References |
1. |
Kety SS.
The Cerebral Circulation. In:
Circulation of the Blood: Men and Ideas,
eds Fishman AP and
Richards DW.
New York:
Oxford University Press,
1964,
pp. 703–742.
|
2. |
Faraci FM and
Heistad DD.
Regulation of large cerebral arteries and cerebral microvascular pressure.
Circ Res
66
(1):
8–17,
1990.
|
3. |
Heistad DD.
What's new in the cerebral microcirculation? Landis Award lecture.
Microcirculation
8
(6):
365–375,
2001.
|
4. |
Baumbach GL,
Walmsley JG and
Hart MN.
Composition and mechanics of cerebral arterioles in hypertensive rats.
J Am Pathol
133
(3):
464–471,
1988.
|
5. |
Heistad DD and
Kontos HA.
Cerebral Circulation. In:
Handbood of Physiology: The Cardiovascular System,
eds Shepherd JT and
Abboud FM.
Bethesda, MD:
American Physiological Society.
1983,
pp. 137–182.
|
6. |
Woolsey TA,
Rovainen CM,
Cox SB, et al.
Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain.
Cereb Cortex
6
(5):
647–660,
1996.
|
7. |
Farkas E and
Luiten PG.
Cerebral microvascular pathology in aging and Alzheimer's disease.
Prog Neurobiol
64
(6):
575–611,
2001.
|
8. |
Hudetz AG.
Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy.
Microcirculation
4
(2):
233–252,
1997.
|
9. |
Keyeux A,
Ochrymowicz‐Bemelmans D and
Charlier AA.
Induced response to hypercapnia in the two‐compartment total cerebral blood volume: influence on brain vascular reserve and flow efficiency.
J Cereb Blood Flow Metab
15
(6):
1121–1131,
1995.
|
10. |
Seylaz J,
Charbonne R,
Nanri K, et al.
Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy.
J Cereb Blood Flow Metab
19
(8):
863–870,
1999.
|
11. |
Pinard E,
Engrand N and
Seylaz J.
Dynamic cerebral microcirculatory changes in transient forebrain ischemia in rats: I involvement of type nitric oxide synthase.
J Cereb Blood Flow Metab
20
(12):
1648–1658,
2000.
|
12. |
Vogel J,
Sperandio M,
Pries AR,
Linderkamp O,
Gaehtgens P and
Kuschinsky W.
Influence of the endothelial glycocalyx on cerebral blood flow in mice.
J Cereb Blood Flow Metab
20
(11):
1571–1578,
2000.
|
13. |
Duling BR,
Kuschinsky W and
Wahl M.
Measurements of the perivascular PO2 in the vicinity of the pial vessels of the cat.
Pflugers Arch
383
(1):
29–34,
1979.
|
14. |
Tuma RF,
White JV and
Messmer K (eds).
The Role of Hemodilulion in Optimal Patient Care.
Munchen, Bern. Wien. San Francisco:
W. Zuckschwerdt Verlag,
1989.
|
15. |
Lin SZ,
Chiou TL,
Chiang YH and
Song WS.
Hemodilution accelerates the passage of plasma (not red cells) through cerebral microvessels in rats.
Stroke
26
(11):
2166–2171,
1995.
|
16. |
Hudetz AG,
Wood JD,
Biswal BB,
Krolo I and
Kampine JP.
Effect of hemodilution on RBC velocity, supply rate, and hematocrit in the cerebral capillary network.
J Appl Physiol
87
(2):
505–509,
1999.
|
17. |
Harrison MJ.
Influence of haematocrit in the cerebral circulation.
Cerebrovasc Brain Metab Rev
1
(1):
55–67,
1989.
|
18. |
Goldstein GW and
Betz AL.
The blood‐brain barrier.
Sci Am
255
(3):
74–83,
1986.
|
19. |
Goldman EE.
Die aussere und innere Sekretion des gesunden und kranken organismus imlichte der “vitalen farbung”.
Beitraege Klinishen Churgurie
64:
192–265,
1909.
|
20. |
Goldman EE.
Vitalfarbung am zentralnervensystme.
Abhandlungen Preussischen Academie der Wissenschaften Physikalisch Mathematisch klasse
1:
1–60,
1913.
|
21. |
Reese TS and
Karnovsky MJ.
Fine structural localization of a blood‐brain barrier to exogenous peroxidase.
J Cell Biol
34
(1):
207–217,
1967.
|
22. |
Bundgaard M.
Pathways across the vertebrate blood‐brain barrier: morphological viewpoints.
Ann N Y Acad Sci
481:
7–19,
1986.
|
23. |
Abbott NJ,
Ronnback L and
Hansson E.
Astrocyte‐endothelial interactions at the blood‐brain barrier.
Nat Rev Neurosci
7
(1):
41–53,
2006.
|
24. |
Persidsky Y.
Model systems for studies of leukocyte migration across the blood‐brain barrier.
J Neurovirol
5
(6):
579–590,
1999.
|
25. |
Ballabh P,
Braun A and
Nedergaard M.
The blood‐brain barrier: an overview: structure, regulation, and clinical implications.
Neurobiol Dis
16
(1):
1–13,
2004.
|
26. |
Nag S.
Morphology and molecular properties of cellular components of normal cerebral vessels.
Methods Mol Med
89:
3–36,
2003.
|
27. |
Furuse M,
Sasaki H and
Tsukita S.
Manner of interaction of heterogeneous claudin species within and between tight junction strands.
J Cell Biol
147
(4):
891–903,
1999.
|
28. |
Sakakibara A,
Furuse M,
Saitou M,
Ando‐Akatsuka Y and
Tsukita S.
Possible involvement of phosphorylation of occludin in tight junction formation.
J Cell Biol
137
(6):
1393–1401,
1997.
|
29. |
Hirase T,
Kawashima S,
Wong EY, et al.
Regulation of tight junction permeability and occludin phosphorylation by Rhoa‐p160ROCK‐dependent and ‐independent mechanisms.
J Biol Chem
276
(13):
10423–10431,
2001.
|
30. |
Madara JL,
Parkos C,
Colgan S,
Nusrat A,
Atisook K and
Kaoutzani P.
The movement of solutes and cells across tight junctions.
Ann N Y Acad Sci
664:
47–60,
1992.
|
31. |
Martin‐Padura I,
Lostaglio S,
Schneemann M, et al.
Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration.
J Cell Biol
142
(1):
117–127,
1998.
|
32. |
Gumbiner BM.
Cell adhesion: the molecular basis of tissue architecture and morphogenesis.
Cell
84
(3):
345–357,
1996.
|
33. |
Stewart PA,
Magliocco M,
Hayakawa K, et al.
A quantitative analysis of blood‐brain barrier ultrastructure in the aging human.
Microvasc Res
33
(2):
270–282,
1987.
|
34. |
Mayhan WG.
Regulation of blood‐brain barrier permeability.
Microcirculation
8
(2):
89–104,
2001.
|
35. |
Sheikov N,
McDannold N,
Jolesz F,
Zhang YZ,
Tarn K and
Hynynen K.
Brain arterioles show more active vesicular transport of blood‐borne tracer molecules than capillaries and venules after focused ultrasound‐evoked opening of the blood‐brain barrier.
Ultrasound Med Biol
32
(9):
1399–1409,
2006.
|
36. |
Brown RC and
Davis TP.
Calcium modulation of adherens and tight junction function: a potential mechanism for blood‐brain barrier disruption after stroke.
Stroke
33
(6):
1706–1711,
2002.
|
37. |
Adamson P,
Etienne S,
Couraud PO,
Calder V and
Greenwood J.
Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM‐1 via a rho‐dependent pathway.
J Immunol
162
(5):
2964–2973,
1999.
|
38. |
Schmeck B,
Brunsch M,
Seybold J, et al.
Rho protein inhibition blocks cyclooxygenase‐2 expression by proinflammatory mediators in endothelial cells.
Inflammation
27
(2):
89–95,
2003.
|
39. |
Stamatovic SM,
Dimitrijevic OB,
Keep RF and
Andjelkovic AV.
Protein kinase Calpha‐RhoA cross‐talk in CCL2‐induced alterations in brain endothelial permeability.
J Biol Chem
281
(13):
8379–8388,
2006.
|
40. |
Stamatovic SM,
Shakui P,
Keep RF, et al.
Monocyte chemoattractant protein‐1 regulation of blood‐brain barrier permeability.
J Cereb Blood Flow Metab
25
(5):
593–606,
2005.
|
41. |
Stevenson BR.
Understanding tight junction clinical physiology at the molecular level.
J Clin Invest
104
(1):
3–4,
1999.
|
42. |
Yamamoto T,
Harada N,
Kawano Y,
Taya S and
Kaibuchi K.
In vivo interaction of AF‐6 with activated Ras and ZO‐1.
Biochem Biophys Res Commun
259
(1):
103–107,
1999.
|
43. |
Janzer RC and
Raff MC.
Astrocytes induce blood‐brain barrier properties in endothelial cells.
Nature
325
(6101):
253–257,
1987.
|
44. |
Rubin LL.
The blood‐brain barrier in and out of cell culture.
Curr Opin Neurobiol
1
(3):
360–363,
1991.
|
45. |
Neuhaus J,
Risau W and
Wolburg H.
Induction of blood‐brain barrier characteristics in bovine brain endothelial cells by rat astroglial cells in transfilter coculture.
Ann N Y Acad Sci
633:
578–580,
1991.
|
46. |
Holash JA,
Noden DM and
Stewart PA.
Re‐evaluating the role of astrocytes in blood‐brain barrier induction.
Dev Dyn
197
(1):
14–25,
1993.
|
47. |
Krum JM,
Kenyon KL and
Rosenstein JM.
Expression of blood‐brain barrier characteristics following neuronal loss and astroglial damage after administration of anti‐Thy‐1 immunotoxin.
Exp Neurol
146
(1):
33–45,
1997.
|
48. |
Mi H,
Haeberle H and
Barres BA.
Induction of astrocyte differentiation by endothelial cells.
J Neurosci
21
(5):
1538–1547,
2001.
|
49. |
Sobue K,
Yamamoto N,
Yoneda K, el al.
Induction of blood‐brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors.
Neurosci Res
35
(2):
155–164,
1999.
|
50. |
Yoder EJ.
Modifications in astrocyte morphology and calcium signaling induced by a brain capillary endothelial cell line.
Glia
38
(2):
137–145,
2002.
|
51. |
Abbott NJ.
Dynamics of CNS barriers: evolution, differentiation, and modulation.
Cell Mol Neurobiol
25
(1):
5–23,
2005.
|
52. |
Ramsauer M,
Krause D and
Dermietzel R.
Angiogenesis of the blood‐brain barrier in vitro and the function of cerebral pericytes.
FASEB J
16
(10):
1274–1276,
2002.
|
53. |
Vorbrodt AW.
Morphological evidence of the functonal polarization of brain microvascular endothelium. In:
The Blood‐Brain Barrier Cellular and Molecular Biology,
ed. Pardridge WM.
New York:
Raven,
1993,
pp. 137–164.
|
54. |
Perlmutter LS and
Chui HC.
Microangiopathy, the vascular basement membrane and Alzheimer's disease: a review.
Brain Res Bull
24
(5):
677–686,
1990.
|
55. |
Timpl R.
Proteoglycans of basement membranes.
EXS
70:
123–144,
1994.
|
56. |
Tilling T,
Engelbertz C,
Decker S,
Korte D,
Huwel S and
Galla HJ.
Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures.
