References |
1. |
Kuo L,
Davis MJ and
Chilian WM.
Myogenic activity in isolated subepicardial and subendocardial coronary arterioles.
Am J Physiol
255:
H1558–H1562,
1988b.
|
2. |
Kuo L,
Davis MJ and
Chilian WM.
Endothelium‐dependent, flow‐induced dilation of isolated coronary arterioles.
Am J Physiol
259:
H1063–H1070,
1990c.
|
3. |
Chilian WM,
Eastham CL and
Marcus ML.
Microvascular distribution of coronary vascular resistance in beating left ventricle.
Am J Physiol
251:
H779–H788,
1986.
|
4. |
Chilian WM.
Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium.
Circ Res
69:
561–570,
1991b.
|
5. |
Zhang C,
Hein TW and
Kuo L.
Transmural difference in coronary arteriolar dilation to adenosine: effect of luminal pressure and K(ATP) channels.
Am J Physiol Heart Circ Physiol
279
(6):
H2612–H2619,
2000b.
|
6. |
Bache RJ and
Schwartz JS.
Effect of perfusion pressure distal to a coronary stenosis on transmural myocardial blood flow.
Circulation
65
(5):
928–935,
1982.
|
7. |
Quillen JE and
Harrison DG.
Vasomotor properties of porcine endocardial and epicardial microvessels.
Am J Physiol Heart Circ Physiol
262:
H1143–H1148,
1992.
|
8. |
Gorman MW,
Tune JD,
Richmond KN and
Feigl EO.
Feedforward sympathetic coronary vasodilation in exercising dogs.
J Appl Physiol
89
(5):
1892–1902,
2000a.
|
9. |
Miyashiro JK and
Feigl EO.
Feedforward control of coronary blood flow via coronary beta‐receptor stimulation.
Circ Res
73
(2):
252–263,
1993a.
|
10. |
Hein TW,
Zhang C,
Wang W and
Kuo L.
Heterogeneous beta2‐adrenoceptor expression and dilation in coronary arterioles across the left ventricular wall.
Circulation
110
(17):
2708–2712,
2004b.
|
11. |
Mullane KM and
Pinto A.
Endothelium, arachidonic acid, and coronary vascular tone.
Fed Proc
46:
54–62,
1987.
|
12. |
Quillen JE,
Sellke FW,
Brooks LA and
Harrison DG.
ischemiareperfusion impairs endothelium‐dependent relaxation of coronary microvessels but does not affect large arteries.
Circulaiton
82:
586–594,
1990.
|
13. |
Chilian WM,
Kuo L,
DeFily DV,
Jones CJH and
Davis MJ.
Endothelial regulation of coronary microvascular tone under physiological and pathophysiological conditions.
Eur Heart J
14
(Suppl 1):
55–59,
1993.
|
14. |
Tschudi M,
Richard V,
Bühler FR and
Lüscher TF.
Importance of endothelium‐derived nitric oxide in porcine coronary resistance arteries.
Am J Physiol
260:
H13–H20,
1991b.
|
15. |
Lamping KG,
Kanatsuka H,
Eastham CL,
Chilian WM and
Marcus ML.
Nonuniform vasomotor responses of the coronary microcirculation to serotonin and vasopressin.
Circ Res
65:
343–351,
1989b.
|
16. |
Jones CJH,
Kuo L,
Davis MJ,
Chilian WM and
DeFily DV.
Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand.
Circulaiton
91:
1807–1813,
1995b.
|
17. |
Huang A,
Sun D,
Jacobson A,
Carroll MA,
Falck JR and
Kaley G.
Epoxyeicosatrienoic acids are released to mediate shear stress‐dependent hyperpolarization of arteriolar smooth muscle.
Circ Res
96
(3):
376–383,
2005.
|
18. |
Huang A,
Wu Y,
Sun D,
Koller A and
Kaley G.
Effect of estrogen on flow‐induced dilation in NO deficiency: role of prostaglandins and EDHF.
J Appl Physiol
91
(6):
2561–2566,
2001.
|
19. |
Miura H,
Bosnjak JJ,
Ning G,
Saito T,
Miura M and
Gutterman DD.
Role for hydrogen peroxide in flow‐induced dilation of human coronary arterioles.
Circ Res
92
(2):
e31–e40,
2003.
|
20. |
Nishikawa Y,
Stepp DW and
Chilian WM.
Nitric oxide exerts feedback inhibition on EDHF‐induced coronary arteriolar dilation in vivo.
Am J Physiol Heart Circ Physiol
279
(2):
H459–H465,
2000.
|
21. |
Jones CJH,
Kuo L,
Davis MJ and
Chilian WM.
Myogenic and flow‐dependent control mechanisms in the coronary microcirculation.
Basic Res Cardiol
88:
2–10,
1993b.
|
22. |
Cornelissen AJM,
Dankelman J,
VanBavel E and
Spaan JAE.
Balance between myogenic, flow‐dependent, and metabolic flow control in coronary arterial tree: a model study.
Am J Physiol Heart Circ Physiol
282
(6):
H2224–H2237,
2002.
|
23. |
Kuo L,
Chilian WM and
Davis MJ.
Coronary arteriolar myogenic response is independent of endothelium.
Circ Res
66:
860–866,
1990a.
|
24. |
Kuo L,
Davis MJ and
Chilian WM.
Longitudinal gradients for endothelium‐dependent and ‐independent vascular responses in the coronary microcirculation.
Circulation
92:
518–525,
1995a.
|
25. |
Kuo L,
Arko F,
Chilian WM and
Davis MJ.
Nitrovasodilator‐mediated flow‐induced dilation in isolated porcine coronary venules.
HFASEB J
6:
A1752,
1992a.
|
26. |
Muller JM,
Chilian WM and
Davis MJ.
Integrin signaling transduces shear stress‐dependent vasodilation of coronary arterioles.
Circ Res
80:
320–326,
1997.
|
27. |
Koshida R,
Rocic P,
Saito S,
Kiyooka T,
Zhang C and
Chilian WM.
Role of focal adhesion kinase in flow‐induced dilation of coronary arterioles.
Arterioscler Thromb Vasc Biol
25
(12):
2548–2553,
2005.
|
28. |
Muller JM,
Davis MJ,
Kuo L and
Chilian WM.
Changes in coronary endothelial cell Ca2+ concentration during shear stress‐ and agonist‐induced vasodilation.
Am J Physiol
276
(5 Pt 2):
H1706–H1714,
1999.
|
29. |
Stepp DW,
Nishikawa Y and
Chilian WM.
Regulation of shear stress in the canine coronary microcirculation.
Circulation
100
(14):
1555–1561,
1999.
|
30. |
Kuo L,
Chilian WM and
Davis MJ.
Interaction of pressure‐ and flow‐induced responses in porcine coronary resistance vessels.
Am J Physiol Hear Circ Physiol
261
(6 Pt 2):
H1706–H1715,
1991.
|
31. |
Stepp DW,
Merkus D,
Nishikawa Y and
Chilian WM.
Nitric oxide limits coronary vasoconstriction by a shear stress‐dependent mechanism.
Am J Physiol Heart Circ Physiol
281
(2):
H796–803,
2001.
|
32. |
DeFily DV.
Control of microvascular resistance in physiological conditions and reperfusion.
J Mot Cell Cardiol
30:
2547–2554,
1998.
|
33. |
Martinez‐Lemusa LA,
Wu X,
Wilson E,
Hill MA,
Davis GE,
Davis MJ and
Meininger GA.
Integrins as unique receptors for vascular control.
