References |
1. |
Davis GE and
Camarillo CW.
An alpha 2 beta 1 integrin‐dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three‐dimensional collagen matrix.
Exp Cell Res
224:
39–51,
1996.
|
2. |
Salazar R,
Bell SE and
Davis GE.
Coordinate induction of the actin cytoskeletal regulatory proteins gelsolin, vasodilator‐stimulated phosphoprotein, and profilin during capillary morphogenesis in vitro.
Exp Cell Res
249:
22–32,
1999.
|
3. |
Bayless KJ,
Salazar R and
Davis GE.
RGD‐dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three‐dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins.
Am J Pathol
156:
1673–1683,
2000.
|
4. |
Bayless KJ and
Davis GE.
The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three‐dimensional extracellular matrices.
J Cell Sci
115:
1123–1136,
2002.
|
5. |
Kamei M,
Saunders WB,
Bayless KJ,
Dye L,
Davis GE and
Weinstein BM.
Endothelial tubes assemble from intracellular vacuoles in vivo.
Nature
442:
453–456,
2006.
|
6. |
Caduff J,
Fischer L and
Burri P.
Scanning electron microscopic study of the developing microvasculature in the postnatal rat lung.
Anat Rec
216:
154–164,
1986.
|
7. |
Suri C,
Jones PF,
Patan S,
Bartunkova S,
Maisonpierre PC,
Davis S.
Sato TN and Yancopoulos GD, Requisite role of angiopoietin‐1, a ligand for the TIE2 receptor, during embryonic angiogenesis.
Cell
87:
1171–1180,
1996.
|
8. |
Patan S.
TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth.
Microvasc Res
56:
1–21,
1998.
|
9. |
Thurston G,
Suri C,
Smith K,
McClain J,
Sato T,
Yancopoulos G and
McDonald D.
Leakage resistant blood vessels in mice transgenically overexpressing angiopoietin‐1.
Science
286:
2511–2514,
1999.
|
10. |
Gamble JR,
Drew J,
Trezise L,
Underwood A,
Parsons M,
Kasminkas L,
Rudge J,
Yancopoulos G and
Vadas MA.
Angiopoietin‐1 is an anti‐permeability and anti‐inflammatory agent in vitro and targets cell junctions.
Ore Res
87:
603–607,
2000.
|
11. |
Thurston G,
Rudge JS,
Ioffe E,
Zhou H,
Ross L,
Croll SD,
Glazer N,
Holash J,
McDonald DM and
Yancopoulos GD.
Angiopoietin‐1 protects the adult vasculature against plasma leakage.
Nat Med
6:
460–463,
2000.
|
12. |
Thurston G.
Complementary actions of VEGF and angiopoietin‐1 on blood vessel growth and leakage.
J Anat
200:
575–580,
2002.
|
13. |
Jiang CK,
Epstein HS,
Tomic M,
Freedberg IM and
Blumenberg M.
Epithelial‐specific keratin gene expression: identification of a 300 base‐pair controlling segment.
Nucleic Acids Res
18:
247–253,
1990.
|
14. |
Maisonpierre PC,
Suri C,
Jones PF,
Bartunkova S,
Wiegand SJ,
Radziejewski C,
Compton D,
McClain J,
Aldrich TH,
Papadopoulos N,
Daly TJ,
Davis S,
Sato TN and
Yancopoulos GD.
Angiopoietin‐2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis [see comments].
Science
277:
55–60,
1997.
|
15. |
Satchell S,
Harper S and
Mathieson P.
Angiopoietin‐1 is normally expressed by periendothelial cells.
Thromb Haemost
86:
1597–1598,
2001.
|
16. |
Mandriota SJ and
Pepper MS.
Regulation of angiopoietin‐2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia.
Circ Res
83:
852–859,
1998.
|
17. |
Ornitz DM,
Xu J,
Colvin JS,
McEwen DG,
MacArthur CA,
Coulier F,
Gao G and
Goldfarb M.
Receptor specificity of the fibroblast growth factor family.
J Biol Chem
271:
15292–15297,
1996.
|
18. |
Burgess W and
Maciag T.
The heparin‐binding (fibroblast) growth factor family of proteins.
Annu Rev Biochem
58:
575–606,
1989.
|
19. |
Bikfalvi A,
Klein S,
Pintucci G and
Rifkin D.
Biological roles of fibroblast growth factor‐2.
Endocr Rev
18:
26–45,
1997.
|
20. |
Imamura T,
Engleka K,
Zhan X,
Tokita Y,
Forough R,
Roeder D,
Jackson A,
Maier J,
Hla T and
Maciag T.
Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence.
Science
249:
1567–1570,
1990.
|
21. |
Bugler B,
Amnlric F and
Prats H.
Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor.
Mol Cell Biol
11:
573–577,
1991.
|
22. |
Dono R,
Texido G,
Dussel R,
Ehmke H and
Zeller R.
Impaired cerebral cortex development and blood pressure regulation in FGF‐2‐deficient mice.
Embo J
17:
4213–4225,
1998.
|
23. |
Ortega S,
Ittmann M,
Tsang S,
Ehrlich M and
Basilico C.
Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2.
Proc Natl Acad Sci USA
95:
5672–5677,
1998.
|
24. |
Zhou M,
Sutlitf R,
Paul R,
Lorenz J,
Hoying J,
Haudenschild C,
Yin M,
Coffin J,
Kong L,
Kranias E,
Luo W,
Boivin G,
Duffy J,
Pawlowski S and
Doetschman T.
Fibroblast growth factor 2 control of vascular tone.
Nat Med
4:
201–207,
1998.
|
25. |
Miller DL,
Ortega S,
Bashayan O,
Basch R and
Basilico C.
Compensation by fibroblast growth factor I (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice.
Mol Cell Biol
20:
2260–2268,
2000.
|
26. |
Simons M and
Horowitz A.
Syndecan‐4 mediated signaling.
Cell Signal
13:
855–862,
2001.
|
27. |
Tkachenko E,
Lutgens E,
Stan R‐V and
Simons M.
Fibroblast growth factor 2 endocytosis in endothelial cells proceed via syndecan‐4‐dependent activation of Rac1 and a Cdc42 dependent macropinocytotic pathway.
J Cell Sci
117:
3189–3199,
2004.
|
28. |
Donate L,
Gherardi E,
Srinivasan N,
Sowdhamini R,
Aparicio S and
Blundell T.
Molecular evolution and domain structure of plasminogen‐related growth factors (HGF‐SF) and HGF1/MSP.
Protein Sci
3:
2378–2394,
1994.
|
29. |
Boros P and
Miller M.
Hepatocyte growth factor: a multifunctional cytokine.
Lancet
345:
293–295,
1995.
|
30. |
Matsumoto K and
Nakamura T.
Emerging multipotent aspects of hepatocyte growth factor.
J Biochem
119:
591–600,
1996.
|
31. |
Bottaro DP,
Rubin JS,
Faletto D,
Chan A,
Kmiecik T,
Van de Woude G and
Aaronson SA,
Identification of the hepatocyte growth factor receptor as the c‐met proto‐oncogene product.
Science
251:
802–804,
1991.
|
32. |
Ma P,
Maulik G,
Christensen J and
Salgia R.
c‐Met: structure, functions and potential for therapeutic inhibition.
Cancer Metastasis Rev
22:
309–325,
2003.
|
33. |
Bladt F,
Riethmacher D,
Isenmann S,
Aguzzi A and
Birchmeier C.
Essential role for the c‐met receptor in the migration of myogenic precursor cells into the limb bud.
Nature
376:
768–771,
1995.
|
34. |
Schmidt C,
Bladt F,
Goedecke S,
Brinkmann V,
Zschiesche W,
Sharpe M,
Gherardi E and
Birchmeier C.
Scatter factor/hepatocyte growth factor is essential for liver development.
Nature
373:
699–702,
1995.
|
35. |
Uehara Y,
Minowa O,
Mori C,
Shiota K,
Kuno J,
Noda T and
Kitamura N.
Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor.
Nature
373:
702–705,
1995.
|
36. |
Morimoto A,
Okamura K,
Hamanaka R,
Sato Y,
Shima N,
Higashio K and
Kuwano M.
Hepatocyte growth factor modulates migration and proliferation of human microvascular endothelial cells in culture.
Biochem Biophys Res Commun
179:
1042–1049,
1991.
|
37. |
Bussolino F,
Di Renzo MF,
Ziche M,
Bocchietto E,
Olivero M,
Naldini L,
Gaudino G,
Tamagnone L,
Coffer A and
Comoglio PM,
Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth.
J Cell Biol
119:
629–641,
1992.
|
38. |
Jeffers M,
Rong S and
Woude GF,
Hepatocyte growth factor/scatter factor‐Met signaling in tumorigenicity and invasion/metastasis.
J Mol Med
74:
505–513,
1996.
|
39. |
Rosen EM,
Lamszus K,
Laterra J,
Polverini PJ,
Rubin JS and
Goldberg ID.
HGF/SF in angiogenesis.
Ciba Found Symp
212:
215–226,
1997, discussion 227‐219.
|
40. |
Kumar R,
Yoneda J,
Bucana CD and
Fidler IJ.
Regulation of distinct steps of angiogenesis by different angiogenic molecules.
Int J Oncol
12:
749–757,
1998.
|
41. |
Montesano R,
Soriano JV,
Malinda KM,
Ponce ML,
Bafico A,
Kleinman HK,
Bottaro DP and
Aaronson SA.
Differential effects of hepatocyte growth factor isoforms on epithelial and endothelial tubulogenesis.
Cell Growth Differ
9:
355–365,
1998.
|
42. |
Van Belle E,
Witzenbichler B,
Chen D,
Silver M,
Chang L,
Schwall R and
Isner JM.
Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis.
Circulation
97:
381–390,
1998.
|
43. |
Xin X,
Yang S,
Ingle G,
Zlot C,
Rangell L,
Kowalski J,
Schwall R,
Ferrara N and
Gerritsen ME.
Hepatocyte growth factor enhances vascular endothelial growth factor‐induced angiogenesis in vitro and in vivo.
Am J Pathol
158:
1111–1120,
2001.
|
44. |
Gerritsen ME,
Soriano R,
Yang S,
Zlot C,
Ingle G,
Toy K and
Williams PM.
Branching out: a molecular fingerprint of endothelial differentiation into tube‐like structures generated by Affymetrix oligonucleotide arrays.
Microcirculation
10:
63–81,
2003a.
|
45. |
Zlot C,
Ingle G,
Hongo J,
Yang S,
Sheng Z,
Schwall R,
Paoni N,
Wang F,
Peak FV, Jr, and
Gerritsen ME.
Stanniocalcin 1 is an autocrine modulator of endothelial angiogenic responses to hepatocyte growth factor.
J Biol Chem
278:
47654–47659,
2003.
|
46. |
Morishita R,
Nakamura S,
Hayashi S,
Taniyama Y,
Moriguchi A,
Nagano T,
Taiji M,
Noguchi H,
Takeshita S,
Matsumoto K,
Nakamura T,
Higaki J and
Ogihara T.
Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy.
Hypertension
33:
1379–1384,
1999.
|
47. |
Ueda H,
Sawa Y,
Matsumoto K,
Kitagawa‐Sakakida S,
Kawahira Y,
Nakamura T,
Kaneda Y and
Matsuda H.
Gene transfection of hepatocyte growth factor attenuates reperfusion injury in the heart.
Ann Thorac Surg
67:
1726–1731,
1999.
|
48. |
Aoki M,
Morishita R,
Taniyama Y,
Kida I,
Moriguchi A,
Matsumoto K,
Nakamura T,
Kaneda Y,
Higaki J and
Ogihara T.
Angiogenesis induced by hepatocyte growth factor in non‐infarcted myocardium and infarcted myocardium: up‐regulation of essential transcription factor for angiogenesis, ets.
Gene Ther
7:
417–427,
2000.
|
49. |
Taniyama Y,
Morishita R,
Aoki M,
Nakagami H,
Yamamoto K,
Yamazaki K,
Matsumoto K,
Nakamura T,
Kaneda Y and
Ogihara T.
Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: preclinical study for treatment of peripheral arterial disease.
Gene Ther
8:
181–189,
2001a.
|
50. |
Taniyama Y,
Morishita R,
Hiraoka K,
Aoki M,
Nakagami H,
Yamasaki K,
Matsumoto K,
Nakamura T,
Kaneda Y and
Ogihara T.
Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model: molecular mechanisms of delayed angiogenesis in diabetes.
Circulation
104:
2344–2350,
2001b.
|
51. |
Ahmet I,
Sawa Y,
Yamaguchi T and
Matsuda H.
Gene transfer of hepatocyte growth factor improves angiogenesis and function of chronic ischemic myocardium in canine heart.
Ann Thorac Surg
75:
1283–1287,
2003.
|
52. |
Sengupta S,
Gherardi E,
Sellers LA,
Wood JM,
Sasisekharan R and
Fan TP.
Hepatocyte growth factor/scatter factor can induce angiogenesis independently of vascular endothelial growth factor.
Arterioscler Thromb Vase Biol
23:
69–75,
2003.
|
53. |
Morishita R,
Aoki M,
Hashiya N,
Yamasaki K,
Kurinami H,
Shimizu S,
Makino H,
Takesya Y,
Azuma J and
Ogihara T.
Therapeutic angiogenesis using hepatocyte growth factor (HGF).
Curr Gene Ther
4:
199–206,
2004.
|
54. |
Ono K,
Matsumori A,
Shioi T,
Furukawa Y and
Sasayama S.
Enhanced expression of hepatocyte growth factor/c‐Met by myocardial ischemia and reperfusion in a rat model.
Circulation
95:
2552–2558,
1997.
|
55. |
Sato T,
Fujieda H,
Murao S,
Sato H,
Takeuchi T and
Ohtsuki Y.
Sequential changes of hepatocyte growth factor in the serum and enhanced c‐Met expression in the myocardium in acute myocardial infarction.
Jpn Circ J
63:
906–908,
1999.
|
56. |
Nakamura T,
Mizuno S,
Matsumoto K,
Sawa Y and
Matsuda H.
Myocardial protection from isehemia/reperfusion injury by endogenous and exogenous HGF.
J Clin Invest
106:
1511–1519,
2000.
|
57. |
Yasuda S,
Goto Y,
Baba T,
Satoh T,
Sumida H,
Miyazaki S and
Nonogi H.
Enhanced secretion of cardiac hepatocyte growth factor from an infarct region is associated with less severe ventricular enlargement and improved cardiac function.
J Am Coll Cardiol
36:
115–121,
2000.
|
58. |
Sato T,
Tani Y,
Murao S,
Fujieda H,
Sato H,
Matsumoto M,
Takeuchi T and
Ohtsuki Y.
Focal enhancement of expression of c‐Met/hepatocyte growth factor receptor in the myocardium in human myocardial infarction.
Cardiovasc Pathol
10:
235–240,
2001.
|
59. |
Min JK,
Lee YM,
Hun Kim J,
Kim YM,
Wan Kim S,
Lee SY,
Gho YS,
Oh GT and
Kwon YG,
Hepatocyte growth factor suppresses vascular endothelial growth factor‐induced expression of endothelial ICAM‐1 and VCAM‐1 by inhibiting the nuclear factor‐κB pathway.
Circ Res.
2005.
|
60. |
Gerritsen ME,
Tomlinson JE,
Zlot C,
Ziman M and
Hwang S.
Using gene expression profiling to identify the molecular basis of the synergistic actions of hepatocyte growth factor and vascular endothelial growth factor in human endothelial cells.
Br J Pharmacol
140:
595–610,
2003b.
|
61. |
D'Amore PA and
Smith SR.
Growth factor effects on cells of the vascular wall: a survey.
Growth Factors
8:
61–75,
1993.
|
62. |
Battegay EJ,
Rupp J,
Iruela‐Arispe L,
Sage EH and
Pech M.
PDGF‐BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta‐receptors.
J Cell Biol
125:
917–928,
1994.
|
63. |
Leveen P,
Pekny M,
Gebre‐Medhin S,
Swolin B,
Larsson E and
Betsholtz C.
Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities.
Genes Dev
8:
1875–1887,
1994.
|
64. |
Lindahl P,
Johansson BR,
Leveen P and
Betsholtz C.
Pericyte loss and microaneurysm formation in PDGF‐B‐deficient mice.
Science
277:
242–245,
1997.
|
65. |
Hellstrom M,
Gerhardt H,
Kalen M,
Li X,
Eriksson U,
Wolburg H and
Betsholtz C.
Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis.
J Cell Biol
153:
543–553,
2001.
|
66. |
Massague J.
TGF‐beta signal transduction.
Annu Rev Biochem
67:
753–791,
1998.
|
67. |
Shi Y and
Massague J.
Mechanisms of TGF‐beta signaling from cell membrane to the nucleus.
Cell
113:
685–700,
2003.
|
68. |
O'Connell P,
McKenzie A,
Fisicaro N,
Rockman S,
Pearse M and
d'Apice A.
Endoglin: a 180‐kD endothelial cell and macrophage restricted differentiation molecule.
Clin Exp Immunol
90:
154–159,
1992.
|
69. |
Wong S,
Hamel L,
Chevalier S P A and
Chevalier P A.
Endoglin expression on human microvascular endothelial cells association with betaglycan and formation of higher order complexes with TGF‐beta signalling receptors.
Eur J Biochem
267:
5550–5560,
2000.
|
70. |
Pierelli L,
Bonanno G,
Rutella S,
Marone M,
Scambia G and
Leone G.
CD 105 (endoglin) expression on hematopoietic stem/progenitor cells.
Leuk Lymphoma
42:
1195–1206,
2001.
|
71. |
Yang EY and
Moses HL.
Transforming growth factor beta 1‐induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane.
J Cell Biol
111:
731–741,
1990.
|
72. |
Phillips GD,
Whitehead RA and
Knighton DR.
Inhibition by methylprednisolone acetate suggests an indirect mechanism for TGF‐B induced angiogenesis.
Growth Factors
6:
77–84,
1992.
|
73. |
Kulkarni A,
Huh C,
Becker D,
Geiser A,
Lyght M,
Flanders K,
Roberts A,
Sporn M,
Ward J and
Karlsson S.
Transforming growth factor (31 null mutation in mice causes excessive inflammatory response and early death.
Proc Natl Acad Sci USA
90:
770–774,
1993.
|
74. |
Dickson M,
Martin J,
Cousins F,
Kulkarni A,
Karlsson S and
Akhurst R.
Defective haematopoiesis and vasculogenesis in transforming growth factor‐β1 knock out mice.
Development
121:
1845–1854,
1995.
|
75. |
Larsson J,
Goumans M,
Sjostrand L,
van Rooijen M,
Ward D,
Leveen P,
Xu X,
ten Dijke P,
Mummery C and
Karlsson S.
Abnormal angiogenesis but intact hematopoietic potential in TGF‐β type I receptor‐deficient mice.
Embo J
20:
1663–1673,
2001b.
|
76. |
Bourdeau A,
Dumont DJ and
Letarte M.
A murine model of hereditary hemorrhagic telangiectasia.
J Clin Invest
104:
1343–1351,
1999.
|
77. |
Goumans MJ and
Mummery C.
Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice.
Int J Dev Biol
44:
253–265,
2000.
|
78. |
Duff SE,
Li C,
Garland JM and
Kumar S.
CD 105 is important for angiogenesis: evidence and potential applications.
Faseb J
17:
984–992,
2003.
|
79. |
Tuxhorn JA,
McAlhany SJ,
Yang F,
Dang TD and
Rowley DR.
Inhibition of transforming growth factor‐beta activity decreases angiogenesis in a human prostate cancer‐reactive stroma xenograft model.
Cancer Res
62:
6021–6025,
2002.
|
80. |
Zhang F,
Lee J,
Lu S,
Pettaway CA and
Dong Z.
Blockade of transforming growth factor‐beta signaling suppresses progression of androgen‐independent human prostate cancer in nude mice.
Clin Cancer Res
11:
4512–4520,
2005.
|
81. |
Martone T,
Rosso P,
Albera R,
Migliaretti G,
Fraire F,
Pignataro L,
Pruned G,
Bellone G and
Cortesina G.
Prognostic relevance of CD 105+ microvessel density in HNSCC patient outcome.
Oral Oncol
41:
147–155,
2005.
|
82. |
Chuang HC,
Su CY,
Huang HY,
Chien CY,
Chen CM and
Huang CC.
High expression of CD105 as a prognostic predictor of early tongue cancer.
Laryngoscope
116:
1175–1179,
2006.
|
83. |
Kyzas PA,
Agnantis NJ and
Stefanou D.
Endoglin (CD 105) as a prognostic factor in head and neck squamous cell carcinoma.
Virchows Arch
448:
768–775,
2006.
|
84. |
Taskiran C,
Erdem O,
Onan A,
Arisoy O,
Acar A,
Vural C,
Erdem M,
Ktaoglu O and
Guner H.
The prognostic value of endoglin (CD105) expression in ovarian carcinoma.
Int J Gynecol Cancer
16:
1789–1793,
2006.
|
85. |
Autiero M,
Luttun A,
Tjwa M and
Carmeliet P.
Placental growth factor and its receptor, vascular endothelial growth factor receptor‐1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders.
J Thromb Haemast
1:
1356–1370,
2003.
|
86. |
Kahn J,
Mehraban F,
Ingle G,
Xin X,
Bryant J,
Vehar G,
Schoenfeld J,
Grimaldi C,
Peak F,
Drakharapu A,
Lewin D and
Gerritsen M.
Gene expression profiling in an in vitro model of angiogenesis.
Am J Pathol
156:
1887–1900,
2000.
|
87. |
Bell SE,
Mavila A,
Salazar R,
Bayless KJ,
Kanagala S,
Maxwell SA and
Davis CE.
Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression. cellular differentiation and G‐protein signaling.
J Cell Sci
114:
2755–2773,
2001.
|
88. |
Yang W,
Ahn H,
Hinrichs M,
Torry RJ and
Torry DS.
Evidence of a novel isoform of placenta growth factor (PIGF‐4) expressed in human trophoblast and endothelial cells.
J Reprod Immunol
60:
53–60,
2003.
|
89. |
Iyer S,
Leonidas DD,
Swaminathan GJ,
Maglione D,
Battisti M,
Tucci M,
Persico MG and
Acharya KR.
The crystal structure of human placenta growth factor‐1 (P1GF‐I), an angiogenic protein, at 2.0A resolution.
J Biol Chem
276:
12153–2161,
2001.
|
90. |
Carmeliet P,
Moons L,
Luttun A,
Vincenti V,
Compernolle V,
De Mol M,
Wu Y,
Bono F,
Devy L,
Beck H,
Scholz D,
Acker T,
DiPalma T,
Dewerchin M,
Noel A,
Stalmans I,
Barra A,
Blacher S,
Vandendriessche T,
Ponten A,
Eriksson U,
Plate KH,
Foidart JM,
Schaper W,
Charnock‐Jones DS,
Hicklin DJ,
Herbert JM,
Collen D and
Persico MG.
Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions.
Nat Med
7:
575–583,
2001b.
|
91. |
Lagercrantz J,
Farnebo F,
Larsson C,
Tvrdik T,
Weber G and
Piehl F.
A comparative study of the expression patterns for vegf, vegf‐b/vrf and vegf‐c in the developing and adult mouse.
Biochim Biophys Acta
1398:
157–163,
1998.
|
92. |
Olofsson B,
Korpelainen E,
Pepper MS,
Mandriota SJ,
Aase K,
Kumar V,
Gumji Y,
Jeltsch MM,
Shibuya M,
Alitalo K and
Eriksson U.
Vascular endothelial growth factor B (VEGF‐B) binds to VEGF receptor‐1 and regulates plasminogen activator activity in endothelial cells.
Proc Natl Acad Sci USA
95:
11709–11714,
1998.
|
93. |
Aase K,
von Euler G,
Li X,
Ponten A,
Thoren P,
Cao R,
Cao Y,
Olofsson B,
Gebre‐Medhin S,
Pekny M,
Alitalo K,
Betsholtz C and
Eriksson U.
Vascular endothelial growth factor‐B‐deficient mice display an atrial conduction defect.
Circulation
104:
358–364,
2001.
|
94. |
Olofsson B,
Pajusola K,
Kaipainen A,
von Euler G,
Joukov V,
Saksela O,
Orpana A,
Pettersson RF,
Alitalo K and
Eriksson U.