Cell Tissue Res
310
(1):
19–29,
2002.
|
57. |
Savettieri G,
Di Liegro I,
Catania C, et al.
Neurons and ECM regulate occludin localization in brain endothelial cells.
Neuroreport
11
(5):
1081–1084,
2000.
|
58. |
Ransohoff R.
Mechanisms of inflammation in MS tissue: adhesion molecules and chemokines.
J Neuroimmunol
98
(1):
57–68,
1999.
|
59. |
Yang L,
Froio RM,
Sciuto TE,
Dvorak AM,
Alon R and
Luscinskas FW.
ICAM‐I regulates neutrophil adhesion and transcellular migration of‐ TNF‐alpha‐activated vascular endothelium under flow.
Blood
106
(2):
584–592,
2005.
|
60. |
Easton AS and
Dorovini‐Zis K.
The kinetics, function, P and regulation of selectin expressed by human brain microvessel endothelial cells in primary culture.
Microvase Res
62
(3):
335–345,
2001.
|
61. |
Wong D and
Dorovini‐Zis K.
Upregulation of intercellular adhesion molecule‐1 (ICAM‐1) expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide.
J Neuroimmunol
39
(1‐2):
11–21,
1992.
|
62. |
Wong D and
Dorovini‐Zis K.
Expression of vascular cell adhesion molecule‐1 (VCAM‐1) by human brain microvessel endothelial cells in primary culture.
Microvase Res
49
(3):
325–339,
1995.
|
63. |
Schenkel AR,
Mamdouh Z and
Muller WA.
Locomotion of monocytes on endothelium is a critical step during extravasation.
Nat Immunol
5
(4):
393–400,
2004.
|
64. |
Cullere X,
Shaw SK,
Andersson L,
Hirahashi J,
Luscinskas FW and
Mayadas TN.
Regulation of vascular endothelial barrier function by Epac, a cAMP‐activated exchange factor for Rap GTPase.
Blood
105
(5):
1950–1955,
2005.
|
65. |
Burridge K and
Wennerberg K.
Rho and Rac take center stage.
Cell
116
(2):
167–179,
2004.
|
66. |
Wittchen ES,
van Buul JD,
Burridge K and
Worthylake RA.
Trading spaces: Rap, Rac, and Rho as architects of transendothelial migration.
Curr Opin Hematol
12
(1):
14–21,
2005.
|
67. |
Wittchen ES,
Worthylake RA,
Kelly P,
Casey PJ,
Quilliam LA and
Burridge K.
Rapl GTPase inhibits leukocyte transmigration by promoting endothelial barrier function.
J Biol Chem
280
(12):
11675–11682,
2005.
|
68. |
Muller WA.
Leukocyte‐endothelial‐cell interactions in leukocyte transmigration and the inflammatory response.
Trends Immunol
24
(6):
327–334,
2003.
|
69. |
Cook‐Mills JM.
VCAM‐1 signals during lymphocyte migration: role of reactive oxygen species.
Mol Immunol
39
(9):
499–508,
2002.
|
70. |
van Buul JD and
Hordijk PL.
Signaling in leukocyte transendothelial migration.
Arterioscler Thromb Vasc Biol
24
(5):
824–833,
2004.
|
71. |
Wojciak‐Stothard B,
Williams L and
Ridley AJ.
Monocyte adhesion and spreading on human endothelial cells is dependent on Rho‐regulated receptor clustering.
J Cell Biol
145
(6):
1293–1307,
1999.
|
72. |
Rapoport SI.
Osmotic opening of the blood‐brain barrier: principles, mechanism, and therapeutic applications.
Cell Mol Neurobiol
20
(2):
217–230,
2000.
|
73. |
Rapoport SI.
Advances in osmotic opening of the blood‐brain barrier to enhance CNS chemotherapy.
Expert Opin Invest Drugs
10
(10):
1809–1818,
2001.
|
74. |
Doolittle ND,
Miner ME,
Hall WA, et al.
Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood‐brain barrier for the treatment of patients with malignant brain tumors.
Cancer
88
(3):
637–647,
2000.
|
75. |
Kraemer DF,
Fortin D and
Neuwelt EA.
Chemotherapeutic dose intensification for treatment of malignant brain tumors: recent developments and future directions.
Curr Neurol Neurosci Rep
2
(3):
216–224,
2002.
|
76. |
Golden PL and
Pollack GM.
Blood‐brain barrier efflux transport.
J Pharm Sci
92
(9):
1739–1753,
2003.
|
77. |
Loscher W and
Potschka H.
Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases.
Prog Neurobiol
76
(1):
22–76,
2005.
|
78. |
Persidsky Y,
Ramirez SH,
Horah J and
Kanmonge GD.
Blood‐brain Barrier: Structural Components and Function Under Physiologic and Pathologic Conditions.
J Neruoimmune Pharmacol
1:
223–236,
2006.
|
79. |
Flicker G and
Miller DS.
Modulation of drug transporters at the blood‐brain barrier.
Pharmacology
70
(4):
169–176,
2004.
|
80. |
Demeule M,
Regina A,
Jodoin J, et al.
Drug transport to the brain: P key roles for the efflux pump‐glycoprotein in the blood‐brain barrier.
Vascul Pharmacol
38
(6):
339–348,
2002.
|
81. |
Schinkel AH and
Jonker JW.
Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview.
Adv Drug Deliv Rev
55
(1):
3–29,
2003.
|
82. |
Sun H,
Dai H,
Shaik N and
Elmquist WF.
Drug efflux transporters in the CNS.
Adv Drug Deliv Rev
55
(1):
83–105,
2003.
|
83. |
Cirrito JR,
Deane R,
Fagan AM, et al.
P‐glycoprotein deficiency at the blood‐brain barrier increases amyloid‐beta deposition in an Alzheimer disease mouse model.
J Clin Invest
115
(11):
3285–3290,
2005.
|
84. |
Marroni M,
Marchi N,
Cucullo L,
Abbott NJ,
Signorelli K and
Janigro D.
Vascular and parenchymal mechanisms in multiple drug resistance: a lesson from human epilepsy.
Curr Drug Targets
4
(4):
297–304,
2003.
|
85. |
Volk H,
Potschka H and
Loscher W.
Immunohistochemical localization of P‐glycoprotein in rat brain and detection of its increased expression by seizures are sensitive to fixation and staining variables.
J Histochem Cytochem
53
(4):
517–531,
2005.
|
86. |
Spudich A,
Kilic E,
Xing H, et al.
Inhibition of multidrug resistance transporter‐1 facilitates neuroprotective therapies after focal cerebral ischemia.
Nat Neurosci
9
(4):
487–488,
2006.
|
87. |
Loscher W and
Potschka H.
Drug resistance in brain diseases and the role of drug efflux transporters.
Nat Rev Neurosci
6
(8):
591–602,
2005.
|
88. |
Kortekaas R,
Leenders KL,
van Oostrom JC, et al.
Blood‐brain barrier dysfunction in parkinsonian midbrain in vivo.
Ann Neurol
57
(2):
176–179,
2005.
|
89. |
Lee G and
Bendayan R.
Functional expression and localization of P‐glycoprotein in the central nervous system: relevance to the pathogenesis and treatment of neurological disorders.
Pharm Res
21
(8):
1313–1330,
2004.
|
90. |
Sims DE.
Diversity within pericytes.
Clin Exp Pharmacol Physiol
27
(10):
842–846,
2000.
|
91. |
Thomas WE.
Brain macrophages: on the role of pericytes and perivascular cells.
Brain Res Brain Res Rev
31
(1):
42–57,
1999.
|
92. |
Bar T and
Budi Santoso AW.
Identification of pericytes in the central nervous system by silver staining of the basal lamina.
Cell Tissue Res
236
(2):
491–493,
1984.
|
93. |
Graeber MB,
Streit WJ,
Buringer D,
Sparks DL and
Kreutzberg GW.
Ultrastructural location of major histocompatibility complex (MHC) class II positive perivascular cells in histologically normal human brain.
J Neuropalhol Exp Neurol
51
(3):
303–311,
1992.
|
94. |
Kida S,
Steart PV,
Zhang ET and
Weller RO.
Perivascular cells act as scavengers in the cerebral perivascular spaces and remain distinct from pericytes, microglia and macrophages.
Acta Neuropalhol (Berl)
85
(6):
646–652,
1993.
|
95. |
Hickey WF,
Vass K and
Lassmann H.
Bone marrow‐derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras.
J Neuropalhol Exp Neurol
51
(3):
246–256,
1992.
|
96. |
Ookawara S,
Mitsuhashi U,
Suminaga Y and
Mato M.
Study on distribution of pericyte and fluorescent granular perithelial (FGP) cell in the transitional region between arteriole and capillary in rat cerebral cortex.
Anat Rec
244
(2):
257–264,
1996.
|
97. |
Diaz‐Flores L,
Gutierrez R,
Varela H,
Rancel N and
Valladares F.
Microvascular pericytes: a review of their morphological and functional characteristics.
Histol Histopathol
6
(2):
269–286,
1991.
|
98. |
Sims DE.
The pericyte‐a review.
Tissue Cell
18
(2):
153–174,
1986.
|
99. |
Sims DE.
Recent advances in pericyte biology‐implications for health and disease.
J Can Cardiol
7
(10):
431–443,
1991.
|
100. |
Iadecola C.
Neurovascular regulation in the normal brain and in Alzheimer's disease.
Nat Rev Neurosci
5
(5):
347–360,
2004.
|
101. |
Hirschi KK and
D'Amore PA.
Pericytes in the microvasculature.
Cardiovasc Res
32
(4):
687–698,
1996.
|
102. |
Crocker DJ,
Murad TM and
Geer JC.
Role of the pericyte in wound healing. An ultrastructural study.
Exp Mol Pathol
13
(1):
51–65,
1970.
|
103. |
Shepro D and
Morel NM.
Pericyte physiology.
FASEB J
7
(11):
1031–1038,
1993.
|
104. |
Balabanov R and
Dore‐Duffy P.
Role of the CNS microvascular pericyte in the blood‐brain barrier.
J Neurosci Res
53
(6):
637–644,
1998.
|
105. |
Rucker HK,
Wynder HJ and
Thomas WE.
Cellular mechanisms of CNS pericytes.
Brain Res Bull
51
(5):
363–369,
2000.
|
106. |
Watanabe S,
Morisaki N,
Tezuka M, et al.
Cultured retinal pericytes stimulate in vitro angiogenesis of endothelial cells through secretion of a fibroblast growth factor‐like molecule.
Atherosclerosis
130
(1‐2):
101–107,
1997.
|
107. |
Maisonpierre PC,
Suri C,
Jones PF, et al.
Angiopoietin‐2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis.
Science
277
(5322):
55–60,
1997.
|
108. |
Folkman J and
D'Amore PA.
Blood vessel formation: what is its molecular basis?
Cell
87
(7):
1153–1155,
1996.
|
109. |
Takagi H,
King GL and
Aiello LP.
Identification and characterization of vascular endothelial growth factor receptor (Flt) in bovine retinal pericytes.
Diabetes
45
(8):
1016–1023,
1996.
|
110. |
Farrell CR,
Stewart PA,
Farrell CL and
Del Maestro RF.
Pericytes in human cerebral microvasculature.
Anat Rec 2
18
(4):
466–469,
1987.
|
111. |
Mato M,
Aikawa E,
Mato TK and
Kurihara K.
Tridimensional observation of fluorescent granular perithelial (FGP) cells in rat cerebral blood vessels.
Anat Rec 2
15
(4):
413–419,
1986.
|
112. |
Murabe Y and
Sano Y.