J Vasc Res
40
(3):
211–233,
2003.
|
34. |
Chilian WM and
Layne SM.
Coronary microvascular responses to reductions in perfusion pressure: Evidence for persistent arteriolar vasomotor tone during coronary hypoperfusion.
Circ Res
66:
1227–1238,
1990.
|
35. |
Kanatsuka H,
Lamping KG,
Eastham CL and
Marcus ML.
Heterogeneous changes in epimyocardial microvascular size during graded coronary stenosis: Evidence of the microvascular site for autoregulation.
Circ Res
66:
389–396,
1990.
|
36. |
Miller FJJ,
Dellsperger KC and
Gutterman DD.
Myogenic constriction of human coronary arterioles.
Am J Physiol
273:
H257–H264,
1997.
|
37. |
Dole WP and
Nuno DW.
Myocardial oxygen tension determines the degree and pressure range of coronary autoregulation.
Circ Res
59
(2):
202–215,
1986.
|
38. |
Zhang C,
Hein TW and
Kuo L.
Transmural difference in coronary arteriolar dilation to adenosine: effect of luminal pressure and K(ATP) channels.
Am J Physiol Heart Circ Physiol
279
(6):
H2612–H2619,
2000a.
|
39. |
Kuo L,
Davis MJ,
Cannon MS and
Chilian WM.
Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation: Restoration of endothelium‐dependent responses by L‐arginine.
Circ Res
70:
465–476,
1992b.
|
40. |
DeFily DV and
Chilian WM.
Preconditioning protects coronary arteriolar endothelium from ischemia‐reperfusion injury.
Am J Physiol
265
(2 Pt 2):
H700–H706,
1993.
|
41. |
Alders DJ,
Groeneveld AB,
de Kanter FJ and
van Beek JH.
Myocardial O2 consumption in porcine left ventricle is heterogeneously distributed in parallel to heterogeneous O2 delivery.
Am J Physiol Heart Circ Physiol
287
(3):
H1353–H1361,
2004.
|
42. |
Ishibashi Y,
Duncker DJ,
Zhang J and
Bache RJ.
ATP‐sensitive K+ channels, adenosine, and nitric oxide‐mediated mechanisms account for coronary vasodilation during exercise.
Circ Res
82
(3):
346–359,
1998.
|
43. |
Merkus D,
Duncker DJGM and
Chilian WM.
Metabolic Regulation of Coronary Vascular Tone‐ Role of Endothelin‐1.
Am J Physiol Heart Circ Physiol
283
(5):
H1915–H1921,
2002c.
|
44. |
Berne RM and
Rubio R.
Regulation of coronary blood flow.
Adv Cardiol
12
(0):
303–317,
1974.
|
45. |
Olsson RA,
Bunger R and
Spaan JA.
Coronary circulation. In:
The Heart and Cardiovascular System,
eds Fozzard HA,
Haber E,
Jennings RB,
Katz AM and
Morgan HE.
New York:
Raven Press,
1992,
pp. 1393–1426.
|
46. |
Sparks HV, Jr. and
Bardenheuer H.
Regulation of adenosine formation by the heart.
Circ Res
58
(2):
193–201,
1986.
|
47. |
Hanley FL,
Grattan MT,
Stevens MB and
Hoffman JI.
Role of adenosine in coronary autoregulation.
Am J Physiol
250
(4 Pt 2):
H558–H566,
1986.
|
48. |
Kroll K and
Feigl EO.
Adenosine is unimportant in controlling coronary blood flow in unstressed dog hearts.
Am J Physiol
249
(6 Pt 2):
H1176–H1187,
1985.
|
49. |
Saito D,
Steinhart CR,
Nixon DG and
Olsson RA.
Intracoronary adenosine deaminase reduces canine myocardial reactive hyperemia.
Circ Res
49
(6):
1262–1267,
1981.
|
50. |
Giles RW and
Wilcken DE.
Reactive hyperaemia in the dog heart: inter‐relations between adenosine, ATP, and aminophylline and the effect of indomethacin.
Cardiovascul Res
11
(2):
113–121,
1977.
|
51. |
Schutz W,
Zimpfer M and
Raberger G.
Effect of aminophylline on coronary reactive hyperaemia following brief and long occlusion periods.
Cardiovascul Res
11
(6):
507–511,
1977.
|
52. |
Martin SE,
Tidmore WC and
Patterson RE.
Adenosine receptor blockade with 8‐p‐sulfophenyltheophylline aggravates coronary constriction.
Am J Physiol
260
(6 Pt 2):
H1753–H1759,
1991.
|
53. |
Tune JD,
Richmond KN,
Gorman MW and
Feigl EO.
Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs.
Circulation
101
(25):
2942–2948,
2000a.
|
54. |
Bache RJ,
Dai XZ,
Schwartz JS and
Homans DC.
Role of adenosine in coronary vasodilation during exercise.
Circ Res
62
(4):
846–853,
1988.
|
55. |
Bacchus AN,
Ely SW,
Knabb RM,
Rubio R and
Berne RM.
Adenosine and coronary blood flow in conscious dogs during normal physiological stimuli.
Am J Physiol
243
(4):
H628–H633,
1982.
|
56. |
Watkinson WP,
Foley DH,
Rubio R and
Berne RM.
Myocardial adenosine formation with increased cardiac performance in the dog.
Am J Physiol
236
(1):
H13–21,
1979.
|
57. |
Tune JD,
Richmond KN,
Gorman MW,
Olsson RA and
Feigl EO.
Adenosine is not responsible for local metabolic control of coronary blood flow in dogs during exercise.
Am J Physiol Heart Circ Physiol
278
(1):
H74–h84,
2000b.
|
58. |
Merkus D,
Haitsma DB,
Fung TY,
Assen YJ,
Verdouw PD and
Duncker DJ.
Coronary blood flow regulation in exercising swine involves parallel rather than redundant vasodilator pathways.
Am J Physiol Heart Circ Physiol
285
(1):
H424–H433,
2003a.
|
59. |
Edlund A,
Conradsson T and
Sollevi A.
A role for adenosine in coronary vasoregulation in man. Effects of theophylline and enprofylline.
Clin Physiol
15
(6):
623–636,
1995.
|
60. |
Edlund A and
Sollevi A.
Theophylline increases coronary vascular tone in humans: evidence for a role of endogenous adenosine in flow regulation.
Acta Physiol Scand
155
(3):
303–311,
1995.
|
61. |
Edlund A,
Sollevi A and
Wennmalm A.
The role of adenosine and prostacyclin in coronary flow regulation in healthy man.
Acta Physiol Scand
135
(1):
39–46,
1989.
|
62. |
Rubanyi GM and
Polokoff MA.
Endothelins: molecular biology. biochemistry, pharmacology, physiology, and pathophysiology.
Pharmacol Rev
46
(3):
325–415,
1994.
|
63. |
Frelin C and
Guedin D.
Why are circulating concentrations of endothelin‐1 so low?
Cardiovascul Res
28
(11):
1613–1622,
1994.
|
64. |
Halcox JP,
Nour KR,
Zalos G and
Quyyumi AA.
Coronary vasodilation and improvement in endothelial dysfunction with endothelin ET(A) receptor blockade.
Circ Res
89
(11):
969–976,
2001.
|
65. |
Merkus D,
Houweling B,
Mirza A,
Boomsma F,
van den Meiracker AH and
Duncker DJ.
Contribution of endothelin and its receptors to the regulation of vascular tone during exercise is different in the systemic, coronary and pulmonary circulation.
