References |
1. |
Ley K
Physiology of Inflammation.
New York:
Oxford University Press,
2001,
1–546 pp.
|
2. |
Eisen V.
Past and present views of inflammation.
Agents Actions Suppl
3:
9–16,
1977.
|
3. |
Anonymous, Galen on abnormal swellings.
J Hist Med Allied Sci
33:
531–549,
1978.
|
4. |
Jarcho S.
Boerhaave on inflammation. II. Am.
J Cardiol
25:
480–482,
1970.
|
5. |
Jarcho S.
Gaubius on inflammation. I.
Am J Cardiol
26:
192–195,
1970.
|
6. |
van Leeuwenhoek A.
Epistolae ad societatem regiam anglicam.
Leiden:
Joh Arnold.
1719,
1–316 pp.
|
7. |
Dutrochet H.
Recherches anatomiques et physiologiques sur la structure intime des animaux et des vigétaux. et sur leur motilité.
Paris:
Bailliere et fils,
1824.
|
8. |
Wagner R.
Erläuterungstafeln zur Physiologie und Entwicklungsgeschichte.
Leipzig:
Leopold Voss,
1839, Tab. XIV pp.
|
9. |
Virchow R.
Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre.
Berlin:
August Hirschwald Verlag,
1871.
|
10. |
Jarcho S.
Augustus Volney Waller on blood vessels and inflammation. II.
Am J Cardiol
28:
712–714,
1971.
|
11. |
Jarcho S.
William Addison on blood vessels and inflammation (1841–43).
Am J Cardiol
28:
223–225,
1971.
|
12. |
Waller A.
Microscopic examination of some of the principal tissues of the animal frame, as observed in the tongue of the living frog, toad, etc.
Phil Mag
29:
271–287,
1846.
|
13. |
Cohnheim J.
Lectures on General Pathology: A Handbook for Practitioners and Students.
London:
The New Sydenham Society,
1889.
|
14. |
Cohnheim J.
Vorlesungen über allgemeine Pathologic
Berlin:
August Hirschwald Verlag,
1877.
|
15. |
Schultze M.
Ein heizbarer Objecttisch und seine Verwendung bei Untersuchungen des Blutes.
Archiv f mikroskop Anatomic
1:
1–42,
1865.
|
16. |
Metchnikoff ME.
Lectures on the Comparative Pathology of Inflammation.
London:
Kegan Paul, Trench & Truebner & Co.,
1893.
|
17. |
Ehrlich P.
Über die spezifischen Granulationen des Blutes.
Arch Anat Physiol (Leipzig)
3:
571–579,
1879.
|
18. |
Ehrlich P.
Farbenanalytische Untersuchungen zur Histologic und Klinik des Blutes.
Berlin:
August Hirschwald,
1891,
1–137 pp.
|
19. |
Arthus M.
Injections repetees de serum de cheval cuez le lapin.
Seances et Memoire de la Societe de Biologie
55:
817–825,
1903.
|
20. |
Clark ER and
Clark EL.
Observations on changes in blood vascular endothelium in the living animal.
Am J Anat
57:
385–438,
1935.
|
21. |
Dale HH.
Some chemical factors in the control of the circulation.
Lancet
1:
1233–1237,
1929.
|
22. |
Rocha e Silva M.
A brief survey of the history of inflammation.
Agents Actions
8:
45–49,
1978.
|
23. |
Nicoll PA and
Webb RR.
Blood circulation in the subcutaneous tissue of the living bat's wing.
Ann NY Acad Sci
46:
697–711,
1946.
|
24. |
Mayrovitz HN,
Wiedeman MP and
Tuma RF.
Factors influencing leukocyte adherence in microvessels.
Thromb Haemostas (Stuttgart)
38:
823–830,
1977.
|
25. |
Vejlens G
The distribution of leukocytes in the vascular system.
Acta Pathol Microbiol Scand
Suppl. 33: 1–239,
1938.
|
26. |
FShraeus R.
The suspension stability of the blood.
Physiol Rev
9:
241–274,
1929.
|
27. |
Weibel ER and
Palade GE.
New cytoplasmic components in arterial endothelia.
J Cell Biol
23:
101–112,
1964.
|
28. |
Marchesi VT and
Florey HW.
Electron micrographic observations on the emigration of leukocytes.
Quart J Exp Physiol Cog Med Sci
45:
343–348,
1960.
|
29. |
Marchesi VT and
Gowans JL.
The migration of lymphocytes through the endothelium of venules in lymph‐nodes: an electron microscopic study.
Proc R Soc Lond [Biol]
159:
282–290,
1964.
|
30. |
Happel J and
Byrne BJ.
Motion of a sphere and fluid in a cylindrical tube.
Ind Engin Chem
46:
181–1186,
1954.
|
31. |
Goldman AJ,
Cox RG and
Brenner H.
Slow viscous motion of a sphere parallel to a plane wall ‐ II. Couette flow.
Chem Eng Sci
22:
653–660,
1967.
|
32. |
Baker M and
Wayland H.
On‐line volume flow rate and velocity profile measurement for blood in microvessels.
Microvasc Res
7:
131–143,
1974.
|
33. |
Pittman RN and
Ellsworth ML.
Estimation of red cell flow in microvessels: consequences of the Baker‐Wayland spatial averaging model.
Microvasc Res
32:
371–388,
1986.
|
34. |
Long DS,
Smith ML,
Pries AR,
Ley K and
Damiano ER.
Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution.
Proc Natl Acad Sci USA
101:
10060–10065,
2004.
|
35. |
Atherton A and
Born GVR.
Quantitative investigations of the adhesiveness of circulating polymorphonuclear leukocytes to blood vessels.
J Physiol (Lond)
222:
447–474,
1972.
|
36. |
Atherton A and
Born GVR.
Relationship between the velocity of rolling granulocytes and that of the blood flow in venules.
J Physiol (Lond)
233:
157–165,
1973.
|
37. |
Auron PE,
Webb AC,
Rosenwasser LJ,
Mucci SF,
Rich A,
Wolff SM and
Dinarello CA.
Nucleotide sequence of human monocyte interleukin 1 precursor cDNA.
Proc Natl Acad Sci USA
81:
7907–7911,
1984.
|
38. |
Liu CC,
Steffen M,
King F and
Young JD.
Identification, isolation, and characterization of a novel cytotoxin in murine cytolytic lymphocytes.
Cell
51:
393–403,
1987.
|
39. |
Ruddle NH,
Li CB,
Tang WL,
Gray PW and
McGrath KM.
Lymphotoxin: cloning, regulation and mechanism of killing.
Ciba Found Symp
131:
64–82,
1987.
|
40. |
Bevilacqua MP,
Pober JS,
Wheeler ME,
Cotran RS and
Gimbrone MA, Jr.
Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines.
J Clin Invest
76:
2003–2011,
1985.
|
41. |
Bevilacqua MP,
Pober JS,
Mendrick DL,
Cotran RS and
Gimbrone MA, Jr.
Identification of an inducible endothelial‐leukocyte adhesion molecule.
Proc Natl Acad Sci USA
84:
9238–9242,
1987.
|
42. |
Stamper HB and
Woodruff JJ.
Lymphocyte homing into lymph nodes: in vitro demonstration of the selective affinities of recirculating lymphocytes for high‐endothelial venules.
J Exp Med
144:
828–833,
1976.
|
43. |
Gowans JL and
Knight JL.
The route of recirculation of lymphocytes in the rat.
Proc R Soc Lond [Biol]
159:
257–282,
1964.
|
44. |
Gallatin WM,
Weissman IL and
Butcher EC.
A cell‐surface molecule involved in organ‐specific homing of lymphocytes.
Nature
304:
30–34,
1983.
|
45. |
Anderson DC,
Hughes BJ and
Smith CW.
Abnormal mobility of neonatal polymorphonuclear granulocytes. Relationship to impaired redistribution of surface adhesion sites by chemotaetic factors or colchicine.
J Clin Invest
68:
863–874,
1981.
|
46. |
Springer TA,
Thompson WS,
Miller LJ,
Schmalstieg FC and
Anderson DC.
Inherited of the Mac‐1, LFA‐1, p150,95 glycoprotein family and its molecular basis.
J Exp Med
160:
1901–1918,
1984.
|
47. |
Buchanan MR,
Crowley CA,
Rosin RE,
Gimbrone MA, Jr. and
Babior BM.
Studies on the interaction between GP‐180‐deficient neutrophils and vascular endothelium.
Blood
60:
160–165,
1982.
|
48. |
Arnaout MA,
Spits H,
Terhorst C,
Pitt J and
Todd RF.
Deficiency of a leukocyte surface glycoprotein (LFA‐1) in two patients with Mol deficiency. Effects of cell activation on Mol/LFA‐1 surface expression in normal and deficient leukocytes.
J Clin Invest
74:
1291–1300,
1984.
|
49. |
Dana N,
Todd RF,
Pitt J,
Springer TA and
Arnaout MA.
Deficiency of a surface membrane glycoprotein (Mol) in man.
J Clin Invest
73:
153–159,
1984.
|
50. |
Davignon D,
Martz E,
Reynolds T,
Kurzinger K and
Springer TA.
Lymphocyte function‐associated antigen 1 (LFA‐1): a surface antigen distinct from Lyt‐2.3 that participates in T‐lymphocyte mediated killing.
Proc Natl Acad Sci USA
78:
4535–4539,
1981.
|
51. |
Beller DI,
Springer TA and
Schreiber RD.
Anti‐Mac‐1 selectively inhibits the mouse and human type three complement receptor.
J Exp Med
156:
1000–1009,
1982.
|
52. |
Wright SD,
Rao PE,
Van Voorhis WC,
Craigmyle LS,
Iida K,
Talle MA,
Westberg EF,
Goldstein GW and
Silverstein SC.
Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies.
Proc Natl Acad Sci USA
80:
5699–5703,
1983.
|
53. |
Hemler ME,
Huang C,
Takada Y,
Schwarz L,
Strominger JL and
Clabby ML.
Characterization of the cell surface heterodimer VLA‐4 and related peptides.
J Biol Chem
262:
11478–11485,
1987.
|
54. |
Dustin ML,
Rothlein R,
Bhan AK,
Dinarello CA and
Springer TA.
Induction by IL‐1 and interferon‐gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM‐1).
J Immunol
137:
245–254,
1986.
|
55. |
Dustin ML and
Springer TA.
Lymphocyte function‐associated antigen‐1 (LFA‐1) interaction with intercellular adhesion molecule‐1 (ICAM‐1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells.
J Cell Biol
107:
321–331,
1988.
|
56. |
Staunton DE,
Dustin ML and
Springer TA.
Functional cloning of ICAM‐2, a cell adhesion ligand for LFA‐1 homologous to ICAM‐1.
Nature
339:
61–64,
1989.
|
57. |
Rice GE and
Bevilacqua MP.
An inducible endothelial cell surface glycoprotein mediates melanoma adhesion.
Science
246:
1303–1306,
1989.
|
58. |
Osborn L,
Hession C,
Tizard R,
Vassallo C,
Luhowskyj S,
Chi‐Rosso G and
Lobb RR.
Direct expression cloning of vascular cell adhesion molecule 1, a cytokine‐induced endothelial protein that binds to lymphocytes.
Cell
59:
1203–1211,
1989.
|
59. |
Capecchi MR.
Altering the genome by homologous recombination.
Science
244:
1288–1292,
1989.
|
60. |
Durum SK and
Muegge K.
Cytokine Knockouts.
Totowa, NJ:
Humana,
1998,
1–466 pp.
|
61. |
Ley K.
Gene‐targeted mice in leukocyte adhesion research.
Microcirculation
2:
141–150,
1995.
|
62. |
Schwarz MK and
Wells TNC.
Interfering with chemokine networks ‐ the hope for new therapeutics.
Curr Opin Chem Biol
3:
407–417,
1999.
|
63. |
Shepro D and
Morel NM.
Pericyte physiology.
FASEB J
7:
1031–1038,
1993.
|
64. |
Chien S,
Usami S and
Skalak R.
Blood flow in small tubes. In:
Handbook of Physiology. The Cardiovascular System. Microcirculation.
eds Renkin EM and
Michel CC,
Bethesda. MD:
American Physiological Society,
1984,
pp. 217–249.
|
65. |
Schmid‐Schonbein GW,
Usami S,
Skalak R and
Chien S.
The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels.
Microvasc Res
19:
45–70,
1980.
|
66. |
Nobis U,
Priss AR,
Cokelet GR and
Gaehtgens P.
Radial distribution of white cells during blood flow in small tubes.
Microvasc Res
29:
295–304,
1985.
|
67. |
Goldsmith HL and
Spain S.
Margination of leukocytes in blood flow through small tubes.
Microvasc Res
27:
204–222,
1984.
|
68. |
Nazziola E and
House SD.
Effects of hydrodynamics and leukocyte‐endothelium specificity on leukocyte‐endothelium interactions.
Microvasc Res
44:
127–142,
1992.
|
69. |
Mazo IB and
von Andrian UH.
Adhesion and homing of blood‐borne cells in bone marrow microvessels.
J Leukocyte Biol
66:
25–32,
1999.
|
70. |
Downey GP,
Worthen GS,
Henson PM and
Hyde DM.
Neutrophil sequestration and migration in localized pulmonary inflammation. Capillary localization and migration across the interalveolar septum.
Am Rev Respir Dis
147:
168–176,
1993.
|
71. |
Doerschuk CM.
Mechanisms of leukocyte sequestration in inflamed lungs.
Microcirculation
8:
71–88,
2001.
|
72. |
Horie Y,
Wolf R,
Russell J,
Shanley TP and
Granger DN.
Role of kupffer cells in gut ischemia/reperfusion‐induced hepatic microvascular dysfunction in mice.
Hepatology
26:
1499–1505,
1997.
|
73. |
Kubes P,
Payne D and
Woodman RC.
Molecular mechanisms of leukocyte recruitment in postischemic liver microcirculation.
Am J Physiol Gastmintest Liver Physiol
283:
G139–G147,
2002.
|
74. |
Salmi M,
Tohka S and
Jalkanen S.
Human vascular adhesion protein‐1 (VAP‐I) plays a critical role in lymphocyte‐endothelial cell adhesion cascade under shear.
Ore Res
86:
1245–1251,
2000.
|
75. |
Bautista AP.
Neutrophilic infiltration in alcoholic hepatitis.
Alcohol
27:
17–21,
2002.
|
76. |
Jaeschke H,
Mechanisms of Liver Injury, II. Mechanisms of neutrophil‐induced liver cell injury during hepatic ischemia‐reperfusion and other acute inflammatory conditions.
Am J Physiol Gastmintest Liver Physiol
290:
G1083–G1088,
2006.
|
77. |
Singbartl K and
Ley K.
Protection from ischemia‐reperfusion induced severe acute renal failure by blocking E‐selectin.
Crit Care Med
28:
2507–2514,
2000.
|
78. |
Singbartl K and
Ley K.
Leukocyte recruitment and acute renal failure.
J Mol Med
82:
91–101,
2004.
|
79. |
Mayadas TN,
Rosenkranz A and
Cotran RS.
Glomerular inflammation: Use of genetically deficient mice to elucidate the roles of leukocyte adhesion molecules and Fc‐gamma receptors in vivo.
Curr Opin Nephrol Hypertens
8:
293–298,
1999.
|
80. |
Eddy AA.
Progression in chronic kidney disease.
Adv Chronic Kidney Dis
12:
353–365,
2005.
|
81. |
Paul WE.
Fundamental Immunology.
Lippincott Williams & Wilkins,
2003,
1–1701 pp.
|
82. |
Metcalf D.
Lineage commitment and maturation in hematopoietic cells: the case for extrinsic regulation.
Blood
92:
345–347,
1998.
|
83. |
Hoang T.
The origin of hematopoietic cell type diversity.
Oncogene
23:
7188–7198,
2004.
|
84. |
Enver T,
Heyworth CM and
Dexter TM.
Do stem cells play dice?
Blood
92:
348–351,
1998.
|
85. |
Beutler E,
Lichtman MA,
Coller B,
Kipps T and
Seligsohn U.
Williams Hematology.
New York:
McGraw‐Hill,
2001.
|
86. |
Demetri GD and
Griffin JD.
Granulocyte colony‐stimulating factor and its receptor.
Blood
78:
2791–2808,
1991,
7.
|
87. |
Lieschke GJ,
Grail D,
Hodgson G,
Metcalf D,
Stanley E,
Cheers C,
Fowler KJ,
Basu S,
Zhan YF and
Dunn AR.
Mice lacking granulocyte colony‐stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization.
Blood
84:
1737–1746,
1994.
|
88. |
Liu F,
Wu HY,
Wesselschmidt R,
Kornaga T and
Link DC.
Impaired production and increased apoptosis of neutrophils in granulocyte colony‐stimulating factor receptor‐deficient mice.
Immunity
5:
491–501,
1996.
|
89. |
Barreda DR,
Hanington PC and
Belosevic M.
Regulation of myeloid development and function by colony stimulating factors.
Dev Comp Immunol
28:
509–554,
2004.
|
90. |
Seymour JF,
Lieschke GJ,
Grail D,
Quilici C,
Hodgson G and
Dunn AR.
Mice lacking both granulocyte colony‐stimulating factor (CSF) and granulocyte‐macrophage CSF have impaired reproductive capacity, perturbed neonatal granulopoiesis, lung disease, amyloidosis, and reduced long‐term survival.
Blood
90:
3037–3049,
1997.
|
91. |
Liu F,
Poursine‐Laurent J,
Wu HY and
Link DC.
Interleukin‐6 and the granulocyte colony‐stimulating factor receptor are major independent regulators of granulopoiesis in vivo but are not required for lineage commitment or terminal differentiation.
Blood
90:
2583–2590,
1997.
|
92. |
Dalrymple SA,
Lucian LA,
Slattery R,
McNeil T,
Aud DM,
Fuchino S,
Lee F and
Murray R.
Interleukin‐6‐deficient mice are highly susceptible to listeria monocytogenes infection: correlation with inefficient neutrophilia.
Infect Immun
63:
2262–2268,
1995.
|
93. |
Stanley E,
Lieschke GJ,
Grail D,
Metcalf D,
Hodgson G,
Gall JA,
Maher DW,
Cebon J,
Sinickas V and
Dunn AR.
