Comprehensive Physiology Wiley Online Library

Angiogenesis

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Formation of New Vessels
1.1 Cells
1.2 Processes
1.3 The Angiogenic Switch
2 Promoters of Angiogenesis
2.1 The principal growth factors
2.2 Other pro‐angiogenic modulators
3 Inhibitors of Angiogenesis
3.1 Proteins and Protein Fragments
3.2 Extracellular Matrix Components
3.3 Miscellaneous Endogenous Angiogenesis Inhibitors
4 Vascular Patterning
Figure 1. Figure 1.

Blood vessels in whole mounts of mouse ear skin, as stained by perfusion of biotinylated lectin (Lycopersicon esculentum) followed by diaminobenzidine–peroxidase reaction. Perfused lectin binds to the luminal surface of the endothelium. Shown are the microvessels feeding the hair follicles. (A) Normal microvessels in wild type mouse. (B) Increased number of vessels in transgenic K14‐VEGF mouse. (C) Increased size of vessels in K14‐Angiopoietin‐I mouse (Figure provided by Gavin Thurston. Regeneron Pharmaceuticals).

Figure 2. Figure 2.

Domain structure of FGF receptors.

Figure 3. Figure 3.

FGF and FGF receptors. Based on data published in Ref. 14 and summarized on the website http://molecool.wustl.edu/ornitzlab/fgf.data.htm (See page 5 in colour section at the back of the book)

Figure 4. Figure 4.

VEGF and VEGF Receptors.

Figure 5. Figure 5.

Ribbon diagram of the crystal structure of an ELR chemokine, showing the ELR motif (depicted as ball and stick).

Adapted from: Protein Data Base: PDB code: 1IKL. Rajarathnam K, Clark‐Lewis I and Sykes BD. 1H NMR solution structure of an active monomeric inter‐leukin‐8. Biochemistry 34(40): 12983–12990, 1995.
Figure 6. Figure 6.

Domain structure of Del‐1.

Figure 7. Figure 7.

Domain structure of ephrin and eph receptors.



Figure 1.

Blood vessels in whole mounts of mouse ear skin, as stained by perfusion of biotinylated lectin (Lycopersicon esculentum) followed by diaminobenzidine–peroxidase reaction. Perfused lectin binds to the luminal surface of the endothelium. Shown are the microvessels feeding the hair follicles. (A) Normal microvessels in wild type mouse. (B) Increased number of vessels in transgenic K14‐VEGF mouse. (C) Increased size of vessels in K14‐Angiopoietin‐I mouse (Figure provided by Gavin Thurston. Regeneron Pharmaceuticals).



Figure 2.

Domain structure of FGF receptors.



Figure 3.

FGF and FGF receptors. Based on data published in Ref. 14 and summarized on the website http://molecool.wustl.edu/ornitzlab/fgf.data.htm (See page 5 in colour section at the back of the book)



Figure 4.

VEGF and VEGF Receptors.



Figure 5.

Ribbon diagram of the crystal structure of an ELR chemokine, showing the ELR motif (depicted as ball and stick).

Adapted from: Protein Data Base: PDB code: 1IKL. Rajarathnam K, Clark‐Lewis I and Sykes BD. 1H NMR solution structure of an active monomeric inter‐leukin‐8. Biochemistry 34(40): 12983–12990, 1995.


Figure 6.

Domain structure of Del‐1.



Figure 7.

Domain structure of ephrin and eph receptors.