Cardiovascul Res
59
(3):
745–754,
2003b.
|
66. |
Takamura M,
Parent R,
Cernacek P and
Lavallee M.
Influence of dual ET(A)/ET(B)‐receptor blockade on coronary responses to treadmill exercise in dogs.
J Appl Physiol
89
(5):
2041–2048,
2000.
|
67. |
Haitsma DB,
Bac D,
Raja N,
Boomsma F,
Verdouw PD and
Duncker DJ.
Minimal impairment of myocardial blood flow responses to exercise in the remodeled left ventricle early after myocardial infarction, despite significant hemodynamic and neurohumoral alterations.
Cardiovascul Res
52
(3):
417–428,
2001.
|
68. |
Lenz T,
Nadansky M,
Gossmann J,
Oremek G and
Geiger H.
Exhaustive exercise‐induced tissue hypoxia does not change endothelin and big endothelin plasma levels in normal volunteers.
Am J Hypertens
11
(8 Pt 1):
1028–1031,
1998.
|
69. |
Ahlborg G,
Weitzberg E and
Lundberg J.
Metabolic and vascular effects of circulating endothelin‐1 during moderately heavy prolonged exercise.
J Appl Physiol
78
(6):
2294–2300,
1995.
|
70. |
Maeda S,
Miyauchi T,
Goto K and
Matsuda M.
Alteration of plasma endothelin‐1 by exercise at intensities lower and higher than ventilatory threshold.
J Appl Physiol
77
(3):
1399–1402,
1994.
|
71. |
Merkus D,
Stepp DW,
Jones DW,
Nishikawa Y and
Chilian WM.
Adenosine preconditions against endothelin‐induced constriction of coronary arterioles.
Am J Physiol
279
(6):
H2593–H2597,
2000.
|
72. |
Gorman MW,
Farias M, III,
Richmond KN,
Tune JD and
Feigl EO.
Role of endothelin in alpha‐adrenoceptor coronary vasoconstriction.
Am J Physiol Heart Circ Physiol
288
(4):
H1937–H1942,
2005a.
|
73. |
Merkus D,
Duncker DJGM and
Chilian WM.
Metabolic Regulation of Coronary Vascular Tone‐ Role of Endothelin‐1.
Am J Physiol
283
(5):
H1915–H1921,
2002b.
|
74. |
Goligorsky MS,
Tsukahara H,
Magazine H,
Andersen TT,
Malik AB and
Bahou WF.
Termination of endothelin signaling: role of nitric oxide.
J Cell Physiol
158
(3):
485–494,
1994.
|
75. |
Wiley KE and
Davenport AP.
Nitric oxide‐mediated modulation of the endothelin‐1 signalling pathway in the human cardiovascular system.
Br J Pharmacol
132
(1):
213–220,
2001.
|
76. |
Saitoh S‐I,
Zhang C,
Tune JD,
Potter B,
Kiyooka T,
Rogers PA,
Knudson JD,
Dick G,
Swafford A and
Chilian WM.
Hydrogen Peroxide. A Feed‐Forward Dilator That Couples Myocardial Metabolism to Coronary Blood Flow.
Arterioscler Thromb Vasc Biol,
26:
2614–2621,
2006.
|
77. |
Zhang C,
Brzezinska AK and
Chilian WM.
Hydrogen Peroxide is a Coronary Vasodilator Linking Myocardial Metabolism to Coronary Blood Flow.
Circulation
110
(Suppl):
III‐74,
2004.
|
78. |
Yada T,
Shimokawa H,
Hiramatsu O,
Kajita T,
Shigeto F,
Goto M,
Ogasawara Y and
Kajiya F.
Hydrogen peroxide, an endogenous endothelium‐derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo.
Circulation
107
(7):
1040–1045,
2003.
|
79. |
Hirsch E and
Borghard‐Erdle A.
The innervation of the human heart.
Arch Pathol
71:
384–407,
1961.
|
80. |
Woollard H.
The innervation of the heart.
J Anat Physiol
60:
345–373,
1926.
|
81. |
Chilian WM.
Adrenergic vasomotion in the coronary microcirculation.
Basic Res Cardiol
85
(Suppl 1):
111–120,
1990.
|
82. |
Holtz J.
Alpha‐adrenoceptor subtypes in the coronary circulation.
Basic Res Cardiol
85
(Suppl 1):
81–95,
1990.
|
83. |
Huang AH and
Feigl EO.
Adrenergic coronary vasoconstriction helps maintain uniform transmural blood flow distribution during exercise.
Circ Res
62
(2):
286–298,
1988.
|
84. |
Jackson CV,
Pope TK and
Lucchesi BR.
Coronary artery vasodilation in the canine: physiological and pharmacological roles of beta‐adrenergic receptors.
J Cardiovascul Pharmacol
10
(2):
196–204,
1987.
|
85. |
Jones CE and
Gwirtz PA.
Alpha 1‐adrenergic coronary constriction during exercise and ischemia.
Basic Res Cardiol
85
(Suppl 1):
177–192,
1990.
|
86. |
Trivella MG,
Broten TP and
Feigl EO.
Beta‐receptor subtypes in the canine coronary circulation.
Am J Physiol
259
(5 Pt 2):
H1575–H1585,
1990.
|
87. |
Hein TW,
Zhang C,
Wang W and
Kuo L.
Heterogeneous beta2‐adrenoceptor expression and dilation in coronary arterioles across the left ventricular wall.
Circulation
110
(17):
2708–2712,
2004a.
|
88. |
Muntz KH,
Garcia C and
Hagler HK.
alpha 1‐Receptor localization in rat heart and kidney using autoradiography.
Am J Physiol
249
(3 Pt 2):
H512–H519,
1985.
|
89. |
Muntz KH,
Meyer L,
Gadol S and
Calianos TA.
Alpha‐2 adrenergic receptor localization in the rat heart and kidney using autoradiography and tritiated rauwolscine.
J Pharmacol Exp Ther
236
(2):
542–547,
1986.
|
90. |
Vatner DE,
Knight DR,
Homcy CJ,
Vatner SF and
Young MA.
Subtypes of beta‐adrenergic receptors in bovine coronary arteries.
Circ Res
59
(4):
463–473,
1986.
|
91. |
Mohrman DE and
Feigl EO.
Competition between sympathetic vasoconstriction and metabolic vasodilation in the canine coronary circulation.
Circ Res
42
(1):
79–86,
1978.
|
92. |
Dai XZ,
Sublett E,
Lindstrom P,
Schwartz JS,
Homans DC and
Bache RJ.
Coronary flow during exercise after selective alpha 1‐ and alpha 2‐adrenergic blockade.
Am J Physiol
256
(4 Pt 2):
H1148–H1155,
1989.
|
93. |
Duncker DJ,
Van Zon NS,
Crampton M,
Herrlinger S,
Homans DC and
Bache RJ.
Coronary pressure‐flow relationship and exercise: contributions of heart rate, contractility, and alpha 1‐adrenergic tone.
Am J Physiol
266
(2 Pt 2):
H795–810,
1994.
|
94. |
Gwirtz PA,
Overn SP,
Mass HJ and
Jones CE.
Alpha 1‐adrenergic constriction limits coronary flow and cardiac function in running dogs.
Am J Physiol
250
(6 Pt 2):
H1117–H1126,
1986.
|
95. |
Gwirtz PA and
Stone HL.
Coronary blood flow and myocardial oxygen consumption after alpha adrenergic blockade during submaximal exercise.
J Pharmacol Exp Ther
217
(1):
92–98,
1981.
|
96. |
Ishibashi Y,
Duncker DJ and
Bache RJ.