Morphological studies on neuroglia. I. Electron microscopic identification of silver‐impregnated glial cells.
Cell Tissue Res
216
(3):
557–568,
1981.
|
113. |
Fabry Z,
Fitzsimmons KM,
Herlein JA,
Moninger TO,
Dobbs MB and
Hart MN.
Production of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes.
J Neuroimmunol
47
(1):
23–34,
1993.
|
114. |
Abbott NJ.
Inflammatory mediators and modulation of blood‐brain barrier permeability.
Cell Mol Neurohiol
20
(2):
131–147,
2000.
|
115. |
Joo F.
The role of second messenger molecules in the regulation of permeability in the cerebral endothelial cells.
Adv Exp Med Biol
331:
155–164,
1993.
|
116. |
Abbott NJ and
Revest PA.
Control of brain endothelial permeability.
Cerebrovasc Brain Metab Rev
3
(1):
39–72,
1991.
|
117. |
Allt G and
Lawrenson JG.
Is the pial microvessel a good model for blood‐brain barrier studies?
Brain Res Brain Res Rev
24
(1):
67–76,
1997.
|
118. |
Lawrenson JG,
Reid AR and
Allt G.
Molecular characteristics of pial microvessels of the rat optic nerve. Can pial microvessels be used as a model for the blood‐brain barrier?
Cell Tissue Res
288
(2):
259–265,
1997.
|
119. |
Perry VH,
Anthony DC,
Bolton SJ and
Brown HC.
The blood‐brain barrier and the inflammatory response.
Mol Med Today
3
(8):
335–341,
1997.
|
120. |
Hickey WF.
Basic principles of immunological surveillance of the normal central nervous system.
Glia
36
(2):
118–124,
2001.
|
121. |
Plumb J,
McQuaid S,
Mirakhur M and
Kirk J.
Abnormal endothelial tight junctions in active lesions and normal‐appearing white matter in multiple sclerosis.
Brain Pathol
12
(2):
154–169,
2002.
|
122. |
Maier‐Hauff K,
Baethmann AJ,
Lange M,
Schurer L and
Unterberg A.
The kallikrein‐kinin system as mediator in vasogenic brain edema. Part 2: Studies on kinin formation in focal and perifocal brain tissue.
J Neurosurg
61
(1):
97–106,
1984.
|
123. |
Wahl M,
Unterberg A,
Baethmann A and
Schilling L.
Mediators of blood‐brain barrier dysfunction and formation of vasogenic brain edema.
J Cereb Blood Flow Metab
8
(5):
621–634,
1988.
|
124. |
Revest PA,
Abbott NJ and
Gillespie JI.
Receptor‐mediated changes in intracellular [Ca2+] in cultured rat brain capillary endothelial cells.
Brain Res
549
(1):
159–161,
1991.
|
125. |
Sharma HS and
Dey PK.
Probable involvement of 5‐hydroxytryptamine in increased permeability of blood‐brain barrier under heat stress in young rats.
Neuropharmacology
25
(2):
161–167,
1986.
|
126. |
Sharma HS and
Dey PK.
Influence of long‐term immobilization stress on regional blood‐brain barrier permeability, cerebral blood flow and 5‐HT level in conscious normotensive young rats.
J Neurol Sci
72
(1):
61–76,
1986.
|
127. |
Schilling L and
Wahl M.
Opening of the blood‐brain barrier during cortical supervision with histamine.
Brain Res
653
(1‐2):
289–296,
1994.
|
128. |
Sarker MH,
Easton AS and
Fraser PA.
Regulation of cerebral microvascular permeability by histamine in the anaesthetized rat.
J Physiol
507
(Pt 3):
909–918,
1998.
|
129. |
Purkiss JR,
West D,
Wilkes LC, et al.
Stimulation of phospholipase C in cultured microvascular endothelial cells from human frontal lobe by histamine, endothelin and purinoceptor agonists.
Br J Pharmacol
111
(4):
1041–1046,
1994.
|
130. |
Nobles M,
Revest PA,
Couraud PO and
Abbott NJ.
Characteristics of nucleotide receptors that cause elevation of cytoplasmic calcium in immortalized rat brain endothelial cells (RBE4) and in primary cultures.
Br J Pharmacol
115
(7):
1245–1252,
1995.
|
131. |
Nobles M and
Abbott NJ.
Modulation of the effects of extracellular ATP on [Ca2+]i in rat brain microvacular endothelial cells.
Eur J Pharmacol
361
(1):
119–127,
1998.
|
132. |
Huber JD,
Egleton RD and
Davis TP.
Molecular physiology and pathophysiology of tight junctions in the blood‐brain barrier.
Trends Neurosci
24
(12):
719–725,
2001.
|
133. |
Wolburg H and
Lippoldt A.
Tight junctions of the blood‐brain barrier: development, composition and regulation.
Vascul Pharmacol
38
(6):
323–337,
2002.
|
134. |
Roy CS,
Sherrington C.
On the regulation of the blood supply of the brain.
Journal of Physiology
11:
1890;
85–108.
|
135. |
Ibayashi S,
Ngai AC,
Meno JR and
Winn HR.
Effects of topical adenosine analogs and forskolin on rat pial arterioles in vivo.
J Cereb Blood Flow Melab
11
(1):
72–76,
1991.
|
136. |
Laudignon N,
Beharry K,
Farri E and
Aranda JV.
The role of adenosine in the vascular adaptation of neonatal cerebral blood flow during hypotension.
J Cereb Blood Flow Metab
11
(3):
424–431,
1991.
|
137. |
Janigro D,
Wender R,
Ransom G,
Tinklepaugh DL and
Winn HR.
Adenosine‐induced release of nitric oxide from cortical astrocytes.
Neurvreport
7
(10):
1640–1644,
1996.
|
138. |
Janigro D,
Gasparini S,
D'Ambrosio R,
McKhann G, 2nd and
DiFrancesco D.
Reduction of K+ uptake in glia prevents long‐term depression maintenance and causes epileptiform activity.
J Neurosci
17
(8):
2813–2824,
1997.
|
139. |
Paulson OB and
Newman EA.
Does the release of potassium from astrocyte endfeet regulate cerebral blood flow?
Science
237
(4817):
896–898,
1987.
|
140. |
Sykova E.
Extracellular K+ accumulation in the central nervous system.
Prog Biophys Mol Biol
42
(2‐3):
135–189,
1983.
|
141. |
Nguyen TS,
Winn HR and
Janigro D.
ATP‐sensitive potassium channels may participate in the coupling of neuronal activity and cerebrovascular tone.
J Am Physiol Heart Circ Physiol
278
(3):
H878–H885,
2000.
|
142. |
McCarron JG and
Halpern W.
Potassium dilates rat cerebral arteries by two independent mechanisms.
J Am Physiol
259
(3 Pt 2):
H902–H908,
1990.
|
143. |
Knot HJ,
Zimmermann PA and
Nelson MT.
Extracellular K(+)‐induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K(+) channels.
J Physiol
492
(Pt 2):
419–430,
1996.
|
144. |
Zaritsky JJ,
Eckman DM,
Wellman GC,
Nelson MT and
Schwarz TL.
Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)‐mediated vasodilation.
Circ Res
87
(2):
160–166,
2000.
|
145. |
Johnson TD,
Marrelli SP,
Steenberg ML,
Childres WF and
Bryan RM, Jr.
Inward rectifier potassium channels in the rat middle cerebral artery.
J Am Physiol
274
(2 Pt 2):
R541–R547,
1998.
|
146. |
Kontos HA and
Wei EP.
Cerebral arteriolar dilations by KATP channel activators need L‐lysine or L‐arginine.
J Am Physiol
274
(3 Pt 2):
H974–H981,
1998.
|
147. |
Rosenblum WI.
ATP‐sensitive potassium channels in the cerebral circulation.
Stroke
34
(6):
1547–1552,
2003.
|
148. |
Lou HC,
Edvinsson L and
MacKenzie ET.
The concept of coupling blood flow to brain function: revision required?
Ann Neurol
22
(3):
289–297,
1987.
|
149. |
Zauner A,
Daugherty WP,
Bullock MR and
Warner DS.
Brain oxygenation and energy metabolism: I part‐biological function and pathophysiology.
Neurosurgery
51
(2):
289–301,
2002, discussion 2.
|
150. |
Busija DW and
Heistad DD.
Factors involved in the physiological regulation of the cerebral circulation.
Rev Physiol Biochem Pharmacol
101:
161–211,
1984.
|
151. |
Wei EP,
Kontos HA and
Patterson JL, Jr.
Dependence of pial arteriolar response to hypercapnia on vessel size.
J Am Physiol
238
(5):
697–703,
1980.
|
152. |
Lindauer U,
Kunz A,
Schuh‐Hofer S,
Vogt J,
Dreier JP and
Dirnagl U.
Nitric oxide from perivascular nerves modulates cerebral arterial pH reactivity.
J Am Physiol Heart Circ Physiol
281
(3):
H1353–H1363,
2001.
|
153. |
Demchenko IT,
Oury TD,
Crapo JD and
Piantadosi CA.
Regulation of the brain's vascular responses to oxygen.
Circ Res
91
(11):
1031–1037,
2002.
|
154. |
Gupta AK,
Menon DK,
Czosnyka M,
Smielewski P,
Kirkpatrick PJ and
Jones JG.
Non‐invasive measurement of cerebral blood volume in volunteers.
Br J Anaesth
78
(1):
39–43,
1997.
|
155. |
Attwell D and
Iadecola C.
The neural basis of functional brain imaging signals.
Trends Neurosci
25
(12):
621–625,
2002.
|
156. |
Leffler CW and
Busija DW.
Prostanoids and pial arteriolar diameter in hypotensive newborn pigs.
Am J Physiol
252
(4 Pt 2):
H687–H691,
1987.
|
157. |
Leffler CW,
Busija DW and
Beasley DG.
Effect of therapeutic dose of indomethacin on the cerebral circulation of newborn pigs.
Pediatr Res
21
(2):
188–192,
1987.
|
158. |
Girouard H and
Iadecola C.
Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease.
J Appl Physiol
100
(1):
328–335,
2006.
|
159. |
Ellis EF,
Wei EP and
Kontos HA.
Vasodilation of cat cerebral arterioles by prostaglandins D2, E2, G2, and 12.
Am J Physiol
237
(3):
H381–H385,
1979.
|
160. |
Peng X,
Carhuapoma JR,
Bhardwaj A, et al.
Suppression of cortical functional hyperemia to vibrissal stimulation in the rat by epoxygenase inhibitors.
Am J Physiol Heart Circ Physiol
283
(5):
H2029–H2037,
2002.
|
161. |
Wei EP,
Kontos HA and
Beckman JS.
Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite.
Am J Physiol
271
(3 Pt 2):
H1262–H1266,
1996.
|
162. |
Najarian T,
Marrache AM,
Dumont I, et al.
Prolonged hypercapnia‐evoked cerebral hyperemia via K(+) channel‐and prostaglandin E(2)‐dependent endothelial nitric oxide synthase induction.
Circ Res
87
(12):
1149–1156,
2000.
|
163. |
Fox PT and
Raichle ME.
Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects.
Proc Natl Acad Sci USA
83
(4):
1140–1144,
1986.
|
164. |
Horiuchi T,
Dietrich HH,
Hongo K and
Dacey RG, Jr.
Mechanism of extracellular K+‐induced local and conducted responses in cerebral penetrating arterioles.
Stroke
33
(11):
2692–2699,
2002.
|
165. |
Dietrich HH,
Kajita Y and
Dacey RG, Jr.
