References |
1. |
Mosmann TR,
Cherwinski H,
Bond MW,
Giedlin MA and
Coffman RL.
Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins.
J Immunol
136:
2348–2357,
1986.
|
2. |
Abbas AK,
Murphy KM and
Sher A.
Functional diversity of helper T lymphocytes.
Nature
383:
787–793,
1996.
|
3. |
Ansel KM,
McHeyzer‐Williams LJ,
Ngo VN,
McHeyzer‐Williams MG and
Cyster JG.
In vi vo‐activated CD4 T cells upregu‐late CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines.
J Exp Med
190:
1123–1134,
1999.
|
4. |
Breitfeld D,
Ohl L,
Kremmer E,
Ellwart J,
Sallusto F,
Lipp M and
Forster R.
Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production.
J Exp Med
192:
1545–1552,
2000.
|
5. |
Schaerli P,
Willimann K,
Lang AB,
Lipp M,
Loetscher P and
Moser B.
CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function.
J Exp Med
192:
1553–1562,
2000.
|
6. |
Sallusto F,
Lenig D,
Forster R,
Lipp M and
Lanzavecchia A.
Two subsets of memory T lymphocytes with distinct homing potentials, effector functions.
Nature
401:
708–712,
1999.
|
7. |
Masopust D,
Vezys V,
Marzo AL and
Lefrancois L.
Preferential localization of effector memory cells in nonlymphoid tissue.
Science
291:
2413–2417,
2001.
|
8. |
Reinhardt RL,
Khoruts A,
Merica R,
Zell T and
Jenkins MK.
Visualizing the generation of memory CD4 T cells in the whole body.
Nature
410:
101–105,
2001.
|
9. |
Lanzavecchia A and
Sallusto F.
Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells.
Science
290:
92–97,
2000.
|
10. |
Kaech SM,
Wherry EJ and
Ahmed R.
Effector and memory T‐cell differentiation: implications for vaccine development.
Nat Rev Immunol
2:
251–262,
2002.
|
11. |
Weninger W,
Manjunath N and
von Andrian UH.
Migration and differentiation of CD81 T cells.
Immunol Rev
185:
221–233,
2002.
|
12. |
Wherry EJ,
Teichgraber V,
Becker TC,
Masopust D,
Kaech SM,
Antia R,
von Andrian UH and
Ahmed R.
Lineage relationship and protective immunity of memory CD8 T cell subsets.
Nat Immunol
4:
225–234,
2003.
|
13. |
Weninger W,
Crowley MA,
Manjunath N and
von Andrian UH.
Migratory properties of naïve, effector, and memory CD8(1) T cells.
J Exp Med
194:
953–966,
2001.
|
14. |
Manjunath N,
Shankar P,
Wan J,
Weninger W,
Crowley MA,
Hieshima K,
Springer TA,
Fan X,
Shen H,
Lieberman J and
von Andrian UH.
Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes.
J Clin Invest
108:
871–878,
2001.
|
15. |
Bach JF.
Regulatory T cells under scrutiny.
Nat Rev Immunol
3:
189–198,
2003.
|
16. |
Jonuleit H and
Schmitt E.
The regulatory T cell family: distinct subsets and their interrelations.
J Immunol
171:
6323–6327,
2003.
|
17. |
Nishizuka Y and
Sakakura T.
Thymus and reproduction: sex‐linked dysgenesia of the gonad after neonatal thymectomy in mice.
Science
166:
753–755,
1969.
|
18. |
Sakaguchi S,
Sakaguchi N,
Asano M,
Itoh M and
Toda M.
Immunologic self‐tolerance maintained by activated T cells expressing IL‐2 receptor alpha‐chains (CD25). Breakdown of a single mechanism of self‐tolerance causes various autoimmune diseases.
J Immunol
155:
1151–1164,
1995.
|
19. |
Thornton AM and
Shevach EM.
CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting inter‐leukin 2 production.
J Exp Med
188:
287–296,
1998.
|
20. |
Roncarolo MG,
Bacchetta R,
Bordignon C,
Narula S and
Levings MK.
Type 1 T regulatory cells.
Immunol Rev
182:
68–79,
2001.
|
21. |
Weiner HL.
Induction and mechanism of action of transforming growth factor‐beta‐secreting Th3 regulatory cells.
Immunol Rev
182:
207–214,
2001.
|
22. |
Herbelin A,
Gombert JM,
Lepault F,
Bach JF and
Chatenoud L.
Mature mainstream TCR alpha beta+CD4+ thymocytes expressing L‐selectin mediate “active tolerance” in the nonobese diabetic mouse.
J Immunol
161:
2620–2628,
1998.
|
23. |
Stassen M,
Fondel S,
Bopp T,
Richter C,
Muller C,
Kubach J,
Becker C,
Knop J,
Enk AH,
Schmitt S,
Schmitt E and
Jonuleit H.
Human CD25+ regulatory T cells: two subsets defined by the integrins alpha 4 beta 7 or alpha 4 beta 1 confer distinct suppressive properties upon CD4+ T helper cells.
Eur J Immunol
34:
1303–1311,
2004.
|
24. |
Carsetti R,
Rosado MM and
Wardmann H.
Peripheral development of B cells in mouse and man.
Immunol Rev
197:
179–191,
2004.
|
25. |
Martin F and
Kearney JF.
B1 cells: similarities and differences with other B cell subsets.
Curr Opin Immunol
13:
195–201,
2001.
|
26. |
Martin F and
Kearney JF.
Marginal‐zone B cells.
Nat Rev Immunol
2:
323–335,
2002.
|
27. |
Lopes‐Carvalho T and
Kearney JF.
Development and selection of marginal zone B cells.
Immunol Rev
197:
192–205,
2004.
|
28. |
Shinefield HR,
Steinberg CR and
Kaye D.
Effect of splenectomy on the susceptibility of mice inoculated with Diplococcus pneumoniae.
J Exp Med
123:
777–794,
1966.
|
29. |
Johnson GR,
Carlisle HN and
Saslaw S.
Response of splenec‐tomized mice to bacterial agents.
Proc Soc Exp Biol Med
126:
298–300,
1967.
|
30. |
Arpin C,
Banchereau J and
Liu YJ.
Memory B cells are biased towards terminal differentiation: a strategy that may prevent repertoire freezing.
J Exp Med
186:
931–940,
1997.
|
31. |
McHeyzer‐Williams MG and
Ahmed R.
B cell memory and the long‐lived plasma cell.
Curr Opin Immunol
11:
172–179,
1999.
|
32. |
Calame KL.
Plasma cells: finding new light at the end of B cell development.
Nat Immunol
2:
1103–1108,
2001.
|
33. |
Cyster JG.
Homing of antibody secreting cells.
Immunol Rev
194:
48–60,
2003.
|
34. |
Steinman RM and
Nussenzweig MC.
Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance.
Proc Natl Acad Sci USA
99:
351–358,
2002.
|
35. |
Banchereau J and
Steinman RM.
Dendritic cells and the control of immunity.
Nature
392:
245–252,
1998.
|
36. |
Henri S,
Vremec D,
Kamath A,
Waithman J,
Williams S,
Benoist C,
Bunham K,
Saeland S,
Handman E and
Shortman K.
The dendritic cell populations of mouse lymph nodes.
J Immunol
167:
741–748,
2001
|
37. |
Nakano H,
Yanagita M and
Gunn MD.
CD11c(+)B220(+)Gr‐1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells.
J Exp Med
194:
1171–1178,
2001.
|
38. |
Stingl G,
Tamaki K and
Katz SI.
Origin and function of epidermal Langerhans cells.
Immunol Rev
53:
149–174,
1980.
|
39. |
Schuler G and
Steinman RM.
Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro.
J Exp Med
161:
526–546,
1985.
|
40. |
Stoitzner P,
Holzmann S,
McLellan AD,
Ivarsson L,
Stossel H,
Kapp M,
Kammerer U,
Douillard P,
Kampgen E,
Koch F,
Saeland S and
Romani N.
Visualization and characterization of migratory Langerhans cells in murine skin and lymph nodes by antibodies against Langerin/CD207.
J Invest Dermatol
120:
266–274,
2003.
|
41. |
Merad M,
Manz MG,
Karsunky H,
Wagers A,
Peters W,
Charo I,
Weissman IL,
Cyster JG and
Engleman EG.
Langerhans cells renew in the skin throughout life under steady‐state conditions.
Nat Immunol
3:
1135–1141,
2002.
|
42. |
Cella M,
Jarrossay D,
Facchetti F,
Alebardi O,
Nakajima H,
Lanzavecchia A and
Colonna M.
Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon.
Nat Med
5:
919–923,
1999.
|
43. |
Merad M,
Fong L,
Bogenberger J and
Engleman EG.
Differentiation of myeloid dendritic cells into CD8alpha‐positive dendritic cells in vivo.
Blood
96:
1865–1872,
2000.
|
44. |
den Haan JMM,
Lehar SM and
Bevan MJ.
CD8+ but not CD8‐ dendritic cells cross‐prime cytotoxic T cells in vivo.
J Exp Med
192:
1685–1695,
2000.
|
45. |
Pooley JL,
Heath WR and
Shortman K.
Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8‐ dendritic cells, but cross‐presented to CD8 T cells by CD8+ dendritic cells.
J Immunol
166:
5327–5330,
2001.
|
46. |
Belz GT,
Behrens GM,
Smith CM,
Miller JF,
Jones C,
Lejon K,
Fathman CG,
Mueller SN,
Shortman K,
Carbone FR and
Heath WR.
The CD8 alpha(+) dendritic cell is responsible for inducing peripheral self‐tolerance to tissue‐associated antigens.
J Exp Med
196:
1099–1104,
2002.
|
47. |
Liu K,
Iyoda T,
Saternus M,
Kimura Y,
Inaba K and
Steinman RM.
Immune tolerance after delivery of dying cells to dendritic cells in situ.
J Exp Med
196:
1091–1097,
2002.
|
48. |
Butcher EC.
Leukocyte‐endothelial cell recognition: Three (or more) steps to specificity and diversity.
Cell
67:
1033–1036,
1991.
|
49. |
Springer TA.
Traffic signals for lymphocyte recirculation and leukocyte emigration: The multi‐step paradigm.
Cell
76:
301–314,
1994.
|
50. |
Butcher EC and
Picker LJ.
Lymphocyte homing and homeostasis.
Science
272:
60–66,
1996.
|
51. |
von Andrian UH and
Mackay CR.
T‐cell function and migration. Two sides of the same coin.
N Engl J Med
343:
1020–1034,
2000.
|
52. |
Carlos TM and
Harlan JM.
Leukocyte‐endothelial adhesion molecules.