Endogenous nitric oxide masks alpha 2‐adrenergic coronary vasoconstriction during exercise in the ischemic heart.
Circ Res
80
(2):
196–207,
1997.
|
97. |
Laxson DD,
Dai XZ,
Homans DC and
Bache RJ.
The role of alpha 1‐ and alpha 2‐adrenergic receptors in mediation of coronary vasoconstriction in hypoperfused ischemic myocardium during exercise.
Circ Res
65
(6):
1688–1697,
1989.
|
98. |
Seitelberger R,
Guth BD,
Heusch G,
Lee JD,
Katayama K and
Ross J, Jr.,
Intracoronary alpha 2‐adrenergic receptor blockade attenuates ischemia in conscious dogs during exercise.
Circ Res
62
(3):
436–442,
1988.
|
99. |
Bache RJ,
Homans DC and
Dai XZ.
Adrenergic vasoconstriction limits coronary blood flow during exercise in hypertrophied left ventricle.
Am J Physiol
260
(5 Pt 2):
H1489–H1494,
1991.
|
100. |
Heyndrickx GR,
Muylaert P and
Pannier JL.
alpha‐Adrenergic control of oxygen delivery to myocardium during exercise in conscious dogs.
Am J Physiol
242
(5):
H805–H809,
1982.
|
101. |
Jones CE,
Farrell TA and
Ator R.
Evidence that a coronary alpha‐adrenergic tone limits myocardial blood flow and oxygenation in acute hemorrhagic hypotension.
Circ Shock
11
(4):
329–340,
1983.
|
102. |
Jones CE,
Liang IY and
Maulsby MR.
Cardiac and coronary effects of prazosin and phenoxybenzamine during coronary hypotension.
J Pharmacol Exp Ther
236
(1):
204–211,
1986.
|
103. |
Liang IY and
Jones CE.
Alpha 1‐adrenergic blockade increases coronary blood flow during coronary hypoperfusion.
Am J Physiol
249
(6 Pt 2):
H1070–H1077,
1985.
|
104. |
Heusch G and
Deussen A.
The effects of cardiac sympathetic nerve stimulation on perfusion of stenotic coronary arteries in the dog.
Circ Res
53
(1):
8–15,
1983.
|
105. |
Saffitz JE.
Distribution of alpha I‐adrenergic receptors in myocytic regions and vasculature of feline myocardium.
Am J Physiol
257
(1 Pt 2):
H162–H169,
1989.
|
106. |
Morita K,
Mori H,
Tsujioka K,
Kimura A,
Ogasawara Y,
Goto M,
Hiramatsu O,
Kajiya F and
Feigl EO.
Alpha‐adrenergic vasoconstriction reduces systolic retrograde coronary blood flow.
Am J Physiol
273
(6 Pt 2):
H2746–H2755,
1997.
|
107. |
Chilian WM,
Layne SM,
Eastham CL and
Marcus ML.
Heterogeneous microvascular coronary alpha‐adrenergic vasoconstriction.
Circ Res
64
(2):
376–388,
1989.
|
108. |
Heusch G,
Deussen A,
Schipke J and
Thamer V.
Alpha 1‐ and alpha 2‐adrenoceptor‐mediated vasoconstriction of large and small canine coronary arteries in vivo.
J Cardiovascul Pharmacol
6
(5):
961–968,
1984.
|
109. |
Chilian WM.
Functional distribution of alpha 1‐ and alpha 2‐adrenergic receptors in the coronary microcirculation.
Circulation
84
(5):
2108–2122,
1991a.
|
110. |
Nakayama K,
Osol G and
Halpern W.
Reactivity of isolated porcine coronary resistance arteries to cholinergic and adrenergic drugs and transmural pressure changes.
Circ Res
62
(4):
741–748,
1988.
|
111. |
Richard V,
Tanner FC,
Tschudi M and
Luscher TF.
Different activation of L‐arginine pathway by bradykinin, serotonin, and clonidine in coronary arteries.
Am J Physiol
259
(5Pt2):
H1433–H1439,
1990.
|
112. |
Tschudi M,
Richard V,
Buhler FR and
Luscher TF.
Importance of endothelium‐derived nitric oxide in porcine coronary resistance arteries.
Am J Physiol
260
(1 Ft 2):
H13–20,
1991a.
|
113. |
Hori M,
Kitakaze M,
Tamai J,
Koretsune Y,
Iwai K,
Iwakura K,
Kagiya T,
Kitabatake A,
Inoue M and
Kamada T.
Alpha 2‐adrenoceptor activity exerts dual control of coronary blood flow in canine coronary artery.
Am J Physiol
255
(2 Pt 2):
H250–H260,
1988.
|
114. |
Hori M,
Kitakaze M,
Tamai J,
Iwakura K,
Kitabatake A,
Inoue M and
Kamada T.
Alpha 2‐adrenoceptor stimulation can augment coronary vasodilation maximally induced by adenosine in dogs.
Am J Physiol
257
(1 Pt 2):
H132–H140,
1989.
|
115. |
Jones CJ,
DeFily DV,
Patterson JL and
Chilian WM.
Endothelium‐dependent relaxation competes with alpha 1‐ and alpha 2‐adrenergic constriction in the canine epicardial coronary microcirculation.
Circulation
87
(4):
1264–1274,
1993a.
|
116. |
Baumgart D,
Haude M,
Gorge G,
Liu F,
Ge J,
Grosse‐Eggebrecht C,
Erbel R and
Heuseh G.
Augmented alpha‐adrenergic constriction of atherosclerotic human coronary arteries.
Circulation
99
(16):
2090–2097,
1999.
|
117. |
Jones CJ,
Kuo L,
Davis MJ and
Chilian WM.
alpha‐adrenergic responses of isolated canine coronary microvessels.
Basic Res Cardiol
90
(1):
61–69,
1995a.
|
118. |
DeFily DV,
Nishikawa Y and
Chilian WM.
Endothelin antagonists block alpha 1‐adrenergic constriction of coronary arterioles.
Am J Physiol
276
(3 Pt 2):
H1028–H1034,
1999.
|
119. |
Tiefenbacher CP,
DeFily DV and
Chilian WM.
Requisite role of cardiac myocytes in coronary alpha 1‐adrenergic constriction.
Circulation
98
(1):
9–12,
1998.
|
120. |
Gorman MW,
Farias M, 3rd,
Richmond KN,
Tune JD and
Feigl EO.
Role of endothelin in alpha‐adrenoceptor coronary vasoconstriction.
Am Physiol Heart Circ Physiol
288
(4):
H1937–H1942,
2005b.
|
121. |
Murphree SS and
Saffitz JE.
Delineation of the distribution of beta‐adrenergic receptor subtypes in canine myocardium.
Circ Res
63
(1):
117–125,
1988.
|
122. |
Sekiguchi N,
Kanatsuka H,
Komaru T,
Akai K,
Sato K,
Wang Y,
Sugi M,
Ashikawa K and
Takishima T.
Effects of alpha and beta adrenergic blockade on coronary arterial microvessels in the beating canine heart.
Cardiovascul Res
26
(4):
415–421,
1992.
|
123. |
Quillen J,
Sellke F,
Banitt P and
Harrison D.
The effect of norepinephrine on the coronary microcirculation.
J Vasc Res
29
(1):
2–7,
1992.
|
124. |
Sun D,
Huang A,
Mital S,
Kichuk MR,
Marboe CC,
Addonizio LJ,
Michler RE,
Koller A,
Hintze TH and
Kaley G.
