References |
1. |
Arendshorst WJ and
Navar LG.
Renal circulation and glomerular hemodynamics. In:
Diseases of the Kidney and Urinary Trct,
ed. Schrier RW.
Philadelphia:
Lippincoti Williams & Wilkins,
2007,
pp. 54–95.
|
2. |
Navar LG,
Evan AP and
Rosivall L.
Microcirculation of the kidneys. In:
The Physiology and Pharmacology of the Microcirculation,
ed. Mortillaro N.
New York:
Academic Press,
1983,
pp. 397–488.
|
3. |
Navar LG,
Inscho EW,
Majid SA,
Imig JD,
Harrison‐Bernard LM and
Mitchell KD,
Paracrine regulation of the renal microcirculation.
Physiol Rev
76:
425–536,
1996.
|
4. |
Pallone TL,
Robertson CR and
Jamison RL,
Renal medullary microcirculation.
Physiol Rev
70:
885–920,
1990.
|
5. |
Hura C and
Stein JH
Renal blood flow. In:
Handbook of Physiology, Section 8: Renal Physiology,
ed, Windhager EE,
New York:
Oxford University Press,
1992,
pp. 1129–1184.
|
6. |
Brezis M,
Agmon Y and
Epstein FH,
Determinants of intrarenal oxygenation, I. Effects of diuretics.
Am J Physiol
267:
F1059–F1062,
1994.
|
7. |
Brezis M,
Heyman SN and
Epstein FH,
Determinants of intrarenal oxygenation II. Hemodynamic effects.
Am J Physiol Renal Physiol
267:
F1063–F1068,
1994.
|
8. |
Leong CL,
Anderson WP,
O'Connor PM and
Evans RG,
Evidence that renal arterial‐venous oxygen shunting contributes to dynamic regulation of renal oxygenation.
Am J Physiol Renal Physiol
292:
F1726–F1733,
2007.
|
9. |
Lübbers DW and
Baumgartl H.
Heterogeneities and profiles of oxygen pressure in brain and kidney as examples of the pO2 distribution in the living tissue.
Kidney Int
51:
372–380,
1997.
|
10. |
Welch WJ,
Baumgartl H,
Lubbers D and
Wilcox CS.
Nephron pO2 and renal oxygen usage in the hypertensive rat kidney.
Kidney Int
59:
230–237,
2001.
|
11. |
O'Connor PM,
Kett MM,
Anderson WP and
Evans RG.
Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow.
Am J Physiol Renal Physiol
290:
F688–F694,
2006.
|
12. |
Navar LG,
Bell PD and
Evan AP
The regulation of glomerular filtration rate in mammalian kidneys. In:
Physiology of Membrane Disorders,
eds Andreoli TE,
Hoffman J,
Fanestil D and
Shultz SG,
New York:
Plenum Medical Book Co.,
1986,
pp. 637–667.
|
13. |
Schnermann J and
Levine DZ,
Paracrine factors in tubuloglomerular feedback: adenosine, ATP, and nitric oxide.
Annu Rev Physiol
65:
501–529,
2003.
|
14. |
Dworkin LD and
Brenner BM
Biophysical basis of glomerular filtration. In:
The Kidney‐Physiology and Pathophysiology,
eds Seldin DW and
Giebisch G,
Philadelphia:
Lippincott Williams & Wilkins,
2000,
pp. 749–769.
|
15. |
Pallone TL and
Cao C.
Renal cortical and medullary microcirculations: structure and function. In:
The Kidney: Physiology and Pathophysiology,
eds Alpern RJ and
Hebert SC.
San Diego:
Elsevier Inc.,
2007,
pp. 627–670.
|
16. |
Hebert SC,
Reilly RF and
Kriz W.
Structural‐functional relationships in the kidney. In:
Diseases of the kidney and urinary tract,
ed. Schrier RW.
Philadelphia:
Lippincott Williams & Wilkins,
2001,
pp. 3–57.
|
17. |
MacCallum DB.
The bearing of degenerating glomeruli on the problem of the vascular supply of the mammalion kidney.
Am J Anatomy
65:
69–103,
1939.
|
18. |
Fourman J and
Moffat DB.
The Blood Vessels of the Kidney.
Oxford. UK:
Blackwell Scientific,
1971.
|
19. |
Kriz W.
Structural organization of the renal medulla: comparative and functional aspects.
Am J Physiol Regul Integr Comp Physiol
241:
R3–R16,
1981.
|
20. |
Beeuwkes R, III and
Bonventre JV,
Tubular organization and vascular‐tubular relations in the dog kidney.
Am J Physiol
229:
695–713,
1975.
|
21. |
Gatlone VH,
Luft FC and
Evan AP,
Renal afferent and efferent arterioles of the rabbit.
Am J Physiol
247:
F219–F228,
1984.
|
22. |
Gomez RA,
Chevalier RL,
Everett AD,
Elwood JP,
Peach MJ,
Lynch KR and
Carey RM.
Recruitment of renin gene‐expressing cells in adult rat kidney.
Am J Physiol Renal Physiol
259:
F660–F665,
1990.
|
23. |
Evan AP and
Dail WG, Jr.
Efferent arterioles in the cortex of the rat kidney.
Anat Rec
187:
135–145,
1977.
|
24. |
Beeuwkes R, III.
The vascular organization of the kidney.
Ann Rev Physiol
42:
531–542,
1980.
|
25. |
Evans RG,
Eppel GA,
Anderson WP and
Denton KM.
Mechanisms underlying the differential control of blood flow in the renal medulla and cortex.
J Hypertens
22:
1439–1451,
2004.
|
26. |
Koester HL,
Locke JC and
Swann HG.
Effluent constrictions in the renal vascular system.
Tex Rep Biol Med
13:
251–271,
1955.
|
27. |
Navar LG.
Minimal preglomerular resistance and calculation of normal glomerular pressure.
Am J Physiol
219:
1658–1664,
1970.
|
28. |
Casellas D and
Mimran A.
Shunting in renal microvasculature of the rat: a scanning electron microscopic study of corrosion casts,
Anat Rec
201:
237–248,
1981.
|
29. |
Kanwar YS and
Venkatachalam MA.
Ultrastructure of glomerulus and juxtaglomerular apparatus. In:
Handbook of Physiology, Section 8, Renal Physiology,
ed. Windhager EE.
New York:
Oxford University Press,
1992,
pp. 3–20.
|
30. |
Rosivall L.
Juxtaglomerular apparatus: morphological and functional correlations. In:
Nephrology, Hypertension, Dialysis, Transplantation, Hungarian,
eds Andreoli TE,
Ritz E and
Rosivall L.
Budapest:
Kidney Foundation,
2006,
pp. 45–54.
|
31. |
Rosivall L,
Mirzahosseini S,
Toma I,
Sipos A and
Peti‐Peterdi J.
Fluid flow in the juxtaglomerular interstitium visualized in vivo.
Am J Physiol Renal Physiol
291:
F1241–F1247,
2006.
|
32. |
Rosivall L and
Taugner R.
The morphological basis of fluid balance in the interstitium of the juxtaglomerular apparatus.
Cell Tissue Res
243:
525–533,
1986.
|
33. |
Jorgensen F and
Bentzon MW.
The ultastructure of the normal human glomerulus. Thickness of glomerular basement membrane.
Lab Invest
18:
42–48,
1968.
|
34. |
Kanwar YS and
Farquhar MG.
Presence of heparan sulfate in the glomerular basement membrane.
Proc Natl Acad Sci USA
76:
1303–1307,
1979.
|
35. |
Mohos SC and
Skoza L.
Histochemical demonstration and localization of sialoproteins in the glomerulus.
Exp Mol Pathol
12:
316–323,
1970.
|
36. |
Mohos SC and
Skoza L.
Variations in the sialic acid concentration of glomerular basement membrane preparations obtained by ultrasonic treatment.
J Celt Biol
45:
450–455,
1970.
|
37. |
Maddox DA,
Deen WM and
Brenner BM.
Glomerular filtration. In:
Handbook of Physiology, Section 8: Renal Physiology,
ed, Windhager E.
New York:
Oxford University Press,
1992,
pp. 1:545–1:638.
|
38. |
Ohlson M,
Haraldsson B and
Haraldss S.
Glomerular size and charge selectivity in the rat as revealed by FITC‐Ficoll and albumin.
Am J Physiol Renal Physiol
279:
F84–F91,
2000.
|
39. |
Ojteg G,
Nygren K and
Wolgast M.
Permeability of renal capillaries. II. Transport of neutral and charged protein molecular probes.
Acta Physiol Scand
129:
287–294,
1987.
|
40. |
Russo LM,
Sandoval RM,
McKee M,
Osicka TM,
Collins AB,
Brown D,
Molitoris BA and
Comper WD.
The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states.
Kidney Intl
71:
504–513,
2007.
|
41. |
Deen WM,
Lazzara MJ and
Myers BD.
Structural determinants of glomerular permeability.
Am J Physiol Renal Physiol
281:
F579–F596,
2001.
|
42. |
Kawachi H,
Koike H,
Kurihara H,
Sakai T and
Shimizu F.
Cloning of rat homologue of podocin: expression in proteinuric states and in developing glomeruli.
J Am Soc Nephrol
14:
46–56,
2003.
|
43. |
Ardaillou R,
Chansel D,
Chatziantoniou C and
Dussaule JC.
Mesangial AT1 receptors: expression, signaling, and regulation.
J Am Soc Nephrol
10
(Suppl 11):
S40–S46,
1999.
|
44. |
Rivera I,
Zhang S,
Fuller BS,
Edwards B,
Seki T,
Wang MH,
Marrero MB and
Inscho EW,
P2 receptor regulation of [Ca2+]i in cultured mouse mesangial cells.
Am J Physiol Renal Physiol
292:
F1380–F1389,
2007.
|
45. |
Evan AP and
Hay DA.
Ultrastructure of the developing vascular system in the puppy kidney.
Anat Rec
199:
481–489,
1981.
|
46. |
Albertine KH and
O'Morchoe CC.
Distribution and density of the canine renal cortical lymphatic system.
Kidney Int
16:
470–480,
1979.
|
47. |
McIntosh GH and
Morris B.
The lymphatics of the kidney and the formation of renal lymph.
J Physiol
214:
365–376,
1971.
|
48. |
Nordquist RE,
Bell RD,
Sinclair RJ and
Keyl MJ.
The distribution and ultrastructural morphology of lymphatic vessels in the canine renal cortex.
Lymphology
6:
13–19,
1973.
|
49. |
Rojo‐Ortega JM,
Yeghiayan E and
Genest J.
Lymphatic capillaries in the renal cortex of the rat. An electron microscopic study.
Lab Invest
29:
336–341,
1973.
|
50. |
Lemley KV and
Kriz W.
Anatomy of the renal interstitium.
Kidney Int
39:
370–381,
1991.
|
51. |
Faarup P,
Saelan H and
Ryo G.
Correlation between tubules and capillaries and size of interstitial space in the functioning rat kidney. Influence of different types of preparation.
Acta Pathol Microbiol Scand [A]
79:
607–616,
1971.
|
52. |
Temm C and
Dominguez JH.
Microcirculation: nexus of comorbidities in diabetes.
Am J Physiol Renal Physiol
293:
F486–F493,
2007.
|
53. |
Michel CC.
Renal medullary microcirculation: architecture and exchange.
Microcirculation
2:
125–139,
1995.
|
54. |
Pallone TL,
Cao C and
Zhang Z.
Inhibition of K+ conductance in descending vasa recta pericytes by ANG II,
Am J Physiol Renal Physiol
287:
F1213–F1222,
2004.
|
55. |
Pannabecker TL,
Abbott DE and
Dantzler WH.
Three‐dimensional functional reconstruction of inner medullary thin limbs of Henle's loop.
Am J Physiol Renal Physiol
286:
F38–F45,
2004.
|
56. |
Jamison RL and
Kriz W
Urinary Concentrating Mechanism: Structure and Function.
New York, Oxford:
Oxford University Press,
1982.
|
57. |
Shepro D and
Morel NML.
Pericyte physiology.
FASEB J
7:
1031–1038,
1993.
|
58. |
Park F,
Mattson DL,
Roberts LA and
Cowley AW, Jr.
Evidence for the presence of smooth muscle alpha‐actin within pericytes of the renal medulla.
Am J Physiol
273:
R1742–R1748,
1997.
|
59. |
Mink D,
Schiller A,
Kriz W and
Taugner R.
Interendothelial junctions in kidney vessels.
Cell Tissue Res
236:
567–576,
1984.
|
60. |
Schwartz MM.
Karnovsky MJ and Vehkatachalam MA, Ultrastructural differences between rat inner medullary descending and ascending vasa recta.
Lab Invest
35:
161–170,
1976.
|
61. |
Pallone TL,
Work J,
Myers RL and
Jamison RL.
Transport of sodium and urea in outer medullary descending vasa recta.
J Clin Invest
93:
212–222,
1994.
|
62. |
Pannabecker TL and
Dantzler WH.
Three‐dimensional architecture of inner medullary vasa recta.
Am J Physiol Renal Physiol
290:
F1355–F1366,
2006.
|
63. |
Bankir L and
de Rouffignac C.
Urinary concentrating ability: insights from comparative anatomy.
Am J Physiol
249:
R643–R666,
1985.
|
64. |
Lemley KV and
Kriz W.
Cycles and separations: the histotopography of the urinary concentrating process.
Kidney Int
31:
538–548,
1987.
|
65. |
Bankir L,
Kaissling B,
de Rouffignac C and
Kriz W.
The vascular organization of the kidney of Psammomys obesus.
Anat Embryol (Berl)
155:
149–160,
1979.
|
66. |
Holliger C,
Lemley KV,
Schmitt SL,
Thomas FC,
Robertson CR and
Jamison RL,
Direct determination of vasa recta blood flow in the rat renal papilla.
Circ Res
53:
401–413,
1983.
|
67. |
Marsh DJ and
Segel LA.
Analysis of countercurrent diffusion exchange in blood vessels of the renal medulla.
Am J Physiol
221:
817–828,
1971.
|
68. |
Knepper MA,
Danielson RA,
Saidel GM and
Post RS.
Quantitative analysis of renal medullary anatomy in rats and rabbits.
Kidney Int
12:
313–323,
1977.
|
69. |
Muirhead EE,
Germain G,
Leach BE,
Pitcock JA,
Stephenson P,
Brooks B,
Brosius WL,
Daniels EG and
Hinman JW,
Production of renomedullary prostaglandins by renomedullary interstitial cells grown in tissue culture.
Circ Res
31
(Suppl‐72),
1972.
|
70. |
Takahashi‐Iwanaga H.
The three‐dimensional cytoarchitecture of the interstitial tissue in the rat kidney.
Cell Tissue Res
264:
269–281,
1991.
|
71. |
Hughes AK,
Barry WH and
Kohan DE.
Identification of a contractile function for renal medullary interstitial cells.
J Clin Invest
96:
411–416,
1995.
|
72. |
Thomas CJ,
Woods RL,
Evans RG,
Alcorn D,
Christy IJ and
Anderson WP.
Evidence for a renomedullary vasodepressor hormone.
Clin Exp Pharmacol Physiol
23:
777–785,
1996.
|
73. |
Zhuo JL,
Renomedullary interstitial cells: a target for endocrine and paracrine actions of vasoactive peptides in the renal medulla.
Clin Exp Pharmacol Physiol
27:
465–473,
2000.
|
74. |
Zusman RM and
Keiser HR.
Prostaglandin biosynthesis by rabbit renomedullary interstitial cells in tissue culture, Stimulation by angiotensin II, bradykinin and arginine vasopressin.
J Clin Invest
60:
215–222,
1977.
|
75. |
Zhai XY,
Birn H,
Jensen KB,
Thomsen JS,
Andreasen A and
Christensen EI.
Digital three‐dimensional reconstruction and ultrastructure of the mouse proximal tubule.
J Am Soc Nephrol
14:
611–619,
2003.
|
76. |
Zhai XY,
Thomsen JS,
Birn H,
Kristoffersen IB,
Andreasen A and
Christensen EI.
Three‐dimensional reconstruction of the mouse nephron.
J Am Soc Nephrol
17:
77–88,
2006.
|
77. |
Pannabecker TL and
Dantzler WH.
Three‐dimensional lateral and vertical relationships of inner medullary loops of Henle and collecting ducts.
Am J Physiol Renal Physiol
287:
F767–F774,
2004.
|
78. |
Pannabecker TL,
Dahlmann A,
Brokl OH and
Dantzler WH.
Mixed descending‐ and ascending‐type thin limbs of Henle's loop in mammalian renal inner medulla.
Am J Physiol Renal Physiol
278:
F202–F208,
2000.
|
79. |
Promeneur D,
Bankir L,
Hu MC and
Trinh‐Trang‐Tan MM.
Renal tubular and vascular urea transporters: influence of antidiuretic hormone on messenger RNA expression in Brattleboro rats.
J Am Soc Nephrol.
1359‐1366,
1998.
|
80. |
MacPhee PJ and
Michel CC.
Fluid uptake from the renal medulla into the ascending vasa recta in anaesthetized rats.
J Physiol
487:
169–183,
1995.
|
81. |
MacPhee PJ and
Michel CC,
Subatmospheric closing pressures in individual microvessels of rats and frogs.
J Physiol
484
(Pt 1):
183–187,
1995.
|
82. |
Layton AT and
Layton HE.
A region‐based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base‐case results.
Am J Physiol Renal Physiol
289:
FI346–F1366,
2005.
|
83. |
Layton AT and
Layton HE.
A region‐based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity.
Am J Physiol Renal Physiol
289:
F1367–F1381,
2005.
|
84. |
Layton AT,
Pannabecker TL,
Dantzler WH and
Layton HE.
Two modes for concentrating urine in rat inner medulla.
Am J Physiol Renal Physiol
287:
F816–F839,
2004.
|
85. |
Kuhn W and
Ryffel R.
Herstellung konzentrierter Losungen aus verdunnten durch blosse Membranwirkung. (Ein Modellversuch zur Function der Niere).
Hoppe‐Seylers Z Physiol Chem
276:
145–178,
1942.
|
86. |
Pallone TL,
Turner MR,
Edwards A and
Jamison RL.
Countercurrent exchange in the renal medulla.
Am J Physiol Regul Integr Comp Physiol
284:
R1153–R1175,
2003.
|
87. |
Barajas L,
Salido EC,
Liu L and
Powers KV.
The juxtaglomerular apparatus: A morphologic perspective. In:
Hypertension: Pathophysiology, Diagnosis, and Management,
eds Laragh JH and
Brenner BM.
New York:
Raven Press, Ltd.,
1995,
pp. 1335–1347.
|
88. |
Bankir L,
Bouby N and
Trinh‐Trang‐Tan MM.
The role of the kidney in the maintenance of water balance. In:
Bailliere's Clinical Endocrinology and Metabolism, Water and Salt Homeostasis in Health and Disease,
ed. Baylis PH.
London:
Bailliere,
1989,
pp. 249–311.
|
89. |
Davenport JR and
Yoder BK.
An incredible decade for the primary cilium: a look at a once‐forgotten organelle.
Am J Physiol Renal Physiol
289:
F1159–F1169,
2005.
|
90. |
Miyamori I,
Itoh Y,
Matsubara T,
Koshida H and
Takeda R.
Systemic and regional effects of endothelin in rabbits: effects of endothelin antibody.
Clin Exp Pharmacol Physiol
17:
691–696,
1990.
|
91. |
Siroky BJ,
Ferguson WB,
Fuson AL,
Xie Y,
Fintha A,
Komlosi P,
Yoder BK,
Schwiebert EM,
Guay‐Woodford LM and
Bell PD.
Loss of primary cilia results in deregulated and unabated apical calcium entry in ARPKD collecting duct cells.
Am J Physiol Renal Physiol
290:
F1320–F1328,
2006.
|
92. |
Navar LG and
Bell PD.
Romancing the macula densa at UAB.
Kidney Int Suppl
66:
S34–S40,
2004.
|
93. |
Bell PD,
Lapointe JY and
Peti‐Peterdi J.
Macula densa cell signaling.
Annu Rev Physiol
65:
481–500,
2003.
|
94. |
Peti‐Peterdi J.
Multiphoton imaging of renal tissues in vitro.
Am J Physiol Renal Physiol
288:
F1079–F1083,
2005.
|
95. |
Barajas L and
Muller J.
The innervation of the juxtaglomerular apparatus and surrounding tubules: a quantitative analysis by serial section electron microscopy.
J Ultrastruct Res
43:
107–132,
1973.
|
96. |
Baylis C,
Engels K and
Beierwaltes WH.
β‐adrenoceptor‐stimulated renin release is blunted in old rats.
J Am Soc Nephrol
9:
1318–1320,
1998.
|
97. |
Briggs JP and
Schnermann J.
Control of renin release and glomerular vascular tone by the juxtaglomerular apparatus. In:
Hypertension: Pathophysiology, Diagnosis, and Management,
eds Laragh JH and
Brenner BM,
New York:
Raven Press, ltd.
1995,
pp. 1359–1385.
|
98. |
DiBona GF and
Kopp UC,
Neural control of renal function.
Physiol Rev
77:
75–197,
1997.
|
99. |
Hackenthal E,
Paul M,
Ganten D and
Taugner R,
Morphology physiology, and molecular biology of renin secretion.
Physiol Rev
70:
1067–1116,
1990.
|
100. |
Dorup J,
Morsing P and
Rasch R.
Tubule‐tubule and tubule‐arteriole contacts in rat kidney distal nephrons.
Lab Investig
67:
761–769,
1992.
|
101. |
Ren Y,
Garvin JL,
Liu R and
Carretero OA,
Crosstalk between the connecting tubule and the afferent arteriole regulates renal microcirculation.
Kidney Int
71:
1116–1121,
2007.
|
102. |
Ren Y,
Garvin JL,
Liu R and
Carretero OA.
Possible mechanism of efferent arteriole (Ef‐Art) tubuloglomerular feedback.
Kidney Int
71:
861–866,
2007.
|
103. |
Skott O and
Briggs JP.
Direct demonstration of macula densa‐mediated renin secretion.
Science
237:
1618–1620,
1987.
|
104. |
Barajas L.
Innervation of the renal cortex.
Fed Proc
37:
1192–1201,
1978.
|
105. |
Denton KM,
Luff SE,
Shweta A and
Anderson WP.
Differential neural control of glomerular ultrafiltration.
Clin Exp Pharmacol Physiol
31:
380–386,
2004.
|
106. |
Bischoff A and
Michel MC.
Renal effects of neuropeptide Y.
Pflugers Arch
435:
443–453,
1998.
|
107. |
Bohmann C,
von KI and
Rump LC.
P2‐receptor modulation of noradrenergic neurotransmission in rat kidney.
Br J Pharmacol
121:
1255–1262,
1997.
|
108. |
Schwartz DD and
Malik KU.
Renal periarterial nerve stimulation‐induced vasoconstriction at low frequencies is primarily due to release of a purinergic transmitter in the rat.
J Pharmacol Exp Ther
250:
764–771,
1989.
|
109. |
Vonend O,
Stegbauer J,
Sojka J,
Habbel S,
Quack I,
Robaye B,
Boeynaems JM and
Rump LC.
Noradrenaline and extracellular nucleotide cotransmission involves activation of vasoconstrictive P2X(1,3)‐ and P2Y6‐like receptors in mouse perfused kidney.
Br J Pharmacol
145:
66–74,
2005.
|
110. |
Vonend O,
Habbel S,
Stegbauer J,
Roth J,
Hein L and
Rump LC.
Alpha(2A)‐adrenoceptors regulate sympathetic transmitter release in mice kidneys.
Br J Pharmacol
150:
121–127,
2007.
|
111. |
Salomonsson M,
Brannstrom K and
Arendshorst WJ.
alpha(1)‐Adrenoceptor subtypes in rat renal resistance vessels: in vivo and in vitro studies.
Am J Physiol Renal Physiol
278:
F138–F147,
2000.
|
112. |
Salomonsson M,
Oker M,
Kim S,
Hua,
Faber JE and
Arendshorst WJ.
α‐Adrenoceptor receptor subtypes in the preglomerular vasculature: PCR and radioliganding binding studies.
Am J Physiol Renal Physiol
281:
F172–F178,
2001.
|
113. |
Dinerstein RJ,
Vannice J,
Henderson RC,
Roth LJ,
Goldberg LI and
Hoffmann PC.
Histofluorescence techniques provide evidence for dopamine‐containing neuronal elements in canine kidney.
Science
205:
497–499,
1979.
|
114. |
Landis EM and
Pappenheimer JR.
Exchange of substances through the capillary wall.
Handbook of Physiology, Circulation.
Washington:
Am. Physiol. Soc.,
1963,
pp. 962–1034.
|
115. |
Kedem O and
Katchalsky A.
Thermodynamic analysis of the permeability of biological membranes to non‐electrolytes.
Biochim Biophys Acta
27:
229–246,
1958.
|
116. |
Arendshorst WJ and
Gottschalk CW.
Glomerular ultrafiltration dynamics: historical perspective.
Am J Physiol
248:
F163–F174,
1985.
|
117. |
Brenner BM,
Deen WM and
Robertson CR.
Determinants of glomerular filtration rate.
Annu Rev Physiol
38:
11–19,
1976.
|
118. |
Oken DE.
An analysis of glomerular dynamics in rat, dog. and man.
Kidney Int
22:
136–145,
1982.
|
119. |
Navar PD and
Navar LG.
Relationship between colloid osmotic pressure and plasma protein concentration in the dog.
Am J Physiol
233:
H295–H298,
1977.
|
120. |
Lowenstein J,
Beranbaum ER,
Chasis H and
Baldwin DS.
Intrarenal pressure and exaggerated natriuresis in essential hypertension.
Clin Sci
38:
359–374,
1970.
|
121. |
Willassen Y and
Ofstad J.
Renal sodium excretion and the peritubular capillary physical factors in essential hypertension.
Hypertension
2:
771–779,
1980.
|
122. |
Blantz RC.
Segmental renal vascular resistance single nephron.
Annu Rev Physiol
42:
573–588,
1980.
|
123. |
Baylis C and
Brenner BM.
The physiologic determinants of glomerular ultrafiltration.
Rev Physiol Biochem Pharmacol
80:
1–46,
1978.
|
124. |
Carmines PK,
Perry MD,
Hazelrig JB and
Navar LG.
Effects of pre‐glomerular and postglomerular vascular resistance alterations on filtration fraction.
Kidney Int
31
(Suppl 20):
S‐229–S‐232,
1987.
|
125. |
Curry FR.
Microvascular solute and water transport.
Microcirculation
12:
17–31,
2005.
|
126. |
Lambert PP,
Du BR,
Decoodt P,
Gassee JP and
Verniory A.
Determination of glomerular intracapillary and transcapillary pressure gradients from sieving data. II, A physiological study in the normal dog.
Pflugers Arch
359:
1–22,
1975.
|
127. |
Taylor AE and
Granger DN.
Exchange of macromolecules across the microcirculation. In:
Microcirculation,
eds Renkin E and
Michel C.
Baltimore:
American Physiological Society,
1984,
p. 467.
|
128. |
Whiteside C and
Silverman M.
Determination of glomerular permselectivity to neutral dextrans in the dog.
Am J Physiol
245:
F485–F495,
1983.
|
129. |
Larson M,
Hermansson K and
Wolgast M.
Hydraulic permeability of the peritubular and glomerular capillary membranes in the rat kidney.
Acta Physiol Scand
117:
251–261,
1983.
|
130. |
Ohlson M,
Sorensson J and
Haraldsson B.
A gel‐membrane model of glomerular charge and size selectivity in series.
Am J Physiol Renal Physiol
280:
F396–F405,
2001.
|
131. |
Renkin EM.
Capillary transport of macromolecules: pores and other endothelial pathways.
J Appl Physiol
58:
315–325,
1985.
|
132. |
Wolgast M and
Wahlstrom H.
Characteristics of the glomerular capillary membrane of the rat kidney as a hydrated gel. 1. Hypothetical structure.
Acta Physiol Scand
158:
213–224,
1996.
|
133. |
Blouch K,
Deen WM,
Fauvel JP,
Bialek J,
Derby G and
Myers BD.
Molecular configuration and glomerular size selectivity in healthy and nephrotic humans.
Am J Physiol Renal Physiol
273:
F430–F437,
1997.
|
134. |
Deen WM.
What determines glomerular capillary permeability?
J Clin Invest
114:
1412–1414,
2004.
|
135. |
Lemley KV,
Blouch K,
Abdullah I,
Boothroyd DB,
Bennett PH,
Myers BD and
Nelson RG.
Glomerular permselectivity at the onset of nephropathy in type 2 diabetes mellitus.
J Am Soc Nephrol
11:
2095–2105,
2000.
|
136. |
Bohrer MP,
Baylis C,
Humes HD,
Glassock RJ,
Robertson CR and
Brenner BM.
Permselectivity of the glomerular capillary wall. Facilitated filtration of circulating polycations.
J Clin Invest
61:
72–78,
1978.
|
137. |
Chang RL,
Deen WM,
Robertson CR and
Brenner BM.
Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions.
Kidney Int
8:
212–218,
1975.
|
138. |
Rennke HG,
Patel Y and
Venkatachalam MA.
Glomerular filtration of proteins: clearance of anionic,
neutral, and cationic horseradish peroxidase in the rat. Kidney Int
13:
278–288,
1978.
|
139. |
Bohrer MP,
Deen WM,
Robertson CR,
Troy JL and
Brenner BM.
Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall.
J Gen Physiol
74:
583–593,
1979.
|
140. |
Rennke HG and
Venkatachalam MA.
Glomerular permeability of macromolecules. Effect of molecular configuration on the fractional clearance of uncharged dextran and neutral horseradish peroxidase in the rat.
J Clin Invest
63:
713–717,
1979.
|
141. |
Russo LM,
Bakris GL and
Comper WD.
Renal handling of albumin: a critical review of basic concepts and perspective.
Am J Kidney Dis
39:
899–919,
2002.
|
142. |
Jeansson M and
Haraldsson B.
Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier.
Am J Physiol Renal Physiol
290:
F111–F116,
2006.
|
143. |
Roberts M,
Lindheimer MD and
Davison JM.
Altered glomerular permselectivity to neutral dextrans and heteroporous membrane modeling in human pregnancy.
Am J Physiol Renal Physiol
270:
F338–F343,
1996.
|
144. |
Venturoli D and
Rippe B.
Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability.
Am J Physiol Renal Physiol
288:
F605–F613,
2005.
|
145. |
Baylis C,
Deen WM,
Myers BD and
Brenner BM.
Effects of some vasodilator drugs on transcapillary fluid exchange in renal cortex.
Am J Physiol
230:
1148–1158,
1976.
|
146. |
Nielsen S,
Frokiaer J,
Marples D,
Kwon TH,
Agre P and
Knepper MA.
Aquaporins in the kidney: from molecules to medicine.
Physiol Rev
82:
205–244,
2002.
|
147. |
Ott CE,
Cuche J‐L and
Knox FG.
Measurement of renal interstitial fluid pressure with polyethylene matrix capsules.
J Appl Physiol
38:
937–941,
1975.
|
148. |
Ott CE and
Knox FG.
Tissue pressures and fluid dynamics in the kidney.
Federation Proceedings
35:
1872–1875,
1976.
|
149. |
Ott CE,
Navar LG and
Guyton AC.
Pressures in static and dynamic states from capsules implanted in the kidney.
Am J Physiol
221:
394–400,
1971.
|
150. |
Wolgast M.
Renal interstitium and lymphatics.
The Kidney: Physiology and Pathophysiology.
New York:
Raven Press:
Seldin DW and
Giebisch G,
1985,
pp. 497–517.
|
151. |
Aukland K,
Bogusky RT and
Renkin EM.
Renal cortical interstitium and fluid absorption by peritubular capillaries.
Am J Physiol‐Renal Physiol
266:
F175–F184,
1994.
|
152. |
Granger JP and
Sohaug MJ.
Renal interstitial hydrostatic pressure during verapamil‐induced natriuresis.
Am J Physiol Regul Integr Comp Physiol
262:
R432–R436,
1992.
|
153. |
Michel C.
Exchange of fluid and solutes across microvascular walls. In:
The Kidney: Physiology and Pathophysiology.
eds Seldin DW and
Giebisch G.
New York:
Raven Press,
2000,
p. 61.
|
154. |
Whiteside C and
Silverman M.
Postglomerular capillary solute flux restricted by shape and charge in the dog.
Am J Physiol Renal Physiol
253:
F500–F512,
1987.
|
155. |
Gonzalez‐Campoy JM,
Long C,
Roberts D,
Berndt TJ,
Romero JC and
Knox FG.
Renal interstitial hydrostatic pressure and PGE2 in pressure natriuresis.
Am J Physiol Renal Physiol
260:
F643–F649,
1991.
|
156. |
Garcia NH,
Ramsey CR and
Knox FG.
Understanding the role of paracellular transport in the proximal tubule.
News Physiol Sci
13:
38–43
1998.
|
157. |
Weinstein AM.
Mathematical models of renal fluid and electrolyte transport: acknowledging our uncertainty.
Am J Physiol Renal Physiol
284:
F871–F884,
2003.
|
158. |
Weinstein AM and
Windhager EE.
The paracellular shunt of proximal tubule.
J Membr Biol
184:
241–245,
2001.
|
159. |
Balkovetz DF.
Claudins at the gate: determinants of renal epithelial tight junction paracellular permeability.
Am J Physiol Renal Physiol
290:
F572–F579,
2006.
|
160. |
Van Itallie CM and
Anderson JM.
Claudins and epithelial paracellular transport.
Annu Rev Physiol
68:
403–429,
2006.
|
161. |
Cowley AW, Jr.,
Roman RJ and
Krieger JE.
Pathways linking renal excretion and arterial pressure with vascular structure and function.
Clin Exp Pharmacol Physiol
18:
21–27,
1991.
|
162. |
Roman RJ.
Pressure‐diuresis in volume‐expanded rats: tubular rea‐bsorption in superficial and deep nephrons.
Hypertension
12:
177–183,
1988.
|
163. |
LeBrie SJ.
Renal peritubular capillary permeability to macromol‐ecules.
Am J Physiol
213:
1225–1232,
1967.
|
164. |
Hargens AR,
Tucker BJ and
Blantz RC.
Renal lymph protein in the rat.
Am J Physiol
233:
F269–F273,
1977.
|
165. |
Wilcox CS and
Dzau VJ.
Effect of captopril on the release of the components of the renin‐angiotensin system into plasma and lymph.
J Am Soc Nephrol
2:
1241–1250,
1992.
|
166. |
Oliver J.
Nephrons and kidneys.
Harper & Row,
1968,
47–50.
|
167. |
Morton MJ,
Hutchinson K,
Mathieson PW,
Witherden IR,
Saleem MA and
Hunter M.
Human podocytes possess a stretch‐sensitive, Ca2+‐activated K+ channel: potential implications for the control of glomerular filtration.
J Am Soc Nephrol
15:
2981–2987,
2004.
|
168. |
Sharma R,
Lovell HB,
Wiegmann TB and
Savin VJ.
Vasoactive substances induce cytoskeletal changes in cultured rat glomerular epithelial cells.
J Am Soc Nephrol
3:
1131–1138,
1992.
|
169. |
Arendshorst WJ.
Altered reactivity of tubuloglomerular feedback.
Ann Rev Physiol
49:
295–317,
1987.
|
170. |
Beach RE and
Good DW.
Effects of adenosine on ion transport in rat medullary thick ascending limb.
Am J Physiol
263:
F482–F487,
1992.
|
171. |
Drumond MC,
Kristal B,
Myers BD and
Deen WM.
Structural basis for reduced glomerular filtration capacity in nephrotic humans.
J Clin Invest
94:
1187–1195,
1994.
|
172. |
Neumann KH,
Kellner C,
Kuhn K,
Stolte H and
Schurek HJ.
Age‐dependent thickening of glomerular basement membrane has no major effect on glomerular hydraulic conductivity.
Nephrol Dial Transplant
19:
805–811,
2004.
|
173. |
Arendshorst WJ,
Brannstrom K and
Ruan X.
Actions of angiotensin II on the renal microvasculature.
J Am Soc Nephrol
10
(Suppl 11):
S149–S161,
1999.
|
174. |
Baylis C and
Brenner BM.
Modulation by prostaglandin synthesis inhibitors of the action of exogenous angiotensin II on glomerular ultrafiltration in the rat.
Ore Res
43:
889–898,
1978.
|
175. |
Blantz RC,
Konnen KS and
Tucker BJ.
Angiotensin II effects upon the glomerular microcirculation and ultrafiltration coefficient of the rat.
J Clin Invest
57:
419–434,
1976.
|
176. |
Hintze TH.