References
 1. Davis GE and Camarillo CW. An alpha 2 beta 1 integrin‐dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three‐dimensional collagen matrix. Exp Cell Res 224: 39–51, 1996.
 2. Salazar R, Bell SE and Davis GE. Coordinate induction of the actin cytoskeletal regulatory proteins gelsolin, vasodilator‐stimulated phosphoprotein, and profilin during capillary morphogenesis in vitro. Exp Cell Res 249: 22–32, 1999.
 3. Bayless KJ, Salazar R and Davis GE. RGD‐dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three‐dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. Am J Pathol 156: 1673–1683, 2000.
 4. Bayless KJ and Davis GE. The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three‐dimensional extracellular matrices. J Cell Sci 115: 1123–1136, 2002.
 5. Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE and Weinstein BM. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442: 453–456, 2006.
 6. Caduff J, Fischer L and Burri P. Scanning electron microscopic study of the developing microvasculature in the postnatal rat lung. Anat Rec 216: 154–164, 1986.
 7. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S. Sato TN and Yancopoulos GD, Requisite role of angiopoietin‐1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87: 1171–1180, 1996.
 8. Patan S. TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res 56: 1–21, 1998.
 9. Thurston G, Suri C, Smith K, McClain J, Sato T, Yancopoulos G and McDonald D. Leakage resistant blood vessels in mice transgenically overexpressing angiopoietin‐1. Science 286: 2511–2514, 1999.
 10. Gamble JR, Drew J, Trezise L, Underwood A, Parsons M, Kasminkas L, Rudge J, Yancopoulos G and Vadas MA. Angiopoietin‐1 is an anti‐permeability and anti‐inflammatory agent in vitro and targets cell junctions. Ore Res 87: 603–607, 2000.
 11. Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM and Yancopoulos GD. Angiopoietin‐1 protects the adult vasculature against plasma leakage. Nat Med 6: 460–463, 2000.
 12. Thurston G. Complementary actions of VEGF and angiopoietin‐1 on blood vessel growth and leakage. J Anat 200: 575–580, 2002.
 13. Jiang CK, Epstein HS, Tomic M, Freedberg IM and Blumenberg M. Epithelial‐specific keratin gene expression: identification of a 300 base‐pair controlling segment. Nucleic Acids Res 18: 247–253, 1990.
 14. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN and Yancopoulos GD. Angiopoietin‐2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis [see comments]. Science 277: 55–60, 1997.
 15. Satchell S, Harper S and Mathieson P. Angiopoietin‐1 is normally expressed by periendothelial cells. Thromb Haemost 86: 1597–1598, 2001.
 16. Mandriota SJ and Pepper MS. Regulation of angiopoietin‐2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ Res 83: 852–859, 1998.
 17. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G and Goldfarb M. Receptor specificity of the fibroblast growth factor family. J Biol Chem 271: 15292–15297, 1996.
 18. Burgess W and Maciag T. The heparin‐binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 58: 575–606, 1989.
 19. Bikfalvi A, Klein S, Pintucci G and Rifkin D. Biological roles of fibroblast growth factor‐2. Endocr Rev 18: 26–45, 1997.
 20. Imamura T, Engleka K, Zhan X, Tokita Y, Forough R, Roeder D, Jackson A, Maier J, Hla T and Maciag T. Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science 249: 1567–1570, 1990.
 21. Bugler B, Amnlric F and Prats H. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol Cell Biol 11: 573–577, 1991.
 22. Dono R, Texido G, Dussel R, Ehmke H and Zeller R. Impaired cerebral cortex development and blood pressure regulation in FGF‐2‐deficient mice. Embo J 17: 4213–4225, 1998.
 23. Ortega S, Ittmann M, Tsang S, Ehrlich M and Basilico C. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc Natl Acad Sci USA 95: 5672–5677, 1998.
 24. Zhou M, Sutlitf R, Paul R, Lorenz J, Hoying J, Haudenschild C, Yin M, Coffin J, Kong L, Kranias E, Luo W, Boivin G, Duffy J, Pawlowski S and Doetschman T. Fibroblast growth factor 2 control of vascular tone. Nat Med 4: 201–207, 1998.
 25. Miller DL, Ortega S, Bashayan O, Basch R and Basilico C. Compensation by fibroblast growth factor I (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol 20: 2260–2268, 2000.
 26. Simons M and Horowitz A. Syndecan‐4 mediated signaling. Cell Signal 13: 855–862, 2001.
 27. Tkachenko E, Lutgens E, Stan R‐V and Simons M. Fibroblast growth factor 2 endocytosis in endothelial cells proceed via syndecan‐4‐dependent activation of Rac1 and a Cdc42 dependent macropinocytotic pathway. J Cell Sci 117: 3189–3199, 2004.
 28. Donate L, Gherardi E, Srinivasan N, Sowdhamini R, Aparicio S and Blundell T. Molecular evolution and domain structure of plasminogen‐related growth factors (HGF‐SF) and HGF1/MSP. Protein Sci 3: 2378–2394, 1994.
 29. Boros P and Miller M. Hepatocyte growth factor: a multifunctional cytokine. Lancet 345: 293–295, 1995.
 30. Matsumoto K and Nakamura T. Emerging multipotent aspects of hepatocyte growth factor. J Biochem 119: 591–600, 1996.
 31. Bottaro DP, Rubin JS, Faletto D, Chan A, Kmiecik T, Van de Woude G and Aaronson SA, Identification of the hepatocyte growth factor receptor as the c‐met proto‐oncogene product. Science 251: 802–804, 1991.
 32. Ma P, Maulik G, Christensen J and Salgia R. c‐Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev 22: 309–325, 2003.
 33. Bladt F, Riethmacher D, Isenmann S, Aguzzi A and Birchmeier C. Essential role for the c‐met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376: 768–771, 1995.
 34. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, Gherardi E and Birchmeier C. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373: 699–702, 1995.
 35. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T and Kitamura N. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373: 702–705, 1995.
 36. Morimoto A, Okamura K, Hamanaka R, Sato Y, Shima N, Higashio K and Kuwano M. Hepatocyte growth factor modulates migration and proliferation of human microvascular endothelial cells in culture. Biochem Biophys Res Commun 179: 1042–1049, 1991.
 37. Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L, Gaudino G, Tamagnone L, Coffer A and Comoglio PM, Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 119: 629–641, 1992.
 38. Jeffers M, Rong S and Woude GF, Hepatocyte growth factor/scatter factor‐Met signaling in tumorigenicity and invasion/metastasis. J Mol Med 74: 505–513, 1996.
 39. Rosen EM, Lamszus K, Laterra J, Polverini PJ, Rubin JS and Goldberg ID. HGF/SF in angiogenesis. Ciba Found Symp 212: 215–226, 1997, discussion 227‐219.
 40. Kumar R, Yoneda J, Bucana CD and Fidler IJ. Regulation of distinct steps of angiogenesis by different angiogenic molecules. Int J Oncol 12: 749–757, 1998.
 41. Montesano R, Soriano JV, Malinda KM, Ponce ML, Bafico A, Kleinman HK, Bottaro DP and Aaronson SA. Differential effects of hepatocyte growth factor isoforms on epithelial and endothelial tubulogenesis. Cell Growth Differ 9: 355–365, 1998.
 42. Van Belle E, Witzenbichler B, Chen D, Silver M, Chang L, Schwall R and Isner JM. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circulation 97: 381–390, 1998.
 43. Xin X, Yang S, Ingle G, Zlot C, Rangell L, Kowalski J, Schwall R, Ferrara N and Gerritsen ME. Hepatocyte growth factor enhances vascular endothelial growth factor‐induced angiogenesis in vitro and in vivo. Am J Pathol 158: 1111–1120, 2001.
 44. Gerritsen ME, Soriano R, Yang S, Zlot C, Ingle G, Toy K and Williams PM. Branching out: a molecular fingerprint of endothelial differentiation into tube‐like structures generated by Affymetrix oligonucleotide arrays. Microcirculation 10: 63–81, 2003a.
 45. Zlot C, Ingle G, Hongo J, Yang S, Sheng Z, Schwall R, Paoni N, Wang F, Peak FV, Jr, and Gerritsen ME. Stanniocalcin 1 is an autocrine modulator of endothelial angiogenic responses to hepatocyte growth factor. J Biol Chem 278: 47654–47659, 2003.
 46. Morishita R, Nakamura S, Hayashi S, Taniyama Y, Moriguchi A, Nagano T, Taiji M, Noguchi H, Takeshita S, Matsumoto K, Nakamura T, Higaki J and Ogihara T. Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy. Hypertension 33: 1379–1384, 1999.
 47. Ueda H, Sawa Y, Matsumoto K, Kitagawa‐Sakakida S, Kawahira Y, Nakamura T, Kaneda Y and Matsuda H. Gene transfection of hepatocyte growth factor attenuates reperfusion injury in the heart. Ann Thorac Surg 67: 1726–1731, 1999.
 48. Aoki M, Morishita R, Taniyama Y, Kida I, Moriguchi A, Matsumoto K, Nakamura T, Kaneda Y, Higaki J and Ogihara T. Angiogenesis induced by hepatocyte growth factor in non‐infarcted myocardium and infarcted myocardium: up‐regulation of essential transcription factor for angiogenesis, ets. Gene Ther 7: 417–427, 2000.
 49. Taniyama Y, Morishita R, Aoki M, Nakagami H, Yamamoto K, Yamazaki K, Matsumoto K, Nakamura T, Kaneda Y and Ogihara T. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: preclinical study for treatment of peripheral arterial disease. Gene Ther 8: 181–189, 2001a.
 50. Taniyama Y, Morishita R, Hiraoka K, Aoki M, Nakagami H, Yamasaki K, Matsumoto K, Nakamura T, Kaneda Y and Ogihara T. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model: molecular mechanisms of delayed angiogenesis in diabetes. Circulation 104: 2344–2350, 2001b.
 51. Ahmet I, Sawa Y, Yamaguchi T and Matsuda H. Gene transfer of hepatocyte growth factor improves angiogenesis and function of chronic ischemic myocardium in canine heart. Ann Thorac Surg 75: 1283–1287, 2003.
 52. Sengupta S, Gherardi E, Sellers LA, Wood JM, Sasisekharan R and Fan TP. Hepatocyte growth factor/scatter factor can induce angiogenesis independently of vascular endothelial growth factor. Arterioscler Thromb Vase Biol 23: 69–75, 2003.
 53. Morishita R, Aoki M, Hashiya N, Yamasaki K, Kurinami H, Shimizu S, Makino H, Takesya Y, Azuma J and Ogihara T. Therapeutic angiogenesis using hepatocyte growth factor (HGF). Curr Gene Ther 4: 199–206, 2004.
 54. Ono K, Matsumori A, Shioi T, Furukawa Y and Sasayama S. Enhanced expression of hepatocyte growth factor/c‐Met by myocardial ischemia and reperfusion in a rat model. Circulation 95: 2552–2558, 1997.