Norepinephrine elicits beta2‐receptor‐mediated dilation of isolated human coronary arterioles.
Circulation
106
(5):
550–555,
2002.
|
125. |
Wang SY,
Friedman M,
Johnson RG,
Weintraub RM and
Sellke FW.
Adrenergic regulation of coronary microcirculation after extracorporeal circulation and crystalloid cardioplegia.
Am J Physiol
267
(6 Pt 2):
H2462–H2470,
1994.
|
126. |
DiCarlo SE,
Blair RW,
Bishop VS and
Stone HL.
Role of beta 2‐adrenergic receptors on coronary resistance during exercise.
J Appl Physiol
64
(6):
2287–2293,
1988.
|
127. |
Duncker DJ,
Stubenitsky R and
Verdouw PD.
Autonomic control of vasomotion in the porcine coronary circulation during treadmill exercise: evidence for feed‐forward beta‐adrenergic control.
Circ Res
82
(12):
1312–1322,
1998.
|
128. |
Denn MJ and
Stone HL.
Automic innervation of dog coronary arteries.
J Appl Physiol
41
(1):
30–35,
1976.
|
129. |
Feigl EO.
Parasympathetic control of coronary blood flow in dogs.
Circ Res
25
(5):
509–519,
1969.
|
130. |
Feigl EO.
Coronary Physiology.
Physiol Rev
63:
1–205,
1983.
|
131. |
Cox DA,
Hintze TH and
Vatner SF.
Effects of acetylcholine on large and small coronary arteries in conscious dogs.
J Pharmacol Exp Ther
225
(3):
764–769,
1983.
|
132. |
Feigl EO,
Van Winkle DM and
Miyashiro JK.
Cholinergic vasodilatation of coronary resistance vessels in dogs, baboons and goats.
Blood Vessels
27
(2‐5):
94–105,
1990.
|
133. |
Knight DR,
Shen YT,
Young MA and
Vatner SF.
Acetylcholine‐induced coronary vasoconstriction and vasodilation in tranquilized baboons.
Circ Res
69
(3):
706–713,
1991.
|
134. |
Van Winkle DM and
Feigl EO.
Acetylcholine causes coronary vasodilation in dogs and baboons.
Circ Res
65
(6):
1580–1593,
1989.
|
135. |
Kalsner S.
Cholinergic constriction in the general circulation and its role in coronary artery spasm.
Circ Res
65
(2):
237–257,
1989.
|
136. |
Cowan CL and
McKenzie JE.
Cholinergic regulation of resting coronary blood flow in domestic swine.
Am J Physiol
259
(1 Pt 2):
H109–H115,
1990.
|
137. |
Young MA,
Knight DR and
Vatner SF.
Autonomic control of large coronary arteries and resistance vessels.
Prog Cardiovascul Dis
30
(3):
211–234,
1987.
|
138. |
Young MA,
Knight DR and
Vatner SF.
Parasympathetic coronary vasoconstriction induced by nicotine in conscious calves.
Circ Res
62
(5):
891–895,
1988.
|
139. |
Kuo L,
Davis MJ and
Chilian WM.
Myogenic activity in isolated subepicardial and subendocardial coronary arterioles.
Am J Physiol
255
(6 Pt 2):
H1558–H1562,
1988a.
|
140. |
Myers PR,
Banitt PF,
Guerra R, Jr. and
Harrison DG.
Role of the endothelium in modulation of the acetylcholine vasoconstrictor response in porcine coronary microvessels.
Cardiovascul Res
25
(2):
129–137,
1991.
|
141. |
Myers PR,
Banitt PF,
Guerra R, Jr. and
Harrison DG.
Characteristics of canine coronary resistance arteries: importance of endothelium.
Am J Physiol
257
(2 Pt 2):
H603–H610,
1989.
|
142. |
Lamping KG,
Chilian WM,
Eastham CL and
Marcus ML.
Coronary microvascular response to exogenously administered and endogenously released acetylcholine.
Microvasc Res
43
(3):
294–307,
1992.
|
143. |
Komaru T,
Lamping KG,
Eastham CL,
Harrison DG,
Marcus ML and
Dellsperger KC.
Effect of an arginine analogue on acetylcholine‐induced coronary microvascular dilatation in dogs.
Am J Physiol
261
(6 Pt 2):
H2001–H2007,
1991.
|
144. |
Miller FJ, Jr.,
Dellsperger KC and
Gutterman DD.
Pharmacologic activation of the human coronary microcirculation in vitro: endothelium‐dependent dilation and differential responses to acetylcholine.
Cardiovascul Res
38
(3):
744–750,
1998.
|
145. |
Kuo L,
Chilian WM and
Davis MJ.
Coronary arteriolar myogenic response is independent of endothelium.
Circ Res
66
(3):
860–866,
1990b.
|
146. |
Coupe MO,
Mak JC,
Yacoub M,
Oldershaw PJ and
Barnes PJ.
Autoradiographic mapping of calcitonin gene‐related peptide receptors in human and guinea pig hearts.
Circulation
81
(3):
741–747,
1990.
|
147. |
Gulbenkian S,
Edvinsson L,
Saetrum Opgaard O,
Wharton J,
Polak JM and
David‐Ferreira JF.
Peptide‐containing nerve fibres in guinea‐pig coronary arteries: immunohistochemistry, ultrastructure and vasomotility.
J Auton Nerv Syst
31
(2):
153–167,
1990.
|
148. |
Saetrum Opgaard O,
Gulbenkian S and
Edvinsson L.
Innervation and effects of vasoactive substances in the coronary circulation.
Eur Heart J
18
(10):
1556–1568,
1997.
|
149. |
Franco‐Cereceda A,
Saria A and
Lundberg JM.
Ischaemia and changes in contractility induce release of calcitonin gene‐related peptide but not neuropeptide Y from the isolated perfused guinea‐pig heart.
Acta Physiologica Scandinavica
131
(2):
319–320,
1987b.
|
150. |
Franco‐Cereceda A,
Saria A and
Lundberg JM.
Differential release of calcitonin gene‐related peptide and neuropeptide Y from the isolated heart by capsaicin, ischaemia, nicotine, bradykinin and ouabain.
Acta Physiologica Scandinavica
135
(2):
173–187,
1989.
|
151. |
Franco‐Cereceda A,
Rudehill A and
Lundberg JM.
Calcitonin gene‐related peptide but not substance P mimics capsaicin‐induced coronary vasodilation in the pig.
Eur J Pharmacol
142
(2):
235–243,
1987a.
|
152. |
Sekiguchi N,
Kanatsuka H,
Sato K,
Wang Y,
Akai K,
Komaru T and
Takishima T.
Effect of calcitonin gene‐related peptide on coronary microvessels and its role in acute myocardial ischemia.
Circulation
89
(1):
366–374,
1994.
|
153. |
Shen YT,
Pittman TJ,
Buie PS,
Bolduc DL,
Kane SA,
Koblan KS,
Gould RJ and
Lynch JJ, Jr.,
Functional role of alpha‐calcitonin gene‐related peptide in the regulation of the cardiovascular system.
J Pharmacol Exp Ther
298
(2):
551–558,
2001.
|
154. |
Kuo L,
Davis MJ and
Chilian WM.
Longitudinal gradients for endothelium‐dependent and ‐independent vascular responses in the coronary microcirculation.
Circulation
92
(3):
518–525,
1995a.
|
155. |
Brum JM,
Go VL,
Sufan Q,
Lane G,
Reilly W and
Bove AA.
Substance P distribution and effects in the canine epicardial coronary arteries.