Vascular endothelial growth factor B, a novel growth factor for endothelial cells.
Porc Natl Acad Sci USA
93:
2576–2581,
1996.
|
95. |
Silvestre JS,
Tamarat R,
Ebrahimian TG,
Le‐Roux A,
Clergue M,
Emmanuel F,
Duriez M,
Schwartz B,
Branellec D and
Levy BI.
Vascular endothelial growth factor‐B promotes in vivo angiogenesis.
Circ Res
93:
114–123,
2003.
|
96. |
Lee J,
Gray A,
Yuan J,
Luoh SM,
Avraham H and
Wood WI.
Vascular endothelial growth factor‐related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4,
Pmc Natl Acad Sci USA
93:
1988–1992,
1996.
|
97. |
Achen MG,
Jeltsch M,
Kukk E,
Makinen T,
Vitali A,
Wilks AF,
Alitalo K and
Stacker SA.
Vascular endothelial growth factor D (VEGF‐D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4).
Proc Natl Acad Sci USA
95:
548–553,
1998.
|
98. |
Kaipainen A,
Korhonen J,
Mustonen T,
van Hinsbergh VW,
Fang GH,
Dumont D,
Breitman M and
Alitalo K.
Expression of the fms‐Iike tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development.
Proc Natl Acad Sci USA
92:
3566–3570,
1995.
|
99. |
Kukk E,
Lymboussaki A,
Taira S,
Kaipainen A,
Jeltsch M,
Joukov V and
Alitalo K.
VEGF‐C receptor binding and pattern of expression with VEGFR‐3 suggests a role in lymphatic vascular development.
Development
122:
3829–3837,
1996.
|
100. |
Detmar M,
Brown LF,
Schon MP,
Elicker BM,
Velasco P,
Richard L,
Fukumura D,
Monsky W,
Claffey KP and
Jain RK.
Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice.
J Invest Dermatol
111:
1–6,
1998.
|
101. |
Veikkola T,
Jussila L,
Makinen T,
Karpanen T,
Jeltsch M,
Petrova TV,
Kubo H,
Thurston G,
McDonald DM,
Achen MG,
Stacker SA and
Alitalo K.
Signalling via vascular endothelial growth factor receptor‐3 is sufficient for lymphangiogenesis in transgenic mice.
Embo J
20:
1223–1231,
2001.
|
102. |
Dumont DJ,
Jussila L,
Taipale J,
Lymboussaki A,
Mustonen T,
Pajusola K,
Breitman M and
Alitalo K.
Cardiovascular failure in mouse embryos deficient in VEGF receptor‐3,
Science
282:
946–949,
1998.
|
103. |
Joukov V
Kaipainen A,
Jeltsch M,
Pajusola K,
Olofsson B,
Kumar V,
Eriksson U and
Alitalo K.
Vascular endothelial growth factors VEGF‐B and VEGF‐C.
J Cell Physiol
173:
211–215,
1997a.
|
104. |
Joukov V,
Sorsa T,
Kumar V,
Jeltsch M,
Claesson‐Welsh L,
Cao Y,
Saksela O,
Kalkkinen N and
Alitalo K.
Proteolytic processing regulates receptor specificity and activity of VEGF‐C.
Embo J
16:
3898–3911,
1997b.
|
105. |
Ferrara N,
Carver‐Moore K,
Chen H,
Dowd M,
Lu L,
O'Shea KS,
Powell‐Braxton L,
Hillan KJ and
Moore MW,
Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene.
Nature
380:
439–442,
1996.
|
106. |
Ferrara N,
Gerber HP and
LeCouter J.
The biology of VEGF and its receptors.
Nat Med
9:
669–676,
2003.
|
107. |
Cohen T,
Gitay‐Goren H,
Sharon R,
Shibuya M,
Halaban R,
Levi BZ and
Neufeld G.
VEGF121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell‐surface heparan sulfates for efficient binding to the VEGF receptors of human melanoma cells.
J Biol Chem
270:
11322–11326,
1995.
|
108. |
Neufeld G,
Cohen T,
Gitay‐Goren H,
Poltorak Z,
Tessler S,
Sharon R,
Gengrinovitch S and
Levi BZ.
Similarities and differences between the vascular endothelial growth factor (VEGF) splice variants.
Cancer Metastasis Rev
15:
153–158,
1996.
|
109. |
Gluzman‐Poltorak Z,
Cohen T,
Herzog Y and
Neufeld G.
NeuropiIin‐2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF‐145 and VEGF‐165 [corrected].
J Biol Chem
275:
18040–18045,
2000.
|
110. |
Poltorak Z,
Cohen T and
Neufeld G.
The VEGF splice variants: properties, receptors, and usage for the treatment of ischemic diseases.
Herz
25:
126–129,
2000.
|
111. |
Krussel JS,
Behr B,
Milki AA,
Hirchenhain J,
Wen Y,
Bielfeld P and
Lake Polan M.
Vascular endothelial growth factor (VEGF) mRNA splice variants are differentially expressed in human blastocysts.
Mol Hum Reprod
7:
57–63,
2001.
|
112. |
Robinson CJ and
Stringer SE.
The splice variants of vascular endothelial growth factor (VEGF) and their receptors.
J Cell Sci
114:
853–865,
2001.
|
113. |
Petersen W,
Pufe T,
Unterhauser F,
Zantop T,
Mentlein R and
Weiler A.
The splice variants 120 and 164 of the angiogenic peptide vascular endothelial cell growth factor (VEGF) are expressed during Achilles tendon healing.
Arch Orthop Trauma Surg
123:
475–480,
2003.
|
114. |
Yang S,
Xin X,
Zlot C,
Ingle G,
Fuh G,
Li B,
Moffat B,
de Vos AM and
Gerritsen ME.
Vascular endothelial cell growth factor‐driven endothelial tube formation is mediated by vascular endothelial cell growth factor receptor‐2, a kinase insert domain‐containing receptor.
Arterioseler Thromb Vasc Biol
21:
1934–1940,
2001.
|
115. |
Yang S,
Toy K,
Ingle G,
Zlot C,
Williams PM,
Fuh G,
Li B,
de Vos A and
Gerritsen ME.
Vascular endothelial growth factor‐induced genes in human umbilical vein endothelial cells: relative roles of KDR and Flt‐1 receptors.
Arterioscler Thromb Vasc Biol
22:
1797–1803,
2002.
|
116. |
Soker S,
Takashima S,
Miao HQ,
Neufeld G and
Klagsbrun M.
Neuropilin‐1 is expressed by endothelial and tumor cells as an isoform‐specific receptor for vascular endothelial growth factor.
Cell
92:
735–745,
1998.
|
117. |
Klagsbrun M,
Takashima S and
Mamluk R.
The role of neuropilin in vascular and tumor biology.
Adv Exp Med Biol
515:
33–48,
2002.
|
118. |
Dvorak AM,
Kohn S,
Morgan ES,
Fox P,
Nagy JA and
Dvorak HF.
The vesiculo‐vacuolar organelle (WO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation.
J Leukoc Biol
59:
100–115,
1996.
|
119. |
Dvorak AM and
Feng D.
The vesiculo‐vacuolar organelle (WO). A new endothelial cell permeability organelle.
J Histochem Cytoehem
49:
419–432,
2001.
|
120. |
Fett JW,
Strydom DJ,
Lobb RR,
Alderman EM,
Bethune JL,
Riordan JF and
Vallee BL.
Isolation and characterization of angiogenin. an angiogenic protein from human carcinoma cells.
Biochemistry
24:
5480–5486,
1985.
|
121. |
Kurachi K,
Davie EW,
Strydom DJ,
Riordan JF and
Vallee BL.
Sequence of the cDNA and gene for angiogenin, a human angio‐genesis factor.
Biochemistry
24:
5494–5499,
1985.
|
122. |
Strydom DJ,
Fett JW,
Lobb RR,
Alderman EM,
Bethune JL,
Riordan JF and
Vallee BL.
Amino acid sequence of human tumor derived angiogenin.
Biochemistry
24:
5486–5494,
1985.
|
123. |
Wiedlocha A.
Following angiogenin during angiogenesis: a journey from the cell surface to the nucleolus.
Arch Immunol Ther Exp (Warsz)
47:
299–305,
1999.
|
124. |
Shapiro R,
Riordan JF and
Vallee BL.
Characteristic ribonucleolytic activity of human angiogenin.
Biochemistry
25:
3527–3532,
1986.
|
125. |
Shapiro R and
Vallee BL.
Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin.
Proc Natl Acad Sci USA
84:
2238–2241,
1987b.
|
126. |
Adams SA and
Subramanian V.
The angiogenins: an emerging family of ribonuclease related proteins with diverse cellular functions.
Angiogenesis
3:
189–199,
1999b.
|
127. |
Shapiro R,
Strydom DJ,
Olson KA and
Vallee BL.
Isolation of angiogenin from normal human plasma.
Biochemistry
26:
5141–5146,
1987a.
|
128. |
Badet J.
Angiogenin, a potent mediator of angiogenesis. Biological, biochemical and structural properties.
Pathol Biol (Paris)
47:
345–351,
1999.
|
129. |
Zhang J and
Zhang YP.
Pseudogenization of the tumor‐growth promoter angiogenin in a leaf‐eating monkey.
Gene
308:
95–101,
2003a.
|
130. |
Moore B,
Keane M,
Addison C,
Arenberg D and
Streiter R.
CXC chemokine modulation of angiogenesis: the importance of balance between angiogenic and angiostatic members of the family.
J Invest Med
46:
113–120,
1998.
|
131. |
Rosenkilde MM and
Schwartz TW.
The chemokine system ‐ a major regulator of angiogenesis in health and disease.
APMIS
112:
481–495,
2004.
|
132. |
Devalaraja RM,
Nanney LB,
Du J,
Qian Q,
Yu Y,
Devalaraja MN and
Richmond A.
Delayed wound healing in CXCR2 knockout mice.
J Invest Dermatol
115:
234–244,
2000.
|
133. |
Keane MP,
Belperio JA,
Xue YY,
Burdick MD and
Strieter RM.
Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer.
J Immunol
172:
2853–2860,
2004.
|
134. |
Oshima M,
Dinchuk JE,
Kargman SL,
Oshima H,
Hancock B,
Kwong E,
Trzaskos JM,
Evans JF and
Taketo MM.
Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX‐2).
Cell
87:
803–809,
1996.
|
135. |
Taketo MM.
COX‐2 and colon cancer.
Inflamm Res
47
(Suppl 2):
S112–S1I6,
1998.
|
136. |
Langenbach R,
Loftin C,
Lee C and
Tiano H.
Cyclooxygenase knockout mice: models for elucidating isoform‐specific functions.
Biochem Pharmacol
58:
1237–1246,
1999.
|
137. |
Zhang X,
Morham SG,
Langenbach R,
Baggs RB and
Young DA.
Lack of cyclooxygenase‐2 inhibits growth of teratocarcinomas in mice.
Exp Cell Res
254:
232–240,
2000.
|
138. |
Leahy KM,
Koki AT and
Masferrer JL.
Role of cyclooxygenases in angiogenesis.
Curr Med Chem
7:
1163–1170,
2000.
|
139. |
Masferrer J.
Approach to angiogenesis inhibition based on cyclooxygenase‐2.
Cancer J
7
(Suppl 3):
S144–S150,
2001.
|
140. |
Cheng T,
Cao W,
Wen R,
Steinberg RH and
LaVail MM.
Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Muller cells.
Invest Ophthalmol Vis Sci
39:
581–591,
1998.
|
141. |
Pai R,
Szabo IL,
Soreghan BA,
Atay S,
Kawanaka H and
Tarnawski AS.
PGE(2) stimulates VEGF expression in endothelial cells via ERK2/JNK1 signaling pathways.
Biochem Biophys Res Commun
286:
923–928,
2001.
|
142. |
Sakai Y,
Fujita K,
Sakai H and
Mizuno K.
Prostaglandin E2 regulates the expression of basic fibroblast growth factor messenger RNA in normal human fibroblasts.
Kobe J Med Sci
47:
35–45,
2001.
|
143. |
Dormond O,
Bezzi M,
Mariotti A and
Ruegg C.
Prostaglandin E2 promotes integrin alpha Vbeta 3‐dependent endothelial cell adhesion, racactivation. and spreading through cAMP/PKA‐dependent signaling.