 55. Sato T, Fujieda H, Murao S, Sato H, Takeuchi T and Ohtsuki Y. Sequential changes of hepatocyte growth factor in the serum and enhanced c‐Met expression in the myocardium in acute myocardial infarction. Jpn Circ J 63: 906–908, 1999.
 56. Nakamura T, Mizuno S, Matsumoto K, Sawa Y and Matsuda H. Myocardial protection from isehemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 106: 1511–1519, 2000.
 57. Yasuda S, Goto Y, Baba T, Satoh T, Sumida H, Miyazaki S and Nonogi H. Enhanced secretion of cardiac hepatocyte growth factor from an infarct region is associated with less severe ventricular enlargement and improved cardiac function. J Am Coll Cardiol 36: 115–121, 2000.
 58. Sato T, Tani Y, Murao S, Fujieda H, Sato H, Matsumoto M, Takeuchi T and Ohtsuki Y. Focal enhancement of expression of c‐Met/hepatocyte growth factor receptor in the myocardium in human myocardial infarction. Cardiovasc Pathol 10: 235–240, 2001.
 59. Min JK, Lee YM, Hun Kim J, Kim YM, Wan Kim S, Lee SY, Gho YS, Oh GT and Kwon YG, Hepatocyte growth factor suppresses vascular endothelial growth factor‐induced expression of endothelial ICAM‐1 and VCAM‐1 by inhibiting the nuclear factor‐κB pathway. Circ Res. 2005.
 60. Gerritsen ME, Tomlinson JE, Zlot C, Ziman M and Hwang S. Using gene expression profiling to identify the molecular basis of the synergistic actions of hepatocyte growth factor and vascular endothelial growth factor in human endothelial cells. Br J Pharmacol 140: 595–610, 2003b.
 61. D'Amore PA and Smith SR. Growth factor effects on cells of the vascular wall: a survey. Growth Factors 8: 61–75, 1993.
 62. Battegay EJ, Rupp J, Iruela‐Arispe L, Sage EH and Pech M. PDGF‐BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta‐receptors. J Cell Biol 125: 917–928, 1994.
 63. Leveen P, Pekny M, Gebre‐Medhin S, Swolin B, Larsson E and Betsholtz C. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8: 1875–1887, 1994.
 64. Lindahl P, Johansson BR, Leveen P and Betsholtz C. Pericyte loss and microaneurysm formation in PDGF‐B‐deficient mice. Science 277: 242–245, 1997.
 65. Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H and Betsholtz C. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153: 543–553, 2001.
 66. Massague J. TGF‐beta signal transduction. Annu Rev Biochem 67: 753–791, 1998.
 67. Shi Y and Massague J. Mechanisms of TGF‐beta signaling from cell membrane to the nucleus. Cell 113: 685–700, 2003.
 68. O'Connell P, McKenzie A, Fisicaro N, Rockman S, Pearse M and d'Apice A. Endoglin: a 180‐kD endothelial cell and macrophage restricted differentiation molecule. Clin Exp Immunol 90: 154–159, 1992.
 69. Wong S, Hamel L, Chevalier S P A and Chevalier P A. Endoglin expression on human microvascular endothelial cells association with betaglycan and formation of higher order complexes with TGF‐beta signalling receptors. Eur J Biochem 267: 5550–5560, 2000.
 70. Pierelli L, Bonanno G, Rutella S, Marone M, Scambia G and Leone G. CD 105 (endoglin) expression on hematopoietic stem/progenitor cells. Leuk Lymphoma 42: 1195–1206, 2001.
 71. Yang EY and Moses HL. Transforming growth factor beta 1‐induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J Cell Biol 111: 731–741, 1990.
 72. Phillips GD, Whitehead RA and Knighton DR. Inhibition by methylprednisolone acetate suggests an indirect mechanism for TGF‐B induced angiogenesis. Growth Factors 6: 77–84, 1992.
 73. Kulkarni A, Huh C, Becker D, Geiser A, Lyght M, Flanders K, Roberts A, Sporn M, Ward J and Karlsson S. Transforming growth factor (31 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 90: 770–774, 1993.
 74. Dickson M, Martin J, Cousins F, Kulkarni A, Karlsson S and Akhurst R. Defective haematopoiesis and vasculogenesis in transforming growth factor‐β1 knock out mice. Development 121: 1845–1854, 1995.
 75. Larsson J, Goumans M, Sjostrand L, van Rooijen M, Ward D, Leveen P, Xu X, ten Dijke P, Mummery C and Karlsson S. Abnormal angiogenesis but intact hematopoietic potential in TGF‐β type I receptor‐deficient mice. Embo J 20: 1663–1673, 2001b.
 76. Bourdeau A, Dumont DJ and Letarte M. A murine model of hereditary hemorrhagic telangiectasia. J Clin Invest 104: 1343–1351, 1999.
 77. Goumans MJ and Mummery C. Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 44: 253–265, 2000.
 78. Duff SE, Li C, Garland JM and Kumar S. CD 105 is important for angiogenesis: evidence and potential applications. Faseb J 17: 984–992, 2003.
 79. Tuxhorn JA, McAlhany SJ, Yang F, Dang TD and Rowley DR. Inhibition of transforming growth factor‐beta activity decreases angiogenesis in a human prostate cancer‐reactive stroma xenograft model. Cancer Res 62: 6021–6025, 2002.
 80. Zhang F, Lee J, Lu S, Pettaway CA and Dong Z. Blockade of transforming growth factor‐beta signaling suppresses progression of androgen‐independent human prostate cancer in nude mice. Clin Cancer Res 11: 4512–4520, 2005.
 81. Martone T, Rosso P, Albera R, Migliaretti G, Fraire F, Pignataro L, Pruned G, Bellone G and Cortesina G. Prognostic relevance of CD 105+ microvessel density in HNSCC patient outcome. Oral Oncol 41: 147–155, 2005.
 82. Chuang HC, Su CY, Huang HY, Chien CY, Chen CM and Huang CC. High expression of CD105 as a prognostic predictor of early tongue cancer. Laryngoscope 116: 1175–1179, 2006.
 83. Kyzas PA, Agnantis NJ and Stefanou D. Endoglin (CD 105) as a prognostic factor in head and neck squamous cell carcinoma. Virchows Arch 448: 768–775, 2006.
 84. Taskiran C, Erdem O, Onan A, Arisoy O, Acar A, Vural C, Erdem M, Ktaoglu O and Guner H. The prognostic value of endoglin (CD105) expression in ovarian carcinoma. Int J Gynecol Cancer 16: 1789–1793, 2006.
 85. Autiero M, Luttun A, Tjwa M and Carmeliet P. Placental growth factor and its receptor, vascular endothelial growth factor receptor‐1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemast 1: 1356–1370, 2003.
 86. Kahn J, Mehraban F, Ingle G, Xin X, Bryant J, Vehar G, Schoenfeld J, Grimaldi C, Peak F, Drakharapu A, Lewin D and Gerritsen M. Gene expression profiling in an in vitro model of angiogenesis. Am J Pathol 156: 1887–1900, 2000.
 87. Bell SE, Mavila A, Salazar R, Bayless KJ, Kanagala S, Maxwell SA and Davis CE. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression. cellular differentiation and G‐protein signaling. J Cell Sci 114: 2755–2773, 2001.
 88. Yang W, Ahn H, Hinrichs M, Torry RJ and Torry DS. Evidence of a novel isoform of placenta growth factor (PIGF‐4) expressed in human trophoblast and endothelial cells. J Reprod Immunol 60: 53–60, 2003.
 89. Iyer S, Leonidas DD, Swaminathan GJ, Maglione D, Battisti M, Tucci M, Persico MG and Acharya KR. The crystal structure of human placenta growth factor‐1 (P1GF‐I), an angiogenic protein, at 2.0A resolution. J Biol Chem 276: 12153–2161, 2001.
 90. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock‐Jones DS, Hicklin DJ, Herbert JM, Collen D and Persico MG. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7: 575–583, 2001b.
 91. Lagercrantz J, Farnebo F, Larsson C, Tvrdik T, Weber G and Piehl F. A comparative study of the expression patterns for vegf, vegf‐b/vrf and vegf‐c in the developing and adult mouse. Biochim Biophys Acta 1398: 157–163, 1998.
 92. Olofsson B, Korpelainen E, Pepper MS, Mandriota SJ, Aase K, Kumar V, Gumji Y, Jeltsch MM, Shibuya M, Alitalo K and Eriksson U. Vascular endothelial growth factor B (VEGF‐B) binds to VEGF receptor‐1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci USA 95: 11709–11714, 1998.
 93. Aase K, von Euler G, Li X, Ponten A, Thoren P, Cao R, Cao Y, Olofsson B, Gebre‐Medhin S, Pekny M, Alitalo K, Betsholtz C and Eriksson U. Vascular endothelial growth factor‐B‐deficient mice display an atrial conduction defect. Circulation 104: 358–364, 2001.
 94. Olofsson B, Pajusola K, Kaipainen A, von Euler G, Joukov V, Saksela O, Orpana A, Pettersson RF, Alitalo K and Eriksson U. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Porc Natl Acad Sci USA 93: 2576–2581, 1996.
 95. Silvestre JS, Tamarat R, Ebrahimian TG, Le‐Roux A, Clergue M, Emmanuel F, Duriez M, Schwartz B, Branellec D and Levy BI. Vascular endothelial growth factor‐B promotes in vivo angiogenesis. Circ Res 93: 114–123, 2003.
 96. Lee J, Gray A, Yuan J, Luoh SM, Avraham H and Wood WI. Vascular endothelial growth factor‐related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4, Pmc Natl Acad Sci USA 93: 1988–1992, 1996.
 97. Achen MG, Jeltsch M, Kukk E, Makinen T, Vitali A, Wilks AF, Alitalo K and Stacker SA. Vascular endothelial growth factor D (VEGF‐D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95: 548–553, 1998.
 98. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M and Alitalo K. Expression of the fms‐Iike tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92: 3566–3570, 1995.
 99. Kukk E, Lymboussaki A, Taira S, Kaipainen A, Jeltsch M, Joukov V and Alitalo K. VEGF‐C receptor binding and pattern of expression with VEGFR‐3 suggests a role in lymphatic vascular development. Development 122: 3829–3837, 1996.
 100. Detmar M, Brown LF, Schon MP, Elicker BM, Velasco P, Richard L, Fukumura D, Monsky W, Claffey KP and Jain RK. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111: 1–6, 1998.
 101. Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV, Kubo H, Thurston G, McDonald DM, Achen MG, Stacker SA and Alitalo K. Signalling via vascular endothelial growth factor receptor‐3 is sufficient for lymphangiogenesis in transgenic mice. Embo J 20: 1223–1231, 2001.
 102. Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M and Alitalo K. Cardiovascular failure in mouse embryos deficient in VEGF receptor‐3, Science 282: 946–949, 1998.
 103. Joukov V Kaipainen A, Jeltsch M, Pajusola K, Olofsson B, Kumar V, Eriksson U and Alitalo K. Vascular endothelial growth factors VEGF‐B and VEGF‐C. J Cell Physiol 173: 211–215, 1997a.
 104. Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson‐Welsh L, Cao Y, Saksela O, Kalkkinen N and Alitalo K. Proteolytic processing regulates receptor specificity and activity of VEGF‐C. Embo J 16: 3898–3911, 1997b.
 105. Ferrara N, Carver‐Moore K, Chen H, Dowd M, Lu L, O'Shea KS, Powell‐Braxton L, Hillan KJ and Moore MW, Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380: 439–442, 1996.
 106. Ferrara N, Gerber HP and LeCouter J. The biology of VEGF and its receptors. Nat Med 9: 669–676, 2003.