Regul Pept
14
(1):
41–55,
1986.
|
156. |
Ezra D,
Laurindo FR,
Eimerl J,
Goldstein RE,
Peck CC and
Feuerstein G.
Tachykinin modulation of coronary blood flow.
Eur J Pharmacol
122
(1):
135–138,
1986.
|
157. |
Maxwell GM.
Actions of substance P on the general, pulmonary. and coronary haemodynamics and metabolism of intact dogs.
Br J Pharmacol
32
(3):
514–522,
1968.
|
158. |
Nakamura Y,
Parent R and
Lavallee M.
Opposite effects of substance P on conductance and resistance coronary vessels in conscious dogs.
Am J Physiol
258
(2 Pt 2):
H565–H573,
1990.
|
159. |
Hellstrand P and
Jarhult J.
Effects of nine different gastrointestinal polypeptides on vascular smooth muscle in vitro.
Acta Physiologica Scandinavica
110
(1):
89–94,
1980.
|
160. |
Nakamura Y,
Parent R and
Lavallee M.
Disparate effects of substance P on systemic and coronary beds in conscious dogs.
Circulation
84
(1):
300–312,
1991.
|
161. |
Maley RH,
Vrettos AM,
Arden WA,
Chein S,
Salley RK and
Gross DR.
Coronary vascular and myocardial effects of substance P in hypercholesterolemic rabbits.
Neuropeptides
27
(2):
95–103,
1994.
|
162. |
Cappelli‐Bigazzi M,
Nuno DW and
Lamping KG.
Evidence of a role for compounds derived from arginine in coronary response to serotonin in vivo.
Am J Physiol
261
(2 Pt 2):
H404–H409,
1991.
|
163. |
Lamping KG,
Marcus ML and
Dole WP.
Removal of the endothelium potentiates canine large coronary artery constrictor responses to 5‐hydroxytryptamine in vivo.
Circ Res
57
(1):
46–54,
1985.
|
164. |
Lamping KG,
Kanatsuka H,
Eastham CL,
Chilian WM and
Marcus ML.
Nonuniform vasomotor responses of the coronary microcirculation to serotonin and vasopressin.
Circ Res
65
(2):
343–351,
1989a.
|
165. |
Lamping KG.
Response of native and stimulated collateral vessels to serotonin.
Am J Physiol
272
(5 Pt 2):
H2409–H2415,
1997.
|
166. |
Sellke FW and
Quillen JE.
Altered effects of vasopressin on the coronary circulation after ischemia.
J Thor Cardiovascul Surg
104
(2):
357–363,
1992.
|
167. |
Needleman P,
Marshall GR and
Sobel BE.
Hormone interactions in the isolated rabbit heart. Synthesis and coronary vasomotor effects of prostaglandins, angiotensin, and bradykinin.
Circ Res
37
(6):
802–808,
1975.
|
168. |
Heyndrickx GR,
Boettcher DH and
Vatner SF.
Effects of angiotensin, vasopressin, and methoxamine on cardiac function and blood flow distribution in conscious dogs.
Am J Physiol
231
(5 Pt. 1):
1579–1587,
1976.
|
169. |
Porsti I,
Hecker M,
Bassenge E and
Busse R.
Dual action of angiotensin II on coronary resistance in the isolated perfused rabbit heart.
Naunyn‐Schmiedebergs Arch Pharmacol
348
(6):
650–658,
1993.
|
170. |
Zhang C,
Hein TW,
Wang W and
Kuo L.
Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function.
Circ Res
92
(3):
322–329,
2003.
|
171. |
Myers PR,
Katwa LC,
Tanner M,
Morrow C,
Guarda E and
Parker JL.
Effects of angiotensin II on canine and porcine coronary epicardial and resistance arteries.
J Vasc Res
31
(6):
338–346,
1994.
|
172. |
Dart AM,
Davies HA,
Dalai J,
Ruttley M and
Henderson AH.
Angina' and normal coronary arteriograms: a follow‐up study.
Eur Heart J
1
(2):
97–100,
1980.
|
173. |
Kemp HG, Jr.,
Vokonas PS,
Cohn PF and
Gorlin R.
The anginal syndrome associated with normal coronary arteriograms. Report of a six year experience.
Am J Med
54
(6):
735–742,
1973.
|
174. |
Kemp HG,
Kronmal RA,
Vlietstra RE and
Frye RL.
Seven year survival of patients with normal or near normal coronary arteriograms: a CASS registry study.
J Am Coll Cardiol
7
(3):
479–483,
1986.
|
175. |
Likoff W,
Segal BL and
Kasparian H.
Paradox of normal selective coronary arteriograms in patients considered to have unmistakable coronary heart disease.
N Engl J Med
276
(19):
1063–1066,
1967.
|
176. |
Marchandise B,
Bourassa MG,
Chaitman BR and
Lesperance J.
Angiographic evaluation of the natural history of normal coronary arteries and mild coronary atherosclerosis.
Am J Cardiol
41
(2):
216–220,
1978.
|
177. |
Ockene IS,
Shay MJ,
Alpert JS,
Weiner BH and
Dalen JE.
Unexplained chest pain in patients with normal coronary arteriograms: a follow‐up study of functional status.
N Engl J Med
303
(22):
1249–1252,
1980.
|
178. |
Papanicolaou MN,
Califf RM,
Hlatky MA,
McKinnis RA,
Harrell FE, Jr.,
Mark DB,
McCants B,
Rosati RA,
Lee KL and
Pryor DB.
Prognostic implications of angiographically normal and insignificantly narrowed coronary arteries.
Am J Cardiol
58
(13):
1181–1187,
1986.
|
179. |
Pasternak RC,
Thibault GE,
Savoia M,
DeSanctis RW and
Hutter AM, Jr.,
Chest pain with angiographically insignificant coronary arterial obstruction. Clinical presentation and long‐term follow‐up.
Am J Med
68
(6):
813–817,
1980.
|
180. |
Proudfit WL,
Shirey EK and
Sones FM, Jr.,
Selective cine coronary arteriography. Correlation with clinical findings in 1,000 patients.
Circulation
33
(6):
901–910,
1966.
|
181. |
Bass C,
Cawley R,
Wade C,
Ryan KC,
Gardner WN,
Hutchison DC and
Jackson G.
Unexplained breathlessness and psychiatric morbidity in patients with normal and abnormal coronary arteries.
Lancet
1
(8325):
605–609,
1983a.
|
182. |
Bass C,
Wade C,
Hand D and
Jackson G.
Patients with angina with normal and near normal coronary arteries: clinical and psychosocial state 12 months after angiography.
Br Med J (Clin Res Ed)
287
(6404):
1505–1508,
1983b.
|
183. |
Davies HA,
Jones DB and
Rhodes J.
Esophageal angina' as the cause of chest pain.
Jama
248
(18):
2274–2278,
1982.
|
184. |
Epstein SE,
Gerber LH and
Borer JS.
Chest wall syndrome. A common cause of unexplained cardiac pain.
Jama
241
(26):
2793–2797,
1979.
|
185. |
Vantrappen G,
Janssens J and
Ghillebert G.
The irritable oesophagus ‐ a frequent cause of angina‐like pain.
Lancet
1
(8544):
1232–1234,
1987.
|
186. |
Wielgosz AT,
Fletcher RH,
McCants CB,
McKinnis RA,
Haney TL and
Williams RB.
Unimproved chest pain in patients with minimal or no coronary disease: a behavioral phenomenon.
Am Heart J
108
(1):
67–72,
1984.
|
187. |
Arbogast R and
Bourassa MG.
