatrienoic Acid.
Stroke
33:
2957–2964,
2002.
|
714. |
Gerritsen ME.
Physiological and pathophysiological roles of eicosanoids in the microcirculation.
Cardiovasc Res
32:
720–732,
1996.
|
715. |
Armstead WM.
Relationship between opioids and prostaglandins in hypoxia‐induced vasodilation of pial arteries in the newborn pig.
Proc Soc Exp Biol Med
212:
135–141,
1996.
|
716. |
Koller A,
Sun D,
Huang A and
Kaley G.
Corelease of nitric oxide and prostaglandins mediates flow‐dependent dilation of rat gracilis muscle arterioles.
Am J Physiol
267:
H326–H332,
1994.
|
717. |
Moller AD and
Grande PO.
Role of prostacyclin and nitric oxide in regulation of basal microvascular hydraulic permeability in cat skeletal muscle.
J Vasc Res
36:
245–252,
1999.
|
718. |
Muller B and
Schmidtke M.
Microvascular effects of iloprost in the hamster cheek pouch.
Adv Prostag Thromb Leukot Res
17A:
455–458,
1987.
|
719. |
Wu NZ and
Baldwin AL.
Possible mechanism(s) for permeability recovery of venules during histamine application.
Microvasc Res
44:
334–352,
1992.
|
720. |
Mayhan WG,
Simmons LK and
Sharpe GM.
Mechanism of impaired responses of cerebral arterioles during diabetes mellitus.
Am J Physiol
260:
H319–H326,
1991.
|
721. |
Boczkowski J,
Vicaut E,
Danialou G and
Aubier M.
Role of nitric oxide and prostaglandins in the regulation of diaphragmatic arteriolar tone in the rat.
J Appl Physiol
77:
590–596,
1994.
|
722. |
Faber JE,
Harris PD and
Joshua IG.
Microvascular response to blockade of prostaglandin synthesis in rat skeletal muscle.
Am J Physiol
243:
H51–H60,
1982.
|
723. |
Faber JE,
Harris PD and
Miller FN.
Microvascular sensitivity to PGE2 and PGI2 in skeletal muscle of decerebrate rat.
Am J Physiol
243:
H844–H851,
1982.
|
724. |
Merkus D,
Houweling B,
Zarbanoui A and
Duncker DJ.
Interaction between prostanoids and nitric oxide in regulation of systemic, pulmonary, and coronary vascular tone in exercising swine.
Am J Physiol Heart Circ Physiol
286:
H1114–H1123,
2004.
|
725. |
Higgs GA,
Moncada S and
Vane JR.
Prostacyclin as a potent dilator of arterioles in the hamster cheek pouch [proceedings],
J Physiol
275:
30P–31P,
1978.
|
726. |
Leffler CW and
Busija DW.
Prostanoids and pial arteriolar diameter in hypotensive newborn pigs.
Am J Physiol
252:
H687–H691,
1987.
|
727. |
Parfenova H and
Leffler CW.
Functional study on vasodilator effects of prostaglandin E2 in the newborn pig cerebral circulation.
Eur J Pharmacol
278:
133–142,
1995.
|
728. |
Liu Y,
Rusch NJ and
Lombard JH.
Loss of endothelium and receptor‐mediated dilation in pial arterioles of rats fed a short‐term high salt diet.
Hypertension
33:
686–688,
1999.
|
729. |
Frisbee JC,
Sylvester FA and
Lombard JH.
High‐salt diet impairs hypoxia‐induced cAMP production and hyperpolarization in rat skeletal muscle arteries.
Am J Physiol Heart Circ Physiol
281:
H1808–H1815,
2001.
|
730. |
Lombard JH,
Sylvester FA,
Phillips SA and
Frisbee JC.
High salt diet impairs vascular relaxation mechanisms in rat middle cerebral arteries.
Am J Physiol Heart Circ Physiol
284:
H1124–H1133,
2002.
|
731. |
Ellis EF,
Wei EP and
Kontos HA.
Vasodilation of cat cerebral arterioles by prostaglandins D2, E2, G2, and 12.
Am J Physiol
237:
H381–H385,
1979.
|
732. |
Ohno T,
Katori M,
Majima M,
Saeki T,
Boku K,
Nishiyama K,
Hayashi H and
Saigenji K.
Dilatation and constriction of rat gastric mucosal microvessels through prostaglandin EP2 and EP3 receptors.
Aliment Pharmacol Ther
13:
1243–1250,
1999.
|
733. |
Whittle BJ,
Oren‐Wolman N and
Guth PH.