Blood
84:
2068–2101,
1994.
|
53. |
Kansas GS.
Selectins and their ligands: Current concepts and controversies.
Blood
88:
3259–3287,
1996.
|
54. |
Vestweber D and
Blanks JE.
Mechanisms that regulate the function of the selectins and their ligands.
Physiol Rev
79:
181–213,
1999.
|
55. |
Cyster JG.
Chemokines and cell migration in secondary lymphoid organs.
Science
286:
2098–2102,
1999.
|
56. |
Kim CH and
Broxmeyer HE.
Chemokines: Signal lamps for trafficking of T and B cells for development and effector function.
J Leukoc Biol
65:
6–15,
1999.
|
57. |
Zlotnik A and
Yoshie O.
Chemokines: a new classification system and their role in immunity.
Immunity
12:
121–127,
2000.
|
58. |
Moser B and
Loetscher P.
Lymphocyte traffic control by chemokines.
Nat Immunol
2:
123–128,
2001.
|
59. |
Mackay CR.
Chemokines: immunology's high impact factors.
Nat Immunol
2:
95–101,
2001.
|
60. |
Rot A and
von Andrian UH.
Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells.
Ann Rev Immunol
22:
891–928,
2004.
|
61. |
Nibbs R,
Graham G and
Rot A.
Chemokines on the move: control by the chemokine “interceptors” Duffy blood group antigen and D6.
Semin Immunol
15:
287–294,
2003.
|
62. |
Lee JS,
Frevert CW,
Wurfel MM,
Peiper SC,
Wong VA,
Ballman KK,
Ruzinski JT,
Rhim JS,
Martin TR and
Goodman RB.
Duffy antigen facilitates movement of chemokine across the endothelium in vitro and promotes neutrophil transmigration in vitro and in vivo.
J Immunol
170:
5244–5251,
2003.
|
63. |
von Andrian UH.
The immunoglobulin superfamily in leukocyte recruitment. In:
Leukocyte Recruitment, Endothelial Cell Adhesion Molecules, and Transcriptional Control: Insights for Drug Discovery,
ed. Collins T.
Norwell, MA:
Kluwer Academic Publishing,
2000,
pp. 55–107.
|
64. |
Johnson‐Leger C,
Aurrand‐Lions M and
Imhof BA.
The parting of the endothelium: miracle, or simply a junctional affair?
J Cell Sci
113
(Pt 6):
921–933,
2000.
|
65. |
Muller WA.
Leukocyte‐endothelial‐cell interactions in leukocyte transmigration and the inflammatory response.
Trends Immunol
24:
327–334,
2003.
|
66. |
Rosen H,
Sanna G and
Alfonso C.
Egress: a receptor‐regulated step in lymphocyte trafficking.
Immunol Rev
195:
160–177,
2003.
|
67. |
Brinkmann V and
Lynch K.
FTY720: targeting G‐protein‐coupled receptors for sphingosine 1‐phosphate in transplantation and autoimmunity.
Curr Opin Immunol
14:
569,
2002.
|
68. |
Chiba K,
Yanagawa Y,
Masubuchi Y,
Kataoka H,
Kawaguchi T,
Ohtsuki M and
Hoshino Y.
FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I, FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing.
J Immunol
160:
5037–5044,
1998.
|
69. |
Henning G,
Ohl L,
Junt T,
Reiterer P,
Brinkmann V,
Nakano H,
Hohenberger W,
Lipp M and
Forster R.
CC chemokine receptor 7‐dependent and ‐independent pathways for lymphocyte homing: modulation by FTY720.
J Exp Med
194:
1875–1881,
2001.
|
70. |
Pinschewer DD,
Ochsenbein AF,
Odermatt B,
Brinkmann V,
Hengartner H and
Zinkernagel RM.
FTY720 immunosuppression impairs effector T cell peripheral homing without affecting induction, expansion, and memory.
J Immunol
164:
5761–5770,
2000.
|
71. |
Xie JH,
Nomura N,
Koprak SL,
Quackenbush EJ,
Forrest MJ and
Rosen H.
Sphingosine‐1 ‐phosphate receptor agonism impairs the efficiency of the local immune response by altering trafficking of naïve and antigen‐activated CD4(+) T cells.
J Immunol
170:
3662–3670,
2003.
|
72. |
Mandala S,
Hajdu R,
Bergstrom J,
Quackenbush E,
Xie J,
Milligan J,
Thornton R,
Shei GJ,
Card D,
Keohane C,
Rosenbach M,
Hale J,
Lynch CL,
Rupprecht K,
Parsons W and
Rosen H.
Alteration of lymphocyte trafficking by sphingosine‐1‐phosphate receptor agonists.
Science
296:
346–349,
2002.
|
73. |
Brinkmann V,
Davis MD,
Heise CE,
Albert R,
Cottens S,
Hof R,
Bruns C,
Prieschl E,
Baumruker T,
Hiestand P,
Foster CA,
Zollinger M and
Lynch KR.
The immune modulator FTY720 targets sphingosine 1‐phosphate receptors.
J Biol Client
277:
21453–21457,
2002.
|
74. |
Matloubian M,
Lo CG,
Cinamon G,
Lesneski MJ,
Xu Y,
Brinkmann V,
Allende ML,
Proia RL and
Cyster JG.
Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1.
Nature
427:
355–360,
2004.
|
75. |
Zanjani ED,
Ascensao JL and
Tavassoli M,
Liver‐derived fetal hematopoietic stem cells selectively and preferentially home to the fetal bone marrow.
Blood
81:
399–404,
1993.
|
76. |
Delassus S and
Cumano A.
Circulation of hematopoietic progenitors in the mouse embryo.
Immunity
4:
97–106,
1996.
|
77. |
Sanchez M‐J,
Holmes A,
Miles C and
Dzierzak E.
Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo.
Immunity
5:
513–525,
1996.
|
78. |
Foss DL,
Donskoy E and
Goldschneider I.
The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice.
J Exp Med
193:
365–374,
2001.
|
79. |
Lind EF,
Prockop SE,
Porritt HE and
Petrie HT.
Mapping precursor movement through the postnatal thymus reveals specific microenvi‐ronments supporting defined stages of early lymphoid development.
J Exp Med
194:
127–134,
2001.
|
80. |
Petrie HT.
Cell migration and the control of post‐natal T‐cell lymphopoiesis in the thymus.
Nat Rev Immunol
3:
859–866,
2003.
|
81. |
Sawada M,
Nagamine J,
Takeda K,
Utsumi K,
Kosugi A,
Tatsumi Y,
Hamaoka T,
Miyake K,
Nakajima K,
Watanabe T,
Sakakibara S and
Fujiwara H.
Maturation stage‐associated transition and its correlation with their capacity to adhere to thymic stromal cells.
J Immunol
149:
3517–3524,
1992.
|
82. |
Crisa L,
Cirulli V,
Ellisman MH,
Ishii JK,
Elices MJ and
Salomon DR.
Cell adhesion and migration are regulated at distinct stages of thymic T cell development: the roles of fibronectin, VLA4. and VLA5.
J Exp Med
184:
215–228,
1996.
|
83. |
Prockop SE,
Palencia S,
Ryan CM,
Gordon K,
Gray D and
Petrie HT.
Stromal cells provide the matrix for migration of early lymphoid progenitors through the thymic cortex.
J Immunol
169:
4354–4361,
2002.
|
84. |
Kim CH,
Pelus LM,
White JR and
Broxmeyer HE.
Differential che‐motactic behavior of developing T cells in response to thymic chemokines.
Blood
91:
4434–4443,
1998.
|
85. |
Campbell JJ,
Pan J and
Butcher EC.
Cutting edge: developmental switches in chemokine responses during T cell maturation.
J Immunol
163:
2353–2357,
1999.
|
86. |
Plotkin J,
Prockop SE,
Lepique A and
Petrie HT.
Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus.
J Immunol
171:
4521–4527,
2003.
|
87. |
Chantry D,
Romagnani P,
Raport CJ,
Wood CL,
Epp A,
Romagnani S and
Gray PW.
Macrophage‐derived chemokine is localized to thymic medullary epithelial cells and is a chemoattractant for CD3(+). CD4(+), CD8(low) thymocytes.
Blood
94:
1890–1898,
1999.
|
88. |
Misslitz A,
Pabst O,
Hintzen G,
Ohl L,
Kremmer E,
Petrie HT and
Forster R.
Thymic T cell development and progenitor localization depend on CCR7.
J Exp Med
200:
481–491,
2004.
|
89. |
Witt CM and
Robey EA.
The ins and outs of CCR7 in the thymus.
J Exp Med
200:
405–409,
2004.
|
90. |
Ueno T,
Saito F,
Gray DH,
Kuse S,
Hieshima K,
Nakano H,
Kakiuchi T,
Lipp M,
Boyd RL and
Takahama Y.
CCR7 signals are essential for cortex‐medulla migration of developing thymocytes.
J Exp Med
200:
493–505,
2004.
|
91. |
Norment AM,
Bogatzki LY,
Gantner BN and
Bevan MJ.
Murine CCR9, a chemokine receptor for thymus‐expressed chemokine that is up‐regulated following pre‐TCR signaling.
J Immunol
164:
639–648,
2000.
|
92. |
Dairaghi DJ,
Franz‐Bacon K,
Callas E,
Cupp J,
Schall TJ,
Tamraz SA,
Boehme SA,
Taylor N and
Bacon KB.
Macrophage inflammatory protein‐1 beta induces migration and activation of human thymocytes.
Blood
91:
2905–2913,
1998.
|
93. |
Kremer L,
Carramolino L,
Goya I,
Zaballos A,
Gutierrez J,
Moreno‐Ortiz MdC,
Martinez AC and
Marquez G.
The transient expression of C‐C chemokine receptor 8 in thymus identifies a thymocyte subset committed to become CD4+ single‐positive T cells.
J Immunol
166:
218–225,
2001.
|
94. |
Lepique AP,
Palencia S,
Irjala H and
Petrie HT.
Characterization of vascular adhesion molecules that may facilitate progenitor homing in the post‐natal mouse thymus.
Clin Dev Immunol
10:
27–33,
2003.
|
95. |
Arroyo AG,
Yang JT,
Rayburn H and
Hynes RO.
Differential requirements for α4 integrins during fetal and adult hematopoiesis.
Cell
85:
997–1008,
1996.
|
96. |
Wu L,
Kincade PW and
Shortman K.
The CD44 expressed on the earliest intrathymic precursor population functions as a thymus homing molecule but does not bind to hyaluronate.
Immunol Lett
38:
69–75,
1993.
|
97. |
Uehara S,
Grinberg A,
Farber JM and
Love PE.