Myocardial function during atrial pacing in patients with angina pectoris and normal coronary arteriograms. Comparison with patients having significant coronary artery disease.
Am J Cardiol
32
(3):
257–263,
1973.
|
188. |
Kemp HG, Jr.,
Left ventricular function in patients with the anginal syndrome and normal coronary arteriograms.
Am J Cardiol
32
(3):
375–376,
1973.
|
189. |
Cannon RO, III,
Leon MB,
Watson RM,
Rosing DR and
Epstein SE.
Chest pain and “normal” coronary arteries‐role of small coronary arteries.
Am J Cardiol
55
(3):
50B–60B,
1985.
|
190. |
Cannon RO, III,
Schenke WH,
Leon MB,
Rosing DR,
Urqhart J and
Epstein SE.
Limited coronary flow reserve after dipyridamole in patients with ergonovine‐induced coronary vasoconstriction.
Circulation
75
(1):
163–174,
1987.
|
191. |
Cannon RO, III,
Watson RM,
Rosing DR and
Epstein SE.
Angina caused by reduced vasodilator reserve of the small coronary arteries.
J Am Coll Cardiol
1
(6):
1359–1373,
1983.
|
192. |
Buffon A,
Rigattieri S,
Santini SA,
Ramazzotti V,
Crea F,
Giardina B and
Maseri A.
Myocardial ischemia‐reperfusion damage after pacing‐induced tachycardia in patients with cardiac syndrome X.
Am J Physiol Heart Circ Physiol
279
(6):
H2627–2633,
2000.
|
193. |
Quyyumi AA,
Cannon RO, Jr.,
Panza JA,
Diodati JG and
Epstein SE.
Endothelial dysfunction in patients with chest pain and normal coronary arteries.
Circulation
86
(6):
1864–1871,
1992.
|
194. |
Motz W,
Vogt M,
Rabenau O,
Scheler S,
Luckhoff A and
Strauer BE.
Evidence of endothelial dysfunction in coronary resistance vessels in patients with angina pectoris and normal coronary angiograms.
Am J Cardiol
68
(10):
996–1003,
1991.
|
195. |
Cannon RO, III,
Cattau EL, Jr.,
Yakshe PN,
Maher K,
Schenke WH,
Benjamin SB and
Epstein SE.
Coronary flow reserve, esophageal motility, and chest pain in patients with angiographically normal coronary arteries.
Am J Med
88
(3):
217–222,
1990a.
|
196. |
Cannon RO, III,
Peden DB,
Berkebile C,
Schenke WH,
Kaliner MA and
Epstein SE.
Airway hyperresponsiveness in patients with microvascular angina. Evidence for a diffuse disorder of smooth muscle responsiveness.
Circulation
82
(6):
2011–2017,
1990b.
|
197. |
Sax FL,
Cannon RO, III,
Hanson C and
Epstein SE.
Impaired forearm vasodilator reserve in patients with microvascular angina. Evidence of a generalized disorder of vascular function?
N Engl J Med
317
(22):
1366–1370,
1987.
|
198. |
Chauhan A,
Mullins PA,
Taylor G,
Petch MC and
Schofield PM.
Both endothelium‐dependent and endothelium‐independent function is impaired in patients with angina pectoris and normal coronary angiograms.
Eur Heart J
18
(1):
60–68,
1997.
|
199. |
Epstein SE,
Cannon RO, III and
Bonow RO.
Exercise testing in patients with microvascular angina.
Circulation
83
(5 Suppl):
III73–III76,
1991.
|
200. |
Bugiardini R,
Manfrini O,
Pizzi C,
Fontana F and
Morgagni G.
Endothelial function predicts future development of coronary artery disease: a study of women with chest pain and normal coronary angiograms.
Circulation
109
(21):
2518–2523,
2004.
|
201. |
Reddy KG,
Nair RN,
Sheehan HM and
Hodgson JM.
Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis.
J Am Coll Cardiol
23
(4):
833–843,
1994.
|
202. |
Sambuceti G,
Parodi O,
Giorgetti A,
Salvadori P,
Marzilli M,
Dabizzi P,
Marzullo P,
Neglia D and
L'Abbate A.
Microvascular dysfunction in collateral‐dependent myocardium.
J Am Coll Cardiol
26
(3):
615–623,
1995.
|
203. |
Tiefenbacher CP,
Tillmanns H,
Niroomand F,
Zimmermann R and
Kubler W.
Adaptation of myocardial blood flow to increased metabolic demand is not dependent on endothelial vasodilators in the rat heart.
Heart
77:
147–153,
1997.
|
204. |
Duncker DJ and
Bache RJ.
Inhibition of nitric oxide production aggravates myocardial hypoperfusion during exercise int he presence of a coronary artery stenosis.
Circ Res
74:
629–640,
1994.
|
205. |
Brandes RP,
Schmitz‐Winnenthal FH,
Feletou M,
Godecke A,
Huang PL,
Vanhoutte PM,
Fleming 1 and
Busse R.
An endothelium‐derived hyperpolarizing factor distinct from NO and prostacyclin is a major endothelium‐dependent vasodilator in resistance vessels of wild‐type and endothelial NO synthase knockout mice.
Proc Natl Acad Sci USA
97
(17):
9747–9752,
2000.
|
206. |
Ignarro LJ.
Endothelium‐derived nitric oxide: actions and properties.
FASEB J
3:
31–36,
1989.
|
207. |
Tiefenbacher CP and
Kreuzer J.
Endothelial dysfunction ‐ is there need to treat?
Curr Vasc Pharm
1:
1133–1234,
2003.
|
208. |
Cines DB,
Pollak ED,
Buck CA,
Loscalzo J,
Zimmerman GA,
McEver RP,
Pober JS,
Wick TM,
Konkle BA,
Schwartz BS,
Barnathan ES,
McCrae KR,
Hug BA,
Schmidt AM and
Stern DM.
Endothelial cells in physiology and in the pathophysiology of vascular disorders.
Blood
91:
3527–3561,
1998.
|
209. |
Drexler H,
Zeither AM,
Meinzer K and
Just H.
Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L‐arginine.
Lancet
338:
1546–1550,
1991.
|
210. |
Vasquez Vivar J,
Kalyanamaran B,
Martasek P,
Hogg N,
Siler Master BS,
Karoui H,
Tordos P and
Pritchard KAJ.
Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors.
Proc Natl Acad Sci USA
95:
9220–9225,
1998.
|
211. |
Fukuda Y,
Teragawa H,
Matsuda K,
Yamagata T,
Matsuura H and
Chayama K.
Tetrahydrobiopterin restores endothelial function of coronary arteries in patients with hypercholesterolaemia.
Heart
87:
264–269,
2001.
|
212. |
Hong HJ,
Hsiao G,
Cheng TH and
Yen MH.
Supplemention with tetrahydrobiopterin suppresses the development of hypertension in spontaneously hypertensive rats.
Hypertension
38:
1044–1048,
2001.
|
213. |
Stroes E,
Kastelein J,
Cosentino F,
Erkelens W,
Wever R,
Koomans H,
Luscher T and
Rabelink T.
Tetrahydrobiopterin restores endothelial function in hypercholesterolemia.
J Clin Invest
99
(1):
41–46,
1997.
|
214. |
Tiefenbacher CP,
Bleeke T,
Vahl C,
Amann K,
Vogt A and
Kubler W.
Endothelial dysfunction of coronary resistance arteries in improved by tetrahydrobiopterin in atherosclerosis.