Gastric vasoconstrictor actions of leukotriene C4, PGF2 alpha, and thromboxane mimetic U‐46619 on rat submucosal microcirculation in vivo.
Am J Physiol
248:
G580–G586,
1985.
|
734. |
Edwards RM.
Effects of prostaglandins on vasoconstrictor action in isolated renal arterioles.
Am J Physiol
248:
F779–F784,
1985.
|
735. |
Chaudhari A,
Gupta S and
Kirschenbaum MA.
Biochemical evidence for PG12 and PGE2 receptors in the rabbit renal preglomerular microvasculature.
Biochim Biophys Acta
1053:
156–161,
1990.
|
736. |
Imig JD,
Breyer MD and
Breyer RM.
Contribution of prostaglandin EP(2) receptors to renal microvascular reactivity in mice.
Am J Physiol Renal Physiol
283:
F415–F422,
2002.
|
737. |
Leffler CW and
Parfenova H.
Cerebral arteriolar dilation to hypoxia: role of prostanoids.
Am J Physiol
272:
H418–H424,
1997.
|
738. |
Koller A,
Dornyei G and
Kaley G.
Flow‐induced responses in skeletal muscle venules: modulation by nitric oxide and prostaglandins.
Am J Physiol
275:
H831–H836,
1998.
|
739. |
Sun D,
Huang A,
Smith CJ,
Stackpole CJ,
Connetta JA,
Shesely EG,
Koller A and
Kaley G.
Enhanced release of prostaglandins contributes to flow‐induced arteriolar dilation in eNOS knockout mice.
Circ Res
85:
288–293,
1999.
|
740. |
Parfenova H,
Shibata M,
Zuckerman S and
Leffler CW.
CO2 and cerebral circulation in newborn pigs: cyclic nucleotides and prostanoids in vascular regulation.
Am J Physiol
266:
H1494–H1501,
1994.
|
741. |
Herrmann KS.
Vasoconstrictor response of arterioles of the hamster cheek pouch to norepinephrine, prostaglandin H2, F2 alpha and carbocyclic thromboxane A2, a possible thromboxane A2 analogue.
Arch Int Pharmacodyn Ther
259:
180–185,
1982.
|
742. |
Verbeuren TJ,
Valiez MO,
Lavielle G and
Bouskela E.
Activation of thromboxane receptors and the induction of vasomotion in the hamster cheek pouch microcirculation.
Br J Pharmacol
122:
859–866,
1997.
|
743. |
Haberl RL,
Heizer ML and
Ellis EF.
Effect of the thromboxane A2 mimetic U 46619 on pial arterioles of rabbits and rats.
Stroke
18:
796–800,
1987.
|
744. |
Wagerle LC and
Busija DW.
Effect of thromboxane A2/endoperoxide antagonist SQ29548 on the contractile response to acetylcholine in newborn piglet cerebral arteries.
Circ Res
66:
824–831,
1990.
|
745. |
Huang A and
Koller A.
Endothelin and prostaglandin H2 enhance arteriolar myogenic tone in hypertension.
Hypertension
30:
1210–1215,
1997.
|
746. |
Huang A,
Sun D and
Koller A.
Shear stress‐induced release of prostaglandin H(2) in arterioles of hypertensive rats.
Hypertension
35:
925–930,
2000.
|
747. |
Bagi Z,
Ungvari Z,
Szollar L and
Koller A.
Flow‐induced constriction in arterioles of hyperhomocysteinemic rats is due to impaired nitric oxide and enhanced thromboxane A(2) mediation.
Arterioscler Thromb Vasc Biol
21:
233–237,
2001.
|
748. |
Ungvari Z,
Sarkadi‐Nagy E,
Bagi Z,
Szollar L and
Koller A.
Simultaneously increased TxA(2) activity in isolated arterioles and platelets of rats with hyperhomocysteinemia.
Arterioscler Thromb Vasc Biol
20:
1203–1208,
2000.
|
749. |
Ungvari Z and
Koller A.
Endothelin and prostaglandin H(2)/thromboxane A(2) enhance myogenic constriction in hypertension by increasing Ca(2+) sensitivity of arteriolar smooth muscle.
Hypertension
36:
856–861,
2000.
|
750. |
Kamitani T,
Little MH and
Ellis EF.
Effect of leukotrienes, 12‐HETE, histamine, bradykinin, and 5‐hydroxytryptamine on in vivo rabbit cerebral arteriolar diameter.
J Cereb Blood Flow Metab
5:
554–559,
1985.
|
751. |
Gulati N,
Philpot ME,
Gulati OP,
Malmsten C and
Huggel H.