A role for CCR9 in T lymphocyte development and migration.
J Immunol
168:
2811–2819,
2002.
|
98. |
Wurbel MA,
Malissen M,
Guy‐Grand D,
Meffre E,
Nussenzweig MC,
Richelme M,
Carrier A and
Malissen B.
Mice lacking the CCR9 CC‐chemokine receptor show a mild impairment of early T‐ and B‐cell development and a reduction in T‐cell receptor gam‐madelta(+) gut intraepithelial lymphocytes.
Blood
98:
2626–2632,
2001.
|
99. |
Ara T,
Itoi M,
Kawabata K,
Egawa T,
Tokoyoda K,
Sugiyama T,
Fujii N,
Amagai T and
Nagasawa T.
A role of CXC chemokine ligand 12/stromal cell‐derived factor‐1/pre‐B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo.
J Immunol
170:
4649–4655,
2003.
|
100. |
Zou Y‐R,
Kottmann AH,
Kuroda M,
Taniuchi I and
Littman DR.
Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development.
Nature
393:
595–599,
1998.
|
101. |
Bleul CC and
Boehm T.
Chemokines define distinct microenvironments in the developing thymus.
Eur J Immunol
30:
3371–3379,
2000.
|
102. |
Wilkinson B,
Owen JJ and
Jenkinson EJ.
Factors regulating stem cell recruitment to the fetal thymus.
J Immunol
162:
3873–3881,
1999.
|
103. |
Fine JS and
Kruisbeek AM.
The role of LFA‐1/1CAM‐1 interactions during murine T lymphocyte development.
J Immunol
147:
2852–2859,
1991.
|
104. |
Ruiz P,
Wiles MV and
Imhof BA.
Alpha 6 integrins participate in pro‐T cell homing to the thymus.
Eur J Immunol
25:
2034–2041,
1995.
|
105. |
Potocnik AJ,
Brakebusch C and
Fassler R.
Fetal and adult hematopoietic stem cells require betal integrin function for colonizing fetal liver, spleen, and bone marrow.
Immunity
12:
653–663,
2000.
|
106. |
Kawakami N,
Nishizawa F,
Sakane N,
Iwao M,
Tsujikawa K,
Ikawa M,
Okabe M and
Yamamoto H.
Roles of integrins and CD44 on the adhesion and migration of fetal liver cells to the fetal thymus.
J Immunol
163:
3211–3216,
1999.
|
107. |
Chaffin KE and
Perlmutter RM.
A pertussis toxin‐sensitive process controls thymocyte emigration.
Eur J Immunol
21:
2565–2573,
1991.
|
108. |
Lee CK,
Kin K,
Welniak LA,
Murphy WJ,
Muegge K and
Durum SK.
Thymic emigrants isolated by a new method possess unique phenotypic and functional properties.
Blood
97:
1360–1369,
2001.
|
109. |
Ueno T,
Hara K,
Willis MS,
Malin MA,
Hopken UE,
Gray DH,
Matsushima K,
Lipp M,
Springer TA,
Boyd RL,
Yoshie O and
Takahama Y.
Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus.
Immunity
16:
205–218,
2002.
|
110. |
Poznansky MC,
Olszak IT,
Evans RH,
Wang Z,
Foxall RB,
Olson DP,
Weibrecht K,
Luster AD and
Scadden DT.
Thymocyte emigration is mediated by active movement away from stroma‐derived factors.
J Clin Invest
109:
1101–1110,
2002.
|
111. |
Cyster JG.
Chemorepulsion and thymocyte emigration.
J Clin Invest
109:
1011–1012,
2002.
|
112. |
Forster R,
Schubel A,
Breitfeld D,
Kremmer E,
Renner‐Muller I,
Wolf E and
Lipp M.
CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs.
Cell
99:
23–33,
1999.
|
113. |
Nakano H,
Mori S,
Yonekawa H,
Nariuchi H,
Matsuzawa A and
Kakiuchi T.
A novel mutant gene involved in T‐lymphocyte‐specific homing into peripheral lymphoid organs on mouse chromosome 4.
Blood
91:
2886–2895,
1998.
|
114. |
Gunn MD,
Kyuwa S,
Tarn C,
Kakiuchi T,
Matsuzawa A,
Williams LT and
Nakano H.
Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization.
J Exp Med
189:
451–460,
1999.
|
115. |
Ma Q,
Jones D and
Springer TA.
The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment.
Immunity
10:
463–471,
1999.
|
116. |
Tsark EC,
Dao MA,
Wang X,
Weinberg K and
Nolta JA.
IL‐7 enhances the responsiveness of human T cells that develop in the bone marrow of athymic mice.
J Immunol
166:
170–181,
2001.
|
117. |
Kinosita R and
Ohno S.
Studies on bone marrow biodynamics: Observations on microcirculation in rabbit bone marrow in situ.
Europ Conf Microcircul
1:
106–109,
1960.
|
118. |
McCuskey RS,
McClugage SG, Jr. and
Younker WJ.
Microscopy of living bone marrow in situ.
Blood
38:
87–95,
1971.
|
119. |
Mazo IB,
Gutierrez‐Ramos J‐C,
Frenette PS,
Hynes RO,
Wagner DD and
von Andrian UH.
Hematopoietic progenitor cell rolling in bone marrow microvessels: Parallel contributions by endothelial selectins and VCAM‐1.
J Exp Med
188:
465–474,
1998.
|
120. |
Mazo IB and
von Andrian UH.
Adhesion and homing of blood‐borne cells in bone marrow microvessels.
J Leukoc Biol
66:
25–32,
1999.
|
121. |
Hidalgo A,
Weiss LA and
Frenette PS.
Functional selectin ligands mediating human CD34(+) cell interactions with bone marrow endothelium are enhanced postnatally.
J Clin Invest
110:
559–569,
2002.
|
122. |
Wright DE,
Wagers AJ,
Gulati AP,
Johnson FL and
Weissman IL.
Physiological migration of hematopoietic stem and progenitor cells.
Science
294:
1933–1936,
2001.
|
123. |
Papayannopoulou T,
Craddock C,
Nakamoto B,
Priestley GV and
Wolf NS.
The VLA4/VCAM‐1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen.
Proc Natl Acad Sci USA
92:
9647–9651,
1995.
|
124. |
Jacobsen K,
Kravitz J,
Kincade PW and
Osmond DG.
Adhesion receptors on bone marrow stromal cells: in vivo expression of vascular cell adhesion molecule‐1 by reticular cells and sinusoidal endothelium in normal and g‐irradiated mice.
Blood
87:
73–82,
1996.
|
125. |
Katayama Y,
Hidalgo A,
Furie BC,
Vestweber D,
Furie B and
Frenette PS.
PSGL‐1 participates in E‐selectin‐mediated progenitor homing to bone marrow: evidence for cooperation between E‐selectin ligands and alpha4 integrin.
Blood
102:
2060–2067,
2003.
|
126. |
Mazo IB,
Quackenbush EJ,
Lowe JB and
von Andrian UH.
Total body irradiation causes profound changes in endothelial traffic molecules for hematopoietic progenitor cell recruitment to bone marrow.
Blood
99:
4182–4191,
2002.
|
127. |
Peled A,
Grabovsky V,
Habler L,
Sandbank J,
Arenzana‐Seisdedos F,
Petit I,
Ben‐Hur H,
Lapidot T and
Alon R.
The chemokine SDF‐1 stimulates integrin‐mediated arrest of CD34(+) cells on vascular endothelium under shear flow.
J Clin Invest
104:
1199–1211,
1999.
|
128. |
Papayannopoulou T,
Priestley GV,
Nakamoto B,
Zafiropoulos V and
Scott LM.
Molecular pathways in bone marrow homing: dominant role of alpha(4)beta(1) over beta(2)‐integrins and selectins.
Blood
98:
2403–2411,
2001.
|
129. |
Vermeulen M,
Le Pesteur F,
Gagnerault M‐C,
Mary J‐Y,
Sainteny F and
Lepault F.
Role of adhesion molecules in the homing and mobilization of murine hematopoietic stem and progenitor cells.
Blood
92:
894–900,
1998.
|
130. |
Avigdor A,
Goichberg P,
Shivtiel S,
Dar A,
Peled A,
Samira S,
Kollet O,
Hershkoviz R,
Alon R,
Hardan I,
Ben‐Hur H,
Naor D,
Nagler A and
Lapidot T.
CD44 and hyaluronic acid cooperate with SDF‐1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow.
Blood
103:
2981–2989,
2004.
|
131. |
Aiuti A,
Webb IJ,
Bleul C,
Springer TA and
Gutierrez‐Ramos JC.
The chemokine SDF‐1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood.
J Exp Med
185:
111–120,
1997.
|
132. |
Wright DE,
Bowman EP,
Wagers AJ,
Butcher EC and
Weissman IL.
Hematopoietic stem cells are uniquely selective in their migratory response to chemokines.
J Exp Med
195:
1145–1154,
2002.
|
133. |
Christensen JL,
Wright DE,
Wagers AJ and
Weissman IL.
Circulation and chemotaxis of fetal hematopoietic stem cells.
PLoS Biol
2:
E75,
2004.
|
134. |
Frenette PS,
Subbarao S,
Mazo IB,
von Andrian UH and
Wagner DD.
Endothelial selectins and vascular cell adhesion molecule‐1 promote hematopoietic progenitor homing to bone marrow [see comments].
Proc Natl Acad Sci USA
95:
14423–14428,
1998.
|
135. |
Katayama Y,
Hidalgo A,
Peired A and
Frenette PS.
Integrin alpha‐4beta7 and its counterreceptor MAdCAM‐1 contribute to hematopoietic progenitor recruitment into bone marrow following transplantation.
Blood
104:
2020–2026,
2004.
|
136. |
Nie Y,
Waite J,
Brewer F,
Sunshine MJ,
Littman DR and
Zou YR.
The role of CXCR4 in maintaining peripheral B cell compartments and humoral immunity.
J Exp Med
200:
1145–1156,
2004.
|
137. |
Bowman EP,
Campbell JJ,
Soler D,
Dong Z,
Manlongat N,
Picarella D,
Hardy RR and
Butcher EC.
Developmental switches in chemokine response profiles during B cell differentiation and maturation.
J Exp Med
191:
1303–1318,
2000.
|
138. |
Krzysiek R,
Lefevre EA,
Bernard J,
Foussat A,
Galanaud P,
Louache F and
Richard Y.
Regulation of CCR6 chemokine receptor expression and responsiveness to macrophage inflammatory protein‐3alpha/CCL20 in human B cells.