J Biol Chem
277:
45838–45846,
2002.
|
144. |
Sakurai S,
Alam S,
Pagan‐Mercado G,
Hickman F,
Tsai JY,
Zelenka P and
Sato S.
Retinal capillary pericyte proliferation and c‐Fos mRNA induction by prostaglandin D2 through the cAMP response element.
Invest Ophthalmol Vis Sci
43:
2774–2781,
2002.
|
145. |
Hidai C,
Zupancic T,
Penta K,
Mikhail A,
Kawana M,
Quertermous EE,
Aoka Y,
Fukagawa M,
Matsui Y,
Platika D,
Auerbach R,
Hogan BL,
Snodgrass R and
Quertermous T.
Cloning and characterization of developmental endothelial locus‐1: an embryonic endothelial cell protein that binds the alphavbeta3 integrin receptor.
Genes Dev
12:
21–33,
1998.
|
146. |
Ho HK,
Jang JJ,
Kaji S,
Spektor G,
Fong A,
Yang P,
Hu BS,
Schatzman R,
Quertermous T and
Cooke JP.
Developmental endothelial locus‐1 (Del‐1), a novel angiogenic protein: its role in ischemia.
Circulation
109:
1314–1319,
2004.
|
147. |
Penta K,
Varner JA,
Liaw L,
Hidai C,
Schatzman R and
Quertermous T.
Dell induces integrin signaling and angiogenesis by ligation of alpha Vbeta3,
J Biol Chem
274:
11101–11109,
1999.
|
148. |
Aoka Y,
Johnson FL,
Penta K,
Hirata Ki K,
Hidai C,
Schatzman R,
Varner JA and
Quertermous T.
The embryonic angiogenic factor Dell accelerates tumor growth by enhancing vascular formation.
Microvasc Res
64:
148–161,
2002.
|
149. |
LeCouter J,
Kowalski J,
Foster J,
Hass P,
Zhang Z,
Dillard‐Telm L,
Frantz G,
Rangell L,
DeGuzman L,
Keller GA,
Peale F,
Gumey A,
Hillan KJ and
Ferrara N.
Identification of an angiogenic mitogen selective for endocrine gland endothelium.
Nature
412:
877–884,
2001.
|
150. |
Ferrara N,
LeCouter J and
Lin R.
Endocrine gland vascular endothelial growth factor (EG‐VEGF) and the hypothesis of tissue‐specific regulation of angiogenesis.
Endocr Res
28:
763–764,
2002.
|
151. |
Kisliouk T,
Levy N,
Hurwitz A and
Meidan R.
Presence and regulation of endocrine gland vascular endothelial growth factor/prokineticin‐1 and its receptors in ovarian cells.
J Clin Endocrinol Metab
88:
3700–3707,
2003.
|
152. |
Zhang L,
Yang N,
Conejo‐Garcia JR,
Katsaros D,
Mohamed‐Hadley A,
Fracchioli S,
Schlienger K,
Toll A,
Levine B,
Rubin SC and
Coukos G.
Expression of endocrine gland‐derived vascular endothelial growth factor in ovarian carcinoma.
Clin Cancer Res
9:
264–272,
2003b.
|
153. |
Chung JY,
Song Y,
Wang Y,
Magness RR and
Zheng J.
Differential expression of vascular endothelial growth factor (VEGF), endocrine gland derived‐VEGF, and VEGF receptors in human placentas from normal and preeclamptic pregnancies.
J Clin Endocrinol Metab
89:
2484–2490,
2004.
|
154. |
Samson M,
Peale FV, Jr.,
Frantz G,
Rioux‐Leclercq N,
Rajpert‐De Meyts E and
Ferrara N.
Human endocrine gland‐derived vascular endothelial growth factor: expression early in development and in Leydig cell tumors suggests roles in normal and pathological testis angiogenesis.
J Clin Endocrinol Metab
89:
4078–1088,
2004.
|
155. |
Masuda Y,
Tskatsu Y,
Terao Y,
Kumano S,
Ishibashi Y,
Suenaga M,
Abe M,
Fukisumi S,
Watanabe T,
Shintani Y,
Yamada T,
Hinuma S,
Inatomi N,
Ohtaki T,
Onda H and
Fujino M.
Isolation and identification of EG‐VEGF/prokineticins as cognate ligands for two orphan G‐protein‐coupled receptors.
Biochem Biophys Res Commun
293:
396–402,
2002.
|
156. |
LeCouter J and
Ferrara N.
EG‐VEGF and Bv8: a novel family of tissue‐selective mediators of angiogenesis, endothelial phenotype, and function.
Trends Cardiovasc Med
13:
276–282,
2003.
|
157. |
Ferrara N,
LeCouter J,
Lin R and
Peale F.
EG‐VEGF and Bv8: a novel family of tissue‐restricted angiogenic factors.
Biochim Biophys Acta
1654:
69–78,
2004.
|
158. |
Lin DC,
Bullock CM,
Ehlert FJ,
Chen JL,
Tian H and
Zhou QY.
Identification and molecular characterization of two closely related G ptotein‐coupled receptors activated by prokineticins/endocrine gland vascular endothelial growth factor.
J Biol Chem
277:
19276–19280,
2002.
|
159. |
Yoshida M and
Gimbrone MA, Jr.
Novel roles for E‐selectin in endothelial‐leukocyte adhesion.
Ann NY Acad Sci
811:
493–497,
1997.
|
160. |
Nguyen M,
Strubel NA and
Bischoff J.
A role for sialyl Lewis‐X/A glycoconjugates in capillary morphogenesis.
Nature
365:
267–269,
1993.
|
161. |
Aoki M,
Kanamori M,
Yudoh K,
Ohmori K,
Yasuda T and
Kimura T.
Effects of vascular endothelial growth factor and E‐selectin on angiogenesis in the murine metastatic RCT sarcoma.
Tumor Biol
22:
239–246,
2001.
|
162. |
Bischoff J,
Brasel C,
Kraling B and
Vranovska K.
E‐selectin is upregulated in proliferating endothelial cells in vitro.
Microcirculation
4:
279–287,
1997.
|
163. |
Wittig BM,
Kaulen H,
Thees R,
Schmitt C,
Knolle P,
Stock J.
Meyer zum Buschenfelde KH and
Dippold W,
Elevated serum E‐selectin in patients with liver metastases of colorectal cancer.
Eur J Cancer ilk:
1215–1218,
1996.
|
164. |
Hebbar M,
Revillion F,
Louchez MM,
Vilain MO,
Fournier C,
Bonneterre J and
Peyrat JP.
The relationship between concentrations of circulating soluble E‐selectin and clinical, pathological, and biological features in patients with breast cancer.
Clin Cancer Res
4:
373–380,
1998.
|
165. |
Byrne GJ,
Ghellal A,
Iddon J,
Blann AD,
Venizelos V,
Kumar S,
Howell A and
Bundred NJ.
Serum soluble vascular cell adhesion molecule‐1: role as a surrogate marker of angiogenesis.
J Natl Cancer Inst
92:
1329–1336,
2000.
|
166. |
Sheen‐Chen SM,
Eng HL,
Huang CC and
Chen WJ.
Serum levels of soluble E‐selectin in women with breast cancer.
Br J Surg
91:
1578–1581,
2004.
|
167. |
Koch AE,
Halloran MM,
Haskell CJ,
Shah MR and
Polverini PJ.
Angiogenesis mediated by soluble forms of E‐selectin and vascular cell adhesion molecule‐1.
Nature
376:
517–519,
1995.
|
168. |
Milstone DS,
Fukumura D,
Padgett RC,
O'Donnell PE,
Davis VM,
Benavidez OJ,
Monsky WL,
Melder RJ,
Jain RK and
Gimbrone MA, Jr.
Mice lacking E‐selectin show normal numbers of rolling leukocytes but reduced leukocyte stable arrest on cytokine‐activated microvascular endothelium.
Microcirculation
5:
153–171,
1998.
|
169. |
Yu Y,
Moulton KS,
Khan MK,
Vineberg S,
Boye E,
Davis VM,
O'Donnell PE,
Bischoff J and
Milstone DS.
E‐selectin is required for the antiangiogenic activity of endostatin.
Proc Natl Acad Sci USA
101:
8005–8010,
2004.
|
170. |
Cheng N,
Brantley DM and
Chen J.
The ephrins and Eph receptors in angiogenesis.
Cytokine Growth Factor Rev
13:
75–85,
2002a.
|
171. |
Brantley‐Sieders D,
Parker M and
Chen J.
Eph receptor tyrosine kinases in tumor and tumor microenvironment.
Curr Pharm Des
10:
3431–3442,
2004.
|
172. |
Adams RH,
Wilkinson GA,
Weiss C,
Dielia F,
Gale NW,
Deutsch U,
Risau W and
Klein R.
Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis.
Genes Dev
13:
295–306,
1999a.
|
173. |
Adams RH and
Klein R.
Eph receptors and ephrin ligands: essential mediators of vascular development.
Trends Cardiovasc Med
10:
183–188,
2000.
|
174. |
Adams RH.
Vascular patterning by Eph receptor tyrosine kinases and ephrins.
Semin Cell Dev Biol
13:
55–60,
2002.
|
175. |
Gerety SS and
Anderson DJ.
Cardiovascular ephrinB2 function is essential for embryonic angiogenesis.
Development
129:
1397–1410,
2002.
|
176. |
Surawska H,
Ma P and
Salgia R.
The role of ephrins and Eph receptors in cancer.
Cytokine Growth Factor Rev
15:
419–433,
2004.
|
177. |
Cheng N,
Brantley DM,
Liu H,
Lin Q,
Enriquez M,
Gale N,
Yancopoulos G,
Cerretti DP,
Daniel TO and
Chen J.
Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor‐induced angiogenesis.
Mol Cancer Res
1:
2–11,
2002b.
|
178. |
Fuller T,
Korff T,
Kilian A,
Dandekar G and
Augustin HG.
Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells.
J Cell Sci
116:
2461–2470,
2003.
|
179. |
Martiny‐Baron G,
Korff T,
Schaffner F,
Esser N,
Eggstein S,
Marme D and
Augustin HG.
Inhibition of tumor growth and angiogenesis by soluble EphB4.
Neoplasia
6:
248–257,
2004.
|
180. |
Esch F,
Shimasaki S,
Mercado M,
Cooksey K,
Ling N,
Ying S,
Ueno N and
Guillemin R.
Structural characterization of follistatin: a novel follicle‐stimulating hormone release‐inhibiting polypeptide from the gonad.
Mol Endocrinol
1,
1987.
|
181. |
Robertson D,
Klein R,
De Vos F,
McLachlan R,
Wettenhall R,
Hearn M,
Burger H and
de Kretser D.
The isolation of polypeptides with FSH suppressing activity from bovine follicular fluid which are structurally different to inhibin.
Biochem Biophys Res Commun
149:
744–749,
1987.
|
182. |
Phillips D and
de Kretser D.
Follistatin: a multifunctional regulatory protein.
Front Neuroendocrinol
19:
287–322,
1998.
|
183. |
Hynes RO.
A reevaluation of integrins as regulators of angio‐genesis.
Nat Med
8:
918–921,
2002.
|
184. |
Hynes RO,
Lively JC,
McCarty JH,
Taverna D,
Francis SE,
Hodivala‐Dilke K and
Xiao Q.
The diverse roles of integrins and their ligands in angiogenesis.
Cold Spring Harb Symp Quant Biol
67:
143–153,
2002.
|
185. |
Friedlander M,
Brooks PC,
Shaffer RW,
Kincaid CM,
Varner JA and
Cheresh DA.
Definition of two angiogenic pathways by distinct alpha v integrins.
Science
270:
1500–1502,
1995.
|
186. |
Senger DR,
Perruzzi CA,
Streit M,
Koteliansky VE,
de Fougerolles AR and
Detmar M.
The alpha(1)beta(1) and alpha(2)beta(1) integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis.
Am J Pathol
160:
195–204,
2002.
|
187. |
Ramakrishnan V,
Bhaskar V,
Law DA,
Wong MH,
DuBridge RB,
Breinberg D,
O'Hara C,
Powers DB,
Liu G,
Grove J,
Hevezi P,
Cass KM,
Watson S,
Evangelista F,
Powers RA,
Finck B,
Wills M,
Caras I,
Fang Y,
McDonald D,
Johnson D,
Murray R and
Jeffry U.