Significance of renal vasodilation after administration of atrial natriuretic factor in the conscious dog.
Hypertension
12:
143–151,
1988.
|
177. |
Ichikawa I and
Brenner BM.
Evidence for glomerular actions of ADH and dibutyryl cyclic AMP in the rat.
Am J Physiol
233:
F102–F1I7,
1977.
|
178. |
Ichikawa I,
Miele JF and
Brenner BM.
Reversal of renal cortical actions of angiotensin II by verapamil and manganese.
Kidney Int
16:
137–147,
1979.
|
179. |
Kon V and
Badr KF.
Biological actions and pathophysiologic significance of endothelin in the kidney.
Kidney Int
40:
1–12,
1991.
|
180. |
Myers BD,
Deen WM and
Brenner BM.
Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat.
Circ Res
37:
101–110,
1975.
|
181. |
Schor N,
Ichikawa I and
Brenner BM.
Mechanisms of action of various hormones and vasoactive substances on glomerular ultrafiltration in the rat.
Kidney Int
20:
442–451,
1981.
|
182. |
Steiner RW,
Tucker BJ and
Blantz RC.
Glomerular hemodynamics in rats with chronic sodium depletion, Effect of saralasin.
J Clin Invest
64:
503–512,
1979.
|
183. |
Schor N,
Ichikawa I and
Brenner BM,
Glomerular adaptations to chronic dietary salt restriction or excess.
Am J Physiol
238:
F428–F436,
1980.
|
184. |
Heller J,
Kramer HJ and
Horacek V.
The effect of kinin and prostaglandin inhibitors on the renal response to angiotensin‐converting enzyme inhibition: a micropuncture study in the dog.
Pflügers Arch
427:
219–224,
1994.
|
185. |
Navar LG,
Jirakulsomchok D,
Bell PD,
Thomas CE and
Huang WC.
Influence of converting enzyme inhibition on renal hemodynamics and glomerular dynamics in sodium‐restricted dogs.
Hypertension
4:
58–68,
1982.
|
186. |
Yared A,
Albrightson‐Winslow C,
Griswold D,
Takahashi K,
Fogo A and
Badr KF.
Functional significance of leukotriene B4 in normal and glomerulonephritic kidneys.
J Am Soc Nephrol
2:
45–56,
1991.
|
187. |
Baylis C,
Ichikawa I,
Willis WT,
Wilson CB and
Brenner BM.
Dynamics of glomerular ultrafiltration, IX, Effects of plasma protein concentration.
Am J Physiol
232:
F58–F71,
1977.
|
188. |
Blantz RC,
Rector FC, Jr. and
Seldin DW.
Effect of hyperoncotic albumin expansion upon glomerular ultrafiltration in the rat.
Kidney Int
6:
209–221,
1974.
|
189. |
Thomas CE,
Bell PD and
Navar LG.
Glomerular filtration dynamics in the dog during elevated plasma colloid osmotic pressure.
Kidney Int
15:
502–512,
1979.
|
190. |
Andrews PM and
Coffey AK.
Cytoplasmic contractile elements in glomerular cells.
Fed Proc
42:
3046–3052,
1983.
|
191. |
Kriz W,
Hackenthal E,
Nobiling R,
Sakai T and
Elger M.
A role for podocytes to counteract capillary wall distension.
Kidney Int
45:
369–376,
1994.
|
192. |
Ardaillou R.
Biology of glomerular cells in culture.
Cell Biol Toxicol
12:
257–261,
1996.
|
193. |
Dworkin LD,
Ichikawa I and
Brenner BM,
Hormonal modulation of glomerular function.
Am J Physiol
244:
F95–F104,
1983.
|
194. |
Mene P,
Simonson MS and
Dunn MJ,
Physiology of the mesangial cell.
Physiol Rev
69:
1347–1424,
1989.
|
195. |
Stockand JD and
Sansom SC.
Glomerular mesangial cells: electro‐physiology and regulation of contraction.
Physiol Rev
78:
723–744,
1998.
|
196. |
Ma R,
Pluznick JL and
Sansom SC.
Ion channels in mesangial cells: function, malfunction, or fiction.
Physiology (Bethesda)
20:
102–111,
2005.
|
197. |
Scharschmidt LA and
Dunn MJ.
Prostaglandin synthesis by rat glomerular mesangial cells in culture.
J Clin Invest
71:
1756–1764,
1983.
|
198. |
Scharschmidt LA,
Lianos E and
Dunn MJ.
Arachidonate metabolites and the control of glomerular function.
Federation Proc
42:
3058–3063,
1983.
|
199. |
Elger M,
Drenckhahn D,
Nobiling R,
Mundel P and
Kriz W.
Cultured rat mesangial cells contain smooth muscle alpha‐actin not found in vivo.
Am J Pathol
142:
497–509,
1993.
|
200. |
Nakai K,
Ito C,
Yumura W,
Horita S,
Nihei H,
Sugino N and
Nagai R.
Difference of myosin heavy chain expression between mesangial cells and vascular smooth muscles.
Nippon Jinzo Gakkai Shi
37:
428–435,
1995.
|
201. |
Lshino T,
Kobayashi R,
Wakui H,
Fukushima Y,
Nakamoto Y and
Miura AB.
Biochemical characterization of contractile proteins of rat cultured mesangial cells.
Kidney Int
39:
1118–1124,
1991.
|
202. |
Kriz W,
Elger M,
Lemley K and
Sakai T.
Structure of the glomerular mesangium: a biomechanical interpretation.
Kidney Int Suppt
30:
S2–S9,
1990.
|
203. |
Kriz W,
Elger M,
Mundel P and
Lemley KV.
Structure‐stabilizing forces in the glomerular tuft.
J Am Soc Nephrol
5:
1731–1739,
1995.
|
204. |
Pagtalunan ME,
Rasch R,
Rennke HG and
Meyer TW.
Morphometric analysis of effects of angiotensin II on glomerular structure in rats.
Am J Physiol Renal Physiol
268:
F82–F88,
1995.
|
205. |
Denton KM,
Fennessy PA,
Alcorn D and
Anderson WP.
Morphometirc analysis of the actions of angiotensin II on renal arterioles and glomeruli.
Am J Physiol Renal Physiol
262:
F367–F372,
1992.
|
206. |
Anderson WP,
Alcorn D,
Gilchrist AI,
Whiting JM and
Ryan GB.
Glomerular actions of ANG II during reduction of renal artery pressure: a morphometric analysis.
Am J Physiol
256:
F1021–F1026,
1989.
|
207. |
Black MJ,
Briscoe TA,
Dunstan HJ,
Bertram JF and
Johnston CI.
Effect of angiotensin‐converting enzyme inhibition on renal filtration surface area in hypertensive rats.
Kidney Int
60:
1837–1843,
2001.
|
208. |
Dunstan HJ,
Briscoe TA,
Bertram JF,
Johnston CI and
Black MJ.
Angiotensin‐converting enzyme inhibition in adult hypertensive rats: a stereological study of renal filtration surface area.
Clin Exp Pharmacol Physiol
30:
72–76,
2003.
|
209. |
Iordache BE,
Imberti O,
Foglieni C,
Remuzzi G,
Bertani T and
Remuzzi A.
Effects of angiotensin‐converting enzyme inhibition on glomerular capillary wall ultrastructure in MWF/Ztm rats.
J Am Soc Nephrol
5:
1378–1384,
1994.
|
210. |
Ballermann BJ.
Glomerular endothelial cell differentiation.
Kidney Int
67:
1668–1671,
2005.
|
211. |
Satchell SC,
Anderson KL and
Mathieson PW.
Angiopoietin I and vascular endothelial growth factor modulate human glomerular endothelial cell barrier properties.
J Am Soc Nephrol
15:
566–574,
2004.
|
212. |
Rostgaard J and
Qvortrup K.
Sieve plugs in fenestrae of glomerular capillaries—site of the filtration barrier?
Cells Tissues Organs
170:
132–138,
2002.
|
213. |
Bedford JJ,
Leader JP and
Walker RJ.
Aquaporin expression in normal human kidney and in renal disease.
J Am Soc Nephrol
14:
2581–2587,
2003.
|
214. |
Maunsbach AB,
Marples D,
Chin E,
Ning G,
Bondy C,
Agre P and
Nielsen S.
Aquaporin‐1 water channel expression in human kidney.
J Am Soc Nephrol
8:
1–14,
1997.
|
215. |
Pallone TL.
Vasoconstriction of outer medullary vasa recta by angiotensin II is modulated by prostaglandin E2.
Am J Physiol Renal Physiol
266:
F850–F857,
1994.
|
216. |
Pallone TL,
Edwards A,
Ma T,
Silldorff EP and
Verkman AS.
Requirement of aquaporin‐1 for NaCl‐driven water transport across descending vasa recta.
J Clin Invest
105:
215–222,
2000.
|
217. |
Pallone TL,
Kishore BK,
Nielsen S,
Agre P and
Knepper MA.
Evidence that aquaporin‐1 mediates NaCl‐induced water flux across descending vasa recta.
Am J Physiol Renal Physiol
272:
F587–F596,
1997.
|
218. |
Pallone TL and
Turner MR.
Molecular sieving of small solutes by outer medullary descending vasa recta.
Am J Physiol Renal Physiol
272:
F579–F586,
1997.
|
219. |
Thomas SR.
Cycles and separations in a model of the renal medulla.
Am J Physiol
275:
F671–F690,
1998.
|
220. |
Johnston PA,
Battilana CA,
Lacy FB and
Jamison RL.
Evidence for a concentration gradient favoring outward movement of sodium from the thin loop of Henle.
J Clin Invest
59:
234–240,
1977.
|
221. |
Gottschalk CW and
Mylle M.
Micropuncture study of the mammalian urinary concentrating mechansm: Evidence for the countercur‐rent hypothesis.
Am J Physiol
196:
927–936,
1959.
|
222. |
Marsh DJ and
Azen SP.
Mechanism of NaCl reabsorption by hamster thin ascending limbs of Henle's loop.
Am J Physiol
228:
71–79,
1975.
|
223. |
Sanjana VM,
Johnston PA,
Deen WM,
Robertson CR,
Brenner BM and
Jamison RL.
Hydraulic and oncotic pressure measurements in inner medulla of mammalian kidney.
Am J Physiol
228:
1921–1926,
1975.
|
224. |
Sanjana VM,
Johnston PA,
Robertson CR and
Jamison RL.
An examination of transcapillary water flux in renal inner medulla.
Am J Physiol
231:
313–318,
1976.
|
225. |
Zimmerhackl B,
Robertson CR and
Jamison RL.
Fluid uptake in the renal papilla by vasa recta estimated by two methods simultaneously.
Am J Physiol
248:
F347–F353,
1985.
|
226. |
Goransson A,
Sjoquist M and
Ulfendahl HR.
Superficial and juxtamedullary nephron function during converting enzyme inhibition.
Am J Physiol
251:
F25–F33,
1986.
|
227. |
Pallone TL,
Yagil Y and
Jamison RL.
Effect of small‐solute gradients on transcapillary fluid movement in renal inner medulla.
Am J Physiol
257:
F547–F553,
1989.
|
228. |
Pallone TL,
Work J and
Jamison RL.
Resistance of descending vasa recta to the transport of water.
Am J Physiol Renal Physiol
259:
F688–F697,
1990.
|
229. |
Pallone TL.
Extravascular protein in the renal medulla: analysis by two methods.
Am J Physiol Regul Integr Comp Physiol
266:
R1429–R1436,
1994.
|
230. |
Mendez RE,
Dunn BR,
Troy JL and
Brenner BM.
Atrial natriuretic peptide and furosemide effects on hydraulic pressure in the renal papilla.
Kidney Int
34:
36–42,
1988.
|
231. |
Edwards A and
Pallone TL.
A multiunit model of solute and water removal by inner medullary vasa recta.
Am J Physiol
274:
H1202–H1210,
1998.
|
232. |
Thurau K,
Sugiura T and
Lilienfield LS.
Micropuncture of renal vasa recta in hydropenic hamsters.
Circ Res
8:
383,
1960.
|
233. |
Pallone TL,
Morgenthaler TL and
Deen WM.
Analysis of microvascular water and solute exchanges in the renal medulla.
Am J Physiol
247:
F303–F315,
1984.
|
234. |
Ullrich KJ,
Pehlin G and
Espinar‐lafuente M.
[Water and electrolyte flow in the vascular counterflow system of the renal medulla, With a theoretical contribution by R, Schloegl: “Salt transport by non‐loaded porous membranes”].
Pftugers Arch Gesamte Physiol Menschen Tiere
273:
562–572,
1961.
|
235. |
Garcia‐Estan J and
Roman RJ.
Role of renal interstitial hydrostatic pressure in the pressure diuresis response.
Am J Physiol Renal Physiol
256:
F63–F70,
1989.
|
236. |
Haas JA,
Khraibi AA,
Perrella MA and
Knox FG.
Role of renal interstitial hydrostatic pressure in natriuresis of systemic nitric oxide inhibition.
Am J Physiol Renal Physiol
164:
F411–F414,
1993.
|
237. |
Majid DSA,
Said KE,
Omoro SA and
Navar LG,
Nitric oxide dependency of arterial pressure‐induced changes in renal interstitial hydrostatic pressure in dogs.
Circ Res
88:
347–351,
2001.
|
238. |
Pallone TL.
Effect of sodium chloride gradients on water flux in rat descending vasa recta.
J Clin Invest
87:
12–19,
1991.
|
239. |
Nielsen S,
Pallone T,
Smith BL,
Christensen EI,
Agre P and
Maunsbach AB.
Aquaporin‐1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney.
Am J Physiol
268:
F1023–F1037,
1995.
|
240. |
Nielsen S,
Smith BL,
Christensen EI and
Agre P.
Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia.
Proc Natl Acad Sci USA
90:
7275–7279,
1993.
|
241. |
Edwards A and
Pallone TL.
Facilitated transport in vasa recta: theoretical effects on solute exchange in the medullary microcircualtion.
Am J Physiol Renal Physiol
272:
F505–F514,
1997.
|
242. |
Turner MR and
Pallone TL.
Hydraulic and diffusional permeabilities of isolated outer medullary descending vasa recta from the rat.
Am J Physiol
272:
H392–H400,
1997.
|
243. |
Pallone TL,
Transport of sodium chloride and water in rat ascending vasa recta.
Am J Physiol Renal Physiol
261:
F519–F525,
1991.
|
244. |
Yang B and
Bankir L.
Urea and urine concentrating ability: new insights from studies in mice.
Am J Physiol Renal Physiol
288:
F881–F896,
2005.
|
245. |
Yang B and
Verkman AS.
Urea transporter UT3 functions as an efficient water channel. Direct evidence for a common water/urea pathway.
J Biol Chem
273:
9369–9372,
1998.
|
246. |
Pallone TL,
Nielsen S,
Silldorff EP and
Yang S.
Diffusive transport of solute in the rat medullary microcirculation.
Am J Physiol Renal Physiol
269:
F55–F63,
1995.
|
247. |
Morgan T and
Berliner RW.
Permeability of the loop of Henle, vasa recta, collecting duct to water, urea, sodium.
Am J Physiol
215:
108–115,
1968.
|
248. |
Pallone TL.
Characterization of the urea transporter in outer medullary descending vasa recta.
Am J Physiol
267:
R260–R267,
1994.
|
249. |
Promeneur D,
Rousselet G,
Bankir L,
Bailly P,
Cartron JP,
Ripoche P and
Trinh‐Trang‐Tan MM.
Evidence for distinct vascular and tubular urea transporters in the rat kidney.
J Am Soc Nephrol
1:
852–860,
1996.
|
250. |
Bankir L,
Chen K and
Yang B.
Lack of UT‐B in vasa recta and red blood cells prevents urea‐induced improvement of urinary concentrating ability.
Am J Physiol Renal Physiol
286:
F144–F151,
2004.
|
251. |
Shayakul C,
Knepper MA,
Smith CP,
DiGiovanni SR and
Hediger MA.
Segmental localization of urea transporter mRNAs in rat kidney.
Am J Physiol
272:
F654–F660,
1997.
|
252. |
Shayakul C,
Steel A and
Hediger MA.
Molecular cloning and characterization of the vasopressin‐regulated urea transporter of rat kidney collecting ducts.
J Clin Invest
98:
2580–2587,
1996.
|
253. |
Xu Y,
Olives B,
Bailly P,
Fischer E,
Ripoche P,
Ronco P,
Cartron JP and
Rondeau E.
Endothelial cells of the kidney vasa recta express the urea transporter HUT 11.
Kidney Int
51:
138–146,
1997.
|
254. |
Yang B,
Bankir L,
Gillespie A,
Epstein CJ and
Verkman AS.
Urea‐selective concentrating defect in transgenic mice lacking urea transporter UT‐B.
J Biol Chem
277:
10633–10637,
2002.
|
255. |
Kaissling B,
de Rouffignac C,
Barrett JM and
Kriz W.
The structural organization of the kidney of the desert rodent Psammomys obesus.
Anat Embryol (Berl)
148:
121–143,
1975.
|
256. |
Macey RI and
Yousef LW.
Osmotic stability of red cells in renal circulation requires rapid urea transport.
Am J Physiol
254:
C669–C674,
1988.
|
257. |
Sands JM.
Renal urea transporters.
Curr Opin Nephrol Hypertens
13:
525–532,
2004.
|
258. |
Trinh‐Trang‐Tan MM,
Lasbennes F,
Gane P,
Roudier N,
Ripoche P,
Cartron JP and
Bailly P.
UT‐B1 proteins in rat: tissue distribution and regulation by antidiuretic hormone in kidney.
Am J Physiol Renal Physiol
283:
F912–F922,
2002.
|
259. |
Kim D,
Klein JD,
Racine S,
Murrell BP and
Sands JM.
Urea may regulate urea transporter protein abundance during osmotic diuresis.
Am J Physiol Renal Physiol
288:
F188–F197,
2005.
|
260. |
Jung JY,
Madsen KM,
Han KH,
Yang CW,
Knepper MA,
Sands JM and
Kim J.
Expression of urea transporters in potassium‐depleted mouse kidney.
Am J Physiol Renal Physiol
285:
F1210–F1224,
2003.
|
261. |
Klein JD,
Gunn RB,
Roberts BR and
Sands JM.
Down‐regulation of urea transporters in the renal inner medulla of lithium‐fed rats.
Kidney lnt
61:
995–1002,
2002.
|
262. |
Li C,
Klein JD,
Wang W,
Knepper MA,
Nielsen S,
Sands JM and
Frokiaer J.
Altered expression of urea transporters in response to ureteral obstruction.
Am J Physiol Renal Physiol
286:
F1154–F1162,
2004.
|
263. |
Lim SW,
Li C,
Sun BK,
Han KH,
Kim WY,
Oh YW,
Lee JU,
Kador PF,
Knepper MA,
Sands JM,
Kim J and
Yang CW.
Long‐term treatment with cyclosporine decreases aquaporins and urea transporters in the rat kidney.
Am J Physiol Renal Physiol
287:
F139–F151,
2004.
|
264. |
Pallone TL.
Resistance of ascending vasa recta to transport of water.
Am J Physiol Renal Physiol
260:
F303–F310,
1991.
|
265. |
Pallone TL,
Molecular sieving of albumin by the ascending vasa recta wall.
J Clin Invest
90:
30–34,
1992.
|
266. |
Koepsell H,
Nicholson WA,
Kriz W and
Hohling HJ.
Measurements of exponential gradients of sodium and chlorine in the rat kidney medulla using the electron microprobe.
Pflugers Arch
350:
167–184,
1974.
|
267. |
Wang W and
Michel CC.
Effects of anastomoses on solute tran‐scapillary exchange in countercurrent systems.
Microcirculation
4:
381–390,
1997.
|
268. |
Wang W,
Parker KH and
Michel CC.
Theoretical studies of steady‐state transcapillary exchange in countercurrent systems.
Microcirculation
3:
301–311,
1996.
|
269. |
Chou CL and
Knepper MA.
In vitro perfusion of chinchilla thin limb segments: segmentation and osmotic water permeability.
Am J Physiol
263:
F417–F426,
1992.
|
270. |
Chou CL,
Nielsen S and
Knepper MA.
Structural‐functional correlation in chinchilla long loop of Henle thin limbs: a novel papillary subsegment.
Am J Physiol
265:
F863–F874,
1993.
|
271. |
Edwards A,
Delong MJ and
Pallone TL.
Interstitial water and solute recovery by inner medullary vasa recta.
Am J Physiol Renal Physiol
278:
F257–F269,
2000.
|
272. |
Bell RD,
Keyl MJ,
Shrader FR,
Jones EW and
Henry LP.
Renal lymphatics: the internal distribution.
Nephron
5:
454–463,
1968.
|
273. |
Kriz W and
Dieterich HJ.
[The lymphatic system of the kidney in some mammals. Light and electron microscopic investigations].
Z Anat Entwicklungsgesch
131:
111–147,
1970.
|
274. |
Carone FA,
Everett BA,
Blondeel NJ and
Stolarczyk J.
Renal localization of albumin and its function in the concentrating mechanism.
Am J Physiol
212:
387–393,
1967.
|
275. |
Lassen NA,
Longley JB and
Lilienfield LS.
Concentration of albumin in renal papilla.
Science
128:
720–721,
1958.
|
276. |
Lilienfield LS,
Maganzini HC and
Bauer MH,
Blood flow in the renal medulla.
Circ Res
9:
614–617,
1961.
|
277. |
Moffat DB.
Extravascular protein in the renal medulla.
Q J Exp Physiol Cogn Med Sci
54:
60–67,
1969.
|
278. |
Pomerantz RM,
Slotkoff LM and
Lilienfield LS.
Histochemical and microanatomical differences between renal cortical and medullary interstitium. In:
Progress in Pyelonephritis,
ed. Kass EH.
Philadelphia: F. A. Davis Co.,
1965,
p. 434.
|
279. |
Slotkoff LM and
Lilienfield LS.
Extravascular renal albumin.
Am J Physiol
212:
400–406,
1967.
|
280. |
Wilde WS and
Vorburger C.
Albumin multiplier in kidney vasa recta analyzed by microspectrophotometry of T‐1824.
Am J Physiol
213:
1233–1243,
1967.
|
281. |
Venkatachalam MA and
Karnovsky MJ.
Extravascular protein in the kidney. An ultrastructural study of its relation to renal peritubular capillary permeability using protein tracers.
Lab Invest
27:
435–444,
1972.
|
282. |
Shimamura T and
Morrison AB.
Vascular permeability of the renal medullary vessels in the mouse and rat.
Am J Pathol
71:
155–163,
1973.
|
283. |
Feng MG,
Li M and
Navar LG.
T‐type calcium channels in the regulation of afferent and efferent arterioles in rats.
Am J Physiol Renal Physiol
286:
F331–F337,
2004.
|
284. |
Hansen PB,
Jensen BL,
Andreasen D and
Skott O.
Differential expression of T‐ and L‐type voltage‐dependent calcium channels in renal resistance vessels.
Circ Res
89:
630–638,
2001.
|
285. |
Perez‐Reyes E.
Molecular physiology of low‐voltage‐activated t‐type calcium channels.
Physiol Rev
83:
117–161,
2003.
|
286. |
Gordienko DV,
Clausen C and
Goligorsky MS.
Ionic currents and endothelin signaling in smooth muscle cells from rat renal resistance arteries.
Am J Physiol
266:
F325–F341,
1994.
|
287. |
Hall DA,
Carmines PK and
Sansom SC.
Dihydropyridine‐sensitive Ca(2+) channels in human glomerular mesangial cells.
AJP‐Renal Physiol
278:
F97–F103,
2000,
|
288. |
Carmines PK and
Navar LG.
Disparate effects of Ca channel blockade on afferent and efferent arteriolar responses to ANG II.
Am J Physiol Renal Physiol
256:
F1015–F1020,
1989.
|
289. |
Loutzenhiser R,
Hayashi K and
Epstein M.
Divergent effects of KCl‐induced depolarization on afferent and efferent arterioles.
Am J Physiol Renal Physiol
257:
F561–F564,
1989.
|
290. |
Mitchell KD and
Navar LG.
Tubuloglomerular feedback responses during peritubular infusions of calcium channel blockers.
Am J Physiol Renal Physiol
258:
F537–F544,
1990.
|
291. |
Navar LG,
Champion WJ and
Thomas CE,
Effects of calcium channel blockade on renal vascular resistance responses to changes in perfusion pressure and angiotensin‐converting enzyme inhibition in dogs.
Circ Res
58:
874–881,
1986.
|
292. |
Takenaka T,
Harrison‐Bernard LM,
Inscho EW.
Carmines PK and Navar LG, Autoregulation of afferent arteriolar blood flow in jux‐tamedullary nephrons.
Am J Physiol Renal Physiol
267:
F879–F887,
1994.
|
293. |
Carmines PK,
Mitchell KD and
Navar LG.
Effects of calcium antagonists on renal hemodynamics and glomerular function.
Kidney Int 41 (Suppl
36):
S‐43–S‐48,
1992.
|
294. |
Conger JD and
Falk SA,
KC1 and angiotensin responses in isolated rat renal arterioles: effects of diltiazem and low‐calcium medium.
Am J Physiol Renal Physiol
264:
F134–F140,
1993.
|
295. |
Feng MG and
Navar LG.
Angiotensin H‐mediated constriction of afferent and efferent arterioles involves T‐type Ca2+ channel activation.
Am J Nephrol
24:
641–648,
2004.
|
296. |
Loutzenhiser R,
Epstein M and
Horton C.
Inhibition by diltiazem of pressure‐induced afferent vasoconstriction in the isolated perfused rat kidney.
Am J Cardiol
59:
72A–75A,
1987.
|
297. |
Carmines PK,
Fowler BC and
Bell PD.
Segmentally distinct effects of depolarization on intracellular [Ca2+] in renal arterioles.
Am J Physiol Renal Physiol
265:
F677–F685,
1993.
|
298. |
Inscho EW,
Mason MJ,
Schroeder AC,
Deichmann PC,
Stiegler ID and
Imig JD.
Agonist‐induced calcium regulation in freshly isolated renal microvascular smooth muscle cells.
J Am Soc Nephrol
8:
569–579,
1997.
|
299. |
Loutzenhiser R,
Chilton L and
Trottier G.
Membrane potential measurements in renal afferent and efferent arterioles: actions of angiotensin II.
Am J Physiol Renal Physiol
273:
F307–F314,
1997.
|
300. |
Fleming JT,
Parekh N and
Steinhausen M.
Calcium antagonists preferentially dilate preglomerular vessels of hydronephrotic kidney.
Am J Physiol
253:
F1157–F1163,
1987.
|
301. |
Helou CM and
Marchetti J.
Morphological heterogeneity of renal glomerular arterioles and distinct [Ca2+]i responses to ANG II.
Am J Physiol
273:
F84–F96,
1997.
|
302. |
Inscho EW,
Schroeder AC,
Deichmann PC and
Imig JD.
ATP‐mediated Ca2+ signaling in preglomerular smooth muscle cells.
Am J Physiol
276:
F450–F456,
1999.
|
303. |
Iversen BM and
Arendshorst WJ.
Exaggerated Ca+ signaling in preglomerular arteriolar smooth muscle cells of genetically hypertensive rats.
Am J Physiol Renal Physiol
276:
F260–F270,
1999.
|
304. |
Loutzenhiser K and
Loutzenhiser R.
Angiotensin II‐induced Ca(2+) influx in renal afferent and efferent arterioles: differing roles of voltage‐gated and store‐operated Ca(2+) entry.
Circ Res
87:
551–557,
2000.
|
305. |
Navar LG,
Inscho EW,
Imig JD and
Mitchell KD.
Heterogeneous activation mechanisms in the renal microvasculature.
Kidney Int Suppl
67:
S17–S21,
1998.
|
306. |
Salomonsson M and
Arendshorst WJ.
Calcium recruitment in renal vasculature: NE effects on blood flow and cytosolic calcium concentration.
Am J Physiol
276:
F700–F710,
1999.
|
307. |
Salomonsson M and
Arendshorst WJ.
Norepinephrine‐induced calcium signaling pathways in afferent arterioles of genetically hypertensive rats.
Am J Physiol Renal Physiol
281:
F264–F272,
2001.
|
308. |
Carmines PK,
Ohishi K and
Ikenaga H.
Functional impairment of renal afferent arteriolar voltage‐gated calcium channels in rats with diabetes mellitus.
J Clin Invest
98:
2564–2571,
1996.
|
309. |
Griffin KA,
Picken MM and
Bidani AK.
Deleterious effects of calcium channel blockade on pressure transmission and glomerular injury in rat remnant kidneys.
J Clin Invest
96:
793–800,
1995.
|
310. |
Baer PG and
Navar LG.
Renal vasodilation and uncoupling of blood flow and filtration rate autoregulation.
Kidney Int
4:
12–21,
1973.
|
311. |
Majid DSA and
Navar LG.
Suppression of blood flow autoregulation plateau during nitric oxide blockade in canine kidney.
Am J Physiol Renal Physiol
262:
F40–F46,
1992.
|
312. |
Rosivall L,
Youngblood P and
Navar LG.
Renal autoregulatory efficiency during angiotensin‐converting enzyme inhibition in dogs on a low sodium diet.
Renal Physiol
9:
18–28,
1986.
|
313. |
Feng MG and
Navar LG.
Nitric oxide synthase inhibition activates L‐ and T‐type Ca2+ channels in afferent and efferent arterioles.
Am J Physiol Renal Physiol
290:
F873–F879,
2006.
|
314. |
Hansen PB,
Jensen BL,
Andreasen D,
Friis UG and
Skott O.
Vascular smooth muscle cells express the alpha(1A) subunit of a P‐/Q‐type voltage‐dependent Ca(2+)Channel, and It is functionally important in renal afferent arterioles.
Circ Res
87:
896–902,
2000.
|
315. |
Ozawa Y,
Hayashi K,
Nagahama T,
Fujiwara K and
Saruta T.
Effect of T‐type selective calcium antagonist on renal microcirculation: studies in the isolated perfused hydronephrotic kidney.
Hypertension
38:
343–347,
2001.
|
316. |
Salomonsson M,
Sorensen CM,
Arendshorst WJ,
Steendahl J and
Holstein‐Rathlou NH.
Calcium handling in afferent arterioles.
Acta Physiol Scand
181:
421–429,
2004.
|
317. |
Hayashi K,
Ozawa Y,
Wakino S,
Kanda T,
Homma K,
Takamatsu I,
Tatematsu S and
Saruta T.
Cellular mechanism for mibefradil‐induced vasodilation of renal microcirculation: studies in the isolated perfused hydronephrotic kidney.
J Cardiovasc Pharmacol
42:
697–702,
2003.
|
318. |
Hayashi K,
Ozawa Y,
Fujiwara K,
Wakino S,
Kumagai H and
Saruta T.
Role of actions of calcium antagonists on efferent arterioles—with special references to glomerular hypertension.
Am J Nephrol
23:
229–244,
2003.
|
319. |
Imig JD,
Cook AK and
Inscho EW.
Postglomerular vasoconstriction to angiotensin II and norepinephrine depends on intracellular calcium release.
Gen Pharmac
34:
409–415,
2000.
|
320. |
Inscho EW,
Imig JD and
Cook AK.
Afferent and efferent arteriolar vasoconstriction to angiotensin II and norepinephrine involves release of Ca2+ from intracellular stores.
Hypertension
29
(part 2):
222–227,
1997.
|
321. |
Jentsch TJ.
Chloride transport in the kidney: lessons from human disease and knockout mice.
J Am Soc Nephrol
16:
1549–1561,
2005.
|
322. |
Lsshiki T,
Amodeo C,
Messerli FH,
Pegram BL and
Frohlich ED.
Diltiazem maintains renal vasodilation without hyperfiltration in hypertension: studies in essential hypertension man and the spontaneously hypertensive rat.
Cardiovasc Drugs Ther
1:
359–366,
1987.
|
323. |
Isshiki T,
Pegram BL and
Frohlich ED.
Hemodynamic comparison of diltiazem and TA‐3090 in spontaneously hypertensive and normal Wistar‐Kyoto rats.
Am J Cardiol
62:
79G–84G,
1988.
|
324. |
Nakamura Y,
Ono H and
Frohlich ED.
Differential effects of T‐ and L‐type calcium antagonists on glomerular dynamics in spontaneously hypertensive rats.
Hypertension
34:
273–278,
1999.
|
325. |
Goligorsky MS,
Colflesh D,
Gordienko D and
Moore LC.
Branching points of renal resistance arteries are enriched in L‐type calcium channels and initiate vasoconstriction.
Am J Physiol Renal Physiol
268:
F251–F257,
1995.
|
326. |
Rhinehart K,
Zhang Z and
Pallone TL.
Ca(2+) signaling and membrane potential in descending vasa recta pericytes and endothelia.
Am J Physiol Renal Physiol
283:
F852–F860,
2002.
|
327. |
Zhang Z,
Rhinehart K and
Pallone TL.
Membrane potential controls calcium entry into descending vasa recta pericytes.
Am J Physiol Regul Integr Comp Physiol
283:
R949–R957,
2002.
|
328. |
Lee‐Kwon W,
Goo JH,
Zhang Z,
Silldorff EP and
Pallone TL.
Vasa recta voltage gated Na+ channel NaV1.3 is regulated by calmodulin.
Am J Physiol Renal Physiol,
2006.
|
329. |
Zhang Z,
Cao C,
Lee‐Kwon W and
Pallone TL.
Descending vasa recta pericytes express voltage operated Na+ conductance in the rat.
J Physiol
567:
445–457,
2005.
|
330. |
Parekh AB and
Putney JW, Jr.
Store‐operated calcium channels.
Physiol Rev
85:
757–810,
2005.
|
331. |
Clapham DE.
TRP channels as cellular sensors.
Nature
426:
517–524,
2003.
|
332. |
Facemire CS,
Mohler PJ and
Arendshorst WJ.
Expression and relative abundance of short transient receptor potential channels in the rat renal microcirculation.
Am J Physiol Renal Physiol
286:
F546–F551,
2004.
|
333. |
Ma R,
Du J,
Sours S and
Ding M.
Store‐operated Ca2+ channel in renal microcirculation and glomeruli.
Exp Biol Med (Maywood)
231:
145–153,
2006.
|
334. |
Takenaka T,
Suzuki H,
Okada H,
Inoue T,
Kanno Y,
Ozawa Y,
Hayashi K and
Saruta T.
Transient receptor potential channels in rat renal microcirculation: actions of angiotensin II.
Kidney Int
62:
558–565,
2002.
|
335. |
Fellner SK and
Arendshorst WJ.
Capacitative calcium entry in smooth muscle cells from preglomerular vessels.
Am J Physiol
277:
F533–F542,
1999.
|
336. |
Fellner SK and
Arendshorst WJ.
Store‐operated Ca2+ entry is exaggerated in fresh preglomerular vascular smooth muscle cells of SHR.
Kidney lnt
61:
2132–2141,
2002.
|
337. |
Fellner SK and
Arendshorst WJ.
Ryanodine receptor and capacitative Ca2+ entry in fresh preglomerular vascular smooth muscle cells.
Kidney Int
58:
1686–1694,
2000.
|
338. |
Fellner SK and
Arendshorst WJ.
Voltage‐gated Ca2+ entry and ryanodine receptor Ca2+ ‐induced Ca2+ release in preglomerular arterioles.
Am J Physiol Renal Physiol
292:
F1568–F1572,
2007.
|
339. |
Wilson SM,
Mason HS,
Smith GD,
Nicholson N,
Johnston L,
Janiak R and
Hume JR.
Comparative capacitative calcium entry mechanisms in canine pulmonary and renal arterial smooth muscle cells.
J Physiol
543:
917–931,
2002.
|
340. |
Feng JJ and
Arendshorst WJ.
Calcium signaling mechanisms in renal vascular responses to vasopressin in genetic hypertension.
Hypertension
30:
1223–1231,
1997.
|
341. |
Large WA.
Receptor‐operated Ca2(+)‐permeable nonselective cation channels in vascular smooth muscle: a physiologic perspective.
J Cardiovasc Electrophysiol
13:
493–501,
2002.
|
342. |
Ruegg UT,
Wallnofer A,
Weir S and
Cauvin C.
Receptor‐operated calcium‐permeable channels in vascular smooth muscle.
J Cardiol Pharmacol
14:
S49–S58,
1989.
|
343. |
Facemire CS and
Arendshorst WJ.
Calmodulin mediates norepine‐phrine‐induced receptor‐operated calcium entry in preglomerular resistance arteries.
Am J Physiol Renal Physiol
289:
F127–F136,
2005.
|
344. |
Albert AP and
Large WA.
Store‐operated Ca2+‐permeable nonselective cation channels in smooth muscle cells.
Cell Calcium
33:
345–356,
2003.
|
345. |
Beech DJ,
Muraki K and
Flemming R.