Granulocyte/macrophage colony‐stimulating factor‐deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology.
Proc Natl Acad Sci USA
91:
5592–5596,
1994.
|
94. |
Ward AC,
Loeb DM,
Soede‐Bobok AA,
Touw IP and
Friedman AD.
Regulation of granulopoiesis by transcription factors and cytokine signals.
Leukemia
14:
973–990,
2000.
|
95. |
Scott EW,
Simon MC,
Anastasi J and
Singh H.
Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages.
Science
265:
1573–1577,
1994.
|
96. |
DeKoter RP and
Singh H.
Regulation of B lymphocyte and macrophage development by graded expression of PU. I.
Science
288:
1439–1441,
2000.
|
97. |
Mclvor Z,
Hein S,
Fiegler H,
Schroeder T,
Stocking C,
Just U and
Cross M.
Transient expression of PU. 1 commits multipotent progenitors to a myeloid fate whereas continued expression favors macrophage over granulocyte differentiation.
Exp Hematol
31:
39–47,
2003.
|
98. |
Rekhtman N,
Radparvar F,
Evans T and
Skoultchi AI.
Direct interaction of hematopoietic transcription factors PU.I and GATA‐1: functional antagonism in erythroid cells.
Genes Dev
13:
1398–1411,
1999.
|
99. |
Zhang P,
Behre G,
Pan J,
Iwama A,
Wara‐Aswapati N,
Radomska HS,
Auron PE,
Tenen DG and
Sun Z.
Negative cross‐talk between hematopoietic regulators: GATA proteins repress PU.1.
Proc Natl Acad Sci USA
96:
8705–8710,
1999.
|
100. |
Friedman AD.
Transcriptional regulation of granulocyte and monocyte development.
Oncogene
21:
3377–3390,
2002.
|
101. |
Dahl R,
Walsh JC,
Lancki D,
Laslo P,
Iyer SR,
Singh H and
Simon MC.
Regulation of macrophage and neutrophil cell fates by the PU.l: C/EBPalpha ratio and granulocyte colony‐stimulating factor.
Nat Immunol
4:
1029–1036,
2003.
|
102. |
Dahl R and
Simon MC.
The importance of PU.l concentration in hematopoietic lineage commitment and maturation.
Blood Cells Mol Dis
31:
229–233,
2003.
|
103. |
McKercher SR,
Torbett BE,
Anderson KL,
Henkel GW,
Vestal DJ,
Baribault H,
Klemsz M,
Feeney AJ,
Wu GE,
Paige CJ and
Maki RA.
Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities.
EMBO J
15:
5647–5658,
1996.
|
104. |
Zhang P,
Iwama A,
Datta MW,
Darlington GJ,
Link DC and
Tenen DG.
Upregulation of interleukin 6 and granulocyte colony‐stimulating factor receptors by transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for granulopoiesis.
J Exp Med
188:
1173–1184,
1998.
|
105. |
McKinstry WJ,
Li CL,
Rasko JE,
Nicola NA,
Johnson GR and
Metcalf D.
Cytokine receptor expression on hematopoietic stem and progenitor cells.
Blood
89:
65–71,
1997.
|
106. |
Anderson KL,
Smith KA,
Perkin H,
Hermanson G,
Anderson CG,
Jolly DJ,
Maki RA and
Torbett BE.
PU.1 and the granulocyte‐ and macrophage colony‐stimulating factor receptors play distinct roles in late‐stage myeloid cell differentiation.
Blood
94:
2310–2318,
1999.
|
107. |
Martin C,
Burdon PC,
Bridger G,
Gutierrez‐Ramos JC,
Williams TJ and
Rankin SM.
Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence.
Immunity
19:
583–593,
2003.
|
108. |
Suratt BT,
Petty JM,
Young SK,
Malcolm KC,
Lieber JG,
Nick JA,
Gonzalo JA,
Henson PM and
Worthen GS.
Role of the CXCR4/SDF‐I chemokine axis in circulating neutrophil homeostasis.
Blood
104:
565–571,
2004.
|
109. |
Ley K,
Baker JB,
Cybulsky Ml,
Gimbrone MA, Jr. and
Luscinskas FW.
Intravenous interleukin‐8 inhibits granulocyte emigration from rabbit mesenteric venules without altering L‐selectin expression or leukocyte rolling.
J Immunol
151:
6347–6357,
1993.
|
110. |
Serbina NV and
Pamer EG.
Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2.
Nat Immunol
7:
311–317,
2006.
|
111. |
Zhang P,
Quinton LJ,
Gamble L,
Bagby GJ,
Summer WR and
Nelson S.
The granulopoietic cytokine response and enhancement of granulopoiesis in mice during endotoxemia.
Shock
23:
344–352,
2005.
|
112. |
Quinton LJ,
Nelson S,
Zhang P,
Boe DM,
Happel KI,
Pan W and
Bagby GJ.
Selective transport of cytokine‐induced neutrophil chemoattractant from the lung to the blood facilitates pulmonary neutrophil recruitment.
Am J Physiol Lung Cell Mol Physiol
286:
L465–L472,
2004.
|
113. |
Lord BI,
Bronchud MH,
Owens S,
Chang J,
Howell A,
Souza L and
Dexter TM.
The kinetics of human granulopoiesis following treatment with granulocyte colony‐stimulating factor in vivo.
Proc Natl Acad Sci USA
86:
9499–9503,
1989.
|
114. |
Semerad CL,
Liu F,
Gregory AD,
Stumpf K and
Link DC.
G‐CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood.
Immunity
17:
413–423,
2002.
|
115. |
Basu S,
Hodgson G,
Katz M and
Dunn AR.
Evaluation of role of G‐CSF in the production, survival, and release of neutrophils from bone marrow into circulation.
Blood
100:
854–861,
2002.
|
116. |
Semerad CL,
Poursine‐Laurent J,
Liu F and
Link DC.
A role for G‐CSF receptor signaling in the regulation of hematopoietic cell function but not lineage commitment or differentiation.
Immunity
11:
153–161,
1999.
|
117. |
Stark MA,
Huo Y,
Burcin TL,
Morris MA,
Olson TS and
Ley K.
Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL‐23 and IL‐17.
Immunity
22:
285–294,
2005.
|
118. |
Anderson DC,
Schmalstieg FC,
Shearer W,
Becker‐Freeman K,
Kohl S,
Smith CW,
Tosi MF and
Springer TA.
Leukocyte LFA‐1, OKM1, p150, 95 deficiency syndrome: functional and biosynthetic studies of three kindreds.
Fed Proc
44:
2671–2677,
1985.
|
119. |
Walzog B,
Weinmann P,
Jeblonski F,
Scharffetter‐Kochanek K,
Bommert K and
Gaehtgens P.
A role for β2 integrins (CD11/CD18) in the regulation of cytokine gene expression of polymorphonuclear neutrophils during the inflammatory response.
FASEB J
13:
1855–1865,
1999.
|
120. |
Lindemann SW,
Yost CC,
Denis MM,
McIntyre TM,
Weyrich AS and
Zimmerman GA.
Neutrophils alter the inflammatory milieu by signal‐dependent translation of constitutive messenger RNAs.
Proc Natl Acad Sci USA
101:
7076–7081,
2004.
|
121. |
Hochmuth RM and
Needham D.
The viscosity of neutrophils and their transit through small pores.
Biorheol
27:
817–828,
1990.
|
122. |
Glasser L and
Fiederlein RL.
The effect of various cell separation procedures on assays of neutrophil function. A critical appraisal.
Am J Clin Pathol
93:
662–669,
1990.
|
123. |
Forsyth KD and
Levinsky RJ.
Preparative procedures of cooling and re‐warming increase leukocyte integrin expression and function on neutrophils.
J Immunol Methods
128:
159–163,
1990.
|
124. |
Kuijpers TW,
Tool ATJ,
van der School CE,
Ginsel LA,
Onderwater JJM,
Roos D and
Verhoeven AJ.
Membrane surface antigen expression on neutrophils: a reappraisal of the use of surface markers for neutrophil activation.
Blood
78:
1105–1111,
1991.
|
125. |
Warnke KC and
Skalak TC.
In vivo measurement of leukocyte viscosity during capillary plugging.
J Biomech Eng
114:
533–538,
1992.
|
126. |
Lipowsky HH,
Riedel D and
Shi GS.
In vivo mechanical properties of leukocytes during adhesion to venular endothelium.
Biorheol
28:
53–64,
1991.
|
127. |
Tsai MA,
Frank RS and
Waugh RE.
Passive mechanical behavior of human neutrophils: power‐law fluid.
Biophys J
65:
2078–2088,
1994.
|
128. |
Firrell JC and
Lipowsky HH.
Leukocyte margination and deformation in mesenteric venules of rat.
Am J Physiol
256:
H1667–H1674,
1989.
|
129. |
Damiano ER,
Westheider J,
Tözeren A and
Ley K.
Variation in the velocity, deformation, and adhesion energy density of leukocytes rolling within venules.
Circ Res
79:
1122–1130,
1996.
|
130. |
Schmidtke DW and
Diamond SL.
Direct observation of membrane tethers formed during neutrophil attachment to platelets or P‐selectin under physiological flow.
J Cell Biol
149:
719–730,
2000.
|
131. |
Sperandio M,
Smith ML,
Forlow SB,
Olson TS,
Xia L,
McEver RP and
Ley K.
P‐selectin glycoprotein ligand‐1 mediates L‐selectin‐dependent leukocyte rolling in venules.
J Exp Med
197:
1355–1363,
2003.
|
132. |
Park EY,
Smith MJ,
Stropp ES,
Snapp KR,
DiVietro JA,
Walker WF,
Schmidtke DW,
Diamond SL and
Lawrence MB.
Comparison of PSGL‐1 microbead and neutrophil rolling: microvillus elongation stabilizes P‐selectin bond clusters.
Biophys J
82:
1835–1847,
2002.
|
133. |
Wiktor‐Jedrzejezak W,
Bartocci A,
Ferrante AW, Jr.,
Ahmed‐Ansari A,
Sell KW,
Pollard JW and
Stanley ER.
Total absence of colony‐stimulating factor 1 in the macrophage‐deficient osteopetrotic (op/op) mouse.
Proc Natl Acad Sci USA
87:
4828–4832,
1990.
|
134. |
Yoshida H,
Hayashi S,
Kunisada T,
Ogawa M,
Nishikawa S,
Okamura H,
Sudo T,
Shultz LD and
Nishikawa S.
The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene.
Nature
345:
442–444,
1990.
|
135. |
Passlick B,
Flieger D and
Ziegler‐Heitbrock HW.
Identification and characterization of a novel monocyte subpopulation in human peripheral blood.
Blood
74:
2527–2534,
1989.
|
136. |
Geissmann F,
Jung S and
Littman DR.
Blood monocytes consist of two principal subsets with distinct migratory properties.
Immunity
19:
71–82,
2003.
|
137. |
Fogg DK,
Sibon C,
Miled C,
Jung S,
Aucouturier P,
Littman DR,
Cumano A and
Geissmann F.
A clonogenic bone marrow progenitor specific for macrophages and dendritic cells.
Science
311:
83–87,
2006.
|
138. |
Raud J,
Linclbom L,
Dahlen S‐E and
Hedqvist P.
Periarteriolar localization of mast cells promotes oriented interstitial migration of leukocytes in the hamster cheek pouch.
Am J Pathol
134:
161,
1989.
|
139. |
Lindner JR,
Kahn ML,
Coughlin SR,
Sambrano GR,
Schauble E,
Bernstein D,
Foy D,
Hafezi‐Moghadam A and
Ley K.
Delayed onset of inflammation in protease‐activated receptor‐2‐ deficient mice.
J Immunol
165:
6504–6510,
2000.
|
140. |
Montefort S,
Gratziou C,
Goulding D,
Polosa R,
Haskard DO,
Howarth PHHS and
Carroll MP.
Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte‐endothelial cell adhesion mobcules 6 hours after local allergen challenge of sensitized asthmatic airways.
J Clin Invest
93:
1411–1421,
1994.
|
141. |
Schwartz LE.
Mast cells: function and contents.
Curr Opin Immunol
6:
91–97,
1994.
|
142. |
Okayama Y and
Kawakami T.
Development, migration, and survival of mast cells.
Immunol Res
34:
97–115,
2006.
|
143. |
Bochner BS and
Schleimer RP.
Mast cells, basophils, and eosinophils: distinct but overlapping pathways for recruitment.
Immunol Rev
179:
5–15,
2001.
|
144. |
Torii I,
Morikawa S,
Harada T and
Kitamura Y.
Two distinct types of cellular mechanisms in the development of delayed hypersensitivity in mice: requirement of either mast cells or macrophages for elicitation of the response.
Immunology
78:
482–490,
1993.
|
145. |
Matis WL,
Lavker RM and
Murphy GF,
Substance P.
induces the expression of an endothelial‐leukocyte adhesion molecule by microvascular endothelium.
J Invest Dermatol
94:
492–495,
1990.
|
146. |
Kanwar S,
Hickey MJ and
Kubes P.
Postischemic inflammation ‐ a role for mast cells in intestine but not in skeletal muscle.
Am J Physiol Gastrointest Liver Physiol
38:
G212–G218,
1998.
|
147. |
Thorlacius H,
Raud J,
Rosengren‐Beezley S,
Forrest MJ,
Hedqvist P and
Lindbom L.
Mast cell activation induces P‐selectin‐dependent leukocyte rolling and adhesion in postcapillary venules in vivo.
Biochem Biophys Res Commun
203:
1043–1049,
1994.
|
148. |
Ley K.
Histamine can induce leukocyte rolling in rat mesenteric venules.
Am J Physiol
267:
H1017–H1023,
1994.
|
149. |
Kubes P and
Kanwar S.
Histamine induces leukocyte rolling in post‐capillary venules: a P‐selectin mediated event.
J Immunol
152:
3570–3577,
1994.
|
150. |
Guo Y,
Lindbom L and
Hedqvist P.
Spontaneous leukocyte rolling in rat and mouse microvessels is independent of mast cell activity.
Inflamm Res
49:
325–329,
2000.
|
151. |
Zhang Y,
Ramos BF and
Jakschik BA.
Augmentation of reverse arthus reaction by mast cells in mice.
J Clin Invest
88:
841–846,
1991.
|
152. |
Nienartowicz A,
Sobaniec‐Lotowska ME,
Jarocka‐Cyrta E and
Lemancewicz D.
Mast cells in neoangiogenesis.
Med Sci Monit
12:
RA53–RA56,
2006.
|
153. |
Lu LF,
Lind EF,
Gondek DC,
Bennett KA,
Gleeson MW,
Pino‐Lagos K,
Scott ZA,
Coyle AJ,
Reed JL,
Van SJ,
Strom TB,
Zheng XX and
Noelle RJ.
Mast cells are essential intermediaries in regulatory T‐cell tolerance.
Nature
442:
997–1002,
2006.
|
154. |
Rothenberg ME and
Hogan SP.
The eosinophil.
Annu Rev Immunol
24:
147–174,
2006.
|
155. |
Larbi KY,
Dangerfield JP,
Culley FJ,
Marshall D,
Haskard DO,
Jose PJ,
Williams TJ and
Nourshargh S.
P‐selectin mediates IL‐13‐induced eosinophil transmigration but not eotaxin generation in vivo: a comparative study with IL‐4‐elicited responses.
J Leukoc Biol
73:
65–73,
2003.
|
156. |
Teixeira MM,
Williams TJ and
Hellewell PG.
Mechanisms and pharmacological manipulation of eosinophil accumulation in vivo.
Trends Pharmacol Sci
16:
418–423,
1995.
|
157. |
Gurish MF and
Boyce JA.
Mast cells: ontogeny, homing, and recruitment of a unique innate effector cell.
J Allergy Clin Immunol
117:
1285–1291,
2006.
|
158. |
von Andrian UH and
McKay CR.
T‐cell function and migration.
New Engl J Med
343:
1020–1034,
2000.
|
159. |
Ley K and
Kansas GS.
Selectins in T‐cell recruitment to non‐lymphoid tissues and sites of inflammation.
Nat Rev Immunol 2004
4:
325–335,
2004.
|
160. |
Kim MR,
Manoukian R,
Yeh R,
Silbiger SM,
Danilenko DM,
Scully S,
Sun J,
DeRose ML,
Stolina M,
Chang D,
Van GY,
Clarkin K,
Nguyen HQ,
Yu YB,
Jing S,
Senaldi G,
Elliott G and
Medlock ES.
Transgenic overexpression of human IL‐17E results in eosinophilia, B‐lymphocyte hyperplasia, and altered antibody production.
Blood
100:
2330–2340,
2002.
|
161. |
Zheng Y and
Rudensky AY.
Foxp3 in control of the regulatory T cell lineage.
Nat Immunol
8:
457–462,
2007.
|
162. |
Rubtsov YP and
Rudensky AY.
TGFbeta signalling in control of T‐cell‐mediated self‐reactivity.
Nat Rev Immunol
7:
443–453,
2007.
|
163. |
Veldhoen M,
Hocking RJ,
Atkins CJ,
Locksley RM and
Stockinger B.
TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL‐17‐producing T cells.
Immunity
24:
179–189,
2006.
|
164. |
Langrish CL,
Chen Y,
Blumenschein WM,
Mattson J,
Basham B,
Sedgwick JD,
McClanahan T,
Kastelein RA and
Cua DJ.
IL‐23 drives a pathogenic T cell population that induces autoimmune inflammation.
J Exp Med
201:
233–240,
2005.
|
165. |
Park H,
Li Z,
Yang XO,
Chang SH,
Nurieva R,
Wang YH,
Wang Y,
Hood L,
Zhu Z,
Tian Q and
Dong C.
A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17.
Nat Immunol
6:
1133–1141,
2005.
|
166. |
Haring JS,
Badovinac VP and
Harty JT.
Inflaming the CD8+ T cell response.
Immunity
25:
19–29,
2006.
|
167. |
Enelow RI,
Mohammed AZ,
Stoler MH,
Liu AN,
Young JS,
Lou YH and
Braciale TJ.
Structural and functional consequences of alveolar cell recognition by CD8+ T lymphocytes in experimental lung disease.