 107. Cohen T, Gitay‐Goren H, Sharon R, Shibuya M, Halaban R, Levi BZ and Neufeld G. VEGF121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell‐surface heparan sulfates for efficient binding to the VEGF receptors of human melanoma cells. J Biol Chem 270: 11322–11326, 1995.
 108. Neufeld G, Cohen T, Gitay‐Goren H, Poltorak Z, Tessler S, Sharon R, Gengrinovitch S and Levi BZ. Similarities and differences between the vascular endothelial growth factor (VEGF) splice variants. Cancer Metastasis Rev 15: 153–158, 1996.
 109. Gluzman‐Poltorak Z, Cohen T, Herzog Y and Neufeld G. NeuropiIin‐2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF‐145 and VEGF‐165 [corrected]. J Biol Chem 275: 18040–18045, 2000.
 110. Poltorak Z, Cohen T and Neufeld G. The VEGF splice variants: properties, receptors, and usage for the treatment of ischemic diseases. Herz 25: 126–129, 2000.
 111. Krussel JS, Behr B, Milki AA, Hirchenhain J, Wen Y, Bielfeld P and Lake Polan M. Vascular endothelial growth factor (VEGF) mRNA splice variants are differentially expressed in human blastocysts. Mol Hum Reprod 7: 57–63, 2001.
 112. Robinson CJ and Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 114: 853–865, 2001.
 113. Petersen W, Pufe T, Unterhauser F, Zantop T, Mentlein R and Weiler A. The splice variants 120 and 164 of the angiogenic peptide vascular endothelial cell growth factor (VEGF) are expressed during Achilles tendon healing. Arch Orthop Trauma Surg 123: 475–480, 2003.
 114. Yang S, Xin X, Zlot C, Ingle G, Fuh G, Li B, Moffat B, de Vos AM and Gerritsen ME. Vascular endothelial cell growth factor‐driven endothelial tube formation is mediated by vascular endothelial cell growth factor receptor‐2, a kinase insert domain‐containing receptor. Arterioseler Thromb Vasc Biol 21: 1934–1940, 2001.
 115. Yang S, Toy K, Ingle G, Zlot C, Williams PM, Fuh G, Li B, de Vos A and Gerritsen ME. Vascular endothelial growth factor‐induced genes in human umbilical vein endothelial cells: relative roles of KDR and Flt‐1 receptors. Arterioscler Thromb Vasc Biol 22: 1797–1803, 2002.
 116. Soker S, Takashima S, Miao HQ, Neufeld G and Klagsbrun M. Neuropilin‐1 is expressed by endothelial and tumor cells as an isoform‐specific receptor for vascular endothelial growth factor. Cell 92: 735–745, 1998.
 117. Klagsbrun M, Takashima S and Mamluk R. The role of neuropilin in vascular and tumor biology. Adv Exp Med Biol 515: 33–48, 2002.
 118. Dvorak AM, Kohn S, Morgan ES, Fox P, Nagy JA and Dvorak HF. The vesiculo‐vacuolar organelle (WO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J Leukoc Biol 59: 100–115, 1996.
 119. Dvorak AM and Feng D. The vesiculo‐vacuolar organelle (WO). A new endothelial cell permeability organelle. J Histochem Cytoehem 49: 419–432, 2001.
 120. Fett JW, Strydom DJ, Lobb RR, Alderman EM, Bethune JL, Riordan JF and Vallee BL. Isolation and characterization of angiogenin. an angiogenic protein from human carcinoma cells. Biochemistry 24: 5480–5486, 1985.
 121. Kurachi K, Davie EW, Strydom DJ, Riordan JF and Vallee BL. Sequence of the cDNA and gene for angiogenin, a human angio‐genesis factor. Biochemistry 24: 5494–5499, 1985.
 122. Strydom DJ, Fett JW, Lobb RR, Alderman EM, Bethune JL, Riordan JF and Vallee BL. Amino acid sequence of human tumor derived angiogenin. Biochemistry 24: 5486–5494, 1985.
 123. Wiedlocha A. Following angiogenin during angiogenesis: a journey from the cell surface to the nucleolus. Arch Immunol Ther Exp (Warsz) 47: 299–305, 1999.
 124. Shapiro R, Riordan JF and Vallee BL. Characteristic ribonucleolytic activity of human angiogenin. Biochemistry 25: 3527–3532, 1986.
 125. Shapiro R and Vallee BL. Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc Natl Acad Sci USA 84: 2238–2241, 1987b.
 126. Adams SA and Subramanian V. The angiogenins: an emerging family of ribonuclease related proteins with diverse cellular functions. Angiogenesis 3: 189–199, 1999b.
 127. Shapiro R, Strydom DJ, Olson KA and Vallee BL. Isolation of angiogenin from normal human plasma. Biochemistry 26: 5141–5146, 1987a.
 128. Badet J. Angiogenin, a potent mediator of angiogenesis. Biological, biochemical and structural properties. Pathol Biol (Paris) 47: 345–351, 1999.
 129. Zhang J and Zhang YP. Pseudogenization of the tumor‐growth promoter angiogenin in a leaf‐eating monkey. Gene 308: 95–101, 2003a.
 130. Moore B, Keane M, Addison C, Arenberg D and Streiter R. CXC chemokine modulation of angiogenesis: the importance of balance between angiogenic and angiostatic members of the family. J Invest Med 46: 113–120, 1998.
 131. Rosenkilde MM and Schwartz TW. The chemokine system ‐ a major regulator of angiogenesis in health and disease. APMIS 112: 481–495, 2004.
 132. Devalaraja RM, Nanney LB, Du J, Qian Q, Yu Y, Devalaraja MN and Richmond A. Delayed wound healing in CXCR2 knockout mice. J Invest Dermatol 115: 234–244, 2000.
 133. Keane MP, Belperio JA, Xue YY, Burdick MD and Strieter RM. Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol 172: 2853–2860, 2004.
 134. Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trzaskos JM, Evans JF and Taketo MM. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX‐2). Cell 87: 803–809, 1996.
 135. Taketo MM. COX‐2 and colon cancer. Inflamm Res 47 (Suppl 2): S112–S1I6, 1998.
 136. Langenbach R, Loftin C, Lee C and Tiano H. Cyclooxygenase knockout mice: models for elucidating isoform‐specific functions. Biochem Pharmacol 58: 1237–1246, 1999.
 137. Zhang X, Morham SG, Langenbach R, Baggs RB and Young DA. Lack of cyclooxygenase‐2 inhibits growth of teratocarcinomas in mice. Exp Cell Res 254: 232–240, 2000.
 138. Leahy KM, Koki AT and Masferrer JL. Role of cyclooxygenases in angiogenesis. Curr Med Chem 7: 1163–1170, 2000.
 139. Masferrer J. Approach to angiogenesis inhibition based on cyclooxygenase‐2. Cancer J 7 (Suppl 3): S144–S150, 2001.
 140. Cheng T, Cao W, Wen R, Steinberg RH and LaVail MM. Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Muller cells. Invest Ophthalmol Vis Sci 39: 581–591, 1998.
 141. Pai R, Szabo IL, Soreghan BA, Atay S, Kawanaka H and Tarnawski AS. PGE(2) stimulates VEGF expression in endothelial cells via ERK2/JNK1 signaling pathways. Biochem Biophys Res Commun 286: 923–928, 2001.
 142. Sakai Y, Fujita K, Sakai H and Mizuno K. Prostaglandin E2 regulates the expression of basic fibroblast growth factor messenger RNA in normal human fibroblasts. Kobe J Med Sci 47: 35–45, 2001.
 143. Dormond O, Bezzi M, Mariotti A and Ruegg C. Prostaglandin E2 promotes integrin alpha Vbeta 3‐dependent endothelial cell adhesion, racactivation. and spreading through cAMP/PKA‐dependent signaling. J Biol Chem 277: 45838–45846, 2002.
 144. Sakurai S, Alam S, Pagan‐Mercado G, Hickman F, Tsai JY, Zelenka P and Sato S. Retinal capillary pericyte proliferation and c‐Fos mRNA induction by prostaglandin D2 through the cAMP response element. Invest Ophthalmol Vis Sci 43: 2774–2781, 2002.
 145. Hidai C, Zupancic T, Penta K, Mikhail A, Kawana M, Quertermous EE, Aoka Y, Fukagawa M, Matsui Y, Platika D, Auerbach R, Hogan BL, Snodgrass R and Quertermous T. Cloning and characterization of developmental endothelial locus‐1: an embryonic endothelial cell protein that binds the alphavbeta3 integrin receptor. Genes Dev 12: 21–33, 1998.
 146. Ho HK, Jang JJ, Kaji S, Spektor G, Fong A, Yang P, Hu BS, Schatzman R, Quertermous T and Cooke JP. Developmental endothelial locus‐1 (Del‐1), a novel angiogenic protein: its role in ischemia. Circulation 109: 1314–1319, 2004.
 147. Penta K, Varner JA, Liaw L, Hidai C, Schatzman R and Quertermous T. Dell induces integrin signaling and angiogenesis by ligation of alpha Vbeta3, J Biol Chem 274: 11101–11109, 1999.
 148. Aoka Y, Johnson FL, Penta K, Hirata Ki K, Hidai C, Schatzman R, Varner JA and Quertermous T. The embryonic angiogenic factor Dell accelerates tumor growth by enhancing vascular formation. Microvasc Res 64: 148–161, 2002.
 149. LeCouter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard‐Telm L, Frantz G, Rangell L, DeGuzman L, Keller GA, Peale F, Gumey A, Hillan KJ and Ferrara N. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412: 877–884, 2001.
 150. Ferrara N, LeCouter J and Lin R. Endocrine gland vascular endothelial growth factor (EG‐VEGF) and the hypothesis of tissue‐specific regulation of angiogenesis. Endocr Res 28: 763–764, 2002.
 151. Kisliouk T, Levy N, Hurwitz A and Meidan R. Presence and regulation of endocrine gland vascular endothelial growth factor/prokineticin‐1 and its receptors in ovarian cells. J Clin Endocrinol Metab 88: 3700–3707, 2003.
 152. Zhang L, Yang N, Conejo‐Garcia JR, Katsaros D, Mohamed‐Hadley A, Fracchioli S, Schlienger K, Toll A, Levine B, Rubin SC and Coukos G. Expression of endocrine gland‐derived vascular endothelial growth factor in ovarian carcinoma. Clin Cancer Res 9: 264–272, 2003b.
 153. Chung JY, Song Y, Wang Y, Magness RR and Zheng J. Differential expression of vascular endothelial growth factor (VEGF), endocrine gland derived‐VEGF, and VEGF receptors in human placentas from normal and preeclamptic pregnancies. J Clin Endocrinol Metab 89: 2484–2490, 2004.
 154. Samson M, Peale FV, Jr., Frantz G, Rioux‐Leclercq N, Rajpert‐De Meyts E and Ferrara N. Human endocrine gland‐derived vascular endothelial growth factor: expression early in development and in Leydig cell tumors suggests roles in normal and pathological testis angiogenesis. J Clin Endocrinol Metab 89: 4078–1088, 2004.
 155. Masuda Y, Tskatsu Y, Terao Y, Kumano S, Ishibashi Y, Suenaga M, Abe M, Fukisumi S, Watanabe T, Shintani Y, Yamada T, Hinuma S, Inatomi N, Ohtaki T, Onda H and Fujino M. Isolation and identification of EG‐VEGF/prokineticins as cognate ligands for two orphan G‐protein‐coupled receptors. Biochem Biophys Res Commun 293: 396–402, 2002.
 156. LeCouter J and Ferrara N. EG‐VEGF and Bv8: a novel family of tissue‐selective mediators of angiogenesis, endothelial phenotype, and function. Trends Cardiovasc Med 13: 276–282, 2003.
 157. Ferrara N, LeCouter J, Lin R and Peale F. EG‐VEGF and Bv8: a novel family of tissue‐restricted angiogenic factors. Biochim Biophys Acta 1654: 69–78, 2004.