Non‐selective cationtc channels of smooth muscle and the mammalian homologues of Drosophila TRP.
J Physiol
559:
685–706,
2004.
|
346. |
Du J,
Sours‐Brothers S,
Coleman R,
Ding M,
Graham S,
Kong DH and
Ma R.
Canonical transient receptor potential 1 channel is involved in contractile function of glomerular mesangial cells.
J Am Soc Nephrol
18:
1437–1445,
2007.
|
347. |
Goel M,
Sinkins WG,
Zuo CD,
Estacion M and
Schilling WP.
Identification and localization of TRPC channels in the rat kidney.
Am J Physiol Renal Physiol
290:
F1241–F1252,
2006.
|
348. |
Fellner SK and
Arendshorst WJ.
Angiotensin II‐stimulted calcium entry mechanism in afferent arterioles: role of transient receptor potential canonical channels and reverse Na+/Ca2+ exchange.
Am J Physiol Renal Physiol,
2007.
|
349. |
Spassova MA,
Hewavitharana T,
Xu W,
Soboloff J and
Gill DL.
A common mechanism underlies stretch activation and receptor activation of TRPC6 channels.
Proc Natl Acad Sci USA
103:
16586–16591,
2006.
|
350. |
Welsh DG,
Morielli AD,
Nelson MT and
Brayden JE.
Transient receptor potential channels regulate myogenic tone of resistance arteries.
Circ Res
90:
248–250,
2002.
|
351. |
Ma R,
Smith S,
Child A,
Carmines PK and
Sansom SC.
Store‐operated Ca2+ channels in human glomerular mesangial cells.
Am J Physiol Renal Physiol
278:
F954–F961,
2000.
|
352. |
Li WP,
Tsiokas L,
Sansom SC and
Ma R.
Epidermal growth factor activates store‐operated Ca2+ channels through an inositol 1,4,5‐trisphosphate‐independent pathway in human glomerular mesangial cells.
J Biol Chem
279:
4570–4577,
2004.
|
353. |
Ma R,
Pluznick J,
Kudlacek P and
Sansom SC.
Protein kinase C activates store‐operated Ca(2+) channels in human glomerular mesangial cells.
J Biol Chem
276:
25759–25765,
2001.
|
354. |
Ma R and
Sansom SC.
Epidermal growth factor activates store‐operated calcium channels in human glomerular mesangial cells.
J Am Soc Nephrol
12:
47–53,
2001.
|
355. |
Ma R,
Kudlacek PE and
Sansom SC.
Protein kinase Calpha participates in activation of store‐operated Ca2+ channels in human glomerular mesangial cells.
Am J Physiol Cell Physiol
283:
C1390–C1398,
2002.
|
356. |
Putney JW, Jr.
Capacitative calcium entry: sensing the calcium stores.
J Cell Biol
169:
381–382,
2005.
|
357. |
Roos J,
DiGregorio PJ,
Yeromin AV,
Ohlsen K,
Lioudyno M,
Zhang S,
Safrina O,
Kozak JA,
Wagner SL,
Cahalan MD,
Velicelebi G and
Stauderman KA.
STIM1. an essential and conserved component of store‐operated Ca2+ channel function.
J Cell Biol
169:
435–445,
2005.
|
358. |
Wang X,
Pluznick JL,
Wei P,
Padanilam BJ and
Sansom SC.
TRPC4 forms store‐operated Ca2+ channels in mouse mesangial cells.
Am J Physiol Cell Physiol
287:
C357–C364,
2004.
|
359. |
Lee‐Kwon W,
Wade JB,
Zhang Z,
Pallone TL and
Weinman E.
Expression of TRPC 4 channel protein that interacts with NHERF‐2 in rat Descending Vasa Recta.
Am J Physiol Cell Physiol,
2005.
|
360. |
Putney JW, Jr.
Trebak M,
Vazquez G,
Wedel B and
Bird GS.
Signalling mechanisms for TRPC3 channels.
Novartis Found Symp
258:
123–133,
2004.
|
361. |
Freichel M,
Vennekens R,
Olausson J,
Hoffmann M,
Muller C,
Stolz S,
Scheunemann J,
Weissgerber P and
Flockerzi V.
Functional role of TRPC proteins in vivo: lessons from TRPC‐deficient mouse models.
Biochem Biophys Res Commun
322:
1352–1358,
2004.
|
362. |
Dietrich A,
Mederos YS,
Gollasch M,
Gross V,
Storch U,
Dubrovska G,
Obst M,
Yildirim E,
Salanova B,
Kalwa H,
Essin K,
Pinkenburg O,
Luft FC,
Gudermann T and
Birnbaumer L.
Increased vascular smooth muscle contractility in TRPC6 −/− mice.
Mol Cell Biol
25:
6980–6989,
2005.
|
363. |
Kitamura K and
Yamazaki J.
Chloride channels and their functional roles in smooth muscle tone in the vasculature.
Jpn J Pharmacol
85:
351–357,
2001.
|
364. |
Large WA and
Wang Q.
Characteristics and physiological role of the Ca(2+)‐activated Cl− conductance in smooth muscle.
Am J Physiol
271:
C435–C454,
1996.
|
365. |
Carmines PK.
Segment‐specific effect of chloride channel blockade on rat renal arteriolar contractile responses to angiotensin II.
Am J Hypertens
8:
90–94,
1995.
|
366. |
Fuller AJ,
Hauschild BC,
Gonzalez‐Villalobos R,
Awayda MS,
Imig JD,
Inscho EW and
Navar LG.
Calcium and Chloride Channel Activation by Angiotensin II‐AT1 Receptors in Preglomerular Vascular Smooth Muscle Cells.
Am J Physiol Renal Physiol
289:
F760–F767,
2005.
|
367. |
Hansen PB,
Jensen BL and
Skott O.
Chloride regulates afferent arteriolar contraction in response to depolarization.
Hypertension
32:
1066–1070,
1998.
|
368. |
Jensen BL,
Ellekvist P and
Skott O.
Chloride is essential for contraction of afferent arterioles after agonists and potassium.
Am J Physiol Renal Physiol
272:
F389–F396,
1997.
|
369. |
Scholz H and
Kurtz A.
Differential regulation of cytosolic calcium between afferent arteriolar smooth muscle cells from mouse kidney.
Pflugers Arch‐Eur J Physiol
431:
46–51,
1995.
|
370. |
Takenaka T,
Kanno Y,
Kitamura Y,
Hayashi K,
Suzuki H and
Saruta T.
Role of chloride channels in afferent arteriolar constriction.
Kidney Int
50:
864–872,
1996.
|
371. |
Steendahl J,
Holstein‐Rathlou NH,
Sorensen CM and
Salomonsson M.
Effects of chloride channel blockers on rat renal vascular responses to angiotensin II and norepinephrine.
Am J Physiol Renal Physiol
286:
F323–F330,
2004.
|
372. |
Jensen BL and
Skott O.
Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles.
Am J Physiol Renal Physiol
270:
F718–F727,
1996.
|
373. |
Pallone TL and
Huang JM.
Control of descending vasa recta pericyte membrane potential by angiotensin II.
Am J Physiol Renal Physiol
282:
F1064–F1074,
2002.
|
374. |
Pallone TL,
Zhang Z and
Rhinehart K.
Physiology of the renal medullary microcirculation.
Am J Physiol Renal Physiol
284:
F253–F266,
2003.
|
375. |
Zhang Z,
Huang JM,
Turner MR,
Rhinehart KL and
Pallone TL.
Role of chloride in constriction of descending vasa recta by angiotensin II.
Am J Physiol Regul Integr Comp Physiol
280:
R1878–R1886,
2001.
|
376. |
Gelband CH and
Hume JR.
[Ca2+]i inhibition of K+ channels in canine renal artery. Novel mechanism for agonist‐induced membrane depolarization.
Circ Res
77:
121–130,
1995.
|
377. |
Harder DR,
Gilbert R and
Lombard JH.
Vascular muscle cell deop‐Iarization and activation in renal arteries on elevation of transmural pressure.
Am J Physiol
253:
F778–F781,
1987.
|
378. |
Buhrle CP,
Nobiling R,
Mannek E,
Schneider D,
Hackenthal E and
Taugner R.
The afferent glomerular arteriole: immunocytochemical and electrophysiological investigations.
J Cardiovasc Pharmacol
6
(Suppl 2):
S383–S393,
1984.
|
379. |
Buhrle CP,
Nobiling R and
Taugner R.
Intracellular recordings from renin‐positive cells of the afferent glomerular arteriole.
Am J Physiol
249:
F272–F281,
1985.
|
380. |
Buhrle CP,
Scholz H,
Hackenthal E,
Nobiling R and
Taugner R.
Epithelioid cells: membrane potential changes induced by substances influencing renin secretion.
Mol Cell Endocrinol
45:
37–47,
1986.
|
381. |
Kurtz A and
Penner R.
Angiotensin II induces oscillations of intracellular calcium and blocks anomalous inward rectifying potassium current in mouse renal juxtaglomerular cells.
Proc Natl Acad Sci USA
86:
3423–3427,
1989.
|
382. |
Nobiling R,
Buhrle CP,
Hackenthal E,
Helmchen U,
Steinhausen M,
Whalley A and
Taugner R.
Ultrastructure, renin status, contractile and electrophysiological properties of the afferent glomerular arteriole in the rat hydronephrotic kidney.
Virchows Archiv A Pathol Anat
410:
31–42,
1986.
|
383. |
Fishman MC.
Membrane potential of juxtaglomerular cells.
Nature
260:
542–544,
1976.
|
384. |
Friis UG,
Jorgensen F,
Andreasen D,
Jensen BL and
Skott O.
Molecular and functional identification of cyclic AMP‐sensitive BKCa potassium channels (ZERO variant) and L‐type voltage‐dependent calcium channels in single rat juxtaglomerular cells.
Circ Res
93:
213–220,
2003.
|
385. |
Leichtle A,
Rauch U,
Albinus M,
Benohr R
Kalbacher H,
Mack AF,
Veh RW,
Quast U and
Russ U.
Electrophysiological and molecular characterization of the inward rectifier in juxtaglomerular cells from rat kidney.
J Physiol
560:
365–376,
2004.
|
386. |
Russ U,
Rauch U and
Quast U.
Pharmacological evidence for a KATP channel in renin‐secreting cells from rat kidney.
J Physiol
517
(Pt 3):
781–790,
1999.
|
387. |
Nelson MT and
Quayle JM.
Physiological roles and properties of potassium channels in arterial smooth muscle.
Am J Physiol
268:
C799–C822,
1995.
|
388. |
Betts LC and
Kozlowski RZ.
Electrophysiological effects of endothelin‐1 and their relationship to contraction in rat renal arterial smooth muscle.
Br J Pharmacol
130:
787–796,
2000.
|
389. |
Gelband CH and
Hume JR.
Ionic currents in single smooth muscle cells of the canine renal artery.
Circ Res
71:
745–758,
1992.
|
390. |
Gelband CH,
Ishikawa T,
Post JM,
Keef KD and
Hume JR.
Intracellular divalent cations block smooth muscle K+ channels.
Circ Res
73:
24–34,
1993.
|
391. |
Gebremedhin D,
Kaldunski M,
Jacobs ER,
Harder DR and
Roman RJ.
Coexistence of two types of Ca2+‐activated K+ channels in rat renal arterioles.
Am J Physiol Renal Physiol
270:
F69–F81,
1996.
|
392. |
Li L,
Wu J and
Jiang C.
Differential expression of Kir6.l and SUR2B mRNAs in the vasculature of various tissues in rats.
J Membr Biol
196:
61–69,
2003.
|
393. |
Maier KG and
Roman RJ.
Cytochrome P450 metabolites of arachidonic acid in the control of renal function.
Curr Opin Nephrol Hypertens
10:
81–87,
2001.
|
394. |
Sun X,
Cao K,
Yang G,
Huang Y,
Hanna ST and
Wang R.
Selective expression of Kir6.1 protein in different vascular and non‐vascular tissues.
Biochem Pharmacol
67:
147–156,
2004.
|
395. |
Zou A‐P,
Fleming JT,
Falck JR,
Jacobs ER,
Gebremedhin D,
Harder DR and
Roman RJ.
20‐HETE is an endogenous inhibitor of the large‐conductance Ca2+‐activated K+ channel in renal arterioles.
Am J Physiol Regul Inlegr Comp Physiol
270:
R228–R237,
1996.
|
396. |
Zou A‐P,
Fleming JT,
Falck JR,
Jacobs ER,
Gebremedhin D,
Harder DR and
Roman RJ.
Stereospecific effects of epoxyeicosa‐trienoic acid on renal vascular tone and K+ channel activity.
Am J Physiol Renal Physiol
270:
F822–F832,
1996.
|
397. |
Alonso‐Galicia M,
Sun CW,
Falck JR,
Harder DR and
Roman RJ.
Contribution of 20‐HETE to the vasodilator actions of nitric oxide in renal arteries.
Am J Physiol
275:
F370–F378,
1998.
|
398. |
Fergus DJ,
Martens JR and
England SK.
Kv channel subunits that contribute to voltage‐gated K+ current in renal vascular smooth muscle.
Pflugers Arch
445:
697–704,
2003.
|
399. |
Kaide JI,
Zhang F,
Wei Y,
Jiang H,
Yu C,
Wang WH,
Balazy M,
Abraham NG and
Nasjletti A.
Carbon monoxide of vascular origin attenuates the sensitivity of renal arterial vessels to vasoconstrictors.
J Clin Invest
107:
1163–1171,
2001.
|
400. |
Ma YH,
Gebremedhin D,
Schwartzman ML,
Falck JR,
Clark JE,
Masters BS,
Harder DR and
Roman RJ.
20‐Hydroxyeicosatetraenoic acid is an endogenous vasoconstrictor of canine renal arcuate arteries.
Circ Res
72:
126–136,
1993.
|
401. |
Prior HM,
Yates MS and
Beech DJ.
Role of K+ channels in A2A adenosine receptor‐mediated dilation of the pressurized renal arcuate artery.
Br J Pharmacol
126:
494–500,
1999.
|
402. |
Prior HM,
Yates MS and
Beech DJ.
Functions of large conductance Ca2+‐activated (BKCa), delayed rectifier (KV) and background K+ channels in the control of membrane potential in rabbit renal arcuate artery.
J Physiol
511
(Pt 1):
159–169,
1998.
|
403. |
Martens JR and
Gelband CH.
Alterations in rat interlobar artery membrane potential and K+ channels in genetic and nongenetic hypertension.
Circ Res
79:
295–301,
1996.
|
404. |
Martens JR and
Gelband CH.
Ion channels in vascular smooth muscle: alterations in essential hypertension.
Proc Soc Exp Biol Med
218:
192–203,
1998.
|
405. |
Sun CW,
Alonso‐Galicia M,
Taheri MR,
Falck JR,
Harder DR and
Roman RJ.
Nitric oxide‐20‐hydroxygeicosatetraenoic acid interaction in the regulation of K+ channel activity and vascular tone in renal arterioles.
Circ Res
83:
1069–1079,
1998.
|
406. |
Sun CW,
Falck JR,
Harder DR and
Roman RJ.
Role of tyrosine kinase and PKC in the vasoconstrictor response to 20‐HETE in renal arterioles.
Hypertension
33
(part II):
414–418,
1999.
|
407. |
Chilton L and
Loutzenhiser R.
Functional evidence for an inward rectifier potassium current in rat renal afferent arterioles.
Circ Res
88:
152–158,
2001.
|
408. |
Eckman DM and
Nelson MT.
Potassium ions as vasodilators: role of inward rectifier potassium channels.
Circ Res
88:
132–133,
2001.
|
409. |
Fallet RW,
Bast JP,
Fujiwara K,
Ishii N,
Sansom SC and
Carmines PK.
Influence of Ca2+‐activated K+ channels on rat renal arteriolar responses to deolarizing agonists.
Am J Physiol Renal Physiol
280:
F583–F591,
2001.
|
410. |
Kirton CA and
Loutzenhiser R.
Alterations in basal protein kinase C activity modulate renal afferent arteriolar myogenic reactivity.
Am J Physiol
275:
H467–H475,
1998.
|
411. |
Loutzenhiser RD and
Parker MJ.
Hypoxia inhibits myogenic reactivity of renal afferent arterioles by activating ATP‐sensitive K+ channels.
Circ Res
74:
861–869,
1994.
|
412. |
Metzger F and
Quast U.
Binding of [3H]‐P1075, an opener of ATP‐sensitive K+channels, to rat glomerular preparations.
Naunyn Schmiedebergs Arch Pharmacol
354:
452–459,
1996.
|
413. |
Reslerova M and
Loutzenhiser R.
Divergent mechanisms of ATP‐sensitive K+ channel‐induced vasodilation in renal afferent and efferent arterioles. Evidence of L‐type Ca2+ channel‐dependent and ‐independentactions of pinacidil.
Circ Res
77:
1114–1120,
1995.
|
414. |
Reslerova M and
Loutzenhiser R.
Renal microvascular actions of calcitonin gene‐related peptide.
Am J Physiol Renal Physiol
274:
F1078–F1085,
1998.
|
415. |
Tang L,
Parker M,
Fei Q and
Loutzenhiser R.
Afferent arteriolar adenosine A2a receptors are coupled to KATP in in vitro perfused hydronephrotic rat kidney.
Am J Physiol
277:
F926–F933,
1999.
|
416. |
Wang D,
Borrego‐Conde LJ,
Falck JR,
Sharma KK,
Wilcox CS and
Umans JG.
Contributions of nitric oxide, EDHF, and EETs to endothelium‐dependent relaxation in renal afferent arterioles.
Kidney Int
63:
2187–2193,
2003.
|
417. |
Wang X,
Trottier G and
Loutzenhiser R.
Determinants of renal afferent arteriolar actions of bradykinin: evidence that multiple pathways mediate responses attributed to EDHF.
Am J Physiol Renal Physiol
285:
F540–F549,
2003.
|
418. |
Barber RD,
Woolf AS and
Henderson RM.
Potassium conductances and proliferation in conditionally immortalized renal glomerular mesangial cells from the H‐2Kb‐tsA58 transgenic mouse.
Biochim Biophys Acta
1355:
191–203,
1997.
|
419. |
Cermak R,
Kleta R,
Forssmann WG and
Schlatter E.
Natriuretic peptides increase a K+ conductance in rat mesangial cells.
Pflugers Arch
431:
571–577,
1996.
|
420. |
Kudlacek PE,
Pluznick JL,
Ma R,
Padanilam B and
Sansom SC.
Role of hbetal in activation of human mesangial BK channels by cGMP kinase.
Am J Physiol Renal Physiol
285:
F289–F294,
2003.
|
421. |
Matsunaga H,
Yamashita N,
Miyajima Y,
Okuda T,
Chang H,
Ogata E and
Kurokawa K.
Ion channel activities of cultured rat mesangial cells.
Am J Physiol Renal Physiol
251:
F808–F814,
1991.
|
422. |
Sansom SC,
Ma R,
Carmines PK and
Hall DA.
Regulation of Ca(2+)‐activated K(+) channels by multifunctional Ca(2+)/calmodulin‐dependent protein kinase.
Am J Physiol Renal Physiol
279:
F283–F288,
2000.
|
423. |
Stockand JD and
Sansom SC.
Large Ca(2 +)‐activated K+ channels responsive to angiotensin II in cultured human mesangial cells.
Am J Physiol
267:
C1080–C1086,
1994.
|
424. |
Szamosfalvi B,
Cortes P,
Alviani R,
Asano K,
Riser BL,
Zasuwa G and
Yee J.
Putative subunits of the rat mesangial KATP: a type 2B sulfonylurea receptor and an inwardly rectifying K+ channel.
Kidney Int
61:
1739–1749,
2002.
|
425. |
Sansom SC and
Stockand JD.
Physiological role of large, Ca2+‐activated K+ channels in human glomerular mesangial cells.
Clin Exp Pharmacol Physiol
23:
76–82,
1996.
|
426. |
Sansom SC,
Stockand JD,
Hall D and
Williams B.
Regulation of large calcium‐activated potassium channels by protein phosphatase 2A.
J Biol Chem
272:
9902–9906,
1997.
|
427. |
Stockand JD and
Sansom SC.
Activation by methylene blue of large Ca(2+)‐activated K+ channels.
Biochim Biophys Acta
1285:
123–126,
1996.
|
428. |
Stockand JD and
Sansom SC.
Role of large Ca(2+)‐activated K+ channels in regulation of mesangial contraction by nitroprusside and ANP.
Am J Physiol
270:
C1773–C1779,
1996.
|
429. |
Marchetti J,
Praddaude F,
Rajerison R,
Ader JL and
Alhenc‐Gelas F.
Bradykinin attenuates the [Ca(2+](i) response to angiotensin II of renal juxtamedullary efferent arterioles via an EDHF.
Br J Pharmacol
132:
749–759,
2001.
|
430. |
Cao C,
Goo JH,
Lee‐Kwon W and
Pallone TL.
Vasa recta pericytes express a strong inward rectifier K+ conductance.
Am J Physiol Regul Integr Comp Physiol
290:
R1601–R1607,
2006.
|
431. |
Cao C,
Lee‐Kwon W,
Silldorff EP and
Pallone TL.
KATP channel conductance of descending vasa recta pericytes.
Am J Physiol Renal Physiol
289:
F1235–F1245,
2005.
|
432. |
Quayle JM,
Nelson MT and
Standen NB.
ATP‐sensitive and inwardly rectifying potassium channels in smooth muscle.
Physiol Rev
77:
1165–1232,
1997.
|
433. |
Busse R,
Edwards G,
Feletou M,
Fleming I,
Vanhoutte PM and
Weston AH.
EDHF: bringing the concepts together.
Trends Pharmacol Sci
23:
374–380,
2002.
|
434. |
Fleming I.
Cytochrome P450 epoxygenases as EDHF synthase(s).
Pharmacol Res
49:
525–533,
2004.
|
435. |
Popp R,
Brandes RP,
Ott G,
Busse R and
Fleming I.
Dynamic modulation of interendothelial gap junctional communication by 11, 12‐epoxyeicosatrienoic acid.
Circ Res
90:
800–806,
2002.
|
436. |
Imig JD.
Eicosanoid regulation of the renal vasculature.
Am J Physiol Renal Physiol
279:
F965–F981,
2000.
|
437. |
Imig JD,
Navar LG,
Roman RJ,
Reddy KK and
Falck JR.
Actions of epoxygenase metabolites on the preglomerular vasculature.
J Am Soc Nephrol
7:
2364–2370,
1996.
|
438. |
Lorenz JN,
Schnermann J,
Brosius FC,
Briggs JP and
Furspan PB.
Intracellular ATP can regulate afferent arteriolar tone via ATP‐sensitive K+ channels in the rabbit.
J Clin Invest
90:
733–740,
1992.
|
439. |
Loutzenhiser R.
Inward rectifier currents in pericytes.
Am J Physiol Regul Integr Comp Physiol
290:
R1598–R1600,
2006.
|
440. |
Stockand JD,
Silverman M,
Hall D,
Derr T,
Kubacak B and
Sansom SC.
Arachidonic acid potentiates the feedback response of mesangial BKCa channels to angiotensin II.
Am J Physiol Renal Physiol
214:
F658–F664,
1998.
|
441. |
De Wit C.
Connexins pave the way for vascular communication.
News Physiol Sci
19:
148–153,
2004.
|
442. |
Dhein S.
Peptides acting at gap junctions.
Peptides
23:
1701–1709,
2002.
|
443. |
Figueroa XF,
Isakson BE and
Duling BR.
Connexins: gaps in our knowledge of vascular function.
Physiology (Bethesda)
19:
277–284,
2004.
|
444. |
Haefliger JA,
Nicod P and
Meda P.
Contribution of connexins to the function of the vascular wall.
Cardiovasc Res
62:
345–356,
2004.
|
445. |
Little TL,
Beyer EC and
Duling BR.
Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo.
Am J Physiol
268:
H729–H739,
1995.
|
446. |
De Wit C,
Roos F,
Bolz SS,
Kirchhoff S,
Kruger O,
Willecke K and
Pohl U.
Impaired conduction of vasodilation along arterioles in connexin40‐deficient mice.
Circ Res
86:
649–655,
2000.
|
447. |
De Wit C,
Roos F,
Bolz SS and
Pohl U.
Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion.
Physiol Genomics
13:
169–177,
2003.
|
448. |
Figueroa XF,
Paul DL,
Simon AM,
Goodenough DA,
Day KH,
Damon DN and
Duling BR.
Central role of connexin40 in the propagation of electrically activated vasodilation in mouse cremasteric arterioles in vivo.
Circ Res
92:
793–800,
2003.
|
449. |
Haefliger JA,
Krattinger N,
Martin D,
Pedrazzini T,
Capponi A,
Doring B,
Plum A,
Charollais A,
Willecke K and
Meda P.
Connexin43‐dependent mechanism modulates renin secretion and hypertension.
J Clin Invest
116:
405–413,
2006.
|
450. |
Liao Y,
Day KH,
Damon DN and
Duling BR.
Endothelial cell‐specific knockout of connexin 43 causes hypotension and bradycardia in mice.
Proc Natl Acad Sci USA
98:
9989–9994,
2001.
|
451. |
Earley S,
Resta TC and
Walker BR.
Disruption of smooth muscle gap junctions attenuates myogenic vasoconstriction of mesenteric resistance arteries.
Am J Physiol Heart Circ Physiol
287:
H2677–H2686,
2004.
|
452. |
Arensbak B,
Mikkelsen HB,
Gustafsson F,
Christensen T and
Holstein‐Rathlou NH.
Expression of connexin 37, 40, and 43 mRNA and protein in renal preglomerular arterioles.
Histochem Cell Biol
115:
479–487,
2001.
|
453. |
Hwan SK and
Beyer EC.
Heterogeneous localization of connexin40 in the renal vasculature.
Microvasc Res
59:
140–148,
2000.
|
454. |
Silverstein DM,
Thornhill BA,
Leung JC,
Vehaskari VM,
Craver RD,
Trachtman HA and
Chevalier RL.
Expression of connexins in the normal and obstructed developing kidney.
Pediatr Nephrol
18:
216–224,
2003.
|
455. |
Zhang J and
Hill CE.
Differential connexin expression in preglomerular and postglomerular vasculature: accentuation during diabetes.
Kidney Int
68:
1171–1185,
2005.
|
456. |
Haefliger J‐A,
Demotz S,
Braissant O,
Suter E,
Waeber B,
Nicod P and
Meda P.
Connexins 40 and 43 are differentially regulated within the kdineys of rats with renovascular hypertension.
Kidney Int
60:
190–201,
2001.
|
457. |
Barajas L,
Liu L and
Tucker M.
Localization of connexin43 in rat kidney.
Kidney Int
46:
621–626,
1994.
|
458. |
Guo R,
Liu L and
Barajas L.
RT‐PCR study of the distribution of connexin 43 mRNA in the glomerulus and renal tubular segments.
Am J Physiol
275:
R439–R447,
1998.
|
459. |
Hillis GS,
Duthie LA,
Mlynski R,
McKay NG,
Mistry S,
MacLeod AM,
Simpson JG and
Haites NE.
The expression of connexin 43 in human kidney and cultured renal cells.
Nephron
75:
458–463,
1997.
|
460. |
Zhang JH,
Kawashima S,
Yokoyama M,
Huang P and
Hill CE.
Increased eNOS accounts for changes in connexin expression in renal arterioles during diabetes.
Anal Rec A Discov Mol Cell Evol Biol
288:
1000–1008,
2006.
|
461. |
De Vriese AS,
Van d V and
Lameire NH.
Effects of connexin‐mimetic peptides on nitric oxide synthase‐ and cyclooxygenase‐independent renal vasodilation.
Kidney Int
61:
177–185,
2002.
|
462. |
Karagiannis J,
Rand M and
Li CG.
Role of gap junctions in endothelium‐derived hyperpolarizing factor‐mediated vasodilatation in rat renal artery.
Acta Pharmacol Sin
25:
1031–1037,
2004.
|
463. |
Udosen IT,
Jiang H,
Hercule HC and
Oyekan AO.
Nitric oxide‐epoxygenase interactions and arachidonate‐induced dilation of rat renal microvessels.
Am J Physiol Heart Circ Physiol
285:
H2054–H2063,
2003.
|
464. |
Salomonsson M,
Gustafsson F,
Andreasen D,
Jensen BL and
Holstein‐Rathlou NH.
Local electric stimulation causes conducted calcium response in rat interlobular arteries.
Am J Physiol Renal Physiol
283:
F473–F480,
2002.
|
465. |
Zhang Q,
Cao C,
Mangano M,
Zhang Z,
Silldorff EP,
Lee‐Kwon W,
Payne K and
Pallone TL.
Descending vasa recta endothelium is an electrical syncytium.
Am J Physiol Regul Integr Comp Physiol,
2006.
|
466. |
Kurtz L,
Schweda F,
De Wit C,
Kriz W,
Witzgall R,
Warth R,
Sauter A,
Kurtz A and
Wagner C.
Lack of connexin 40 causes displacement of renin‐producing cells from afferent arterioles to the extraglomerular mesangium.
J Am Soc Nephrol
18:
1103–1111,
2007.
|
467. |
Cupples WA and
Braam B.
Assessment of renal autoregulation.
Am J Physiol Renal Physiol
292:
F1105–F1123,
2007.
|
468. |
Holstein‐Rathlou NH and
Marsh DJ.
Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics.
Physiol Rev
74:
637–681,
1994.
|
469. |
Just A.
Mechanisms of renal blood flow autoregulation: dynamics and contributions.
Am J Physiol Regul Integr Comp Physiol
292:
R1–R17,
2007.
|
470. |
Loutzenhiser R,
Bidani A and
Chilton L.
Renal myogenic response: kinetic attributes and physiological role.
Circ Res
90:
1316–1324,
2002.
|
471. |
Loutzenhiser R,
Bidani AK and
Wang X.
Systolic pressure and the myogenic response of the renal afferent arteriole.
Acta Physiol Stand
181:
407–413,
2004.
|
472. |
Navar LG.
Renal autoregulation: perspectives from whole kidney and single nephron studies.
Am J Physiol Renal Physiol
234:
F357–F370,
1978.
|
473. |
Navar LG.
Integrating multiple paracrine regulators of renal microvascular dynamics.
Am J Physiol Renal Physiol
274:
F433–F444,
1998.
|
474. |
Corradi A and
Arendshorst WJ.
Rat renal hemodynamics during venous compression: roles of nerves and prostaglandins.
Am J Physiol
248:
F810–F820,
1985.
|
475. |
Daniels FH,
Arendshorst WJ and
Roberds RG.
Tubuloglomerular feedback and autoregulation in spontaneously hypertensive rats.
Am J Physiol Renal Physiol
258:
F1479–F1489,
1990.
|
476. |
Navar LG,
Bell PD and
Burke TJ.
Role of a macula densa feedback mechanism as a mediator of renal autoregulation.
Kidney Int
22
(Suppl 12):
S157–S164,
1982.
|
477. |
Just A and
Arendshorst WJ.
Dynamics and contribution of mechanisms mediating renal blood flow autoregulation.
Am J Physiol Regul Integr Comp Physiol
285:
R619–R631,
2003.
|
478. |
Walker M, III,
Harrison‐Bernard LM,
Cook AK and
Navar LG.
Dynamic interaction between myogenic and TGF mechanisms in afferent arteriolar blood flow autoregulation.
Am J Physiol Renal Physiol
279:
F858–F865,
2000.
|
479. |
Cupples WA and
Loutzenhiser RD.
Dynamic autoregulation in the in vitro perfused hydronephrotic rat kidney.
Am J Physiol Renal Physiol
275:
F126–F130,
1998.
|
480. |
Carmines PK,
Inscho EW and
Gensure RC.
Arterial pressure effects on preglomerular microvasculature of juxtamedullary nephrons.
Am J Physiol Renal Physiol
258:
F94–F102,
1990.
|
481. |
Casellas D,
Carmines PK and
Navar LG.
Microvascular reactivity of in vitro blood perfused juxtamedullary nephrons from rats.
Kidney Int
28:
752–759,
1985.
|
482. |
Casellas D and
Navar LG.
In vitro perfusion of juxtamedullary nephrons in rats.
Am J Physiol Renal Physiol
246:
F349–F358,
1984.
|
483. |
Bidani AK,
Hacioglu R,
Abu Amarah I,
Williamson GA,
Loutzenhiser R and
Griffin KA.
“Step” vs. “dynamic” autoregulation: implications for susceptibility to hypertensive injury.
Am J Physiol Renal Physiol
285:
F113–F120,
2003.
|
484. |
Roman RJ and
Harder DR.
Cellular and ionic signal transduction mechanisms for the mechanical activation of renal arterial vascular smooth muscle.
J Am Soc Nephrol
4:
986–996,
1993.
|
485. |
Hill MA,
Falcone JC and
Meininger GA.
Evidence for protein kinase C involvement in arteriolar myogenic reactivity.
Am J Physiol
259:
H1586–H1594,
1990.
|
486. |
Just A,
Olson AJ,
Falck JR and
Arendshorst WJ.
NO and NO‐independent mechanisms mediate ETB receptor buffering of ET‐1‐induced renal vasoconstriction in the rat.
Am J Physiol Regul Integr Comp Physiol
288:
R1168–R1177,
2005.
|
487. |
Just A.
Nitric oxide and renal autoregulation.
Kidney Blood Press Res
20:
201–204,
1997.
|
488. |
Just A,
Ehmke H,
Wittmann U and
Kirchheim HR.
Tonic and phasic influences of nitric oxide on renal blood flow autoregulation in conscious dogs.
Am J Physiol Renal Physiol
276:
F442–F449,
1999.
|
489. |
Harrison‐Bernard LM and
Navar LG.
Renal cortical and medullary microvascular blood flow autoregulation in rat.
Kidney Int
50
(suppl 57):
S‐23–S‐29,
1996.
|
490. |
Bell TD,
DiBona GF,
Wang Y and
Brands MW.
Mechanisms for renal blood flow control early in diabetes as revealed by chronic flow measurement and transfer function analysis.
J Am Soc Nephrol
17:
2184–2192,
2006.
|
491. |
Just A,
Ehmke H,
Toktomambetova L and
Kirchheim HR.
Dynamic characteristics and underlying mechanisms of renal blood flow autoregulation in the conscious dog.
Am J Physiol Renal Physiol
280:
F1062–F1071,
2001.
|
492. |
Babij P and
Periasamy M.
Myosin heavy chain isoform diversity in smooth muscle is produced by differential RNA processing.
J Mol Biol
210:
673–679,
1989.
|
493. |
Shiraishi M,
Wang X,
Walsh MP,
Kargacin G,
Loutzenhiser K and
Loutzenhiser R.
Myosin heavy chain expression in renal afferent and efferent arterioles: relationship to contractile kinetics and function.
FASEB J
17:
2284–2286,
2003.
|
494. |
Patzak A,
Petzhold D,
Wronski T,
Martinka P,
Babu GJ,
Periasamy M,
Haase H and
Morano I.
Constriction velocities of renal afferent and efferent arterioles of mice are not related to SMB expression.
Kidney Int
68:
2726–2734,
2005.
|
495. |
Kimura K,
Nagai R,
Sakai T,
Aikawa M,
Kuro‐o M,
Kobayashi N,
Shirato I,
Inagami T,
Oshi M,
Suzuki N,
Oba S,
Mise N,
Tojo A,
Hirata Y,
Goto A,
Yazaki Y and
Omata M.
Diversity and variability of smooth muscle phenotypes of renal arterioles as revealed by myosin isoform expression.
Kidney Int
48:
372–382,
1995.
|
496. |
Taugner R,
Rosivall L,
Buhrle CP and
Groschel‐Stewart U.
Myosin content and vasoconstrictive ability of the proximal and distal (renin‐positive) segments of the preglomerular arteriole.
Cell Tissue Res
248:
579–588,
1987.
|
497. |
Chan WL,
Holstein‐Rathlou NH and
Yip KP.
Integrin mobilizes intracellular Ca(2+) in renal vascular smooth muscle cells.
Am J Physiol Cell Physiol
280:
C593–C603,
2001.
|
498. |
Davis MJ and
Hill MA.
Signaling mechanisms underlying the vascular myogenic response.
Physiol Rev
79:
387–423,
1999.
|
499. |
Martinez‐Lemus LA,
Wu X,
Wilson E,
Hill MA,
Davis GE,
Davis MJ and
Meininger GA.
Integrins as unique receptors for vascular control.
J Vasc Res
40:
211–233,
2003.
|
500. |
Drummond HA,
Gebremedhin D and
Harder DR.
Degenerin/epithelial Na+ channel proteins: components of a vascular mechanosensor.