Preclinical evaluation of an anti‐alpha5betal integrin antibody as a novel anti‐angiogenic agent.
J Exp Titer Oncol
5:
273–286,
2006.
|
188. |
Partridge CA,
Phillips PG,
Niedbala MJ and
Jeffrey JJ.
Localization and activation of type IV collagenase/gelatinase at endothelial focal contacts.
Am J Physiol
272:
L813–L822,
1997.
|
189. |
Carmeliet P,
Lampugnani MG,
Moons L,
Breviario F,
Compernolle V,
Bono F,
Balconi G,
Spagnuolo R,
Oostuyse B,
Dewerchin M,
Zanetti A,
Angellilo A,
Mattot V,
Nuyens D,
Lutgens E,
Clotman F,
de Ruiter MC,
Gittenberger‐de Groot A,
Poelmann R,
Lupu F,
Herbert JM,
Collen D and
Dejana E.
Targeted deficiency or cytosolic truncation of the VE‐cadherin gene in mice impairs VEGF‐mediated endothelial survival and angiogenesis.
Cell
98:
147–157,
1999.
|
190. |
Bach TL,
Barsigian C,
Chalupowicz DG,
Busier D,
Yaen CH,
Grant DS and
Martinez J.
VE‐Cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels.
Exp Cell Res
238:
324–334,
1998.
|
191. |
Yang S,
Graham J,
Kahn JW,
Schwartz EA and
Gerritsen ME.
Functional roles for PECAM‐1 (CD31) and VE‐cadherin (CD144) in tube assembly and lumen formation in three‐dimensional collagen gels.
Am J Pathol
155:
887–895,
1999.
|
192. |
Breier G,
Breviario F,
Caveda L,
Berthier R,
Schnurch H,
Gotsch U,
Vestweber D,
Risau W and
Dejana E.
Molecular cloning and expression of murine vascular endothelial‐cadherin in early stage development of cardiovascular system.
Blood
87:
630–641,
1996.
|
193. |
Liao F,
Li Y,
O'Connor W,
Zanetta L,
Bassi R,
Santiago A,
Overholser J,
Hooper A,
Mignatti P,
Dejana E,
Hicklin DJ and
Bohlen P.
Monoclonal antibody to vascular endothelial‐cadherin is a potent inhibitor of angiogenesis, tumor growth, and metastasis.
Cancer Res
60:
6805–6810,
2000.
|
194. |
Corada M,
Liao F,
Lindgren M,
Lampugnani MG,
Breviario F,
Frank R,
Muller WA,
Hicklin DJ,
Bohlen P and
Dejana E.
Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability.
Blood
97:
1679–1684,
2001.
|
195. |
Corada M,
Zanetta L,
Orsenigo F,
Breviario F,
Lampugnani MG,
Bernasconi S,
Liao F,
Hicklin DJ,
Bohlen P and
Dejana E.
A monoclonal antibody to vascular endothelial‐cadherin inhibits tumor angiogenesis without side effects on endothelial permeability.
Blood
100:
905–911,
2002.
|
196. |
Liao F,
Doody JF,
Overholser J,
Finnerty B,
Bassi R,
Wu Y,
Dejana E,
Kussie P,
Bohlen P and
Hicklin DJ.
Selective targeting of angiogenic tumor vasculature by vascular endothelial‐cadherin antibody inhibits tumor growth without affecting vascular permeability.
Cancer Res
62:
2567–2575,
2002.
|
197. |
Jackson DE.
The unfolding tale of PECAM‐1,
FEBS Lett
540:
7–14,
2003.
|
198. |
DeLisser HM,
Christofidou‐Solomidou M,
Strieter RM,
Burdick MD,
Robinson CS,
Wexler RS,
Kerr JS,
Garlanda C,
Merwin JR,
Madri JA and
Albelda SM.
Involvement of endothelial PECAM‐1/CD31 in angiogenesis.
Am J Pathol
151:
671–677,
1997.
|
199. |
Cao G,
O'Brien CD,
Zhou Z,
Sanders SM,
Greenbaum JN,
Makrigiannakis A and
DeLisser HM.
Involvement of human PECAM‐1 in angiogenesis and in vitro endothelial cell migration.
Am J Physiol Cell Physiol
282:
C1181–C1190,
2002.
|
200. |
Duncan GS,
Andrew DP,
Takimoto H,
Kaufman SA,
Yoshida H,
Spellberg J,
Luis de la Pompa J,
Elia A,
Wakeham A,
Karan‐Tamir B,
Muller WA,
Senaldi G,
Zukowski MM and
Mak TW,
Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule‐1 (PECAM‐1): CD31‐deficient mice reveal PECAM‐1‐dependent and PECAM‐1‐independent functions.
J Immunol
162:
3022–3030,
1999.
|
201. |
Hamaguchi I,
Huang XL,
Takakura N,
Tada J,
Yamaguchi Y,
Kodama H and
Suda T.
In vitro hematopoietic and endothelial cell development from cells expressing TEK receptor in murine aorta‐gonad‐mesonephros region.
Blood
93:
1549–1556,
1999.
|
202. |
Mahooti S,
Graesser D,
Patil S,
Newman P,
Duncan G,
Mak T and
Madri JA.
PECAM‐1 (CD31) expression modulates bleeding time in vivo.
Am J Pathol
157:
75–81,
2000.
|
203. |
Thompson RD,
Noble KE,
Larbi KY,
Dewar A,
Duncan GS,
Mak TW and
Nourshargh S.
Platelet‐endothelial cell adhesion molecule‐1 (PECAM‐1)‐deficient mice demonstrate a transient and cytokine‐specific role for PECAM‐1 in leukocyte migration through the perivascular basement membrane.
Blood
97:
1854–1860,
2001.
|
204. |
Graesser D,
Solowiej A,
Bruckner M,
Osterweil E,
Juedes A,
Davis S,
Ruddle NH,
Engelhardt B and
Madri JA.
Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM‐1‐deficient mice.
J Clin Invest
109:
383–392,
2002.
|
205. |
Paracchini V,
Pedotti P and
Taioli E.
Genetics of leptin and obesity: a HuGE review.
Am J Epidemiol
162:
101–114,
2005.
|
206. |
Sierra‐Honigmann MR,
Nath AK,
Murakami C,
Garcia‐Cardena G,
Papapetropoulos A,
Sessa WC,
Madge LA,
Schechner JS,
Schwabb MB,
Polverini PJ and
Flores‐Riveros JR.
Biological action of leptin as an angiogenic factor.
Science
281:
1683–1686,
1998.
|
207. |
Bouloumie A,
Drexler HC,
Lafontan M and
Busse R,
Leptin the product of Ob gene, promotes angiogenesis.
Circ Res
83:
1059–1066,
1998.
|
208. |
Ring BD,
Scully S,
Davis CR,
Baker MB,
Cullen MJ,
Pelleymounter MA and
Danilenko DM.
Systemically and topically administered leptin both accelerate wound healing in diabetic ob/ob mice.
Endocrinology
141:
446–449,
2000.
|
209. |
Cioffi JA,
Van Blerkom J,
Antczak M,
Shafer A,
Wittmer S and
Snodgrass HR.
The expression of leptin and its receptors in pre‐ovulatory human follicles.
Mol Hum Reprod
3:
467–472,
1997.
|
210. |
Riad‐Gabriel MG,
Jinagouda SD,
Sharma A,
Boyadjian R and
Saad MF.
Changes in plasma leptin during the menstrual cycle.
Eur J Endocrinol
139:
528–531,
1998.
|
211. |
Kurtz A,
Schulte AM and
Wellstein A.
Pleiotrophin and midkine in normal development and tumor biology.
Crit Rev Oncog
6:
151–177,
1995.
|
212. |
Zhang N and
Deuel TF.
Pleiotrophin and midkine, a family of mitogenic and angiogenic heparin‐binding growth and differentiation factors.
Curr Opin Hematol
6:
44–50,
1999.
|
213. |
Garver RI, Jr.,
Radford DM,
Donis‐Keller H,
Wick MR and
Milner PG.
Midkine and pleiotrophin expression in normal and malignant breast tissue.
Cancer
74:
1584–1590,
1994.
|
214. |
O'Brien T,
Cranston D,
Fuggle S,
Bicknell R and
Harris AL.
The angiogenic factor midkine is expressed in bladder cancer, and overexpression correlates with a poor outcome in patients with invasive cancers.
Cancer Res
56:
2515–2518,
1996.
|
215. |
Choudhuri R,
Zhang HT,
Donnini S,
Ziche M and
Bicknell R.
An angiogenic role for the neurokines midkine and pleiotrophin in tumorigenesis.
Cancer Res
57:
1814–1819,
1997.
|
216. |
Westphal JR,
Van't Hullenaar R,
Peek R,
Willems RW,
Crickard K,
Crickard U,
Askaa J,
Clemmensen I,
Ruiter DJ and
De Waal RM.
Angiogenic balance in human melanoma: expression of VEGF, bFGF, IL‐8, PDGF and angiostatin in relation to vascular density of xenografts in vivo.
Int J Cancer
86:
768–776,
2000.
|
217. |
Stoica GE,
Kuo A,
Powers C,
Bowden ET,
Sale EB,
Riegel AT and
Wellstein A.
Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types.
J Biol Chem
277:
35990–35998,
2002.
|
218. |
Papadimitriou E,
Polykratis A,
Hatziapostolou M,
Parthymou A,
Polytarchou C and
Mikelis C
Heparin affin regulatory peptide: a new target for tumour therapy?
Curr Cancer Drug Targets
4:
471–482,
2004.
|
219. |
Maeda N,
Nshiwaki T,
Shintani T,
Hamanaka H and
Noda M.
6B4 proteoglycan/phosphacan, an extracellular variant of receptorlike protein‐tyrosine phosphatase zeta/RPTPbeta, binds pleiotrophin/heparin‐bindhg growth‐associated molecule (HB‐GAM).
J Biol Chem
271:
21446–21452,
1996.
|
220. |
Maeda N and
Noda M.
Involvement of receptor‐like protein tyrosine phosphatase zeta/RPTPbeta and its ligand pleiotrophin/heparin‐binding growth‐associated molecule (HB‐GAM) in neuronal migration.
J Cell Biol
142:
203–216,
1998.
|
221. |
Weinstein BM and
Lawson ND,
Arteries, veins, Notch, and VEGF.
Cold Spring Harb Symp Quant Biol
67:
155–162,
2002.
|
222. |
Iso T,
Hamanori Y and
Kedes L.
Notch signaling in vascular development.
Anerioscler Thromb Vasc Biol
23:
543–553,
2003.
|
223. |
Alva JA and
Iruela‐Arispe ML.
Notch signaling in vascular morphogenesis.
Curr Opin Hematol
11:
278–283,
2004.
|
224. |
Hrabe de Angelis M,
McIntyre J, 2nd and
Gossler A.
Maintenance of somite borders in mice requires the Delta homologue DII1.
Nature
386:
717–721,
1997.
|
225. |
Xue Y,
Gao X,
Lindsell CE,
Norton CR,
Chang B,
Hicks C,
Gendron‐Maguire M,
Rand EB,
Weinmaster G and
Gridley T.
Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1.
Hum Mol Genet
8:
723–730,
1999.
|
226. |
Krebs LT,
Xue Y,
Norton CR,
Shutter JR,
Maguire M,
Sundberg JP,
Gallahan D,
Closson V,
Kitajewski J,
Callahan R,
Smith GH,
Stark KL and
Gridley T.
Notch signaling is essential for vascular morphogenesis in mice.
Genes Dev
14:
1343–1352,
2000.
|
227. |
McCright B,
Gao X,
Shen L,
Lozier J,
Lan Y,
Maguire M,
Herzlinger D,
Weinmaster G,
Jiang R and
Gridley T.
Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation.
Development
128:
491–502,
2001.
|
228. |
Uyttendaele H,
Ho J,
Rossant J and
Kitajewski J.
Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium.
Proc Natl Acad Sci USA
98:
5643–5648,
2001.
|
229. |
Gale NW,
Dominguez MG,
Noguera I,
Pan L,
Hughes V,
Valenzuela DM,
Murphy AJ,
Adams NC,
Lin HC,
Holash J,
Thurston G and
Yancopoulos GD.