Blood
96:
2338–2345,
2000.
|
139. |
Slifka M,
Whitmire J and
Ahmed R.
Bone Marrow Contains Virus‐Specific Cytotoxic T Lymphocytes.
Blood
90:
2103–2108,
1997.
|
140. |
Kuroda MJ,
Schmitz JE,
Seth A,
Veazey RS,
Nickerson CE,
Lifton MA,
Dailey PJ,
Forman MA,
Racz P,
Tenner‐Racz K and
Letvin NL.
Simian immunodeficiency virus‐specific cytotoxic T lymphocytes and cell‐associated viral RNA levels in distinct lymphoid compartments of SIVmac‐infected rhesus monkeys.
Blood
96:
1474–1479,
2000.
|
141. |
Marshall DR,
Turner SJ,
Belz GT,
Wingo S,
Andreansky S,
Sangster MY,
Riberdy JM,
Liu T,
Tan M and
Doherty PC.
Measuring the diaspora for virus‐specific CD8+ T cells.
Proc Natl Acad Sci USA
98:
6313–6318,
2001.
|
142. |
Tripp RA,
Topham DJ,
Watson SR and
Doherty PC.
Bone marrow can function as a lymphoid organ during a primary immune response under conditions of disrupted lymphocyte trafficking.
J Immunol
158:
3716–3720,
1997.
|
143. |
Feuerer M,
Beckhove P,
Garbi N,
Mahnke Y,
Limmer A,
Hommel M,
Hammerling GJ,
Kyewski B,
Hamann A,
Umansky V and
Schirrmacher V.
Bone marrow as a priming site for T‐cell responses to blood‐borne antigen.
Nat Med
9:
1151–1157,
2003.
|
144. |
Koni PA,
Joshi SK,
Temann UA,
Olson D,
Burkly L and
Flavell RA.
Conditional Vascular Cell Adhesion Molecule 1 Deletion in Mice. Impaired lymphocyte migration to bone marrow.
J Exp Med
193:
741–754,
2001.
|
145. |
Grabovsky V,
Feigelson S,
Chen C,
Bleijs DA,
Peled A,
Cinamon G,
Baleux F,
Arenzana‐Seisdedos F,
Lapidot T,
van Kooyk Y,
Lobb RR and
Alon R.
Subsecond induction of alpha4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions.
J Exp Med
192:
495–506,
2000.
|
146. |
Kunkel EJ and
Butcher EC.
Plasma‐cell homing.
Nat Rev Immunol
3:
822–829,
2003.
|
147. |
Hargreaves DC,
Hyman PL,
Lu TT,
Ngo VN,
Bidgol A,
Suzuki G,
Zou YR,
Littman DR and
Cyster JG.
A coordinated change in chemokine responsiveness guides plasma cell movements.
J Exp Med
194:
45–56,
2001.
|
148. |
Hauser AE,
Debes GF,
Arce S,
Cassese G,
Hamann A,
Radbruch A and
Manz RA.
Chemotactic responsiveness toward ligands for CXCR3 and CXCR4 is regulated on plasma blasts during the time course of a memory immune response.
J Immunol
169:
1277–1282,
2002.
|
149. |
Lazarus NH,
Kunkel EJ,
Johnston B,
Wilson E,
Youngman KR and
Butcher EC.
A common mucosal chemokine (mucosae‐associated epithelial chemokine/CCL28) selectively attracts IgA plasmablasts.
J Immunol
170:
3799–3805,
2003.
|
150. |
Youngman KR,
Franco MA,
Kuklin NA,
Rott LS,
Butcher EC and
Greenberg HB.
Correlation of tissue distribution, developmental phenotype, and intestinal homing receptor expression of antigen‐specific B cells during the murine anti‐rotavirus immune response.
J Immunol
168:
2173–2181,
2002.
|
151. |
Gretz JE,
Norbury CC,
Anderson AO,
Proudfoot AE and
Shaw S.
Lymph‐borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex.
J Exp Med
192:
1425–1440,
2000.
|
152. |
von Andrian UH and
Mempel TR.
Homing and cellular traffic in lymph nodes.
Nat Rev Immunol
3:
867–878,
2003.
|
153. |
von Andrian UH.
Intravital microscopy of the peripheral lymph node microcirculation in mice.
Microcirculation
3:
287–300,
1996.
|
154. |
Girard J‐P and
Springer TA.
High endothelial venules (HEVs): Specialized endothelium for lymphocyte migration.
Immunol Today
16:
449–457,
1995.
|
155. |
Gauguet J‐M,
Bonasio R and
von Andrian UH.
High Endothelial Venules. In:
Blood Vessels and Endothelial Cell Phenotypes in Health and Disease,
ed. Aird WC.
New York:
Marcel Dekker,
2004.
|
156. |
Andrews P,
Milsom DW and
Ford WL.
Migration of lymphocytes across specialized vascular endothelium V. Production of a sulphated macromolecule by high endothelial cells in lymph nodes.
J Cell Sci
57:
277–292,
1982.
|
157. |
Yeh JC,
Hiraoka N,
Petryniak B,
Nakayama J,
Ellies LG,
Rabuka D,
Hindsgaul O,
Marth JD,
Lowe JB and
Fukuda M.
Novel sulfated lymphocyte homing receptors and their control by a Corel extension beta 1,3‐N‐acetylglucosaminyltransferase.
Cell
105:
957–969,
2001.
|
158. |
Streeter PR,
Rouse BTN and
Butcher EC.
Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes.
J Cell Biol
107:
1853–1862,
1988.
|
159. |
Ellies LG,
Tsuboi S,
Petryniak B,
Lowe JB,
Fukuda M and
Marth JD.
Core 2 oligosaccharide biosynthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation.
Immunity
9:
881–890,
1998.
|
160. |
Maly P,
Thall AD,
Petryniak B,
Rogers CE,
Smith PL,
Marks RM,
Kelly RJ,
Gersten KM,
Cheng G,
Saunders TL,
Camper SA,
Camphausen RT,
Sullivan FX,
Isogai Y,
Hindsgaul O,
von Andrian UH and
Lowe JB.
The α(1–3) fucosyltransferase Fuc‐TVII controls leukocyte trafficking through an essential role in L‐, E‐, and P‐selectin ligand biosynthesis.
Cell
86:
643–653,
1996.
|
161. |
Hemmerich S,
Butcher EC and
Rosen SD.
Sulfation‐dependent recognition of high endothelial venules (HEV)‐ligands by L‐selectin and MECA 79.
J Exp Med
180:
2219–2226,
1994.
|
162. |
M'Rini C,
Cheng G,
Schweitzer C,
Cavanagh LL,
Palframan RT,
Mempel TR,
Warnock RA,
Lowe JB,
Quackenbush EJ and
von Andrian UH.
A novel endothelial L‐selectin ligand activity in lymph node medulla that is regulated by a(1–3)‐fucosyItransferase‐IV.
J Exp Med
198:
1301–1312,
2003.
|
163. |
Kuschert GS,
Coulin F,
Power CA,
Proudfoot AE,
Hubbard RE,
Hoogewerf AJ and
Wells TN.
Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses.
Biochemistry
38:
12959–12968,
1999.
|
164. |
Palframan RT,
Jung S,
Cheng G,
Weninger W,
Luo Y,
Dorf M,
Littman DR,
Rollins BJ,
Zweerink H,
Rot A and
von Andrian UH.
Inflammatory chemokine transport and presentation in HEV: A remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues.
J Exp Med
194:
1361–1374,
2001.
|
165. |
Stein JV,
Rat A,
Luo Y,
Narasimhaswamy M,
Nakano H,
Gunn MD,
Matsuiawa A,
Quackenbush EJ,
Dorf ME and
von Andrian UH.
The CC chemokine thymus‐derived chemotactic agent 4 (TCA‐4, secondary lymphoid tissue chemokine, 6Ckine, exodus‐2) triggers lymphocyte function‐associated antigen 1‐mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules.
J Exp Med
191:
61–76,
2000.
|
166. |
Weninger W,
Carlsen HS,
Goodarzi M,
Moazed F,
Crowley MA,
Baekkevold ES,
Cavanagh LL and
von Andrian UH.
Naïve T cell recruitment to non‐lymphoid tissues: a role for endothelium‐expressed CCL21 in autoimmune disease and lymphoid neogenesis.
J Immunol
170:
4638–4648,
2003.
|
167. |
Scimone ML,
Felbinger TW,
Mazo IB,
Stein JV,
von Andrian UH and
Weninger W.
CXCL12 mediates CCR7‐independent homing of central memory cells, but not naïve T cells, in peripheral lymph nodes.
J Exp Med
199:
1113–1120,
2004.
|
168. |
Okada T,
Ngo VN,
Ekland EH,
Forster R,
Lipp M,
Littman DR and
Cyster JG.
Chemokine requirements for B cell entry to lymph nodes and Peyer's patches.
J Exp Med
196:
65–75,
2002.
|
169. |
Ebisuno Y,
Tanaka T,
Kanemitsu N,
Kanda H,
Yamaguchi K,
Kaisho T,
Akira S and
Miyasaka M.
Cutting edge: the B cell chemokine CXC chemokine ligand 13/B lymphocyte chemoattractant is expressed in the high endothelial venules of lymph nodes and Peyer's patches and affects B cell trafficking across high endothelial venules.
J Immunol
171:
1642–1646,
2003.
|
170. |
Robbiani DF,
Finch RA,
Jager D,
Muller WA,
Sartorelli AC and
Randolph GJ.
The leukotriene C(4) transporter MRP1 regulates CCL19 (M1P‐3beta, ELC)‐dependent mobilization of dendritic cells to lymph nodes.
Cell
103:
757–768,
2000.
|
171. |
Nakano H and
Gunn MD.
Gene duplications at the chemokine locus on mouse chromosome 4: multiple strain‐specific haplotypes and the deletion of secondary lymphoid‐organ chemokine and EBI‐1 ligand chemokine genes in the pit mutation.
J Immunol
166:
361–369,
2001.
|
172. |
Xu H,
Guan H,
Zu G,
Bullard D,
Hanson J,
Slater M and
Elmets CA.
The role of ICAM‐1 molecule in the migration of Langerhans cells in the skin and regional lymph node.
Eur J Immunol
31:
3085–3093,
2001.
|
173. |
Itano AA,
McSorley SJ,
Reinhardt RL,
Ehst BD,
Ingulli E,
Rudensky AY and
Jenkins MK.
Distinct Dendritic Cell Populations Sequentially Present a Subcutaneous Antigen to CD4 T Cells and Stimulate Different Aspects of Cell‐Mediated Immunity.