Hypertension
44:
643–648,
2004.
|
501. |
Inscho EW,
Cook AK,
Mui V and
Imig JD.
Calcium mobilization contributes to pressure‐mediated afferent arteriolar vasoconstriction.
Hypertension
31
(part 2):
421–428,
1998.
|
502. |
D'Angelo G and
Meininger GA.
Transduction mechanisms involved in the regulation of myogenic activity.
Hypertension
23
(part2):
1096–1105,
1994.
|
503. |
Meininger GA and
Davis MJ.
Cellular mechanisms involved in the vascular myogenic response.
Am J Physiol Heart Circ Physiol
263:
H647–H659,
1992.
|
504. |
Liu Y,
Harder DR and
Lombard JH.
Myogenic activation of canine small renal arteries after nonchemical removal of the endothelium.
Am J Physiol Heart Circ Physiol
267:
H302–H307,
1994.
|
505. |
Narayanan J,
Imig M,
Roman RJ and
Harder DR.
Pressurization of isolated renal arteries increases inositol trisphosphate and diacylglycerol.
Am J Physiol Heart Circ Physiol
266:
H1840–H1845,
1994.
|
506. |
Eskinder H,
Harder DR and
Lombard JH.
Role of the vascular endothelium in regulating the response of small arteries of the dog kidney to transmural pressure elevation and reduced PO2.
Circ Res
66:
1427–1435,
1990.
|
507. |
Jernigan NL and
Drummond HA.
Vascular ENaC proteins are required for renal myogenic constriction.
Am J Physiol Renal Physiol
289:
F891–F901,
2005.
|
508. |
Nakamura A,
Hayashi K,
Ozawa Y,
Fujiwara K,
Okubo K,
Kanda T,
Wakino S and
Saruta T.
Vessel‐ and vasoconstrictor‐dependent role of rho/rho‐kinase in renal microvascular tone.
J Vasc Res
40:
244–251,
2003.
|
509. |
Cavarape A,
Bauer J,
Bartoli E,
Endlich K and
Parekh N.
Effects of angiotensin II, arginine vasopressin and tromboxane A2 in renal vascular bed: role of rho‐kinase.
Nephrol Dial Transplant
18:
1764–1769,
2003.
|
510. |
Briggs JP and
Schnermann J.
The tubuloglomerular feedback mechanism: functional and biochemical aspects.
Ann Rev Physiol
49:
251–273,
1987.
|
511. |
Braam B,
Mitchell KD,
Koomans HA and
Navar LG.
Relevance of the tubuloglomerular feedback mechanism in pathophysiology.
J Am Soc Nephrol
4:
1257–1274,
1993.
|
512. |
Komlosi P,
Fintha A and
Bell PD.
Renal Cell‐to‐Cell Communication via Extracellular ATP.
Physiology (Bethesda)
20:
86–90,
2005.
|
513. |
Schnermann J.
Micropuncture analysis of tubuloglomerular feedback regulation in transgenic mice.
J Am Soc Nephrol
10:
2614–2619,
1999.
|
514. |
Schnermann J.
The juxtaglomerular apparatus: from anatomical peculiarity to physiological relevance.
J Am Soc Nephrol
14:
1681–1694,
2003.
|
515. |
Blantz RC and
Deng A.
Coordination of kidney filtration and tubular reabsorption: considerations on the regulation of metabolic demand for tubular reabsorption.
Acta Physiol Hung
94:
83–94,
2007.
|
516. |
Nishiyama A,
Majid DSA,
Walker HI,
Miyatake MA and
Navar LG.
Renal interstitial ATP responses to changes in arterial pressure during alterations in tubuloglomerular feedback activity.
Hypertension
37:
753–759,
2001.
|
517. |
Thomson SC,
Vallon V and
Blantz RC.
Resetting protects efficiency of tubuloglomerular feedback.
Kidney Int Suppl
67:
S65–S70,
1998.
|
518. |
Marsh DJ,
Sosnovtseva OV,
Chon KH and
Holstein‐Rathlou NH.
Nonlinear interactions in renal blood flow regulation.
Am J Physiol Regul Integr Comp Physiol
288:
RI143–RI159,
2005.
|
519. |
Marsh DJ,
Sosnovtseva OV,
Pavlov AN,
Yip KP and
Holstein‐Rathlou NH.
Frequency encoding in renal blood flow regulation.
Am J Physiol Regul Integr Comp Physiol
288:
RII60–RII67,
2005.
|
520. |
Thomson S,
Vallon V and
Blantz RC.
Asymmetry of tubuloglomerular feedback effector mechanism with respect to ambient tubular flow.
Am J Physiol Renal Physiol
271:
F1123–F1130,
1996.
|
521. |
Komlosi P,
Fintha A and
Bell PD.
Current mechanisms of macula densa cell signalling.
Acta Physiol Scand
181:
463–469,
2004.
|
522. |
Bell PD,
Navar LG,
Ploth DW and
McLean CB.
Tubuloglomerular feedback responses during perfusion with nonelectrolyte solutions in the rat.
Kidney Int
18:
460–471,
1980.
|
523. |
Schnermann J,
Ploth DW and
Hermle M.
Activation of tubuloglomerular feedback by chloride transport.
Pflügers Arch
362:
229–240,
1976.
|
524. |
Lapointe J‐Y,
Bell PD and
Cardinal J.
Direct evidence for apical Na +:2CI ‐:K+ cotransport in macula densa cells.
Am J Physiol Renal Physiol
258:
F1466–F1469,
1990.
|
525. |
Schlatter E,
Salomonsson M,
Persson AEG and
Greger R.
Macula densa cells sense luminal NaCl concentration via furosemide sensitive Na+2CI‐K+ cotransport.
Pflügers Arch
414:
286–290,
1989.
|
526. |
Oppermann M,
Mizel D,
Kim SM,
Chen L,
Faulhaber‐Walter R,
Huang Y,
Li C,
Deng C,
Briggs J,
Schnermann J and
Castrop H.
Renal function in mice with targeted disruption of the A isoform of the Na‐K‐2CI co‐transporter.
J Am Soc Nephrol
18:
440–448,
2007.
|
527. |
Schnermann J and
Marver D.
ATPase activity in macula densa cells of the rabbit kidney.
Pflügers Arch
407:
82–86,
1986.
|
528. |
Peti‐Peterdi J,
Bebok Z,
Lapointe JY and
Bell PD.
Novel regulation of cell [Na(+] in macula densa cells: apical Na(+) recycling by H‐K‐ATPase.
Am J Physiol Renal Physiol
282:
F324–F329,
2002.
|
529. |
Lorenz JN,
Dostanic‐Larson I,
Shull GE and
Lingrel JB.
Ouabain inhibits tubuloglomerular feedback in mutant mice with ouabain‐sensitive alpha1 Na, K‐ATPase.
J Am Soc Nephrol
17:
2457–2463,
2006.
|
530. |
Bell PD,
Lapointe J and
Cardinal J.
Direct measurement of baso‐lateral membrane potentials from cells of the macula densa.
Am J Physiol Renal Physiol
257:
F463–F468,
1989.
|
531. |
Lapointe J‐Y,
Bell PD,
Hurst AM and
Cardinal J.
Basolateral ionic permeabilities of macula densa cells.
Am J Physiol Renal Physiol.
260:
F856–F860,
1991.
|
532. |
Ren Y,
Yu H,
Wang H,
Carretero OA and
Garvin JL.
Nystatin and valinomycin induce tubuloglomerular feedback.
Am J Physiol Renal Physiol
281:
F1102–F1108,
2001.
|
533. |
Hurst AM,
Lapointe J‐Y,
Laamarti A and
Bell PD.
Basic properties and potential regulators of the apical K+ channel in macula densa cells.
J Gen Physiol
103:
1055–1070,
1994.
|
534. |
Vallon V,
Osswald H,
Blantz RC and
Thomson S.
Potential role of luminal potassium in tubuloglomerular feedback.
J Am Soc Nephrol
8:
1831–1837,
1997.
|
535. |
Peti‐Peterdi J,
Chambrey R,
Bebok Z,
Biemesderfer D,
St John PL,
Abrahamson DR,
Warnock DG and
Bell PD.
Macula densa Na(+)/H(+) exchange activities mediated by apical NHE2 and basolateral NHE4 isoforms.
Am J Physiol Renal Physiol
278:
F452–F463,
2000.
|
536. |
Liu R,
Carretero OA,
Ren Y and
Garvin JL.
Increased intracellular pH at the macula densa activates nNOS during tubuloglomerular feedback.
Kidney Int
67:
1837–1843,
2005.
|
537. |
Kirk KL,
Bell PD,
Barfuss DW and
Ribadeneira M.
Direct visualization of the isolated and perfused macula densa.
Am J Physiol Renal Physiol
248:
F890–F894,
1985.
|
538. |
Komlosi P,
Fintha A and
Bell PD.
Unraveling the relationship between macula densa cell volume and luminal solute concentration/osmolality.
Kidney Int
70:
865–871,
2006.
|
539. |
Bell PD and
Navar LG.
Cytoplasmic calcium in the mediation of macula densa tubulo‐glomerular feedback responses.
Science
215:
670–673,
1982.
|
540. |
Peti‐Peterdi J and
Bell PD.
Cytosolic [Ca2+] signaling pathway in macula densa cells.
Am J Physiol Renal Physiol
277:
F472–F476,
1999.
|
541. |
Ren Y,
Liu R,
Carretero OA and
Garvin JL.
Increased intracellular Ca++ in the macula densa regulates tubuloglomerular feedback.
Kidney Int
64:
1348–1355,
2003.
|
542. |
Liu R and
Persson AE.
Simultaneous changes of cell volume and cytosolic calcium concentration in macula densa cells caused by alterations of luminal NaCl concentration.
J Physiol
563:
895–901,
2005.
|
543. |
Lapointe JY,
Bell PD,
Sabirov RZ and
Okada Y.
Calcium‐activated nonselective cationic channel in macula densa cells.
Am J Physiol Renal Physiol
285:
F275–F280,
2003.
|
544. |
Thurau K.
Intrarenal action of angiotensin.
Angiotensin (Handbook of Experimental Pharmacology, 37).
New York:
Springer‐Verlag,
1974,
pp. 475–489.
|
545. |
Thurau K and
Mason J.
The intrarenal function of the juxtaglomerular apparatus. In:
Kidney and Urinary Tract Physiology (MTP International Review of Science: Physiology, series 1,
vol. 1,
ed. Thurau K.
London:
Butterworth,
1974,
pp. 357–389.
|
546. |
Kovacs G,
Peti‐Peterdi J,
Rosivall L and
Bell PD.
Angiotensin II directly stimulates macula densa Na‐2Cl‐K cotransport via apical AT(1) receptors.
Am J Physiol Renal Physiol
282:
F301–F306,
2002.
|
547. |
Wang H,
Garvin JL and
Carretero OA.
Angiotensin II enhances tubuloglomerular feedback via luminal AT(I) receptors on the macula densa.
Kidney Int
60:
1851–1857,
2001.
|
548. |
Harrison‐Bernard LM,
Navar LG,
Ho MM,
Vinson GP and
El‐Dahr SS.
Immunohistochemical localization of ANG II AT1 receptor in adult rat kidney using a monoclonal antibody.
Am J Physiol Renal Physiol
273:
F170–F177,
1997.
|
549. |
Nishiyama A and
Navar LG.
ATP mediates tubuloglomerular feedback.
Am J Physiol Regul Integr Comp Physiol
283:
R273–R275,
2002.
|
550. |
Inscho EW,
Cook AK,
Imig JD,
Vial C and
Evans RJ.
Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior.
J Clin Invest
112:
1895–1905,
2003.
|
551. |
Inscho EW,
Cook AK,
Mui V and
Miller J.
Direct assessment of renal microvascular responses to P2‐purinoceptor agonists.
Am J Physiol Renal Physiol
274:
F718–F727,
1998.
|
552. |
Inscho EW,
Mitchell KD and
Navar LG.
Extracellular ATP in the regulation of renal microvascular function.
FASEB J
8:
319–328,
1994.
|
553. |
Inscho EW and
Navar LG.
P2‐purinoceptor desensitization attenuates autoregulatory behavior in rat juxtamedullary afferent arterioles.
J Am Soc Nephrol
4:
581,
1993.
|
554. |
Majid DS,
Inscho EW and
Navar LG.
P2 purinoceptor saturation by adenosine triphosphate impairs renal autoregulation in dogs.
J Am Soc Nephrol
10:
492–498,
1999.
|
555. |
Nishiyama A,
Rahman M and
Inscho EW.
Role of interstitial ATP and adenosine in the regulation of renal hemodynamics and microvascular function.
Hypertens Res
27:
791–804,
2004.
|
556. |
Bell PD,
Lapointe JY,
Sabirov R,
Hayashi S,
Peti‐Peterdi J,
Manabe Kl,
Kovacs G and
Okada Y.
Macula densa cell signaling involves ATP release through a maxi anion channel.
Proc Natl Acad Sci USA
100:
4322–4327,
2003.
|
557. |
Komlosi P,
Peti‐Peterdi J,
Fuson AL,
Fintha A,
Rosivall L and
Bell PD.
Macula densa basolateral ATP release is regulated by luminal [NaCl] and dietary salt intake.
Am J Physiol Renal Physiol
286:
F1054–F1058,
2004.
|
558. |
Inscho EW.
P2 receptors in regulation of renal microvascular function.
Am J Physiol Renal Physiol
280:
F927–F944,
2001.
|
559. |
Simonson MS and
Dunn MJ.
Endothelin: pathways of transmembrane signaling.
Hypertension
15
(Suppl I):
1–5‐I‐12,
1990.
|
560. |
Peti‐Peterdi J.
Calcium wave of tubuloglomerular feedback.
Am J Physiol Renal Physiol
291:
F473–F480,
2006.
|
561. |
Kallskog O and
Marsh DJ.
TGF‐initiated vascular interactions between adjacent nephrons in the rat kidney.
Am J Physiol
259:
F60–F64,
1990.
|
562. |
Casellas D and
Moore LC.
Autoregulation and tubuloglomerular feedback in juxtamedullary glomerular arterioles.
Am J Physiol Renal Physiol
258:
F660–F669,
1990.
|
563. |
Peti‐Peterdi J,
Morishima S,
Bell PD and
Okada Y.
Two‐photon excitation fluorescence imaging of the living juxtaglomerular apparatus.
Am J Physiol Renal Physiol
283:
F197–F201,
2002.
|
564. |
Ren Y,
Carretero OA and
Garvin JL.
Role of mesangial cells and gap junctions in tubuloglomerular feedback.
Kidney Int
62:
525–531,
2002.
|
565. |
Inscho EW.
Modulation of renal microvascular function by adenosine.
Am J Physiol Regul Integr Comp Physiol
285:
R23–R25,
2003.
|
566. |
Kishore BK,
Isaac J,
Fausther M,
Tripp SR,
Shi H,
Gill PS,
Braun N,
Zimmermann H,
Sevigny J and
Robson SC.
Expression of NTPDasel and NTPDase2 in murine kidney: relevance to regulation of P2 receptor signaling.
Am J Physiol Renal Physiol
288:
F1032–F1043,
2005.
|
567. |
Vekaria RM,
Shirley DG,
Sevigny J and
Unwin RJ.
Immunolocalization of ectonucleotidases along the rat nephron.
Am J Physiol Renal Physiol
290:
F550–F560,
2006.
|
568. |
Castrop H,
Huang Y,
Hashimoto S,
Mizel D,
Hansen P,
Theilig F,
Bachmann S,
Deng C,
Briggs J and
Schnermann J.
Impairment of tubuloglomerular feedback regulation of GFR in ecto‐5′‐nucleoti‐dase/CD73‐deficient mice.
J Clin Invest
114:
634–642,
2004.
|
569. |
Sun D,
Samuelson LC,
Yang T,
Huang Y,
Paliege A,
Saunders T,
Briggs J and
Schnermann J.
Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors.
Proc Natl Acad Sci USA
98:
9983–9988,
2001.
|
570. |
Ren Y,
Garvin JL,
Liu R and
Carretero OA.
Role of macula densa adenosine triphosphate (ATP) in tubuloglomerular feedback.
Kidney Int
66:
1479–1485,
2004.
|
571. |
Kessler SP,
Hashimoto S,
Senanayake PS,
Gaughan C,
Sen GC and
Schnermann J.
Nephron function in transgenic mice with selective vascular or tubular expression of Angiotensin‐converting enzyme.
J Am Soc Nephrol
16:
3535–3542,
2005.
|
572. |
Mitchell KD and
Navar LG.
Enhanced tubuloglomerular feedback during peritubular infusions of angiotensins I and II.
Am J Physiol Renal Physiol
255:
F383–F390,
1988.
|
573. |
Ploth DW,
Rudolph J,
LaGrange R and
Navar LG.
Tubuloglomerular feedback and single nephron function after converting enzyme inhibition in the rat.
J Clin Invest
64:
1325–1335,
1979.
|
574. |
Schnermann JB,
Traynor T,
Yang T,
Huang YG,
Oliverio MI,
Coffman T and
Briggs JP.
Absence of tubuloglomerular feedback responses in AT1A receptor‐deficient mice.
Am J Physiol Renal Physiol
273:
F315–F320,
1997.
|
575. |
Liu R and
Persson AE.
Angiotensin II stimulates calcium and nitric oxide release from Macula densa cells through AT1 receptors.
Hypertension
43:
649–653,
2004.
|
576. |
Zhang MZ,
Yao B,
Cheng HF,
Wang SW,
Inagami T and
Harris RC.
Renal cortical cyclooxygenase 2 expression is differentially regulated by angiotensin II AT(1) and AT(2) receptors.
Proc Natl Acad Sci USA
103:
16045–16050,
2006.
|
577. |
Gill PS and
Wilcox CS.
NADPH oxidases in the kidney.
Antioxid Redox Signal
8:
1597–1607,
2006.
|
578. |
Komers R,
Zdychova J,
Cahova M,
Kazdova L,
Lindsley JN and
Anderson S.
Renal cyclooxygenase‐2 in obese Zucker (fatty) rats.
Kidney Int
67:
2151–2158,
2005.
|
579. |
Hebert SC.
Bartter syndrome.
Curr Opin Nephrol Hypertens
12:
527–532,
2003.
|
580. |
Bachmann S,
Bosse HM and
Mundel P.
Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney.
Am J Physiol Renal Physiol
268:
F885–F898,
1995.
|
581. |
Harris RC,
Cheng H,
Wang J,
Zhang M and
McKanna JA.
Interactions of the renin‐angiotensin system and neuronal nitric oxide synthase in regulation of cyclooxygenase‐2 in the macula densa.
Acta Physiol Scand
168:
47–51,
2000.
|
582. |
Ichihara A and
Navar LG.
Neuronal NOS contributes to biphasic autoregulatory response during enhanced TGF activity.
Am J Physiol Renal Physiol
277:
F113–F120,
1999.
|
583. |
Kovacs G,
Komlosi P,
Fuson A,
Peti‐Peterdi J,
Rosivall L and
Bell PD.
Neuronal nitric oxide synthase: its role and regulation in macula densa cells.
J Am Soc Nephrol
14:
2475–2483,
2003.
|
584. |
Liu R,
Pittner J and
Persson AE.
Changes of cell volume and nitric oxide concentration in macula densa cells caused by changes in luminal NaCl concentration.
J Am Soc Nephrol
13:
2688–2696,
2002.
|
585. |
Wilcox CS,
Welch WJ,
Murad F,
Gross SS,
Taylor G,
Levi R and
Schmidt HHHW.
Nitric oxide synthase in macula densa regulates glomerular capillary pressure.
Proc Natl Acad Sci
89:
11993–11997,
1992.
|
586. |
Welch WJ,
Wilcox CS and
Thomson SC.
Nitric oxide and tubuloglomerular feedback.
Sem Nephrol
19:
251–262,
1999.
|
587. |
Ichihara A,
Imig JD and
Navar LG.
Neuronal nitric oxide synthase‐dependent afferent arteriolar function in angiotensin II‐induced hypertension.
Hypertension
33
(part II):
462–466,
1999.
|
588. |
Vallon V,
Traynor T,
Barajas L,
Huang YG,
Briggs JP and
Schnermann J.
Feedback control of glomerular vascular tone in neuronal nitric oxide synthase knockout mice.
J Am Soc Nephrol
12:
1599–1606,
2001.
|
589. |
Herrera M,
Ortiz PA and
Garvin JL.
Regulation of thick ascending limb transport: role of nitric oxide.
Am J Physiol Renal Physiol
290:
F1279–F1284,
2006.
|
590. |
Hoagland KM,
Flasch AK and
Roman RJ.
Inhibitors of 20‐HETE formation promote salt‐sensitive hypertension in rats.
Hypertension
42:
669–673,
2003.
|
591. |
Ren Y,
Carretero OA and
Garvin JL.
Mechanism by which superoxide potentiates tubuloglomerular feedback.
Hypertension
39:
624–628,
2002.
|
592. |
Juncos R and
Garvin JL.
Superoxide enhances Na‐K‐2Cl cotrans‐porter activity in the thick ascending limb.
Am J Physiol Renal Physiol
288:
F982–F987,
2005.
|
593. |
Liu R,
Garvin JL,
Ren Y,
Pagano PJ and
Carretero OA.
Depolarization of the macula densa induces superoxide production via NAD(P)H oxidase.
Am J Physiol Renal Physiol
292:
F1867–F1872,
2007.
|
594. |
Wilcox CS and
Welch WJ.
Interaction between nitric oxide and oxygen radicals in regulation of tubuloglomerular feedback.
Acta Physiol Scand
168:
119–124,
2000.
|
595. |
Ren YL,
Garvin JL,
Ito S and
Carretero OA.
Role of neuronal nitric oxide synthase in the macula densa.
Kidney Int
60:
1676–1683,
2001.
|
596. |
Alonso‐Galicia M,
Falck JR,
Reddy KM and
Roman RJ.
20‐HETE agonists and antagonists in the renal circulation.
Am J Physiol
277:
F790–F796,
1999.
|
597. |
Zou A‐P,
Imig JD,
Kaldunski M,
Ortiz de Montellano PR,
Sui Z and
Roman RJ.
Inhibition of renal vascular 20‐HETE production impairs autoregulation of renal blood flow.
Am J Physiol Renal Physiol
266:
F275–F282,
1994.
|
598. |
Ichihara A,
Imig JD and
Navar LG.
Cyclooxygenase‐2 modulates afferent arteriolar responses to increases in pressure.
Hypertension
34
(part 2):
843–847,
1999.
|
599. |
Breyer MD and
Harris RC.
Cyclooxygenase 2 and the kidney.
Curr Opin Nephrol Hypertens
10:
89–98,
2001.
|
600. |
Fuson AL,
Komlosi P,
Unlap TM,
Bell PD and
Peti‐Peterdi J.
Immunolocalization of a microsomal prostaglandin E synthase in rabbit kidney.
Am J Physiol Renal Physiol
285:
F558–F564,
2003.
|
601. |
Harris RC and
Breyer MD.
Physiological regulation of cyclooxygenase‐2 in the kidney.
Am J Physiol Renal Physiol
281:
F1–F11,
2001.
|
602. |
Harris RC,
McKanna JA,
Akai Y,
Jacobson HR,
Dubois RN and
Breyer MD.
Cyclooxygenase‐2 is associated with the macula densa of rat kidney and increases with salt restriction.
J Clin Invest
94:
2504–2510,
1994.
|
603. |
Peti‐Peterdi J,
Komlosi P,
Fuson AL,
Guan Y,
Schneider A,
Qi Z,
Redha R,
Rosivall L,
Breyer MD and
Bell PD.
Luminal NaCl delivery regulates basolateral PGE2 release from macula densa cells.
J Clin Invest
112:
76–82,
2003.
|
604. |
Yang T,
Park JM,
Arend L,
Huang Y,
Topaloglu R,
Pasumarthy A,
Praetorius H,
Spring K,
Briggs JP and
Schnermann J.
Low chloride stimulation of prostaglandin E2 release and cyclooxygenase‐2 expression in a mouse macula densa cell line.
J Biol Chem
275:
37922–37929,
2000.
|
605. |
Cheng HF and
Harris RC.
Cyclooxygenases, the kidney, and hypertension.
Hypertension
43:
525–530,
2004.
|
606. |
Brannstrom K and
Arendshorst WJ.
Thromboxane A2 contributes to the enhanced tubuloglomerular feedback activity in young SHR.
Am J Physiol
276:
F758–F766,
1999.
|
607. |
Welch WJ and
Wilcox CS.
Modulating role for thromboxane in the tubuloglomerular feedback response in the rat.
J Clin Invest
81:
1843–1849,
1988.
|
608. |
Welch WJ and
Wilcox CS.
Potentiation of tubuloglomerular feedback in the rat by thromboxane mimetic: Role of macula densa.
J Clin Invest
89:
1857–1865,
1992.
|
609. |
Schnermann J,
Traynor T,
Pohl H,
Thomas DW,
Coffman TM and
Briggs JP.
Vasoconstrictor responses in thromboxane receptor knockout mice: tubuloglomerular feedback and ureteral obstruction.
Acta Physiol Scand
168:
201–207,
2000.
|
610. |
Oldson DR,
Moore LC and
Layton HE.
Effect of sustained flow perturbations on stability and compensation of tubuloglomerular feedback.
Am J Physiol Renal Physiol
285:
F972–F989,
2003.
|
611. |
Castrop H,
Lorenz JN,
Hansen PB,
Friis U,
Mizel D,
Oppermann M,
Jensen BL,
Briggs J,
Skott O and
Schnermann J.
Contribution of the basolateral isoform of the Na‐K‐2Cl‐cotransporter (NKCC1/BSC2) to renin secretion.
Am J Physiol Renal Physiol
289:
F1185–F1192,
2005.
|
612. |
Mitchell KD and
Navar LG.
The renin‐angiotensin‐aldosterone system in volume control. In:
Bailliere's Clinical Endocrinology and Metabolism,
ed. Baylis PH.
London:
Bailliere Tindall,
1989,
pp. 393–430.
|
613. |
Mitchell KD and
Mullins JJ.
ANG II dependence of tubuloglomerular feedback responsiveness in hypertensive ren‐2 transgenic rats.
Am J Physiol Renal Physiol
268:
F821–F828,
1995.
|
614. |
Mitchell KD and
Navar LG.
Intrarenal actions of angiotensin II in the pathogenesis of experimental hypertension. In:
Hypertension: Pathophysiology, Diagnosis, and Management,
eds Laragh JH and
Brenner BM.
New York:
Raven Press, Ltd.,
1995,
pp. 1437–1450.
|
615. |
Morsing P,
Stenberg A,
Casellas D,
Mimran A,
Muller‐Suur C,
Thorup C,
Holm L and
Persson AEG.
Renal interstitial pressure and tubuloglomerular feedback control in rats during infusion of atrial natriuretic peptide (ANP).
Acta Physiol Scand
146:
393–398,
1992.
|
616. |
Persson AEG,
Boberg U,
Hahne B,
Muller‐Suur R,
Norlen B‐J and
Selen G.
Interstitial pressure as a modulator of tubuloglomerular feedback control.
Kidney Int
22:
S122–S128,
1982.
|
617. |
Furchgott RF.
The role of endothelium in the responses of vascular smooth muscle to drugs.
Ann Rev Pharmacol Toxicol
24:
175–197,
1984.
|
618. |
Furchgott RF and
Vanhoutte PM.
Endothelium‐derived relaxing and contracting factors.
FASEB J
3:
2007–2018,
1989.
|
619. |
Vane JR,
Anggard EE and
Bottin RM.
Regulatory functions of the vascular endothelium.
N Engl J Med
323:
27–36,
1990.
|
620. |
Vanhoutte PM.
Endothelium and control of vascular function. State of the art lecture.
Hypertension
13:
658–667,
1989.
|
621. |
Vanhoutte PM and
Shimokawa H.
Endothelium‐derived relaxing factor and coronary vasospasm.
Circ
80:
1–9,
1989.
|
622. |
Ignarro LJ.
Biological actions and properties of endothelium‐derived nitric oxide formed and relased from artery and vein.
Circ Res
65:
1–21,
1989.
|
623. |
Ignarro LJ.
Endothelium‐derived nitric oxide.
FASEB J
3:
31–36,
1989.
|
624. |
Ignarro LJ.
Biosynthesis and metabolism of endothelium‐derived nitric oxide.
Ann Rev Pharmacol Toxicol
30:
535–560,
1990.
|
625. |
Ignarro LJ.
Nitric Oxide: A Novel Signal Transduction Mechanism for Transcellular Communication.
Hypertension
16:
477–483,
1990.
|
626. |
Lancaster JR.
Nitric oxide in cells.
Am Sci
80:
248–259,
1992.
|
627. |
Bhardwaj R and
Moore PK.
The effect of arginine and nitric oxide on resistance blood vessels of the perfused rat kidney.
Br J Pharmacol
97:
739–744,
1989.
|
628. |
Lieberthal W,
Wolf EF,
Rennke HG,
Valeri CR and
Levinsky NG.
Renal ischemia and reperfusion impair endothelium‐dependent vascular relaxation.
Am J Physiol Renal Physiol
256:
F894–F900,
1989.
|
629. |
Malomvolgyi B,
Hadhazy P and
Magyar K.
Vasodilator: responses in perfused rabbit kidney: the role of endothelium.
Arch int Pharmacodyn
292:
131–140,
1988.
|
630. |
Yanagisawa M,
Kurihara H,
Kimura A,
Tomobe Y,
Kobayashi M,
Mitsui Y,
Yazaki Y,
Goto K and
Masaki T.
A novel potent vasoconstrictor peptide produced by vascular endothelial cels.
Nature Lond
332:
411–415,
1988.
|
631. |
Badr KF,
Murray JJ,
Breyer MD,
Takahashi K,
Inagami T and
Harris RC.
Mesangial cell, glomerular and renal vascular responses to endothelin in the rat kidney.
J Clin Invest
83:
336–342,
1989.
|
632. |
Baylis C,
Harton P and
Engels K.
Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney.
J Am Soc Nephrol
1:
875–881,
1990.
|
633. |
Kon V,
Yoshioka T,
Fogo A and
Ichikawa I.
Glomerular actions of endothelin in vivo.
J Clin Invest
83:
1762–1767,
1989.
|
634. |
Lahera V,
Salom MG,
Fiksen‐Olsen MJ,
Raij L and
Romero JC.
Effects of NG‐monomethyl‐1‐arginine and 1‐arginine on acetylcholine renal response.
Hypertension
15:
659–663,
1990.
|
635. |
Miller WL,
Redfield MM and
Burnett JC.
Integrated cardiac, renal, and endocrine actions of endothelin.
J Clin Invest
83:
317–320,
1989.
|
636. |
King AJ and
Brenner BM.
Endothelium‐derived vasoactive factors and the renal vasculature.
Am J Physiol
260:
R653–R662,
1991.
|
637. |
Marsden PA,
Goligorsky MS and
Brenner BM.
Endothelial cell biology in relation to current concepts of vessel wall structure and function.
J Am Soc Nephrol
1:
931–948,
1991.
|
638. |
Pollock DM,
Polakowski JS,
Divish BJ and
Opgenorth TJ.
Angiotensin blockade reverses hypertension during long‐term nitric oxide synthase inhibition.
Hypertension
21:
660–666,
1993.
|
639. |
Raij L and
Schultz PJ.
Endothelium‐derived relaxing factor, nitric oxide: effects on and production by mesangial cells and the glomerulus.
J Am Soc Nephrol
3:
1435–1441,
1993.
|
640. |
Romero JC,
Lahera V,
Salom MG and
Biondi ML.
Role of the endothelium‐dependent relaxing factor nitric oxide on renal function.
J Am Soc Nephrol
2:
1371–1387,
1992.
|
641. |
Pacher P,
Beckman JS and
Liaudet L.
Nitric oxide and peroxynitrite in health and disease.
Physiol Rev
87:
315–424,
2007.
|
642. |
Furchgott RF,
Jothianandan D and
Khan MT.
Comparison of nitric oxide, S‐nitrosocysteine and EDRF as relaxants of rabbit aorta.
Japan J Pharmacol
58
(Suppl II):
185P–191P,
1992.
|
643. |
Marshall JJ and
Kontos HA.
Endothelium‐derived relaxing factors‐a perspective from in vivo Data.
Hypertension
16:
371–386,
1990.
|
644. |
Mulsch A,
Vanin A,
Mordvintcev P,
Hauschildt S and
Busse R.
NO accounts completely for the oxygenated nitrogen species generated by enzymic L‐arginine oxygenation.
Biochem J
288:
597–603,
1992.
|
645. |
Henry Y,
Lepoivre M,
Drapier J‐C,
Ducrocq C,
Boucher J‐L and
Guissani A.
EPR characterization of molecular targets for NO in mammalian cells and organelles.
FASEB J
7:
1124–1134,
1993.
|
646. |
Nathan C.
Nitric oxide as a secretory product of mammalian cells.
FASEB J
6:
3051–3064,
1992.
|
647. |
Pfeilschifter J,
Kunz D and
Muhl H.
Nitric oxide: An inflammatory mediator of glomerular mesangial cells.
Nephron
64:
518–525,
1993.
|
648. |
Forstermann U,
Schmidt HHHW,
Pollock JS,
Sheng H,
Mitchell JA,
Warner TD,
Nakane M and
Murad F.
Isoforms of nitric oxide synthase. Characterization and purification from different cell types.
Biochem Pharmacol
42:
1849–1857,
1991.
|
649. |
Lamas S,
Marsden PA,
Li GK,
Tempst P and
Michel T.
Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform.
Proc Natl Acad Sci USA
89:
6348–6352,
1992.
|
650. |
Xie QW,
Cho HJ,
Calaycay J,
Mumford RA,
Swiderek KM,
Lee TD,
Ding A,
Troso T and
Nathan C.
Cloning and characterization of inducible nitric oxide synthase from mouse macrophages.
Science
256:
225–228,
1992.
|
651. |
Kunz D,
Muhl H,
Walker G and
Pfeilschifter J.
Two distinct signaling pathways trigger the expression of inducible nitric oxide synthase in rat renal mesangial cells.
Proc Natl Acad Sci
91:
5387–5391,
1994.
|
652. |
Marsden PA and
Ballermann BJ.
Tumor necrosis factor‐a activates soluble guanylate cyclase in bovine glomerular mesangial cells via an L‐arginine‐dependent mechanism.
J Exp Med
172:
1843–1852,
1990.
|
653. |
Mohaupt MG,
Elzie JL,
Ahn KY,
Clapp WL,
Wilcox CS and
Kone BC.
Differential expression and induction of mRNAs encoding two inducible nitric oxide synthases in rat kidney.
Kidney lnt
46:
653–665,
1994.
|
654. |
Moncada S.
The first Robert Furchgott lecture: from endothelium‐dependent relaxation to the L‐arginine: NO pathway.
Blood Vessels
27:
208–217,
1990.
|
655. |
Muhl H,
Kunz D and
Pfeilschifter J.
Expression of nitric oxide synthase in rat glomerular mesangial cells mediated by cyclic AMP.
Br J Pharmacol
112:
1–8,
1994.
|
656. |
Shultz PJ,
Archer SL and
Rosenberg ME.
Inducible nitric oxide synthase mRNA and activity in glomerular mesangial cells.
Kidney Int
46:
683–689,
1994.
|
657. |
Shultz PJ,
Tayeh MA,
Marietta MA and
Raij L.
Synthesis and action of nitric oxide in rat glomerular mesangial cells.
Am J Physiol Renal Physiol
261:
F600–F606,
1991.
|
658. |
Terada Y,
Tomita K,
Nonoguchi H and
Marumo F.
Polymerase chain reaction localization of constitutive nitric oxide synthase and soluble guanylate cyclase messenger RNAs in microdissected rat nephron segments.
J Clin Invest
90:
659–665,
1992.
|
659. |
Ujiie K,
Drewett JG,
Yuen PST and
Star RA.
Differential expression of mRNA for guanylyl cyclase‐linked endothelium‐derived relaxing factor receptor subunits in rat kidney.
J Clin Invest
91:
730–734,
1993.
|
660. |
Mundel P,
Bachmann S,
Bader M,
Fischer A,
Kummer W,
Mayer B and
Kriz W.
Expression of nitric oxide synthase in kidney macula densa cells.
Kidney lnt
42:
1017–1019,
1992.
|
661. |
Liu L and
Barajas L.
Nitric oxide synthase immunoreactive neurons in the rat kidney.
Neurosci Lett
161:
145–148,
1993.
|
662. |
Tsukahara H,
Krivenko Y,
Moore LC and
Goligorsky MS.
Decrease in ambient [Cl−] stimulates nitric oxide release from cultured rat mesangial cells.