J Clin Invest
102:
1653–1661,
1998.
|
168. |
Thatte J,
Dabak V,
Williams MB,
Braciale TJ and
Ley K.
LFA‐1 is required for retention of effector CD8 T cells in mouse lungs.
Blood
101:
4916–4922,
2003.
|
169. |
Galkina E,
Thatte J,
Dabak V,
Williams MB,
Ley K and
Braciale TJ.
Preferential migration of effector CD8+ T cells into the interstitium of the normal lung.
J Clin Invest
115:
3473–3483,
2005.
|
170. |
Yoneda R,
Yokono K,
Nagata M,
Tominaga Y,
Moriyama H,
Tsukamoto K,
Miki M,
Okamoto N,
Yasuda H,
Amano K and
Kasuga M.
CD8 cytotoxic T‐cell clone rapidly transfers autoimmune diabetes in very young NOD and MHC class 1‐compatible scid mice.
Diabetologia
40:
1044–1052,
1997.
|
171. |
Lefrancois L,
Parker CM,
Olson S,
Muller W,
Wagner N and
Puddington L.
The role of β7 integrins in CDS T cell trafficking during an antiviral immune response.
J Exp Med
189:
1631–1638,
1999.
|
172. |
Cerwenka A,
Morgan TM,
Harmsen AG and
Dutton RW.
Migration kinetics and final destination of type 1 and type 2 CD8 effector cells predict protection against pulmonary virus infection.
J Exp Med
189:
423–434,
1999.
|
173. |
Munz C,
Steinman RM and
Fujii S.
Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity.
J Exp Med
202:
203–207,
2005.
|
174. |
Geissmann F,
Cameron TO,
Sidobre S,
Manlongat N,
Kronenberg M,
Briskin MJ,
Dustin ML and
Littman DR.
Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids.
PLoS Biol
3:
e113,
2005.
|
175. |
Brutkiewicz RR.
CD1d ligands: the good, the bad, and the ugly.
J Immunol
177:
769–775,
2006.
|
176. |
Kinjo Y,
Tupin E,
Wu D,
Fujio M,
Garcia‐Navarro R,
Benhnia MR,
Zajonc DM,
Ben‐Menachem G,
Ainge GD,
Painter GF,
Khurana A,
Hoebe K,
Behar SM,
Beutler B,
Wilson IA,
Tsuji M,
Sellati TJ,
Wong CH and
Kronenberg M.
Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria.
Nat Immunol
7:
978–986,
2006.
|
177. |
Moser B and
Eberl M.
Gammadelta T cells: novel initiators of adaptive immunity.
Immunol Rev
215:
89–102,
2007,
89–102.
|
178. |
Singbartl K,
Thatte J,
Smith ML,
Day K and
Ley K.
A CD2‐GFP transgenic mouse reveals VLA‐4 dependent CD8+ lymphocyte rolling in the inflamed microcirculation.
J Immunol
166:
7520–7526,
2001.
|
179. |
Reinhardt RL,
Bullard DC,
Weaver CT and
Jenkins MK.
Preferential accumulation of antigen‐specific effector CD4 T cells at an antigen injection site involves CD62E‐dependent migration but not local proliferation.
J Exp Med
197:
751–762,
2003.
|
180. |
Mikhak Z,
Fleming CM,
Medoff BD,
Thomas SY,
Tager AM,
Campanella GS and
Luster AD.
STAT1 in peripheral tissue differentially regulates homing of antigen‐specific Th1 and Th2 cells.
J Immunol
176:
4959–4967,
2006.
|
181. |
Tager AM,
Bromley SK,
Medoff BD,
Islam SA,
Bercury SD,
Friedrich EB,
Carafone AD,
Gerszten RE and
Luster AD.
Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment.
Nat Immunol
4:
982–990,
2003.
|
182. |
Bonder CS,
Norman MU,
Swain MG,
Zbytnuik LD,
Yamanouchi J,
Santamaria P,
Ajuebor M,
Salmi M,
Jalkanen S and
Kubes P.
Rules of recruitment for Th1 and Th2 lymphocytes in inflamed liver: a role for alpha‐4 integrin and vascular adhesion protein‐1.
Immunity
23:
153–163,
2005.
|
183. |
Engelhardt B,
Vestweber D,
Hallmann R and
Schulz M.
E‐ and P‐selectin are not involved in the recruitment of inflammatory cells across the blood‐brain barrier in experimental autoimmune encephalomyelitis.
Blood
90:
4459–4472,
1997.
|
184. |
Kerfoot SM and
Kubes P.
Overlapping roles of P‐selectin and α4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis.
J Immunol
169:
1000–1006,
2002.
|
185. |
Fagarasan S,
Watanabe N and
Honjo T.
Generation, expansion, migration and activation of mouse B1 cells.
Immunol Rev
176:
205–215,
2000.
|
186. |
Olson TS,
Bamias G,
Naganuma M,
Rivera‐Nieves J,
Burcin TL,
Ross W,
Morris MA,
Pizarro TT,
Ernst PB,
Cominelli F and
Ley K.
Expanded B cell population blocks regulatory T cells and exacerbates ileitis in a murine model of Crohn disease.
J Clin Invest
114:
389–398,
2004.
|
187. |
Caligiuri G,
Nicoletti A,
Poirier B and
Hansson GK.
Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice.
J Clin Invest
109:
745–753,
2002.
|
188. |
Rodrigo MJ and
von Andrian UH.
Specificity and plasticity of memory lymphocyte migration.
Curr Top Microbiol Immunol
308:
83–116,
2006,
83–116.
|
189. |
Ghitescu L and
Robert M.
Diversity in unity: the biochemical composition of the endothelial cell surface varies between the vascular beds.
Microsc Res Tech
57:
381–389,
2002.
|
190. |
Garlanda C and
Dejana E.
Heterogeneity of endothelial cells. Specific markers.
Arterioscler Thromb Vasc Biol
17:
1193–1202,
1997.
|
191. |
Gerritsen ME and
Bloor CM.
Endothelial cell gene expression in response to injury.
FASEB J
7:
523–532,
1993.
|
192. |
Hartel S,
Gossrau R,
Hanski C and
Reutter W.
Dipeptidyl peptidase (DPP) IV in rat organs.
Histochemistry
89:
151–161,
1988.
|
193. |
Spanel‐Borowski K.
Diversity of ultrastructure in different phenotypes of cultured microvessel endothelial cells isolated from bovine corpus luteum.
Cell Tissue Res
266:
37–49,
1991.
|
194. |
Ley K,
Gaehtgens P and
Spanel‐Borowski K.
Differential adhesion of granulocytes to five distinct phenotypes of cultured microvascular endothelial cells.
Microvasc Res
43:
119–133,
1992.
|
195. |
Jung U and
Ley K.
Regulation of E‐selectin, P‐selectin and ICAM‐1 expression in mouse cremaster muscle vasculature.
Microcirculation
4:
311–319,
1997.
|
196. |
Kim MB and
Sarelius IH.
Role of shear forces and adhesion molecule distribution on P‐selectin‐mediated leukocyte rolling in postcapillary venules.
Am J Physiol Heart Circ Physiol
287:
H2705–H2711,
2004.
|
197. |
Racanelli V and
Rehermann B.
The liver as an immunological organ.
Hepatology
43:
S54–S62,
2006.
|
198. |
Bailey SL,
Carpentier PA,
McMahon EJ,
Begolka WS and
Miller SD.
Innate and adaptive immune responses of the central nervous system.
Crit Rev Immunol
26:
149–188,
2006.
|
199. |
Minagar A,
Jy W,
Jimenez JJ and
Alexander JS.
Multiple sclerosis as a vascular disease.
Neurol Res
28:
230–235,
2006.
|
200. |
Alitalo K,
Tammela T and
Petrova TV.
Lymphangiogenesis in development and human disease.
Nature
438:
946–953,
2005.
|
201. |
Pries AR and
Kuebler WM.
Normal endothelium.
Handb Exp Pharmacol:
1–40,
2006.
|
202. |
Vink H and
Duling BR.
Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries.
Circ Res
79:
581–589,
1996.
|
203. |
Damiano ER,
Duling BR,
Ley K and
Skalak TC.
Axisymmetric pressure‐driven flow of rigid pellets through a cylindrical tube lined with a deformable porous wall layer.
J Fluid Mech
314:
163–189,
1996.
|
204. |
Smith ML,
Long DS,
Damiano ER and
Ley K.
Near‐wall micro‐PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo.
Biophys J
85:
637–645,
2003.
|
205. |
Weinbaum S,
Zhang X,
Han Y,
Vink H and
Cowin SC.
Mechanotransduction and flow across the endothelial glycocalyx.
Proc Natl Acad Sci USA
100:
7988–7995,
2003.
|
206. |
Ley K.
Adhesion molecules and the recruitment of leukocytes in postcapillary venules. In:
Microvascular Research: Biology and Pathology.
ed. Shepro D.
Elsevier,
2005,
pp. 317–322.
|
207. |
Vink H,
Constantinescu AA and
Spaan JA.
Oxidized lipoproteins degrade the endothelial surface layer : implications for platelet‐endothelial cell adhesion.
Circulation
101:
1500–1502,
2000.
|
208. |
Henry B and
Duling BR.
TNF‐alpha increases entry of macromolecules into luminal endothelial cell glycocalyx.
Am J Physiol Heart Circ Physiol
279:
H2815–H2823,
2000.
|
209. |
Reinhart WH,
Boulanger CM,
Luscher TF,
Haeberli A and
Straub PW.
Influence of endothelial surface on flow velocity in vitro.
Am J Physiol
265:
H523–H529,
1993.
|
210. |
Potter DR,
Tien J and
Damiano ER.
Using fluorescent micro‐particle image velocimetry to interrogate the surface glycocalyx on cultured endothelial cells in collagen microchannels.
FASEB J
20,
2006,
460,
17.
|
211. |
Mulivor AW and
Lipowsky HH.
Role of glycocalyx in leukocyte‐endothelial cell adhesion.
Am J Physiol Heart Circ Physiol
283:
H1282–H1291,
2002.
|
212. |
Geng JG,
Bevilacqua MP,
Moore KL,
McIntyre TM,
Prescott SM,
Kim JM,
Bliss GA,
Zimmerman GA and
McEver RP.
Rapid neutrophil adhesion to activated endothelium mediated by GMP‐140.
Nature
343:
757–760,
1990.
|
213. |
Cybulsky MI,
McComb DJ and
Movat HZ.
Protein synthesis dependent and independent mechanisms of neutrophil emigration.
Am J Pathol
135:
227–237,
1989.
|
214. |
Reutershan J,
Morris MA,
Burcin T,
Smith DF,
Chang D,
Saprito MS and
Ley K.
Critical role of endothelial CXCR2 in LPS‐induced neutrophil migration into the lung.
J Clin Invest
116:
695–702,
2006.
|
215. |
Zarbock A,
Singbartl K and
Ley K.
Complete reversal of acid‐induced acute lung injury by blocking of platelet‐neutrophil aggregation.
J Clin Invest
116:
3211–3219,
2006.
|
216. |
Duijvestijn A,
Horst E,
Pals ST,
Rouse BN,
Steere AC,
Picker LJ,
Meijer CJLM and
Butcher EC.
High endothelial differentiation in human lymphoid and inflammatory tissue defined by monoclonal antibody HECA‐452.
Am J Pathol
130:
147–155,
1988.
|
217. |
Drayton DL,
Ying X,
Lee J,
Lesslauer W and
Ruddle NH.
Ectopic LTαβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV‐restricted sulfotransferase.
J Exp Med
197:
1153–1163,
2003.
|
218. |
Drayton DL,
Liao S,
Mounzer RH and
Ruddle NH.
Lymphoid organ development: from ontogeny to neogenesis.
Nat Immunol
7:
344–353,
2006.
|
219. |
Yuan SY.
Protein kinase signaling in the modulation of microvascular permeability.
Vascul Pharmacol
39:
213–223,
2002.
|
220. |
Jung U,
Norman KE,
Ramos CL,
Scharffetter‐Kochanek K,
Beaudet AL and
Ley K.
Transit time of leukocytes rolling through venules controls cytokine‐induced inflammatory cell recruitment in vivo.
J Clin Invest
102:
1526–1533,
1998.
|
221. |
Li Y,
Karlin A,
Loike JD and
Silverstein SC.
Determination of the critical concentration of neutrophils required to block bacterial growth in tissues.
J Exp Med
200:
613–622,
2004.
|
222. |
Olson TS and
Ley K.
Chemokines and chemokine receptors in leukocyte trafficking.
Am J Physiol Regul Integ Comp Physiol
283:
R7–R28,
2002.
|
223. |
Proudfoot AE.
Chemokine receptors: multifaceted therapeutic targets.
Nat Rev Immunol
2:
106–115,
2002.
|
224. |
Mantovani A,
Bonecchi R and
Locati M.
Tuning inflammation and immunity by chemokine sequestration: decoys and more.
Nat Rev Immunol
6:
907–918,
2006.
|
225. |
Morris MA,
Gibb DR,
Picard F,
Brinkmann V,
Straume M and
Ley K.
Transient T cell accumulation in lymph nodes and sustained lymphopenia in mice treated with FTY720.
Eur J Immunol
35:
3570–3580,
2005.
|
226. |
Gunn MD.
Chemokine mediated control of dendritic cell migration and function.
Semin Immunol
15:
271–276,
2003.
|
227. |
Cho H,
Shashkin P,
Dunson D,
Jain N,
Lee J,
Miller Y and
Ley K.
Induction of dendritic cell‐like phenotype in macrophages during foam cell formation.
Physiol Genom Rev,
2006.
|
228. |
Martinez FO,
Gordon S,
Locati M and
Mantovani A.
Transcriptional profiling of the human monocyte‐to‐macrophage differentiation and polarization: New molecules and patterns of gene expression.
J Immunol
177:
7303–7311,
2006.
|
229. |
Dinarello CA.
Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process.
Am J Clin Nutr
83:
447S–455S,
2006.
|
230. |
DeLong WG, Jr. and
Born CT.
Cytokines in patients with polytrauma.
Clin Orthop Relat Res:
57–65,
2004.
|
231. |
Morgan BP.
Complement in inflammation. In:
Physiology of Inflammation,
ed. Ley K.
Oxford:
Oxford University Press,
2001,
pp. 131–145.
|
232. |
Hopken UE,
Lu B,
Gerard NP and
Gerard C.
The C5a chemoattrac‐tant receptor mediates mucosal defence to infection.
Nature
383:
86–89,
1996.
|
233. |
Li S,
Boackle SA,
Holers VM,
Lambris JD and
Blatteis CM.
Complement component C5a is integral to the febrile response of mice to lipopolysaccharide.
Neuroimmunomodulation
12:
67–80,
2005.
|
234. |
Mastellos D,
Papadimitriou JC,
Franchini S,
Tsonis PA and
Lambris JD.
A novel role of complement: mice deficient in the fifth component of complement (C5) exhibit impaired liver regeneration.
J Immunol
166:
2479–2486,
2001.
|
235. |
Paulson JC,
Weinstein J,
Dorland L,
van Halbeck H and
Vliegenthart FG.
Newcastle disease virus contains a linkage‐specific glycoprotein sialidase.
J Biol Chem
257:
12734–12738,
1982.
|
236. |
Toapanta FR and
Ross TM.
Complement‐mediated activation of the adaptive immune responses: role of C3d in linking the innate and adaptive immunity.
Immunol Res
36:
197–210,
2006.
|
237. |
Funk CD.
Prostaglandins and leukotrienes: advances in eicosanoid biology.
Science
294:
1871–1875,
2001.
|
238. |
Hata AN and
Breyer RM.
Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation.
Pharmacol Ther
103:
147–166,
2004.
|
239. |
Feletou M and
Vanhoutte PM.
Endothelium‐derived hyperpolarizing factor: where are we now?
Arterioscler Thromb Vasc Biol
26:
1215–1225,
2006.
|
240. |
Node K,
Huo Y,
Ruan X,
Yang B,
Ley K,
Zeldin DC and
Liao JK.
Anti‐inflammatory properties of cytochrome P450 epoxygenase‐derived eicosanoids.
Science
285:
1276–1279,
1999.
|
241. |
Chien S,
Usami S,
Dellenback RJ and
Gregersen MI.
Shear‐dependent interaction of plasma proteins with erythrocytes in blood rheology.
Am J Physiol
219:
143–153,
1970.
|
242. |
Ohta K,
Gotoh F,
Tomita M,
Tanahashi N,
Kobari M,
Shinohara TTY,
Mihara B and
Takeda H.
Animal species differences in erythrocyte aggregability.
Am J Physiol
262:
H1009–H1012,
1992.
|
243. |
Libby P and
Ridker PM.
Inflammation and atherosclerosis: role of C‐reactive protein in risk assessment.
Am J Med
116
Suppl 6A:
9S–16S,
2004.
|
244. |
Miller YI,
Chang MK,
Binder CJ,
Shaw PX and
Witztum JL.
Oxidized low density lipoprotein and innate immune receptors.
Curr Opin Lipidol
14:
437–445,
2003.
|
245. |
Walsh DA and
McWilliams F.
Tachykinins and the cardiovascular system.
Curr Drug Targets
7:
1031–1042,
2006.
|
246. |
Arfors K‐E,
Lundberg C,
Lindbom L,
Lundberg K,
Beatty PG and
Harlan JM.
A monoclonal antibody to the membrane glycoprotein complex CD 18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo.
Blood
69:
338–340,
1987.
|
247. |
Ley K,
Lundgren E,
Berger EM and
Arfors K‐E.
Shear‐dependent inhibition of granulocyte adhesion to cultured endothelium by dextran sulfate.
Blood
73:
1324–1330,
1989.
|
248. |
Ley K.
Granulocyte adhesion to microvascular and cultured endothelium.
Studia Biophys
134:
179–184,
1989.
|
249. |
von Andrian UH,
Chambers JD,
McEvoy LM,
Bargatze RF,
Arfors K‐E and
Butcher EC.
Two step model of leukocyte‐endothelial cell interaction in inflammation: distinct roles for LECAM‐1 and the leukocyte β2 integrins in vivo.
Proc Natl Acad Sci USA
88:
7538–7542,
1991.
|
250. |
Butcher EC.