Local and conducted vasomotor responses in isolated rat cerebral arterioles.
Am J Physiol
271
(3Pt2):
H1109–H1116,
1996.
|
166. |
Cox SB,
Woolsey TA and
Rovainen CM.
Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels.
J Cereb Blood Flow Metab
13
(6):
899–913,
1993.
|
167. |
Haas TL and
Duling BR.
Morphology favors an endothelial cell pathway for longitudinal conduction within arterioles.
Microvasc Res
53
(2):
113–120,
1997.
|
168. |
Bartlett IS and
Segal SS.
Resolution of smooth muscle and endothelial pathways for conduction along hamster cheek pouch arterioles.
Am J Physiol Heart Circ Physiol
278
(2):
H604–H612,
2000.
|
169. |
Emerson GG and
Segal SS.
Endothelial cell pathway for conduction of hyperpolarization and vasodilation along hamster feed artery.
Circ Res
86
(1):
94–100,
2000.
|
170. |
Marrelli SP,
Johnson TD,
Khorovets A,
Childres WF and
Bryan RM, Jr.
Altered function of inward rectifier potassium channels in cerebrovascular smooth muscle after ischemia/reperfusion.
Stroke
29
(7):
1469–1474,
1998.
|
171. |
McCarron JG and
Halpern W.
Impaired potassium‐induced dilation in hypertensive rat cerebral arteries does not reflect altered Na+, K(+)‐ATPase dilation.
Circ Res
67
(4):
1035–1039,
1990.
|
172. |
Volterra A and
Meldolesi J.
Astrocytes, from brain glue to communication elements: the revolution continues.
Nat Rev Neurosci
6
(8):
626–640,
2005.
|
173. |
Bushong EA,
Martone ME and
Ellisman MH.
Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development.
Int J Dev Neurosci
22
(2):
73–86,
2004.
|
174. |
Bushong EA,
Martone ME,
Jones YZ and
Ellisman MH.
Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains.
J Neurosci
22
(1):
183–192,
2002.
|
175. |
Simard M,
Arcuino G,
Takano T,
Liu QS and
Nedergaard M.
Signaling at the gliovascular interface.
J Neurosci
23
(27):
9254–9262,
2003.
|
176. |
Mulligan SJ and
Mac Vicar BA.
Calcium transients in astrocyte endfeet cause cerebrovascular constrictions.
Nature
431
(7005):
195–199,
2004.
|
177. |
Hirrlinger J,
Hulsmann S and
Kirchhoff F.
Astroglial processes show spontaneous motility at active synaptic terminals in situ.
Eur J Neurosci
20
(8):
2235–2239,
2004.
|
178. |
Benediktsson AM,
Schachtele SJ,
Green SH and
Dailey ME.
Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures.
J Neurosci Methods
141
(1):
41–53,
2005.
|
179. |
Newman EA.
High potassium conductance in astrocyte endfeet.
Science
233
(4762):
453–454,
1986.
|
180. |
Newman EA,
Frambach DA and
Odette LL.
Control of extracellular potassium levels by retinal glial cell K+ siphoning.
Science
225
(4667):
1174–1175,
1984.
|
181. |
Price DL,
Ludwig JW,
Mi H,
Schwarz TL and
Ellisman MH.
Distribution of rSlo Ca2+‐activated K+ channels in rat astrocyte perivascular endfeet.
Brain Res
956
(2):
183–193,
2002.
|
182. |
Moro V,
Kacem K,
Springhetti V,
Seylaz J and
Lasbennes F.
Microvessels isolated from brain: localization of muscarinic sites by radioligand binding and immunofluorescent techniques.
J Cereh Blood Flow Metab
15
(6):
1082–1092,
1995.
|
183. |
Anderson CM and
Nedergaard M.
Astrocyte‐mediated control of cerebral microcirculation.
Trends Neurosci
26
(7):
340–344,
2003, author reply 4‐5.
|
184. |
Fellin T and
Carmignoto G.
Neurone‐to‐astrocyte signalling in the brain represents a distinct multifunctional unit.
J Physiol
559
(Pt 1):
3–15,
2004.
|
185. |
Parri HR,
Gould TM and
Crunelli V.
Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR‐mediated neuronal excitation.
Nat Neurosci
4
(8):
803–812,
2001.
|
186. |
Nett WJ,
Oloff SH and
McCarthy KD.
Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity.
J Neurophysiol
87
(1):
528–537,
2002.
|
187. |
Nimmerjahn A,
Kirchhoff F,
Kerr JN and
Helmchen F.
Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo.
Nat Methods
1
(1):
31–37,
2004.
|
188. |
Filosa JA,
Bonev AD and
Nelson MT.
Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling.
Circ Res
95
(10):
e73–e81,
2004.
|
189. |
Zonta M,
Angulo MC,
Gobbo S, et al.
Neuron‐to‐astrocyte signaling is central to the dynamic control of brain microcirculation. [see comment].
Nat Neurosci
6
(1):
43–50,
2003.
|
190. |
Zonta M,
Sebelin A,
Gobbo S,
Fellin T,
Pozzan T and
Carmignoto G.
Glutamate‐mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes.
J Physiol
553
(Pt 2):
407–414,
2003.
|
191. |
Harder DR,
Alkayed NJ,
Lange AR,
Gebremedhin D and
Roman RJ.
Functional hyperemia in the brain: hypothesis for astrocyte‐derived vasodilator metabolites.
Stroke
29
(1):
229–234,
1998.
|
192. |
Alkayed NJ,
Birks EK,
Narayanan J,
Petrie KA,
Kohler‐Cabot AE and
Harder DR.
Role of P‐450 arachidonic acid epoxygenase in the response of cerebral blood flow to glutamate in rats.
Stroke
28
(5):
1066–1072,
1997.
|
193. |
Cohen SA,
Trikha M and
Mascelli MA.
Potential future clinical applications for the GPIIb/IIIa antagonist, abciximab in thrombosis, vascular and oncological indications.
Pathol Oncol Res
6
(3):
163–174,
2000.
|
194. |
Guthrie PB,
Knappenberger J,
Segal M,
Bennett MV,
Charles AC and
Kater SB.
ATP released from astrocytes mediates glial calcium waves.
J Neurosci
19
(2):
520–528,
1999.
|
195. |
Schipke CG,
Boucsein C,
Ohlemeyer C,
Kirchhoff F and
Kettenmann H.
Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices.
FASEB J
16
(2):
255–257,
2002.
|
196. |
Tomita M,
Schiszler I,
Tomita Y, et al.
Initial oligemia with capillary flow stop followed by hyperemia during K+‐induced cortical spreading depression in rats.
J Cereb Blood Flow Metab
25
(6):
742–747,
2005.
|
197. |
Babcock AA,
Kuziel WA,
Rivest S and
Owens T.
Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS.
J Neurosci
23
(21):
7922–7930,
2003.
|
198. |
Marella M and
Chabry J.
Neurons and astrocytes respond to prion infection by inducing microglia recruitment.
J Neurosci
24
(3):
620–627,
2004.
|
199. |
Ursino M.
Mechanisms of cerebral blood flow regulation.
Crit Rev Biomed Eng
18
(4):
255–288,
1991.
|
200. |
Harder DR.
A cellular mechanism for myogenic regulation of cat cerebral arteries.
Ann Biomed Eng
13
(3‐4):
335–339,
1985.
|
201. |
Harder DR,
Lange AR,
Gebremedhin D,
Birks EK and
Roman RJ.
Cytochrome P450 metabolites of arachidonic acid as intracellular signaling molecules in vascular tissue.
J Vasc Res
34
(3):
237–243,
1997.
|
202. |
Welsh DG.
Morielli AD, Nelson MT and Brayden JE, Transient receptor potential channels regulate myogenic tone of resistance arteries.
Circ Res
90
(3):
248–250,
2002.
|
203. |
Earley S,
Waldron BJ and
Brayden JE.
Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries.
Circ Res
95
(9):
922–929,
2004.
|
204. |
Nelson MT and
Quayle JM.
Physiological roles and properties of potassium channels in arterial smooth muscle.
Am J Physiol
268
(4 Pt 1):
C799–C822,
1995.
|
205. |
Gokina NI,
Park KM,
McElroy‐Yaggy K and
Osol G.
Effects of Rho kinase inhibition on cerebral artery myogenic tone and reactivity.
J Appl Physiol
98
(5):
1940–1948,
2005.
|
206. |
Gulbenkian S,
Uddman R and
Edvinsson L.
Neuronal messengers in the human cerebral circulation.
Peptides
22
(6):
995–1007,
2001.
|
207. |
Ainslie PN,
Ashmead JC,
Ide K,
Morgan BJ and
Poulin MJ.
Differential responses to CO2 and sympathetic stimulation in the cerebral and femoral circulations in humans.
J Physiol
566
(Pt 2):
613–624,
2005.
|
208. |
Nielsen KC and
Owman C.
Adrenergic innervation of pial arteries related to the circle of Willis in the cat.
Brain Res
6
(4):
773–776,
1967.
|
209. |
Itakura T,
Yamamoto K,
Tohyama M and
Shimizu N.
Central dual innervation of arterioles and capillaries in the brain.
Stroke
8
(3):
360–365,
1977.
|
210. |
Edvinsson L,
Uddman R and
Juul R.
Peptidergic innervation of the cerebral circulation. Role in subarachnoid hemorrhage in man.
Neurosurg Rev
13
(4):
265–272,
1990.
|
211. |
Branston NM.
The physiology of the cerebrovascular parasympathetic innervation.
Br J Neurosurg
9
(3):
319–329,
1995.
|
212. |
Ladecola C.
Neurogenic control of the cerebral microcirculation: is dopamine minding the store?
Nat Neurosci
1
(4):
263–265,
1998.
|
213. |
Moskowitz MA,
Macfarlane R,
Tasdemiroglu E,
Wei EP and
Kontos HA.
Neurogenic control of the cerebral circulation during global ischemia.
Stroke
21
(11 Suppl):
III168–III171,
1990.
|
214. |
Wahlestedt C and
Reis DJ.
Neuropeptide Y‐related peptides and their receptors—are the receptors potential therapeutic drug targets?
Annu Rev Pharmacol Toxicol
33:
309–352,
1993.
|
215. |
Duverger D,
Edvinsson L,
MacKenzie ET, et al.
Concentrations of putative neurovascular transmitters in major cerebral arteries and small pial vessels of various species.
J Cereb Blood Flow Metab
7
(4):
497–501,
1987.
|
216. |
Lincoln J.
Innervation of cerebral arteries by nerves containing 5‐hydroxytryptamine and noradrenaline.
Pharmacol Ther
68
(3):
473–501,
1995.
|
217. |
McCalden TA and
Bevan JA.
Sources of activator calcium in rabbit basilar artery.
Am J Physiol
241
(2):
H129–H133,
1981.
|
218. |
Towart R.
The selective inhibition of serotonin‐induced contractions of rabbit cerebral vascular smooth muscle by calcium‐antagonistic dihydropyridines. An investigation of the mechanism of action of nimodipine.
Circ Res
48
(5):
650–657,
1981.
|
219. |
Wei EP,
Raper AJ,
Kontos HA and
Patterson JL, Jr.
Determinants of response of pial arteries to norepinephrine and sympathetic nerve stimulation.
Stroke
6
(6):
654–658,
1975.
|
220. |
Edvinsson L.
Neurogenic mechanisms in the cerebrovascular bed. Autonomic nerves, amine receptors and their effects on cerebral blood flow.