Am J Physiol Renal Physiol
267:
F190–F195,
1994.
|
663. |
Schmidt HHHW,
Lohmann SM and
Walter U.
The nitric oxide and cGMP signal transduction system: regulation and mechanism of action.
Biochimica et Biophysica Acta
1178:
153–175,
1993.
|
664. |
Shultz PJ,
Schorer AE and
Raij L.
Effects of endothelium‐derived relaxing factor and nitric oxide on rat mesangial cells.
Am J Physiol Renal Physiol
258:
F162–F167,
1990.
|
665. |
Trottier G,
Triggle CR,
O'Neill SK and
Loutzenhiser R.
Cyclic GMP‐dependent and cyclic GMP‐independent actions of nitric oxide on the renal afferent arteriole.
Br J Pharmacol
125:
563–569,
1998.
|
666. |
Heuze‐Joubert I,
Mennecier P,
Simonet S,
Laubie M and
Verbeuren TJ.
Effect of vasodilators, including nitric oxide, on the release od cGMP and cAMP in the isolated perfused rat kidney.
Eur J Pharmacol
220:
161–171,
1992.
|
667. |
Sandner P,
Kornfeld M,
Ruan X,
Arendshorst WJ and
Kurtz A.
Nitric oxide/cAMP interactions in the control of rat renal vascular resistance.
Circ Res
84:
186–192,
1999.
|
668. |
Vanhoutte PM and
Katusic ZS.
Endothelium‐derived contracting factor: endothelin and/or superoxide union?
Trends Pharmacol Sci
9:
229–230,
1988.
|
669. |
Campbell WB and
Gauthier KM.
What is new in endothelium‐derived hyperpolarizing factors?
Curr Opin Nephrol Hypertens
11 :
177–183,
2002.
|
670. |
Campbell WB,
Gebremedhin D,
Pratt PF and
Harder DR.
Identification of epoxyeicosatrienoic acids as endothelium‐derived hyperpolarizing factors.
Circ Res
78:
415–423,
1996.
|
671. |
Kreisberg JI.
Cell biology and biochemistry of the glomerular mesangium.
Miner Electrolyte Metab
14:
167–175,
1988.
|
672. |
Radermacher J,
Forstermann U and
Frolich JC.
Endothelium‐derived relaxing factor influences renal vascular resistance.
Am J Physiol Renal Physiol
259:
F9–F17,
1990.
|
673. |
Bascands J‐L,
Pecher C,
Bompart G,
Rakotoarivony J,
Tack JL and
Girolami J‐P.
Bradykinin‐induced in vitro contraction of rat mesangial cells via a B2 receptor type.
Am J Physiol Renal Physiol
267:
F871–F878,
1994.
|
674. |
Inscho EW,
Ohishi K and
Navar LG.
Effects of ATP on pre‐ and postglomerular juxtamedullary microvasculature.
Am J Physiol Renal Physiol
263:
F886–F893,
1992.
|
675. |
Kremer S,
Harper P,
Hegele R and
Skorecki K.
Bradykinin stimulates a rise in cytosolic calcium in renal glomerular mesangial cells via a pertussis toxin insensitive pathway.
Can J Physiol Pharmacol
66:
43–48,
1987.
|
676. |
Lahera V,
Salom MG,
Fiksen‐Olsen MJ and
Romero JC.
Mediatory role of endothelium‐derived nitric oxide in renal vasodilatory and excretory effects of bradykinin.
Am J Hypertens
4:
260–262,
1991.
|
677. |
Salom MG,
Lahera V and
Romero JC,
Role of prostaglandins and endothelium‐derived relaxing factor on the renal response to acetylcholine.
Am J Physiol Renal Physiol
260:
F145–F149,
1991.
|
678. |
Tolins JP,
Palmer RMJ,
Moncada S and
Raij L.
Role of endothelium‐derived relaxing factor in regulation of renal hemodynamic responses.
Am J Physiol Heart Circ Physiol
258:
H655–H662,
1990.
|
679. |
Baylis C and
Qiu C.
Importance of nitric oxide in the control of renal hemodynamics. [Review] [36 refs].
Kidney Int
49:
1727–1731,
1996.
|
680. |
Majid DSA and
Navar LG.
Nitric oxide in the control of renal hemodynamics and excretory function.
Am J Hypertens
14:
74S–82S,
2001.
|
681. |
Siragy HM,
Johns RA,
Peach MJ and
Carey RM.
Nitric oxide alters renal function and guanosine 3′,5′‐cyclic monophosphate.
Hypertension
19:
775–779,
1992.
|
682. |
Baumann JE,
Persson PB,
Ehmke H,
Nafz B and
Kirchheim HR,
Role of endothelium‐derived relaxing factor in renal autoregulation in conscious dogs.
Am J Physiol Renal Physiol
263:
F208–F213,
1992.
|
683. |
Majid DSA,
Godfrey M,
Grisham MB and
Navar LG.
Relation between pressure natriuresis and urinary excretion of nitrate/nitrite in anesthetized dogs.
Hypertension
25
(part 2):
860–865,
1995.
|
684. |
Majid DSA and
Navar LG.
Blockade of distal nephron sodium transport attenuates pressure natriuresis in dogs.
Hypertension
23
(part2):
1040–1045,
1994.
|
685. |
Majid DSA,
Williams A,
Kadowitz PJ and
Navar LG.
Renal responses to intra‐arterial administration of nitric oxide donor in dogs.
Hypertension
22:
535–541,
1993.
|
686. |
Majid DSA,
Williams A and
Navar LG.
Inhibition of nitric oxide synthesis attenuates pressure‐induced natriuretic responses in anesthetized dogs.
Am J Physiol Renal Physiol
264:
F79–F87,
1993.
|
687. |
Naess PA,
Kirkeboen KA,
Christensen G and
Kiil F.
Inhibition of renal nitric oxide synthesis with NG‐monomethyl‐L‐arginine and NG‐nitro‐L‐arginine.
Am J Physiol Renal Physiol
262:
F939–F942,
1992.
|
688. |
Perrella MA,
Hildebrand FL, Jr.,
Margulies KB and
Burnett JC, Jr.
Endothelium‐derived relaxing factor in regulation of basal cardiopulmonary and renal function.
Am J Physiol Regul Integr Comp Physiol
261:
R323–R328,
1991.
|
689. |
Yukimura T,
Yamashita Y,
Miura K,
Okumura M,
Yamanaka S and
Yamamoto K.
Renal effects of the nitric oxide synthase inhibitor, L‐NG‐nitroarginine, in dogs.
Am J Hypertens
5:
484–487,
1992.
|
690. |
Denton KM and
Anderson WP.
Intrarenal haemodynamic and glomerular respnses to inhibition of nitric oxide formation in rabbits.
J Physiol
475:
159–167,
1994.
|
691. |
Evans RG,
Rankin AJ and
Anderson WP.
Interactions of blockade of nitric oxide synthase and angiotensin‐converting enzyme on renal function in conscious rabbits.
J Cardiovasc Pharmacol
24:
542–551,
1994.
|
692. |
Hajj‐ali AF,
Reilly TM and
Wong PC.
Modulation of renal vasoconstrictor effect of NG‐nitro‐L‐arginine in rabbit by angiotensin II and alpha‐1 adrenergic receptor blockade.
J Pharmacol Exp Ther
270:
1152–1157,
1994.
|
693. |
Beierwaltes WH,
Sigmon DH and
Carretero OA.
Endothelium modulates renal blood flow but not autoregulation.
Am J Physiol Renal Physiol
262:
F943–F949,
1992.
|
694. |
Lahera V,
Salom MG,
Miranda‐Guardiola F,
Moncada S and
Romero JC.
Effects of Ng‐nitro‐L‐arginine methyl ester on renal function and blood pressure.
Am J Physiol Renal Physiol
261:
F1033–F1037,
1991.
|
695. |
Lockhart JC,
Larson TS and
Knox FG.
Perfusion pressure and volume status determine the microvascular response of the rat kidney to NG‐monomethyl‐L‐arginine.
Circ Res
75:
829–835,
1994.
|
696. |
Nakamura T,
Alberola AM and
Granger JP.
Role of renal interstitial pressure as a mediator of sodium retention during systemic blockade of nitric oxide.
Hypertension
21:
956–960,
1993.
|
697. |
Pucci ML,
Lin L and
Nasjletti A.
Pressor and renal vasoconstrictor effects of NG‐nitro‐L‐arginine as affected by blockade of pressor mechanisms mediated by the sympathetic nervous system, angiotensin. prostanoids and vasopressin.
J Pharmacol Exp Ther
261:
240–245,
1992.
|
698. |
Shultz PJ and
Tolins JP.
Adaptation to increased dietary salt intake in the rat: role of endogenous nitric oxide.
J Clin Invest
91:
642–650,
1993.
|
699. |
Welch WJ,
Wilcox CS,
Aisaka K,
Gross SS,
Griffith OW,
Fontoura BMA,
Maack T and
Levi R.
Nitric oxide synthesis from L‐arginine modulates renal vascular resistance in isolated perfused and intact rat kidneys.
J Cardiovasc Pharmacol
17
(Suppl. 3):
S165–S168,
1991.
|
700. |
Brezis M,
Heyman SN,
Dinour D,
Epstein FH and
Rosen S.
Role of nitric oxide in renal medullary oxygenation: studies in isolated and intact rat kidneys.
J Clin Invest
88:
390–395,
1991.
|
701. |
Radermacher J,
Klanke B,
Kastner S,
Haake G,
Schurek HJ,
Stolte HF and
Frolich JC.
Effect of arginine depletion on glomerular and tubular kidney function: studies in isolated perfused rat kidneys.
Am J Physiol Renal Physiol
261:
F779–F786,
1991.
|
702. |
Radermacher J,
Klanke B,
Schurek HJ,
Stolte HF and
Frolich JC.
Importance of NO/EDRF for glomerular and tubular function: Studies in the isolated perfused rat kidney.
Kidney Int
41:
1549–1559,
1992.
|
703. |
Chen C,
Mitchell KD and
Navar LG.
Role of endothelium‐derived nitric oxide in the renal hemodynamic response to amino acid infusion.
Am J Physiol Regul Integr Comp Physiol
263:
R510–R516,
1992.
|
704. |
Fenoy FJ,
Ferrer P,
Carbonell L and
García‐Salom M.
Role of nitric oxide on papillary blood flow and pressure natriuresis.
Hypertension
25:
408–414,
1995.
|
705. |
Salazar FJ,
Pinilla JM,
Lopez F,
Romero JC and
Quesada T.
Renal effects of prolonged synthesis inhibition of endothelium‐derived nitric oxide.
Hypertension
20:
113–117,
1992.
|
706. |
Qiu C,
Engels K and
Baylis C.
Angiotensin II and a1‐adrenergic tone in chronic nitric oxide blockade‐induced hypertension.
Am J Physiol Renal Physiol
266:
R1470–R1476,
1994.
|
707. |
Granger JP,
Alberola AM,
Salazar FJ and
Nakamura T.
Control of renal hemodynamics during intrarenal and systemic blockade of nitric oxide synthesis in conscious dogs.
J Cardiovasc Pharmacol
20
(Suppl. 12):
S160–S162,
1992.
|
708. |
Hirata Y,
Matsuoka H,
Kimura K,
Sugimoto T,
Hayakawa H and
Suzuki E.
Role of endothelium‐derived relaxing factor in endothelin‐induced renal vasoconstriction.
J Cardiovasc Pharmacol
17
(Suppl. 7):
S169–S171,
1991.
|
709. |
Manning RD, Jr. and
Hu L.
Nitric oxide regulates renal hemodynamics and urinary sodium excretion in dogs.
Hypertension
23:
619–625,
1994.
|
710. |
Persson PB,
Baumann JE,
Ehmke H,
Hackenthal E,
Kirchheim HR and
Nafz B.
Endothelium‐derived NO stimulates pressure‐dependent renin release in conscious dogs.
Am J Physiol Renal Physiol
264:
F943–F947,
1993.
|
711. |
Biondi ML,
Bolterman RJ and
Romero JC.
Zonal changes of guanidine 3′,5′‐cyclic monophosphate related to endothelium‐derived relaxing factor in dog renal medulla.
Renal Physiol Biochem
15:
16–22,
1992.
|
712. |
Lahera V,
Navarro J,
Biondi ML,
Ruilope LM and
Romero JC.
Exogenous cGMP prevents decrease in diuresis and natriuresis induced by inhibition of NO synthesis.
Am J Physiol Renal Physiol
264:
F344–F347,
1993.
|
713. |
Suzuki H,
Ikenaga H,
Hishikawa K,
Nakaki T,
Kato R and
Saruta T.
Increases in NO2−/NO3− excretion in the urine as an indicator of the release of endothelium‐derived relaxing factor during elevation of blood pressure.
Clin Sci
82:
631–634,
1992.
|
714. |
Tolins JP and
Shultz PJ.
Endogenous nitric oxide synthesis determines sensitivity to the pressor effect of salt.
Kidney Int
46:
230–236,
1994.
|
715. |
Westberg G,
Shultz PJ and
Raij L.
Exogenous nitric oxide prevents endotoxin‐induced glomerular thrombosis in rats.
Kidney Int
46:
711–716,
1994.
|
716. |
Sigmon DH,
Carretero OA and
Beierwaltes WH.
Renal versus femoral hemodynamic response to endothelium‐derived relaxing factor synthesis inhibition.
J Vasc Res
30:
218–223,
1993.
|
717. |
Sonntag M,
Deussen A and
Schrader J.
Role of nitric oxide in local blood flow control in the anaesthetized dog.
Pflügers Arch
420:
194–199,
1992.
|
718. |
Deng X,
Welch WJ and
Wilcox CS.
Renal vasoconstriction during inhibition of NO synthase: Effects of dietary salt.
Kidney Int
46:
639–646,
1994.
|
719. |
Eisner D,
Muntze A,
Kromer EP and
Riegger GAJ.
Inhibition of synthesis of endothelium‐derived nitric oxide in conscious dogs: Hemodynamic, renal, and hormonal effects.
Am J Hypertens
5:
288–291,
1992.
|
720. |
Napathorn S,
Chaiyabutr N,
Buranakarl C,
Pansin P,
Pochanugool C,
Sridama V and
Sitprija V.
Effects of acute arginine loading on renal and systemic hemodynamics in dogs.
Nephron
60:
220–225,
1992.
|
721. |
Qiu C,
Engels K,
Samsell L and
Baylis C.
Renal effects of actue amino acid infusion in hypertension induced by chronic nitric oxide blockade.
Hypertension
25:
61–66,
1995.
|
722. |
Salazar FJ,
Alberola A,
Nakamura T and
Granger JP.
Role of nitric oxide in the renal hemodynamic response to a meat meal.
Am J Physiol Regul Integr Comp Physiol
267:
R1050–R1055,
1994.
|
723. |
Tolins JP and
Raij L.
Effects of amino acid infusion on renal hemodynamics: role of endothelium‐derived relaxing factor.
Hypertension
17:
1045–1051,
1991.
|
724. |
Tolins JP,
Shultz PJ,
Westberg G and
Raij L.
Renal hemodynamic effects of dietary protein in the rat: role of nitric oxide.
J Lab Clin Med
125:
228–236,
1995.
|
725. |
Moncada S,
Palmer RMJ and
Higgs EA.
Nitric oxide: physiology, pathophysiology, and pharmacology.
Pharmacol Rev
43:
109–142,
1991.
|
726. |
Ignarro LJ,
Lippton H,
Edwards JC,
Baricos WH,
Hyman AL,
Kadowitz PJ and
Gruetter CA.
Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S‐nitrosothiols as active intermediates.
J Pharmacol Exp Titer
218:
739–749,
1981.
|
727. |
Macias‐Nunez JF,
Garcia‐lglesias C,
Santos JC,
Snaz E and
Lopez‐Novoa JM.
Influence of plasma renin content, intrarenal angiotensin II. captopril. and calcium channel blockers on the vasoconstriction and renin release promoted by adenosine in the kidney.
J Lab Clin Med
106:
562–567,
1985.
|
728. |
Moncada S,
Palmer RMJ and
Higgs EA.
The discovery of nitric oxide as the endogenous nitrovasodilator.
Hypertension
12:
365–372,
1988.
|
729. |
Zatz R and
De Nucci G.
Effects of acute nitric oxide inhibition on rat glomerular microcirculation.
Am J Physiol Renal Physiol
261:
F360–F363,
1991.
|
730. |
DeNicola L,
Blantz RC and
Gabbai FB.
Nitric oxide and angiotensin II: glomerular and tubular interaction in the rat.
J Clin Investig
89:
1248–1256,
1992.
|
731. |
Deng A and
Baylis C.
Locally produced EDRF controls preglomerular resistance and ultrafiltration coefficient.
Am J Physiol Renal Physiol
264:
F212–F215,
1993.
|
732. |
Baylis C,
Mitruka B and
Deng A.
Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage.
J Clin Invest
90:
278–281,
1992.
|
733. |
Ohishi K,
Carmines PK,
Inscho EW and
Navar LG.
EDRF‐angiotensin II interactions in rat juxtamedullary afferent and efferent arterioles.
Am J Physiol Renal Physiol
263:
F900–F906,
1992.
|
734. |
Edwards RM and
Trizna W.
Modulation of glomerular arteriolar tone by nitric oxide synthase inhibitors.
J Am Soc Nephrol
4:
1127–1132,
1993.
|
735. |
Ito S,
Arima S,
Ren YL,
Juncos LA and
Carretero OA.
Endothelium‐derived relaxing factor/nitric oxide modulates angiotensin II action in the isolated microperfused rabbit afferent but not efferent arteriole.
J Clin Invest
91:
2012–2019,
1993.
|
736. |
Imig JD,
Gebremedhin D,
Harder DR and
Roman RJ.
Modulation of vascular tone in renal microcirculation by erythrocytes: role of EDRF.
Am J Physiol Heart Circ Physiol
264:
H190–H195,
1993.
|
737. |
Imig JD and
Roman RJ.
Nitric oxide modulates vascular tone in preglomerular arterioles.
Hypertension
19:
770–774,
1992.
|
738. |
Thompson A,
McGarry AE,
Valeri CR and
Lieberthal W.
Stroma‐free hemoglobin increases blood pressure and GFR in the hypotensive rat: role of nitric oxide.
J Appl Physiol
77:
2348–2354,
1994.
|
739. |
Gulbins E,
Hoffend J,
Zou AP,
Dietrich MS,
Schlottmann K,
Cavarape A and
Steinhausen M.
Endothelin and endothelium‐derived relaxing factor control of basal renovascular tone in hydronephrotic rat kidneys.
J Physiol (Lond)
469:
571–582,
1993.
|
740. |
Hoffend J,
Cavarape A,
Endlich K and
Steinhausen M.
Influence of endothelium‐derived relaxing factor on renal microvessels and pressure‐dependent vasodilation.
Am J Physiol Renal Physiol
265:
F285–F292,
1993.
|
741. |
Bachmann S,
Bosse HM and
Mundel P.
Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney.
Am J Physiol Renal Physiol
268:
F885–F898,
1995.
|
742. |
Tojo A,
Gross SS,
Zhang L,
Tisher CC,
Schmidt HHHW,
Wilcox CS and
Madsen KM.
Immunocytochemical localization of distinct isoforms of nitric oxide synthase in the juxtaglomerular apparatus of normal rat kidney.
J Am Soc Nephrol
4:
1438–1447,
1994.
|
743. |
Ito S and
Ren Y.
Evidence for the role of nitric oxide in macula densa control of glomerular hemodynamics.
J Clin Invest
92:
1093–1098,
1993.
|
744. |
Thorup C and
Persson AEG.
Macula densa derived nitric oxide in regulation of glomerular capillary pressure.
Kidney Int
49:
430–436,
1996.
|
745. |
Vallon V and
Thomson S.
Inhibition of local nitric oxide synthase increases homeostatic efficiency of tubuloglomerular feedback.
Am J Physiol Renal Physiol
269:
F892–F899,
1995.
|
746. |
Ichihara A,
Inscho EW,
Imig JD and
Navar LG.
Neuronal nitric oxide synthase modulates rat renal microvascular function.
Am J Physiol Renal Physiol
274:
F516–F524,
1998.
|
747. |
Ichihara A,
Imig JD,
Inscho EW and
Navar L.
Cyclooxygenase‐2 participates in tubular flow‐dependent afferent arteriolar tone: interaction with neuronal NOS.
Am J Physiol Renal Physiol
275:
F605–F612,
1998.
|
748. |
Ren Y,
Garvin JL and
Carretero OA.
Role of macula densa nitric oxide and cGMP int he regulation of tubuloglomerular feedback.
Kidney Int
58:
2053–2060,
2000.
|
749. |
Kramp R,
Fourmanoir P and
Caron N.
Endothelin resets renal blood flow autoregulatory efficiency during acute blockade of NO in the rat.
Am J Physiol Renal Physiol
281:
F1132–F1140,
2001.
|
750. |
Just A and
Arendshorst WJ.
Nitric oxide blunts myogenic autoregulation in rat renal but not skeletal muscle circulation via tubuloglomerular feedback.
J Physiol
569:
959–974,
2005.
|
751. |
Wang X and
Cupples WA.
Interaction between nitric oxide and renal myogenic autoregulation in normotensive and hypertensive rats.
Can J Physiol Pharmacol
79:
238–245,
2001.
|
752. |
Wang X,
Salevsky FC and
Cupples WA.
Nitric oxide, atrial natriuretic factor, and dynamic renal autoregulation.
Can J Physiol Pharmacol
11:
777–786,
1999.
|
753. |
Uhrenholt TR,
Schjerning J,
Vanhoutte PM,
Jensen BL and
Skott O.
Intercellular calcium signaling and nitric oxide feedback during constriction of rabbit renal afferent arterioles.
Am J Physiol Renal Physiol
292:
F1124–F1131,
2007.
|
754. |
Johnson RA and
Freeman RH.
Renin release in rats during blockade of nitric oxide synthesis.
Am J Physiol Regul Integr Comp Physiol
266:
R1723–R1729,
1994.
|
755. |
Sigmon DH,
Carretero OA and
Beierwaltes WH.
Angiotensin dependence of endothelium‐mediated renal hemodynamics.
Hypertension
20:
643–650,
1992.
|
756. |
Sigmon DH,
Carretero OA and
Beierwaltes WH.
Plasma renin activity and the renal response to nitric oxide synthesis inhibition.
J Am Soc Nephrol
3:
1288–1294,
1992.
|
757. |
Takenaka T,
Mitchell KD and
Navar LG.
Contribution of angiotensin II to renal hemodynamic and excretory responses to nitric oxide synthesis inhibition in the rat.
J Am Soc Nephrol
4:
1046–1053,
1993.
|
758. |
Alberola A,
Pinilla JM,
Quesada T,
Romero JC,
Salom MG and
Salazar FJ.
Role of nitric oxide in mediating renal response to volume expansion.
Hypertension
19:
780–784,
1992.
|
759. |
Manning RD, Jr.,
Hu L,
Mizelle HL and
Granger JP.
Role of nitric oxide in long‐term angiotensin II‐induced renal vasoconstriction.
Hypertension
21:
949–955,
1993.
|
760. |
Manning RD, Jr.,
Hu L,
Mizelle HL,
Montani J‐P and
Norton MW.
Cardiovascular responses to long‐term blockade of nitric oxide synthesis.
Hypertension
22:
40–48,
1993.
|
761. |
Baylis C,
Engels K,
Samsell L and
Harton P.
Renal effects of acute endothelial‐derived relaxing factor blockade are not mediated by angiotensin II.
Am J Physiol Renal Physiol
264:
F74–F78,
1993.
|
762. |
Sigmon DH and
Beierwaltes WH.
Angiotensin II: nitric oxide interaction and the distribution of blood flow.
Am J Physiol Regul Integr Comp Physiol
265:
R1276–R1283,
1993.
|
763. |
Beierwaltes WH and
Carretero OA.
Nonprostanoid endothelium‐derived factors inhibit renin release.
Hypertension
19
(suppl II):
II‐68–11‐73,
1992.
|
764. |
Sigmon DH,
Carretero OA and
Beierwaltes WH.
Endothelium‐derived relaxing factor regulates renin release in vivo.
Am J Physiol Renal Physiol
263:
F256–F261,
1992.
|
765. |
Gardes J,
Gonzalez MF,
Alhenc‐Gelas F and
Ménard J.
Influence of sodium diet on L‐NAME effects on renin release and renal vasoconstriction.
Am J Physiol Renal Physiol
267:
F798–F804,
1994.
|
766. |
Scholz H and
Kurtz A.
Involvement of endothelium‐derived relaxing factor in the pressure control of renin secretion from isolated perfused kidney.
J Clin Invest
91:
1088–1094,
1993.
|
767. |
Schricker K,
Bruna RD,
Hamann M and
Kurtz A.
Endothelium derived relaxing factor is involved in the pressure control of renin gene expression in the kidney.
Pflügers Arch
428:
261–268,
1994.
|
768. |
Bank N,
Aynedjian HS and
Khan GA.
Mechanism of vasoconstriction induced by chronic inhibition of nitric oxide in rats.
Hypertension
24:
322–328,
1994.
|
769. |
Kumagai K,
Suzuki H,
Ichikawa M,
Jimbo M,
Murakami M,
Ryuzaki M and
Saruta T.
Nitric oxide increases renal blood flow by interacting with the sympathetic nervous system.
Hypertension
24:
220–226,
1994.
|
770. |
Haynes WG and
Webb DJ.
Endothelin as a regulator of cardiovascular function in health and disease.
J Hypertens
16:
1081–1098,
1998.
|
771. |
Matsaki T.
The discovery, the present state, and the future prospects of endothelin.
J Cardiol Pharmacol
13
(Suppl. 5):
S1–S4,
1989.
|
772. |
Yanagisawa M and
Masaki T.
Endothelin, a novel endothelium‐derived peptide.
Biochem Pharmacol
38:
1877–1883,
1989.
|
773. |
King A,
Brenner BM and
Anderson S.
Endothelin: a potent renal and systemic vasoconstrictor peptide.
Am J Physiol
256:
F1051–F1058,
1989.
|
774. |
Kohan DE.
Endothelins in the kidney: physiology and pathophysiology.
Am J Kidney Dis
22:
493–510,
1993.
|
775. |
Rubanyi GM and
Polokoff MA.
Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology.
Pharmacol Rev
46:
325–415,
1994.
|
776. |
Simonson MS.
Endothelins: multifunctional renal peptides.
Physiol Rev
73:
375–487,
1993.
|
777. |
Simonson MS and
Dunn MJ.
Enodthelin peptides and the kidney.
Ann Rev Physiol
55:
249–265,
1993.
|
778. |
Karet FE and
Davenport AP.
Localization of endothelin peptides in human kidney.
Kidney Int
49:
382–387,
1996.
|
779. |
Marsden PA,
Dorfman DM,
Collins T,
Brenner BM,
Orkin SH and
Ballermann BJ.
Regulated expression of endothelin 1 in glomerular capillary endothelial cells.
Am J Physiol Renal Physiol
261:
F117–F125,
1991.
|
780. |
D'Orleans‐Juste P,
Plante M,
Honore JC,
Carrier E and
Labonte J.
Synthesis and degradation of endothelin‐1.
Can J Physiol Pharmacol
81:
503–510,
2003.
|
781. |
Dean R,
Zhuo J,
Alcorn D,
Casley D and
Mendelsohn FAO.
Cellular distribution of 125 I‐endothelin‐1 binding in rat kidney following in vivo labeling.
Am J Physiol Renal Physiol
267:
F845–F852,
1994.
|
782. |
Denton KM and
Anderson WP.
Vascular actions of endothelin in the rabbit kidney.
Clin Exp Pharmacol Physiol
17:
861–872,
1990.
|
783. |
Gellai M,
De Wolf R,
Pullen M and
Nambi P.
Distribution and functional role of renal ET receptor subtypes in normotensive and hypertensive rats.
Kidney Int
46:
1287–1294,
1994.
|
784. |
Pollock DM,
Jenkins JM,
Cook AK,
Imig JD and
Inscho EW.
L‐type calcium channels in the renal microcirculatory response to endothelin.
Am J Physiol Renal Physiol
288:
F771–F777,
2005.
|
785. |
Pollock DM and
Opgenorth TJ.
ETA receptor‐mediated responses to endothelin‐1 and big endothelin‐1 in the rat kidney.
Br J Pharmacol
111:
729–732,
1994.
|
786. |
Schulz E,
Ruschitzka F,
Lueders S,
Heydenbluth R,
Schrader J and
Muller GA.
Effects of endothelin on hemodynamics, prostaglandins, blood coagulation and renal function.
Kidney Int
47:
795–801,
1995.
|
787. |
Simonson MS and
Dunn MJ.
Cellular signaling by peptides of the endothelin gene family.
FASEB J
4:
2989–3000,
1990.
|
788. |
Wilkins FC, Jr.,
Alberola A,
Mizelle HL,
Opgenorth TJ and
Granger JP.
Systemic hemodynamics and renal function during long‐term pathophysiological increases in circulating endothelin.
Am J Physiol Regul Integr Comp Physiol
268:
R375–R381,
1995.
|
789. |
Clozel M,
Fischli W and
Guilly C.
Specific binding of endothelin on human vascular smooth muscle cells in culture.
J Clin Invest
83:
1758–1761,
1989.
|
790. |
Brooks DP,
DePalma PD,
PUllen M and
Nambi P.
Characterization of canine renal endothelin receptor subtypes and their function.
J Pharmacol Expl Ther
268:
1091–1097,
1994.
|
791. |
Maguire JJ,
Kuc RE,
O'Reilly G and
Davenport AP.
Vasoconstrictor endothelin receptors characterized in human renal artery and vein in vitro.
Br J Pharmacol
113:
49–54,
1994.
|
792. |
Nambi P,
PUllen M,
Wu HL,
Aiyar N,
Ohlstein EH and
Edwards RM.
Identification of endothelin receptor subtypes in human renal cortex and medulla using subtype‐selective ligands.
Endocrinology
131:
1081–1086,
1992.
|
793. |
Backer A,
Bokemeyer D and
Kramer HJ.
Endothelin synthesis and receptors in porcine kidney.
Acta Physiol Scand
171:
105–112,
2001.
|
794. |
Nambi P,
Wu HL,
PUllen M,
Aiyar N,
Bryan H and
Elliott J.
Identification of endothelin receptor subtypes in rat kidney cortex using subtype‐selective ligands.
Mol Pharmacol
42:
336–339,
1992.
|
795. |
DeLeon H and
Garcia R.
Characterization of endothelin receptor subtypes in isolated rat renal preglomerular microvessels.
Regul Pept
60:
1–8,
1995.
|
796. |
Edwards RM and
Trizna W.
Characterization of 1251‐endothelin‐1 binding to rat and rabbit renal microvasculature.
J Pharmacol Exp Ther
274:
1084–1089,
1995.
|
797. |
Hocher B,
Rohmeiss P,
Diekmann F,
Zart R,
Vogt V,
Schiller S,
Bauer C,
Koppenhagen K,
Distler A and
Gretz N.
Distribution of endothelin receptor subtypes in the rat kidney. Renal and haemodynamic effects of the mixed (A/B) endothelin receptor antagonist bosentan.
Eur J Clin Chem Clin Biochem
33:
463–472,
1995.
|
798. |
Yukimura T,
Notoya M,
Mizojiri K,
Mizuhira V,
Matsuura T,
Ebara T,
Miura K,
Kim S,
Iwao H and
Song K.
High resolution localization of endothelin receptors in rat renal medulla.
Kidney Int
50:
135–147,
1996.
|
799. |
Kuc RE and
Davenport AP.
Endothelin‐A‐receptors in human aorta and pulmonary arteries are downregulated in patients with cardiovascular disease: an adaptive response to increased levels of endothelin‐1?
J Cardiovasc Pharmacol
36:
S377–S379,
2000.
|
800. |
Telemaque‐Potts S,
Kuc RE,
Maguire JJ,
Ohlstein E,
Yanagisawa M and
Davenport AP.
Elevated systemic levels of endothelin‐1 and blood pressure correlate with blunted constrictor responses and downregulation of endothelin(A), but not endothelin(B), receptors in an animal model of hypertension.
Clin Sci (Lond)
103
(Suppl 48):
357S–362S,
2002.
|
801. |
Wang X,
Douglas SA,
Louden C,
Vickery‐Clark LM,
Feuerstein GZ and
Ohlstein EH.
Expression of endothelin‐1, endothelin‐3, endothelin‐converting enzyme‐1, and endothelin‐A and endothelin‐B receptor mRNA after angioplasty‐induced neointimal formation in the rat.
Circ Res
78:
322–328,
1996.
|
802. |
Redmond EM,
Cahill PA,
Hodges R,
Zhang S and
Sitzmann JV.
Regulation of endothelin receptors by nitric oxide in cultured rat vascular smooth muscle cells.
J Cell Physiol
166:
469–479,
1996.
|
803. |
Ballew JR and
Fink GD.
Role of endothelin ETB receptor activation in angiotensin II‐induced hypertension: effects of salt intake.
Am J Physiol Heart Circ Physiol
281:
H2218–H2225,
2001.
|
804. |
Eguchi S,
Hirata Y,
Imai T,
Kanno K and
Marumo F.
Phenotypic change of endothelin receptor subtype in cultured rat vascular smooth muscle cells.
Endocrinology
134:
222–228,
1994.
|
805. |
Douglas SA and
Ohlstein EH.
Signal transduction mechanisms mediating the vascular actions of endothelin.
J Vasc Res
34:
152–164,
1997.
|
806. |
Hughes AK,
Cline RC and
Kohan DE.
Alterations in renal endothelin‐1 production in the spontaneously hypertensive rat.
Hypertension
20:
666–673,
1992.
|
807. |
Kohan DE.
Intrarenal endothelin‐1 and hypertension.
Am J Kidney Dis
36:
liv–lvi,
2000.
|
808. |
Pollock DM.
Renal endothelin in hypertension.
Curr Opin Nephrol Hypertens
9:
157–164,
2000.
|
809. |
Takahashi K,
Katoh T, and
Badr K F.
Endothelin and endothelium‐derived relaxing factor in the control of glomerular filtration and renal blood flow.
1991,
p. 3–19.
|
810. |
Kohan DE.
The renal medullary endothelin system in control of sodium and water excretion and systemic blood pressure.
Curr Opin Nephrol Hypertens
15:
34–40,
2006.
|
811. |
Stricklett PK,
Hughes AK and
Kohan DE.
Endothelin‐1 stimulates NO production and inhibits cAMP accumulation in rat inner medullary collecting duct through independent pathways.
Am J Physiol Renal Physiol
290:
F1315–F1319,
2006.
|
812. |
Munger KA,
Takahashi K,
Awazu M,
Frazer M,
Falk SA,
Conger JD and
Badr KF.
Maintenance of endothelin‐induced renal arteriolar constriction in rats is cyclooxygenase dependent.
Am J Physiol Renal Physiol
264:
F637–F644,
1993.
|
813. |
Banks RO.
Effects of endothelin on renal function in dogs and rats.
Am J Physiol Renal Physiol
258:
F775–F780,
1990.
|
814. |
Claria J,
Jimenez W,
La Villa G,
Asbert M,
Castro A,
Llibre J,
Arroyo V and
Rivera F.
Effects of endothelin on renal haemodynamics and segmental sodium handling in conscious rats.
Acta Physiol Stand
141:
305–308,
1991.
|
815. |
Clavell AL,
Stingo AJ,
Margulies KB,
Brandt RR and
Burnett JC, Jr.
Role of endothelin receptor subtypes in the in vivo regulation of renal function.
Am J Physiol Renal Physiol
268:
F455–F460,
1995.
|
816. |
Denton KM,
Shweta A,
Finkelstein L,
Flower RL and
Evans RG.
Effect of endothelin‐1 on regional kidney blood flow and renal arteriole calibre in rabbits.
Clin Exp Pharmacol Physiol
31:
494–501,
2004.
|
817. |
Fretschner M,
Endlich K,
Gulbins E,
Lang RE,
Schlottmann K and
Steinhausen M.
Effects of endothelin on the renal microcirculation of the split hydronephrotic rat kidney.
Renal Physiol Biochem
14:
112–127,
1991.
|
818. |
Harris PJ,
Zhuo J,
Mendelsohn FAO and
Skinner SL.
Haemodynamic and renal tubular effects of low doses of endothelin in anesthetized rats.
J Physiol
433:
25–39,
1991.
|
819. |
Katoh T,
Chang H,
Uchida S,
Okuda T and
Kurokawa K.
Direct effects of endothelin in the rat kidney.
Am J Physiol Renal Physiol
258:
F397–F402,
1990.
|
820. |
Lin H,
Sangmal M,
Smith MJ, Jr. and
Young DB.
Effect of endothelin‐1 on glomerular hydraulic pressure and renin release in dogs.