 158. Lin DC, Bullock CM, Ehlert FJ, Chen JL, Tian H and Zhou QY. Identification and molecular characterization of two closely related G ptotein‐coupled receptors activated by prokineticins/endocrine gland vascular endothelial growth factor. J Biol Chem 277: 19276–19280, 2002.
 159. Yoshida M and Gimbrone MA, Jr. Novel roles for E‐selectin in endothelial‐leukocyte adhesion. Ann NY Acad Sci 811: 493–497, 1997.
 160. Nguyen M, Strubel NA and Bischoff J. A role for sialyl Lewis‐X/A glycoconjugates in capillary morphogenesis. Nature 365: 267–269, 1993.
 161. Aoki M, Kanamori M, Yudoh K, Ohmori K, Yasuda T and Kimura T. Effects of vascular endothelial growth factor and E‐selectin on angiogenesis in the murine metastatic RCT sarcoma. Tumor Biol 22: 239–246, 2001.
 162. Bischoff J, Brasel C, Kraling B and Vranovska K. E‐selectin is upregulated in proliferating endothelial cells in vitro. Microcirculation 4: 279–287, 1997.
 163. Wittig BM, Kaulen H, Thees R, Schmitt C, Knolle P, Stock J. Meyer zum Buschenfelde KH and Dippold W, Elevated serum E‐selectin in patients with liver metastases of colorectal cancer. Eur J Cancer ilk: 1215–1218, 1996.
 164. Hebbar M, Revillion F, Louchez MM, Vilain MO, Fournier C, Bonneterre J and Peyrat JP. The relationship between concentrations of circulating soluble E‐selectin and clinical, pathological, and biological features in patients with breast cancer. Clin Cancer Res 4: 373–380, 1998.
 165. Byrne GJ, Ghellal A, Iddon J, Blann AD, Venizelos V, Kumar S, Howell A and Bundred NJ. Serum soluble vascular cell adhesion molecule‐1: role as a surrogate marker of angiogenesis. J Natl Cancer Inst 92: 1329–1336, 2000.
 166. Sheen‐Chen SM, Eng HL, Huang CC and Chen WJ. Serum levels of soluble E‐selectin in women with breast cancer. Br J Surg 91: 1578–1581, 2004.
 167. Koch AE, Halloran MM, Haskell CJ, Shah MR and Polverini PJ. Angiogenesis mediated by soluble forms of E‐selectin and vascular cell adhesion molecule‐1. Nature 376: 517–519, 1995.
 168. Milstone DS, Fukumura D, Padgett RC, O'Donnell PE, Davis VM, Benavidez OJ, Monsky WL, Melder RJ, Jain RK and Gimbrone MA, Jr. Mice lacking E‐selectin show normal numbers of rolling leukocytes but reduced leukocyte stable arrest on cytokine‐activated microvascular endothelium. Microcirculation 5: 153–171, 1998.
 169. Yu Y, Moulton KS, Khan MK, Vineberg S, Boye E, Davis VM, O'Donnell PE, Bischoff J and Milstone DS. E‐selectin is required for the antiangiogenic activity of endostatin. Proc Natl Acad Sci USA 101: 8005–8010, 2004.
 170. Cheng N, Brantley DM and Chen J. The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev 13: 75–85, 2002a.
 171. Brantley‐Sieders D, Parker M and Chen J. Eph receptor tyrosine kinases in tumor and tumor microenvironment. Curr Pharm Des 10: 3431–3442, 2004.
 172. Adams RH, Wilkinson GA, Weiss C, Dielia F, Gale NW, Deutsch U, Risau W and Klein R. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13: 295–306, 1999a.
 173. Adams RH and Klein R. Eph receptors and ephrin ligands: essential mediators of vascular development. Trends Cardiovasc Med 10: 183–188, 2000.
 174. Adams RH. Vascular patterning by Eph receptor tyrosine kinases and ephrins. Semin Cell Dev Biol 13: 55–60, 2002.
 175. Gerety SS and Anderson DJ. Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 129: 1397–1410, 2002.
 176. Surawska H, Ma P and Salgia R. The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 15: 419–433, 2004.
 177. Cheng N, Brantley DM, Liu H, Lin Q, Enriquez M, Gale N, Yancopoulos G, Cerretti DP, Daniel TO and Chen J. Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor‐induced angiogenesis. Mol Cancer Res 1: 2–11, 2002b.
 178. Fuller T, Korff T, Kilian A, Dandekar G and Augustin HG. Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells. J Cell Sci 116: 2461–2470, 2003.
 179. Martiny‐Baron G, Korff T, Schaffner F, Esser N, Eggstein S, Marme D and Augustin HG. Inhibition of tumor growth and angiogenesis by soluble EphB4. Neoplasia 6: 248–257, 2004.
 180. Esch F, Shimasaki S, Mercado M, Cooksey K, Ling N, Ying S, Ueno N and Guillemin R. Structural characterization of follistatin: a novel follicle‐stimulating hormone release‐inhibiting polypeptide from the gonad. Mol Endocrinol 1, 1987.
 181. Robertson D, Klein R, De Vos F, McLachlan R, Wettenhall R, Hearn M, Burger H and de Kretser D. The isolation of polypeptides with FSH suppressing activity from bovine follicular fluid which are structurally different to inhibin. Biochem Biophys Res Commun 149: 744–749, 1987.
 182. Phillips D and de Kretser D. Follistatin: a multifunctional regulatory protein. Front Neuroendocrinol 19: 287–322, 1998.
 183. Hynes RO. A reevaluation of integrins as regulators of angio‐genesis. Nat Med 8: 918–921, 2002.
 184. Hynes RO, Lively JC, McCarty JH, Taverna D, Francis SE, Hodivala‐Dilke K and Xiao Q. The diverse roles of integrins and their ligands in angiogenesis. Cold Spring Harb Symp Quant Biol 67: 143–153, 2002.
 185. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA and Cheresh DA. Definition of two angiogenic pathways by distinct alpha v integrins. Science 270: 1500–1502, 1995.
 186. Senger DR, Perruzzi CA, Streit M, Koteliansky VE, de Fougerolles AR and Detmar M. The alpha(1)beta(1) and alpha(2)beta(1) integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol 160: 195–204, 2002.
 187. Ramakrishnan V, Bhaskar V, Law DA, Wong MH, DuBridge RB, Breinberg D, O'Hara C, Powers DB, Liu G, Grove J, Hevezi P, Cass KM, Watson S, Evangelista F, Powers RA, Finck B, Wills M, Caras I, Fang Y, McDonald D, Johnson D, Murray R and Jeffry U. Preclinical evaluation of an anti‐alpha5betal integrin antibody as a novel anti‐angiogenic agent. J Exp Titer Oncol 5: 273–286, 2006.
 188. Partridge CA, Phillips PG, Niedbala MJ and Jeffrey JJ. Localization and activation of type IV collagenase/gelatinase at endothelial focal contacts. Am J Physiol 272: L813–L822, 1997.
 189. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oostuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger‐de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D and Dejana E. Targeted deficiency or cytosolic truncation of the VE‐cadherin gene in mice impairs VEGF‐mediated endothelial survival and angiogenesis. Cell 98: 147–157, 1999.
 190. Bach TL, Barsigian C, Chalupowicz DG, Busier D, Yaen CH, Grant DS and Martinez J. VE‐Cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels. Exp Cell Res 238: 324–334, 1998.
 191. Yang S, Graham J, Kahn JW, Schwartz EA and Gerritsen ME. Functional roles for PECAM‐1 (CD31) and VE‐cadherin (CD144) in tube assembly and lumen formation in three‐dimensional collagen gels. Am J Pathol 155: 887–895, 1999.
 192. Breier G, Breviario F, Caveda L, Berthier R, Schnurch H, Gotsch U, Vestweber D, Risau W and Dejana E. Molecular cloning and expression of murine vascular endothelial‐cadherin in early stage development of cardiovascular system. Blood 87: 630–641, 1996.
 193. Liao F, Li Y, O'Connor W, Zanetta L, Bassi R, Santiago A, Overholser J, Hooper A, Mignatti P, Dejana E, Hicklin DJ and Bohlen P. Monoclonal antibody to vascular endothelial‐cadherin is a potent inhibitor of angiogenesis, tumor growth, and metastasis. Cancer Res 60: 6805–6810, 2000.
 194. Corada M, Liao F, Lindgren M, Lampugnani MG, Breviario F, Frank R, Muller WA, Hicklin DJ, Bohlen P and Dejana E. Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood 97: 1679–1684, 2001.
 195. Corada M, Zanetta L, Orsenigo F, Breviario F, Lampugnani MG, Bernasconi S, Liao F, Hicklin DJ, Bohlen P and Dejana E. A monoclonal antibody to vascular endothelial‐cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 100: 905–911, 2002.
 196. Liao F, Doody JF, Overholser J, Finnerty B, Bassi R, Wu Y, Dejana E, Kussie P, Bohlen P and Hicklin DJ. Selective targeting of angiogenic tumor vasculature by vascular endothelial‐cadherin antibody inhibits tumor growth without affecting vascular permeability. Cancer Res 62: 2567–2575, 2002.
 197. Jackson DE. The unfolding tale of PECAM‐1, FEBS Lett 540: 7–14, 2003.
 198. DeLisser HM, Christofidou‐Solomidou M, Strieter RM, Burdick MD, Robinson CS, Wexler RS, Kerr JS, Garlanda C, Merwin JR, Madri JA and Albelda SM. Involvement of endothelial PECAM‐1/CD31 in angiogenesis. Am J Pathol 151: 671–677, 1997.
 199. Cao G, O'Brien CD, Zhou Z, Sanders SM, Greenbaum JN, Makrigiannakis A and DeLisser HM. Involvement of human PECAM‐1 in angiogenesis and in vitro endothelial cell migration. Am J Physiol Cell Physiol 282: C1181–C1190, 2002.
 200. Duncan GS, Andrew DP, Takimoto H, Kaufman SA, Yoshida H, Spellberg J, Luis de la Pompa J, Elia A, Wakeham A, Karan‐Tamir B, Muller WA, Senaldi G, Zukowski MM and Mak TW, Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule‐1 (PECAM‐1): CD31‐deficient mice reveal PECAM‐1‐dependent and PECAM‐1‐independent functions. J Immunol 162: 3022–3030, 1999.
 201. Hamaguchi I, Huang XL, Takakura N, Tada J, Yamaguchi Y, Kodama H and Suda T. In vitro hematopoietic and endothelial cell development from cells expressing TEK receptor in murine aorta‐gonad‐mesonephros region. Blood 93: 1549–1556, 1999.
 202. Mahooti S, Graesser D, Patil S, Newman P, Duncan G, Mak T and Madri JA. PECAM‐1 (CD31) expression modulates bleeding time in vivo. Am J Pathol 157: 75–81, 2000.
 203. Thompson RD, Noble KE, Larbi KY, Dewar A, Duncan GS, Mak TW and Nourshargh S. Platelet‐endothelial cell adhesion molecule‐1 (PECAM‐1)‐deficient mice demonstrate a transient and cytokine‐specific role for PECAM‐1 in leukocyte migration through the perivascular basement membrane. Blood 97: 1854–1860, 2001.
 204. Graesser D, Solowiej A, Bruckner M, Osterweil E, Juedes A, Davis S, Ruddle NH, Engelhardt B and Madri JA. Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM‐1‐deficient mice. J Clin Invest 109: 383–392, 2002.
 205. Paracchini V, Pedotti P and Taioli E. Genetics of leptin and obesity: a HuGE review. Am J Epidemiol 162: 101–114, 2005.
 206. Sierra‐Honigmann MR, Nath AK, Murakami C, Garcia‐Cardena G, Papapetropoulos A, Sessa WC, Madge LA, Schechner JS, Schwabb MB, Polverini PJ and Flores‐Riveros JR. Biological action of leptin as an angiogenic factor. Science 281: 1683–1686, 1998.
 207. Bouloumie A, Drexler HC, Lafontan M and Busse R, Leptin the product of Ob gene, promotes angiogenesis. Circ Res 83: 1059–1066, 1998.