Leukocyte‐endothelial cell recognition ‐ Three (or more) steps to specificity and diversity.
Cell
67:
1033–1036,
1991.
|
251. |
Vajkoczy P,
Laschinger M and
Engelhardt B.
Alpha4‐integrin‐VCAM‐1 binding mediates G protein‐independent capture of encephalitogenic T cell blasts to CNS white matter microvessels.
J Clin Invest
108:
557–565,
2001.
|
252. |
Ley K.
Monocyte‐platelet‐endothelial interactions. In:
Hemostasis and Thrombosis,
eds Coiman RW,
Marder VJ,
Clowes AW,
George JN and
Goldhaber SZ.
Philadelphia:
Lippincott Williams & Wilkins,
2006,
pp. 691–706.
|
253. |
Hynes RO.
Integrins: Versatility, modulation, and signaling in cell adhesion.
Cell
69:
11–25,
1992.
|
254. |
Hynes RO.
Integrins: bidirectional, allosteric signaling machines.
Cell
110:
673–687,
2002.
|
255. |
Xiong JP,
Stehle T,
Diefenbach B,
Zhang R,
Dunker R,
Scott DL,
Joachimiak A,
Goodman SL and
Arnaout MA.
Crystal structure of the extracellular segment of integrin alpha Vbeta3.
Science
294:
339–345,
2001.
|
256. |
Lu C,
Takagi J and
Springer TA.
Association of the membrane proximal regions of the α and β subunit cytoplasmic domains constrains an integrin in the inactive state.
J Biol Chem
276:
14642–14648,
2001.
|
257. |
Tadokoro S,
Shattil SJ,
Eto K,
Tai V,
Liddington RC,
de Pereda JM,
Ginsberg MH and
Calderwood DA.
Talin binding to integrin beta tails: a final common step in integrin activation.
Science
302:
103–106,
2003.
|
258. |
Wegener KL,
Partridge AW,
Han J,
Pickford AR,
Liddington RC,
Ginsberg MH and
Campbell ID.
Structural basis of integrin activation by talin.
Cell
128:
171–182,
2007.
|
259. |
Bazzoni G and
Hemler ME.
Are changes in integrin affinity and conformation overemphasized?
Trends Biochem Sci
23:
30–34,
1998.
|
260. |
Laudanna C and
Alon R.
Right on the spot. Chemokine triggering of integrin‐mediated arrest of rolling leukocytes.
Thromb Haemost
95:
5–11,
2006.
|
261. |
Du X,
Plow EF,
Frelinger AL, III,
O'Toole TE,
Loftus JC and
Ginsberg MH.
Ligands “activate” integrin αIIb β3 (platelet GPIIb‐IIIa).
Cell
65:
409–416,
1991.
|
262. |
Ley K,
Laudanna C,
Cybulsky MI and
Nourshargh S.
Getting to the site of inflammation: the leukocyte adhesion cascade updated.
Nat Rev Immunol.
2007,
in press.
|
263. |
Berlin C,
Bargatze RF,
Campbell JJ,
von Andrian UH,
Szabo MC,
Hasslen SR,
Nelson RD,
Berg EL,
Erlandsen SL and
Butcher EC.
α4 integrins mediate lymphocyte attachment and rolling under physiologic flow.
Cell
80:
413–422,
1995.
|
264. |
Elices MJ,
Osborn L,
Takada Y,
Crouse C,
Luhowskyj S,
Hemler ME and
Lobb RR.
VCAM‐1 on activated endothelium interacts with the leukocyte integrin VLA‐4 at a site distinct from the VLA‐4/fibronectin binding site.
Cell
60:
577–584,
1990.
|
265. |
Chigaev A,
Zwartz G,
Graves SW,
Dwyer DC,
Tsuji H,
Foutz TD,
Edwards BS,
Prossnitz ER,
Larson RS and
Sklar LA.
Alpha4betal integrin affinity changes govern cell adhesion.
J Biol Chem
278:
38174–38182,
2003.
|
266. |
DiVietro JA,
Brown DC,
Sklar LA,
Larson RS and
Lawrence MB.
Immobilized stromal cell‐derived factor‐1 {alpha} triggers rapid VLA‐4 affinity increases to stabilize lymphocyte tethers on VCAM‐1 and subsequently initiate firm adhesion.
J Immunol
178:
3903–3911,
2007.
|
267. |
Yang YT,
Rayburn H and
Hynes RO.
Cell adhesion events mediated by α4 integrins are essential in placental and cardiac development.
Development
121:
549–560,
1995.
|
268. |
Fassler R and
Meyer M.
Consequences of lack of beta 1 integrin gene expression in mice.
Genes Dev
9:
1896–1908,
1995.
|
269. |
Shih PT,
Brennan ML,
Vora DK,
Territo MC,
Strahl D,
Elices MJ.
Lusis AJ and Berliner JA, Blocking very late antigen‐4 integrin decreases leukocyte entry and fatty streak formation in mice fed an atherogenic diet.
Circ Res
84:
345–351,
1999.
|
270. |
Campbell JJ,
Hedrick J,
Zlotnik A,
Siani MA,
Thompson DA and
Butcher EC.
Chemokines and the arrest of lymphocytes rolling under flow conditions.
Science
279:
381–384,
1998.
|
271. |
Schmits R,
Kündig TM,
Baker DM,
Shumaker G,
Simard JJL,
Duncan G,
Wakeham A,
Shahinian A,
van der Heiden A,
Bachmann MF,
Ohashi PS,
Mak TW and
Hickstein DD.
LEA‐1 deficient mice show normal CTL responses to virus but fail to reject immunogenic tumor.
J Exp Med
183:
1415–1426,
1996.
|
272. |
Huo Y,
Weber C,
Forlow SB,
Sperandio M,
Thatte J,
Mack M,
Jung S,
Littman DR and
Ley K.
The chemokine KC, but not monocyte chemoattractant protein‐1, triggers monocyte arrest on early atherosclerotic endothelium.
J Clin Invest
108:
1307–1314,
2001.
|
273. |
Seo SM,
Mclntire LV and
Smith CW.
Effects of IL‐8, Gro‐alpha, and LTB(4) on the adhesive kinetics of LFA‐1 and Mac‐1 on human neutrophils.
Am J Physiol Cell Physiol
281:
C1568–C1578,
2001.
|
274. |
Dunne JL,
Ballantyne CM,
Beaudet AL and
Ley K.
Control of leukocyte rolling velocity in TNF‐α induced inflammation by LFA‐1 and Mac‐1.
Blood
99:
336–341,
2002.
|
275. |
Coxon A,
Rieu P,
Barkalow FJ,
Askari S,
Sharpe AH,
von Andrian UH,
Arnaout MA and
Mayadas TN.
A novel role for the beta‐2 integrin CD11b/CD18 in neutrophil apoptosis ‐ a homeostafic mechanism in inflammation.
Immunity
5:
653–666,
1996.
|
276. |
Altieri DC,
Mannucci PM and
Capitanio AM.
Binding of fibrinogen to human monocytes.
J Clin Invest
78:
968–976,
1986.
|
277. |
Fan S‐T and
Edgington TS.
Integrin regulation of leukocyte inflammatory functions: CD11b/CD18 enhancement of the tumor necrosis factor‐α responses of monocytes.
J Immunol
150:
2972–2980,
1993.
|
278. |
Davis GE.
The Mac‐1 and p150,95 β2 integrins bind denatured proteins to mediate leukocyte cell substrate adhesion.
Exp Cell Res
200:
242–252,
1992.
|
279. |
Zhou M and
Brown EJ.
Leukocyte response integrin and integrin‐associated protein act as a signal transduction unit in generation of a phagocyte respiratory burst.
J Exp Med
178:
1165–1174,
1993.
|
280. |
Hodivala‐Dilke KM,
McHugh KP,
Tsakiris DA,
Rayburn H,
Crowley D,
Ullman‐Cullere M,
Ross FP,
Coller BS,
Teitelbaum S and
Hynes RO.
Beta 3‐integrin‐deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival.
J Clin Invest
103:
229–238,
1999.
|
281. |
Hemler ME,
Huang C and
Schwarz L.
The VLA protein family: characterization of five distinct cell surface heterodimers each with a common 130,000 Mr subunit.
J Biol Chem
262:
3300–3309,
1987.
|
282. |
Briskin MJ,
McEvoy LM and
Butcher EC.
MAdCAM‐1 has homology to immunoglobulin and mucin‐like adhesion receptors and to IgAI.
Nature
363:
461–464,
1993.
|
283. |
Ossowskj L and
Aguirre‐Ghiso JA.
Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth.
Curr Opin Cell Biol
12:
613–620,
2000.
|
284. |
Hemler ME.
Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain.
Annu Rev Cell Dev Biol
19:
397–422,
2003.
|
285. |
Cooper D,
Lindberg FP,
Gamble JR,
Brown EJ and
Vadas MA.
Transendothelial migration of neutrophils involves integrin‐ associated protein (CD47).
Proc Natl Acad Sci USA
92:
3978–3982,
1995.
|
286. |
Porter JC and
Hogg N.
Integrins take partners: cross‐talk between integrins and other membrane receptors.
Trends Cell Biol
8:
390–396,
1998.
|
287. |
Sendo F and
Araki Y.
Regulation of leukocyte adherence and migration by glycosylphosphatidyl‐inositol‐anchored proteins.
J Leukoc Biol
66:
369–374,
1999.
|
288. |
Duperray A,
Languino LR,
Plescia J,
McDowall A,
Hogg N,
Craig AG,
Berendt AR and
Altieri DC.
Molecular identification of a novel fibrinogen binding site on the first domain of ICAM‐1 regulating leukocyte‐endothelium bridging.
J Biol Chem
272:
435–441,
1997.
|
289. |
Xu H,
Gonzalo JA,
St. Pierre Y,
Williams IR,
Kupper TS,
Cotran RS,
Springer TA and
Gutierrez‐Ramos J‐C.
Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1‐deficient mice.
J Exp Med
180:
95–109,
1994.
|
290. |
Sligh JE, Jr.,
Ballantyne CM,
Rich SS,
Hawkins HK,
Smith CW,
Bradley A and
Beaudet AL.
Inflammatory and immune responses are impaired in mice deficient in intercellular adhesion molecule 1.
Proc Natl Acad Sci USA
90:
8529–8533,
1993.
|
291. |
Dunne JL,
Collins RG,
Beaudet AL,
Ballantyne CM and
Ley K.
Mac‐1, but not LFA‐1, uses intercellular adhesion molecule‐1 to mediate slow leukocyte rolling in TNF‐alpha‐induced inflammation.
J Immunol
171:
6105–6111,
2003.
|
292. |
Muller WA,
Weigl SA,
Deng X and
Phillips DM.
PECAM‐1 is required for iransendothelial migration of leukocytes.
J Exp Med
178:
449–460,
1993.
|
293. |
Elias CG,
Spellberg JP,
Karantamir B,
Lin CH,
Wang YJ,
Mckenna PJ,
Muller WA,
Zukowski MM and
Andrew DP.
Ligation of CD31/PECAM‐1 modulates the function of lymphocytes, monocytes and neutrophils,
Eur J Immunol
28:
1948–1958,
1998.
|
294. |
Duncan GS,
Andrew DP,
Takimoto H,
Kaufman SA,
Yoshida H,
Spellberg J,
de la Pompa JL,
Elia A,
Wakeham A,
Karan‐Tamir B,
Muller WA,
Senaldi G,
Zukowski MM and
Mak TW.
Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule‐1 (PECAM‐1): CD31‐ deficient mice reveal PECAM‐1‐dependent and PECAM‐1‐independent functions.
J Immunol
162:
3022–3030,
1999.
|
295. |
Schenkel AR
Chew TW and
Muller WA.
Platelet endothelial cell adhesion molecule deficiency or blockade significantly reduces leukocyte emigration in a majority of mouse strains.
J Immunol
173:
6403–6408,
2004.
|
296. |
Chavakis T,
Preissner KT and
Santoso S.
Leukocyte trans‐endothelial migration: JAMs add new pieces to the puzzle.
Thromb Haemost
89:
13–17,
2003.
|
297. |
Arbones ML,
Ord DC,
Ley K,
Ratech H,
Maynard‐Curry C,
Otten G,
Capon DJ and
Tedder TF.
Lymphocyte homing and leukocyte rolling and migration are impaired in L‐selectin‐deficient mice.
Immunity
1:
247–260,
1994.
|
298. |
Lewinsohn DM,
Bargatze RF and
Butcher EC.
Leukocyte‐endothelial cell recognition: evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes.
J Immunol
138:
4313–4321,
1987.
|
299. |
Tözeren A and
Ley K.
How do selectins mediate leukocyte rolling in venules?
Biophys J
63:
700–709,
1992.
|
300. |
Ley K.
Arrest chemokines.
Microcirculation
10:
289–295,
2003.
|
301. |
Alon R,
Grabovsky V and
Feigelson S.
Chemokine induction of integrin avidity on rolling and arrested leukocytes: local signaling events or global stepwise activation?
Microcirculation
10:
297–311,
2003.
|
302. |
von Andrian UH,
Hasslen SR,
Nelson RD,
Erlandsen SL and
Butcher EC.
A central role for microvillous receptor presentation in leukocyte adhesion under flow.
Cell
82:
989–999,
1995.
|
303. |
Peschon JJ,
Slack JL,
Reddy P,
Stocking KL,
Sunnarborg SW,
Lee DC,
Russell WE,
Castner BJ,
Johnson RS,
Fitzner JN,
Boyce RW,
Nelson N,
Kozlosky CJ,
Wolfson MF,
Rauch CT,
Cerretti DP,
Paxton RJ,
March CJ and
Black RA.
An essential role for ectodomain shedding in mammalian development.
Science
282:
1281–1284,
1998.
|
304. |
Lim YC,
Snapp K,
Kansas GS,
Camphausen R,
Ding H and
Luscinskas FW.
Important contributions of P‐selectin Glycoprotein Ligand‐I‐ mediated secondary capture to human monocyte adhesion to P‐ selectin, E‐selectin, and TNF‐alpha‐activated endothelium under flow in vitro.
J Immunol
161:
2501–2508,
1998.
|
305. |
Eriksson EE,
Xie X,
Werr J,
Thoren P and
Lindbom L.
Importance of primary capture and L‐selectin‐dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo.
J Exp Med
194:
205–218,
2001.
|
306. |
Kunkel EJ,
Chomas JE and
Ley K.
Role of primary and secondary capture for leukocyte accumulation in vivo.
Cin? Res
82:
30–38,
1998.
|
307. |
Yang J,
Furie BC and
Furie B.
The biology of P‐selectin Glycoprotein Ligand‐1: its role as a selectin counterreceptor in leukocyte‐endothelial and leukocyte‐ platelet interaction.
Thromb Haemostasis
81:
1–7,
1999.
|
308. |
Veerman KM,
Williams MJ,
Uchimura K,
Singer MS,
Merzaban JS,
Naus S,
Carlow DA,
Owen P,
Rivera‐Nieves J,
Rosen SD and
Ziltener HJ.
Interaction of the selectin ligand PSGL‐1 with chemokines CCL21 and CCL19 facilitates efficient homing of T cells to secondary lymphoid organs.
Nat Immunol
8:
532–539,
2007.
|
309. |
Moore KL,
Patel KD,
Breuhl RE,
Fugang L,
Johnson DA,
Lichenstein HS,
Cummings RD,
Bainton DF and
McEver RP.
P‐selectin glycoprotein ligand‐1 mediates rolling of human neutrophils on P‐selectin.
J Cell Biol
128:
661–671,
1995.
|
310. |
Furie B and
Furie BC.
Role of platelet P‐selectin and microparticle PSGL‐1 in thrombus formation.
Trends Mol Med
10:
171–178,
2004.
|
311. |
Cambien B and
Wagner DD.
A new role in hemostasis for the adhesion receptor P‐selectin.
Trends Mol Med
10:
179–186,
2004.
|
312. |
Andre P,
Hartwell D,
Hrachovinova I,
Saffaripour S and
Wagner DD.
Pro‐coagulant state resulting from high levels of soluble P‐selectin in blood.
Proc Natl Acad Sci USA
97:
13835–13840,
2000.
|
313. |
Yang J,
Hirata T,
Croce K,
Merrill‐Skoloff G,
Tchemychev B,
Williams E,
Flaumenhaft R,
Furie BC and
Furie B.
Targeted gene disruption demonstrates that P‐selectin glycoprotein ligand 1 (PSGL‐1) is required for P‐selectin‐ mediated but not E‐selectin‐mediated neutrophil rolling and migration.
J Exp Med
190:
1769–1782,
1999.
|
314. |
Xia L,
Sperandio M,
Yago T,
McDaniel M,
Cummings RD,
Pearson‐White S,
Ley K and
McEver RP.
P‐selectin glycoprotein ligand‐1 deficient mice have impaired leukocyte tethering to E‐selectin under flow.
J Clin Invest
109:
939–950,
2002.
|
315. |
Rivera‐Nieves J,
Burcin T,
Olson TS,
Morris MA,
McDuffie MJ,
Cominelli F and
Ley K.
Critical role of endothelial PSGL‐1 in chronic murine ileitis.
J Exp Med
203:
907–917,
2006.
|
316. |
Tchemychev B,
Furie B and
Furie BC.
Peritoneal macrophages express both P‐selectin and PSGL‐1.
J Cell Biol
163:
1145–1155,
2003.
|
317. |
Li G,
Sanders JM,
Phan ET,
Ley K and
Sarembock IJ.
Arterial macrophages and regenerating endothelial cells express P‐selectin in atherosclerosis‐prone apolipoprotein E‐deficient mice.
Am J Pathol
167:
1511–1518,
2005.
|
318. |
Mayadas TN,
Johnson RC,
Rayburn H,
Hynes RO and
Wagner DD.
Leukocyte rolling and extravasation are severely compromised in P selectin‐deficient mice.
Cell
74:
541–554,
1993.
|
319. |
Ley K,
Bullard DC,
Arbones ML,
Bosse R,
Vestweber D,
Tedder TF and
Beaudet AL.
Sequential contribution of L‐ and P‐selectin to leukocyte rolling in vivo.