Haploinsufficiency of deltalike 4 ligand results in embryonic lethality due to major defects in arterial and vascular development.
Proc Natl Acad Sci USA
101:
15949–15954,
2004.
|
230. |
Joutel A,
Corpechot C,
Ducros A,
Vahedi K,
Chabriat H,
Mouton P,
Alamowitch S,
Domenga V,
Cecillion M,
Marechal E,
Maciazek J,
Vayssiere C,
Cruaud C,
Cabanis EA,
Ruchoux MM,
Weissenbach J,
Bach JF.
Bousser MG and Tournier‐Lasserve E. Notch3 mutations in CADASIL, a hereditary adult‐onset condition causing stroke and dementia.
Nature
383:
707–710,
1996.
|
231. |
Joutel A,
Corpechot C,
Ducros A,
Vahedi K,
Chabriat H,
Mouton P,
Alamowitch S,
Domenga V,
Cecillion M,
Marechal E,
Maciazek J,
Vayssiere C,
Cruaud C,
Cabanis EA,
Ruchoux MM,
Weissenbach J,
Bach JF,
Bousser MG and
Tournier‐Lasserve E.
Notch3 mutations in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a mendelian condition causing stroke and vascular dementia.
Ann NY Acad Sci
826:
213–217,
1997.
|
232. |
Joutel A,
Vahedi K,
Corpechot C,
Troesch A,
Chabriat H,
Vayssiere C,
Cruaud C,
Maciazek J,
Weissenbach J,
Bousser MG,
Bach JF and
Tournier‐Lasserve E.
Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients.
Lancet
350:
1511–1515,
1997.
|
233. |
Salloway S and
Hong J.
CADASIL syndrome: a genetic form of vascular dementia.
J Geriatr Psychiatry Neurol
11:
71–77,
1998.
|
234. |
Yuan ZR,
Kohsaka T and
Kobayashi N.
Linkage analysis and identification of deletion in Alagille syndrome gene.
Acta Paediatr Jpn
39:
647–652,
1997.
|
235. |
Krantz ID,
Colliton RP,
Genin A,
Rand EB,
Li L,
Piccoli DA and
Spinner NB.
Spectrum and frequency of jagged1 (JAG1) mutations in Alagille syndrome patients and their families.
Am J Hum Genet
62:
1361–1369,
1998.
|
236. |
Yuan ZR,
Kohsaka T,
Ikegaya T,
Suzuki T,
Okano S,
Abe J,
Kobayashi N and
Yamada M.
Mutational analysis of the Jagged 1 gene in Alagille syndrome families.
Hum Mol Genet
7:
1363–1369,
1998.
|
237. |
Krantz ID,
Piccoli DA and
Spinner NB.
Clinical and molecular genetics of Alagille syndrome.
Curr Opin Pediatr
11:
558–564,
1999.
|
238. |
Fischer A,
Schumacher N,
Maier M,
Sendtner M and
Gessler M.
The Notch target genes Hey1 and Hey2 are required for embryonic vascular development.
Genes Dev
18:
901–911,
2004.
|
239. |
MacKenzie F,
Duriez P,
Wong F,
Noseda M and
Karsan A.
Notch4 inhibits endothelial apoptosis via RBP‐Jkappa‐dependent and ‐independent pathways.
J Biol Chem
279:
11657–11663,
2004.
|
240. |
Wang W,
Prince CZ,
Mou Y and
Pollman MJ.
Notch3 signaling in vascular smooth muscle cells induces c‐FLIP expression via ERK/MAPK activation. Resistance to Fas ligand‐induced apoptosis.
J Biol Chem
277:
21723–21729,
2002.
|
241. |
Villa N,
Walker L,
Lindsell CE,
Gasson J,
Iruela‐Arispe ML and
Weinmaster G.
Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels.
Mech Dev
108:
161–164,
2001.
|
242. |
Liu ZJ,
Shirakawa T,
Li Y,
Soma A,
Oka M,
Dotto GP,
Fairman RM,
Velazquez OC and
Herlyn M.
Regulation of Notch1 and D114 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis.
Mol Cell Biol
23:
14–25,
2003.
|
243. |
Mailhos C,
Modlich U,
Lewis J,
Harris A,
Bicknell R and
Ish‐Horowicz D.
Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis.
Differentiation
69:
135–144,
2001.
|
244. |
Hellstrom M,
Phng LK,
Hofmann JJ,
Wallgard E,
Coultas L,
Lindblom P,
Alva J,
Nilsson AK,
Karlsson L,
Gaiano N,
Yoon K,
Rossant J,
Iruela‐Arispe ML,
Kalen M,
Gerhardt H and
Betsholtz C
D114 signalling through Notch1 regulates formation of tip cells during angiogenesis.
Nature,
2007.
|
245. |
Siekmann AF and
Lawson ND
Notch signalling limits angiogenic cell behavior in developing zebrafish arteries.
Nature,
2007.
|
246. |
Noguera‐Troise I,
Daly C,
Papadopoulos NJ,
Coetzee S,
Boland P,
Gale NW,
Lin HC,
Yancopoulos GD and
Thurston G.
Blockade of D114 inhibits tumour growth by promoting non‐productive angiogenesis.
Nature
444:
1032–1037,
2006.
|
247. |
Ridgway J,
Zhang G,
Wu Y,
Stawicki S,
Liang WC,
Chanthery Y,
Kowalski J,
Watts RJ,
Callahan C,
Kasman I,
Singh M,
Chien M,
Tan C,
Hongo JA,
de Sauvage F,
Plowman G and
Yan M.
Inhibition of D114 signalling inhibits tumour growth by deregulating angiogenesis.
Nature
444:
1083–1087,
2006.
|
248. |
Thibonnier M,
Conarty D,
Preston J,
Pleshicher C,
Dweik R and
Erzurium S.
Human vascular endothelial cells express oxytocin receptors.
Endocrinology
140:
1301–1309,
1999.
|
249. |
Cassoni P,
Marrocco T,
Bussolati B,
Allia E,
Munaron L,
Sapino A and
Bussolati G.
Oxytocin induces proliferation and migration in immortalized human dermal microvascular endothelial cells and human breast tumor‐derived endothelial cells.
Mol Cancer Res
4:
351–359,
2006.
|
250. |
Peters GJ,
De Bruin M,
Fukushima M,
Van Triest B,
Hoekman K,
Pinedo HM and
Ackland SP
Thymidine phosphorylase in angiogenesis and drug resistance. Homology with platelet‐derived endothelial cell growth factor.
Adv Exp Med Biol
486:
291–294,
2000.
|
251. |
Akiyama S,
Furukawa T,
Sumizawa T,
Takebayashi Y,
Nakajima Y,
Shimaoka S and
Haraguchi M.
The role of thymidine phosphorylase, an angiogenic enzyme, in tumor progression.
Cancer Sci
95:
851–857,
2004.
|
252. |
Carbacho A,
de La Escalera GM and
Clapp C.
Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis.
J Endocrinol
173:
219–238,
2002.
|
253. |
Clapp C,
Martial JA,
Guzman RC,
Rentier‐Delure F and
Weiner RI.
The 16‐kilodalton N‐terminal fragment of human prolactin is a potent inhibitor of angiogenesis.
Endocrinology
133:
1292–1299,
1993.
|
254. |
Ferrara N,
Clapp C and
Weiner R.
The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells.
Endocrinology
129:
896–900,
1991.
|
255. |
Gonzalez C,
Corbacho AM,
Eiserich JP,
Garcia C,
Lopez‐Barrera F,
Morales‐Tlalpan V,
Barajas‐Espinosa A,
Diaz‐Munoz M,
Rubio R,
Lin SH,
Martinez de la Escalera G and
Clapp C.
16K‐prolactin inhibits activation of endothelial nitric oxide synthase, intracellular calcium mobilization, and endothelium‐dependent vasorelaxation.
Endocrinology
145:
5714–5722,
2004.
|
256. |
Ochoa A,
Montes de Oca P,
Rivera JC,
Duenas Z,
Nava G,
de La Escalera GM and
Clapp C.
Expression of prolactin gene and secretion of prolactin by rat retinal capillary endothelial cells.
Invest Ophthalmol Vis Sci
42:
1639–1645,
2001.
|
257. |
Horseman ND,
Zhao W,
Montecino‐Rodriguez E,
Tanaka M,
Nakashima K,
Engle SJ,
Smith F,
Markoff E and
Dorshkind K.
Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene.
Embo J
16:
6926–6935,
1997.
|
258. |
Vomachka AJ,
Pratt SL,
Lockefeer JA and
Horseman ND.
Prolactin gene‐disruption arrests mammary gland development and retards T‐antigen‐induced tumor growth.
Oncogene
19:
1077–1084,
2000.
|
259. |
Linzer DI,
Lee SJ,
Ogren L,
Talamantes F and
Nathans D.
Identification of proliferin mRNA and protein in mouse placenta.
Proc Natl Acad Sci USA
82:
4356–4359,
1985.
|
260. |
Lee SJ,
Talamantes F,
Wilder E,
Linzer DI and
Nathans D.
Trophoblastic giant cells of the mouse placenta as the site of proliferin synthesis.
Endocrinology
122:
1761–1768,
1988.
|
261. |
Volpert O,
Jackson D,
Bouch N and
Linzer DIH.
The insulin‐like growth factor II/Mannose 6‐phosphate receptor is required for proliferin‐induced angiogenesis.
Endocrinology
137:
3871–3876,
1996.
|
262. |
Lafleur MA,
Handsley MM and
Edwards DR.
Metalloproteinases and their inhibitors in angiogenesis.
Expert Rev Mol Med
5:
1–39,
2003.
|
263. |
Black RA and
White JM.
ADAMs: focus on the protease domain.
Curr Opin Cell Biol
10:
654–659,
1998.
|
264. |
Schlondorff J and
Blobel CP.
Metalloprotease‐disintegrins: modular proteins capable of promoting cell‐cell interactions and triggering signals by protein‐ectodomain shedding.
J Cell Sci
112
(Pt 21):
3603–3617,
1999.
|
265. |
White J.
ADAMs: modulators of cell‐cell and cell‐matrix interactions.
Curr Opin Cell Biol
15:
598–606,
2003.
|
266. |
Brou C,
Logeat F,
Gupta N,
Bessia C,
LeBail O,
Doedens JR,
Cumano A,
Roux P,
Black RA and
Israel A.
A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin‐metalloprotease TACE.
Mol Cell
5:
207–216,
2000.
|
267. |
Hartmann D,
de Strooper B,
Serneels L,
Craessaerts K,
Herreman A,
Annaert W,
Umans L,
Lubke T,
Lena Illert A,
von Figura K and
Saftig P.
The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha‐secretase activity in fibroblasts.
Hum Mol Genet
11:
2615–2624,
2002.
|
268. |
Bland CE,
Kimberly P and
Rand MD.
Notch‐induced proteolysis and nuclear localization of the Delta ligand.
J Biol Chem
278:
13607–13610,
2003.
|
269. |
LaVoie MJ and
Selkoe DJ.
The Notch ligands, Jagged and Delta, are sequentially processed by alpha‐secretase and presenilin/gamma‐secretase and release signaling fragments.
J Biol Chem
278:
34427–34437,
2003.
|
270. |
Six E,
Ndiaye D,
Laabi Y,
Brou C,
Gupta‐Rossi N,
Israel A and
Logeat F.
The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and gamma‐secretase.
Proc Natl Acad Sci USA
100:
7638–7643,
2003.
|
271. |
Bogenrieder T and
Herlyn M.
Cell‐surface proteolysis, growth factor activation and intercellular communication in the progression of melanoma.
Crit Rev Oncol Hematol
44:
1–15,
2002.
|
272. |
Asahara T,
Masuda H,
Takahashi T,
Kalka C,
Pastore C,
Silver M,
Kearne M,
Magner M and
Isner JM.
Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization.
Circ Res
85:
221–228,
1999.
|
273. |
Carmeliet P and
Luttun A.
The emerging role of the bone marrow‐derived stem cells in (therapeutic) angiogenesis.
Thromb Haemost
86:
289–297,
2001.
|
274. |
Urbich C and
Dimmeler S.
Endothelial progenitor cells: characterization and role in vascular biology.
Circ Res
95:
343–353,
2004.
|
275. |
Asahara T and
Isner JM.