Acta Physiol Scand Suppl
427:
1–35,
1975.
|
221. |
Tamaki K and
Heistad DD.
Response of cerebral arteries to sympathetic stimulation during acute hypertension.
Hypertension
8
(10):
911–917,
1986.
|
222. |
Hart MN,
Heistad DD and
Brody MJ.
Effect of chronic hypertension and sympathetic denervation on wall/lumen ratio of cerebral vessels.
Hypertension
2
(4):
419–423,
1980.
|
223. |
Zhang ET,
Mikkelsen JD,
Fahrenkrug J,
Moller M,
Kronborg D and
Lauritzen M.
Prepro‐vasoactive intestinal polypeptide‐derived peptide sequences in cerebral blood vessels of rats: on the functional anatomy of metabolic autoregulation.
J Cereb Blood Flow Metab
11
(6):
932–938,
1991.
|
224. |
Edvinsson L,
Delgado‐Zygmunt T,
Ekman R,
Jansen I,
Svendgaard NA and
Uddman R.
Involvement of perivascular sensory fibers in the pathophysiology of cerebral vasospasm following subarachnoid hemorrhage.
J Cereb Blood Flow Metab
10
(5):
602–607,
1990.
|
225. |
Edvinsson L.
Innervation and effects of dilatory neuropeptides on cerebral vessels. New aspects.
Blood Vessels
28
(1‐3):
35–45,
1991.
|
226. |
Arimura A and
Shioda S.
Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: neuroendocrine and endocrine interaction.
Front Neuroendocrinal
16
(1):
53–88,
1995.
|
227. |
Bevan JA,
Buga GM,
Moskowitz MA and
Said SI.
In vitro evidence that vasoactive intestinal peptide is a transmitter of neurovasodilation in the head of the cat.
Neuroscience
19
(2):
597–604,
1986.
|
228. |
Barroso CP,
Edvinsson L,
Zhang W, et al.
Nitroxidergic innervation of guinea pig cerebral arteries.
J Auton Nerv Syst
58
(1‐2):
108–114,
1996.
|
229. |
Goadsby PJ,
Uddman R and
Edvinsson L.
Cerebral vasodilatation in the cat involves nitric oxide from parasympathetic nerves.
Brain Res
707:
110–118,
1996.
|
230. |
Nozaki K,
Moskowitz MA,
Maynard KI, et al.
Possible origins and distribution of immunoreactive nitric oxide synthase‐containing nerve fibers in cerebral arteries.
J Cereb Blood Flow Metab
13
(1):
70–79,
1993.
|
231. |
Yoshida K,
Okamura T and
Toda N.
Histological and functional studies on the nitroxidergic nerve innervating monkey cerebral, mesenteric and temporal arteries.
J Jpn Pharmacol
65
(4):
351–359,
1994.
|
232. |
Saito A and
Goto K.
Vasodilator innervation of small cerebral arteries of guinea pigs.
J Auton Nerv Syst
49
(Suppl):
S59–S62,
1994.
|
233. |
Seki Y,
Suzuki Y,
Baskaya MK, et al.
The effects of pituitary adenylate cyclase‐activating polypeptide on cerebral arteries and vertebral artery blood flow in anesthetized dogs.
Eur J Pharmacol
275
(3):
259–266,
1995.
|
234. |
Uddman R,
Goadsby PJ,
Jansen I and
Edvinsson L.
PACAP, a VIP‐like peptide: immunohistochemical localization and effect upon cat pial arteries and cerebral blood flow.
J Cereb Blood Flow Metab
13
(2):
291–297,
1993.
|
235. |
Lee TJ.
Sympathetic modulation of nitrergic neurogenic vasodilation in cerebral arteries.
J Jpn Pharmacol
88
(1):
26–31,
2002.
|
236. |
Macfarlane R,
Moskowitz MA,
Tasdemiroglu E,
Wei EP and
Kontos HA.
Postischemic cerebral blood flow and neuroeffector mechanisms.
Blood Vessels
28
(1‐3):
46–51,
1991.
|
237. |
Macfarlane R,
Tasdemiroglu E,
Moskowitz MA,
Uemura Y,
Wei EP and
Kontos HA.
Chronic trigeminal ganglionectomy or topical capsaicin application to pial vessels attenuates postocclusive cortical hyperemia but does not influence postischemic hypoperfusion.
J Cereb Blood Flow Metab
11
(2):
261–271,
1991.
|
238. |
Edvinsson L,
Rosendal‐Helgesen S and
Uddman R.
Substance P: localization, concentration and release in cerebral arteries, choroid plexus and dura mater.
Cell Tissue Res
234
(1):
1–7,
1983.
|
239. |
Edvinsson L,
Ekman R,
Jansen I,
McCulloch J and
Uddman R.
Calcitonin gene‐related peptide and cerebral blood vessels: distribution and vasomotor effects.
J Cereb Blood Flow Metab
7
(6):
720–728,
1987.
|
240. |
Edvinsson L,
Mulder H,
Goadsby PJ and
Uddman R.
Calcitonin gene‐related peptide and nitric oxide in the trigeminal ganglion: cerebral vasodilatation from trigeminal nerve stimulation involves mainly calcitonin gene‐related peptide.
J Auton Nerv Syst
70
(1):
15–22,
1998.
|
241. |
Edvinsson L,
Brodin E,
Jansen I and
Uddman R.
Neurokinin A in cerebral vessels: characterization, localization and effects in vitro.
Regul Pept
20
(3):
181–197,
1988.
|
242. |
Markowitz S,
Saito K and
Moskowitz MA.
Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain.
J Neurosci
7
(12):
4129–4136,
1987.
|
243. |
Edvinsson L.
Neuropeptide Y and the cerebral circulation.
EXS (95):
105–112,
2006.
|
244. |
Hamel E.
Perivascular nerves and the regulation of cerebrovascular tone.
J Appl Physiol
100
(3):
1059–1064,
2006.
|
245. |
Cauli B,
Tong XK,
Rancillac A, et al.
GABA Cortical intemeurons in neurovascular coupling: relays for subcortical vasoactive pathways.
J Neurosci
24
(41):
8940–8949,
2004.
|
246. |
Sato A,
Sato Y and
Uchida S.
Activation of the intracerebral cholinergic nerve fibers originating in the basal forebrain increases regional cerebral blood flow in the rat's cortex and hippocampus.
Neurosci Lett
361
(1‐3):
90–93,
2004.
|
247. |
Adachi T,
Biesold D,
Inanami O and
Sato A.
Stimulation of the nucleus basalis of Meynert and substantia innominata produces widespread increases in cerebral blood flow in the frontal, parietal and occipital cortices.
Brain Res
514
(1):
163–166,
1990.
|
248. |
Adachi T,
Inanami O,
Ohno K and
Sato A.
Responses of regional cerebral blood flow following focal electrical stimulation of the nucleus basalis of Meynert and the medial septum using the [14Cliodoantipyrine method in rats.
Neurosci Lett
112
(2‐3):
263–268,
1990.
|
249. |
Biesold D,
Inanami O,
Sato A and
Sato Y.
Stimulation of the nucleus basalis of Meynert increases cerebral cortical blood flow in rats.
Neurosci Lett
98
(1):
39–44,
1989.
|
250. |
Cohen Z,
Bonvento G,
Lacombe P and
Hamel E.
Serotonin in the regulation of brain microcirculation.
Prog Neurobiol
50
(4):
335–362,
1996.
|
251. |
Luiten PG,
de Jong GI,
van der Zee EA and
van Dijken H.
Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries.
Brain Res
720
(1‐2):
225–229,
1996.
|
252. |
Elhusseiny A,
Cohen Z,
Olivier A,
Stanimirovic DB and
Hamel E.
Functional acetylcholine muscarinic receptor subtypes in human brain microcirculation: identification and cellular localization.
J Cereh Blood Flow Metab
19
(7):
794–802,
1999.
|
253. |
Cao WH,
Inanami O,
Sato A and
Sato Y.
Stimulation of the septal complex increases local cerebral blood flow in the hippocampus in anesthetized rats.
Neurosci Lett
107
(1‐3):
135–140,
1989.
|
254. |
Krimer LS,
Muly EC, 3rd,
Williams GV and
Goldman‐Rakic PS.
Dopaminergic regulation of cerebral cortical microcirculation.
Nat Neurosci
1
(4):
286–289,
1998.
|
255. |
Andresen J,
Shafi NI and
Bryan RM, Jr.
Endothelial influences on cerebrovascular tone.
J Appl Physiol
100
(1):
318–327,
2006.
|
256. |
Atochin DN,
Demchenko IT,
Astern J,
Boso AE,
Piantadosi CA and
Huang PL.
Contributions of endothelial and neuronal nitric‐oxide synthases to cerebrovascular responses to hyperoxia.
J Cereb Blood Flow Metab
23
(10):
1219–1226,
2003.
|
257. |
Prado R,
Watson BD,
Kuluz J and
Dietrich WD.
Endothelium‐derived nitric oxide synthase inhibition. Effects on cerebral blood flow, pial artery diameter, and vascular morphology in rats.
Stroke
23
(8):
1118–1123,
1992, discussion 24.
|
258. |
Tanaka K,
Gotoh F,
Gomi S, et al.
Inhibition of nitric oxide synthesis induces a significant reduction in local cerebral blood flow in the rat.
Neurosci Lett
127
(1):
129–132,
1991.
|
259. |
Wang Q,
Pelligrino DA,
Baughman VL,
Koenig HM and
Albrecht RF.
The role of neuronal nitric oxide synthase in regulation of cerebral blood flow in normocapnia and hypercapnia in rats.
J Cereb Blood Flow Metab
15
(5):
774–778,
1995.
|
260. |
Yamada M,
Lamping KG,
Duttaroy A, et al.
Cholinergic dilation of cerebral blood vessels is abolished in M(5) muscarinic acetylcholine receptor knockout mice.
Proc Natl Acad Sci USA
98
(24):
14096–14101,
2001.
|
261. |
McNeill AM,
Kim N,
Duckies SP,
Krause DN and
Kontos HA.
Chronic estrogen treatment increases levels of endothelial nitric‐oxide synthase protein in rat cerebral microvessels.
Stroke
30
(10):
2186–2190,
1999.
|
262. |
Pelligrino DA,
Ye S,
Tan F,
Santizo RA,
Feinstein DL and
Wang Q.
Nitric‐oxide‐dependent pial arteriolar dilation in the female rat: effects of chronic estrogen depletion and repletion.
Biochem Biophys Res Commun
269
(1):
165–171,
2000.
|
263. |
Santizo RA,
Anderson S,
Ye S,
Koenig HM and
Pelligrino DA.
Effects of estrogen on leukocyte adhesion after transient forebrain ischemia.
Stroke
31
(9):
2231–2235,
2000.
|
264. |
Stirone C,
Boroujerdi A,
Duckies SP and
Krause DN.
Estrogen receptor activation of phosphoinositide‐3 kinase, akt, and nitric oxide signaling in cerebral blood vessels: rapid and long‐term effects.
Mol Pharmacol
67
(1):
105–113,
2005.
|
265. |
Endres M.
Statins and stroke.
J Cereb Blood Flow Metab
25
(9):
1093–1110,
2005.
|
266. |
Wagner AH,
Kohler T,
Ruckschloss U,
Just I and
Hecker M.
Improvement of nitric oxide‐HMG‐CoA dependent vasodilatation by reductase inhibitors through attenuation of endothelial superoxide anion formation.