J Exp Med
181:
669–675,
1995.
|
320. |
Frenette PS,
Moyna C,
Hartwell DW,
Lowe JB,
Hynes RO and
Wagner DD.
Platelet‐endothelial interactions in inflamed mesenteric venules.
Blood
91:
1318–1324,
1998.
|
321. |
Mori M,
Salter JW,
Vowinkel T,
Krieglstein CF,
Stokes KY and
Granger DN.
Molecular determinants of the prothrombogenic phenotype assumed by inflamed colonic venules. Am J Physiol Gastrointest Liver Physiol,
2004, in press.
|
322. |
Huo Y,
Schober A,
Forlow SB,
Smith DF,
Hyman MC,
Jung S,
Littman DR,
Weber C and
Ley K.
Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E.
Nature Med
9:
61–67,
2003.
|
323. |
Schober A,
Manka D,
von Hundelshausen P,
Huo Y,
Hanrath P,
Sarembock IJ,
Ley K and
Weber C.
Deposition of platelet RANTES triggering monocyte recruitment requires P‐selectin and is involved in neointima formation after arterial injury.
Circulation
106:
1523–1529,
2002.
|
324. |
Johnson RC,
Chapman SM,
Dong ZM,
Ordovas JM,
Mayadas TN,
Herz J,
Hynes RO,
Schaefer EJ and
Wagner DD.
Absence of P‐selectin delays fatty streak formation in mice.
J Clin Invest
99:
1037–1043,
1997.
|
325. |
Manka DR,
Collins RG,
Ley K,
Beaudet AL and
Sarembock IJ.
Absence of P‐selectin, but not intercellular adhesion molecule‐1, attenuates neointimal growth after arterial injury in apolipoprotein E‐deficient mice.
Circulation
103:
1000–1005,
2001.
|
326. |
Burger PC and
Wagner DD.
Platelet P‐selectin facilitates atherosclerotic lesion development.
Blood
101:
2661–2666,
2003.
|
327. |
Manka D,
Forlow SB,
Sanders JM,
Hurwitz D,
Bennett DK,
Green SA,
Ley K and
Sarembock IJ.
Critical role of platelet P‐selectin in the response to arterial injury in apolipoprotein‐E‐deficient mice.
Arterioscler Thromb Vasc Biol
24:
1124–1129,
2004.
|
328. |
Berger G,
Hartwell DW and
Wagner DD.
P‐selectin and platelet clearance.
Blood
92:
4446–4452,
1998.
|
329. |
Bullard DC,
Kunkel EJ,
Kubo H,
Hicks MJ,
Lorenzo I,
Doyle NA,
Doerschuk CM,
Ley K and
Beaudet AL.
Infectious susceptibility and severe deficiency of leukocyte rolling and recruitment in E‐selectin and P‐selectin double mutant mice.
J Exp Med
183:
2329–2336,
1996.
|
330. |
Frenette PS,
Mayadas TN,
Rayburn H,
Hynes RO and
Wagner DD.
Susceptibility to infection and altered hematopoiesis in mice deficient in both P‐ and E‐selectins.
Cell
84:
563–574,
1996.
|
331. |
Collins RG,
Jung U,
Ramirez M,
Bullard DC,
Hicks J,
Smith CW,
Ley K and
Beaudet AL.
The dermal and pulmonary inflammatory disease in E/P‐selectin double null mice is reduced in triple selectin null mice.
Blood
98:
727–735,
2001.
|
332. |
Forlow SB,
Schurr JR,
Kolls JK,
Bagby GJ,
Schwarzenberger PS and
Ley K.
Increased granulopoiesis through interleukin‐17 and granulocyte colony stimulating factor in adhesion molecule‐deficient mice.
Blood
98:
3309–3314,
2001.
|
333. |
Pan JL,
Xia LJ and
McEver RP.
Comparison of promoters for the murine and human P‐selectin genes suggests species‐specific and conserved mechanisms for transcriptional regulation in endothelial cells.
J Biol Chem
273:
10058–10067,
1998.
|
334. |
Wenzel K,
Felix S,
Kleber FX,
Brachold R,
Menke T,
Schattke S,
Schulte KL,
Glaser C,
Rohde K,
Baumann G, et al.
E‐selectin polymorphism and atherosclerosis: an association study.
Hum Mol Genet
3:
1935–1937,
1994.
|
335. |
Collins RG,
Velji R,
Guevara NV,
Hicks MJ,
Chan L and
Beaudet AL.
P‐selectin or ICAM‐1 deficiency substantially protects against atherosclerosis in apo E deficient mice.
J Exp Med
191:
189–194,
2000.
|
336. |
Urzainqui A,
Serrador JM,
Viedma F,
Yanez‐Mo M,
Rodriguez A,
Corbí AL,
Alonso‐Lebrero JL,
Luque A,
Deckert M,
Vazquez J and
Sanchez‐Madrid F.
ITAM‐based interaction of ERM proteins with Syk mediates signaling by the leukocyte adhesion receptor PSGL‐1.
Immunity
17:
401–412,
2002.
|
337. |
Weyrich AS,
Elstad MR,
McEver RP,
McIntyre TM,
Moore KL,
Morrissey JH,
Prescott SM and
Zimmerman GA.
Activated platelets signal chemokine synthesis by human monocytes.
J Clin Invest
97:
1525–1534,
1996.
|
338. |
Zanardo RC,
Bonder CS,
Hwang JM,
Andonegui G,
Liu L,
Vestweber D,
Zbytnuik L and
Kubes P.
A down regulatable E‐selectin ligand is functionally important for PSGL‐1‐independent leukocyte‐endothelial cell interactions.
Blood
104:
3766–3773,
2004.
|
339. |
Katayama Y,
Hidalgo A,
Chang J,
Peired A and
Frenette PS.
CD44 is a physiological E‐selectin ligand on neutrophils.
J Exp Med
201:
1183–1189,
2005.
|
340. |
Hidalgo A,
Peired AJ,
Wild MK,
Vestweber D and
Frenette PS.
Complete Identification of E‐Selectin Ligands on Neutrophils Reveals Distinct Functions of PSGL‐1, ESL‐1. and CD44.
Immunity
26:
477–489,
2007.
|
341. |
Ley K.
Integration of inflammatory signals by rolling neutrophils.
Immunol Rev
186:
8–18,
2002.
|
342. |
Smith ML,
Olson TS and
Ley K.
CXCR2‐ and E‐selectin‐induced neutrophil arrest during inflammation in vivo.
J Exp Med
200:
935–939,
2004.
|
343. |
Wagers AJ,
Lowe JB and
Kansas GS.
An important role for the alpha‐1,3 fucosyltransferase, FucT‐VII, in leukocyte adhesion to E‐selectin.
Blood
88:
2125–2132,
1996.
|
344. |
Snapp KR,
Heitzig CE,
Ellies LG,
Marth JD and
Kansas GS.
Differential requirements for the O‐linked branching enzyme core 2 β1‐6‐N‐glucosaminyltransferase in biosynthesis of ligands for E‐selectin and P‐selectin.
Blood
97:
3806–3811,
2001.
|
345. |
Lawrence MB and
Springer TA.
Neutrophils roll on E‐selectin.
J Immunol
151:
6338–6346,
1993.
|
346. |
Kunkel EJ and
Ley K.
Distinct phenotype of E‐selectin deficient mice: E‐selectin is required for slow leukocyte rolling in vivo.
Circ Res
79:
1196–1204,
1996.
|
347. |
Zarbock A,
Lowell CA and
Ley K.
Spleen tyrosine kinase Syk is necessary for E‐selectin‐induced αLβ2 integrin mediated rolling on intercellular adhesion molecule‐1.
Immunity
26:
773–783,
2007.
|
348. |
Simon SI,
Hu Y,
Vestweber D and
Smith CW.
Neutrophil tethering on E‐selectin activates beta 2 integrin binding to ICAM‐1 through a mitogen‐activated protein kinase signal transduction pathway.
J Immunol
164:
4348–4358,
2000.
|
349. |
Chesnutt BC,
Smith DF,
Raffler NA,
Smith ML,
White EJ and
Ley K.
Induction of LFA‐1‐dependent neutrophil rolling on ICAM‐1 by engagement of E‐selectin.
Microcirculation
13:
99–109,
2006.
|
350. |
Gurtner GC,
Davis V,
Li H,
McCoy MJ,
Sharpe A and
Cybulsky MI.
Targeted disruption of the murine VCAM‐1 gene: essential role of VCAM‐1 in chorioallantoic fusion and placentation.
Genes Dev
9:
1–14,
1995.
|
351. |
Cybulsky MI,
Iiyama K,
Li H,
Zhu S,
Chen M,
Iiyama M,
Davis V,
Gutierrez‐Ramos JC,
Connelly PW and
Milstone DS.
A major role for VCAM‐1, but not ICAM‐1, in early atherosclerosis.
J Clin Invest
107:
1255–1262,
2001.
|
352. |
Dansky HM,
Barlow CB,
Lominska C,
Sikes JL,
Kao C,
Weinsaft J,
Cybulsky MI and
Smith JD.
Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule‐1 gene dosage.
Arterioseler Thromb Vasc Biol
21:
1662–1667,
2001.
|
353. |
Muller WA.
The role of PECAM‐1 (CD31) in leukocyte emigration: studies in vitro and in vivo.
J Leukocyte Biol
57:
523–528,
1995.
|
354. |
Nourshargh S,
Krombach F and
Dejana E.
The role of JAM‐A and PECAM‐1 in modulating leukocyte infiltration in inflamed and ischemic tissues.
J Leukoc Biol
80:
714–718,
2006.
|
355. |
Mamdouh Z,
Chen X,
Pierini LM,
Maxfield FR and
Muller WA.
Targeted recycling of PECAM from endothelial surface‐connected compartments during diapedesis.
Nature
421:
748–753,
2003.
|
356. |
Wegmann F,
Petri B,
Khandoga AG,
Moser C,
Khandoga A,
Volkery S,
Li H,
Nasdala I,
Brandau O,
Fassler R,
Butz S,
Krombach F and
Vestweber D.
ESAM supports neutrophil extravasation, activation of Rho, and VEGF‐induced vascular permeability.
J Exp Med
203:
1671–1677,
2006.
|
357. |
Norris P,
Poston RN,
Thomas DS,
Thornhill M,
Hawk J and
Haskard DO.
The expression of endothelial leukocyte adhesion molecule‐1 (ELAM‐1), intercellular adhesion molecule‐1 (ICAM‐1), and vascular cell adhesion molecule‐1 (VCAM‐I) in experimental cutaneous inflammation: a comparison of ultraviolet‐B erythema and delayed hypersensitivity.
J Invest Dermatol
96:
763–770,
1991.
|
358. |
Hemmerich S,
Butcher EC and
Rosen SD.
Sulfation‐dependent recognition of high endothelial venules (HEV)‐ligands by L‐selectin and MECA 79, an adhesion‐blocking monoclonal antibody.
J Exp Med
180:
2219–2226,
1994.
|
359. |
Schenkel AR,
Mamdouh Z,
Chen X,
Liebman RM and
Muller WA.
CD99 plays a major role in the migration of monocytes through endothelial junctions.
Nat Immunol
3:
143–150,
2002.
|
360. |
Ley K and
Zarbock A.
Hold on to your endothelium: postarrest steps of the leukocyte adhesion cascade.
Immunity
25:
185–187,
2006.
|
361. |
Harris ES,
McIntyre TM,
Prescott SM and
Zimmerman GA.
The leukocyte integrins.
J Biol Chem
275:
23409–23412,
2000.
|
362. |
Giagulli C,
Ottoboni L,
Caveggion E,
Rossi B,
Lowell C,
Constantin G,
Laudanna C and
Berton G.
The Src Family Kinases Hck and Fgr are dispensable for inside‐out, chemoattractant‐induced signaling regulating beta2 Integrin affinity and valency in neutrophils, but are required for beta2 integrin‐mediated outside‐in signaling involved in sustained adhesion.
J Immunol
177:
604–611,
2006.
|
363. |
Schymeinsky J,
Then C and
Walzog B.
The non‐receptor tyrosine kinase Syk regulates lamellipodium formation and site‐directed migration of human leukocytes.
J Cell Physiol
204:
614–622,
2005.
|
364. |
Ding A,
Wright SD and
Nathan C.
Activation of mouse peritoneal macrophages by monoclonal antibodies to Mac‐1 (complement receptor type 3).
J Exp Med
165:
733–749,
1987.
|
365. |
Walzog B,
Seifert R,
Zakrzewicz A,
Gaehtgens P and
Ley K.
Cross‐linking of CD 18 in human neutrophils induces an increase of intra cellular free Ca2+, exocytosis of azurophilic granules, quantitative up‐regulation of CD18. shedding of L‐selectin. and actin polymer ization.
J Leukocyte Biol
56:
625–635,
1994.
|
366. |
Hirahashi J,
Mekala D,
van Ziffle J,
Xiao L,
Saffaripour S,
Wagner DD,
Shapiro SD,
Lowell CA and
Mayadas TN.
Mac‐1 signaling via sre‐family and syk kinases results in elastase‐dependent thrombohemorragic vasculopathy.
Immunity
25:
271–283,
2006.
|
367. |
Yoshida M,
Westlin WF,
Wang N,
Ingber DE,
Rosenzweig A,
Resnick N and
Gimbrone MA, Jr.
Leukocyte adhesion to vascular endothelium induces E‐selectin linkage to the actin cytoskeleton.
J Cell Biol
133:
445–455,
1996.
|
368. |
Yoshida M,
Szente BE,
Kiely JM,
Rosenzweig A and
Gimbrone MA.
Phosphorylation of the cytoplasmic domain of E‐selectin is regulated during leukocyte‐endothelial adhesion.
J Immunol
161:
933–941,
1998.
|
369. |
Abbal C,
Lambelet M,
Bertaggia D,
Gerbex C,
Martinez M,
Arcaro A,
Schapira M and
Spertini O.
Lipid raft adhesion receptors and Syk regulate selectin‐dependent rolling under flow conditions.
Blood
108:
3352–3359,
2006.
|
370. |
Brenner B,
Gulbins E,
Schlottmann K,
Koppenhoefer U,
Busch GL,
Walzog B,
Steinhausen M,
Coggeshall KM,
Linderkamp O and
Lang F.
L‐selectin activates the Ras pathway via the tyrosine kinase p56lck.
Proc Natl Acad Sci USA
93:
15376–15381,
1996.
|
371. |
Brenner B,
Gulbins E,
Busch GL,
Koppenhoefer U,
Lang F and
Linderkamp O.
L‐selectin regulates actin polymerisation via activation of the small g‐protein rac2.
Biochem Biophys Res Comm
231:
802–807,
1997.
|
372. |
Giblin PA,
Hwang ST,
Katsumoto TR and
Rosen SD.
Ligation of L‐selectin on T lymphocytes activates β1 integrins and promotes adhesion to fibronectin.
J Immunol
159:
3498–3507,
1997.
|
373. |
Hafezi‐Moghadam A,
Thomas KL,
Prorock AJ,
Huo Y and
Ley K.
L‐selectin shedding regulates leukocyte recruitment.
J Exp Med
193:
863–872,
2001.
|
374. |
Steeber DA,
Engel P,
Miller AS,
Sheetz MP and
Tedder TF.
Ligation of L‐selectin through conserved regions within the lectin domain activates signal transduction pathways and integrin function in human, mouse, and rat leukocytes.
J Immunol
159:
952–963,
1997.
|
375. |
Carveth HJ,
Bohnsack JF,
McIntyre TM,
Baggiolini M,
Prescott SM and
Zimmerman GA.
Neutrophil activating factor (NAF) induces polymorphonuclear leukocyte adherence to endothelial cells and to subendothelial matrix proteins.
Biochem Biophys Res Comm
162:
387–393,
1989.
|
376. |
Morgan SJ,
Moore MW,
Cacalano G and
Ley K.
Reduced leukocyte adhesion response and absence of slow leukocyte rolling in interleukin‐8 (IL‐8) receptor deficient mice.
Microvasc Res
54:
188–191,
1997.
|
377. |
Rot A.
Endothelial cell binding of NAP‐1/IL‐8: role in neutrophil emigration.
Immunol Today
13:
291–294,
1992.
|
378. |
Huber AR,
Kunkel SL,
Todd RF and
Weiss SJ.
Regulation of transendothelial neutrophil migration by endogenous interleukin‐8.
Science
254:
99–102,
1991.
|
379. |
Middleton J,
Neil S,
Wintle J,
Clark‐Lewis I,
Moore H,
Lam C,
Auer M,
Hub E and
Rot A.
Transcytosis and surface presentation of IL‐8 by venular endothelial cells.
Cell
91:
385–395,
1997.
|
380. |
Rainger GE,
Fisher A,
Shearman C and
Nash GB.
Adhesion of flowing neutrophils to cultured endothelial cells after hypoxia and reoxygenation in vitro.
Am J Physiol Heart Circ Physiol
269:
H1398–H1406,
1995.
|
381. |
Rainger GE,
Fisher AC and
Nash GB.
Endothelial‐borne platelet‐activating factor and interleukin‐8 rapidly immobilize rolling neutrophils.
Am J Physiol Heart Circul Physiol
272:
H114–H122,
1997.
|
382. |
Lawrence MB and
Springer TA.
Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins.
Cell
65:
859–873,
1991.
|
383. |
Kitayama J,
Fuhlbrigge RC,
Puri KD and
Springer TA.
P‐selectin, L‐selectin, and α4 integrin have distinct roles in eosinophil tethering and arrest on vascular endothelial cells under physiological flow conditions.
J Immunol
159:
3929–3939,
1997.
|
384. |
Diacovo TG,
Roth SJ,
Buccola JM,
Bainton DF and
Springer TA.
Neutrophil rolling, arrest, and transmigration across activated, surface‐adherent platelets via sequential action of P‐selectin and the β2‐integrin CD11b/CD18.
Blood
88:
146–157,
1996.
|
385. |
Stein JV,
Rot A,
Luo Y,
Narasimhaswamy M,
Nakano H,
Gunn MD,
Matsuzawa A,
Quackenbush EJ,
Dorf ME and
von Andrian UH.