Hypertension
21:
845–851,
1993.
|
821. |
Loutzenhiser R,
Epstein M,
Hayashi K and
Horton C.
Direct visualization of effects of endothelin on the renal microvasculature.
Am J Physiol Renal Physiol
258:
F61–F68,
1990.
|
822. |
Stacy DL,
Scott JW and
Granger JP.
Control of renal function during intrarenal infusion of endothelin.
Am J Physiol Renal Physiol
258:
F1232–F1236,
1990.
|
823. |
Tsuchiya K,
Naruse M,
Sanaka T,
Naruse K,
Nitta K,
Demura H and
Sugino N.
Effects of endothelin on renal regional blood flow in dogs.
Eur J Pharmacol
166:
541–543,
1989.
|
824. |
Yamashita Y,
Yukimura T,
Miura K,
Okumura M and
Yamamoto K.
Effects of endothelin‐3 on renal functions.
J Pharmacol Exp Ther
259:
1256–1260,
1992.
|
825. |
Goetz KL,
Want BC,
Madwed JB,
Zhu JL and
Leadley RJ, Jr.
Cardiovascular, renal, and endocrine responses to intravenous endothelin in conscious dogs.
Am J Physiol
255:
R1064–R1068,
1988.
|
826. |
Matsumura Y,
Hisaki K,
Ohyama T,
Hayashi K and
Morimoto S.
Effects of endothelin on renal function and renin secretion in anesthetized rats.
Eur J Pharmacol
166:
577–580,
1989.
|
827. |
Murakawa K,
Kohno M,
Yokokawa K,
Yasunari K,
Horio T,
Kurihara N and
Takeda T.
Endothelin‐induced renal vasoconstriction and increase in cytosolic calcium in renal vascular smooth muscle cells.
Clin Exper Theor Pract
12:
1037–1048,
1990.
|
828. |
Pernow J,
Boutier JF,
Franco‐Cereceda A,
Lacroix JS,
Matran R and
Lundberg JM.
Potent selective vasoconstrictor effects of endothelin in the pig kidney in vivo.
Acta Physiol Scand
134:
573–574,
1988.
|
829. |
Pollock DM and
Opgenorth TJ.
Evidence for endothelin‐induced renal vasoconstriction independent of ETA receptor activation.
Am J Physiol
264:
R222–R226,
1993.
|
830. |
Rabelink TJ,
Kaasjager KAH,
Boer P,
Stroes EG,
Braam B and
Koomans HA.
Effects of endothelin‐1 on renal function in humans: Implications for physiology and pathophysiology.
Kidney Int
46:
376–381,
1994.
|
831. |
Evans RG,
Madden AC and
Cotterill E.
ET‐receptor subtypes: roles in regional renal vascular actions of exogenous and endogenous endothelins in anesthetized rabbits.
J Cardiovasc Pharmacol
35:
677–685,
2000.
|
832. |
Evans RG,
Madden AC,
Oliver JJ and
Lewis TV.
Effects of ETA‐and ETB‐receptor antagonists on regional kidney blood flow, and responses to intravenous endothelin‐1, in anaesthetized rabbits.
J Hypertens
19:
1789–1799,
2001.
|
833. |
Just A,
Olson AJ and
Arendshorst WJ.
Dual constrictor and dilator actions of ET(B) receptors in the rat renal microcirculation: interactions with ET(A) receptors.
Am J Physiol Renal Physiol
286:
F660–F668,
2004.
|
834. |
Matsuura T,
Miura K,
Ebara T,
Yukimura T,
Yamanaka S,
Kim S and
Iwao H.
Renal vascular effects of the selective endothelin receptor antagonists in anaesthetized rats.
Br J Pharmacol
122:
81–86,
1997.
|
835. |
Matsuura T,
Yukimura T,
Kim S,
Miura K and
Iwao H.
Selective blockade of endothelin receptor subtypes on systemis and renal vascular responses to endothelin‐1 and IRL1620, a selective endothelin ETB‐receptor agonist, in anesthetized rats.
Japn J Pharmacol
71:
213–222,
1996.
|
836. |
Cristol JP,
Warner TD,
Thiemermann C and
Vane JR.
Mediation via different receptors of the vasoconstrictor effects of endothelins and sarafotoxins in the systemic circulation and renal vasculature of the anaesthetized rat.
Br J Pharmacol
108:
776–779,
1993.
|
837. |
Gellai M.
Physiological role of endothelin in cardiovascular and renal hemodynamics: studies in animals.
Curr Opinn Nephrol Hypertens
6:
64–68,
1997.
|
838. |
Gellai M,
Fletcher T,
PUllen M and
Nambi P.
Evidence for the existence of endothelin‐B receptor subtypes and their physiological roles in the rat.
Am J Physiol
271:
R254–R261,
1996.
|
839. |
Wellings RP,
Corder R,
Warner TD,
Cristol JP,
Thiemermann C and
Vane JR.
Evidence from receptor antagonists of an important role for ETB receptor‐mediated vasoconstrictor effects of endothelin‐1 in the rat kidney.
Br J Pharmacol
111:
515–520,
1994.
|
840. |
Abassi Z,
Francis B,
Wessale J,
Ovcharenko E,
Winaver J and
Hoffman A.
Effects of endothelin receptors ET(A) and ET(B) blockade on renal haemodynamics in normal rats and in rats with experimental congestive heart failure.
Clin Sci (Land)
103
(Suppl 48):
245S–248S,
2002.
|
841. |
Abassi ZA,
Ellahham S,
Winaver J and
Hoffman A.
The intrarenal endothelin system and hypertension.
News Physiol Sci
16:
152–156,
2001.
|
842. |
D'Orleans‐Juste P,
Claing A,
Telemaque S,
Maurice M‐C,
Yano M and
Gratton J‐P.
Block of endothelin‐1‐induced release of thromboxane A2 from the guinea pig lung and nitric oxide from the rabbit kidney by a selective ETB receptor antagonist, BQ‐788.
Br J Pharmacol
113:
1258–1262,
2004.
|
843. |
Gellai M,
De Wolf R,
Fletcher T and
Nambi P.
Contribution of endogenous endothelin‐1 to the maintenance of vascular tone: role of nitric oxide.
Pharmacology
55:
299–308,
1997.
|
844. |
Marshall JL and
Johns EJ.
Influence of endothelins and sarafotoxin 6c and L‐NAME on renal vasoconstriction in the anesthetized rat.
Br J Pharmacol
128:
809–815,
1999.
|
845. |
Bohm F,
Pernow J,
Lindstrom J and
Ahlborg G.
ETA receptors mediate vasoconstriction, whereas ETB receptors clear endothelin‐1 in the splanchnic and renal circulation of healthy men.
Clin Sci(Lond)
104:
143–151,
2003.
|
846. |
Fukuroda T,
Fujikawa T,
Ozaki S,
Ishikawa K,
Yano M and
Nishikibe M.
Clearance of circulating endothelin‐1 by ETB receptors in rats.
Biochem Biophys Res Commun
199:
1461–1465,
1994.
|
847. |
Oyekan AO and
McGiff JC.
Cytochrome P‐450‐derived eicosanoids participate in the renal functional effects of ET‐1 in the anesthetized rat.
Am J Physiol
274:
R52–R61,
1998.
|
848. |
Imig JD,
Pham BT,
LeBlanc EA,
Reddy KM,
Falck JR and
Inscho EW.
Cytochrome P450 and cyclooxygenase metabolites contribute to the endothelin‐1 afferent arteriolar vasoconstrictor and calcium responses.
Hypertension
35:
307–312,
2000.
|
849. |
Berthold H,
Münter K,
Just A,
Kirchheim HR and
Ehmke H.
Stimulation of the renin‐angiotensin system by endothelin subtype A receptor blockade in conscious dogs.
Hypertension
33:
1420–1424,
1999.
|
850. |
Girchev R,
Backer A,
Markova P and
Kramer HJ.
Impaired response of the denervated kidney to endothelin receptor blockade in normotensive and spontaneously hypertensive rats.
Kidney Int
65:
982–989,
2004.
|
851. |
Girchev R,
Backer A,
Markova P and
Kramer HJ.
Renal endothelin system and excretory function in Wistar‐Kyoto and Long‐Evans rats.
Acta Physiol (Oxf)
186:
67–76,
2006.
|
852. |
Berthold H,
Münter K,
Just A,
Kirchheim HR and
Ehmke H.
Contribution of endothelin to renal vascular tone and autoregulation in the conscious dog.
Am J Physiol Renal Physiol
276:
F417–F424,
1999.
|
853. |
Honing MLH,
Hijmering ML,
Ballard DE,
Yang YP,
Padley RJ,
Morrison PJ and
Rabelink TJ.
Selective ETA receptor antagonism with ABT‐627 atteuates all renal effects of endothelin in humans.
J Am Soc Nephrol
11:
1498–1504,
2000.
|
854. |
Schmetterer L,
Dallinger S,
Bobr B,
Selenko N,
Eichler HG and
Wolzt M.
Systemic and renal effects of an ETA receptor subtype‐specific antagonist in healthy subjects.
Br J Pharmacol
124:
930–934,
1998.
|
855. |
Schmidt A,
Bayerle‐Eder M,
Pleiner H,
Zeisner C,
Wolzt M,
Mayer G and
Schmetterer L.
The renal and systemic hemodynamic effects of a nitric oxide‐synthase inhibitor are reversed by a selective endothelin(a) receptor antagonist in men.
Nitric Oxide
5:
370–376,
2001.
|
856. |
Dhaun N,
Goddard J and
Webb DJ.
The endothelin system and its antagonism in chronic kidney disease.
J Am Soc Nephrol
17:
943–955,
2006.
|
857. |
Goddard J,
Eckhart C,
Johnston NR,
Cumming AD,
Rankin AJ and
Webb DJ.
Endothelin A receptor antagonism and angiotensin‐converting enzyme inhibition are synergistic via an endothelin B receptor‐mediated and nitric oxide‐dependent mechanism.
J Am Soc Nephrol
15:
2601–2610,
2004.
|
858. |
Kaasjager KAH,
Shaw S,
Koomans HA and
Rabelink TJ.
Role of endothelin receptor subtypes in the systemic and renal responses to endothelin‐1 in humans.
J Am Soc Nephrol
8:
32–39,
1997.
|
859. |
Gurbanov K,
Rubinstein I,
Hoffman A,
Abassi Z,
Better OS and
Winaver J.
Bosentan improves renal regional blood flow in rats with experimental congestive heart failure.
Eur J Pharmacol
310:
193–196,
1996.
|
860. |
Gurbanov K,
Rubinstein I,
Hoffman A,
Abassi Z,
Better OS and
Winaver J.
Differential regulation of renal regional blood flow by endothelin‐1.
Am J Physiol Renal Physiol
271:
F1166–F1172,
1996.
|
861. |
Rubinstein I,
Gurbanov K,
Hoffman A,
Better OS and
Winaver J.
Differential effect of endothelin‐1 on renal regional blood flow: role of nitric oxide.
J Cardiovasc Pharmacol
26:
S208–S210,
1995.
|
862. |
Chan DP,
Clavell A,
Keiser J and
Burnett JC, Jr.
Effects of renin‐angiotensin system in mediating endothelin‐induced renal vasoconstriction: therapeutic implications.
J Hypertens
12
(suppl 4):
S43–S49,
1994.
|
863. |
Kaasjager KAH,
Koomans HA and
Rabelink TJ.
Effectiveness of enalapril versus nifedipine to antagonize blood pressure and the renal response to endothelin in humans.
Hypertension
25
(part 1):
620–625,
1995.
|
864. |
Ritthaler T,
Delia BR,
Kramer BK and
Kurtz A.
Endothelins inhibit cyclic‐AMP induced renin gene expression in cultured mouse juxtaglomerular cells.
Kidney Int
50:
108–115,
1996.
|
865. |
Ritthaler T,
Scholz H,
Ackermann M,
Riegger G,
Kurtz A and
Kramer BK.
Effects of endothelins on renin secretion from isolated mouse renal juxtaglomerular cells.
Am J Physiol Renal Physiol
268:
F39–F45,
1995.
|
866. |
Riggleman A,
Harvey J and
Baylis C.
Endothelin mediates some of the renal actions of acutely administered angiotensin II.
Hypertension
38:
105–109,
2001.
|
867. |
Saito M,
Homma S,
Yamatsu I,
Sato M and
Ohshima N.
Visualization of renal microcirculation in isolated Munich‐Wistar rat kidneys: Effects of endothelin‐1 on renal hemodynamic activity.
Jpn J Pharmacol
66:
221–229,
1994.
|
868. |
Heller J,
Kramer HJ and
Horacek V.
Action of endothelin‐1 on glomerular haemodynamics in the dog: lack of direct effects on glomerular ultrafiltration coefficient.
Clin Sci
90:
385–391,
1996.
|
869. |
Takabatake T,
Ise T,
Ohta K and
Kobayashi K‐I.
Effects of endothelin on renal hemodynamics and tubuloglomerular feedback.
Am J Physiol Renal Physiol
263:
F103–F108,
1992.
|
870. |
Qiu C,
Samsell L and
Baylis C.
Actions of endogenous endothelin on glomerular hemodynamics in the rat.
Am J Physiol Regul Integr Comp Physiol
269:
R469–R473,
1995.
|
871. |
Qiu C and
Baylis C.
Endothelin and angiotensin mediate most glomerular responses to nitric oxide inhibition.
Kidney Int
55:
2390–2396,
1999.
|
872. |
Lanese DM,
Yuan BH,
McMurtry IF and
Conger JD.
Comparative sensitivities of isolated rat renal arterioles to endothelin.
Am J Physiol Renal Physiol
263:
F894–F899,
1992.
|
873. |
Edwards RM,
Trizna W and
Ohlstein EH.
Renal microvascular effects of endothelin.
Am J Physiol Renal Physiol
259:
F217–F221,
1990.
|
874. |
Ozawa Y,
Hasegawa T,
Tsuchiya K,
Yoshizumi M and
Tamaki T.
Effect of endothelin‐1 (1‐31) on the renal resistance vessels.
J Med Invest
50:
87–94,
2003.
|
875. |
Gandley RE,
Conrad KP and
McLaughlin MK.
Endothelin and nitric oxide mediate reduced myogenic reactivity of small renal arteries from pregnant rats.
Am J Physiol Regul Integr Comp Physiol
280:
R1–R7,
2001.
|
876. |
Silldorff EP,
Yang S and
Pallone TL.
Prostaglandin E2 abrogates endothelin induced vasoconstriction in renal outer medullary descending vasa recta of the rat.
J Clin Invest
95:
2734–2740,
1995.
|
877. |
Inscho EW,
Imig JD,
Cook AK and
Pollock DM.
ETA and ETB receptors differentially modulate afferent and efferent arteriolar responses to endothelin.
Br J Pharmacol
146:
1019–1026,
2005.
|
878. |
Schneider MP,
Inscho EW and
Pollock DM.
Attenuated vasoconstrictor responses to endothelin in afferent arterioles during a high‐salt diet.
Am J Physiol Renal Physiol
292:
F1208–F1214,
2007.
|
879. |
Cavarape A and
Bartoli E.
Effects of BQ‐123 on systemic and renal hemodynamic responses to endothelin‐1 in the rat split hydronephrotic kidney.
J Hypertens
16:
1449–1458,
1998.
|
880. |
Cavarape A,
Endlich K,
Feletto F,
Parekh N,
Bartoli E and
Steinhausen M.
Contribution of endothelin receptors in renal microvessels in acute cyclosporine‐mediated vasoconstriction in rats.
Kidney Int
53:
963–969,
1998.
|
881. |
Endlich K,
Hoffend J and
Steinhausen M.
Localization of endothelin ETA and ETB receptor‐mediated constriction in the renal microcirculation of rats.
J Physiol (Lond)
497:
211–218,
1996.
|
882. |
Cavarape A,
Endlich N,
Assaloni R,
Bartoli E,
Steinhausen M,
Parekh N and
Endlich K.
Rho‐kinase inhibition blunts renal vasoconstriction induced by distinct signaling pathways in vivo.
J Am Soc Nephrol
14:
37–45,
2003.
|
883. |
Fellner SK and
Arendshorst WJ.
Endothelin A and B receptors of preglomerular vascular smooth muscle cells.
Kidney Int
65:
1810–1817,
2004.
|
884. |
Takenaka T,
Epstein M,
Forster H,
Landry DW,
Iijima K and
Goligorsky MS.
Attenuation of endothelin effects by a chloride channel inhibitor, indanyloxyacetic acid.
Am J Physiol Renal Physiol
262:
F799–F806,
1992.
|
885. |
Ito S,
Juncos LA,
Nushiro N,
Johnson CS and
Carretero OA.
Endothelium‐derived relaxing factor modulates endothelin action in afferent arterioles.
Hypertension
17:
1052–1056,
1991.
|
886. |
Cao LQ and
Banks RO.
Cardiovascular and renal actions of endothelin: effects of calcium‐channel blockers.
Am J Physiol
258:
F254–F258,
1990.
|
887. |
Yukimura T,
Miura K,
Yamashita Y,
Shimmen T,
Okumura M,
Yamanaka S,
Saito M and
Yamamoto K.
Effects of the calcium channel antagonist nicardipine on renal action of endothelin in dogs.
Contrib Nephrol
90:
105–110,
1991.
|
888. |
Thai TL,
Fellner SK and
Arendshorst WJ.
ADP‐ribosyl cyclase and ryanodine receptor activity contribute to basal renal vasomotor tone and agonist‐induced renal vasoconstriction in vivo.
Am J Physiol Renal Physiol
293:
F1107–F1114,
2007.
|
889. |
Conrad KP,
Gandley RE,
Ogawa T,
Nakanishi S and
Danielson LA.
Endothelin mediates renal vasodilation and hyperfiltration during pregnancy in chronically instrumented conscious rats.
Am J Physiol
276:
F767–F776,
1999.
|
890. |
Edwards RM,
PUllen M and
Nambi P.
Activation of endothelin ETB receptors increases glomerular cGMP via an L‐arginine‐dependent pathway.
Am J Physiol Renal Physiol
263:
F1020–F1025,
1992.
|
891. |
Matsuo G,
Matsumura Y,
Tadano K,
Hashimoto T and
Morimoto S.
Effects of sarafotoxin S6c on renal haemodynamics and urine formation in anaesthetized dogs.
Clin Exp Pharmacol Physiol
24:
487–491,
1997.
|
892. |
Abraham NG and
Kappas A.
Heme oxygenase and the cardiovascular‐renal system.
Free Radic Biol Med
39:
1–25,
2005.
|
893. |
Johnson RA,
Lavesa M,
Askari B,
Abraham NG and
Nasjletti A.
A heme oxygenase product, presumably carbon monoxide, mediates a vasodepressor function in rats.
Hypertension
25:
166–169,
1995.
|
894. |
Kozma F,
Johnson RA,
Zhang F,
Yu C,
Tong X and
Nasjletti A.
Contribution of endogenous carbon monoxide to regulation of diameter in resistance vessels.
Am J Physiol
276:
R1087–R1094,
1999.
|
895. |
Marks GS,
Brien JF,
Nakatsu K and
McLaughlin BE.
Does carbon monoxide have a physiological function?
Trends Pharmacol Sci
12:
185–188,
1991.
|
896. |
Morita T,
Perrella MA,
Lee ME and
Kourembanas S.
Smooth muscle cell‐derived carbon monoxide is a regulator of vascular cGMP.
Proc Natl Acad Sci USA
92:
1475–1479,
1995.
|
897. |
Wang R,
Wu L and
Wang Z.
The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells.
Pflugers Arch
434:
285–291,
1997.
|
898. |
Tenhunen R,
Marver HS and
Schmid R.
Microsomal heme oxygenase. Characterization of the enzyme.
J Biol Chem
244:
6388–6394,
1969.
|
899. |
Da Silva J‐L,
Zand BA,
Yang LM,
Sabaawy HE,
Lianos E and
Abraham NG.
Heme oxygenase isoform‐specific expression and distribution in the rat kidney.
Kidney Int
59:
1448–1457,
2001.
|
900. |
Hill‐Kapturczak N,
Chang SH and
Agarwal A.
Heme oxygenase and the kidney.
DNA Cell Biol
21:
307–321,
2002.
|
901. |
Maines MD.
The heme oxygenase system: a regulator of second messenger gases.
Annu Rev Pharmacol Toxicol
37:
517–554,
1997.
|
902. |
Maines MD,
Trakshel GM and
Kutty RK.
Characterization of two constitutive forms of rat liver microsomal heme oxygenase, Only one molecular species of the enzyme is inducible.
J Biol Chem
261:
411–419,
1986.
|
903. |
Zhang F,
Kaide JI,
Rodriguez‐Mulero F,
Abraham NG and
Nasjletti A.
Vasoregulatory function of the heme‐heme oxygenase‐carbon monoxide system.
Am J Hypertens
14:
62S–67S,
2001.
|
904. |
Kaide J,
Zhang F,
Wei Y,
Wang W,
Gopal VR,
Falck JR,
Laniado‐Schwartzman M and
Nasjletti A.
Vascular CO counterbalances the sensitizing influence of 20‐HETE on agonist‐induced vasoconstriction.
Hypertension
44:
210–216,
2004.
|
905. |
Johnson FK,
Teran FJ,
Prieto‐Carrasquero M and
Johnson RA.
Vascular effects of a heme oxygenase inhibitor are enhanced in the absence of nitric oxide.
Am J Hypertens
15:
1074–1080,
2002.
|
906. |
Rodriguez F,
Kemp R,
Balazy M and
Nasjletti A.
Effects of exogenous heme on renal function: role of heme oxygenase and cyclooxygenase.
Hypertension
42:
680–684,
2003.
|
907. |
Stec DE,
Mattson DL and
Roman RJ.
Inhibition of renal outer medullary 20‐HETE production produces hypertension in Lewis rats.
Hypertension
29
[part 2]:
315–319,
1997.
|
908. |
Rodriguez F,
Zhang F,
Dinocca S and
Nasjletti A.
Nitric oxide synthesis influences the renal vascular response to heme oxygenase inhibition.
Am J Physiol Renal Physiol
284:
F1255–F1262,
2003.
|
909. |
Yang L,
Quan S,
Nasjletti A,
Laniado‐Schwartzman M and
Abraham NG.
Heme oxygenase‐1 gene expression modulates angiotensin II‐induced increase in blood pressure.
Hypertension
43:
1221–1226,
2004.
|
910. |
Aizawa T,
Ishizaka N,
Taguchi J,
Nagai R,
Mori I,
Tang SS,
Ingelfinger JR and
Ohno M.
Heme oxygenase‐1 is upregulated in the kidney of angiotensin II‐induced hypertensive rats : possible role in renoprotection.
Hypertension
35:
800–806,
2000.
|
911. |
Arregui B,
Lopez B,
Garcia SM,
Valero F,
Navarro C and
Fenoy FJ.
Acute renal hemodynamic effects of dimanganese decacarbonyl and cobalt protoporphyrin.
Kidney Int
65:
564–574,
2004.
|
912. |
O'Donaughy TL and
Walker BR.
Renal vasodilatory influence of endogenous carbon monoxide in chronically hypoxic rats.
Am J Physiol Heart Circ Physiol
279:
H2908–H2915,
2000.
|
913. |
Zou AP,
Billington H,
Su N and
Cowley AW, Jr.
Expression and actions of heme oxygenase in the renal medulla of rats.
Hypertension
35:
342–347,
2000.
|
914. |
Li N,
Yi F,
dos Santos EA,
Donley DK and
Li PL.
Role of Renal Medullary Heme Oxygenase in the Regulation of Pressure Natriuresis and Arterial Blood Pressure.
Hypertension
45,
2006.
|
915. |
Johnson FK and
Johnson RA.
Carbon monoxide promotes endothelium‐dependent constriction of isolated gracilis muscle arterioles.
Am J Physiol Regul Integr Comp Physiol
285:
R536–R541,
2003.
|
916. |
Botros FT and
Navar LG.
Interaction between endogenously‐produced carbon monoxide and nitric oxide in regulation of renal afferent arterioles.
Am J Physiol Heart Circ Physiol,
2006.
|
917. |
Droge W.
Free radicals in the physiological control of cell function.
Physiol Rev
82:
47–95,
2002.
|
918. |
Clempus RE and
Griendling KK.
Reactive oxygen species signaling in vascular smooth muscle cells.
Cardiovasc Res
71:
216–225,
2006.
|
919. |
Eiserich JP,
Patel RP and
O'Donnell VB.
Pathophysiology of nitric oxide and related species: free radical reactions and modification of biomolecules.
Mol Asp Med
19:
221–357,
1998.
|
920. |
Taniyama Y and
Griendling KK.
Reactive oxygen species in the vasculature: molecular and cellular mechanisms.
Hypertension
42:
1075–1081,
2003.
|
921. |
Majid DS and
Kopkan L.
Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt‐sensitive hypertension.
Clin Exp Pharmacol Physiol
34:
946–952,
2007.
|
922. |
Schnackenberg CG.
Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature.
Am J Physiol Regul Integr Comp Physiol
282:
R335–R342,
2002.
|
923. |
Chen Y,
Gill PS and
Welch WJ.
Oxygen availability limits renal NADPH‐dependent superoxide production.
Am J Physiol Renal Physiol
289:
F749–F753,
2005.
|
924. |
Zou A‐P,
Li N and
Cowley AW,
Jr. Production and actions of superoxide in the renal medulla.
Hypertension
37:
547–553,
2001.
|
925. |
Majid DS and
Nishiyama A.
Nitric oxide blockade enhances renal responses to superoxide dismutase inhibition in dogs.
Hypertension
39:
293–297,
2002.
|
926. |
Majid DS,
Nishiyama A,
Jackson KE and
Castillo A.
Superoxide scavenging attenuates renal responses to ANG II during nitric oxide synthase inhibition in anesthetized dogs.
Am J Physiol Renal Physiol
288:
F412–F419,
2005.
|
927. |
Just A,
Olson AJ,
Whitten CL and
Arendshorst WJ.
Superoxide mediates acute renal vasoconstriction produced by angiotensin II and catecholamines by a mechanism independent of nitric oxide.
Am J Physiol Heart Circ Physiol
292:
H83–H92,
2007.
|
928. |
Griendling KK and
Ushio‐Fukai M.
Reactive oxygen species as mediators of angiotensin II signaling.
Regul Pept
91:
21–27,
2000.
|
929. |
Haque MZ and
Majid DS.
Assessment of Renal Functional Phenotype in Mice Lacking gp91PHOX Subunit of NAD(P)H Oxidase.
Hypertension
43:
335–340,
2004.
|
930. |
Kopkan L,
Castillo A,
Navar LG and
Majid DS.
Enhanced superoxide generation modulates renal function in ANG II‐induced hypertensive rats.
Am J Physiol Renal Physiol
290:
F80–F86,
2006.
|
931. |
Kopkan L and
Majid DS.
Superoxide contributes to development of salt sensitivity and hypertension induced by nitric oxide deficiency.
Hypertension
46:
1026–1031,
2005.
|
932. |
Lopez B,
Salom MG,
Arregui B,
Valero F and
Fenoy FJ.
Role of superoxide in modulating the renal effects of angiotensin II.
Hypertension
42:
1150–1156,
2003.
|
933. |
Reckelhoff JF and
Romero JC.
Role of oxidative stress in angiotensin‐induced hypertension.
Am J Physiol Regul Integr Comp Physiol
284:
R893–R912,
2003.
|
934. |
Wilcox CS.
Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension?
Am J Physiol Regul Integr Comp Physiol
289:
R913–R935,
2005.
|
935. |
Fellner SK and
Arendshorst W.
Endothelin‐A and ‐B receptors, superoxide, and Ca2+ signaling in afferent arterioles.
Am J Physiol Renal Physiol
292:
F175–F184,
2007.
|
936. |
Fellner SK and
Arendshorst WJ.
Angiotensin II, reactive oxygen species, and Ca2+ signaling in afferent arterioles.
Am J Physiol Renal Physiol
289:
F1012–F1019,
2005.
|
937. |
Fellner SK and
Arendshorst WJ.
Angiotensin II Ca2+ signaling in rat afferent arterioles: stimulation of cyclic ADP ribose and IP3 pathways.
Am J Physiol Renal Physiol
288:
F785–F791,
2005.
|
938. |
Geiger J,
Zou AP,
Campbell WB and
Li PL.
Inhibition of cADP‐ribose formation produces vasodilation in bovine coronary arteries.
Hypertension
35:
397–402,
2000.
|
939. |
Liu Y and
Gutterman DD.
Oxidative stress and potassium channel function.
Clin Exp Pharmacol Physiol
29:
305–311,
2002.
|
940. |
Gao YJ and
Lee RM.
Hydrogen peroxide induces a greater contraction in mesenteric arteries of spontaneously hypertensive rats through thromboxane A(2) production.
Br J Pharmacol
134:
1639–1646,
2001.
|
941. |
Schnackenberg CG,
Welch WJ and
Wilcox CS.
TP receptor‐mediated vasoconstriction in microperfused afferent arterioles: Roles of O2− and NO.
Am J Physiol Renal Physiol
279:
F302–F308,
2000.
|
942. |
Cai H,
Li Z,
Dikalov S,
Holland SM,
Hwang J,
Jo H,
Dudley SC, Jr. and
Harrison DG.
NAD(P)H oxidase‐derived hydrogen peroxide mediates endothelial nitric oxide production in response to angiotensin II.
J Biol Chem
277:
48311–48317,
2002.
|
943. |
Liu R,
Ren Y,
Garvin JL and
Carretero OA.
Superoxide enhances tubuloglomerular feedback by constricting the afferent arteriole.
Kidney Int
66:
268–274,
2004.
|
944. |
Welch WJ,
Tojo A and
Wilcox CS.
Roles of NO and oxygen radicals in tubuloglomerular feedback in SHR.
Am J Physiol Renal Physiol
278:
F769–F776,
2000.
|
945. |
Huie RE and
Padmaja S.
The reaction of NO with superoxide.
Free Radic Res Commun
18:
195–199,
1993.
|
946. |
Fray JCS.
Regulation of renin secretion by calcium and chemiosmotic forces: (patho)physiological considerations.
Biochimica et Biophysica Acta
1097:
243–262,
1991.
|
947. |
King JA,
Lush DJ and
Fray JCS.
Regulation of renin processing and secretion: chemiosmotic control and novel secretory pathway.
Am J Physiol‐Cell Physiol
265:
C305–C320,
1993.
|
948. |
Skott O and
Jensen BL.
Cellular and intrarenal control of renin secretion.
Clin Sci
84:
1–10,
1993.
|
949. |
Wilkes BM,
Mento PF,
Pearl AR,
Hollander AM,
Mossey RT,
Bellucci A,
Bluestone PA and
Mailloux LU.
Plasma angiotensins in anephric humans: evidence for an extrarenal angiotensin system.
J Cardiovasc Pharmacol
17:
419–423,
1991.
|
950. |
Crackower MA,
Sarao R,
Oudit GY,
Yagil C,
Kozieradzki I,
Scanga SE,
Oliveira‐dos‐Santos AJ,
da Costa J,
Zhang L,
Pei Y,
Scholey J,
Ferrario CM,
Manoukian AS,
Chappell MC,
Backx PH,
Yagil Y and
Penninger JM.
Angiotensin‐converting enzyme 2 is an essential regulator of heart function.
Nature
417:
822–828,
2002.
|
951. |
Donoghue M,
Hsieh F,
Baronas E,
Godbout K,
Gosselin M,
Stagliano N,
Donovan M,
Woolf B,
Robison K,
Jeyaseelan R,
Breitbart RE and
Acton S.
A novel angiotensin‐converting enzyme‐related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1‐9,
Circ Res
87:
E1–E9,
2000.
|
952. |
Elased KM,
Cunha TS,
Gurley SB,
Coffman TM and
Morris M.
New mass spectrometric assay for angiotensin‐converting enzyme 2 activity.
Hypertension
47:
1010–1017,
2006.
|
953. |
Gurley SB,
Allred A,
Le TH,
Griffiths R,
Mao L,
Philip N,
Haystead TA,
Donoghue M,
Breitbart RE,
Acton SL,
Rockman HA and
Coffman TM.
Altered blood pressure responses and normal cardiac phenotype in ACE2‐null mice.
J Clin Invest
116:
2218–2225,
2006.
|
954. |
Lely AT,
Hamming I,
van Goor H and
Navis GJ.
Renal ACE2 expression in human kidney disease.
J Pathol
204:
587–593,
2004.
|
955. |
Lush DJ,
King JA and
Fray JCS.
Pathophysiology of low renin syndromes: sites of renal renin secretory impairment and prorenin overexpression.
Kidney Int
43:
983–999,
1993.
|
956. |
Nguyen G,
Delarue F,
Burckle C,
Bouzhir L,
Giller T and
Sraer JD.
Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin.
J Clin Invest
109:
1417–1427,
2002.
|
957. |
Ichihara A,
Suzuki F,
Nakagawa T,
Kaneshiro Y,
Takemitsu T,
Sakoda M,
Nabi AH,
Nishiyama A,
Sugaya T,
Hayashi M and
Inagami T.
Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor‐deficient mice.
J Am Soc Nephrol
17:
1950–1961,
2006.
|
958. |
Ganong WF.
Origin of the angiotensin II secreted by cells.
P S E B M
205:
213–219,
1994.
|
959. |
Okamura T,
Okunishi H,
Ayajiki K and
Toda N.
Conversion of angiotensin I to angiotensin II in dog isolated renal artery: Role of two different angiotensin II‐generating enzymes.
J Cardiovasc Pharmacol
15:
353–359,
1990.
|
960. |
Yanagawa N,
Capparelli AW,
Jo OD,
Friedal A,
Barrett JD and
Eggena P.
Production of angiotensinogen and renin‐like activity by rabbit proximal tubular cells in culture.
Kidney Int
39:
938–941,
1991.
|
961. |
Urata H,
Kinoshita A,
Misono KS,
Bumpus FM and
Husain A.
Identification of a highly specific chymase as the major angiotensin II‐forming enzyme in the human heart.
J Biol Chem
265:
22348–22357,
1990.
|
962. |
Urata H,
Strobel F and
Ganten D.
Widespread tissue distribution of human chymase.
J Hypertens
12
(suppl 9):
S17–S22,
1994.
|
963. |
Ikeda M,
Sasaguri M,
Maruta H and
Arakawa K.
Formation of angiotensin II by tonin‐inhibitor complex.
Hypertension
11:
63–70,
1988.
|
964. |
Morris BJ.
Molecular biology of renin I: Gene and protein structure. synthesis and processing.
J Hypertens
10:
209–214,
1992.
|
965. |
Wintroub BU,
Klickstein LB,
Dzau VJ and
Watt KWK.
Granulocyte‐angiotensin system. Identification of angiotensinogen as the plasma protein substrate of leukocyte cathepsin G.
Biochemistry
23:
227–232,
1984.
|
966. |
Yamamoto K,
Chappell MC,
Broshnihan KB and
Ferrario CM.
In vivo metabolism of angiotensin I by neutral endopeptidase (EC 3.4.24.11) in spontaneously hypertensive rats.
Hypertension
19:
692–696,
1992.
|
967. |
Ferrario CM.
Contribution of Angiotensin‐(1‐7) to cardiovascular physiology and pathology.
Curr Hypertens Rep
5:
129–134,
2003.
|
968. |
Handa RK,
Ferrario CM and
Strandhoy JW.
Renal actions of angiotensin‐(1‐7): in vivo and in vitro studies.
Am J Physiol Renal Physiol
270:
F141–F147,
1996.
|
969. |
Andreatta‐Van Leyen S,
Romero MF,
Khosla MC and
Douglas JG.
Modulation of phospholipase A2 activity and sodium transport by angiotensin‐(1‐7),
Kidney Int
44:
932–936,
1993.
|
970. |
Bell‐Quilley CP,
Lin Y‐SR,
Hilchey SD,
Drugge ED and
McGiff JC.
Renovascular actions of angiotensin II in the isolated kidney of the rat: Relationship to lipoxygenases.
J Pharmacol Exp Ther
267:
676–682,
1993.
|
971. |
Santos RAS,
Campagnole‐Santos MJ,
Baracho NCV,
Fontes MAP,
Silva LCS,
Neves LAA,
Oliveira DR,
Caligiorne SM,
Silva ACSE and
Khosla MC.
Characterization of a new angiotensin antagonist selective for angiotensin‐(1‐7): Evidence that the actions of angiotensin‐(1‐7) are mediated by specific angiotensin receptors.
Brain Res Bull
35:
293–298,
1994.
|
972. |
Welches WR,
Brosnihan KB and
Ferrario CM.
A comparison of the properties and enzymatic activites of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase 24.11.