 208. Ring BD, Scully S, Davis CR, Baker MB, Cullen MJ, Pelleymounter MA and Danilenko DM. Systemically and topically administered leptin both accelerate wound healing in diabetic ob/ob mice. Endocrinology 141: 446–449, 2000.
 209. Cioffi JA, Van Blerkom J, Antczak M, Shafer A, Wittmer S and Snodgrass HR. The expression of leptin and its receptors in pre‐ovulatory human follicles. Mol Hum Reprod 3: 467–472, 1997.
 210. Riad‐Gabriel MG, Jinagouda SD, Sharma A, Boyadjian R and Saad MF. Changes in plasma leptin during the menstrual cycle. Eur J Endocrinol 139: 528–531, 1998.
 211. Kurtz A, Schulte AM and Wellstein A. Pleiotrophin and midkine in normal development and tumor biology. Crit Rev Oncog 6: 151–177, 1995.
 212. Zhang N and Deuel TF. Pleiotrophin and midkine, a family of mitogenic and angiogenic heparin‐binding growth and differentiation factors. Curr Opin Hematol 6: 44–50, 1999.
 213. Garver RI, Jr., Radford DM, Donis‐Keller H, Wick MR and Milner PG. Midkine and pleiotrophin expression in normal and malignant breast tissue. Cancer 74: 1584–1590, 1994.
 214. O'Brien T, Cranston D, Fuggle S, Bicknell R and Harris AL. The angiogenic factor midkine is expressed in bladder cancer, and overexpression correlates with a poor outcome in patients with invasive cancers. Cancer Res 56: 2515–2518, 1996.
 215. Choudhuri R, Zhang HT, Donnini S, Ziche M and Bicknell R. An angiogenic role for the neurokines midkine and pleiotrophin in tumorigenesis. Cancer Res 57: 1814–1819, 1997.
 216. Westphal JR, Van't Hullenaar R, Peek R, Willems RW, Crickard K, Crickard U, Askaa J, Clemmensen I, Ruiter DJ and De Waal RM. Angiogenic balance in human melanoma: expression of VEGF, bFGF, IL‐8, PDGF and angiostatin in relation to vascular density of xenografts in vivo. Int J Cancer 86: 768–776, 2000.
 217. Stoica GE, Kuo A, Powers C, Bowden ET, Sale EB, Riegel AT and Wellstein A. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem 277: 35990–35998, 2002.
 218. Papadimitriou E, Polykratis A, Hatziapostolou M, Parthymou A, Polytarchou C and Mikelis C Heparin affin regulatory peptide: a new target for tumour therapy? Curr Cancer Drug Targets 4: 471–482, 2004.
 219. Maeda N, Nshiwaki T, Shintani T, Hamanaka H and Noda M. 6B4 proteoglycan/phosphacan, an extracellular variant of receptorlike protein‐tyrosine phosphatase zeta/RPTPbeta, binds pleiotrophin/heparin‐bindhg growth‐associated molecule (HB‐GAM). J Biol Chem 271: 21446–21452, 1996.
 220. Maeda N and Noda M. Involvement of receptor‐like protein tyrosine phosphatase zeta/RPTPbeta and its ligand pleiotrophin/heparin‐binding growth‐associated molecule (HB‐GAM) in neuronal migration. J Cell Biol 142: 203–216, 1998.
 221. Weinstein BM and Lawson ND, Arteries, veins, Notch, and VEGF. Cold Spring Harb Symp Quant Biol 67: 155–162, 2002.
 222. Iso T, Hamanori Y and Kedes L. Notch signaling in vascular development. Anerioscler Thromb Vasc Biol 23: 543–553, 2003.
 223. Alva JA and Iruela‐Arispe ML. Notch signaling in vascular morphogenesis. Curr Opin Hematol 11: 278–283, 2004.
 224. Hrabe de Angelis M, McIntyre J, 2nd and Gossler A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386: 717–721, 1997.
 225. Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, Gendron‐Maguire M, Rand EB, Weinmaster G and Gridley T. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8: 723–730, 1999.
 226. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith GH, Stark KL and Gridley T. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14: 1343–1352, 2000.
 227. McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, Herzlinger D, Weinmaster G, Jiang R and Gridley T. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128: 491–502, 2001.
 228. Uyttendaele H, Ho J, Rossant J and Kitajewski J. Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci USA 98: 5643–5648, 2001.
 229. Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM, Murphy AJ, Adams NC, Lin HC, Holash J, Thurston G and Yancopoulos GD. Haploinsufficiency of deltalike 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 101: 15949–15954, 2004.
 230. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cecillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF. Bousser MG and Tournier‐Lasserve E. Notch3 mutations in CADASIL, a hereditary adult‐onset condition causing stroke and dementia. Nature 383: 707–710, 1996.
 231. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cecillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG and Tournier‐Lasserve E. Notch3 mutations in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a mendelian condition causing stroke and vascular dementia. Ann NY Acad Sci 826: 213–217, 1997.
 232. Joutel A, Vahedi K, Corpechot C, Troesch A, Chabriat H, Vayssiere C, Cruaud C, Maciazek J, Weissenbach J, Bousser MG, Bach JF and Tournier‐Lasserve E. Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350: 1511–1515, 1997.
 233. Salloway S and Hong J. CADASIL syndrome: a genetic form of vascular dementia. J Geriatr Psychiatry Neurol 11: 71–77, 1998.
 234. Yuan ZR, Kohsaka T and Kobayashi N. Linkage analysis and identification of deletion in Alagille syndrome gene. Acta Paediatr Jpn 39: 647–652, 1997.
 235. Krantz ID, Colliton RP, Genin A, Rand EB, Li L, Piccoli DA and Spinner NB. Spectrum and frequency of jagged1 (JAG1) mutations in Alagille syndrome patients and their families. Am J Hum Genet 62: 1361–1369, 1998.
 236. Yuan ZR, Kohsaka T, Ikegaya T, Suzuki T, Okano S, Abe J, Kobayashi N and Yamada M. Mutational analysis of the Jagged 1 gene in Alagille syndrome families. Hum Mol Genet 7: 1363–1369, 1998.
 237. Krantz ID, Piccoli DA and Spinner NB. Clinical and molecular genetics of Alagille syndrome. Curr Opin Pediatr 11: 558–564, 1999.
 238. Fischer A, Schumacher N, Maier M, Sendtner M and Gessler M. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18: 901–911, 2004.
 239. MacKenzie F, Duriez P, Wong F, Noseda M and Karsan A. Notch4 inhibits endothelial apoptosis via RBP‐Jkappa‐dependent and ‐independent pathways. J Biol Chem 279: 11657–11663, 2004.
 240. Wang W, Prince CZ, Mou Y and Pollman MJ. Notch3 signaling in vascular smooth muscle cells induces c‐FLIP expression via ERK/MAPK activation. Resistance to Fas ligand‐induced apoptosis. J Biol Chem 277: 21723–21729, 2002.
 241. Villa N, Walker L, Lindsell CE, Gasson J, Iruela‐Arispe ML and Weinmaster G. Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev 108: 161–164, 2001.
 242. Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP, Fairman RM, Velazquez OC and Herlyn M. Regulation of Notch1 and D114 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 23: 14–25, 2003.
 243. Mailhos C, Modlich U, Lewis J, Harris A, Bicknell R and Ish‐Horowicz D. Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation 69: 135–144, 2001.
 244. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela‐Arispe ML, Kalen M, Gerhardt H and Betsholtz C D114 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature, 2007.
 245. Siekmann AF and Lawson ND Notch signalling limits angiogenic cell behavior in developing zebrafish arteries. Nature, 2007.
 246. Noguera‐Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD and Thurston G. Blockade of D114 inhibits tumour growth by promoting non‐productive angiogenesis. Nature 444: 1032–1037, 2006.
 247. Ridgway J, Zhang G, Wu Y, Stawicki S, Liang WC, Chanthery Y, Kowalski J, Watts RJ, Callahan C, Kasman I, Singh M, Chien M, Tan C, Hongo JA, de Sauvage F, Plowman G and Yan M. Inhibition of D114 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444: 1083–1087, 2006.
 248. Thibonnier M, Conarty D, Preston J, Pleshicher C, Dweik R and Erzurium S. Human vascular endothelial cells express oxytocin receptors. Endocrinology 140: 1301–1309, 1999.
 249. Cassoni P, Marrocco T, Bussolati B, Allia E, Munaron L, Sapino A and Bussolati G. Oxytocin induces proliferation and migration in immortalized human dermal microvascular endothelial cells and human breast tumor‐derived endothelial cells. Mol Cancer Res 4: 351–359, 2006.
 250. Peters GJ, De Bruin M, Fukushima M, Van Triest B, Hoekman K, Pinedo HM and Ackland SP Thymidine phosphorylase in angiogenesis and drug resistance. Homology with platelet‐derived endothelial cell growth factor. Adv Exp Med Biol 486: 291–294, 2000.
 251. Akiyama S, Furukawa T, Sumizawa T, Takebayashi Y, Nakajima Y, Shimaoka S and Haraguchi M. The role of thymidine phosphorylase, an angiogenic enzyme, in tumor progression. Cancer Sci 95: 851–857, 2004.
 252. Carbacho A, de La Escalera GM and Clapp C. Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol 173: 219–238, 2002.
 253. Clapp C, Martial JA, Guzman RC, Rentier‐Delure F and Weiner RI. The 16‐kilodalton N‐terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 133: 1292–1299, 1993.
 254. Ferrara N, Clapp C and Weiner R. The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 129: 896–900, 1991.
 255. Gonzalez C, Corbacho AM, Eiserich JP, Garcia C, Lopez‐Barrera F, Morales‐Tlalpan V, Barajas‐Espinosa A, Diaz‐Munoz M, Rubio R, Lin SH, Martinez de la Escalera G and Clapp C. 16K‐prolactin inhibits activation of endothelial nitric oxide synthase, intracellular calcium mobilization, and endothelium‐dependent vasorelaxation. Endocrinology 145: 5714–5722, 2004.
 256. Ochoa A, Montes de Oca P, Rivera JC, Duenas Z, Nava G, de La Escalera GM and Clapp C. Expression of prolactin gene and secretion of prolactin by rat retinal capillary endothelial cells. Invest Ophthalmol Vis Sci 42: 1639–1645, 2001.
 257. Horseman ND, Zhao W, Montecino‐Rodriguez E, Tanaka M, Nakashima K, Engle SJ, Smith F, Markoff E and Dorshkind K. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. Embo J 16: 6926–6935, 1997.
 258. Vomachka AJ, Pratt SL, Lockefeer JA and Horseman ND. Prolactin gene‐disruption arrests mammary gland development and retards T‐antigen‐induced tumor growth. Oncogene 19: 1077–1084, 2000.
 259. Linzer DI, Lee SJ, Ogren L, Talamantes F and Nathans D. Identification of proliferin mRNA and protein in mouse placenta. Proc Natl Acad Sci USA 82: 4356–4359, 1985.