Arterioscler Thromb Vasc Biol
20
(1):
61–69,
2000.
|
267. |
Chandrasekharan NV,
Dai H,
Roos KL, et al.
COX‐3, a cyclooxy‐genase‐1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression.
Proc Natl Acad Sci USA
99
(21):
13926–13931,
2002.
|
268. |
Kis B,
Snipes JA,
Isse T,
Nagy K and
Busija DW.
Putative cycloox‐ygenase‐3 expression in rat brain cells.
J Cereb Blood Flow Metab
23
(11):
1287–1292,
2003.
|
269. |
Kis B,
Snipes JA and
Busija DW.
Acetaminophen and the cyclooxygenase‐3 puzzle: sorting out facts, fictions, and uncertainties.
J Pharmacol Exp Ther
315
(1):
1–7,
2005.
|
270. |
Kis B,
Snipes JA,
Simandle SA and
Busija DW.
Acetaminophen‐sensitive prostaglandin production in rat cerebral endothelial cells.
Am J Physiol Regul Integr Comp Physiol
288
(4):
R897–R902,
2005.
|
271. |
Kis B,
Snipes A,
Bari F and
Busija DW.
Regional distribution of cyclooxygenase‐3 mRNA in the rat central nervous system.
Brain Res Mol Brain Res
126
(1):
78–80,
2004.
|
272. |
Bryan RM, Jr.,
You J,
Golding EM and
Marrelli SP.
Endothelium‐derived hyperpolarizing factor: a cousin to nitric oxide and prostacyclin.
Anesthesiology
102
(6):
1261–1277,
2005.
|
273. |
Golding EM,
Marrelli SP,
You J and
Bryan RM, Jr.
Endothelium‐derived hyperpolarizing factor in the brain: a new regulator of cerebral blood flow?
Stroke
33
(3):
661–663,
2002.
|
274. |
Golding EM,
You J,
Robertson CS and
Bryan RM, Jr.
Potentiated endothelium‐derived hyperpolarizing factor‐mediated dilations in cerebral arteries following mild head injury.
J Neurotrauma
18
(7):
691–697,
2001.
|
275. |
McGuire JJ,
Ding H and
Triggle CR.
Endothelium‐derived relaxing factors: a focus on endothelium‐derived hyperpolarizing factor(s).
J Can Physiol Pharmacol
79
(6):
443–470,
2001.
|
276. |
You J,
Johnson TD,
Marrelli SP and
Bryan RM, Jr.
Functional heterogeneity of endothelial P2 purinoceptors in the cerebrovascular tree of the rat.
Am J Physiol
277
(3 Pt 2):
H893–H900,
1999.
|
277. |
Miyauchi T and
Masaki T.
Pathophysiology of endothelin in the cardiovascular system.
Annu Rev Physiol
61:
391–415,
1999.
|
278. |
Faraci FM.
Effects of endothelin and vasopressin on cerebral blood vessels.
Am J Physiol
257
(3 Pt 2):
H799–H803,
1989.
|
279. |
Faraci FM,
Baumbach GL and
Heistad DD.
Cerebral circulation: humoral regulation and effects of chronic hypertension.
J Am Soc Nephrol
1
(1):
53–57,
1990.
|
280. |
Faraci FM,
Kinzenbaw D and
Heistad DD.
Effect of endogenous vasopressin on blood flow to choroid plexus during hypoxia and intracranial hypertension.
Am J Physiol
266
(2 Pt 2):
H393–H398,
1994.
|
281. |
Kazama K,
Anrather J,
Zhou P, et al.
Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase‐derived radicals.
Circ Res
95
(10):
1019–1026,
2004.
|
282. |
Baumbach GL,
Sigmund CD and
Faraci FM.
Cerebral arteriolar structure in mice overexpressing human renin and angiotensinogen.
Hypertension
41
(1):
50–55,
2003.
|
283. |
Faraci FM,
Lamping KG,
Modrick ML,
Ryan MJ,
Sigmund CD and
Didion SP.
Cerebral vascular effects of angiotensin II: new insights from genetic models.
J Cereb Blood Flow Metab
26
(4):
449–455,
2006.
|
284. |
Stenman E and
Edvinsson L.
Cerebral ischemia enhances vascular angiotensin AT1 receptor‐mediated contraction in rats.
Stroke
35
(4):
970–974,
2004.
|
285. |
Girouard H,
Park L,
Anrather J,
Zhou P and
Iadecola C.
Angiotensin II attenuates endothelium‐dependent responses in the cerebral microcirculation through nox‐2‐derived radicals.
Arterioscler Thromb Vasc Biol
26
(4):
826–832,
2006.
|
286. |
Saavedra JM.
Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities.
Cell Mol Neurobiol
25
(3‐4):
485–512,
2005.
|
287. |
Lassegue B and
Griendling KK.
Reactive oxygen species in hypertension; An update.
Am J Hypertens
17
(9):
852–860,
2004.
|
288. |
Takao M,
Kobari M,
Tanahashi N, et al.
Dilatation of cerebral parenchymal vessels mediated by angiotensin type 1 receptor in cats.
Neurosci Lett
318
(2):
108–112,
2002.
|
289. |
Faraci FM,
Mayhan WG,
Schmid PG and
Heistad DD.
Effects of arginine vasopressin on cerebral microvascular pressure.
Am J Physiol
255
(1 Pt 2):
H70–H76,
1988.
|
290. |
Littleton‐Kearney MT,
Agnew DM,
Traystman RJ and
Hurn PD.
Effects of estrogen on cerebral blood flow and pial microvas‐culature in rabbits.
Am J Physiol Heart Circ Physiol
279
(3):
H1208–H1214,
2000.
|
291. |
Pelligrino DA,
Santizo R,
Baughman VL and
Wang Q.
Cerebral vasodilating capacity during forebrain ischemia: effects of chronic estrogen depletion and repletion and the role of neuronal nitric oxide synthase.
Neuroreport
9
(14):
3285–3291,
1998.
|
292. |
Hurn PD,
Littleton‐Kearney MT,
Kirsch JR,
Dharmarajan AM and
Traystman RJ.
Postischemic cerebral blood flow recovery in the female: effect of 17 beta‐estradiol.
J Cereb Blood Flow Metab
15
(4):
666–672,
1995.
|
293. |
Alkayed NJ,
Harukuni I,
Kimes AS,
London ED,
Traystman RJ and
Hurn PD.
Gender‐linked brain injury in experimental stroke.
Stroke
29
(1):
159–165,
1998, discussion 66.
|
294. |
Wang Q,
Santizo R,
Baughman VL,
Pelligrino DA and
Iadecola C.
Estrogen provides neuroprotection in transient forebrain ischemia through perfusion‐independent mechanisms in rats.
Stroke
30
(3):
630–637,
1999.
|
295. |
Roof RL and
Hall ED.
Estrogen‐related gender difference in survival rate and cortical blood flow after impact‐acceleration head injury in rats.
J Neurotrauma
17
(12):
1155–1169,
2000.
|
296. |
Roof RL and
Hall ED.
Gender differences in acute CNS trauma and stroke: neuroprotective effects of estrogen and progesterone.
J Neurotrauma
17
(5):
367–388,
2000.
|
297. |
Baumbach GL and
Heistad DD.
Effects of sympathetic stimulation and changes in arterial pressure on segmental resistance of cerebral vessels in rabbits and cats.
Circ Res
52
(5):
527–533,
1983.
|
298. |
Werber AH and
Heistad DD.
Effects of chronic hypertension and sympathetic nerves on the cerebral microvasculature of stroke‐prone spontaneously hypertensive rats.
Circ Res
55
(3):
286–294,
1984.
|
299. |
Faraci FM,
Mayhan WG and
Heistad DD.
Segmental vascular responses to acute hypertension in cerebrum and brain stem.
Am J Physiol
252
(4 Pt 2):
H738–H742,
1987.
|
300. |
Barone FC,
Tuma RF,
Legos JJ,
Erhardt JA and
Parsons AA.
Brain Inflammation, Cytokines, and p38 MAP Kinase Signaling in Stroke. In:
Methods and New Frontiers in Neuroscience,
ed. Lin RCS.
Boca Raton, London, New York, Washington, DC:
CRC Press,
2002,
pp. 201–244.
|
301. |
Tuma RF,
Vashtare US,
Salehi HA,
Spera P and
Rosenwasser RH.
White cell involvement in cerebral ischemia and reperfusion injury. In:
Microcirculatory Stasis in the Brain,
eds Tomita M,
Mchedlishvili G,
Rosenblum WI and
Fukuuchi Y,
Amsterdam, London, New York, Tokyo:
Elsevier Science Publishers,
1993,
pp. 123–13.
|
302. |
Tuma RF,
Vasthare US,
Arfors KE and
Young WF.
Hypertonic saline administration attenuates spinal cord injury.
J Trauma
42
(5 Suppl):
S54–S60,
1997.
|
303. |
Legos JJ,
Tuma RF and
Barone FC.
Pharmacological interventions for stroke: failures and future.
Expert Opin Invest Drugs
11
(5):
603–614,
2002.
|
304. |
del Zoppo G,
Ginis I,
Hallenbeck JM,
Iadecola C,
Wang X and
Feuerstein GZ.
Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia.
Brain Pathol
10
(1):
95–112,
2000.
|
305. |
Kamiya T,
Katayama Y,
Kashiwagi F and
Terashi A.
The role of bradykinin in mediating ischemic brain edema in rats.
Stroke
24
(4):
571–575,
1993, discussion 5‐6.
|
306. |
Aschner JL,
Lum H,
Fletcher PW and
Malik AB.
Bradykinin‐ and thrombin‐induced increases in endothelial permeability occur independently of phospholipase C but require protein kinase C activation.
J Cell Physiol
173
(3):
387–396,
1997.
|
307. |
Zhang ZG,
Zhang L,
Jiang Q, et al.
VEGF enhances angiogenesis and promotes blood‐brain barrier leakage in the ischemic brain.
J Clin Invest
106
(7):
829–838,
2000.
|
308. |
Heo JH,
Lucero J,
Abumiya T,
Koziol JA,
Copeland BR and
del Zoppo GJ.
Matrix metalloproteinases increase very early during experimental focal cerebral ischemia.
J Cereb Blood Flow Metab
19
(6):
624–633,
1999.
|
309. |
Opdenakker G,
Van den Steen PE,
Dubois B, et al.
Gelatinase B functions as regulator and effector in leukocyte biology.
J Leukoc Biol
69
(6):
851–859,
2001.
|
310. |
del Zoppo GJ and
Mabuchi T.
Cerebral microvessel responses to focal ischemia.
J Cereb Blood Flow Metab
23
(8):
879–894,
2003.
|
311. |
Mocco J,
Mack WJ,
Ducruet AF, et al.
Complement component C3 mediates inflammatory injury following focal cerebral ischemia.
Circ Res
99
(2):
209–217,
2006.
|
312. |
Vasthare US,
Barone FC,
Sarau HM, et al.
Complement depletion improves neurological function in cerebral ischemia.
Brain Res Bull
45
(4):
413–419,
1998.
|
313. |
Popovich PG and
Jones TB.
Manipulating neuroinflammatory reactions in the injured spinal cord: back to basics.
Trends Pharmacol Sci
24
(1):
13–17,
2003.
|
314. |
Zhang M,
Martin BR,
Adler MW,
Razdan RK,
Jallo JI and
Tuma RF.
Cannabinoid CB (2) receptor activation decreases cerebral infarction in a mouse focal ischemia/reperfusion model.