Life Sci
52:
1461–1480,
1993.
|
973. |
Clark KL,
Robertson MJ and
Drew GM.
A comparison of the characteristics of angiotensin receptors in the renal and mesenteric vascular beds of the anesthetized cat.
J Cardiovasc Pharmacol
19:
515–524,
1992.
|
974. |
Harding JW,
Wright JW,
Swanson GN,
Hanesworth JM and
Krebs LT.
AT4 receptors: Specificity and distribution.
Kidney Int
46:
1510–1512,
1994.
|
975. |
Swanson GN,
Hanesworth JM,
Sardinia MF,
Coleman JKM,
Wright JW,
Hall KL,
Miller‐Wing AV,
Stobb JW,
Cook VI,
Harding EC and
Harding JW.
Discovery of a distinct binding site for angiotensin II (3‐8), a putative angiotensin IV receptor.
Regul Pept
40:
409–419,
1992.
|
976. |
Li XC,
Campbell DJ,
Ohishi M,
Yuan S and
Zhuo JL.
AT1 receptor‐activated signaling mediates angiotensin IV‐induced renal cortical vasoconstriction in rats.
Am J Physiol Renal Physiol
290:
F1024–F1033,
2006.
|
977. |
Erdos EG.
Angiotensin 1 converting enzyme and the changes in our concepts through the years.
Hypertension
16:
363–370,
1990.
|
978. |
Takada Y,
Hiwada K,
Unno M and
Kokubu T.
Immunocytochemical localization of angiotensin converting enzyme at the ultrastructural level in the human lung and kidney.
Biomed Res
3:
169–174,
1982.
|
979. |
Taugner R,
Hackenthal E,
Helmchen U,
Ganten D,
Kugler M,
Marin‐Grez M,
Nobiling R,
Unger T,
Lockwald I and
Keilbach R.
The intrarenal renin‐angiotensin system: An immunocytochemical study of the localization of renin, angiotensinogen, converting enzyme and the angiotensins in the kidney of mouse and rat.
Klin Wochenschr
60:
1218–1222,
1982.
|
980. |
Bruneval P,
Hinglais N,
Alhenc‐Gelas F,
Tricottet V,
Corvol P,
Ménard J,
Camilleri J‐P and
Bariety J.
Angiotensin I converting enzyme in human intestine and kidney, Ultrastructural immuno‐histochemical localization.
Histochemistry
85:
73–80,
1986.
|
981. |
Sibony M,
Gasc J‐M,
Soubrier F,
Alhenc‐Gelas F and
Corvol P.
Gene expression and tissue localization of the two isoforms of angiotensin I converting enzyme.
Hypertension
21:
827–835,
1993.
|
982. |
Admiraal PJJ,
Derkx FHM,
Danser AHJ,
Pieterman H and
Schalekamp MADH.
Metabolism and Production of Angiotensin I in Different Vascular Beds in Subjects With Hypertension.
Hypertension
15:
44–55,
1990.
|
983. |
Reams G,
Villarreal D,
Wu Z and
Bauer JH.
Renal tissue angiotensin II: response to infusions of angiotensin I and an angiotensin‐converting enzyme inhibitor.
Am J Kidney Dis
22:
851–857,
1993.
|
984. |
Rosivall L,
Carmines PK and
Navar LG.
Effects of renal arterial angiotensin I infusion on glomerular dynamics in sodium replete dogs.
Kidney Int
26:
263–268,
1984.
|
985. |
Rosivall L and
Navar LG.
Effects on renal hemodynamics of intraarterial infusions of angiotensins I and II.
Am J Physiol
245:
F181–F187,
1983.
|
986. |
Rosivall L,
Rinder DF,
Champion J,
Khosla MC,
Navar LG and
Oparil S.
Intrarenal angiotensin I conversion at normal and reduced renal blood flow in the dog.
Am J Physiol
245:
F408–F415,
1983.
|
987. |
Rosivall L,
Narkates AJ,
Oparil S and
Navar LG.
De novo intrarenal formation of angiotensin II during control and enhanced renin secretion.
Am J Physiol
252:
F1118–F1123,
1987.
|
988. |
Inagami T,
Kawamura M,
Naruse K and
Okamura T
Localization of components of the renin‐angiotensin system within the kidney.
Federation Proc
45:
1414–1419,
1986.
|
989. |
Wilcox CS and
Peart WS.
Release of renin and angiotensin II into plasma and lymph during hyperchloremia.
Am J Physiol Renal Physiol
253:
F734–F741,
1987.
|
990. |
Bailie MD,
Rector FC, Jr. and
Seldin DW.
Angiotensin II in arterial and renal venous plasma and renal lymph in the dog.
J Clin Invest
50:
119–126,
1971.
|
991. |
Nishiyama A,
Seth DM and
Navar LG.
Renal interstitial fluid angiotensin 1 and angiotensin II concentrations during local angiotensin‐converting enzyme inhibition.
J Am Soc Nephrol
13:
2207–2212,
2002.
|
992. |
Nishiyama A,
Seth DM and
Navar LG.
Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats.
Hypertension
39:
129–134,
2002.
|
993. |
Nishiyama A,
Seth DM and
Navar LG.
Angiotensin II type 1 receptor‐mediated augmentation of renal interstitial fluid angiotensin II in angiotensin II‐induced hypertension.
J Hypertens
21:
1897–1903,
2003.
|
994. |
Siragy HM,
Howell NL,
Ragsdale NV and
Carey RM.
Renal interstitial fluid angiotensin: modulation by anesthesia epinephrine, sodium depletion and rennin inhibition.
Hypertension
25:
1021–1024,
1995.
|
995. |
Haller H,
Lindschau C,
Erdmann B,
Quass P and
Luft FC.
Effects of intracellular angiotensin II in vascular smooth muscle cells.
Circ Res
79:
765–772,
1996.
|
996. |
Re RN.
The cellular biology of angiotensin: Paracrine, autocrine and intracrine actions in cardiovascular tissues.
J Mol Cell Cardiol
21
(Supplement V):
63–69,
1989.
|
997. |
Anderson KM and
Peach MJ.
Receptor binding and internalization of a unique biologically active angiotensin II‐colloidal gold conjugate: Morphological analysis of angiotensin II processing in isolated vascular strips.
J Vasc Res
31:
10–17,
1994.
|
998. |
Eggena P,
Zhu JH,
Clegg K and
Barrett JD.
Nuclear angiotensin receptors induce transcription of renin and angiotensinogen mRNA.
Hypertension
22:
496–501,
1993.
|
999. |
Celio MR and
Inagami T.
Angiotensin II immunoreactivity coexists with renin in the juxtaglomerular granular cells of the kidney.
Proc Natl Acad Sci USA
78:
3897–3900,
1981.
|
1000. |
Taugner R,
Mannek E,
Nobiling R,
Buhrle CP,
Hackenthal E,
Ganten D,
Inagami T and
Schroder H.
Coexistence of renin and angiotensin II in epitheloid cell secretory granules of rat kidney.
Histochemistry
81:
39–45,
1984.
|
1001. |
Rightsel WA,
Okamura T,
Inagami T,
Pitcock JA,
Takii Y,
Brooks B,
Brown P and
Muirhead EE.
Juxtaglomerular cells grown as monolayer cell culture contain renin, angiotensin I‐converting enzyme, and angiotensin I and II/III.
Circ Res
50:
822–829,
1982.
|
1002. |
Braam B,
Mitchell KD,
Fox J and
Navar LG.
Proximal tubular secretion of angiotensin II in rats.
Am J Physiol Renal Physiol
264:
F891–F898,
1993.
|
1003. |
Navar LG,
Harrison‐Bernard LM,
Nishiyama A and
Kobori H.
Regulation of intrarenal angiotensin II in hypertension.
Hypertension
39:
316–322,
2002.
|
1004. |
Navar LG,
Harrison‐Bernard LM,
Wang C‐T,
Cervenka L and
Mitchell KD.
Concentrations and actions of intraluminal angiotensin II.
J Am Soc Nephrol
10:
S189–S195,
1999.
|
1005. |
Navar LG,
Lewis L,
Hymel A,
Braam B and
Mitchell KD.
Tubular fluid concentrations and kidney contents of angiotensins I and II in anesthetized rats.
J Am Soc Nephrol
5:
1153–1158,
1994.
|
1006. |
Seikaly MG,
Arant BS, Jr. and
Seney FD,
Jr. Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat.
J Clin Invest
86:
1352–1357,
1990.
|
1007. |
Lalouel J‐M,
Rohrwasser A,
Terreros D,
Morgan T and
Ward K.
Angiotensinogen in essential hypertension: from genetics to nephrology.
J Am Soc Nephrol
12:
606–615,
2001.
|
1008. |
Moe OW,
Ujiie K,
Star RA,
Miller RT,
Widell J,
Alpern RJ and
Henrich WL.
Renin expression in renal proximal tubule.
J Clin Invest
91:
774–779,
1993.
|
1009. |
Prieto‐Carrasquero MC,
Harrison‐Bernard LM,
Kobori H,
Ozawa Y,
Hering‐Smith KS,
Hamm LL and
Navar LG.
Enhancement of collecting duct renin in angiotensin II‐dependent hypertensive rats.
Hypertension
44:
223–229,
2004.
|
1010. |
Rohrwasser A,
Morgan T,
Dillon HF,
Zhao L,
Callaway CW,
Hillas E,
Zhang S,
Cheng T,
Inagami T,
Ward K,
Terreros DA and
Lalouel JM.
Elements of a paracrine tubular renin‐angiotensin system along the entire nephron.
Hypertension
34:
1265–1274,
1999.
|
1011. |
Darby 1A,
Congiu M,
Fernley RT,
Sernia C and
Coghlan JP.
Cellular and ultrastructural location of angiotensinogen in rat and sheep kidney.
Kidney Int
46:
1557–1560,
1994.
|
1012. |
Hunt MK,
Ramos SP,
Geary KM,
Norling LL,
Peach MJ,
Gomez RA and
Carey RM.
Colocalization and release of angiotensin and renin in renal cortical cells.
Am J Physiol Renal Physiol
263:
F363–F373,
1992.
|
1013. |
Ingelfinger J,
Zuo WM,
Fon EA,
Ellison KE and
Dzau VJ.
In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule.
J Clin Invest
85:
417–423,
1990.
|
1014. |
Schunkert H,
Ingelfinger JR,
Jacob H,
Jackson B,
Bouyounes B and
Dzau VJ.
Reciprocal feedback regulation of kidney angiotensinogen and renin mRNA expressions by angiotensin II.
Am J Physiol Endocrinold Metabol
263:
E863–E869,
1992.
|
1015. |
Terada Y,
Tomita K,
Nonoguchi H and
Marumo F.
PCR localization of angiotensin II receptor and angiotensinogen mRNAs in rat kidney.
Kidney Int
43:
1251–1259,
1993.
|
1016. |
Douglas JG.
Angiotensin receptor subtypes of the kidney cortex.
Am J Physiol Renal Physiol
253:
F1–F7,
1987.
|
1017. |
Douglas JG and
Hopfer U.
Novel aspect of angiotensin receptors and signal transduction in the kidney.
Ann Rev Physiol
56:
649–669,
1994.
|
1018. |
Paxton WG,
Runge M,
Horaist C,
Cohen C,
Alexander RW and
Bernstein KE.
Immunohistochemical localization of rat angiotensin II AT1 receptor.
Am J Physiol Renal Physiol
264:
F989–F995,
1993.
|
1019. |
Navar LG and
Harrison‐Bernard LM.
Intrarenal angiotensin II augmentation in angiotensin II dependent hypertension.
Hypertens Res
23:
291–301,
2000.
|
1020. |
Arendshorst WJ.
Lessons on renal function from transgenic mice lacking different angiotensin II receptors.
JRAAS
2:
S167–S175,
2001.
|
1021. |
Bumpus FM,
Catt KJ,
Chiu AT,
Degasparo M,
Goodfriend T,
Husain A,
Peach MJ,
Taylor DG, Jr. and
Timmermans PB.
Nomenclature for angiotensin receptors. A report of the Nomenclature Committee of the Council for High Blood Pressure Research.
Hypertension
17:
720–721,
1991.
|
1022. |
Iwai N,
Yamano Y,
Chaki S,
Konishi F,
Bardhan S,
Tibbetts C,
Sasaki K,
Hasegawa M,
Matsuda Y and
Inagami T.
Rat angiotensin II receptor: cDNA sequence and regulation of the gene expression.
Biochem Biophys Res Comm
177:
299–304,
1991.
|
1023. |
Murphy TJ,
Alexander RW,
Griendling KK,
Runge MS and
Bernstein KE.
Isolation of a cDNA encoding the vascular type‐1 angiotensin II receptor.
Nature (Lond)
351:
233–236,
1991.
|
1024. |
Nakajima M,
Mukoyama M,
Pratt RE,
Horiuchi M and
Dzau VJ.
Cloning of cDNA and analysis of the gene for mouse angiotensin II type 2 receptor.
Biochem Biophys Res Comm
197:
393–399,
1993.
|
1025. |
Sasaki K,
Yamano Y,
Bardhan S,
Iwai N,
Murray JJ,
Hasegawa M,
Matsuda Y and
Inagami T.
Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type‐1 receptor.
Nature
351:
230–233,
1991.
|
1026. |
Tsuzuki S,
Ichiki T,
Nakakubo H,
Kitami Y,
Guo DF and
Shirai H.
Molecular cloning and expression of the gene encoding human angiotensin II type 2 receptor.
Biochem Biophys Res Comm
200:
1449–1454,
1994.
|
1027. |
Burns KD,
Inagami T and
Harris RC.
Cloning of a rabbit kidney cortex AT1 angiotensin II receptor that is present in proximal tubule epithelium.
Am J Physiol Renal Physiol
264:
F645–F654,
1993.
|
1028. |
Imanishi K,
Nonoguchi H,
Nakayama Y,
Machida K,
Ikebe M and
Tomita K.
Type 1A angiotensin II receptor is regulated differently in proximal and distal nephron segemnts.
Hypertens Res
26:
405–411,
2003.
|
1029. |
Mendelsohn FAO,
Dunbar M,
Allen A,
Chou S‐T,
Millan MA,
Aguilera G and
Catt KJ.
Angiotensin II receptors in the kidney.
Federation Proc
45:
1420–1425,
1986.
|
1030. |
Zhuo J,
Alcorn D,
McCausland J and
Mendelsohn FAO.
Localization and regulation of angiotensin II receptors in renomedullary interstitial cells.
Kidney Int
46:
1483–1485,
1994.
|
1031. |
Iwai N and
Inagami T.
Identification of two subtypes in rat type I angiotensin II receptor.
FEBS Lett
298:
257–260,
1992.
|
1032. |
Sasamura H,
Hein L,
Krieger JE,
Pratt RE,
Kobilka BK and
Dzau VJ.
Cloning, characterization, and expression of two angiotensin receptor (AT‐1) isoforms from the mouse genome.
Biochem Biophys Res Comm
185:
253–259,
1992.
|
1033. |
Wang Z‐Q,
Millatt LJ,
Heiderstadt NT,
Siragy HM,
Johns RA and
Carey RM.
Differential regulation of renal angiotensin subtype AT1A and AT2 receptor protein in rats with angiotensin‐dependent hypertension.
Hypertension
33:
96–101,
1999.
|
1034. |
Miyata A,
Park F,
Li XF and
Cowley AW,
Jr. Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney.
Am J Physiol Renal Physiol
277:
F437–F446,
1999.
|
1035. |
Gasc J‐M,
Monnot C,
Clauser E and
Corvol P.
Co‐expression of type 1 angiotensin II receptor (AT1 R) and renin mRNAs in juxtaglomerular cells of the rat kidney.
Endocrinology
132:
2723–2725,
1993.
|
1036. |
Meister B,
Lippoldt A,
Bunnemann B,
Inagami T,
Ganten D and
Fuxe K.
Cellular expression of angiotensin type‐1 receptor mRNA in the kidney.
Kidney Int
44:
331–336,
1993.
|
1037. |
Tufro‐McReddie A,
Harrison JK,
Everett AD and
Gomez RA.
Ontogeny of type 1 angiotensin II receptor gene expression in the rat.
J Clin Invest
91:
530–537,
1993.
|
1038. |
Bouby N,
Hus‐Citharel A,
Marchetti J,
Bankir L,
Corvol P and
Llorens‐Cortes C.
Expression of type 1 angiotensin II receptor subytpes and angiotensin II‐induced calcium mobilization along the rat nephron.
J Am Soc Nephrol
8:
1658–1667,
1997.
|
1039. |
Ruan X,
Wagner C,
Chatziantoniou C,
Kurtz A and
Arendshorst WJ.
Regulation of angiotensin II receptor AT1 subtypes in renal afferent arterioles during chronic changes in sodium diet.
J Clin Invest
99:
1072–1081,
1997.
|
1040. |
Helou CM,
Imbert‐Teboul M,
Doucet A,
Rajerison R,
Chollet C,
Alhenc‐Gelas F and
Marchetti J.
Angiotensin receptor subtypes in thin and muscular juxtamedullary efferent arterioles of rat kidney.
Am J Physiol Renal Physiol
285:
F507–F514,
2003.
|
1041. |
Harrison‐Bernard LM,
Cook AK,
Oliverio MI and
Coffman TM.
Renal segmental microvascular responses to ANG II in AT1A receptor null mice.
Am J Physiol Renal Physiol
284:
F538–F545,
2003.
|
1042. |
Ruan X,
Oliverio MI,
Coffman TM and
Arendshorst WJ.
Renal vascular reactivity in mice: angII‐induced vasoconstriction in AT1A receptor null mice.
J Am Soc Nephrol
10:
2620–2630,
1999.
|
1043. |
Ruan X,
Purdy KE,
Oliverio MI,
Coffman TM and
Arendshorst WJ.
Effects of candesartan on angiotensin II‐induced renal vasoconstriction in rats and mice.
J Am Soc Nephrol
10:
S202–S207,
1999.
|
1044. |
Cervenka L,
Horacek V,
Vaneckova I,
Hubacek JA,
Oliverio MI,
Coffman TM and
Navar LG.
Essential role of AT1A receptor in the development of 2K1C hypertension.
Hypertension
40:
735–741,
2002.
|
1045. |
Park S,
Bivona BJ and
Harrison‐Bernard LM.
Compromised renal microvascular reactivity of angiotensin type 1 double null mice.
Am J Physiol Renal Physiol
293:
F60–F67,
2007.
|
1046. |
Norwood VF,
Craig MR,
Harris JM and
Gomez RA.
Differential expression of angiotensin II receptors during early renal morphogenesis.
Am J Physiol Regul Integr Comp Physiol
272:
R662–R668,
1997.
|
1047. |
Carey RM and
Siragy HM.
The intrarenal renin‐angiotensin system and diabetic nephropathy.
Trends Endocrinol Metab
14:
274–281,
2003.
|
1048. |
de Gasparo M and
Siragy HM.
The AT2 receptor: fact, fancy and fantasy.
Regul Pepl
81:
11–24,
1999.
|
1049. |
Siragy HM and
Carey RM.
The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats.
J Clin Invest
100:
264–269,
1997.
|
1050. |
Siragy HM and
Carey RM.
Protective role of the angiotensin AT2 receptor in a renal wrap hypertension model.
Hypertension
33:
1237–1242,
1999.
|
1051. |
Inagami T,
Guo D‐F and
Kitami Y.
Molecular biology of angiotensin II receptors: an overview.
J Hypertens
12
(suppl 10):
S83–S94,
1994.
|
1052. |
Carey RM,
Howell NL,
Jin XH and
Siragy HM.
Angiotensin type 2 receptor‐mediated hypotension in angiotensin type‐1 receptor‐blocked rats.
Hypertension
38:
1272–1277,
2001.
|
1053. |
Carey RM,
Wang ZQ and
Siragy HM.
Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. [Review] [92 refs].
Hypertension
35:
155–163,
2000.
|
1054. |
Siragy HM and
Carey RM.
The subtype‐2 (AT2) angiotensin receptor regulates renal cyclic guanosine 3′,5′‐monophosphate and AT1 receptor‐mediated prostaglandin E2 production in conscious rats.
J Clin Invest
97:
1978–1982,
1996.
|
1055. |
Unger T and
Sandmann S.
Angiotensin receptor blocker selectivity at the AT1‐ and AT2‐receptors: conceptual and clinical effects.
JRAAS
1:
6–9,
2000.
|
1056. |
Gross V,
Milia AF,
Plehm R,
Inagami T and
Luft FC.
Long‐term blood pressure telemetry in AT2 receptor‐disrupted mice.
J Hypertens
18:
955–961,
2000.
|
1057. |
Gross V,
Schunck WH,
Honeck H,
Milia AF,
Kargel E,
Walther T,
Bader M,
Inagami T,
Schneider W and
Luft FC.
Inhibition of pressure natriuresis in mice lacking the AT2 receptor.
Kidney Int
57:
191–202,
2000.
|
1058. |
Siragy HM,
Inagami T,
Ichiki T and
Carey RM.
Sustained hypersensitivity to angiotensin II and its mechanism in mice lacking the subtype‐2 (AT2) angiotensin receptor.
Proc Natl Acad Sci USA
96:
6506–6510,
1999.
|
1059. |
Tamura M,
Takagi T,
Howard EF,
Landon EJ,
Steimle A,
Tanner M and
Myers PR.
Induction of angiotensin II subtype 2 receptor‐mediated blood pressure regulation in synthetic diet‐fed rats.
J Hypertens
18:
1239–1246,
2000.
|
1060. |
Chappell MC,
Tallant EA,
Diz DI and
Ferrario CM.
The renin‐angiotensin system and cardiovascular homeostasis. In:
Drugs, Enzymes and Receptors of the Renin‐Angiotensin System: Celebrating a Century of Discovery,
eds Husain A and
Graham RM.
Harwood Academic Publishers,
2000,
pp. 3–22.
|
1061. |
Ferrario CM,
Chappell MC,
Tallant EA,
Brosnihan KB and
Diz DI.
Counterregulatory actions of angiotensin‐(1‐7).
Hypertension
30
(part 2):
535–541,
1997.
|
1062. |
Stegbauer J,
Vonend O,
Oberhauser V and
Rump LC.
Effects of angiotensin‐(1‐7) and other bioactive components of the renin‐angiotensin system on vascular resistance and noradrenaline release in rat kidney.
J Hypertens
21:
1391–1399,
2003.
|
1063. |
Abassi Z,
Brodsky S,
Gealekman O,
Rubinstein I,
Hoffman A and
Winaver J.
Intrarenal expression and distrubution of cyclooxygenase isoforms in rats with experimental heart failure.
Am J Physiol Renal Physiol
280:
F43–F53,
2001.
|
1064. |
Abbracchio MP and
Burnstock G.
Purinergic signalling: pathophysiological roles.
Jpn J Pharmacol
78:
113–145,
1998.
|
1065. |
Abbracchio MP,
Burnstock G,
Boeynaems JM,
Barnard EA,
Boyer JL,
Kennedy C,
Knight GE,
Fumagalli M,
Gachet C,
Jacobson KA and
Weisman GA.
International Union of Pharmacology LVIII: update on the P2Y G protein‐coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy.
Pharmacol Rev
58:
281–341,
2006.
|
1066. |
Abe M,
O'Connor P,
Kaldunski M,
Liang M,
Roman RJ and
Cowley AW,
Jr. Effect of sodium delivery on superoxide and nitric oxide in the medullary thick ascending limb.
Am J Physiol Renal Physiol
291:
F350–F357,
2006.
|
1067. |
Abraham NG,
Botros FT,
Rezzani R,
Rodella L,
Bianchi R and
Goodman AI.
Differential effect of cobalt protoporphyrin on distributions of heme oxygenase in renal structure and on blood pressure in SHR.
Cell Mol Biol (Noisy‐le‐grand)
48:
895–902,
2002.
|
1068. |
Santos RA,
Simoes e Silva AC,
Maric C,
Silva DM,
Machado RP,
de B SI,
Heringer‐Walther S,
Pinheiro SV,
Lopes MT,
Bader M,
Mendes EP,
Lemos VS,
Campagnole‐Santos MJ,
Schultheiss HP,
Speth R and
Walther T.
Angiotensin‐(1‐7) is an endogenous ligand for the G protein‐coupled receptor Mas.
Proc Natl Acad Sci USA
100:
8258–8263,
2003.
|
1069. |
Corvol P,
Jeunemaitre X,
Charru A,
Kotelevtsev Y and
Soubrier F.
Role of the renin‐angiotensin system in blood pressure regulation and in human hypertension: New insights from molecular genetics.
Recent Progr Harm Res
50:
287–308,
1995.
|
1070. |
Ferrario CM and
Flack JM.
Pathologic consequences of increased angiotensin II activity.
Cardiovasc Drugs Ther
10:
511–518,
1996.
|
1071. |
Griendling KK,
Ushio‐Fukai M,
Lassègue B and
Alexander RW.
Angiotensin II signaling in vascular smooth muscle. New concepts.
Hypertension
29
(part 2):
366–373,
1997.
|
1072. |
Ma X,
Chapleau MW,
Whiteis CA,
Abboud FM and
Bielefeldt K.
Angiotensin selectively activates a subpopulation of postganglionic sympathetic neurons in mice.
Circ Res
88:
787–793,
2001.
|
1073. |
Wolf G.
The renin‐angiotensin system and progression of renal diseases.
Hamburg:
Karger,
2002.
|
1074. |
Wolf G and
Ziyadeh F.
The role of angiotensin II in diabetic nephropathy: emphasis on nonhemodynamic mechanisms.
Am J Kidney Dis
29:
153–163,
1997.
|
1075. |
Gilbert RE,
Wu LL,
Kelly DJ,
Cox A,
Wilkinson‐Berka JL,
Johnston CI and
Cooper ME.
Pathological expression of renin and angiotensin II in the renal tubule after subtotal nephrectomy, Implications for the pathogenesis of tubulointerstitial fibrosis.
Am J Pathol
155:
429–440,
1999.
|
1076. |
Wolf G and
Ziyadeh FN.
Molecular mechanisms of diabetic renal hypertrophy.
Kidney Int
56:
393–405,
1999.
|
1077. |
Shao J,
Nangaku M,
Miyata T,
Inagi R,
Yamada K,
Kurokawa K and
Fujita T.
Imbalance of T‐cell subsets in angiotensin II‐infused hypertensive rats with kidney injury.
Hypertension
42:
31–38,
2003.
|
1078. |
Franco M,
Tapia E,
Santamaria J,
Zafra I,
Garcia‐Torres R,
Gordon KL,
Pons H,
Rodriguez‐turbe B,
Johnson RJ and
Herrera‐Acosta J.
Renal cortical vasoconstriction contributes to development of salt‐sensitive hypertension after angiotensin II exposure.
J Am Soc Nephrol
12:
2263–2271,
2001.
|
1079. |
Alberola AM,
Salazar FJ,
Nakamura T and
Granger JP.
Interaction between angiotensin II and nitric oxide in control of renal hemodynamics in conscious dogs.
Am J Physiol Regul Integr Comp Physiol
267:
R1472–R1478,
1994.
|
1080. |
Ichikawa 1 and
Harris RC.
Angiotensin actions in the kidney: renewed insight into the old hormone.
Kidney Int
40:
583–596,
1991.
|
1081. |
Keil J,
Lehnfeld R,
Reinhardt HW,
Mohnhaupt R and
Kaczmarczyk G.
Acute effects of angiotensin II on renal haemodynamics and excretion in conscious dogs.
Renal Physiol Biochem
12:
238–249,
1989.
|
1082. |
Mitchell KD,
Braam B and
Navar LG.
Hypertensinogenic mechanisms mediated by renal actions of renin‐angiotensin system.
Hypertension
19
(Supplement I):
I‐18–1‐27,
1992.
|
1083. |
Navar LG and
Langford HG.
Effects of angiotensin on the renal circulation. In:
Angiotensin (Handbuch der exp Pharmakol),
eds Page IH and
Bumpus FM.
Berlin:
Springer‐Verlag,
1974,
pp. 455–474.
|
1084. |
Eiken P,
Emmeluth C,
Schutten HJ and
Bie P.
Vasopressin and angiotensin II in the conscious dog: synergistic effects on renal excretory parameters?
Clin Sci
83:
467–475,
1992.
|
1085. |
Eadington DW,
Freestone S,
Waugh CJ,
Swainson CP and
Lee MR.
Lithium pretreatment affects renal and systemic responses to angiotensin II infusion in normal man.
Clin Sci
82:
543–549,
1992.
|
1086. |
Gordon MS,
Williams GH and
Hollenberg NK.
Renal and adrenal responsiveness to angiotensin II: influence of beta adrenergic blockade.
Endocr Res
18:
115–131,
1992.
|
1087. |
Vos PF,
Boer P,
Braam B and
Koomans HA.
Efficacy of intrarenal ACE‐inhibition estimated from the renal response to angiotensin I and II in humans.
Kidney Int
47:
274–281,
1995.
|
1088. |
Vos PF,
Koomans HA,
Boer P and
Mees EJD.
Effects of angiotensin II on renal sodium handling and diluting capacity in man pretreated with high‐salt diet and enalapril.
Nephrol Dial Transplant
1:
991–996,
1992.
|
1089. |
Navar LG,
Saccomani G and
Mitchell KD.
Synergistic intrarenal actions of angiotensin on tubular reabsorption and renal hemodynamics.
Am J Hypertens
4:
90–96,
1991.
|
1090. |
Bugge JF and
Stokke ES.
Angiotensin II and renal prostaglandin release in the dog. Interactions in controlling renal blood flow and glomerular filtration rate.
Acta Physiol Scand
150:
431–440,
1994.
|
1091. |
Wilcox CS,
Welch WJ and
Snellen H.
Thromboxane mediates renal hemodynamic response to infused angiotensin II.
Kidney Int
40:
1090–1997,
1991.
|
1092. |
Hall JE.
Control of sodium excretion by angiotensin II: intrarenal mechanisms and blood pressure regulation.
Am J Physiol Regul Integr Comp Physiol
250:
R960–R972,
1986.
|
1093. |
Hall JE,
Guyton AC,
Jackson TE,
Coleman TG,
Lohmeier TE and
Trippodo NC.
Control of glomerular filtration rate by renin‐angiotensin system.
Am J Physiol
233:
F366–F372,
1977.
|
1094. |
Heller J and
Horacek V.
Angiotensin II: Preferential efferent constriction?
Renal Physiol Basel
9:
357–365,
1986.
|
1095. |
Steiner RW and
Blantz RC.
Acute reversal by saralasin of multiple intrarenal effects of angiotensin.
Am J Physiol
237:
F386–F391,
1979.
|
1096. |
Tucker BJ,
Mundy CA,
Maciejewski AR,
Printz MP,
Ziegler MG,
Pelayo JC and
Blantz RC.
Changes in glomerular hemodynamic response to angiotensin II after subacute renal denervation in rats.
J Clin Invest
78:
680–688,
1986.
|
1097. |
Navar LG and
Rosivall L.
Contribution of the renin angiotensin system to the control of intrarenal hemodynamics.
Kidney Int
25:
857–868,
1984.
|
1098. |
Maddox DA and
Brenner BM.
Glomerular ultrafiltration. In:
The Kidney,
eds Brenner BM and
Rctor FC, Jr.
Philadelphia:
W.B. Saunders Co.
1991,
pp. 205–244.
|
1099. |
Elger M,
Sakai T and
Kriz W.
Role of mesangial cell contraction in adaptation of the glomerular tuft to changes in extracellular volume.
Pflügers Arch
415:
598–605,
1990.
|
1100. |
Henger A,
Huber T,
Fischer K‐G,
Nitschke R,
Mundel P,
Schollmeyer P,
Greger R and
Pavenstädt H.
Angiotensin II increases the cytosolic calcium activity in rat podocytes in culture.
Kidney Int
52:
687–693,
1997.
|
1101. |
Hoffmann S,
Podlich D,
Hahnel B,
Kriz W and
Gretz N.
Angiotensin II type 1 receptor overexpression in podocytes induces glomerulosclerosis in transgenic rats.
J Am Soc Nephrol
15:
1475–1487,
2004.
|
1102. |
Liebau MC,
Lang D,
Bohm J,
Endlich N,
Bek MJ,
Witherden I,
Mathieson PW,
Saleem MA,
Pavenstadt H and
Fischer KG.
Functional expression of the renin‐angiotensin system in human podocytes.
Am J Physiol Renal Physiol
290:
F710–F719,
2006.
|
1103. |
Nitschke R,
Henger A,
Ricken S,
Gloy J,
Muller V,
Greger R and
Pavenstadt H.
Angiotensin II increases the intracellular calcium activity in podocytes of the intact glomerulus.
Kidney Int
57:
41–49,
2000.
|
1104. |
Treeck B,
Roald AB,
Tenstad O and
Aukland K.
Effect of exogenous and endogenous angiotensin II on intrarenal distribution of glomerular filtration rate in rats.
J Physiol
541:
1049–1057,
2002.
|
1105. |
Mattson DL,
Raff H and
Roman RJ.
Influence of angiotensin II on pressure natriuresis and renal hemodynamics in volume‐expanded rats.
Am J Physiol Regul Integr Comp Physiol
29:
R1200–R1209,
1991.
|
1106. |
Huang C,
Davis G and
Johns EJ.
A study of the action of angiotensin II on perfusion through the cortex and papilla of the rat kidney.
Exp Physiol
76:
787–798,
1991.
|
1107. |
Omoro S,
Majid DSA,
El‐Dahr S and
Navar LG.
Roles of ANG II and bradykinin in the renal regional blood flow responses to ACE inhibition in sodium‐depleted dogs.
Am J Physiol Renal Physiol
279:
F289–F293,
2000.
|
1108. |
Carmines PK,
Morrison TK and
Navar LG.
Angiotensin II effects on microvascular diameters of in vitro blood‐perfused juxtamed‐ullary nephrons.
Am J Physiol
251:
F610–F618,
1986.
|
1109. |
Mitchell KD and
Navar LG.
Superficial nephron responses to peritubular capillary infusions of angiotensins I and II.
Am J Physiol Renal Physiol
252:
F818–F824,
1987.
|
1110. |
Click RL,
Joyner WL and
Gilmore JP.
Reactivity of glomerular afferent and efferent arterioles in renal hypertension.
Kidney Int
15:
109–115,
1979.
|
1111. |
Dietrich MS,
Endlich K,
Parekh N and
Steinhausen M.
Interaction between adenosine and angiotensin II in renal microcirculation.
Microvasc Res
41:
275–288,
1991.
|
1112. |
Loutzenhiser R,
Epstein M,
Hayashi K,
Takenaka T and
Forster H.
Characterization of the renal microvascular effects of angiotensin II antagonist. DuP 753: studies in isolated perfused hydronephrotic kidneys.
Am J Hypertens
4:
309S–314S,
1991.
|
1113. |
Steinhausen M,
Sterzel RB,
Fleming JT,
Kuhn R and
Weis S.
Acute and chronic effects of angiotensin II on the vessels of the split hydronephrotic kidney.
Kidney Int
31
(supplement 20):
S64–S73,
1987.
|
1114. |
Edwards RM.
Segmental effects of norepinephrine and angiotensin II on isolated renal microvessels.
Am J Physiol
244:
F526–F534,
1983.
|
1115. |
Ito S,
Johnson CS and
Carretero OA.
Modulation of angiotensin II‐induced vasoconstriction by endothelium‐derived relaxing factor in the isolated microperfused rabbit afferent arteriole.
J Clin Invest
87:
1656–1663,
1991.
|
1116. |
Weihprecht H,
Lorenz JN,
Briggs JP and
Schnermann J.
Vasoconstrictor effect of angiotensin and vasopressin in isolated rabbit afferent arterioles.
Am J Physiol Renal Physiol
261:
F273–F282,
1991.
|
1117. |
Yuan BH,
Robinette JB and
Conger JD.
Effect of angiotensin II and norepinephrine on isolated rat afferent and efferent arterioles.
Am J Physiol Renal Physiol
258:
F741–F750,
1990.
|
1118. |
Muller‐Schweinitzer E and
Olea‐Baza I.
Pharmacological evidence for the existence of a local renin‐angiotensin sysetem in porcine interlobar renal arteries.
Br J Pharmacol
101:
89–92,
1990.
|
1119. |
Bottari SP,
de Gasparo M,
Steckelings UM and
Levens NR.
Angiotensin II receptor subtypes: characterization, signalling mechanisms, and possible physiological implications.
Front Neuroendocrinal
14:
123–171,
1993.
|
1120. |
Freeman EJ and
Tallant EA.
Vascular smooth‐muscle cells contain A1 angiotensin receptors coupled to phospholipase D activation.
Biochem J
304:
543–548,
1994.
|
1121. |
Madhun ZT,
Ernsberger P,
Ke F‐C,
Zhou J,
Hopfer U and
Douglas JG.