Immunity
19:
47–57,
2003.
|
174. |
Ingulli E,
Ulman DR,
Lucido MM and
Jenkins MK.
In situ analysis reveals poysical interactions between CD11b+ dendritic cells and antigen‐specific CD4 T cells after subcutaneous injection of antigen.
J Immunol
169:
2247–2252,
2002.
|
175. |
Bajenoff M,
Granjeaud S and
Guerder S.
The Strategy of T Cell Antigen‐presenting Cell Encounter in Antigen‐draining Lymph Nodes Revealed by Imaging of Initial T Cell Activation.
J Exp Med
198:
715–724,
2003.
|
176. |
Denk W,
Strickler JH and
Webb WW.
Two‐photon laser scanning fluorescence microscopy.
Science
248:
73–76,
1990.
|
177. |
Cahalan MD,
Parker I,
Wei SH and
Miller MJ.
Two‐photon tissue imaging: seeing the immune system in a fresh light.
Nat Rev Immunol
2:
872–880,
2002.
|
178. |
von Andrian UH.
Immunology. T cell activation in six dimensions.
Science
296:
1815–1817,
2002.
|
179. |
Miller MJ,
Wei SH,
Cahalan MD and
Parker I.
Autonomous T cell trafficking examined in vivo with intravital two‐photon microscopy.
Proc Natl Acad Sci USA
100:
2604–2609,
2003.
|
180. |
Bousso P and
Robey E.
Dynamics of CD8(+) T cell priming by dendritic cells in intact lymph nodes.
Afar Immunol
4:
579–585,
2003.
|
181. |
Mempel TR,
Henrickson SE and
von Andrian UH.
T cell priming by dendritic cells in lymph nodes occurs in three distinct phases.
Nature
427:
154–159,
2004.
|
182. |
Nagler‐Anderson C.
Man the barrier! Strategic defences in the intestinal mucosa.
Nat Rev Immunol
1:
59–67,
2001.
|
183. |
Azzali G.
Structure, lymphatic vascularization and lymphocyte migration in mucosa‐associated lymphoid tissue.
Immunol Rev
195:
178–189,
2003.
|
184. |
Mowat AM.
Anatomical basis of tolerance and immunity to intestinal antigens.
Nat Rev Immunol
3:
331–341,
2003.
|
185. |
Brandtzaeg P,
Farstad IN and
Haraldsen G.
Regional specialization in the mucosal immune system: primed cells do not always home along the same track.
Immunol Today
20:
267–277,
1999.
|
186. |
Rescigno M,
Urbano M,
Valzasina B,
Francolini M,
Rotta G,
Bonasio R,
Granucci F,
Kraehenbuhl JP and
Ricciardi‐Castagnoli P.
Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria.
Nat Immunol
2:
361–367,
2001.
|
187. |
Berg EL,
McEvoy LM,
Berlin C,
Bargatze RF and
Butcher EC.
L‐selectin‐mediated lymphocyte rolling on MAdCAM‐1.
Nature
366:
695–698,
1993.
|
188. |
Berlin C,
Berg EL,
Briskin MJ,
Andrew DP,
Kilshaw PJ,
Holzmann B,
Weissman IL,
Hamann A and
Butcher EC.
α4 β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM‐1.
Celll
74:
185–195,
1993.
|
189. |
Bargatze RF,
Jutila MA and
Butcher EC.
Distinct roles of L‐selectin and integrins α4β7 and LFA‐I in lymphocyte homing to Peyer's patch‐HEV in situ: The multistep model confirmed and refined.
Immunity
3:
99–108,
1995.
|
190. |
Arbones ML,
Ord DC,
Ley K,
Ratech H,
Maynard‐Curry C,
Otten G,
Capon DJ and
Tedder TF.
Lymphocyte homing and leukocyte rolling and migration are impaired in L‐selectin‐deficient mice.
Immunity
1:
247–260,
1994.
|
191. |
Wagner N,
Lohler J,
Kunkel EJ,
Ley K,
Leung E,
Krissansen G,
Rajewsky K and
Muller W.
Critical role for β7 integrins in formation of the gut‐associated lymphoid tissue.
Nature
382:
366–370,
1996.
|
192. |
Streeter PR,
Lakey‐Berg E,
Rouse BTN,
Bargatze RF and
Butcher EC.
A tissue‐specific endothelial cell molecule involved in lymphocyte homing.
Nature
331:
41–46,
1988.
|
193. |
Berlin C,
Bargatze RF,
von Andrian UH,
Szabo MC,
Hasslen SR,
Nelson RD,
Berg EL,
Erlandsen SL and
Butcher EC.
α4 integrinsmediate lymphocyte attachment and rolling under physiologic flow.
Cell
80:
413–422,
1995.
|
194. |
Warnock RA,
Campbell JJ,
Dorf ME,
Matsuzawa A,
McEvoy LM and
Butcher EC.
The role of chemokines in the microenvironmental control of T versus B cell arrest in Peyer's patch high endothelial venules.
J Exp Med
191:
77–88,
2000.
|
195. |
Berlin‐Rufenach C,
Otto F,
Mathies M,
Westermann J,
Owen MJ,
Hamann A and
Hogg N.
Lymphocyte migration in lymphocyte function‐associated antigen (LFA)‐1‐deficient mice.
J Exp Med
189:
1467–1478,
1999.
|
196. |
Iwasaki A and
Kelsall BL.
Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)‐3alpha, MIP‐3beta, and secondary lymphoid organ chemokine.
J Exp Med
191:
1381–1394,
2000.
|
197. |
Zhao X,
Sato A,
Dela Cruz CS,
Linehan M,
Luegering A,
Kucharzik T,
Shirakawa AK,
Marquez G,
Farber JM,
Williams I and
Iwasaki A.
CCL9 is secreted by the follicle‐associated epithelium and recruits dome region Peyer's patch CD11b+ dendritic cells.
J Immunol
171:
2797–2803,
2003.
|
198. |
Spahn TW,
Weiner HL,
Rennert PD,
Lugering N,
Fontana A,
Domschke W and
Kucharzik T.
Mesenteric lymph nodes are critical for the induction of high‐dose oral tolerance in the absence of Peyer's patches.
Eur J Immunol
32:
1109–1113,
2002.
|
199. |
Mowat AM and
Viney JL.
The anatomical basis of intestinal immunity.
Immunol Rev
156:
145–166,
1997.
|
200. |
Mebius RE.
Organogenesis of lymphoid tissues.
Nat Rev Immunol
3:
292–303,
2003.
|
201. |
Wagner N,
Lohler J,
Tedder TF,
Rajewsky K,
Muller W and
Steeber DA.
L‐selectin and beta7 integrin synergistically mediate lymphocyte migration to mesenteric lymph nodes.
Eur J Immunol
28:
3832–3839,
1998.
|
202. |
Grayson MH,
Hotchkiss RS,
Karl IE,
Holtzman MJ and
Chaplin DD.
Intravital microscopy comparing T lymphocyte trafficking to the spleen and the mesenteric lymph node.
Am J Physiol Heart Circ Physiol
284:
H2213–H2226,
2003.
|
203. |
Andrew DP,
Spellberg JP,
Takimoto H,
Schmits R,
Mak TW and
Zukowski MM.
Transendothelial migration and trafficking of leukocytes in LFA‐1‐deficient mice.
Eur J Immunol
28:
1959–1969,
1998.
|
204. |
Liu LM and
MacPherson GG.
Lymph‐borne (veiled) dendritic cells can acquire and present intestinally administered antigens.
Immunology
73:
281–286,
1991.
|
205. |
Liu LM and
MacPherson GG.
Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naïve T cells in vivo.
J Exp Med
177:
1299–1307,
1993.
|
206. |
Huang FP,
Platt N,
Wykes M,
Major JR,
Powell TJ,
Jenkins CD and
MacPherson GG.
A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes.
J Exp Med
191:
435–444,
2000.
|
207. |
Pron B,
Boumaila C,
Jaubert F,
Berche P,
Milon G,
Geissmann F and
Gaillard JL.
Dendritic cells are early cellular targets of Listeria monocytogenes after intestinal delivery and are involved in bacterial spread in the host.
Cell Microbiol
3:
331–340,
2001.
|
208. |
Steiniger B,
Barth P and
Hellinger A.
The perifollicular and marginal zones of the human splenic white pulp: do fibroblasts guide lymphocyte immigration?
Am J Pathol
159:
501–512,
2001.
|
209. |
Brelinska R and
Pilgrim C.
The significance of the subcompartments of the marginal zone for directing lymphocyte traffic within the splenic pulp of the rat.
Cell Tissue Res
226:
155–165,
1982.
|
210. |
van Ewijk W and
Nieuwenhuis P.
Compartments, domains and migration pathways of lymphoid cells in the splenic pulp.
Experientia
41:
199–208,
1985.
|
211. |
Frenette PS,
Mayadas TN,
Rayburn H,
Hynes RO and
Wagner DD.
Susceptibility to infection and altered hematopoiesis in mice deficient in both P‐ and E‐selectins.
Cell
84:
563–574,
1996.
|
212. |
Lo CG,
Lu TT and
Cyster JG.
Integrin‐dependence of lymphocyte entry into the splenic white pulp.
J Exp Med
197:
353–361,
2003.
|
213. |
Cinamon G,
Matloubian M,
Lesneski MJ,
Xu Y,
Low C,
Lu T,
Praia RL and
Cyster JG.
Sphingosine 1‐phosphate receptor 1 promotes B cell localization in the splenic marginal zone.
Nat Immunol
5:
713–720,
2004.
|
214. |
Lu TT and
Cyster JG.
Integrin‐mediated long‐term B cell retention in the splenic marginal zone.
Science
297:
409–412,
2002.
|
215. |
Nolte MA,
Hamann A,
Kraal G and
Mebius RE.
The strict regulation of lymphocyte migration to splenic white pulp does not involve common homing receptors.
Immunology
106:
299–307,
2002.
|
216. |
Kraal G,
Schornagel K,
Streeter PR,
Holzmann B and
Butcher EC.
Expression of the mucosal vascular addressin, MAdCAM‐1, on sinus‐lining cells in the spleen.
Am J Pathol
147:
763–771,
1995.
|
217. |
Forster R,
Mattis AE,
Kremmer E,
Wolf E,
Brem G and
Lipp M.
A putative chemokine receptor, BLRI, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen.
Cell
87:
1037–1047,
1996.
|
218. |
Reif K,
Ekland EH,
Ohl L,
Nakano H,
Lipp M,
Forster R and
Cyster JG.
Balanced responsiveness to chemoattractants from adjacent zones determines B‐cell position.
Nature
416:
94–99,
2002.
|
219. |
Mizoguchi A,
Mizoguchi E,
Chiba C and
Bhan AK.