 260. Lee SJ, Talamantes F, Wilder E, Linzer DI and Nathans D. Trophoblastic giant cells of the mouse placenta as the site of proliferin synthesis. Endocrinology 122: 1761–1768, 1988.
 261. Volpert O, Jackson D, Bouch N and Linzer DIH. The insulin‐like growth factor II/Mannose 6‐phosphate receptor is required for proliferin‐induced angiogenesis. Endocrinology 137: 3871–3876, 1996.
 262. Lafleur MA, Handsley MM and Edwards DR. Metalloproteinases and their inhibitors in angiogenesis. Expert Rev Mol Med 5: 1–39, 2003.
 263. Black RA and White JM. ADAMs: focus on the protease domain. Curr Opin Cell Biol 10: 654–659, 1998.
 264. Schlondorff J and Blobel CP. Metalloprotease‐disintegrins: modular proteins capable of promoting cell‐cell interactions and triggering signals by protein‐ectodomain shedding. J Cell Sci 112 (Pt 21): 3603–3617, 1999.
 265. White J. ADAMs: modulators of cell‐cell and cell‐matrix interactions. Curr Opin Cell Biol 15: 598–606, 2003.
 266. Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, Cumano A, Roux P, Black RA and Israel A. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin‐metalloprotease TACE. Mol Cell 5: 207–216, 2000.
 267. Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lubke T, Lena Illert A, von Figura K and Saftig P. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha‐secretase activity in fibroblasts. Hum Mol Genet 11: 2615–2624, 2002.
 268. Bland CE, Kimberly P and Rand MD. Notch‐induced proteolysis and nuclear localization of the Delta ligand. J Biol Chem 278: 13607–13610, 2003.
 269. LaVoie MJ and Selkoe DJ. The Notch ligands, Jagged and Delta, are sequentially processed by alpha‐secretase and presenilin/gamma‐secretase and release signaling fragments. J Biol Chem 278: 34427–34437, 2003.
 270. Six E, Ndiaye D, Laabi Y, Brou C, Gupta‐Rossi N, Israel A and Logeat F. The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and gamma‐secretase. Proc Natl Acad Sci USA 100: 7638–7643, 2003.
 271. Bogenrieder T and Herlyn M. Cell‐surface proteolysis, growth factor activation and intercellular communication in the progression of melanoma. Crit Rev Oncol Hematol 44: 1–15, 2002.
 272. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M and Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221–228, 1999.
 273. Carmeliet P and Luttun A. The emerging role of the bone marrow‐derived stem cells in (therapeutic) angiogenesis. Thromb Haemost 86: 289–297, 2001.
 274. Urbich C and Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95: 343–353, 2004.
 275. Asahara T and Isner JM. Endothelial progenitor cells for vascular regeneration. J Hematother Stem Cell Res 11: 171–178, 2002.
 276. Luttun A, Carmeliet G and Carmeliet P. Vascular progenitors: from biology to treatment. Trends Cardiovasc Med 12: 88–96, 2002.
 277. Murayama T and Asahara T. Bone marrow‐derived endothelial progenitor calls for vascular regeneration. Curr Opin Mol Ther 4: 395–402, 2002.
 278. Zwaginga JJ and Doevendans P. Stem cell‐derived angiogenic/vasculogenic cells: possible therapies for tissue repair and tissue engineering. Clin Exp Pharmacol Physiol 30: 900–908, 2003.
 279. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M and Isner JM. VEGF contributes to postnatal neovascularization by mobilizing bone marrow‐derived endothelial progenitor cells. Embo J 18: 3964–3972, 1999.
 280. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, Masaki H, Mori Y, Iba O, Tateishi E, Kosaki A, Shintani S, Murohara T, Imaizumi T and Iwasaka T. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104: 1046–1052, 2001.
 281. Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K, Duan J and Imaizumi T. Augmentation of postnatal neovascularization with autologous tone marrow transplantation. Circulation 103: 897–903, 2001.
 282. Edelberg JM, Tang L, Hattori K, Lyden D and Rafii S. Young adult bone marrow‐derived endothelial precursor cells restore aging‐impaired cardiac angiogenic function. Circ Res 90: E89–93, 2002.
 283. Rajantie I, IImonen M, Alminaite A, Ozerdem U, Alitalo K and Salven P. Adult bone marrow‐derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104: 2084–2086, 2004.
 284. Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A and Schaper W. Bone marrow‐derived cells do not incorporate into the adult growing vasculature. Circ Res 94: 230–238, 2004.
 285. Porter S, Clark IM, Kevorkian L and Edwards DR The ADAMTS metalloproteinases. Biochem J, 2004.
 286. Vazquez F, Hastings G, Ortega MA, Lane TF, Oikemus S, Lombardo M and Iruela‐Arispe ML. METH‐1, a human ortholog of ADAMTS‐1, and METH‐2 are members of a new family of proteins with angio‐inhibitory activity. J Biol Chem 274: 23349–23357, 1999.
 287. Kuno K, Bannai K, Hakozaki M, Matsushima K and Hirose K. The carboxyl‐terminal half region of ADAMTS‐1 suppresses both tumorigenicity and experimental tumor metastatic potential. Biochem Biophys Res Commun 319: 1327–1333, 2004.
 288. Voest EE, Kenyon BM, O'Reilly MS, Truitt G, D'Amato RJ and Folkman J. Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 87: 581–586, 1995.
 289. Majewski S, Marczak M, Szmurlo A, Jablonska S and Bollag W. Interleukin‐12 inhibits angiogenesis induced by human tumor cell lines in vivo. J Invest Dermatol 106: 1114–1118, 1996.
 290. Hiscox S and Jiang WG. Interleukin‐12, an emerging anti‐tumour cytokine. In Vivo 11: 125–132, 1997.
 291. Strasly M, Cavallo F, Geuna M, Mitola S, Colombo MP, Forni G and Bussolino F. IL‐12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte‐endothelial cell cross‐talk. J Immunol 166: 3890–3899, 2001.
 292. Chao J, Tillman DM, Wang MY, Margolius HS and Chao L. Identification of a new tissue‐kallikrein‐binding protein. Biochem J 239: 325–331, 1986.
 293. Wang MY, Day J, Chao L and Chao J. Human kallistatin, a new tissue kallikrein‐binding protein: purification and characterization. Adv Exp Med Biol 247B: 1–8, 1989.
 294. Chao J, Miao RQ, Chen V, Chen LM and Chao L. Novel roles of kallistatin, a specific tissue kallikrein inhibitor, in vascular remodeling. Biol Chem 382: 15–21, 2001.
 295. Rian E, Jemtland R, Olstad OK, Endresen MJ, Grasser WA, Thiede MA, Henriksen T, Bucht E and Gautvik KM. Parathyroid hormone‐related protein is produced by cultured endothelial cells: a possible role in angiogenesis. Biochem Biophys Res Commun 198: 740–747, 1994.
 296. Deftos LJ. Prostate carcinoma: production of bioactive factors. Cancer 88: 3002–3008, 2000.
 297. Akino K, Ohtsuru A, Kanda K, Yasuda A, Yamamoto T, Akino Y, Naito S, Kurokawa M, Iwahori N and Yamashita S. Parathyroid hormone‐related peptide is a potent tumor angiogenic factor. Endocrinology 141: 4313–4316, 2000.
 298. Bakre MM, Zhu Y, Yin H, Burton DW, Terkeltaub R, Deftos LJ and Varner JA. Parathyroid hormone‐related peptide is a naturally occurring, protein kinase A‐dependent angiogenesis inhibitor. Nat Med 8: 995–1003, 2002.
 299. Tombran‐Tink J, Chader GG and Johnson LV. PEDF: a pigment epithelium‐derived factor with potent neuronal differentiative activity. Exp Eye Res 53: 411–414, 1991.
 300. Steele FR, Chader GJ, Johnson LV and Tombran‐Tink J. Pigment epithelium‐derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc Natl Acad Sci USA 90: 1526–1530, 1993.
 301. Sugita Y, Becerra SP, Chader GJ and Schwartz JP. Pigment epithelium‐derived factor (PEDF) has direct effects on the metabolism and proliferation of microglia and indirect effects on astrocytes. J Neurosci Res 49: 710–718, 1997.
 302. Cao W, Tombran‐Tink J, Chen W, Mrazek D, Elias R and McGinnis JF. Pigment epithelium‐derived factor protects cultured retinal neurons against hydrogen peroxide‐induced cell death. J Neurosci Res 57: 789–800, 1999.
 303. Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W and Bouck NP. Pigment epithelium‐derived factor: a potent inhibitor of angiogenesis. Science 285: 245–248, 1999.
 304. Bouck N. PEDF: anti‐angiogenic guardian of ocular function. Trends Mol Med 8: 330–334, 2002.
 305. Stellmach V, Crawford SE, Zhou W and Bouck N. Prevention of ischemia‐induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium‐derived factor. Proc Natl Acad Sci USA 98: 2593–2597, 2001.
 306. Doll JA, Stellmach VM, Bouck NP, Bergh AR, Lee C, Abramson LP, Cornwell ML, Pins MR, Borensztajn J and Crawford SE. Pigment epithelium‐derived factor regulates the vasculature and mass of the prostate and pancreas. Nat Med 9: 774–780, 2003.
 307. Abe R, Shimizu T, Yamagishi S, Shibaki A, Amano S, Inagaki Y, Watanabe H, Sugawara H, Nakamura H, Takeuchi M, Imaizumi T and Shimizu H. Overexpression of pigment epithelium‐derived factor decreases angiogenesis and inhibits the growth of human malignant melanoma cells in vivo. Am J Pathol 164: 1225–1232, 2004.
 308. Wary KK, Thakker GD, Humtsoe JO and Yang J. Analysis of VEGF‐responsive genes involved in the activation of endothelial cells. Mol Cancer 2: 25, 2003.
 309. Gerritsen ME, Soriano R, Yang S, Ingle G, Zlot C, Toy K, Winer J, Draksharapu A, Peale F, Wu TD and Williams PM. In silico data filtering to identify new angiogenesis targets from a large in vitro gene profiling data set. Physiol Genomics 10: 13–20, 2002.
 310. Lal A, Peters H, St Croix B, Haroon ZA, Dewhirst MW, Strausberg RL, Kaanders JH, van der Kogel AJ and Riggins GJ. Transcriptional response to hypoxia in human tumors. J Natl Cancer Inst 93: 1337–1343, 2001.
 311. McCudden CR, James KA, Hasilo C and Wagner GF, Characterization of mammalian stanniocalcin receptors. Mitochondrial targeting of ligand and receptor for regulation of cellular metabolism. J Biol Chem 277: 45249–45258, 2002.
 312. Wakasugi K and Schimmel P. Two distinct cytokines released from a human aminoacyl‐tRNA synthetase. Science 284: 147–151, 1999b.
 313. Wakasugi K and Schimmel P. Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase. J Biol Chem 274: 23155–23159, 1999a.
 314. Wakasugi K, Slike BM, Hood J, Otani A, Ewalt KL, Friedlander M, Cheresh DA and Schimmel P. A human aminoacyl‐tRNA synthetase as a regulator of angiogenesis. Proc Natl Acad Sci USA 99: 173–177, 2002.
 315. Otani A, Slike BM, Dorrell MI, Hood J, Kinder K, Ewalt KL, Cheresh D, Schimmel P and Friedlander M. A fragment of human TrpRS as a potent antagonist of ocular angiogenesis. Proc Natl Acad Sci USA 99: 178–183, 2002.