Endothelial progenitor cells for vascular regeneration.
J Hematother Stem Cell Res
11:
171–178,
2002.
|
276. |
Luttun A,
Carmeliet G and
Carmeliet P.
Vascular progenitors: from biology to treatment.
Trends Cardiovasc Med
12:
88–96,
2002.
|
277. |
Murayama T and
Asahara T.
Bone marrow‐derived endothelial progenitor calls for vascular regeneration.
Curr Opin Mol Ther
4:
395–402,
2002.
|
278. |
Zwaginga JJ and
Doevendans P.
Stem cell‐derived angiogenic/vasculogenic cells: possible therapies for tissue repair and tissue engineering.
Clin Exp Pharmacol Physiol
30:
900–908,
2003.
|
279. |
Asahara T,
Takahashi T,
Masuda H,
Kalka C,
Chen D,
Iwaguro H,
Inai Y,
Silver M and
Isner JM.
VEGF contributes to postnatal neovascularization by mobilizing bone marrow‐derived endothelial progenitor cells.
Embo J
18:
3964–3972,
1999.
|
280. |
Kamihata H,
Matsubara H,
Nishiue T,
Fujiyama S,
Tsutsumi Y,
Ozono R,
Masaki H,
Mori Y,
Iba O,
Tateishi E,
Kosaki A,
Shintani S,
Murohara T,
Imaizumi T and
Iwasaka T.
Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines.
Circulation
104:
1046–1052,
2001.
|
281. |
Shintani S,
Murohara T,
Ikeda H,
Ueno T,
Sasaki K,
Duan J and
Imaizumi T.
Augmentation of postnatal neovascularization with autologous tone marrow transplantation.
Circulation
103:
897–903,
2001.
|
282. |
Edelberg JM,
Tang L,
Hattori K,
Lyden D and
Rafii S.
Young adult bone marrow‐derived endothelial precursor cells restore aging‐impaired cardiac angiogenic function.
Circ Res
90:
E89–93,
2002.
|
283. |
Rajantie I,
IImonen M,
Alminaite A,
Ozerdem U,
Alitalo K and
Salven P.
Adult bone marrow‐derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells.
Blood
104:
2084–2086,
2004.
|
284. |
Ziegelhoeffer T,
Fernandez B,
Kostin S,
Heil M,
Voswinckel R,
Helisch A and
Schaper W.
Bone marrow‐derived cells do not incorporate into the adult growing vasculature.
Circ Res
94:
230–238,
2004.
|
285. |
Porter S,
Clark IM,
Kevorkian L and
Edwards DR
The ADAMTS metalloproteinases.
Biochem J,
2004.
|
286. |
Vazquez F,
Hastings G,
Ortega MA,
Lane TF,
Oikemus S,
Lombardo M and
Iruela‐Arispe ML.
METH‐1, a human ortholog of ADAMTS‐1, and METH‐2 are members of a new family of proteins with angio‐inhibitory activity.
J Biol Chem
274:
23349–23357,
1999.
|
287. |
Kuno K,
Bannai K,
Hakozaki M,
Matsushima K and
Hirose K.
The carboxyl‐terminal half region of ADAMTS‐1 suppresses both tumorigenicity and experimental tumor metastatic potential.
Biochem Biophys Res Commun
319:
1327–1333,
2004.
|
288. |
Voest EE,
Kenyon BM,
O'Reilly MS,
Truitt G,
D'Amato RJ and
Folkman J.
Inhibition of angiogenesis in vivo by interleukin 12.
J Natl Cancer Inst
87:
581–586,
1995.
|
289. |
Majewski S,
Marczak M,
Szmurlo A,
Jablonska S and
Bollag W.
Interleukin‐12 inhibits angiogenesis induced by human tumor cell lines in vivo.
J Invest Dermatol
106:
1114–1118,
1996.
|
290. |
Hiscox S and
Jiang WG.
Interleukin‐12, an emerging anti‐tumour cytokine.
In Vivo
11:
125–132,
1997.
|
291. |
Strasly M,
Cavallo F,
Geuna M,
Mitola S,
Colombo MP,
Forni G and
Bussolino F.
IL‐12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte‐endothelial cell cross‐talk.
J Immunol
166:
3890–3899,
2001.
|
292. |
Chao J,
Tillman DM,
Wang MY,
Margolius HS and
Chao L.
Identification of a new tissue‐kallikrein‐binding protein.
Biochem J
239:
325–331,
1986.
|
293. |
Wang MY,
Day J,
Chao L and
Chao J.
Human kallistatin, a new tissue kallikrein‐binding protein: purification and characterization.
Adv Exp Med Biol
247B:
1–8,
1989.
|
294. |
Chao J,
Miao RQ,
Chen V,
Chen LM and
Chao L.
Novel roles of kallistatin, a specific tissue kallikrein inhibitor, in vascular remodeling.
Biol Chem
382:
15–21,
2001.
|
295. |
Rian E,
Jemtland R,
Olstad OK,
Endresen MJ,
Grasser WA,
Thiede MA,
Henriksen T,
Bucht E and
Gautvik KM.
Parathyroid hormone‐related protein is produced by cultured endothelial cells: a possible role in angiogenesis.
Biochem Biophys Res Commun
198:
740–747,
1994.
|
296. |
Deftos LJ.
Prostate carcinoma: production of bioactive factors.
Cancer
88:
3002–3008,
2000.
|
297. |
Akino K,
Ohtsuru A,
Kanda K,
Yasuda A,
Yamamoto T,
Akino Y,
Naito S,
Kurokawa M,
Iwahori N and
Yamashita S.
Parathyroid hormone‐related peptide is a potent tumor angiogenic factor.
Endocrinology
141:
4313–4316,
2000.
|
298. |
Bakre MM,
Zhu Y,
Yin H,
Burton DW,
Terkeltaub R,
Deftos LJ and
Varner JA.
Parathyroid hormone‐related peptide is a naturally occurring, protein kinase A‐dependent angiogenesis inhibitor.
Nat Med
8:
995–1003,
2002.
|
299. |
Tombran‐Tink J,
Chader GG and
Johnson LV.
PEDF: a pigment epithelium‐derived factor with potent neuronal differentiative activity.
Exp Eye Res
53:
411–414,
1991.
|
300. |
Steele FR,
Chader GJ,
Johnson LV and
Tombran‐Tink J.
Pigment epithelium‐derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family.
Proc Natl Acad Sci USA
90:
1526–1530,
1993.
|
301. |
Sugita Y,
Becerra SP,
Chader GJ and
Schwartz JP.
Pigment epithelium‐derived factor (PEDF) has direct effects on the metabolism and proliferation of microglia and indirect effects on astrocytes.
J Neurosci Res
49:
710–718,
1997.
|
302. |
Cao W,
Tombran‐Tink J,
Chen W,
Mrazek D,
Elias R and
McGinnis JF.
Pigment epithelium‐derived factor protects cultured retinal neurons against hydrogen peroxide‐induced cell death.
J Neurosci Res
57:
789–800,
1999.
|
303. |
Dawson DW,
Volpert OV,
Gillis P,
Crawford SE,
Xu H,
Benedict W and
Bouck NP.
Pigment epithelium‐derived factor: a potent inhibitor of angiogenesis.
Science
285:
245–248,
1999.
|
304. |
Bouck N.
PEDF: anti‐angiogenic guardian of ocular function.
Trends Mol Med
8:
330–334,
2002.
|
305. |
Stellmach V,
Crawford SE,
Zhou W and
Bouck N.
Prevention of ischemia‐induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium‐derived factor.
Proc Natl Acad Sci USA
98:
2593–2597,
2001.
|
306. |
Doll JA,
Stellmach VM,
Bouck NP,
Bergh AR,
Lee C,
Abramson LP,
Cornwell ML,
Pins MR,
Borensztajn J and
Crawford SE.
Pigment epithelium‐derived factor regulates the vasculature and mass of the prostate and pancreas.
Nat Med
9:
774–780,
2003.
|
307. |
Abe R,
Shimizu T,
Yamagishi S,
Shibaki A,
Amano S,
Inagaki Y,
Watanabe H,
Sugawara H,
Nakamura H,
Takeuchi M,
Imaizumi T and
Shimizu H.
Overexpression of pigment epithelium‐derived factor decreases angiogenesis and inhibits the growth of human malignant melanoma cells in vivo.
Am J Pathol
164:
1225–1232,
2004.
|
308. |
Wary KK,
Thakker GD,
Humtsoe JO and
Yang J.
Analysis of VEGF‐responsive genes involved in the activation of endothelial cells.
Mol Cancer
2:
25,
2003.
|
309. |
Gerritsen ME,
Soriano R,
Yang S,
Ingle G,
Zlot C,
Toy K,
Winer J,
Draksharapu A,
Peale F,
Wu TD and
Williams PM.
In silico data filtering to identify new angiogenesis targets from a large in vitro gene profiling data set.
Physiol Genomics
10:
13–20,
2002.
|
310. |
Lal A,
Peters H,
St Croix B,
Haroon ZA,
Dewhirst MW,
Strausberg RL,
Kaanders JH,
van der Kogel AJ and
Riggins GJ.
Transcriptional response to hypoxia in human tumors.
J Natl Cancer Inst
93:
1337–1343,
2001.
|
311. |
McCudden CR,
James KA,
Hasilo C and
Wagner GF,
Characterization of mammalian stanniocalcin receptors. Mitochondrial targeting of ligand and receptor for regulation of cellular metabolism.
J Biol Chem
277:
45249–45258,
2002.
|
312. |
Wakasugi K and
Schimmel P.
Two distinct cytokines released from a human aminoacyl‐tRNA synthetase.
Science
284:
147–151,
1999b.
|
313. |
Wakasugi K and
Schimmel P.
Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase.
J Biol Chem
274:
23155–23159,
1999a.
|
314. |
Wakasugi K,
Slike BM,
Hood J,
Otani A,
Ewalt KL,
Friedlander M,
Cheresh DA and
Schimmel P.
A human aminoacyl‐tRNA synthetase as a regulator of angiogenesis.
Proc Natl Acad Sci USA
99:
173–177,
2002.
|
315. |
Otani A,
Slike BM,
Dorrell MI,
Hood J,
Kinder K,
Ewalt KL,
Cheresh D,
Schimmel P and
Friedlander M.
A fragment of human TrpRS as a potent antagonist of ocular angiogenesis.
Proc Natl Acad Sci USA
99:
178–183,
2002.
|
316. |
Liu J,
Shue E,
Ewalt KL and
Schimmel P.
A new gamma‐interferon‐inducible promoter and splice variants of an anti‐angiogenic human tRNA synthetase.
Nucleic Acids Res
32:
719–727,
2004.
|
317. |
Tzima E,
Reader JS,
Irani‐Tehrani M,
Ewalt KL,
Schwartz MA and
Schimmel P.
VE‐cadherin links tRNA synthetase cytokine to anti‐angiogenic function.
J Biol Chem
280:
2405–2408,
2005.
|
318. |
Zhai Y,
Ni J,
Jiang GW,
Lu J,
Xing L,
Lincoln C,
Carter KC,
Janat F,
Kozak D,
Xu S,
Rojas L,
Aggarwal BB,
Ruben S,
Li LY,
Gentz R and
Yu GL.
VEGI, a novel cytokine of the tumor necrosis factor family, is an angiogenesis inhibitor that suppresses the growth of colon carcinomas in vivo.
Faseb J
13:
181–189,
1999a.
|
319. |
Zhai Y,
Yu J,
Iruela‐Arispe L,
Huang WQ,
Wang Z,
Hayes AJ,
Lu J,
Jiang G,
Rojas L,
Lippman ME,
Ni J,
Yu GL and
Li LY.
Inhibition of angiogenesis and breast cancer xenograft tumor growth by VEGI, a novel cytokine of the TNF superfamily.
Int J Cancer
82:
131–136,
1999b.
|
320. |
Soncin F,
Mattot V,
Lionneton F,
Spruyt N,
Lepretre F,
Begue A and
Stehelin D.
VE‐statin, an endothelial repressor of smooth muscle cell migration.
Embo J
22:
5700–5711,
2003.
|
321. |
Morgenbesser SD,
Dufault MR,
St. Martin TB,
Lim E,
Callahan M,
Weber W,
Winter SF,
McLaren RP,
Richards B,
Cook BP,
Rouleau C,
Jiang Y,
Bagley RG,
Barberio D,
Akmaev VR,
Nacht M,
Madden SL,
Greenberg NM and
Teicher BA.