J Cereb Blood Flow Metab
27
(7):
1387–1396,
2007.
|
315. |
Bednar MM,
Raymond S,
McAuliffe T,
Lodge PA and
Gross CE.
The role of neutrophils and platelets in a rabbit model of thromboembolic.
Stroke
22
(1):
44–50,
1991.
|
316. |
Dutka AJ,
Kochanek PM and
Hallenbeck JM.
Influence of granulocytopenia on canine cerebral ischemia induced by air.
Stroke
20
(3):
390–395,
1989.
|
317. |
Kochanek PM and
Hallenbeck JM.
Polymorphonuclear leukocytes and monocytes/macrophages in the.
Stroke
23
(9):
1367–1379,
1992.
|
318. |
Hallenbeck JM.
Cytokines, macrophages, and leukocytes in brain ischemia.
Neurology
49
(5 Suppl 4):
S5–S9,
1997.
|
319. |
Heinel LA,
Rubin S,
Rosenwasser RH,
Vasthare US and
Tuma RF.
Leukocyte involvement in cerebral infarct generation after ischemia and.
Brain Res Bull
34
(2):
137–141,
1994.
|
320. |
Vasthare US,
Heinel LA,
Rosenwasser RH and
Tuma RF.
Leukocyte involvement in cerebral ischemia and reperfusion injury.
Surg Neurol
33
(4):
261–265,
1990.
|
321. |
Matsuo Y,
Kihara T,
Ikeda M,
Ninomiya M,
Onodera H and
Kogure K.
Role of neutrophils in radical production during ischemia and reperfusion.
J Cere Blood Flow Metab
15
(6):
941–947,
1995.
|
322. |
Matsuo Y,
Onodera H,
Shiga Y, et al.
Correlation between myeloperoxidase‐quantified neutrophil accumulation.
Stroke
25
(7):
1469–1475,
1994.
|
323. |
Jiang N,
Zhang RL,
Chen H and
Chopp M.
Anti‐CD11b monoclonal antibody reduces ischemic cell damage after transient but not after permanenet MCA occlusion in the rat.
Neurosci Res Commun
15:
85–93,
1994.
|
324. |
Bowes MP,
Rothlein R,
Fagan SC and
Zivin JA.
Monoclonal antibodies preventing leukocyte activation reduce experimental neurologic injury and enhance efficacy of thrombolytic therapy.
Neurology
45
(4):
815–819,
1995.
|
325. |
Zhang RL,
Chopp M,
Li Y, et al.
Anti‐ICAM‐1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat.
Neurology
44
(9):
1747–1751,
1994.
|
326. |
Bowes MP,
Zivin JA and
Rothlein R.
Monoclonal antibody to the ICAM‐1 adhesionsite reduces neurological damage in a rabbit cerebral embolism stroke model.
Exp Neurol
119:
215–219,
1993.
|
327. |
Chopp M,
Zhang RL,
Chen H,
Li Y,
Jiang N and
Rusche JR.
Postischemic administration of an anti‐Mac‐1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats.
Stroke
25
(4):
869–875,
1994, discussion 75‐6.
|
328. |
Jiang N,
Moyle M,
Soule HR,
Rote WE and
Chopp M.
Neutrophil inhibitory factor is neuroprotective after focal ischemia in.
Ann Neurol
38
(6):
935–942,
1995.
|
329. |
Soriano SG,
Lipton YF,
Wang YF, et al.
Intercellular adchesion molecule‐1‐deficient mice are less susceptible to cerebral ischemia‐reperfusion injury.
Ann Neurol
39:
618–624,
1996.
|
330. |
Zhang RL,
Chopp M,
Zhang ZG, et al.
E‐selectin in focal cerebral ischemia and reperfusion in the rat.
J Cere Blood Flow Metab
16
(6):
1126–1136,
1996.
|
331. |
Goussev AV,
Zhang Z,
Anderson DC and
Chopp M.
P‐selection antibody reduces hemorrhage and infarct volume resulting from MCA occlusion in the rat.
J Neurol Sci
161
(1):
16–22,
1998.
|
332. |
Weaver M,
Leshley K,
Sands H,
Gritman KR,
Legos JJ and
Tuma RF.
LEX032, a novel recombinant serpin, protects the brain after transient focal ischemia.
Microvasc Res
63
(3):
327–334,
2002.
|
333. |
Popovich PG,
Guan Z,
McGaughy V,
Fisher L,
Hickey WF and
Basso DM.
The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation.
J Neuropathol Exp Neurol
61
(7):
623–633,
2002.
|
334. |
Mori E,
del Zoppo GJ,
Chambers JD,
Copeland BR and
Arfors KE.
Inhibition of polymorphonuclear leukocyte adherence suppresses no‐reflow.
Stroke
23
(5):
712–718,
1992.
|
335. |
Jiang N,
Chopp M and
Chahwala S.
Neutrophil inhibitory factor treatment of focal cerebral ischemia in the rat.
Brain Res
788
(1‐2):
25–34,
1998.
|
336. |
Lazarov‐Spiegler O,
Rapalino O,
Agranov G and
Schwartz M.
Restricted inflammatory reaction in the CNS: a key impediment to axonal regeneration?
Mol Med Today
4
(8):
337–342,
1998.
|
337. |
Ghirnikar RS,
Lee YL and
Eng LF.
Chemokine antagonist infusion promotes axonal sparing after spinal cord contusion injury in rat.
J Neurosci Res
64
(6):
582–589,
2001.
|
338. |
Hauben E and
Schwartz M.
Therapeutic vaccination for spinal cord injury: helping the body to cure itself.
Trends Pharmacol Sci
24
(1):
7–12,
2003.
|
339. |
Schwartz M and
Yoles E.
Macrophages and dendritic cells treatment of spinal cord injury:from the bench to the clinic.
Acta Neumchir Suppl
93:
147–150,
2005.
|
340. |
Popovich PG.
Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord.
Prog Brain Res
128:
43–58,
2000.
|
341. |
McTigue DM,
Tani M,
Krivacic K, et al.
Selective chemokine mRNA accumulation in the rat spinal cord after contusion injury.
J Neurosci Res
53
(3):
368–376,
1998.
|
342. |
Lee YL,
Shih K,
Bao P,
Ghirnikar RS and
Eng LF.
Cytokine chemokine expression in contused rat spinal cord.
Neurochem Int
36
(4‐5):
417–425,
2000.
|
343. |
Ghirnikar RS,
Lee YL and
Eng LF.
Chemokine antagonist infusion attenuates cellular infiltration following spinal cord contusion injury in rat.
J Neurosci Res
59
(1):
63–73,
2000.
|
344. |
Mackie K.
Cannabinoid receptors as therapeutic targets.
Annu Rev Pharmacol Toxicol
46:
101–122,
2006.
|
345. |
Pacher P,
Batkai S and
Kunos G.
The endocannabinoid system as an emerging target of pharmacotherapy.
Pharmacol Rev
58
(3):
389–462,
2006.
|
346. |
Klein TW and
Cabral GA.
Cannabinoid‐Induced Immune Suppression and Modulation of Antigen‐Presenting Cells.
J Neuroimmune Pharmacol
1:
50–64,
2006.
|
347. |
Begg M,
Pacher P,
Batkai S, et al.
Evidence for novel cannabinoid receptors.
Pharmacol Ther
106
(2):
133–145,
2005.
|
348. |
Klein TW.
Cannabinoid‐based drugs as anti‐inflammatory therapeutics.
Nat Rev Immunol
5
(5):
400–411,
2005.
|
349. |
Maresz K,
Carrier EJ,
Ponomarev ED,
Hillard CJ and
Dittel BN.
Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli.
J Neurochem
95
(2):
437–445,
2005.
|
350. |
Pertwee RG.
Pharmacology of cannabinoid receptor ligands.
Curr Med Chem
6
(8):
635–664,
1999.
|
351. |
Grundy RR and
Beltramo M.
Cannabinoids and neuroprotection.
Mol Neurobiol
24
(1‐3):
29–51,
2001.
|
352. |
Maresz K,
Pryce G,
Ponomarev ED, et al.
Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB (1) on neurons and CB(2) T on autoreactive cells.
Nat Med
13
(4):
492–497,
2007.
|
353. |
Ni X,
Geller EB,
Eppihimer MJ,
Eisenstein TK,
Adler MW and
Tuma RF.
Win 55212‐2, a cannabinoid receptor agonist, attenuates leukocyte/endothelial interactions in an experimental autoimmune encephalomyelitis model.
Mult Scler
10
(2):
158–164,
2004.
|
354. |
Jackson SJ,
Diemel LT,
Pryce G and
Baker D.
Cannabinoids and neuroprotection in CNS inflammatory disease.
J Neurol Sci
233
(1‐2):
21–25,
2005.
|
355. |
Muthian S,
Rademacher DJ,
Roelke CT,
Gross GJ and
Hillard CJ.
Anandamide content is increased and CB1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemia.
Neuroscience
129
(3):
743–750,
2004.
|
356. |
Croxford JL.
Therapeutic potential of cannabinoids in CNS disease.
CNS Drugs
17
(3):
179–202,
2003.
|
357. |
Witting A,
Chen L,
Cudaback E, et al.
Experimental autoimmune encephalomyelitis disrupts endocannabinoid‐mediated neuroprotection.
Proc Natl Acad Sci USA
103
(16):
6362–6367,
2006.
|
358. |
Jarai Z,
Wagner JA,
Varga K, et al.
Cannabinoid‐induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors.
Proc Natl Acad Sci USA
96
(24):
14136–14141,
1999.
|
359. |
Wagner JA,
Varga K,
Jarai Z and
Kunos G.
Mesenteric vasodilation mediated by endothelial anandamide receptors.
Hypertension
33
(1 Pt 2):
429–434,
1999.
|
360. |
Begg M,
Mo FM,
Offertaler L, et al.
G protein‐coupled endothelial receptor for atypical cannabinoid ligands modulates a Ca2+‐dependent K+ current.
J Biol Chem
278
(46):
46188–46194,
2003.
|
361. |
Mo FM,
Offertaler L and
Kunos G.
Atypical cannabinoid stimulates endothelial cell migration via a Gi/Go‐coupled receptor distinct from CB1, CB2 or EDG‐1.
Eur J Pharmacol
489
(1‐2):
21–27,
2004.
|
362. |
Nagayama T,
Sinor AD,
Simon RP, et al.
Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures.
J Neurosci
19
(8):
2987–2995,
1999.
|
363. |
Parmentier‐Batteur S,
Jin K,
Mao XO,
Xie L and
Greenberg DA.
Increased severity of stroke in CB1 cannabinoid receptor knock‐out mice.
J Neurosci
22
(22):
9771–9775,
2002.
|
364. |
Zhang M,
Martin BR,
Adler MW,
Razdan RK,
Ganea D and
Tuma RF.
Modulation of the balance between cannabinoid CB(1) and CB(2) receptor activation during cerebral ischemic/reperfusion injury.
Neuroscience
152
(3):
753–760,
2008.
|
365. |
Langrish CL,
Chen Y,
Blumenchein WM, et al.
IL‐23 drives a pathogenic T cell population that induces autoimmune inflammation.
J Exp Med
201
(2):
233–240,
2005.
|
366. |
Engelhardt B and
Ransohoff RM.
The ins and outs of T‐lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms.
Trends Immunol
26
(9):
485–495,
2005.
|
367. |
Sasseville VG,
Newman WA,
Lackner AA, et al.
Elevated vascular cell adhesion molecule‐1 in AIDS encephalitis induced by simian immunodeficiency virus.