Role of appendix in the development of inflammatory bowel disease in TCR‐alpha mutant mice.
J Exp Med
184:
707–715,
1996.
|
220. |
Farstad IN,
Halstensen TS,
Lien B,
Kilshaw PJ,
Lazarovits AI and
Brandtzaeg P.
Distribution of beta 7 integrins in human intestinal mucosa and organized gut‐associated lymphoid tissue.
Immunology
89:
227–237,
1996.
|
221. |
Kanamori Y,
Ishimaru K,
Nanno M,
Maki K,
Ikuta K,
Nariuchi H and
Ishikawa H.
Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c‐kit+ IL‐7R+ Thy1 + lymphohemopoietic progenitors develop.
J Exp Med
184:
1449–1459,
1996.
|
222. |
Guy‐Grand D and
Vassalli P.
Gut intraepithelial T lymphocytes.
Curr Opin Immunol
5:
247–252,
1993.
|
223. |
Saito H,
Kanamori Y,
Takemori T,
Nariuchi H,
Kubota E,
Takahashi‐Iwanaga H,
Iwanaga T and
Ishikawa H.
Generation of intestinal T cells from progenitors residing in gut cryptopatches.
Science
280:
275–278,
1998.
|
224. |
Oida T,
Suzuki K,
Nanno M,
Kanamori Y,
Saito H,
Kubota E,
Kato S,
Itoh M,
Kaminogawa S and
Ishikawa H.
Role of gut cryptopatches in early extrathymic maturation of intestinal intraepithelial T cells.
J Immunol
164:
3616–3626,
2000.
|
225. |
Suzuki K,
Oida T,
Hamada H,
Hitotsumatsu O,
Watanabe M,
Hibi T,
Yamamoto H,
Kubota E,
Kaminogawa S and
Ishikawa H.
Gut cryptopatches: direct evidence of extrathymic anatomical sites for intestinal T lymphopoiesis.
Immunity
13:
691–702,
2000.
|
226. |
Eberl G and
Littman DR.
Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORgammat+ cells.
Science
305:
248–251,
2004.
|
227. |
Guy‐Grand D and
Vassalli P.
Immunology. Tracing an orphan's genealogy.
Science
305:
185–187,
2004.
|
228. |
Guy‐Grand D,
Azogui O,
Celli S,
Darche S,
Nussenzweig MC,
Kourilsky P and
Vassalli P.
Extrathymic T cell lymphopoiesis: ontogeny and contribution to gut intraepithelial lymphocytes in athymic and euthymic mice.
J Exp Med
197:
333–341,
2003.
|
229. |
Pabst O,
Herbrand H,
Worbs T,
Friedrichsen M,
Yan S,
Hoffmann MW,
Korner H,
Bernhardt G,
Pabst R and
Forster R.
Cryptopatches and isolated lymphoid follicles: dynamic lymphoid tissues dispensable for the generation of intraepithelial lymphocytes.
Eur J Immunol
35:
98–107,
2004.
|
230. |
Onai N,
Kilabatake M,
Zhang YY,
Ishikawa H,
Ishikawa S and
Matsushima K.
Pivotal role of CCL25 (TECK)‐CCR9 in the formation of gut cryptopatches and consequent appearance of intestinal intraepithelial T lymphocytes.
Int Immunol
14:
687–694,
2002.
|
231. |
Lugering A,
Kucharzik T,
Soler D,
Picarella D,
Hudson JT.
3rd and Williams IR. Lymphoid precursors in intestinal cryptopatches express CCR6 and undergo dysregulated development in the absence of CCR6.
J Immunol
171:
2208–2215,
2003.
|
232. |
Moghaddami M,
Cummins A and
Mayrhofer G.
Lymphocyte‐filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine.
Gastroenterology
115:
1414–1425,
1998.
|
233. |
Hamada H,
Hiroi T,
Nishiyama Y,
Takahashi H,
Masunaga Y,
Hachimura S,
Kaminogawa S,
Takahashi‐Iwanaga H,
Iwanaga T,
Kiyono H,
Yamamoto H and
Ishikawa H.
Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine.
J Immunol
168:
57–64,
2002.
|
234. |
Shimotsuma M,
Shields JW,
Simpson‐Morgan MW,
Sakuyama A,
Shirasu M,
Hagiwara A and
Takahashi T.
Morpho‐physiological function and role of omental milky spots as omentum‐associated lymphoid tissue (OALT) in the peritoneal cavity.
Lymphology
26:
90–101,
1993.
|
235. |
Dux K,
Rouse RV and
Kyewski B.
Composition of the lymphoid cell populations from omental milky spots during the immune response in C57BL/Ka mice.
Eur J Immunol
16:
1029–1032,
1986.
|
236. |
Cui L,
Johkura K,
Liang Y,
Teng R,
Ogiwara N,
Okouchi Y,
Asanuma K and
Sasaki K.
Biodefense function of omental milky spots through cell adhesion molecules and leukocyte proliferation.
Cell Tissue Res
310:
321–330,
2002.
|
237. |
Ansel KM,
Harris RB and
Cyster JG.
CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity.
Immunity
16:
67–76,
2002.
|
238. |
Kuper CF,
Koornstra PJ,
Hameleers DM,
Biewenga J,
Spit BJ,
Duijvestijn AM,
van Breda Vriesman PJ and
Sminia T.
The role of nasopharyngeal lymphoid tissue.
Immunol Today
13:
219–224,
1992.
|
239. |
Kiyono H and
Fukuyama S.
NALT‐ versus Peyer's‐patch‐mediated mucosal immunity.
Nat Rev Immunol
4:
699–710,
2004.
|
240. |
Debertin AS,
Tschernig T,
Tonjes H,
Kleemann WJ,
Troger HD and
Pabst R.
Nasal‐associated lymphoid tissue (NALT): frequency and localization in young children.
Clin Exp Immunol
134:
503–507,
2003.
|
241. |
Zuercher AW,
Coffin SE,
Thurnheer MC,
Fundova P and
Cebra JJ.
Nasal‐associated lymphoid tissue is a mucosal inductive site for virus‐specific humoral and cellular immune responses.
J Immunol
168:
1796–1803,
2002.
|
242. |
Csencsits KL,
Jutila MA and
Pascual DW.
Nasal‐associated lymphoid tissue: phenotypic and functional evidence for the primary role of peripheral node addressin in naïve lymphocyte adhesion to high endothelial venules in a mucosal site.
J Immunol
163:
1382–1389,
1999.
|
243. |
Michie SA,
Streeter PR,
Bolt PA,
Butcher EC and
Picker LJ.
The human peripheral lymph node vascular addressin: an inducible endothelial antigen involved in lymphocyte homing.
Am J Pathol
143:
1688–1698,
1993.
|
244. |
Perry ME,
Kirkpatrick WN,
Happerfield LC and
Gleeson MI.
Expression of adhesion molecules on the microvasculature of the pharyngeal tonsil (adenoid).
Acta Otolaryngol Suppl
523:
47–51,
1996.
|
245. |
Bienenstock J,
Johnston N and
Perey DY.
Bronchial lymphoid tissue. II. Functional characterisitics.
Lab Invest
28:
693–698,
1973.
|
246. |
Sminia T,
van der Brugge‐Gamelkoorn GJ and
Jeurissen SH.
Structure and function of bronchus‐associated lymphoid tissue (BALT).
Crit Rev Immunol
9:
119–150,
1989.
|
247. |
Pabst R and
Gehrke I.
Is the bronchus‐associated lymphoid tissue (BALT) an integral structure of the lung in normal mammals, including humans?
Am J Respir Cell Mol Biol
3:
131–135,
1990.
|
248. |
Xu B,
Wagner N,
Pham LN,
Magno V,
Shan Z,
Butcher EC and
Michie SA.
Lymphocyte homing to bronchus‐associated lymphoid tissue (BALT) is mediated by L‐selectin/PNAd, alpha4betal integrin/VCAM‐1, and LFA‐1 adhesion pathways.
J Exp Med
197:
1255–1267,
2003.
|
249. |
Moyron‐Quiroz JE,
Rangel‐Moreno J,
Kusser K,
Hartson L,
Sprague F,
Goodrich S,
Woodland DL,
Lund FE and
Randall TD.
Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity.
Nat Med
10:
927–934,
2004.
|
250. |
Dudda JC,
Simon JC and
Martin S.
Dendritic cell immunization route determines CD8+ T cell trafficking to inflamed skin: role for tissue microenvironment and dendritic cells in establishment of T cell‐homing subsets.
J Immunol
172:
857–863,
2004.
|
251. |
Mora JR,
Bono MR,
Manjunath N,
Weninger W,
Cavanagh LL,
Rosemblatt M and
von Andrian UH.
Selective imprinting of gut‐homing T cells by Peyer's patch dendritic cells.
Nature
424:
88–93,
2003.
|
252. |
Mora JR,
Cheng G,
Picarella D,
Briskin M,
Buchanan N and
von Andrian UH.
Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin‐ and gut‐associated lymphoid tissues. J Exp Med.
2005, in press.
|
253. |
Stagg AJ,
Kamm MA and
Knight SC.
Intestinal dendritic cells increase T cell expression of alpha4beta7 integrin.
Eur J Immunol
32:
1445–1454,
2002.
|
254. |
Campbell DJ and
Butcher EC.
Rapid acquisition of tissue‐specific homing phenotypes by CD4(+) T cells activated in cutaneous or mucosal lymphoid tissues.
J Exp Med
195:
135–141,
2002.
|
255. |
Iwata M,
Hirakiyama A,
Eshima Y,
Kagechika H,
Kato C and
Young Song SY.
Retinoic Acid Imprints Gut‐Homing Specificity on T Cells.
Immunity
45,
2004, In press.
|
256. |
Campbell DJ,
Kim CH and
Butcher EC.
Chemokines in the systemic organization of immunity.
Immunol Rev
195:
58–71,
2003.
|
257. |
Picker LJ,
Michie SA,
Rott LS and
Butcher EC.
A unique phenotype of skin‐associated lymphocytes in humans: preferential expression of the HECA‐452 epitope by benign and malignant T cells at cutaneous sites.
Am J Pathol
136:
1053–1068,
1990.
|
258. |
Fuhlbrigge RC,
Kieffer JD,
Armerding D and
Kupper TS.
Cutaneous lymphocyte antigen is a specialized form of PSGL‐1 expressed on skin‐homing T cells.
Nature
389:
978–981,
1997.
|
259. |
Picker LJ,
Kishimoto TK,
Smith CW,
Warnock RA and
Butcher EC.
ELAM‐1 is an adhesion molecule for skin‐homing T cells.