Characterization of EGFL7 expression and function in tumorigenesis and angiogenesis. Proc.
AM. Assoc Cancer Res.
46:
1103c,
2005.
|
322. |
Kerbel RS.
Vasohibin: the feedback on a new inhibitor of angiogenesis.
J Clin Invest
114:
884–886,
2004.
|
323. |
Watanabe K,
Hasegawa Y,
Yamashita H,
Shimizu K,
Ding Y,
Abe M,
Ohta H,
Imagawa K,
Hojo K,
Maki H,
Sonoda H and
Sato Y.
Vasohibin as an endothelium‐derived negative feedback regulator of angiogenesis.
J Clin Invest
114:
898–907,
2004.
|
324. |
Sund M,
Xie L and
Kalluri R.
The contribution of vascular basement membranes and extracellular matrix to the mechanics of tumor angiogenesis,
APMIS
112:
450–462,
2004.
|
325. |
O'Reilly MS,
Boehm T,
Shing Y,
Fukai N,
Vasios G,
Lane WS,
Flynn E,
Birkhead JR,
Olsen BR and
Folkman J.
Endostatin: an endogenous inhibitor of angiogenesis and tumor growth.
Cell
88:
277–285,
1997.
|
326. |
Colorado PC,
Torre A,
Kamphaus G,
Maeshima Y,
Hopfer H,
Takahashi K,
Volk R,
Zamborsky ED,
Herman S,
Sarkar PK,
Ericksen MB,
Dhanabal M,
Simons M,
Post M,
Kufe DW,
Weichselbaum RR,
Sukhatme VP and
Kalluri R.
Anti‐angiogenic cues from vascular basement membrane collagen.
Cancer Res
60:
2520–2526,
2000.
|
327. |
Kamphaus GD,
Colorado PC,
Panka DJ,
Hopfer H,
Ramchandran R,
Torre A,
Maeshima Y,
Mier JW,
Sukhatme VP and
Kalluri R.
Canstatin, a novel matrix‐derived inhibitor of angiogenesis and tumor growth.
J Biol Chem
275:
1209–1215,
2000.
|
328. |
He GA,
Luo JX,
Zhang TY,
Wang FY and
Li RF.
Canstatin‐N fragment inhibits in vitro endothelial cell proliferation and suppresses in vivo tumor growth.
Biochem Biophys Res Commun
312:
801–805,
2003.
|
329. |
Panka DJ and
Mier JW.
Canstatin inhibits Akt activation and induces Fas‐dependent apoptosis in endothelial cells.
J Biol Chem
278:
37632–37636,
2003.
|
330. |
He GA,
Luo JX,
Zhang TY,
Hu ZS and
Wang FY.
The C‐terminal domain of canstatin suppresses in vivo tumor growth associated with proliferation of endothelial cells.
Biochem Biophys Res Commun
318:
354–360,
2004.
|
331. |
Maeshima Y,
Sudhakar A,
Lively JC,
Ueki K,
Kharbanda S,
Kahn CR,
Sonenberg N,
Hynes RO and
Kalluri R.
Tumstatin, an endothelial cell‐specific inhibitor of protein synthesis.
Science
295:
140–143,
2002.
|
332. |
Sudhakar A,
Sugimoto H,
Yang C,
Lively J,
Zeisberg M and
Kalluri R.
Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins.
Proc Natl Acad Sci USA
100:
4766–4771,
2003.
|
333. |
Lawler J.
Thrombospondin‐1 as an endogenous inhibitor of angiogenesis and tumor growth.
J Cell Mol Med
6:
1–12,
2002.
|
334. |
Armstrong LC and
Bornstein P.
Thrombospondins 1 and 2 function as inhibitors of angiogenesis.
Matrix Biol
22:
63–71,
2003.
|
335. |
Vailhe B and
Feige JJ.
Thrombospondins as anti‐angiogenic therapeutic agents.
Curr Pharm Des
9:
583–588,
2003.
|
336. |
Iruela‐Arispe ML,
Luque A and
Lee N.
Thrombospondin modules and angiogenesis.
Int J Biochem Cell Biol
36:
1070–1078,
2004.
|
337. |
O'Reilly MS,
Holmgren L,
Shing Y,
Chen C,
Rosenthal RA,
Cao Y,
Moses M,
Lane WS,
Sage EH and
Folkman J.
Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth.
Cold Spring Harb Symp Quant Biol
59:
471–482,
1994a.
|
338. |
O'Reilly MS,
Holmgren L,
Shing Y,
Chen C,
Rosenthal RA,
Moses M,
Lane WS,
Cao Y,
Sage EH and
Folkman J.
Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma.
Cell
79:
315–328,
1994b.
|
339. |
Larsson H,
Akerud P,
Nordling K,
Raub‐Segall E,
Claesson‐Welsh L and
Bjork I.
A novel anti‐angiogenic form of antithrombin with retained proteinase binding ability and heparin affinity.
J Biol Chem
276:
11996–12002,
2001b.
|
340. |
Zhang JC,
Qi X,
Juarez J,
Plunkett M,
Donate F,
Sakthivel R,
Mazar AP and
McCrae KR.
Inhibition of angiogenesis by two‐chain high molecular weight kininogen (HKa) and kininogen‐derived polypeptides.
Can J Physiol Pharmacol
80:
85–90,
2002.
|
341. |
Guo YL,
Wang S,
Cao DJ and
Colman RW.
Apoptotic effect of cleaved high molecular weight kininogen is regulated by extracellular matrix proteins.
J Cell Biochem
89:
622–632,
2003.
|
342. |
Kuba K,
Matsumoto K,
Date K,
Shimura H,
Tanaka M and
Nakamura T.
HGF/NK4, a four‐kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice.
Cancer Res
60:
6737–6743,
2000a.
|
343. |
Kuba K,
Matsumoto K,
Ohnishi K,
Shiratsuchi T,
Tanaka M and
Nakamura T.
Kringle 1‐4 of hepatocyte growth factor inhibits proliferation and migration of human microvascular endothelial cells.
Biochem Biophys Res Commun
279:
846–852,
2000b.
|
344. |
Xin L,
Xu R,
Zhang Q,
Li TP and
Gan RB.
Kringle 1 of human hepatocyte growth factor inhibits bovine aortic endothelial cell proliferation stimulated by basic fibroblast growth factor and causes cell apoptosis.
Biochem Biophys Res Commun
277:
186–190,
2000.
|
345. |
Tomioka D,
Maehara N,
Kuba K,
Mizumoto K,
Tanaka M,
Matsumoto K and
Nakamura T.
Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model.
Cancer Res
61:
7518–7524,
2001.
|
346. |
Nakabayashi M,
Morishita R,
Nakagami H,
Kuba K,
Matsumoto K,
Nakamura T,
Tano Y and
Kaneda Y.
HGF/NK4 inhibited VEGF‐induced angiogenesis in in vitro cultured endothelial cells and in vivo rabbit model.
Diabetologia
46:
115–123,
2003.
|
347. |
Kushibiki T,
Matsumoto K,
Nakamura T and
Tabata Y.
Suppression of tumor metastasis by NK4 plasmid DNA released from cationized gelatin.
Gene Ther
11:
1205–1214,
2004.
|
348. |
Wen J,
Matsumoto K,
Taniura N,
Tomioka D and
Nakamura T.
Hepatic gene expression of NK4, an HGF‐antagonist/angiogenesis inhibitor, suppresses liver metastasis and invasive growth of colon cancer in mice.
Cancer Gene Ther
11:
419–430,
2004.
|
349. |
Martin P and
Lewis J.
Origins of the neurovascular bundle: interactions between developing nerves and blood vessels in embryonic chick skin.
Int J Dev Biol
33:
379–387,
1989.
|
350. |
Wang H,
Chen Z and
DJ A.
Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin B2 and its receptor Eph‐B4,
Cell
93:
741–753,
1998.
|
351. |
Gerety SS,
Wang HU,
Chen ZF and
Anderson DJ.
Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin‐B2 in cardiovascular development.
Mol Cell
4:
403–414,
1999.
|
352. |
Fiore R and
Puschel AW.
The function of semaphorins during nervous system development.
Front Biosci
8:
s484–s499,
2003.
|
353. |
Seeliger H,
Guba M,
Koehl GE,
Doenecke A,
Steinbauer M,
Bruns CJ,
Wagner C,
Frank E,
Jauch KW and
Geissler EK.
Blockage of 2‐deoxy‐d‐ribose‐induced angiogenesis with rapamycin counteracts a thymidine phosphorylase‐based escape mechanism available for colon cancer under 5‐fluorouracil therapy.
Clin Cancer Res
10:
1843–1852,
2004.
|
354. |
Kessler O,
Shraga‐Heled N,
Lange T,
Gutmann‐Raviv N,
Sabo E,
Baruch L,
Machluf M and
Neufeld G.
Semaphorin‐3F is an inhibitor of tumor angiogenesis.
Cancer Res
64:
1008–1015,
2004.
|
355. |
Shoji W,
Isogai S,
Sato‐Maeda M,
Obinata M and
Kuwada JY.
Semaphorin3al regulates angioblast migration and vascular development in zebrafish embryos.
Development
130:
3227–3236,
2003.
|
356. |
Bates D,
Taylor GI,
Minichiello J,
Farlie P,
Cichowitz A,
Watson N,
Klagsbrun M,
Mamluk R and
Newgreen DF.
Neurovascular congruence results from a shared patterning mechanism that utilizes Semaphorin3A and Neuropilin‐1.
Dev Biol
255:
77–98,
2003.
|
357. |
Serini G,
Valdembri D,
Zanivan S,
Morterra G,
Burkhardt C,
Caccavari F,
Zammataro L,
Primo L,
Tamagnone L,
Logan M,
Tessier‐Lavigne M,
Taniguchi M,
Puschel AW and
Bussolino F.
Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function.
Nature
424:
391–397,
2003.
|
358. |
Behar O,
Golden JA,
Mashimo H,
Schoen FJ and
Fishman MC.
Semaphorin III is needed for normal patterning and growth of nerves, bones and heart.
Nature
383:
525–528,
1996.
|
359. |
Gu C,
Yoshida Y,
Livet J,
Reimert DV,
Mann F,
Merte J,
Henderson CE,
Jessell TM,
Kolodkin AL and
Ginty DD.
Semaphorin 3E and plexin‐D1 control vascular pattern independently of neuropilins.
Science
307:
265–268,
2005.
|
360. |
Redmond L and
Ghosh A.
The role of Notch and Rho GTPase signaling in the control of dendritic development.
Curr Opin Neurobiol
11:
111–117,
2001.
|
361. |
Wang B,
Xiao Y,
Ding BB,
Zhang N,
Yuan X,
Gui L,
Qian KX,
Duan S,
Chen Z,
Rao Y and
Geng JG.
Induction of tumor angiogenesis by Slit‐Robo signaling and inhibition of cancer growth by blocking Robo activity.
Cancer Cell
4:
19–29,
2003.
|
362. |
Huminiecki L,
Gorn M,
Suchting S,
Poulsom R and
Bicknell R.
Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis.
Genomics
79:
547–552,
2002.
|
363. |
Mukouyama YS,
Shin D,
Britsch S,
Taniguchi M and
Anderson DJ.
Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin.
Cell
109:
693–705,
2002.
|
364. |
Jin K,
Zhu Y,
Sun Y,
Mao XO,
Xie L and
Greenberg DA.
Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo.
Proc Natl Acad Sci USA
99:
11946–11950,
2002.
|
365. |
Sun Y,
Jin K,
Xie L,
Childs J,
Mao XO,
Logvinova A and
Greenberg DA.
VEGF‐induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia.
J Clin Invest
111:
1843–1851,
2003.
|
366. |
Zhu Y,
Jin K,
Mao XO and
Greenberg DA.
Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression.
Faseb J
17:
186–193,
2003.
|
367. |
Form DM and
Auerbach R.
PGE2 and angiogenesis.
Proc Soc Exp Biol Med
172:
214–218,
1983.
|
368. |
Serini G and
Bussolino F.
Common cues in vascular and axon guidance.
Physiology (Bethesda)
19:
348–354,
2004.
|