Effects of leukotriene C4 and prostaglandin E2 on the rat mesentery in vitro and in vivo.
Prostaglandins Leukot Med
10:
257–268,
1983.
|
752. |
Michelassi F,
Shahinian HK and
Ferguson MK.
Effects of leukotrienes B4, C4, and D4 on rat mesenteric microcirculation.
J Surg Res
42:
475–482,
1987.
|
753. |
Larkin SW,
Fraser L,
Showell HJ,
Williams TJ and
Warren JB.
Prolonged microvascular vasodilation induced by leukotriene B4 in human skin is cyclooxygenase independent.
J Pharmacol Exp Ther
272:
392–398,
1995.
|
754. |
Jackson WF.
Arteriolar oxygen reactivity is inhibited by leukotriene antagonists.
Am J Physiol
257:
H1565–H1572,
1989.
|
755. |
Jackson WF.
Regional differences in mechanism of action of oxygen on hamster arterioles.
Am J Physiol
265:
H599–H603,
1993.
|
756. |
Bertolino F,
Valentin JP,
Maffre M,
Bessac AM and
John GW.
TxA2 receptor activation elicits organ‐specific increases in microvascular permeability in the rat.
Am J Physiol
268:
R366–R374,
1995.
|
757. |
Valentin JP,
Jover B,
Maffre M,
Bertolino F,
Bessac AM and
John GW.
Losartan prevents thromboxane A2/prostanoid (TP) receptor mediated increase in microvascular permeability in the rat.
Am J Hypertens
10:
1058–1063,
1997.
|
758. |
Bjork J,
Dahlen SE,
Hedqvist P and
Arfors KE.
Leukotrienes B4 and C4 have distinct microcirculatory actions in vivo.
Adv Prostag Thromb Leukot Res
12:
1–6,
1983.
|
759. |
Yong T and
Mayhan WG.
Effect of prostaglandin E1 on leukotriene C4‐induced increases in vascular permeability of hamster cheek pouch.
Inflammation
16:
159–167,
1992.
|
760. |
Kubes P,
Grisham MB,
Barrowman JA,
Gaginella T and
Granger DN.
Leukocyte‐induced vascular protein leakage in cat mesentery.
Am J Physiol
261:
H1872–H1879,
1991.
|
761. |
Laux V and
Seiffge D.
Mediator‐induced changes in macromolecular permeability in the rat mesenteric microcirculation.
Microvasc Res
49:
117–133,
1995.
|
762. |
Erlansson M,
Svensjo E and
Bergqvist D.
Leukotriene B4‐induced permeability increase in postcapillary venules and its inhibition by three different antiinflammatory drugs.
Inflammation
13:
693–705,
1989.
|
763. |
Bentzer P,
Holbeck S and
Grande PO.
Endothelin‐1 reduces microvascular fluid permeability through secondary release of prostacyclin in cat skeletal muscle.
Microvasc Res
63:
50–60,
2002.
|
764. |
Asako H,
Kubes P,
Wallace J,
Gaginella T,
Wolf RE and
Granger DN.
Indomethacin‐induced leukocyte adhesion in mesenteric venules: role of lipoxygenase products.
Am J Physiol
262:
G903–G908,
1992.
|
765. |
Gawlowski DM,
Benoit JN and
Granger HJ.
Microvascular pressure and albumin extravasation after leukocyte activation in hamster cheek pouch.
Am J Physiol
264:
H541–H546,
1993.
|
766. |
Goldman G,
Welbourn R,
Valeri CR,
Shepro D and
Hechtman HB.
Thromboxane A2 induces leukotriene B4 synthesis that in turn mediates neutrophil diapedesis via CD 18 activation.
Microvasc Res
41:
367–375,
1991.
|
767. |
Arndt H,
Russell JB,
Kurose I,
Kubes P and
Granger DN.
Mediators of leukocyte adhesion in rat mesenteric venules elicited by inhibition of nitric oxide synthesis.
Gastroenterology
105:
675–680,
1993.
|
768. |
Casillan AJ,
Gonzalez NC,
Johnson JS,
Steiner DR and
Wood JG.
Mesenteric microvascular inflammatory responses to systemic hypoxia are mediated by RAF and LTB4.
J Appl Physiol
94:
2313–2322,
2003.
|
769. |
Steiner DR,
Gonzalez NC and
Wood JG.
Leukotriene B(4) promotes reactive oxidant generation and leukocyte adherence during acute hypoxia.