The CC chemokine thymus‐derived chemotactic agent 4 (TCA‐4, secondary lymphoid tissue chemokine, 6Ckine, exodus‐2) triggers lymphocyte function‐associated antigen 1 ‐mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules.
J Exp Med
191:
61–76,
2000.
|
386. |
Shamri R,
Grabovsky V,
Gauguet JM,
Feigelson S,
Manevich E,
Kolanus W,
Robinson MK,
Staunton DE,
von Andrian UH and
Alon R.
Lymphocyte arrest requires instantaneous induction of an extended LFA‐1 conformation mediated by endothelium‐bound chemokines.
Nat Immunol
6:
497–506,
2005.
|
387. |
Lum AF,
Green CE,
Lee GR.
Staunton DE and Simon SI. Dynamic regulation of LFA‐1 activation and neutrophil arrest on intercellular adhesion molecule 1 (ICAM‐1) in shear flow.
J Biol Chem
277:
20660–20670,
2002.
|
388. |
Lupher ML, Jr.,
Harris EA,
Beals CR,
Sui LM,
Liddington RC and
Staunton DE.
Cellular activation of leukocyte function‐associated antigen‐1 and its affinity are regulated at the I domain allosteric site.
J Immunol
167:
1431–1439,
2001.
|
389. |
Tangemann K,
Gunn MD,
Giblin P and
Rosen SD.
A high endothelial cell‐derived chemokine induces rapid, efficient, and subset‐selective arrest of rolling T lymphocytes on a reconstituted endothelial substrate.
J Immunol
161:
6330–6337,
1998.
|
390. |
Constantin G,
Majeed M,
Giagulli C,
Piccio L,
Kim JY,
Butcher EC and
Laudanna C.
Chemokines trigger immediate beta2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow.
Immunity
13:
759–769,
2000.
|
391. |
Gakidis MA,
Cullere X,
Olson T,
Wilsbacher JL,
Zhang B,
Moores SL,
Ley K,
Swat W,
Mayadas T and
Brugge JS.
Vav GEFs are required for beta2 integrin‐dependent functions of neutrophils.
J Cell Biol
166:
273–282,
2004.
|
392. |
Smith DF,
Deem TL,
Bruce A,
Reutershan J,
Wu D and
Ley K.
Leukocyte phoshoinositide‐3‐kinase gamma is required for chemokine‐induced sustained adhesion under flow in vivo.
J Leukocyte Biol
80:
1491–1499,
2006.
|
393. |
Zhang H,
Schaff UY,
Green CE,
Chen H,
Sarantos MR,
Hu Y,
Wara D,
Simon SI and
Lowell CA.
Impaired integrin‐dependent function in Wiskott‐Aldrich syndrome protein‐deficient murine and human neutrophils.
Immunity
25:
285–295,
2006.
|
394. |
Schenkel AR,
Mamdouh Z and
Muller WA.
Locomotion of monocytes on endothelium is a critical step during extravasation.
Nat Immunol
5:
393–400,
2004.
|
395. |
Phillipson M,
Heit B,
Colarusso P,
Liu L,
Ballantyne CM and
Kubes P.
Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade.
J Exp Med
203:
2569–2575,
2006.
|
396. |
Scharffetter‐Kochanek K,
Lu HF,
Norman K,
Vannood N,
Munoz F,
Grabbe S,
McArthur M,
Lorenzo I,
Kaplan S,
Ley K,
Smith CW,
Montgomery CA,
Rich S and
Beaudet AL.
Spontaneous skin ulceration and defective T cell function in CD18 null mice.
J Exp Med
188:
119–131,
1998.
|
397. |
Fitzhugh DJ,
Naik S,
Caughman SW and
Hwang ST.
Cutting edge: C‐C chemokine receptor 6 is essential for arrest of a subset of memory T cells on activated dermal microvascular endothelial cells under physiologic flow conditions in vitro.
J Immunol
165:
6677–6681,
2000.
|
398. |
DiVietro JA,
Smith MJ,
Smith BR,
Petruzzelli L,
Larson RS and
Lawrence MB.
Immobilized IL‐8 triggers progressive activation of neutrophils rolling in vitro on P‐selectin and intercellular adhesion molecule‐1.
J Immunol
167:
4017–4025,
2001.
|
399. |
Kunkel EJ,
Dunne JL and
Ley K.
Leukocyte arrest during cytokine‐dependent inflammation in vivo.
J Immunol
164:
3301–3308,
2000.
|
400. |
Grabovsky V,
Feigelson S,
Chen C,
Bleijs DA,
Peled A,
Cinamon G,
Baleux F,
Arenzana‐Seisdedos F,
Lapidot T,
Van Kooyk Y,
Lobb RR and
Alon R.
Subsecond induction of α4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule‐1 under flow conditions.
J Exp Med
192:
495–506,
2000.
|
401. |
Peled A,
Grabovsky V,
Habler L,
Sandbank J,
Arenzana‐Seisdedos F,
Petit I,
Ben‐Hur H,
Lapidot T and
Alon R.
The chemokine SDF‐1 stimulates integrin‐mediated arrest of CD34+ cells on vascular endothelium under shear flow.
J Clin Invest
104:
1199–1211,
1999.
|
402. |
Cinamon G,
Shinder V and
Alon R.
Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines.
Nat Immunol
2:
515–522,
2001.
|
403. |
Kitayama J,
MacKay CR,
Ponath PD and
Springer TA.
The C‐C chemokine receptor CCR3 participates in stimulation of eosinophil arrest on inflammatory endothelium in shear flow.
J Clin Invest
101:
2017–2024,
1998.
|
404. |
Tachimoto H,
Burdick MM,
Hudson SA,
Kikuchi M,
Konstantopoulos K and
Bochner BS.
CCR3‐active chemokines promote rapid detachment of eosinophils from VCAM‐1 in vitro.
J Immunol
165:
2748–2754,
2000.
|
405. |
Piali L,
Weber C,
LaRosa G,
MacKay CR,
Springer TA,
Clark‐Lewis I and
Moser B.
The chemokine receptor CXCR3 mediates rapid and shear‐resistant adhesion‐induction of effector T lymphocytes by the chemokines IP10 and Mig.
Eur J Immunol
28:
961–972,
1998.
|
406. |
Fong AM,
Robinson LA,
Steeber DA,
Tedder TF,
Yoshie O,
Imai T and
Patel DD.
Fractalkine and CX3 CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow.
J Exp Med
188:
1413–1419,
1998.
|
407. |
Jung S,
Aliberti J,
Graemmel P,
Sunshine MJ,
Kreutzberg GW,
Sher A and
Littman DR.
Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion.
Mol Cell Biol
20:
4106–4114,
2000.
|
408. |
Teupser D,
Pavlides S,
Tan M,
Gutierrez‐Ramos JC,
Kolbeck R and
Breslow JL.
Major reduction of atherosclerosis in fractalkine (CX3CLl)‐deficient mice is at the brachiocephalic artery, not the aortic root.
Proc Natl Acad Sci USA
101:
17795–17800,
2004.
|
409. |
Haskell CA,
Hancock WW,
Salant DJ,
Gao W,
Csizmadia V,
Peters W,
Faia K,
Fituri O,
Rottman JB and
Charo IF.
Targeted deletion of CX(3)CR1 reveals a role for fractalkine in cardiac allograft rejection.
J Clin Invest
108:
679–688,
2001.
|
410. |
Campbell JJ,
Qiti SX,
Bacon KB,
MacKay CR and
Butcher EC.
Biology of chemokine and classical chemoattractant receptors: differential requirements for adhesion‐triggering versus chemotactic responses in lymphoid cells.
J Cell Biol
134:
255–266,
1996.
|
411. |
Weber C,
Alon R,
Moser B and
Springer TA.
Sequential regulation of α1 β1 and α5 β1 integrin avidity by CC chemokines in monocytes ‐implications for transendothelial chemotaxis.
J Cell Biol
134:
1063–1073,
1996.
|
412. |
Weber KSC,
von Hundelshausen P,
Clark‐Lewis I,
Weber PC and
Weber C.
Differential immobilization and hierarchical involvement of chemokines in monocyte arrest and transmigration on inflamed endothelium in shear flow.
Eur J Immunol
29:
700–712,
1999.
|
413. |
Carr MW,
Alon R and
Springer TA.
The C‐C chemokine MCP‐1 differentially modulates the avidity of β1 and β2 integrins on T lymphocytes.
Immunity
4:
179–187,
1996.
|
414. |
Palframan RT,
Jung S,
Cheng G,
Weninger W,
Luo Y,
Dorf M,
Littman DR,
Rollins BJ,
Zweerink H,
Rot A and
von Andrian UH.
Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues.
J Exp Med
194:
1361–1373,
2001.
|
415. |
Schober A,
Zernecke A,
Liehn EA,
von HP,
Knarren S,
Kuziel WA and
Weber C.
Crucial role of the CCL2/CCR2 axis in neointimal hyperplasia after arterial injury in hyperlipidemic mice involves early monocyte recruitment and CCL2 presentation on platelets.
Circ Res
95:
1125–1133,
2004.
|
416. |
Weber C,
Weber KS,
Klier C,
Gu S,
Wank R,
Horuk R and
Nelson PJ.
Specialized rales of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and T(H)l‐like/CD45RO(+) T cells.
Blood
97:
1144–1146,
2001.
|
417. |
Pachynski RK,
Wu SW,
Gunn MD and
Erle DJ,
Secondary lymphoid‐tissue chemokine (SLC) stimulates integrin alpha 4 beta 7‐mediated adhesion of lymphocytes to mucosal addressin cell adhesion moecule‐1 (MAdCAM‐1) under flow.
J Immunol
161:
952–956,
1998.
|
418. |
Johnston B,
Burns AR,
Suematsu M,
Issekutz TB,
Woodman RC and
Kubes P.
Chronic inflammation upregulates chemokine receptors and induces neutrophil migration to monocyte chemoattractant protein‐1.
J Clin Invest
103:
1269–1276,
1999.
|
419. |
Nagai K,
Larkin S,
Hartnell A,
Larbi K,
Aghakhani MR,
Windley C,
Davies D,
Lobb RR,
Williams TJ and
Nourshargh S.
Human eotaxin induces eosinophil extravasation through rat mesenteric venules: role of alpha(4) integrins and vascular cell adhesion molecule‐1.
Immunology
96:
176–183,
1999.
|
420. |
Cuvelier SL and
Patel KD.
Shear‐dependent eosinophil transmigration on interleukin 4‐ stimulated endothelial cells: a role for endothelium‐associated eotaxin‐3.
J Exp Med
194:
1699–1709,
2001.
|
421. |
Friedrich EB,
Sinha S,
Li L,
Dedhar S,
Force T,
Rosenzweig A and
Gerszten RE.
Role of integrin‐linked kinase in leukocyte recruitment.
J Biol Chem
277:
16371–16375,
2002.
|
422. |
Gerszten RE,
Friedrich EB,
Matsui T,
Hung RR,
Li L,
Force T and
Rosenzweig A.
Role of phosphoinosilide 3‐kinase in monocyte recruitment under flow conditions.
J Biol Chem
276:
26846–26851,
2001.
|
423. |
Smith DF,
Galkina E,
Ley K and
Huo Y.
GRO family chemokines are specialized for monocyte arrest from flow.
Am J Physiol Heart Circ Physiol
289:
H1976–H1984,
2005.
|
424. |
Gerszten RE,
Garcia‐Zepeda EA,
Lim YC,
Yoshida M,
Ding HA,
Gimbrone MA,
Luster AD,
Luscinskas FW and
Rosenzweig A.
MCP‐1 and IL‐8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions.
Nature
398:
718–723,
1999.
|
425. |
Laudanna C,
Campbell JJ and
Butcher EC.
Role of Rho in chemoattractant‐activated leukocyte adhesion through integrins.
Science
271:
981–983,
1996.
|
426. |
Giagulli C,
Scarpini E,
Ottoboni L,
Narumiya S,
Butcher EC,
Constantin G and
Laudanna C.
RhoA and zeta PKC control distinct modalities of LFA‐1 activation by chemokines: critical role of LFA‐1 affinity triggering in lymphocyte in vivo homing.
Immunity
20:
25–35,
2004.
|
427. |
Zarbock A,
Deem TL,
Burcin TL and
Ley K
Gαi2 is required for chemokine‐induced neutrophil arrest. Blood,
2007, in press.
|
428. |
Hyduk SJ,
Chan JR,
Duffy ST,
Chen M,
Peterson MD,
Waddell TK,
Digby GC,
Szaszi K,
Kapus A and
Cybulsky MI.
Phospholipase C, calcium and calmodulin are critical for {alpha}4{beta} 1 integrin affinity up‐regulation and monocyte arrest triggered by chemoat‐tractants.
Blood
109:
176–184,
2007.
|
429. |
Bergmeier W,
George T,
Wang HW,
Crittenden JR,
Baldwin AC,
Cifuni SM,
Housman DE,
Graybiel AM and
Wagner DD.
Mice lacking the signaling molecule CalDAG‐GEFl represent a model for leukocyte adhesion deficiency type III.
J Clin Invest
117:
1699–1707,
2007.
|
430. |
Pasvolsky R,
Feigelson SW,
Kilic SS,
Simon AJ,
Tal‐Lapidot G,
Grabovsky V,
Crittenden JR,
Amariglio N,
Safran M,
Graybiel AM,
Rechavi G,
Ben‐Dor S,
Etzioni A and
Alon R,
A LAD‐HI syndrome is associated with defective expression of the Rap‐1 activator CalDAG‐GEFI in lymphocytes, neutrophils, and platelets.
J Exp Med
204:
1571–1582,
2007.
|
431. |
Kinashi T,
Aker M,
Sokolovsky‐Eisenberg M,
Grabovsky V,
Tanaka C,
Shamri R,
Feigelson S,
Etzioni A and
Alon R.
LAD‐III, a leukocyte adhesion deficiency syndrome associated with defective Rap1 activation and impaired stabilization of integrin bonds.
Blood
103:
1033–1036,
2004.
|
432. |
Cinamon G,
Shinder V,
Shamri R and
Alon R.
Chemoattractant signals and beta 2 integrin occupancy at apical endothelial contacts combine with shear stress signals to promote transendothelial neutrophil migration.
J Immunol
173:
7282–7291,
2004.
|
433. |
Huang AJ,
Manning JE,
Bandak TM,
Ratau MC,
Hanser KR and
Silverstein SC.
Endothelial cell cytosolic free calcium regulates neutrophil migration across monolayers of endothelial cells.
J Cell Biol
120:
1371–1380,
1993.
|
434. |
Burns AR,
Walker DC,
Brown ES,
Thurmon LT,
Bowden RA,
Keese CR,
Simon SI,
Entman ML and
Smith CW.
Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners.
J Immunol
159:
2893–2903,
1997.
|
435. |
Feng D,
Nagy JA,
Pyne K,
Dvorak HF and
Dvorak AM.
Neutrophils emigrate from venules by a transendothelial cell pathway in response to fMLP.
J Exp Med
187:
903–915,
1998.
|
436. |
Ohashi KL,
Tung DKL,
Wilson J,
Zweifach BW and
Schmid‐Schonbein GW.
Transvascular and interstitial migration of neutrophils in rat mesentery.
Microcirculation
3:
199–210,
1996.
|
437. |
Wang S,
Voisin MB,
Larbi KY,
Dangerfield J,
Scheiermann C,
Tran M,
Maxwell PH,
Sorokin L and
Nourshargh S.
Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils.
J Exp Med
203:
1519–1532,
2006.
|
438. |
Young RE,
Thompson RD,
Larbi KY,
La M,
Roberts CE,
Shapiro SD,
Perretti M and
Nourshargh S.
Neutrophil elastase (NE)‐deficient mice demonstrate a nonredundant role for NE in neutrophil migration, generation of proinflammatory mediators, and phagocytosis in response to zymosan particles in vivo.
J Immunol
172:
4493–4502,
2004.
|
439. |
Yang L,
Froio RM,
Sciuto TE,
Dvorak AM,
Alon R and
Luscinskas FW.
ICAM‐1 regulates neutrophil adhesion and trans‐cellular migration of TNF‐alpha‐activated vascular endothelium under flow.
Blood
106:
584–592,
2005.
|
440. |
Shaw SK,
Bamba PS,
Perkins BN and
Luscinskas FW.
Real‐time imaging of vascular endothelial‐cadherin during leukocyte transmigration across endothelium.
J Immunol
167:
2323–2330,
2001.
|
441. |
Luscinskas FW,
Cybulsky Ml,
Kiely J‐M,
Peckins CS,
Davis VM and
Gimbrone MA, Jr.
Cytokine‐activated human endothelial monolayers support enhanced neutrophil transmigration via a mechanism involving both endothelial‐leukocyte adhesion molecule‐1 (ELAM‐I) and intercellular adhesion‐molecule‐1 (ICAM‐I).
J Immunol
146:
1617–1625,
1991.
|
442. |
Barreiro O,
Yanez‐Mo M,
Serrador JM,
Montoya MC,
Vicente‐Manzanares M,
Tejedor R,
Furthmayr H and
Sanchez‐Madrid F.
Dynamic interaction of VCAM‐1 and ICAM‐I with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes.
J Cell Biol
157:
1233–1245,
2002.
|
443. |
Carman CV and
Springer TA.
A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them.
J Cell Biol
167:
377–388,
2004.
|
444. |
Greenwood J,
Amos CL,
Walters CE,
Couraud PO,
Lyck R,
Engelhardt B and
Adamson P.
Intracellular domain of brain endothelial intercellular adhesion molecule‐1 is essential for T lymphocyte‐mediated signaling and migration.
J Immunol
171:
2099–2108,
2003.
|
445. |
Millan J and
Ridley AJ.
Rho GTPases and leucocyte‐induced endothelial remodelling.
Biochem J
385:
329–337,
2005.
|
446. |
Muller WA.
Leukocyte‐endothelial‐cell interactions in leukocyte transmigration and the inflammatory response.
Trends Immunol
24:
327–334,
2003.
|
447. |
Vestweber D,
Regulation of endothelial cell contacts during leukocyte extravasation.
Curr Opin Cell Biol
14:
587–593,
2002.
|
448. |
Reymond N,
Imbert AM,
Devilard E,
Fabre S,
Chabannon C,
Xerri L,
Farnarier C,
Cantoni C,
Bottino C,
Moretta A,
Dubreuil P and
Lopez M.