Circulation
102:
2172–2179,
2000.
|
215. |
Tiefenbacher CP,
Chilian WM,
Mitchell M and
Defily DV.
Restoration of endothelium‐dependent vasodilation after reperfusion injury by tetrahydrobiopterin.
Circulation
94:
1423–1429,
1996.
|
216. |
Tiefenbacher CP,
Lee C‐H and
Dietz V.
Reduction of reperfusion injury by sepiapterin reduces myocardial infarct size.
Eur Heart J
14
(Suppl):
1076,
2001.
|
217. |
Cai H and
Harrison DG.
Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress.
Circ Res
87
(10):
840–844,
2000.
|
218. |
Schiffrin EL.
Vascular endothelin in hypertension.
Vascul Pharmacol
43
(1):
19–29,
2005.
|
219. |
Schachinger V,
Britten MB and
Zeiher AM.
Prognostic impact of coronary vasodilator dysfunction on adverse long‐term outcome of coronary heart disease.
Circulation
101:
95422–95448,
2001.
|
220. |
Boger RH,
Bode‐Boger SM,
Thiele W,
Creutzig A,
Alexander K, and
Frolich, JC.
Restoring vascular nitric oxide formation by L‐arginine improves the symptoms of intermittent claudication in patients with peripheral arterial occlusive disease.
J Am Coll Cardiol.
32
(5):
1336–1344,
1998.
|
221. |
Merkus D,
Duncker DJ and
Chilian WM.
Metabolic regulation of coronary vascular tone: role of endothelin‐1.
Am J Physiol Heart Circ Physiol
283
(5):
H1915–H1921,
2002a.
|
222. |
Berne RM,
Rubio R,
Dobson JG, Jr. and
Curnish RR.
Adenosine and adenine nucleotides as possible mediators of cardiac and skeletal muscle blood flow regulation.
Circ Res
28
(Suppl. 1):
115,
1971.
|
223. |
Miller WL,
Belardinelli L,
Bacchus A,
Foley DH,
Rubio R and
Berne RM.
Canine myocardial adenosine and lactate production, oxygen consumption, and coronary blood flow during stellate ganglia stimulation.
Circ Res
45
(6):
708–718,
1979.
|
224. |
Rubio R,
Wiedmeier VT and
Berne RM.
Relationship between coronary flow and adenosine production and release.
J Mol Cell Cardiol
6
(6):
561–566,
1974.
|
225. |
Gorman MW,
Tune JD,
Richmond KN and
Feigl EO.
Feedforward sympathetic coronary vasodilation in exercising dogs.
J Appl Physiol
89
(5):
1892–1902,
2000b.
|
226. |
Gorman MW,
Tune JD,
Richmond KN and
Feigl EO.
Quantitative analysis of feedforward sympathetic coronary vasodilation in exercising dogs.
J Appl Physiol
89
(5):
1903–1911,
2000c.
|
227. |
Miyashiro JK and
Feigl EO.
Feedforward control of coronary blood flow via coronary beta‐receptor stimulation.
Circ Res
73
(2):
252–263,
1993.
|
228. |
Farias M, III,
Gorman MW,
Savage MV and
Feigl EO.
Plasma ATP during exercise: possible role in regulation of coronary blood flow.
Am J Physiol Heart Circ Physiol
288
(4):
H1586–H1590,
2005.
|
229. |
Ishizaka H,
Gudi SR,
Frangos JA and
Kuo L.
Coronary arteriolar dilation to acidosis: role of ATP‐sensitive potassium channels and pertussis toxin‐sensitive G proteins.
Circulation
99:
558–563,
1999.
|
230. |
Ishizaka H and
Kuo L.
Acidosis‐induced coronary arteriolar dilation is mediated by ATP‐sensitive potassium channels in vascular smooth muscle.
Circ Res
78:
50–57,
1996.
|
231. |
Prasad A,
Husain S and
Quyyumi AA.
Abnormal flow‐mediated epicardial vasomotion in human coronary arteries is improved by angiotensin‐converting enzyme inhibition: a potential role of bradykinin.
J Am Coll Cardiol
33
(3):
796–804,
1999.
|
232. |
Ishizaka H and
Kuo L.
Endothelial ATP‐sensitive potassium channels mediate coronary microvascular dilation to hyperosmolarity.
Am J Physiol
273
(1 Pt 2):
H104–H112,
1997.
|
233. |
Vlahakes GJ,
Giamber SR,
Rothaus KO and
Powell WJ, Jr.,
Hyperosmotic mannitol and collateral blood flow to ischemic myocardium.
J Surg Res
47
(5):
438–446,
1989.
|
234. |
Sato K,
Komaru T,
Shioiri H,
Takeda S,
Takahashi K,
Kanatsuka H and
Shirato K.
Vasodilator signals from the ischemic myocardium are transduced to the coronary vascular wall by pertussis toxin‐sensitive G proteins: a new experimental method for the analysis of the interaction between the myocardium and coronary vessels.
J Am Coll Cardiol
39
(11):
1859–1865,
2002.
|
235. |
Tanikawa T,
Kanatsuka H,
Koshida R,
Tanaka M,
Sugimura A,
Kumagai T,
Miura M,
Komaru T and
Shirato K.
Role of pertussis toxin‐sensitive G protein in metabolic vasodilation of coronary microcirculation.
Am J Physiol Heart Circ Physiol
279
(4):
H1819–H1829,
2000.
|
236. |
Takeda S,
Komaru T,
Takahashi K,
Sato K,
Kanatsuka H,
Kokusho Y,
Shirato K and
Shimokawa H.
Beating myocardium counteracts myogenic tone of coronary microvessels: involvement of ATP‐sensitive potassium channels.
Am J Physiol Heart Circ Physiol,
2006.
|
237. |
Merkus D,
Sorop O,
Houweling B,
Hoogteijling BA and
Duncker DJ.
K+Ca‐channels contribute to exercise‐induced coronary vasodilation in swine.
Am J Physiol Heart Circ Physiol,
2006.
|
238. |
Rogers PA,
Dick GM,
Knudson JD,
Focardi M,
Bratz IN,
Swafford J,
Albert N,
Saitoh S,
Tune JD and
Chilian WM.
H202‐induced redox sensitive coronary vasodilation is mediated by 4‐aminopyridine‐sensitive K+ channels.
Am J Physiol Heart Circ Physiol,
2006, epub:10.1152/ajpheart.00172.2006.
|
239. |
Duncker DJ,
Van Zon NS,
Altman JD,
Pavek TJ and
Bache RJ.
Role of K+ATP channels in coronary vasodilation during exercise.
Circulation
88
(3):
1245–1253,
1993.
|
240. |
Richmond KN,
Tune JD,
Gorman MW and
Feigl EO.
Role of K + ATP channels in local metabolic coronary vasodilation.
Am J Physiol
277
(6 Pt 2):
H2115–H2123,
1999.
|
241. |
Tune JD,
Richmond KN,
Gorman MW and
Feigl EO.
K(ATP)(+) channels, nitric oxide, and adenosine are not required for local metabolic coronary vasodilation.
Am J Physiol Heart Circ Physiol
280
(2):
H868–H875,
2001.
|
242. |
Murray PA,
Belloni F, and
Sparks HV.
The role of potassium in the metabolic control of coronary vascular resistance of the dog.
Circ Res
44:
77–780,
1979.
|
243. |
Rivers RJ,
Hein TW,
Zhang C, and
Kuo L.
Activation of barium‐sensitive inward rectifier potassium channels mediates remote dilation of coronary arterioles.
Circulation
104:
1749–1753,
2001.
|