J Appl Physiol
91:
1160–1167,
2001.
|
770. |
Jones G and
Hurley JV.
The effect of prostacyclin on the adhesion of leucocytes to injured vascular endothelium.
J Pathol
142:
51–59,
1984.
|
771. |
Higgs EA,
Higgs GA,
Moncada S and
Vane JR.
Prostacyclin (PGI2) inhibits the formation of platelet thrombi in arterioles and venules of the hamster cheek pouch.
Br J Pharmacol
63:
535–539,
1978.
|
772. |
Lehmann C,
Konig JP,
Dettmann J,
Birnbaum J and
Kox WJ.
Effects of iloprost, a stable prostacyclin analog, on intestinal leukocyte adherence and microvascular blood flow in rat experimental endotoxemia.
Crit Care Med
29:
1412–1416,
2001.
|
773. |
Franzeck UK,
Dorffler‐Melly J,
Hussain MA,
Wen S,
Froesch ER and
Bollinger A.
Effects of subcutaneous insulin‐like growth factor‐I infusion on skin microcirculation.
Int J Microcirc Clin Exp
15:
10–13,
1995.
|
774. |
Laham RJ,
Li J,
Tofukuji M,
Post M,
Simons M and
Sellke FW.
Spatial heterogeneity in VEGF‐induced vasodilation: VEGF dilates microvessels but not epicardial and systemic arteries and veins.
Ann Vasc Surg
17:
245–252,
2003.
|
775. |
Sellke FW,
Wang SY,
Stamler A,
Lopez JJ,
Li J,
Li J and
Simons M.
Enhanced microvascular relaxations to VEGF and bFGF in chronically ischemic porcine myocardium.
Am J Physiol
271:
H713–H720,
1996.
|
776. |
Walter DH,
Hink U,
Asahara T,
Van Belle E,
Horowitz J,
Tsurumi Y,
Vandlen R,
Heinsohn H,
Keyt B,
Ferrara N,
Symes JF and
Isner JM.
The in vivo bioactivity of vascular endothelial growth factor/vascular permeability factor is independent of N‐linked glycosylation.
Lab Invest
74:
546–556,
1996.
|
777. |
Rissanen TT,
Markkanen JE,
Arve K,
Rutanen J,
Kettunen MI,
Vajanto I,
Jauhiainen S,
Cashion L,
Gruchala M,
Narvanen O,
Taipale P,
Kauppinen RA,
Rubanyi GM and
Yla‐Herttuala S.
Fibroblast growth factor 4 induces vascular permeability, angiogenesis and arteriogenesis in a rabbit hindlimb ischemia model.
FASEB J
17:
100–102,
2003.
|
778. |
Khan AS,
Lynch CD,
Sane DC,
Willingham MC and
Sonntag WE.
Growth hormone increases regional coronary blood flow and capillary density in aged rats.
J Gerontol A Biol Sci Med Sci
56:
B364–B371,
2001.
|
779. |
Sato K,
Wu T,
Laham RJ,
Johnson RB,
Douglas P,
Li J,
Sellke FW,
Bunting S,
Simons M and
Post MJ.
Efficacy of intra‐coronary or intravenous VEGF165 in a pig model of chronic myocardial ischemia.
J Am Coll Cardiol
37:
616–623,
2001.
|
780. |
Rosenblatt S,
Irikura K,
Caday CG,
Finklestein SP and
Moskowitz MA.
Basic fibroblast growth factor dilates rat pial arterioles.
J Cereb Blood Flow Metab
14:
70–74,
1994.
|
781. |
Edwards MJ,
Schuschke DA,
Abney DL and
Miller FN.
Interleukin‐2 acutely induces protein leakage from the microcirculation.
J Surg Res
50:
609–615,
1991.
|
782. |
Minghini A,
Britt LD and
Hill MA.
Interleukin‐1 and interleukin‐6 mediated skeletal muscle arteriolar vasodilation: in vitro versus in vivo studies.
Shock
9:
210–215,
1998.
|
783. |
Tepperman BL and
Soper BD.
Effect of epidermal growth factor, transforming growth factor alpha and nerve growth factor on gastric mucosal integrity and microcirculation in the rat.
Regul Pept
50:
13–21,
1994.
|
784. |
Roberts WG and
Palade GE.
Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor.
J Cell Sci
108
(Pt 6):
2369–2379,
1995.
|
785. |
Nyborg NC and
Nielsen PJ.
Thrombin contracts isolated bovine retinal small arteries in vitro.
Invest Ophthalmol Vis Sci
31:
2307–2313,
1990.
|