DNAM‐I and PVR regulate monocyte migration through endothelial junctions.
J Exp Med
199:
1331–1341,
2004.
|
449. |
Salmi M and
Jalkanen S.
Cell‐surface enzymes in control of leukocyte trafficking.
Nat Rev Immunol
5:
760–771,
2005.
|
450. |
Liu L,
Cara DC,
Kaur J,
Raharjo E,
Mullaly SC,
Jongstra‐Bilen J,
Jongstra J and
Kubes P.
LSP1 is an endothelial gatekeeper of leukocyte transendothelial migration.
J Exp Med
201:
409–418,
2005.
|
451. |
Dejana E.
Endothelial cell‐cell junctions: happy together.
Nat Rev Mol Cell Biol
5:
261–270,
2004.
|
452. |
Lou O,
Alcaide P,
Luscinskas FW and
Muller WA.
CD99 is a key mediator of the transendothelial migration of neutrophils.
J Immunol
178:
1136–1143,
2007.
|
453. |
Engelhardt B and
Wolburg H.
Mini‐review: transendothelial migration of leukocytes: through the front door or around the side of the house?
Eur J Immunol
34:
2955–2963,
2004.
|
454. |
Millan J,
Hewlett L,
Glyn M,
Toomre D,
Clark P and
Ridley AJ.
Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM‐I to caveola‐ and F‐actin‐rich domains.
Nat Cell Biol
8:
113–123,
2006.
|
455. |
Nieminen M,
Henttinen T,
Merinen M,
Marttila‐Ichihara F,
Eriksson JE and
Jalkanen S.
Vimentin function in lymphocyte adhesion and transcellular migration.
Nat Cell Biol
8:
156–162,
2006.
|
456. |
Dvorak AM and
Feng D.
The vesiculo‐vacuolar organelle (WO).
A new endothelial cell permeability organelle J Histochem Cytochem
49:
419–432,
2001.
|
457. |
Hallmann R,
Horn N,
Selg M,
Wendler O,
Pausch Fand
Sorokin LM.
Expression and function of laminins in the embryonic and mature vasculature.
Physiol Rev
85:
979–1000,
2005.
|
458. |
Sixt M,
Engelhardt B,
Pausch F,
Hallmann R,
Wendler O and
Sorokin LM.
Endothelial cell laminin isoforms, laminins 8 and 10. play decisive roles in T cell recruitment across the blood‐brain barrier in experimental autoimmune encephalomyelitis.
J Cell Biol
153:
933–946,
2001.
|
459. |
Miyasaka M and
Tanaka T.
Lymphocyte trafficking across high endothelial venules: dogmas and enigmas.
Nat Rev Immunol
4:
360–370,
2004.
|
460. |
Nourshargh S and
Marelli‐Berg FM.
Transmigration through venular walls: a key regulator of leukocyte phenotype and function.
Trends Immunol
26:
157–165,
2005.
|
461. |
Newman PJ and
Newman DK.
Signal transduction pathways mediated by PECAM‐1: new roles for an old molecule in platelet and vascular cell biology.
Arterioseler Thromb Vase Biol
23:
953–964,
2003.
|
462. |
Dangerfield J,
Larbi KY,
Huang MT,
Dewar A and
Nourshargh S.
PECAM‐I (CD31) homophilic interaction up‐regulates alpha‐6betal on transmigrated neutrophils in vivo and plays a functional role in the ability of alpha6 integrins to mediate leukocyte migration through the perivascular basement membrane.
J Exp Med
196:
1201–1211,
2002.
|
463. |
Werr J,
Eriksson EE,
Hedqvist P and
Lindbom L.
Engagement of 32 integrins induces surface expression of betal integrin receptors in human neutrophils.
J Leukocyte Biol
68:
553–560,
2000.
|
464. |
Adair‐Kirk TL,
Atkinson JJ,
Broekelmann TJ,
Doi M,
Tryggvason K,
Miner JH,
Mecham RP and
Senior RM.
A site on laminin alpha 5, AQARSAASKVKVSMKF, induces inflammatory cell production of matrix metalloproteinase‐9 and chemotaxis.
J Immunol
171:
398–406,
2003.
|
465. |
Cepinskas G,
Sandig M and
Kvietys PR.
PAF‐induced elastase‐dependent neutrophil transendothelial migration is associated with the mobilization of elastase to the neutrophil surface and localization to the migrating front.
J Cell Sci
112:
1937–1945,
1999.
|
466. |
Wang S,
Dangerfield JP,
Young RE and
Nourshargh S.
PECAM‐I. alpha6 integrins and neutrophil elastase cooperate in mediating neutrophil transmigration.
J Cell Sci
118:
2067–2076,
2005.
|
467. |
Lackie JM and
Wilkinson PC.
Adhesion and locomotion of neutrophil leukocytes on 2‐D substrata and in 3‐D matrices. In:
White Cell Mechanics: Basic Science and Clinical Aspects,
eds Meiselman HJ,
Lichtman MA and
LaCelle PL.
New York:
A. R. Liss,
1984.
pp. 237–254.
|
468. |
Friedl P,
Borgmann S and
Brocker EB.
Amoeboid leukocyte crawling through extracellular matrix: lessons from the dictyostelium paradigm of cell movement.
J Leukoc Biol
70:
491–509,
2001.
|
469. |
Bainton DF,
Miller U,
Kishimoto TK and
Springer TA.
Leukocyte adhesion receptors are stored in peroxidase‐negative granules of human neutrophils.
J Exp Med
166:
1641–1653,
1987.
|
470. |
Kubes P,
Niu X‐F,
Smith CW,
Kehrli ME,
Reinhardt PH and
Woodman RC.
A novel β1 ‐dependent adhesion pathway on neutrophils: a mechanism invoked by dihydrocytochalasin B or endothelial transmigration.
FASEB J
9:
1103–1111,
1995.
|
471. |
Werr J,
Johansson J,
Eriksson EE,
Hedqvist P,
Ruoslahti E and
Lindbom L.
Integrin alpha(2)beta(1) (VLA‐2) is a principal receptor used by neutrophils for locomotion in extravascular tissue.
Blood
95:
1804–1809,
2000.
|
472. |
Reinhardt PH,
Elliott JF and
Kubes P.
Neutrophils can adhere via alpha(4)beta(1)‐integrin under flow conditions.
Blood
89:
3837–3846,
1997.
|
473. |
Taooka Y,
Chen J,
Yednock T and
Sheppard D.
The integrin alpha‐9betal mediates adhesion to activated endothelial cells and transendothelial neutrophil migration through interaction with vascular cell adhesion molecule‐1.
J Cell Biol
145:
413–420,
1999.
|
474. |
Rennke HG and
Klein PS.
Pathogenesis and significance of nonprimary focal and segmental glomerulosclerosis.
Am J Kidney Dis
13:
443–456,
1989.
|
475. |
Wang Q,
Tang XN and
Yenari MA.
The inflammatory response in stroke.
J Neuroimmunol
184:
53–68,
2007.
|
476. |
Sumimoto H,
Miyano K and
Takeya R.
Molecular composition and regulation of the NOx family NAD(P)H oxidases.
Biochem Biophys Res Commun
338:
677–686,
2005.
|
477. |
Seifert R and
Schultz G.
The superoxide‐forming NADPH oxidase of phagocytes: an enzyme system regulated by multiple mechanisms.
Rev Physiol Biochem Pharmacol
117:
1–338,
1991.
|
478. |
Hansson M,
Olsson I and
Nauseef WM.
Biosynthesis, processing, and sorting of human myeloperoxidase.
Arch Biochem Biophys
445:
214–224,
2006.
|
479. |
Jackson SH,
Gallin JI and
Holland SM.
The p47phox mouse knockout model of chronic granulomatous disease.
J Exp Med
182:
751–758,
1995.
|
480. |
Morgenstern DE,
Gifford MAC,
Li LL,
Doerschuk CM and
Dinauer MC.
Absence of respiratory burst in X‐linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to aspergillus fumigatus.
J Exp Med
185:
207–218,
1997.
|
481. |
Kubes P,
Suzuki M and
Granger DN.
Nitric oxide ‐ an endogenous modulator of leukocyte adhesion.
Proc Natl Acad Sci USA
88:
4651–4655,
1991.
|
482. |
Matsushita K,
Morrell CN,
Cambien B,
Yang SX,
Yamakuchi M,
Bao C,
Hara MR,
Quick RA,
Cao W,
O'Rourke B,
Lowenstein JM,
Pevsner J,
Wagner DD and
Lowenstein CJ.
Nitric oxide regulates exocytosis by S‐nitrosylation of N‐ethylmaleimide‐sensitive factor.
Cell
115:
139–150,
2003.
|
483. |
Hickey MJ.
Role of inducible nitric oxide synthase in the regulation of leucocyte recruitment.
Clinical Science
100:
1–12,
2001.
|
484. |
Gay NJ and
Keith FJ.
Drosophila toll and IL‐1 receptor.
Nature
351:
355–356,
1991.
|
485. |
Kaisho T and
Akira S.
Toll‐like receptor function and signaling.
J Allergy Clin Immunol
117:
979–987,
2006.
|
486. |
Kobayashi KS,
Chamaillard M,
Ogura Y,
Henegariu O,
Inohara N,
Nunez G and
Flavell RA.
Nod2‐dependent regulation of innate and adaptive immunity in the intestinal tract.
Science
307:
731–734,
2005.
|
487. |
Harrington LE,
Hatton RD,
Mangan PR,
Turner H,
Murphy TL,
Murphy KM and
Weaver CT.
Interleukin 17‐producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages.
Nat Immunol
6:
1123–1132,
2005.
|
488. |
Ley K,
Smith E and
Stark MA.
IL‐17A‐producing neutrophil‐regulatory Tn lymphocytes.
Immunol Res
34:
229–242,
2006.
|
489. |
Borges E,
Tietz W,
Steegmaier M,
Moll T,
Hallmann R,
Hamann A and
Vestweber D.
P‐selectin glycoprotein ligand‐1 (PSGL‐1) on T helper 1 but not on T helper 2 cells binds to P‐selectin and supports migration into inflamed skin.
J Exp Med
185:
573–578,
1997.
|
490. |
Austrup F,
Vestweber D,
Borges E,
Lohning M,
Brauer R,
Herz U,
Renz H,
Hallmann R,
Scheffold A,
Radbruch A and
Hamann A.
P‐ and E‐selectin mediate recruitment of T‐helper‐1 but not T‐helper‐2 cells into inflamed tissues.
Nature
385:
81–83,
1997.
|
491. |
Taylor A,
Verhagen J,
Blaser K,
Akdis M and
Akdis CA.
Mechanisms of immune suppression by interleukin‐10 and transforming growth factor‐beta: the role of T regulatory cells.
Immunology
117:
433–442,
2006.
|
492. |
Bamias G,
Martin C,
Mishina M,
Ross WG,
Rivera‐Nieves J,
Marini M and
Cominelli F.
Proinflammatory effects of TH2 cytokines in a murine model of chronic small intestinal inflammation.
Gastroenterology
128:
654–666,
2005.
|
493. |
Scheuerer B,
Ernst M,
Durrbaum‐Landmann I,
Fleischer J,
Grage‐Griebenow E,
Brandt E,
Flad HD and
Petersen F.
The CXC‐chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages.
Blood
95:
1158–1166,
2000.
|
494. |
von Hundelshausen P,
Koenen RR,
Sack M,
Mause SF,
Adriaens W,
Proudfoot AE,
Hackeng TM and
Weber C.
Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium.
Blood
105:
924–930,
2005.
|
495. |
Gear AR and
Camerini D.
Platelet chemokines and chemokine receptors: linking hemostasis, inflammation and host defense.
Microcirculation
10:
335–350,
2003.
|
496. |
Coughlin SR.
Thrombin signalling and protease‐activated receptors.
Nature
407:
258–264,
2000.
|
497. |
Kahn ML,
Zheng YW,
Huang W,
Bigornia V,
Zeng D,
Moff S,
Farese RV, Jr.,
Tarn C and
Coughlin SR.
A dual thrombin receptor system for platelet activation.
Nature
394:
690–694,
1998.
|
498. |
Schonbeck U and
Libby P.
The CD40/CD154 receptor/ligand dyad.
Cell Mol Life Sci
58:
4–43,
2001.
|
499. |
Bodin S,
Tronchere H and
Payrastre B.
Lipid rafts are critical membrane domains in blood platelet activation processes.
Biochim Biophys Acta
1610:
247–257,
2003.
|
500. |
Prasad KS,
Andre P,
Yan Y and
Phillips DR.
The platelet CD40L/GP Ilb‐IIIa axis in atherothrombotic disease.
Curr Opin Hematol
10:
356–361,
2003.
|
501. |
Mach F,
Schonbeck U,
Sukhova GK,
Atkinson E and
Libby P.
Reduction of atherosclerosis in mice by inhibition of CD40 signalling.
Nature
394:
200–203,
1998.
|
502. |
Danese S and
Fiocchi C.
Platelet activation and the CD40/CD40 ligand pathway: mechanisms and implications for human disease.
Cril Rev Immunol
25:
103–121,
2005.
|
503. |
Willerson JT.
Serotonin and thrombotic complications.
J Cardiovasc Pharmacol
17
Suppl 5:
S13–S20,
1991.
|
504. |
McIntire LV,
Kukreti S and
Konstantopoulos K.
Biomechanics of cell interactions in shear fields.
Adv Drug Deliv Rev
33:
1–2,
1998.
|
505. |
Furman MI,
Benoit SE,
Barnard MR,
Valeri CR,
Borbone ML,
Becker RC,
Hechtman HB and
Michelson AD.
Increased platelet reactivity and circulating monocyte‐platelet aggregates in patients with stable coronary artery disease.
J Am Coll Cardiol
31:
352–358,
1998.
|
506. |
Michelson AD,
Barnard MR,
Krueger LA,
Valeri CR and
Furman MJ.
Circulating monocyte‐platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P‐ selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction.
Circulation
104:
1533–1537,
2001.
|
507. |
Huo Y and
Ley K.
Role of platelets in the development of atherosclerosis.
Trend Cardiovasc Med
14:
18–22,
2004.
|
508. |
Weber C and
Springer TA.
Neutrophil accumulation on activated, surface‐adherent platelets in flow is mediated by interaction of Mac‐1 with fibrinogen bound to αIIb β3 and stimulated by platelet‐activating factor.
J Clin Invest
100:
2085–2093,
1997.
|
509. |
Larsen E,
Celi A,
Gilbert GE,
Furie BC,
Erban JK and
Bonfanti R.
PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes.
Cell
590:
305–312,
1989.
|
510. |
Diacovo TG,
Puri KD,
Warnock RA,
Springer TA and
von Andrian UH.
Platelet‐mediated lymphocyte delivery to high endothelial venules.
Science
273:
252–255,
1996.
|
511. |
Frenette PS,
Johnson RC,
Hynes MR and
Wagner DD.
Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P‐selectin.
Proc Natl Acad Sci USA
92:
7450–7454,
1995.
|
512. |
Romo GM,
Dong JF,
Schade AJ,
Gardiner EE,
Kansas GS,
Li CQ,
McIntire LV,
Berndt MC and
Lopez JA.
The glycoprotein Ib‐IX‐V complex is a platelet counterreceptor for P‐selectin.
J Exp Med
190:
803–813,
1999.
|
513. |
Padilla A,
Moake JL,
Bernardo A,
Ball C,
Wang Y,
Arya M,
Nolasco L,
Turner N,
Berndt MC,
Anvari B,
Lopez JA and
Dong JF.
P‐selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface.
Blood
103:
2150–2156,
2004.
|
514. |
Lopez JA and
Dong JF.
Cleavage of von Willebrand factor by ADAMTS‐13 on endothelial cells.
Semin Hematol
41:
15–23,
2004.
|
515. |
Massberg S,
Brand K,
Gruner S,
Page S,
Muller E,
Muller I,
Bergmeier W,
Richter T,
Lorenz M,
Konrad I,
Nieswandt B and
Gawaz M.
A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation.
J Exp Med
196:
887–896,
2002.
|
516. |
Gutensohn K,
Geidel K,
Brockmann M,
Siemensen M,
Krueger W,
Kroeger N and
Kuehnl P.
Binding of activated platelets to WBCs in vivo after transfusion.
Transfusion
42:
1373–1380,
2002.
|
517. |
Levi M,
van der Poll T and
Buller HR.
Bidirectional relation between inflammation and coagulation.
Circulation
109:
2698–2704,
2004.
|
518. |
Levi M,
ten Cate H,
Bauer KA,
van der PT,
Edgington TS,
Buller HR,
van Deventer SJ,
Hack CE,
ten Cate JW and
Rosenberg RD.
Inhibition of endotoxin‐induced activation of coagulation and fibrinolysis by pentoxifylline or by a monoclonal anti‐tissue factor antibody in chimpanzees.
J Clin Invest
93:
114–120,
1994.
|
519. |
Ruf W and
Edgington TS.
Structural biology of tissue factor, the initiator of thrombogenesis in vivo.
FASEB J
8:
385–390,
1994.
|
520. |
Pixley RA,
De La CR,
Page JD,
Kaufman N,
Wyshock EG,
Chang A,
Taylor FB, Jr. and
Colman RW.
The contact system contributes to hypotension but not disseminated intravascular coagulation in lethal bacteremia.
In vivo use of a monoclonal anti‐factor XII antibody to block contact activation in baboons J Clin Invest
91:
61–68,
1993.
|
521. |
Falati S,
Liu Q,
Gross P,
Merrill‐Skoloff G,
Chou J,
Vandendries E,
Celi A,
Croce K,
Furie BC and
Furie B.
Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P‐selectin glycoprotein ligand I and platelet P‐selectin.
J Exp Med
197:
1585–1598,
2003.
|
522. |
Forlow SB,
McEver RP and
Nollert MU.
Leukocyte‐leukocyte interactions mediated by platelet microparticles under flow.
Blood
95:
1317–1323,
2000.
|
523. |
Garcia BA,
Smalley DM,
Cho H,
Shabanowitz J,
Ley K and
Hunt DF.
The platelet microparticle proteome, 2005.