Nature
349:
796–798,
1991.
|
260. |
Berg EL,
Yoshino T,
Rott LS,
Robinson MK,
Warnock RA,
Kishimoto TK,
Picker LJ and
Butcher EC.
The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell‐leukocyte adhesion molecule 1.
J Exp Med
174:
1461–1466,
1991.
|
261. |
Chong BF,
Murphy JE,
Kupper TS and
Fuhlbrigge RC.
E‐selectin, thymus‐ and activation‐regulated chemokine/CCL17, and intercellular adhesion molecule‐1 are constitutively coexpressed in dermal microvessels: a foundation for a cutaneous immunosurveillance system.
J Immunol
172:
1575–1581,
2004.
|
262. |
Weninger W,
Ulfman LH,
Cheng G,
Souchkova N,
Quackenbush EJ,
Lowe JB and
von Andrian UH.
Specialized contributions by alpha(1,3)‐fucosyltransferase‐IV and FucT‐VII during leukocyte rolling in dermal microvessels.
Immunity
12:
665–676,
2000.
|
263. |
Tietz W,
Allemand Y,
Borges E,
von Laer D,
Hallmann R,
Vestweber D and
Hamann A.
CD4+ T cells migrate into inflamed skin only if they express Iigands for E‐ and P‐selectin.
J Immunol
161:
963–970,
1998.
|
264. |
Campbell J,
Haraldsen G,
Pan J,
Rottman J,
Qin S,
Ponath P,
Andrew DP,
Warnke R,
Ruffing N,
Kassam N,
Wu L and
Butcher EC.
The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells.
Nature
400:
776–780,
1999.
|
265. |
Ferenczi K,
Fuhlbrigge RC,
Pinkus J,
Pinkus GS and
Kupper TS.
Increased CCR4 expression in cutaneous T cell lymphoma.
J Invest Dermatol
119:
1405–1410,
2002.
|
266. |
Schaerli P,
Ebert L,
Willimann K,
Blaser A,
Roos RS,
Loetscher P and
Moser B.
A skin‐selective homing mechanism for human immune surveillance T cells.
J Exp Med
199:
1265–1275,
2004.
|
267. |
Charbonnier AS,
Kohrgruber N,
Kriehuber E,
Stingl G,
Rot A and
Maurer D.
Macrophage inflammatory protein 3alpha is involved in the constitutive trafficking of epidermal langerhans cells.
J Exp Med
190:
1755–1768,
1999.
|
268. |
Morales J,
Homey B,
Vicari AP,
Hudak S,
Oldham E,
Hedrick J,
Orozco R,
Copeland NG,
Jenkins NA,
McEvoy LM and
Zlotnik A.
CTACK, a skin‐associated chemokine that preferentially attracts skin‐homing memory T cells.
Proc Natl Acad Sci USA
96:
14470–14475,
1999.
|
269. |
Homey B,
Dieu‐Nosjean MC,
Wiesenborn A,
Massacrier C,
Pin JJ,
Oldham E,
Catron D,
Buchanan ME,
Muller A,
deWaal Malefyt R,
Deng G,
Orozco R,
Ruzicka T,
Lehmann P,
Lebecque S,
Caux C and
Zlotnik A.
Up‐regulation of macrophage inflammatory protein‐3 alpha/CCL20 and CC chemokine receptor 6 in psoriasis.
J Immunol
164:
6621–6632,
2000.
|
270. |
Homey B,
Alenius H,
Muller A,
Soto H,
Bowman EP,
Yuan W,
McEvoy L,
Lauerma AI,
Assmann T,
Bunemann E,
Lehto M,
Wolff H,
Yen D,
Marxhausen H,
To W,
Sedgwick J,
Ruzicka T,
Lehmann P and
Zlotnik A.
CCL27‐CCR10 interactions regulate T cell‐mediated skin inflammation.
Nat Med
8:
157–165,
2002.
|
271. |
Zabel BA,
Agace WW,
Campbell JJ,
Heath HM,
Parent D,
Roberts AI,
Ebert EC,
Kassam N,
Qin S,
Zovko M,
LaRosa GJ,
Yang LL,
Soler D,
Butcher EC,
Ponath PD,
Parker CM and
Andrew DP.
Human G protein‐coupled receptor GPR‐9‐6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus‐expressed chemokine‐mediated chemotaxis.
J Exp Med
190:
1241–1256,
1999.
|
272. |
Kunkel EJ,
Campbell JJ,
Haraldsen G,
Pan J,
Boisvert J,
Roberts AI,
Ebert EC,
Vierra MA,
Goodman SB,
Genovese MC,
Wardlaw AJ,
Greenberg HB,
Parker CM,
Butcher EC,
Andrew DP and
Agace WW.
Lymphocyte CC chemokine receptor 9 and epithelial thymus‐expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: epithelial expression of tissue‐specific chemokines as an organizing principle in regional immunity.
J Exp Med
192:
761–768,
2000.
|
273. |
Papadakis KA,
Prehn J,
Nelson V,
Cheng L,
Binder SW,
Ponath PD,
Andrew DP and
Targan SR.
The role of thymus‐expressed chemokine and its receptor CCR9 on lymphocytes in the regional specialization of the mucosal immune system.
J Immunol
165:
5069–5076,
2000.
|
274. |
Wurbel MA,
Philippe JM,
Nguyen C,
Victorero G,
Freeman T,
Wooding P,
Miazek A,
Mattei MG,
Malissen M,
Jordan BR,
Malissen B,
Carrier A and
Naquet P.
The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double‐ and single‐positive thymocytes expressing the TECK receptor CCR9.
Eur J Immunol
30:
262–271,
2000.
|
275. |
Bowman EP,
Kuklin NA,
Youngman KR,
Lazarus NH,
Kunkel EJ,
Pan J,
Greenberg HB and
Butcher EC.
The intestinal chemokine thymus‐expressed chemokine (CCL25) attracts IgA antibody‐secreting cells.
J Exp Med
195:
269–275,
2002.
|
276. |
Pabst O,
Ohl L,
Wendland M,
Wurbel MA,
Kremmer E,
Malissen B and
Forster R.
Chemokine receptor CCR9 contributes to the localization of plasma cells to the small intestine.
J Exp Med
199:
411–4116,
2004.
|
277. |
Hieshima K,
Kawasaki Y,
Hanamoto H,
Nakayama T,
Nagakubo D,
Kanamaru A and
Yoshie O.
CC chemokine ligands 25 and 28 play essential roles in intestinal extravasation of IgA antibody‐secreting cells.
J Immunol
173:
3668–3675,
2004.
|
278. |
Cepek KL,
Shaw SK,
Parker CM,
Russell GJ,
Morrow JS,
Rimm DL and
Brenner MB.
Adhesion between epithelial cells and T lymphocytes mediated by E‐cadherin and the alpha E beta 7 integrin.
Nature
10:
190–193,
1994.
|
279. |
Schon MP,
Arya A,
Murphy EA,
Adams CM,
Strauch UG,
Agace WW,
Marsal J,
Donohue JP,
Her H,
Beier DR,
Olson S,
Lefrancois L,
Brenner MB,
Grusby MJ and
Parker CM,
Mucosal T
lymphocyte numbers are selectively reduced in integrin alpha E (CD103)‐deficient mice.
J Immunol
162:
6641–6649,
1999.
|
280. |
Ericsson A,
Svensson M,
Arya A and
Agace WW.
CCL25/CCR9 promotes the induction and function of CD103 on intestinal intraepithelial lymphocytes.
Eur J Immunol
34:
2720–2729,
2004.
|
281. |
Pan J,
Kunkel EJ,
Gosslar U,
Lazarus N,
Langdon P,
Broadwell K,
Vierra MA,
Genovese MC,
Butcher EC and
Soler D.
A novel chemokine ligand for CCR10 and CCR3 expressed by epithelial cells in mucosal tissues.
J Immunol
165:
2943–2949,
2000.
|
282. |
Wang W,
Soto H,
Oldham ER,
Buchanan ME,
Homey B,
Catron D,
Jenkins N,
Copeland NG,
Gilbert DJ,
Nguyen N,
Abrams J,
Kershenovich D,
Smith K,
McClanahan T,
Vicari AP and
Zlotnik A.
Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2).
J Biol Chem
275:
22313–22323,
2000.
|
283. |
Kunkel EJ,
Kim CH,
Lazarus NH,
Vierra MA,
Soler D,
Bowman EP and
Butcher EC.
CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab‐secreting cells.
J Clin Invest
111:
1001–1010,
2003.
|
284. |
Wilson E and
Butcher EC.
CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate.
J Exp Med
200:
805–809,
2004.
|
285. |
Finke D,
Baribaud F,
Diggelmann H and
Acha‐Orbea H.
Extrafollicular plasmablast B cells play a key role in carrying retroviral infection to peripheral organs.
J Immunol
166:
6266–6275,
2001.
|
286. |
Kunkel EJ and
Butcher EC.
Chemokines and the tissue‐specific migration of lymphocytes.
Immunity
16:
1–4,
2002.
|
287. |
Ainslie MP,
McNulty CA,
Huynh T,
Symon FA and
Wardlaw AJ.
Characterisation of adhesion receptors mediating lymphocyte adhesion to bronchial endothelium provides evidence for a distinct lung homing pathway.
Thorax
57:
1054–1059,
2002.
|
288. |
Thatte J,
Dabak V,
Williams MB,
Braciale TJ and
Ley K.
LFA‐1 is required for retention of effector CD8 T cells in mouse lungs.
Blood
101:
4916–4922,
2003.
|
289. |
Campbell JJ,
Murphy ICE,
Kunkel EJ,
Brightling CE,
Soler D,
Shen Z,
Boisvert J,
Greenberg HB,
Vierra MA,
Goodman SB,
Genovese MC,
Wardlaw AJ,
Butcher EC and
Wu L.
CCR7 expression and memory T cell diversity in humans.
J Immunol
166:
877–884,
2001.
|
290. |
Saxena R,
Theise ND and
Crawford JM.
Microanatomy of the human liver‐exploring the hidden interfaces.
Hepatology
30:
1339–1346,
1999.
|
291. |
Lalor PF,
Shields P,
Grant A and
Adams DH.
Recruitment of lymphocytes to the human liver.
Immunol Cell Biol
80:
52–64,
2002.
|
292. |
Wong J,
Johnston B,
Lee SS,
Bullard DC,
Smith CW,
Beaudet AL and
Kubes P.
A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature.
J Clin Invest
99:
2782–2790,
1997.
|
293. |
John B and
Crispe IN.
Passive and active mechanisms trap activated CD8+ T cells in the liver.