Am J Pathol
141
(5):
1021–1030,
1992.
|
368. |
Engelhardt B,
Wolburg‐Buchholz K and
Wolburg H.
Involvement of the choroid plexus in central nervous system inflammation.
Microsc Res Tech
52
(1):
112–129,
2001.
|
369. |
Wekerle H,
Linington C,
Lassmann H and
Meyermann R.
Cellular immune reactivity within the CNS.
Trends Neurosci
9:
271–277,
1986.
|
370. |
Zeine R and
Owens T.
Direct demonstration of the infiltration of murine central nervous system by Pgp‐l/CD44high CD45RB(low) CD4+ T cells that induce experimental allergic encephalomyelitis.
J Neuroimmunol
40
(1):
57–69,
1992.
|
371. |
Engelhardt B,
Martin‐Simonet MT,
Rott LS,
Butcher EC and
Michie SA.
Adhesion molecule phenotype of T lymphocytes in inflamed CNS.
J Neuroimmunol
84
(1):
92–104,
1998.
|
372. |
McMahon EJ,
Bailey SL,
Castenada CV,
Waldner H and
Miller SD.
Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis.
Nat Med
11
(3):
335–339,
2005.
|
373. |
Piccio L,
Rossi B,
Scarpini E, et al.
Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: P critical roles for‐selectin glycoprotein ligand‐1 G and heterotrimeric(i)‐linked receptors.
J Immunol
168
(4):
1940–1949,
2002.
|
374. |
Greter M,
Heppner FL,
Lemos MP, et al.
Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis.
Nat Med
11
(3):
328–334,
2005.
|
375. |
Carrithers MD,
Visintin I,
Kang SJ and
Janeway CA, Jr.
Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment.
Brain
123
(Pt 6):
1092–1101,
2000.
|
376. |
Battistini L,
Piccio L,
Rossi B, et al.
CD8+ T cells from patients with acute multiple sclerosis display selective increase of adhesiveness in brain venules: P a critical role for‐selectin glycoprotein ligand‐1.
Blood
101
(12):
4775–4782,
2003.
|
377. |
Carvalho‐Tavares J,
Hickey MJ,
Hutchison J,
Michaud J,
Sutcliffe IT and
Kubes P.
A role for platelets and endothelial selectins in tumor necrosis factor‐alpha‐induced leukocyte recruitment in the brain microvasculature.
Circ Res
87
(12):
1141–1148,
2000.
|
378. |
Steffen BJ,
Butcher EC and
Engelhardt B.
Evidence for involvement of ICAM‐1 and VCAM‐I in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse.
Am J Pathol
145
(1):
189–201,
1994.
|
379. |
Baron J,
Madri J,
Ruddle N,
Hashim G and
Janeway CJ.
Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma.
J Exp Med
177
(1):
57–68,
1993.
|
380. |
Cannella B and
Raine CS.
The adhesion molecule and cytokine profile of multiple sclerosis lesions.
Ann Neurol
37
(4):
424–435,
1995.
|
381. |
Kivisakk P,
Mahad DJ,
Callahan MK, et al.
Human cerebrospinal fluid central memory CD4+ T cells: P evidence for trafficking through choroid plexus and meninges via‐selectin.
Proc Natl Acad Sci USA
100
(14):
8389–8394,
2003.
|
382. |
Vajkoczy P,
Laschinger M and
Engelhardt B.
Alpha4‐integrin‐VCAM‐1 binding mediates G protein‐independent capture of encephalitogenic T cell blasts to CNS white matter microvessels.
J Clin Invest
108
(4):
557–565,
2001.
|
383. |
Laschinger M,
Vajkoczy P and
Engelhardt B.
Encephalitogenic T cells use LFA‐1 for transendothelial migration but not during capture and initial adhesion strengthening in healthy spinal cord microvessels in vivo.
Eur J Immunol
32
(12):
3598–3606,
2002.
|
384. |
Mahad D,
Callahan MK,
Williams KA, et al.
Modulating CCR2 and CCL2 at the blood‐brain barrier: relevance for multiple sclerosis pathogenesis.
Brain
129
(Pt 1):
212–223,
2006.
|
385. |
Krumbholz M,
Theil D,
Cepok S, et al.
Chemokines in multiple sclerosis: CXCL12 and CXCL13 up‐regulation is differentially linked to CNS immune cell recruitment.
Brain
129
(Pt 1):
200–211,
2006.
|
386. |
Riddle DR,
Sonntag WE and
Lichtenwalner RJ.
Microvascular plasticity in aging.
Ageing Res Rev
2
(2):
149–168,
2003.
|
387. |
Leventhal C,
Rafii S,
Rafii D,
Shahar A and
Goldman SA.
Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma.
Mol Cell Neurosci
13
(6):
450–464,
1999.
|
388. |
Abemethy WB,
Bell MA,
Morris M and
Moody DM.
Microvascular density of the human paraventricular nucleus decreases with aging but not hypertension.
Exp Neurol
121
(2):
270–274,
1993.
|
389. |
Sonntag WE,
Lynch CD,
Cooney PT and
Hutchins PM.
Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin‐like growth factor 1.
Endocrinology
138
(8):
3515–3520,
1997.
|
390. |
Knox CA and
Oliveira A.
Brain aging in normotensive and hypertensive strains of rats. III. A quantitative study of cerebrovasculature.
Acta Neuropathol (Berl)
52
(1):
17–25,
1980.
|
391. |
Bell MA and
Ball MJ.
Morphometric comparison of hippocampai microvasculature in ageing and demented people: diameters and densities.
Acta Neuropathol (Berl)
53
(4):
299–318,
1981.
|
392. |
Hutchins PM,
Lynch CD,
Cooney PT and
Curseen KA.
The microcirculation in experimental hypertension and aging.
Cardiovasc Res
32
(4):
772–780,
1996.
|
393. |
Black JE,
Isaacs KR and
Greenough WT.
Usual vs. successful aging: some notes on experiential factors.
Neurobiol Aging
12
(4):
325–328,
1991, discussion 52‐5.
|
394. |
Yamaguchi S,
Kobayashi S,
Murata A,
Yamashita K and
Tsunematsu T.
Effect of aging on collateral circulation via pial anastomoses in cats.
Gerontology
34
(4):
157–164,
1988.
|
395. |
Szpak GM,
Lechowicz W,
Lewandowska E,
Bertrand E,
Wierzba‐Bobrowicz T and
Dymecki J.
Border zone neovascularization in cerebral ischemic infarct.
Folia Neuropathol
37
(4):
264–268,
1999.
|
396. |
Sonntag WE,
Lynch C,
Thornton P,
Khan A,
Bennett S and
Ingram R.
The effects of growth hormone and IGF‐1 deficiency on cerebrovascular and brain ageing.
J Anat
197
(Pt 4):
575–585,
2000.
|
397. |
Hajdu MA,
Heistad DD,
Siems JE and
Baumbach GL.
Effects of aging on mechanics and composition of cerebral arterioles in rats.
Circ Res
66
(6):
1747–1754,
1990.
|
398. |
Ritter LS,
Orozco JA,
Coull BM,
McDonagh PF and
Rosenblum WI.
Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke.
Stroke
31
(5):
1153–1161,
2000.
|
399. |
Knox CA,
Yates RD,
Chen I and
Klara PM.
Effects of aging on the structural and permeability characteristics of cerebrovasculature in normotensive and hypertensive strains of rats.
Acta Neuropathol (Berl)
51
(1):
1–13,
1980.
|
400. |
Keuker JI,
Luiten PG and
Fuchs E.
Capillary changes in hippocampai CA1 and CA3 areas of the aging rhesus monkey.
Acta Neuropathol (Berl)
100
(6):
665–672,
2000.
|
401. |
Uchida S,
Suzuki A,
Kagitani F and
Hotta H.
Effects of age on cholinergic vasodilation of cortical cerebral blood vessels in rats.
Neurosci Lett
294
(2):
109–112,
2000.
|
402. |
Pardridge WM.
Does the brain's gatekeeper falter in aging?
Neurobiol Aging
9
(1):
44–46,
1988.
|
403. |
Mooradian AD,
Morin AM,
Cipp LJ and
Haspel HC.
Glucose transport is reduced in the blood‐brain barrier of aged rats.
Brain Res
551
(1‐2):
145–149,
1991.
|
404. |
Reich T and
Rusinek H.
Cerebral cortical and white matter reactivity to carbon dioxide.
Stroke
20
(4):
453–457,
1989.
|
405. |
Kawamura J,
Terayama Y,
Takashima S, et al.
Leuko‐araiosis and cerebral perfusion in normal aging.
Exp Aging Res
19
(3):
225–240,
1993.
|
406. |
Vasthare US,
Irion GL,
Carlsson C and
Tuma RF.
Differential effects of anesthetic agents on regional blood flow and central hemodynamic parameters in rats.
Drug Dev Res
14
(1):
59–67,
1988.
|
407. |
Jiang HX,
Chen PC,
Sobin SS and
Giannotta SL.
Age related alterations in the response of the pial arterioles to adenosine in the rat.
Mech Ageing Dev
65
(2‐3):
257–276,
1992.
|
408. |
Mayhan WG,
Faraci FM,
Baumbach GL and
Heistad DD.
Effects of aging on responses of cerebral arterioles.
Am J Physiol
258
(4 Pt 2):
H1138–H1143,
1990.
|
409. |
El‐Assouad D and
Tayebati SK.
Cholinergic innervation of pial arteries in senescent rats: an immunohistochemical study.
Mech Ageing Dev
123
(5):
529–536,
2002.
|
410. |
Tomita M,
Gotoh F,
Amano T,
Tanahashi N and
Tanaka K.
“Low perfusion hyperemia” following middle cerebral arterial occlusion in cats of different age groups.
Stroke
11
(6):
629–636,
1980.
|
411. |
Hajdu MA,
McElmurry RT,
Heistad DD and
Baumbach GL.
Effects of aging on cerebral vascular responses to serotonin in rats.
Am J Physiol
264
(6 Pt 2):
H2136–H2140,
1993.
|
412. |
Scheibel AB.
Alterations of the cerebral capillary bed in the senile dementia of Alzheimer.
Ital J Neurol Sci
8
(5):
457–463,
1987.
|
413. |
Hashimura T,
Kimura T and
Miyakawa T.
Morphological changes of blood vessels in the brain with Alzheimer's disease.
Jpn J Psychiatry Neurol
45
(3):
661–665,
1991.
|
414. |
Kimura T,
Hashimura T and
Miyakawa T.
Observations of microvessels in the brain with Alzheimer's disease by the scanning electron microscopy.
Jpn J Psychiatry Neurol
45
(3):
671–676,
1991.
|
415. |
Yamashita K,
Miyakawa T and
Katsuragi S.
Vascular changes in the brains with Alzheimer's disease.
Jpn J Psychiatry Neurol
45
(1):
79–84,
1991.
|
416. |
Stewart PA,
Hayakawa K,
Akers MA and
Vinters HV.
A morphometric study of the blood‐brain barrier in Alzheimer's disease.
Lab Invest
67
(6):
734–742,
1992.
|
417. |
Niwa K,
Porter VA,
Kazama K,
Cornfield D,
Carlson GA and
Ladecola C.
A beta‐peptides enhance vasoconstriction in cerebral circulation.
Am J Physiol Heart Circ Physiol
281
(6):
H2417–H2424,
2001.
|
418. |
Paris D,
Town T,
Parker T,
Humphrey J and
Mullan M.
A beta vasoactivity: an inflammatory reaction.
Ann N Y Acad Sci
903:
97–109,
2000.
|