Proteomics Research available online.
|
524. |
Falati S,
Gross P,
Merrill‐Skoloff G,
Furie BC and
Furie B.
Realtime in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse.
Nature Med
8:
1175–1181,
2002.
|
525. |
Boulanger CM,
Scoazec A,
Ebrahimian T,
Henry P,
Mathieu E,
Tedgui A and
Mallat Z.
Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction.
Circulation
104:
2649–2652,
2001.
|
526. |
Bogdanov VY,
Balasubramanian V,
Hathcock J,
Vele O,
Lieb M and
Nemerson Y.
Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein.
Nat Med
9:
458–462,
2003.
|
527. |
Subramaniam M,
Frenette PS,
Saffaripour S,
Johnson RC,
Hynes RO and
Wagner DD.
Defects in hemostasis in P‐selectin‐deficient mice.
Blood
87:
1238–1242,
1996.
|
528. |
Hrachovinova I,
Cambien B,
Hafezi‐Moghadam A,
Kappelmayer J,
Camphausen RT,
Widom A,
Xia L,
Kazazian HH, Jr.,
Schaub RG,
McEver RP and
Wagner DD.
Interaction of P‐selectin and PSGL‐I generates microparticles that correct hemostasis in a mouse model of hemophilia A.
Nat Med
9:
1020–1025,
2003.
|
529. |
Esmon CT.
The roles of protein C and thrombomodulin in the regulation of blood coagulation.
J Biol Chem
264:
4743–4746,
1989.
|
530. |
Mousa SA,
Fareed J,
Iqbal O and
Kaiser B.
Tissue factor pathway inhibitor in thrombosis and beyond.
Methods Mol Med
93:
133–155,
2004,
133–155.
|
531. |
Nicholl SM,
Roztocil E and
Davies MG.
Plasminogen activator system and vascular disease.
Curr Vasc Pharmacol
4:
101–116,
2006.
|
532. |
Cunningham MA,
Romas P,
Hutchinson P,
Holdsworth SR and
Tipping PG.
Tissue factor and factor VIIa receptor/ligand interactions induce proinflammatory effects in macrophages.
Blood
94:
3413–3420,
1999.
|
533. |
de Jonge E,
Friederich PW,
Vlasuk GP,
Rote WE,
Vroom MB,
Levi M and
van der PT.
Activation of coagulation by administration of recombinant factor VIIa elicits interleukin 6 (IL‐6) and IL‐8 release in healthy human subjects.
Clin Diagn Lab Immunol
10:
495–497,
2003.
|
534. |
Szaba FM and
Smiley ST.
Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo.
Blood
99:
1053–1059,
2002.
|
535. |
Esmon CT.
New mechanisms for vascular control of inflammation mediated by natural anticoagulant proteins.
J Exp Med
196:
561–564,
2002.
|
536. |
Okajima K.
Regulation of inflammatory responses by natural anticoagulants.
Immunol Rev
184:
258–274,
2001.
|
537. |
Conway EM,
Van de WM,
Pollefeyt S,
Jurk K,
Van Aken H,
De Vriese A,
Weitz JI,
Weiler H,
Hellings PW,
Schaeffer P,
Herbert JM,
Collen D and
Theilmeier G.
The lectin‐like domain of thrombomodulin confers protection from neutrophil‐mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen‐activated protein kinase pathways.
J Exp Med
196:
565–577,
2002.
|
538. |
Bajzar L,
Morser J and
Nesheim M.
TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin‐thrombomodulin complex.
J Biol Chem
271:
16603–16608,
1996.
|
539. |
Vary TC and
Kimball SR.
Regulation of hepatic protein synthesis in chronic inflammation and sepsis.
Am J Physiol
262:
C445–C452,
1992.
|
540. |
Seitz R,
Wolf M,
Egbring R and
Havemann K.
The disturbance of hemostasis in septic shock: role of neutrophil elastase and thrombin, effects of antithrombin III and plasma substitution.
Eur J Haematol
43:
22–28,
1989.
|
541. |
Jagneaux T,
Taylor DE and
Kantrow SP.
Coagulation in sepsis.
Am J Med Sci
328:
196–204,
2004.
|
542. |
Ren Y,
Stuart L,
Lindberg FP,
Rosenkranz AR,
Chen Y,
Mayadas TN and
Savill J.
Nonphlogistic clearance of late apoptotic neutrophils by macrophages: efficient phagocytosis independent of beta 2 integrins.
J Immunol
166:
4743–4750,
2001.
|
543. |
Lucas M,
Stuart LM,
Savill J and
Lacy‐Hulbert A.
Apoptotic cells and innate immune stimuli combine to regulate macrophage cytokine secretion.
J Immunol
171:
2610–2615,
2003.
|
544. |
Mempel TR,
Henrickson SE and
von Andrian UH.
T‐cell priming by dendritic cells in lymph nodes occurs in three distinct phases.
Nature
427:
154–159,
2004.
|
545. |
Abeles AM and
Pillinger MH.
Statins as antiinflammatory and immunomodulatory agents: a future in rheumatologic therapy?
Arthritis Rheum
54:
393–407,
2006.
|
546. |
Schonbeck U and
Libby P.
Inflammation, immunity, and HMG‐CoA reductase inhibitors: statins as antiinflammatory agents?
Circulation
109:
1118–1126,
2004.
|
547. |
Slingluff CL, Jr.,
Engelhard VH and
Ferrone S.
Peptide and dendritic cell vaccines.
Clin Cancer Res
12:
2342s–2345s,
2006.
|
548. |
Gardner H,
Kreidberg J,
Koteliansky V and
Jaenisch R.
Deletion of integrin alpha 1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion.
Dev Biol
175:
301–313,
1996.
|
549. |
Pozzi A,
Moberg PE,
Miles LA,
Wagner S,
Soloway P and
Gardner HA.
Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization.
Proc Natl Acad Sci USA
97:
2202–2207,
2000.
|
550. |
Holtkotter O,
Nieswandt B,
Smyth N,
Muller W,
Hafner M,
Schulte V,
Krieg T and
Eckes B.
Integrin alpha 2‐deficient mice develop normally, are fertile, but display partially defective platelet interaction with collagen.
J Biol Chem
277:
10789–10794,
2002.
|
551. |
Chen J,
Diacovo TG,
Grenache DG,
Santoro SA and
Zutter MM.
The alpha(2) integrin subunit‐deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis.
Am J Pathol
161:
337–344,
2002.
|
552. |
Arroyo AG,
Yang JT,
Rayburn H and
Hynes RO.
Differential requirements for α4 integrins during fetal and adult hematopoiesis.
Cell
85:
997–1008,
1996.
|
553. |
Georges‐Labouesse E,
Messaddeq N,
Yehia G,
Cadalbert L,
Dierich A and
Le MM.
Absence of integrin alpha 6 leads to epidermolysis bullosa and neonatal death in mice.
Nat Genet
13:
370–373,
1996.
|
554. |
Georges‐Labouesse E,
Mark M,
Messaddeq N and
Gansmuller A.
Essential role of alpha 6 integrins in cortical and retinal lamination.
Curr Biol
8:
983–986,
1998.
|
555. |
Huang XZ,
Wu JF,
Ferrando R,
Lee JH,
Wang YL,
Farese RV, Jr. and
Sheppard D.
Fatal bilateral chylothorax in mice lacking the integrin alpha9betal.
Mol Cell Biol
20:
5208–5215,
2000.
|
556. |
Bader BL,
Rayburn H,
Crowley D and
Hynes RO.
Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins.
Cell
95:
507–519,
1998.
|
557. |
McCarty JH,
Monahan‐Earley RA,
Brown LF,
Keller M,
Gerhardt H,
Rubin K,
Shani M,
Dvorak HF,
Wolburg H,
Bader BL,
Dvorak AM and
Hynes RO.
Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins.
Mol Cell Biol
22:
7667–7677,
2002.
|
558. |
Tronik‐Le Roux D,
Roullot V,
Poujol C,
Kortulewski T,
Nurden P and
Marguerie G.
Thrombasthenic mice generated by replacement of the integrin alpha(IIb) gene: demonstration that transcriptional activation of this megakaryocytic locus precedes lineage commitment.
Blood
96:
1399–1408,
2000.
|
559. |
Tang T,
Rosenkranz A,
Assmann KJM,
Goodman MJ,
Gutierrezramcs JC,
Carroll MC,
Cotran RS and
Mayadas TN.
A role for Mac‐1 (CD lib/CD 18) in immune complex‐stimulated neutrophil function in vivo ‐ Mac‐1 deficiency abrogates sustained Fc‐gamma receptor‐dependent neutrophil adhesion and complement‐dependent proteinuria in acute glomerulonephritis.
J Exp Med
186:
1853–1863,
1997.
|
560. |
Dong ZM,
Gutierrezramos JC,
Coxon A,
Mayadas TN and
Wagner DD.
A new class of obesity genes encodes leukocyte adhesion receptors.
Proc Natl Acad Sci USA
94:
7526–7530,
1997.
|
561. |
Wu H,
Rodgers JR,
Perrard XY,
Perrard JL,
Prince JE,
Abe Y,
Davis BK,
Dietsch G,
Smith CW and
Ballantyne CM.
Deficiency of CD11b or CD11d results in reduced staphylococcal enterotoxin‐induced T cell response and T cell phenotypic changes.
J Immunol
173:
297–306,
2004.
|
562. |
Schon MP,
Arya A,
Murphy EA,
Adams CM,
Strauch UG,
Agace WW,
Marsal J,
Donohue JP,
Her H,
Beier DR,
Olson S,
Lefrancois L,
Brenner MB,
Grusby MJ and
Parker CM.
Mucosal T lymphocyte numbers are selectively reduced in integrin alpha E (CD103)‐deficient mice.
J Immunol
162:
6641–6649,
1999.
|
563. |
Stephens LE,
Sutherland AE,
Klimanskaya IV,
Andrieux A,
Meneses J,
Pedersen RA and
Damsky CH.
Deletion of beta I integrins in mice results in inner cell mass failure and peri‐implantation lethality.
Genes Dev
9:
1883–1895,
1995.
|
564. |
McHugh KP,
Hodivala‐Dilke K,
Zheng MH,
Namba N,
Lam J,
Novack D,
Feng X,
Ross FP,
Hynes RO and
Teitelbaum SL.
Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts.
J Clin Invest
105:
433–440,
2000.
|
565. |
Reynolds LE,
Wyder L,
Lively JC,
Taverna D,
Robinson SD,
Huang X,
Sheppard D,
Hynes RO and
Hodivala‐Dilke KM.
Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins.
Nat Med
8:
27–34,
2002.
|
566. |
Wagner N,
Löhler J,
Kunkel EJ,
Ley K,
Leung E,
Krissansen G,
Rajewsky K and
Müller W.
Critical role for β7 integrins in formation of the gut‐associated lymphoid tissue.
Nature
382:
366–370,
1996.
|
567. |
Plow EF and
Zhang L.
A mac‐1 attack: integrin functions directly challenged in knockout mice [editorial].
J Clin Invest
99:
1145–1146,
1997,
3.
|
568. |
Ehlers MR.
CR3: a general purpose adhesion‐recognition receptor essential for innate immunity.
Microbes Infect
2:
289–294,
2000.
|
569. |
Simon DI,
Chen Z,
Xu H,
Li CQ,
Dong J,
McIntire LV,
Ballantyne CM,
Zhang L,
Furman MI,
Berndt MC and
Lopez JA.
Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac‐1 (CD11b/CD18).
J Exp Med
192:
193–204,
2000.
|
570. |
Santoso S,
Sachs UJ,
Kroll H,
Linder M,
Ruf A,
Preissner KT and
Chavakis T.
The junctional adhesion molecule 3 (JAM‐3) on human platelets is a counterreceptor for the leukocyte integrin Mac‐1.
J Exp Med
196:
679–691,
2002.
|
571. |
Xu JC,
Grewal IS,
Geba GP and
Flavell RA.
Impaired primary T cell responses in L‐selectin‐deficient mice.
J Exp Med
183:
589–598,
1996.
|
572. |
Grewal IS,
Foellmer HG,
Grewal KD,
Wang H,
Lee WP,
Tumas D,
Janeway CA, Jr. and
Flavell RA.
CD62L is required on effector cells for local interactions in the CNS to cause myelin damage in experimental allergic encephalomyelitis.
Immunity
14:
291–302,
2001.
|
573. |
Labow MA,
Norton CR,
Rumberger JM,
Lombard‐Gillooly KM,
Shuster DJ,
Hubbard J,
Bertko R,
Knaack PA,
Terry RW,
Harbison ML,
Kontgen F,
Stewart CL,
McIntyre KW,
Will PC,
Burns DK and
Wolitzky BA.
Characterization of E‐selectin‐deficient mice: demonstration of overlapping function of the endothelial selectins.
Immunity
1:
709–720,
1994.
|
574. |
Bullard DC,
Qin L,
Lorenzo I,
Quinlin WM,
Doyle NA,
Bosse R,
Vestweber D,
Doerschuk CM and
Beaudet AL.
P‐selectin/ICAM‐1 double mutant mice: acute emigration of neutrophils into the peritoneum is completely absent but is normal in pulmonary alveoli.
J Clin Invest
95:
1782–1788,
1995.
|
575. |
Robinson SD,
Frenetle PS,
Rayburn H,
Cummiskey M,
Ullman‐Cullere M,
Wagner DD and
Hynes RO.
Multiple, targeted deficiencies in selectins reveal a predominant role for P‐selectin in leukocyte recruitment.
Proc Natil Acad Sci USA
96:
11452–11457,
1999.
|
576. |
Schmits R,
Filmus J,
Gerwin N,
Senaldi G,
Kiefer F,
Kundig T,
Wakeham A,
Shahinian A,
Catzavelos C,
Rak J,
Furlonger C,
Zakarian A,
Simard JJ,
Ohashi PS.
Paige CJ, Gutierrez‐Ramos JC and Mak TW, CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity.
Blood
90:
2217–2233,
1997.
|
577. |
Takeda K and
Akira S.
Toll‐like receptors in innate immunity.
Int Immunol
17:
1–14,
2005.
|
578. |
van der PT,
Levi M,
Buller HR,
van Deventer SJ,
de Boer JP,
Hack CE and
ten Cate JW.
Fibrinolytic response to tumor necrosis factor in healthy subjects.
J Exp Med
174:
729–732,
1991.
|
579. |
van der PT,
de Jonge E and
Levi M.
Regulatory role of cytokines in disseminated intravascular coagulation.
Semin Thromb Hemosl
27:
639–651,
2001.
|
580. |
Versteeg HH,
Peppelenbosch MP and
Spek CA.
The pleiotropic effects of tissue factor: a possible role for factor Vila‐induced intracellular signalling?
Thromb Haemost
86:
1353–1359,
2001.
|
581. |
Kaneider NC,
Forster E,
Mosheimer B,
Sturn DH and
Wiedemann CJ.
Syndecan‐4‐dependent signaling in the inhibition of endotoxin‐induced endothelial adherence of neutrophils by antithrombin.
Thromb Haemost
90:
1150–1157,
2003.
|
582. |
May AE,
Schmidt R,
Kanse SM,
Chavakis T,
Stephens RW,
Schomig A,
Preissner KT and
Neumann FJ.
Urokinase receptor surface expression regulates monocyte adhesion in acute myocardial infarction.
Blood
100:
3611–3617,
2002.
|
583. |
Cayatte AJ,
Rupin A,
Oliver‐Krasinski J,
Maitland K,
Sansilvestri‐Morel P,
Boussard MF,
Wierzbicki M,
Verbeuren TJ and
Cohen RA.
S17834, a new inhibitor of cell adhesion and atherosclerosis that targets nadph oxidase.
Arterioscler Thromb Vase Biol
21:
1577–1584,
2001.
|
584. |
Arnold J.
Ueber das Verhalten der Wandungen der Blutgefasse bei der Emigration weisser Blutkorper.
Virchows Archiv
62:
487–503,
1875.
|
585. |
Ley K and
Gaehtgens P.
Endothelial, not hemodynamic differences are responsible for preferential leukocyte rolling in venules.
Cire Res
69:
1034–1041,
1991.
|
586. |
Reneman RS,
Woldhuis B,
oude Egbrink MGA,
Slaaf DW and
Tangelder GJ.
Concentration and velocity profiles of blood cells in the microcirculation. In:
Advances in Cardiovascular Engineering.
eds Hwang NHC,
Turitto VT and
Yen MRT.
New York:
Plenum Press,
1992,
pp. 25–40.
|
587. |
Kunkel EJ,
Jung U and
Ley K.
TNF‐α induces selectin‐dependent leukocyte rolling in mouse cremaster muscle arterioles.
Am J Physiol
212:
H1391–H1400,
1997.
|
588. |
Ley K.
Leukocyte adhesion molecules: effectors of cell traffic in inflammation.
BMES Bulletin
18:
43–17,
1995.
|
589. |
Schmidt EE,
MacDonald IC and
Groom AC.
Changes in splenic microcirculatory pathways in chronic idiopathic thrombocytopenic purpura.
Blood
78:
1485–1489,
1991.
|
590. |
Maina JN.
Is the sheet‐flow design a ‘frozen core’ (a Bauplan) of the gas exchangers? Comparative functional morphology of the respiratory microvascular systems: illustration of the geometry and rationalization of the fractal properties.
Comp Biochem Physiol A Mol Integr Physiol
126:
491–515,
2000.
|
591. |
Wei W,
Popov V,
Walocha JA,
Wen J and
Bello‐Reuss E.
Evidence of angiogenesis and microvascular regression in autosomal‐dominant polycystic kidney disease kidneys: a corrosion cast study.
Kidney Int
70:
1261–1268,
2006.
|
592. |
Bedard K and
Krause KH.
The NOX family of ROS‐generating NADPH oxidases: physiology and pathophysiology.
Physiol Rev
87:
245–313,
2007.
|
593. |
Nathan C.
Neutrophils and immunity: challenges and opportunities.
Nat Rev Immunol
6:
173–182,
2006.
|
594. |
Pawlinski R and
Mackman N.
Tissue factor, coagulation proteases, and protease‐activated receptors in endotoxemia and sepsis.
Crit Care Med
32:
S293–S297,
2004.
|