J Immunol
172:
5222–5229,
2004.
|
294. |
Lalor PF,
Edwards S,
McNab G,
Salmi M,
Jalkanen S and
Adams DH.
Vascular adhesion protein‐1 mediates adhesion and transmigration of lymphocytes on human hepatic endothelial cells.
J Immunol
169:
983–992,
2002.
|
295. |
McNab G,
Reeves JL,
Salmi M,
Hubscher S,
Jalkanen S and
Adams DH.
Vascular adhesion protein 1 mediates binding of T cells to human hepatic endothelium.
Gastroenterology
110:
522–528,
1996.
|
296. |
Salmi M,
Yegutkin GG,
Lehvonen R,
Koskinen K,
Salminen T and
Jalkanen S.
A cell surface amine oxidase directly controls lymphocyte migration.
Immunity
14:
265–276,
2001.
|
297. |
Knolle PA and
Gerken G.
Local control of the immune response in the liver.
Immunol Rev
174:
21–34,
2000.
|
298. |
Lalor PF and
Adams DH.
Adhesion of lymphocytes to hepatic endothelium.
Mol Pathol
52:
214–219,
1999.
|
299. |
Bonecchi R,
Bianchi G,
Bordignon PP,
D'Ambrosio D,
Lang R,
Borsatti A,
Sozzani S,
Allavena P,
Gray PA,
Mantovani A and
Sinigaglia F.
Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (This) and Th2s.
J Exp Med
187:
129–134,
1998.
|
300. |
Sallusto F,
Lenig D,
Mackay CR and
Lanzavecchia A.
Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes.
J Exp Med
187:
875–883,
1998.
|
301. |
Sallusto F,
Lanzavecchia A and
Mackay CR.
Chemokines and chemokine receptors in T‐cell priming and Th1/Th2‐ mediated responses.
Immunol Today
19:
568–574,
1998.
|
302. |
Goodarzi K,
Goodarzi M,
Tager AM,
Luster AD and
von Andrian UH.
Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues.
Nat Immunol
4:
965–973,
2003.
|
303. |
Lehmann JC,
Jablonski‐Westrich D,
Haubold U,
Gutierrez‐Ramos JC,
Springer T and
Hamann A.
Overlapping and selective roles of endothelial intercellular adhesion molecule‐1 (ICAM‐1) and ICAM‐2 in lymphocyte trafficking.
J Immunol
171:
2588–2593,
2003.
|
304. |
Issekutz TB.
Inhibition of in vivo lymphocyte migration to inflammation and homing to lymphoid tissues by the TA‐2 monoclonal antibody: A likely role for VLA‐4 in vivo.
J Immunol
147:
4178–4184,
1991.
|
305. |
Issekutz TB.
Dual inhibition of VLA‐4 and LFA‐1 maximally inhibits cutaneous delayed type hypersensitivity‐induced inflammation.
Am J Pathol
143:
1286–1293,
1993.
|
306. |
Babi LFS,
Moser R,
Soler MTP,
Picker LJ,
Blaser K and
Hauser C.
Migration of skin‐homing T cells across cytokine‐activated human endothelial cell layers involves interaction of the cutaneous lymphocyte‐associated antigen (CLA), the very late antigen‐4 (VLA‐4), and the lymphocyte function‐associated antigen‐1 (LFA‐1).
J Immunol
154:
1543–1550,
1995.
|
307. |
Reiss Y,
Proudfoot AE,
Power CA,
Campbell JJ and
Butcher EC.
CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell‐attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin.
J Exp Med
194:
1541–1547,
2001.
|
308. |
Soler D,
Humphreys TL,
Spinola SM and
Campbell JJ.
CCR4 versus CCR10 in human cutaneous TH lymphocyte trafficking.
Blood
101:
1677–1682,
2003.
|
309. |
Adams DH,
Burra P,
Hubscher SG,
Elias E and
Newman W.
Endothelial activation and circulating vascular adhesion molecules in alcoholic liver disease.
Hepatology
19:
588–594,
1994.
|
310. |
Grant AJ,
Lalor PF,
Hubscher SG,
Briskin M and
Adams DH.
MAdCAM‐1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM‐1 in chronic inflammatory liver disease).
Hepatology
33:
1065–1072,
2001.
|
311. |
Eksteen B,
Grant AJ,
Miles A,
Curbishley SM,
Lalor PF,
Hubscher SG,
Briskin M,
Salmon M and
Adams DH.
Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut‐homing lymphocytes to the liver in primary sclerosing cholangitis.
J Exp Med
200:
1511–1517,
2004.
|
312. |
Wald O,
Pappo O,
Safadi R,
Dagan‐Berger M,
Beider K,
Wald H,
Franitza S,
Weiss I,
Avniel S,
Boaz P,
Hanna J,
Zamir G,
Eid A,
Mandelboim O,
Spengler U,
Galun E and
Peled A.
Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus.
Eur J Immunol
34:
1164–1174,
2004.
|
313. |
Muller G and
Lipp M.
Concerted action of the chemokine and lymphotoxin system in secondary lymphoid‐organ development.
Curr Opin Immunol
15:
217–224,
2003.
|
314. |
Luther SA,
Bidgol A,
Hargreaves DC,
Schmidt A,
Xu Y,
Paniyadi J,
Matloubian M and
Cyster JG.
Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis.
J Immunol
169:
424–433,
2002.
|
315. |
Luther SA,
Ansel KM and
Cyster JG.
Overlapping roles of CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph node development.
J Exp Med
197:
1191–1198,
2003.
|
316. |
Ohl L,
Henning G,
Krautwald S,
Lipp M,
Hardtke S,
Bernhardt G,
Pabst O and
Forster R.
Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs.
J Exp Med
197:
1199–1204,
2003.
|
317. |
Hjelmstrom P.
Lymphoid neogenesis: de novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines.
J Leukoc Biol
69:
331–339,
2001.
|
318. |
Weyand CM,
Kurtin PJ and
Goronzy JJ.
Ectopic lymphoid organogenesis: a fast track for autoimmunity.
Am J Pathol
159:
787–793,
2001.
|
319. |
Kratz A,
Campos‐Neto A,
Hanson MS and
Ruddle NH.
Chronic inflammation caused by lymphotoxin is lymphoid neogenesis.
J Exp Med
183:
1461–1472,
1996.
|
320. |
Fan L,
Reilly CR,
Luo Y,
Dorf ME and
Lo D.
Cutting edge: ectopic expression of the chemokine TCA4/SLC is sufficient to trigger lymphoid neogenesis.
J Immunol
164:
3955–3959,
2000.
|
321. |
Luther SA,
Lopez T,
Bai W,
Hanahan D and
Cyster JG.
BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin‐dependent lymphoid neogenesis.
Immunity
12:
471–481,
2000.
|
322. |
Hjelmstrom P,
Fjell J,
Nakagawa T,
Sacca R,
Cuff CA and
Ruddle NH.
Lymphoid tissue homing chemokines are expressed in chronic inflammation.
Am J Pathol
156:
1133–1138,
2000.
|
323. |
Chen SC,
Vassileva G,
Kinsley D,
Holzmann S,
Manfra D,
Wiekowski MT,
Romani N and
Lira SA.
Ectopic expression of the murine chemokines CCL21a and CCL21b induces the formation of lymph node‐like structures in pancreas, but not skin, of transgenic mice.
J Immunol
168:
1001–1008,
2002.
|
324. |
Christopherson KW, II,
Hood AF,
Travers JB,
Ramsey H and
Hromas RA.
Endothelial induction of the T‐cell chemokine CCL21 in T‐cell autoimmune diseases.
Blood
101:
801–806,
2003.
|
325. |
Shi K,
Hayashida K,
Kaneko M,
Hashimoto J,
Tomita T,
Lipsky PE,
Yoshikawa H and
Ochi T.
Lymphoid chemokine B cell‐attracting chemokine‐1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients.
J Immunol
166:
650–655,
2001.
|
326. |
Corcione A,
Casazza S,
Ferretti E,
Giunti D,
Zappia E,
Pistorio A,
Gambini C,
Mancardi GL,
Uccelli A and
Pistoia V.
Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis.
Proc Natl Acad Sci USA
101:
11064–11069,
2004.
|
327. |
Salmi M,
Granfors K,
MacDermott R and
Jalkanen S.
Aberrant binding of lamina propria lymphocytes to vascular endothelium in inflammatory bowel diseases.
Gastroenterology
106:
595–605,
1994.
|
328. |
Duijvestijn AM,
Horst E,
Pals ST,
Rouse BN,
Steere AC,
Picker LJ,
Meijer CLM and
Butcher EC.
High endothelial differentiation in human lymphoid and inflammatory tissues defined by monoclonal antibody HECA‐452.
Am J Pathol
130:
147–155,
1988.
|
329. |
Kabel PJ,
Voorbij HAM,
De Haan‐Meulman M,
Pals ST and
Drexhage HA.
High endothelial venules present in lymphoid cell accumulations in thyroids affected by autoimmune disease: a study in men and BB rats of functional activity and development.
J Clin Endocrinol Metab
68:
744–751,
1989.
|
330. |
Hanninen A,
Taylor C,
Streeter PR,
Stark LS,
Sarte JM,
Shizuru JA,
Simell O and
Michie SA.
Vascular addressins are induced on islet vessels during insulitis in nonobese diabetic mice and are involved in lymphoid cell binding to islet endothelium.
J Clin Invest
92:
2509–2515,
1993.
|
331. |
Faveeuw C,
Gagnerault M‐C and
Lepault F.
Expression of homing and adhesion molecules in infiltrated islets of langerhans and salivary glands of nonobese diabetic mice.
J Immunol
152:
5969–5978,
1994.
|
332. |
Yang X‐D,
Karin N,
Tisch R,
Steinman L and
McDevitt HO.
Inhibition of insulitis and prevention of diabetes in nonobese diabetic mice by blocking L‐selectin and very late antigen 4 adhesion receptors.
Proc Natl Acad Sci USA
90:
10494–10498,
1993.
|
333. |
von Andrian UH,
Chambers JD,
McEvoy LM,
Bargatze RF,
Arfors KE and
Butcher EC.
Two‐step model of leukocyte‐endothelial cell interaction in inflammation: distinct roles for LECAM‐1 and the leukocyte β2 integrins in vivo.
Proc Natl Acad Sci USA
88:
7538–7542,
1991.
|
334. |
Ley K,
Gaehtgens P,
Fennie C,
Singer MS,
Lasky LA and
Rosen SD.
Lectin‐like cell adhesion molecule 1 mediates leukocyte rolling in mesenteric venules in vivo.
Blood
77:
2553–2555,
1991.
|