 316. Liu J, Shue E, Ewalt KL and Schimmel P. A new gamma‐interferon‐inducible promoter and splice variants of an anti‐angiogenic human tRNA synthetase. Nucleic Acids Res 32: 719–727, 2004.
 317. Tzima E, Reader JS, Irani‐Tehrani M, Ewalt KL, Schwartz MA and Schimmel P. VE‐cadherin links tRNA synthetase cytokine to anti‐angiogenic function. J Biol Chem 280: 2405–2408, 2005.
 318. Zhai Y, Ni J, Jiang GW, Lu J, Xing L, Lincoln C, Carter KC, Janat F, Kozak D, Xu S, Rojas L, Aggarwal BB, Ruben S, Li LY, Gentz R and Yu GL. VEGI, a novel cytokine of the tumor necrosis factor family, is an angiogenesis inhibitor that suppresses the growth of colon carcinomas in vivo. Faseb J 13: 181–189, 1999a.
 319. Zhai Y, Yu J, Iruela‐Arispe L, Huang WQ, Wang Z, Hayes AJ, Lu J, Jiang G, Rojas L, Lippman ME, Ni J, Yu GL and Li LY. Inhibition of angiogenesis and breast cancer xenograft tumor growth by VEGI, a novel cytokine of the TNF superfamily. Int J Cancer 82: 131–136, 1999b.
 320. Soncin F, Mattot V, Lionneton F, Spruyt N, Lepretre F, Begue A and Stehelin D. VE‐statin, an endothelial repressor of smooth muscle cell migration. Embo J 22: 5700–5711, 2003.
 321. Morgenbesser SD, Dufault MR, St. Martin TB, Lim E, Callahan M, Weber W, Winter SF, McLaren RP, Richards B, Cook BP, Rouleau C, Jiang Y, Bagley RG, Barberio D, Akmaev VR, Nacht M, Madden SL, Greenberg NM and Teicher BA. Characterization of EGFL7 expression and function in tumorigenesis and angiogenesis. Proc. AM. Assoc Cancer Res. 46: 1103c, 2005.
 322. Kerbel RS. Vasohibin: the feedback on a new inhibitor of angiogenesis. J Clin Invest 114: 884–886, 2004.
 323. Watanabe K, Hasegawa Y, Yamashita H, Shimizu K, Ding Y, Abe M, Ohta H, Imagawa K, Hojo K, Maki H, Sonoda H and Sato Y. Vasohibin as an endothelium‐derived negative feedback regulator of angiogenesis. J Clin Invest 114: 898–907, 2004.
 324. Sund M, Xie L and Kalluri R. The contribution of vascular basement membranes and extracellular matrix to the mechanics of tumor angiogenesis, APMIS 112: 450–462, 2004.
 325. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR and Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277–285, 1997.
 326. Colorado PC, Torre A, Kamphaus G, Maeshima Y, Hopfer H, Takahashi K, Volk R, Zamborsky ED, Herman S, Sarkar PK, Ericksen MB, Dhanabal M, Simons M, Post M, Kufe DW, Weichselbaum RR, Sukhatme VP and Kalluri R. Anti‐angiogenic cues from vascular basement membrane collagen. Cancer Res 60: 2520–2526, 2000.
 327. Kamphaus GD, Colorado PC, Panka DJ, Hopfer H, Ramchandran R, Torre A, Maeshima Y, Mier JW, Sukhatme VP and Kalluri R. Canstatin, a novel matrix‐derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275: 1209–1215, 2000.
 328. He GA, Luo JX, Zhang TY, Wang FY and Li RF. Canstatin‐N fragment inhibits in vitro endothelial cell proliferation and suppresses in vivo tumor growth. Biochem Biophys Res Commun 312: 801–805, 2003.
 329. Panka DJ and Mier JW. Canstatin inhibits Akt activation and induces Fas‐dependent apoptosis in endothelial cells. J Biol Chem 278: 37632–37636, 2003.
 330. He GA, Luo JX, Zhang TY, Hu ZS and Wang FY. The C‐terminal domain of canstatin suppresses in vivo tumor growth associated with proliferation of endothelial cells. Biochem Biophys Res Commun 318: 354–360, 2004.
 331. Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, Sonenberg N, Hynes RO and Kalluri R. Tumstatin, an endothelial cell‐specific inhibitor of protein synthesis. Science 295: 140–143, 2002.
 332. Sudhakar A, Sugimoto H, Yang C, Lively J, Zeisberg M and Kalluri R. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci USA 100: 4766–4771, 2003.
 333. Lawler J. Thrombospondin‐1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med 6: 1–12, 2002.
 334. Armstrong LC and Bornstein P. Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biol 22: 63–71, 2003.
 335. Vailhe B and Feige JJ. Thrombospondins as anti‐angiogenic therapeutic agents. Curr Pharm Des 9: 583–588, 2003.
 336. Iruela‐Arispe ML, Luque A and Lee N. Thrombospondin modules and angiogenesis. Int J Biochem Cell Biol 36: 1070–1078, 2004.
 337. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Cao Y, Moses M, Lane WS, Sage EH and Folkman J. Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol 59: 471–482, 1994a.
 338. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH and Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315–328, 1994b.
 339. Larsson H, Akerud P, Nordling K, Raub‐Segall E, Claesson‐Welsh L and Bjork I. A novel anti‐angiogenic form of antithrombin with retained proteinase binding ability and heparin affinity. J Biol Chem 276: 11996–12002, 2001b.
 340. Zhang JC, Qi X, Juarez J, Plunkett M, Donate F, Sakthivel R, Mazar AP and McCrae KR. Inhibition of angiogenesis by two‐chain high molecular weight kininogen (HKa) and kininogen‐derived polypeptides. Can J Physiol Pharmacol 80: 85–90, 2002.
 341. Guo YL, Wang S, Cao DJ and Colman RW. Apoptotic effect of cleaved high molecular weight kininogen is regulated by extracellular matrix proteins. J Cell Biochem 89: 622–632, 2003.
 342. Kuba K, Matsumoto K, Date K, Shimura H, Tanaka M and Nakamura T. HGF/NK4, a four‐kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res 60: 6737–6743, 2000a.
 343. Kuba K, Matsumoto K, Ohnishi K, Shiratsuchi T, Tanaka M and Nakamura T. Kringle 1‐4 of hepatocyte growth factor inhibits proliferation and migration of human microvascular endothelial cells. Biochem Biophys Res Commun 279: 846–852, 2000b.
 344. Xin L, Xu R, Zhang Q, Li TP and Gan RB. Kringle 1 of human hepatocyte growth factor inhibits bovine aortic endothelial cell proliferation stimulated by basic fibroblast growth factor and causes cell apoptosis. Biochem Biophys Res Commun 277: 186–190, 2000.
 345. Tomioka D, Maehara N, Kuba K, Mizumoto K, Tanaka M, Matsumoto K and Nakamura T. Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Res 61: 7518–7524, 2001.
 346. Nakabayashi M, Morishita R, Nakagami H, Kuba K, Matsumoto K, Nakamura T, Tano Y and Kaneda Y. HGF/NK4 inhibited VEGF‐induced angiogenesis in in vitro cultured endothelial cells and in vivo rabbit model. Diabetologia 46: 115–123, 2003.
 347. Kushibiki T, Matsumoto K, Nakamura T and Tabata Y. Suppression of tumor metastasis by NK4 plasmid DNA released from cationized gelatin. Gene Ther 11: 1205–1214, 2004.
 348. Wen J, Matsumoto K, Taniura N, Tomioka D and Nakamura T. Hepatic gene expression of NK4, an HGF‐antagonist/angiogenesis inhibitor, suppresses liver metastasis and invasive growth of colon cancer in mice. Cancer Gene Ther 11: 419–430, 2004.
 349. Martin P and Lewis J. Origins of the neurovascular bundle: interactions between developing nerves and blood vessels in embryonic chick skin. Int J Dev Biol 33: 379–387, 1989.
 350. Wang H, Chen Z and DJ A. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin B2 and its receptor Eph‐B4, Cell 93: 741–753, 1998.
 351. Gerety SS, Wang HU, Chen ZF and Anderson DJ. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin‐B2 in cardiovascular development. Mol Cell 4: 403–414, 1999.
 352. Fiore R and Puschel AW. The function of semaphorins during nervous system development. Front Biosci 8: s484–s499, 2003.
 353. Seeliger H, Guba M, Koehl GE, Doenecke A, Steinbauer M, Bruns CJ, Wagner C, Frank E, Jauch KW and Geissler EK. Blockage of 2‐deoxy‐d‐ribose‐induced angiogenesis with rapamycin counteracts a thymidine phosphorylase‐based escape mechanism available for colon cancer under 5‐fluorouracil therapy. Clin Cancer Res 10: 1843–1852, 2004.
 354. Kessler O, Shraga‐Heled N, Lange T, Gutmann‐Raviv N, Sabo E, Baruch L, Machluf M and Neufeld G. Semaphorin‐3F is an inhibitor of tumor angiogenesis. Cancer Res 64: 1008–1015, 2004.
 355. Shoji W, Isogai S, Sato‐Maeda M, Obinata M and Kuwada JY. Semaphorin3al regulates angioblast migration and vascular development in zebrafish embryos. Development 130: 3227–3236, 2003.
 356. Bates D, Taylor GI, Minichiello J, Farlie P, Cichowitz A, Watson N, Klagsbrun M, Mamluk R and Newgreen DF. Neurovascular congruence results from a shared patterning mechanism that utilizes Semaphorin3A and Neuropilin‐1. Dev Biol 255: 77–98, 2003.
 357. Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardt C, Caccavari F, Zammataro L, Primo L, Tamagnone L, Logan M, Tessier‐Lavigne M, Taniguchi M, Puschel AW and Bussolino F. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 424: 391–397, 2003.
 358. Behar O, Golden JA, Mashimo H, Schoen FJ and Fishman MC. Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383: 525–528, 1996.
 359. Gu C, Yoshida Y, Livet J, Reimert DV, Mann F, Merte J, Henderson CE, Jessell TM, Kolodkin AL and Ginty DD. Semaphorin 3E and plexin‐D1 control vascular pattern independently of neuropilins. Science 307: 265–268, 2005.
 360. Redmond L and Ghosh A. The role of Notch and Rho GTPase signaling in the control of dendritic development. Curr Opin Neurobiol 11: 111–117, 2001.
 361. Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L, Qian KX, Duan S, Chen Z, Rao Y and Geng JG. Induction of tumor angiogenesis by Slit‐Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4: 19–29, 2003.
 362. Huminiecki L, Gorn M, Suchting S, Poulsom R and Bicknell R. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 79: 547–552, 2002.
 363. Mukouyama YS, Shin D, Britsch S, Taniguchi M and Anderson DJ. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109: 693–705, 2002.
 364. Jin K, Zhu Y, Sun Y, Mao XO, Xie L and Greenberg DA. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 99: 11946–11950, 2002.
 365. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A and Greenberg DA. VEGF‐induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111: 1843–1851, 2003.
 366. Zhu Y, Jin K, Mao XO and Greenberg DA. Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression. Faseb J 17: 186–193, 2003.
 367. Form DM and Auerbach R. PGE2 and angiogenesis. Proc Soc Exp Biol Med 172: 214–218, 1983.
 368. Serini G and Bussolino F. Common cues in vascular and axon guidance. Physiology (Bethesda) 19: 348–354, 2004.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Mary E Gerritsen. Angiogenesis. Compr Physiol 2011, Supplement 9: Handbook of Physiology, The Cardiovascular System, Microcirculation: 351-383. First published in print 2008. doi: 10.1002/cphy.cp020408