Signal transduction mediated by angiotensin II receptor subtypes expressed in rat renal mesangial cells.
Regul Pept
44:
149–157,
1993.
|
1122. |
Smith JB.
Angiotensin‐receptor signaling in cultured vascular smooth muscle cells.
Am J Physiol Renal Physiol
250:
F759–F769,
1986.
|
1123. |
Alexander RW,
Brock TA and
Gimbrone MA, Jr.
Angiotensin increases inositol trisphosphate and calcium in vascular smooth muscle.
Hypertension
7:
447–454,
1985.
|
1124. |
Haller H,
Lindschau C,
Quass P,
Distler A and
Luft FC.
Nuclear calcium signaling is initiated by cytosolic calcium surges in vascular smooth muscle cells.
Kidney Int
46:
1653–1662,
1994.
|
1125. |
Li XC,
Carretero OA,
Navar LG and
Zhuo JL.
AT1 receptor‐mediated accumulation of extracellular angiotensin II in proximal tubule cells: role of cytoskeleton microtubules and tyrosine phosphatases.
Am J Physiol Renal Physiol
291:
F375–F383,
2006.
|
1126. |
Kondo T,
Konishi F,
Inui H and
Inagami T.
Diacylglycerol formation from phosphatidylcholine in angiotensin II‐stimulated vascular smooth muscle cells.
Biochem Biophys Res Commun
187:
1460–1465,
1992.
|
1127. |
Dubey RK,
Roy A and
Overbeck HW.
Culture of renal arteriolar smooth muscle cells: mitogenic responses to angiotensin II.
Circ Res
71:
1143–1152,
1992.
|
1128. |
Ochsner M,
Huwiler A,
Fleck T and
Pfeilschifter J.
Protein kinase C inhibitors potentiate angiotensin II‐induced phosphoinositide hydrolysis and intracellular Ca2+ mobilization in renal mesangial cells.
Eur J Pharmacol‐Mol Pharmacol Sect
245:
15–21,
1993.
|
1129. |
Pfeilschifter J.
Protein kinase C from rat renal mesangial cells: its role in homologous desenitization of angiotensin II‐induced polyphosphoinositide hydrolysis.
Biochimica et Biophysica Acta
969:
263–270,
1988.
|
1130. |
Pfeilschifter J and
Bauer C.
Different effects of phorbol ester on angiotensin II‐ and stable GTP analogue‐induced activation of polyphosphoinositide phosphodiesterase in membranes isolated from rat renal mesangial cells.
Biochem J
248:
209–215,
1987.
|
1131. |
Pfeilschifter J and
Huwiler A.
A role for protein kinase C‐e in angiotensin II stimulation of phospholipase D in rat renal mesangial cells.
FEBS
331:
267–271,
1993.
|
1132. |
Henrion D,
Laher I,
Laporte R and
Bevan JA.
Further evidence from an elastic artery that angiotensin II amplifies noradrenaline‐induced contraction through activation of protein kinase C.
Eur J Pharmacol
224:
13–20,
1992.
|
1133. |
Fandrey J and
Jelkmann W.
Prostaglandin E2 and atriopeptin III oppose the contractile effect of angiotensin II in rat kidney mesangial cell cultures.
Prostaglandins
36:
249–257,
1988.
|
1134. |
Conger JD,
Falk SA and
Robinette JB.
Angiotensin II‐induced changes in smooth muscle calcium in rat renal arterioles.
J Am Soc Nephrol
3:
1792–1803,
1993.
|
1135. |
Loutzenhiser R,
Hayashi K and
Epstein M.
Calcium antagonists augment glomerular filtration rate of angiotensin II‐vasoconstricted isolated perfused rat kidneys by dilating afferent but not efferent arterioles.
J Cardiovasc Pharmacol
12
(suppl 6):
S149,
1988.
|
1136. |
Ohnishi J,
Ishido M,
Shibata T,
Inagami T,
Murakami K and
Miyazaki H.
The rat angiotensin II AT1A receptor couples with three different signal transduction pathways.
Biochem Biophys Res Comm
186:
1094–1101,
1992.
|
1137. |
Ohya Y and
Sperelakis N.
Involvement of a GTP‐binding protein in stimulating action of angiotensin II on calcium channels in vascular smooth muscle cells.
Circ Res
68:
763–771,
1991.
|
1138. |
Cogan MG.
Angiotensin II: a powerful controller of sodium transport in the early proximal tubule.
Hypertension
15:
451–458,
1990.
|
1139. |
Ganz MB,
Boyarsky G,
Boron WF and
Sterzel RB.
Effects of angiotensin II and vasopressin on intracellular pH of glomerular mesangial cells.
Am J Physiol Renal Physiol
254:
F787–F794,
1988.
|
1140. |
Iversen BM and
Arendshorst WJ.
ANG II and vasopressin stimulate calcium entry in dispersed smooth muscle cells of preglomerular arteiroles.
Am J Physiol
274:
F498–F508,
1998.
|
1141. |
Iversen BM and
Arendshorst WJ.
AT1 calcium signaling in renal vascular smooth muscle cells.
J Am Soc Nephrol
10:
S84–S89,
1999.
|
1142. |
Saccomani G,
Mitchell KD and
Navar LG.
Angiotensin II stimulation of Na+ ‐H+ exchange in proximal tubule cells.
Am J Physiol Renal Physiol
258:
F1188–F1195,
1990.
|
1143. |
Kremer SG,
Breuer WV and
Skorecki KL.
Vasoconstrictor hormones depolarize renal glomerular mesangial cells by activating chloride channels.
J Cell Physiol
138:
97–105,
1989.
|
1144. |
Ling BN,
Seal EE and
Eaton DC.
Regulation of mesangial cell ion channels by insulin and angiotensin II. Possible role in diabetic glomerular hyperfiltration.
J Clin Invest
92:
2141–2151,
1993.
|
1145. |
Okuda T,
Yamashita N and
Kurokawa K.
Angiotensin II and vasopressin stimulate calcium‐activated chloride conductance in rat mesangial cells.
J Clin Invest
78:
1443–1448,
1986.
|
1146. |
Wilcox CS.
Renal haemodynamics during hyperchloraemia in the anaesthetized dog: Effects of captopril.
J Physiol (Lond)
406:
27–34,
1988.
|
1147. |
Quilley CP,
Lin Y‐SR and
McGiff JC.
Chloride anion concentration as a determinant of renal vascular responsiveness to vasoconstrictor agents.
Br J Pharmacol
108:
106–110,
1993.
|
1148. |
Schweda F,
Riegger AJG,
Kurtz A and
Kramer BK.
Store‐operated calcium influx inhibits renin secretion.
Am J Physiol Renal Physiol
279:
F170–F176,
2000.
|
1149. |
Loutzenhiser R and
Epstein M.
Effects of calcium channel antagonists on renal hemodynamics.
Am J Physiol Renal Physiol
249:
F619–F629,
1985.
|
1150. |
Takahara A,
Suzuki‐Kusaba M,
Hisa H and
Satoh S.
Effects of a novel Ca2+ entry blocker, CD‐349, and TMB‐8 on renal vasoconstriction induced by angiotensin II and vasopressin in dogs.
J Cardiovasc Pharmacol
16:
966–970,
1990.
|
1151. |
Bauer J and
Parekh N.
Variations in cell signaling pathways for different vasoconstrictor agonists in renal circulation of the rat.
Kidney Int
63:
2178–2186,
2003.
|
1152. |
Ruan X and
Arendshorst WJ.
Calcium entry and mobilization signaling pathways in ANG II‐induced renal vasoconstriction in vivo.
Am J Physiol
270:
F398–F405,
1996.
|
1153. |
Nagahama T,
Hayashi K,
Ozawa Y,
Takenaka T and
Saruta T.
Role of protein kinase C in angiotensin II‐induced constriction of renal microvessels.
Kidney Int
57:
215–223,
2000.
|
1154. |
Ruan X and
Arendshorst WJ.
Role of protein kinase C in angiotensin II‐induced renal vasoconstriction in genetically hypertensive rats.
Am J Physiol
270:
F945–F952,
1996.
|
1155. |
Scholz H and
Kurtz A.
Role of protein kinase C in renal vasoconstriction caused by angiotensin II.
Am J Physiol‐Cell Physiol
259:
C421–C426,
1990.
|
1156. |
Takenaka T,
Forster H and
Epstein M.
Protein kinase C and calcium channel activation as determinants of renal vasoconstriction by angiotensin II and endothelin.
Circ Res
73:
743–750,
1993.
|
1157. |
Honda M,
Hayashi K,
Matsuda H,
Kubota E,
Tokuyama H,
Okubo K,
Takamatsu I,
Ozawa Y and
Saruta T.
Divergent renal vasodilator action of L‐ and T‐type calcium antagonists in vivo.
J Hypertens
19:
2031–2037,
2001.
|
1158. |
Clappison BH,
Anderson WP and
Johnston CI.
Role of the kallikrein‐kinin system in the renal effects of angiotensin‐converting enzyme inhibition in anaesthetized dogs.
Clin Exp Pharmacol Physiol
8:
509–513,
1981.
|
1159. |
Jover B,
Saladini D,
Nafrialdi N,
Dupont M and
Mimran A.
Effect of losartan and enalapril on renal adaptation to sodium restriction in rat.
Am J Physiol Renal Physiol
267:
F281–F288,
1994.
|
1160. |
Rassier ME,
Li T and
Zimmerman BG.
Analysis of influence of extra‐ and intrarenally formed angiotensin II on renal blood flow.
J Cardiovasc Pharmacol
8
(Suppl. 10):
S106–S110,
1986.
|
1161. |
Vos PF,
Boer P and
Koomans HA.
Effects of enalapril on renal sodium handling in healthy subjects on low. intermediate, and high sodium intake.
J Cardiovasc Pharmacol
22:
27–32,
1993.
|
1162. |
Kimbrough HM, Jr.,
Vaughan ED, Jr.,
Carey RM and
Ayers CR.
Effect of intrarenal angiotensin II blockade on renal function in conscious dogs.
Circ Res
40:
174–178,
1977.
|
1163. |
Fagard RH,
Amery AK and
Lijnen PJ.
Renal responses to angiotensin II and 1‐Sar‐8‐Ala‐AII in sodium replete and deplete dogs.
Pflügers Arch
374:
199–204,
1978.
|
1164. |
Hall JE,
Guyton AC,
Smith MJ, Jr. and
Coleman TG.
Chronic blockade of angiotensin II formation during sodium deprivation.
Am J Physiol
237:
F424–F432,
1979.
|
1165. |
Kon V,
Fogo A and
Ichikawa I.
Bradykinin causes selective efferent arteriolar dilation during angiotensin I converting enzyme inhibition.
Kidney Int
44:
545–550,
1993.
|
1166. |
Verburg KM,
Kadam JRC,
Young GA,
Rosenberg SH and
Kleinert HD.
Effect of intrarenal renin inhibition on renal hemodynamics and excretory function.
Am J Physiol Regul Integr Comp Physiol
259:
R7–R14,
1990.
|
1167. |
Verburg KM,
Kleinert HD,
Chekal MA,
Kadam JRC and
Young GA.
Renal hemodynamic and excretory responses to renin inhibition induced by A‐64662.
J Pharmacol Exp Ther
252:
449–455,
1990.
|
1168. |
Persson P,
Ehmke H and
Kirchheim H.
Influence of the renin‐angiotensin system on the autoregulation of renal blood flow and glomerular filtration rate in conscious dogs.
Acta Physiol Scand
134:
1–7,
1988.
|
1169. |
He J and
Marsh DJ.
Effect of captopril on fluctuations of blood pressure and renal blood flow in rats.
Am J Physiol Renal Physiol
264:
F37–F44,
1993.
|
1170. |
Steinhausen M and
Holz FG.
Autoregulation of glomerular blood flow during converting‐enzyme inhibition by captopril.
Biomed Biochim Acta
46:
1005–1009,
1987.
|
1171. |
Clappison BH,
Anderson WP and
Johnston CI.
Renal hemodynamics and renal kinins after angiotensin converting enzyme inhibition.
Kidney Int
20:
615–620,
1981.
|
1172. |
Zimmerman BG,
Raich PC,
Vavrek RJ and
Stewart JM.
Bradykinin contribution to renal blood flow effect of angiotensin converting enzyme inhibitor in the conscious sodium‐restricted dog.
Circ Res
66:
242–248,
1990.
|
1173. |
Fenoy FJ,
Scicli G,
Carretero O and
Roman RJ.
Effect of an angiotensin II and a kinin receptor antagonist on the renal hemodynamic response to captopril.
Hypertension
17:
1038–1044,
1991.
|
1174. |
Bauer JH and
Reams GP.
Renal effects of angiotensin converting enzyme inhibitors in hypertension.
Am J Med
81
(suppl 4C):
19–27,
1986.
|
1175. |
Brunner HR.
The renin‐angiotensin system in hypertension: an update.
Hospital Practice:
71–81,
1990.
|
1176. |
Hall JE.
Regulation of glomerular filtration rate and sodium excretion by angiotensin II.
Federation Proceedings
45:
1431–1437,
1986.
|
1177. |
Kastner PR,
Hall JE and
Guyton AC.
Control of glomerular filtration rate: role of intrarenally formed angiotensin II.
Am J Physiol
246:
F897–F906,
1984.
|
1178. |
Valvo E,
Casagrande P,
Bedogna V,
Antiga L,
Alberti D,
Zamboni M,
Perobelli L,
Dal Santo F and
Maschio G.
Systemic and renal effects of a new angiotensin converting enzyme inhibitor benazepril, in essential hypertension.
J Hypertens
8:
991–995,
1990.
|
1179. |
Ichikawa I,
Ferrone RA,
Duchin KL,
Manning M,
Dzau VJ and
Brenner BM.
Relative contribution of vasopressin and angiotensin II to the altered renal microcirculatory dynamics in two kidney Goldblatt hypertension.
Circ Res
53:
592–602,
1983.
|
1180. |
Clark KL,
Robertson MJ and
Drew GM.
Role of angiotensin AT1 and AT2 receptors in mediating the renal effects of angiotensin II in the anaesthetized dog.
Br J Pharmacol
109:
148–156,
1993.
|
1181. |
Keiser JA,
Bjork FA,
Hodges JC and
Taylor DG, Jr.
Renal hemodynamic and excretory responses to PD 123319 and losartan. nonpeptide AT1 and AT2 subtype‐specific angiotensin II ligands.
J Pharmacol Exp Ther
262:
1154–1160,
1992.
|
1182. |
Wienen W and
Entzeroth M.
Effects on binding characteristics and renal function of the novel, non‐pepttde angiotensin II antagonist BIBR 277 in the rat.
J Hypertens
12:
119–128,
1994.
|
1183. |
Chan DP,
Sandok EK,
Aahrus LL,
Heublein DM and
Burnett JC, Jr.
Renal‐specific actions of angiotensin II receptor antagonism in the anesthetized dog.
Am J Hypertens
5:
354–360,
1992.
|
1184. |
Tamaki T,
Nishiyama A,
Yoshida H,
He H,
Fukui T,
Yamamoto A,
Aki Y,
Kimura S,
Iwao H,
Miyatake A and
Abe Y.
Effects of EXP3174, a non‐peptide angiotensin II receptor antagonist, on renal hemodynamics and renal function in dogs.
Eur J Pharmacol
236:
15–21,
1993.
|
1185. |
Zhuo J,
Thomas D,
Harris PJ and
Skinner SL.
The role of endogenous angiotensin II in the regulation of renal haemodynamics and proximal fluid reabsorption in the rat.
J Physiol (Lond)
453:
1–13,
1992.
|
1186. |
Reams G,
Villarreal D and
Bauer JH.
Intrarenal metabolism of angiotensin II.
Am J Physiol Renal Physiol
258:
F1510–F1515,
1990.
|
1187. |
Holm L,
Morsing P,
Casellas D and
Persson AEG.
Resetting of the pressure range for blood flow autoregulation in the rat kidney.
Acta Physiol Scand
138:
395–401,
1990.
|
1188. |
Mitchell KD and
Navar LG.
Influence of intrarenally generated angiotensin II on renal hemodynamics and tubular reabsorption.
Renal Physiol Biochem
14:
155–163,
1991.
|
1189. |
Imig JD and
Deichmann PC.
Afferent arteriolar responses to ANG II involve activation of PLA2 and modulation by lipoxygenase and P‐450 pathways.
Am J Physiol Renal Physiol
273:
F274–F282,
1997.
|
1190. |
Schnermann J and
Briggs J.
Role of the renin‐angiotensin system in tubuloglomerular feedback.
Fed Proc
45:
1426–1430,
1986.
|
1191. |
Thurau K,
Tubulo‐glomerular feedback. In:
Advances in Physiological Sciences (Kidney and Body Fluids),
vol. 11,
ed. Takacs L.
New York:
Pergamon Press, Inc.,
1981,
pp. 75–82.
|
1192. |
Braam B,
Mitchell KD and
Navar LG.
Modulation of tubuloglomerular feedback responsiveness by angiotensin II AT1 receptors. In:
Current Advances in ACE Inhihition‐3,
eds MacGregor GA and
Sever PS.
Tokyo:
Churchill‐Livingstone,
1994,
pp. 155–158.
|
1193. |
Huang W‐C,
Bell PD,
Harvey D,
Mitchell KD and
Navar LG.
Angiotensin influences on tubuloglomerular feedback mechanism in hypertensive rats.
Kidney Int
34:
631–637,
1988.
|
1194. |
Mitchell KD and
Navar LG.
Responses of the tubuloglomerular feedback mechanism to ACE inhibitors and angiotensin II. In:
Diuretics III: Chemistry, Pharmacology, and Clinical Applications,
Vol. 3,
eds Puschett JB and
Greenberg A.
Elsevier Science Publishing Co., Inc.,
1990,
pp. 764–768.
|
1195. |
Persson AE,
Gushwa LC and
Blantz RC.
Feedback pressure‐flow responses in normal and angiotensin‐prostaglandin blocked rats.
Am J Physiol Renal Physiol
247:
F925–F931,
1984.
|
1196. |
Ploth DW and
Roy RN.
Renin‐angiotensin influences on tubuloglomerular feedback activity in the rat.
Kidney Int
22
(Suppl 12):
S114–S121,
1982.
|
1197. |
Braam B,
Navar LG and
Mitchell KD.
Modulation of tubuloglomerular feedback by angiotensin II type 1 receptors during the development of Goldblatt hypertension.
Hypertension
25:
1232–1237,
1995.
|
1198. |
Ploth DW.
Angiotensin‐dependent renal mechanisms in two‐kidney one‐clip renal vascular hypertension.
Am J Physiol Renal Physiol
245:
F131–F141,
1983.
|
1199. |
Turkstra E,
Braam B and
Koomans HA.
Normal TGF responsiveness during chronic treatment with angiotensin‐converting enzyme inhibition‐Role of ATI receptors.
Hypertension
36:
818–823,
2000.
|
1200. |
Traynor T,
Yang T,
Huang YG,
Krege JH,
Briggs JP,
Smithies O and
Schnermann J.
Tubuloglomerular feedback in ACE‐deficient mice.
Am J Physiol Renal Physiol
276:
F751–F757,
1999.
|
1201. |
Ichihara A,
Hayashi M,
Koura Y,
Tada Y,
Sugaya T,
Hirota N and
Saruta T.
Blunted tubuloglomerular feedback by absence of angiotensin type 1 A receptor involves neuronal NOS.
Hypertension
40:
934–939,
2002.
|
1202. |
Peti‐Peterdi J and
Bell PD.
Regulation of macula densa Na: H exchange by angiotensin II.
Kidney Int
54:
2021–2028,
1998.
|
1203. |
Navar LG,
Harrison‐Bernard LM,
Imig JD and
Mitchell KD.
Renal actions of angiotensin II at AT1 receptor blockers. In:
Angiotensin II Receptor Antagonists,
eds Epstein M and
Brunner HR.
Philadelphia:
Hanley & Belfus, Inc.,
2000,
pp. 189–214.
|
1204. |
Navar LG and
Hamm LL.
The kidney in blood pressure regulation. In:
Atlas of Diseases of the Kidney, Hypertension and the Kidney,
ed. Wilcox CS.
Philadelphia:
Current Medicine, Inc.,
1999,
pp. 1.1–1.22.
|
1205. |
Wang C‐T,
Chin SY and
Navar LG.
Impairment of pressure‐natriuresis and renal autoregulation in ANG II‐infused hypertensive rats.
Am J Physiol Renal Physiol
279:
F319–F325,
2000.
|
1206. |
Bloch RD,
Zikos D,
Fisher KA,
Schleicher L,
Oyama M,
Cheng J‐C,
Skopicki HA,
Sukowski EJ,
Cragoe EJ, Jr. and
Peterson DR.
Activation of proximal tubular Na+ ‐H+ exchange by angiotensin II.
Am J Physiol Renal Physiol
263:
F135–F143,
1992.
|
1207. |
Cano A,
Miller RT,
Alpern RJ and
Preisig PA.
Angiotensin II stimulation of Na‐H antiporter activity is cAMP independent in OKP cells.
Am J Physiol Renal Physiol
266:
C1603–C1608,
1994.
|
1208. |
Li L,
Wang Y‐P,
Capparelli AW,
Jo OD and
Yanagawa N.
Effect of luminal angiotensin II on proximal tubule fluid transport: role of apical phospholipase A2.
Am J Physiol Renal Physiol
266:
F202–F209,
1994.
|
1209. |
Harris PJ and
Navar LG.
Tubular transport responses to angiotensin.
Am J Physiol Renal Physiol
248:
F621–F630,
1985.
|
1210. |
Schuster VL,
Kokko JP and
Jacobson HR.
Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules.
J Clin Invest
73:
507–515,
1984.
|
1211. |
Xie MH,
Liu FY,
Wong PC,
Timmermans PBMWM and
Cogan MG.
Proximal nephron and renal effects of DuP 753, a nonpeptide angiotensin II receptor antagonist.
Kidney Int
38:
473–479,
1990.
|
1212. |
Yanagawa N.
Potential role for local luminal angiotensin II in proximal tubule sodium transport.
Kidney Int
39
(Suppl. 32):
S‐33–S‐36,
1991.
|
1213. |
Hao CM and
Breyer MD.
Physiologic and pathophysiologic roles of lipid mediators in the kidney.
Kidney Int
71:
1105–1115,
2007.
|
1214. |
Roman RJ.
P‐450 metabolites of arachidonic acid in the control of cardiovascular function.
Physiol Rev
82:
131–185,
2002.
|
1215. |
Smith WL,
Marnett LJ and
DeWitt DL.
Prostaglandin and thromboxane biosynthesis.
Pharmacol Ther
49:
153–179,
1991.
|
1216. |
Yang T,
Singh I,
Pham H,
Sun D,
Smart A,
Schnermann JB and
Briggs JP.
Regulation of cyclooxygenase expression in the kidney by dietary salt intake.
Am J Physiol
274:
F481–F489,
1998.
|
1217. |
Qi Z,
Hao CM,
Langenbach RI,
Breyer RM,
Redha R,
Morrow JD and
Breyer MD.
Opposite effects of cyclooxygenase‐1 and ‐2 activity on the pressor response to angiotensin II.
J Clin Invest
110:
61–69,
2002.
|
1218. |
Breyer RM,
Bagdassarian CK,
Myers SA and
Breyer MD.
Prostanoid receptors: subtypes and signaling.
Annu Rev Pharmacol Toxicol
41:
661–690,
2001.
|
1219. |
Breyer MD,
Zhang Y,
Guan YF,
Hao CM,
Hebert RL and
Breyer RM.
Regulation of renal function by prostaglandin E receptors.
Kidney Int Suppl
67:
S88–S94,
1998.
|
1220. |
Sugimoto Y,
Namba T,
Shigemoto R,
Negishi M,
Ichikawa A and
Narumiya S.
Distinct cellular localization of mRNAs for three subtypes of prostaglandin E receptor in kidney.
Am J Physiol Renal Physiol
266:
F823–F828,
1994.
|
1221. |
Purdy KE and
Arendshorst WJ.
EP1 and EP4 receptors mediate prostaglandin E2 actions in the microcirculation of the rat kidney.
Am J Physiol Renal Physiol
279:
F755–F764,
2000.
|
1222. |
Tang L,
Loutzenhiser K and
Loutzenhiser R.
Biphasic actions of prostaglandin E(2) on the renal afferent arteriole: role of EP(3) and EP(4) receptors.
Circ Res
86:
663–670,
2000.
|
1223. |
Audoly LP,
Ruan X,
Wagner VA,
Goulet JL,
Tilley SL,
Koller BH,
Coffman TM and
Arendshorst WJ.
Role of EP(2) and EP(3) PGE(2) receptors in control of murine renal hemodynamics. Am.
J. Physiol. Heart Circ. Physiol
280:
H327–H333,
2001.
|
1224. |
Purdy KE and
Arendshorst WJ.
Iloprost inhibits inositol‐1,4,5‐trisphosphate‐mediated calcium mobilization stimulated by angiotensin II in cultured preglomerular vascular smooth muscle cells.
J Am Soc Nephrol
12:
19–28,
2001.
|
1225. |
Breyer MD,
Jacobson HR and
Breyer RM.
Functional and molecular aspects of renal prostaglandin receptors.
J Am Soc Nephrol
7:
8–17,
1996.
|
1226. |
Coleman RA,
Smith WL and
Narumiya S.
International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes.
Pharmacol Rev
46:
205–229,
1994.
|
1227. |
Imig JD,
Breyer MD and
Breyer RM.
Contribution of prostaglandin EP(2) receptors to renal microvascular reactivity in mice.
Am J Physiol Renal Physiol
283:
F415–F422,
2002.
|
1228. |
Zhang Y,
Guan Y,
Schneider A,
Brandon S,
Breyer RM and
Breyer MD.
Characterization of murine vasopressor and vasodepressor prostaglandin E(2) receptors.
Hypertension
35:
1129–1134,
2000.
|
1229. |
Badzynska B and
Sadowski J.
Renal hemodynamic responses to intrarenal infusion of acetylcholine: comparison with effects of PGE2 and NO donor.
Kidney Int
69:
1774–1779,
2006.
|
1230. |
Mene P and
Dunn MJ.
Eicosanoids and control of mesangial cell contraction.
Circ Res
62:
916–925,
1988.
|
1231. |
Kennedy CR,
Zhang Y,
Brandon S,
Guan Y,
Coffee K,
Funk CD,
Magnuson MA,
Oates JA,
Breyer MD and
Breyer RM.
Salt‐sensitive hypertension and reduced fertility in mice lacking the prostaglandin EP2 receptor.
Nat Med
5:
217–220,
1999.
|
1232. |
Schweda F,
Klar J,
Narumiya S,
Nusing RM and
Kurtz A.
Stimulation of renin release by prostaglandin E2 is mediated by EP2 and EP4 receptors in mouse kidneys.
Am J Physiol Renal Physiol
287:
F427–F433,
2004.
|
1233. |
Nasrallah R and
Hebert RL.
Prostacyclin signaling in the kidney: implications for health and disease.
Am J Physiol Renal Physiol
289:
F235–F246,
2005.
|
1234. |
Chaudhari A,
Gupta S and
Kirschenbaum MA.
Biochemical evidence for PGI2 and PGE2 receptors in the rabbit renal preglomerular microvasculature.
Biochim Biophys Acta
1053:
156–161,
1990.
|
1235. |
Ruan X,
Chatziantoniou C and
Arendshorst WJ.
Impaired prostaglandin E(2)/prostaglandin 1(2) receptor‐G(s) protein interactions in isolated renal resistance arterioles of spontaneously hypertensive rats.
Hypertension
34:
1134–1140,
1999.
|
1236. |
Chatziantoniou C and
Arendshorst WJ.
Prostaglandin interactions with angiotensin, norepinephrine, and thromboxane in rat renal vasculature.
Am J Physiol Renal Physiol
262:
F68–F76,
1992.
|
1237. |
Chatziantoniou C,
Daniels FH and
Arendshorst WJ.
Exaggerated renal vascular reactivity to angiotensin and thromboxane in young genetically hypertensive rats.
Am J Physiol Renal Physiol
259:
F372–F382,
1990.
|
1238. |
Fujino T,
Nakagawa N,
Yuhki K,
Hara A,
Yamada T,
Takayama K,
Kuriyama S,
Hosoki Y,
Takahata O,
Taniguchi T,
Fukuzawa J,
Hasebe N,
Kikuchi K,
Narumiya S and
Ushikubi F.
Decreased susceptibility to renovascular hypertension in mice lacking the prostaglandin 12 receptor IP.
J Clin Invest
114:
805–812,
2004.
|
1239. |
Hayashi K,
Loutzenhiser R and
Epstein M.
Direct evidence that thromboxane mimetic U44069 preferentially constricts the afferent arteriole.
J Am Soc Nephrol
8:
25–31,
1997.
|
1240. |
Offermanns S,
Laugwitz KL,
Spicher K and
Schultz G.
G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets.
Proc Natl Acad Sci USA
91:
504–508,
1994.
|
1241. |
Ohkubo S,
Nakahata N and
Ohizumi Y.
Thromboxane A2‐mediated shape change: independent of Gq‐phospholipase C‐Ca2+ pathway in rabbit platelets.
Br J Pharmacol
117:
1095–1104,
1996.
|
1242. |
Fukunaga M,
Yura T,
Grygorczyk R and
Badr KF.
Evidence for the distinct nature of F2‐isoprostane receptors from those of thromboxane A.
Am J Physiol Renal Physiol
272:
F477–F483,
1997.
|
1243. |
Takahashi K,
Nammour TM,
Fukunaga M,
Ebert J,
Morrow JD,
Roberts ILJ,
Hoover RL and
Badr KF.
Glomerular actions of a free radical‐generated novel prostaglandin, 8‐epi‐prostaglandin F2a, in the rat. Evidence for interaction with thromboxane A, receptors.
J Clin Invest
90:
136–141,
1992.
|
1244. |
Kawada N,
Dennehy K,
Solis G,
Modlinger P,
Hamel R,
Kawada JT,
Aslam S,
Moriyama T,
Imai E,
Welch WJ and
Wilcox CS.
TP receptors regulate renal hemodynamics during angiotensin II slow pressor response.
Am J Physiol Renal Physiol
287:
F753–F759,
2004.
|
1245. |
Welch WJ.
Effects of isoprostane on tubuloglomerular feedback: roles of TP receptors, NOS, and salt intake.
Am J Physiol Renal Physiol
288:
F757–F762,
2005.
|
1246. |
Boffa JJ,
Just A,
Coffman TM and
Arendshorst WJ.
Thromboxane receptor mediates renal vasoconstriction and contributes to acute renal failure in endotoxemic mice.
J Am Soc Nephrol
15:
2358–2365,
2004.
|
1247. |
Imig JD and
Navar LG.
Afferent arteriolar response to arachi donic acid: involvement of metabolic pathways.
Am J Physiol Renal Physiol
271:
F87–F93,
1996.
|
1248. |
Imig JD.
Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases.
Am J Physiol Renal Physiol
289:
F496–F503,
2005.
|
1249. |
Fleming I.
Cytochrome p450 and vascular homeostasis.
Circ Res
89:
753–762,
2001.
|
1250. |
Harder DR,
Campbell WB and
Roman RJ.
Role of cytochrome P‐450 enzymes and metabolites of arachidonic acid in the control of vascular tone.
J Vasc Res
32:
79–92,
1995.
|
1251. |
McGiff JC and
Quilley J.
20‐HETE and the kidney: resolution of old problems and new beginnings.
Am J Physiol
277:
R607–R623,
1999.
|
1252. |
Ortiz PA and
Garvin JL.
Intrarenal transport and vasoactive substances in hypertension.
Hypertension
38:
621–624,
2001.
|
1253. |
Quilley J,
Fulton D and
McGiff JC.
Hyperpolarizing factors.
Biochem Pharmacol
54:
1059–1070,
1997.
|
1254. |
Roman RJ,
Maier KG,
Sun CW,
Harder DR and
Alonso‐Galicia M.
Renal and cardiovascular actions of 20‐hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids.
Clin Exp Pharmacol Physiol
27:
855–865,
2000.
|
1255. |
Sarkis A,
Lopez B and
Roman RJ.
Role of 20‐hydroxyeicosaletraenoic acid and epoxyeicosatrienoic acids in hypertension.
Curr Opin Nephrol Hypertens
13:
205–214,
2004.
|
1256. |
Oyekan A,
Balazy M and
McGiff JC.
Renal oxygenases: differential contribution to vasoconstriction induced by ET‐1 and ANG II.
Am J Physiol Regul Integr Comp Physiol
273:
R293–R300,
1997.
|
1257. |
Arima S,
Omata K,
Ito S,
Tsunoda K and
Abe K.
20‐HETE requires increased vascular tone to constrict rabbit afferent arterioles.
Hypertension
27
(part 2):
781–785,
1996.
|
1258. |
Harder DR,
Narayanan J,
Birks EK,
Liard JF,
Imig JD,
Lombard JH,
Lange AR and
Roman RJ
Identification of a putative microvascular oxygen sensor.
Circ Res
79:
54–61,
1996.
|
1259. |
Imig JD,
Zou A‐P,
Stec DE,
Harder DR,
Falck JR and
Roman RJ.
Formation and actions of 20‐hydroxyeicosatetraenoic acid in rat renal arterioles.
Am J Physiol Regul Integr Comp Physiol
270:
R217–R227,
1996.
|
1260. |
Alonso‐Galicia M,
Maier KG,
Greene AS,
Cowley AW, Jr. and
Roman RJ.
Role of 20‐hydroxyeicosatetraenoic acid in the renal and vasoconstrictor actions of angiotensin II.
Am J Physiol Regul Integr Comp Physiol
283:
R60–R68,
2002.
|
1261. |
Kohagura K,
Arima S,
Endo Y,
Chiba Y,
Ito O,
Abe M,
Omata K and
Ito S.
Involvement of cytochrome P450 metabolites in the vascular action of angiotensin II on the afferent arterioles.
Hypertens Res
24:
551–557,
2001.
|
1262. |
Hercule HC and
Oyekan AO.
Cytochrome P450 omega/omega‐1 hydroxylase‐derived eicosanoids contribute to endothelin(A) and endothelin(B) receptor‐mediated vasoconstriction to endothelin‐1 in the rat preglomerular arteriole.
J Pharmacol Exp Ther
292:
1153–1160,
2000.
|
1263. |
Zhao X,
Inscho EW,
Bondlela M,
Falck JR and
Imig JD.
The CYP450 hydroxylase pathway contributes to P2X receptor‐mediated afferent arteriolar vasoconstriction.
Am J Physiol Heart Circ Physiol
281:
H2089–H2096,
2001.
|
1264. |
Joly E,
Seqqat R,
Flamion B,
Caron N,
Michel A,
Imig JD and
Kramp R.
Increased renal vascular reactivity to ANG II after unilateral nephrectomy in the rat involves 20‐HETE.
Am J Physiol Regul Integr Comp Physiol
291:
R977–R986,
2006.
|
1265. |
Imig JD,
Falck JR and
Inscho EW.
Contribution of cytochrome P450 epoxygenase and hydroxylase pathways to afferent arteriolar autoregulatory responsiveness.
Br J Pharmacol
127:
1399–1405,
1999.
|
1266. |
Alonso‐Galicia M,
Drummond HA,
Reddy KK,
Falck JR and
Roman RJ.
Inhibition of 20‐HETE production contributes to the vascular responses to nitric oxide.
Hypertension
29
(part 2):
320–325,
1997.
|
1267. |
Capdevila JH and
Falck JR.
The CYP P450 arachidonic acid monooxygenases: from cell signaling to blood pressure regulation.
Biochem Biophys Res Commun
285:
571–576,
2001.
|
1268. |
Capdevila JH,
Nakagawa K and
Holla V.
The CYP P450 arachidonate monooxygenases: enzymatic relays for the control of kidney function and blood pressure.
Adv Exp Med Biol
525:
39–46,
2003.
|
1269. |
Gainer JV,
Bellamine A,
Dawson EP,
Womble KE,
Grant SW,
Wang Y,
Cupples LA,
Guo CY,
Demissie S,
O'Donnell CJ,
Brown NJ,
Waterman MR and
Capdevila JH.
Functional variant of CYP4A11 20‐hydroxyeicosatetraenoic acid synthase is associated with essential hypertension.
Circulation
111:
63–69,
2005.
|
1270. |
Carroll MA,
Garcia MP,
Falck JR and
McGiff JC.
Cyclooxygeanse dependency of the renovascular actions of cytochrome P450‐dervied arachidonate metabolites.
J Pharmacol Exp Ther
260:
104–109,
1992.
|
1271. |
Spiecker M and
Liao JK.
Vascular protective effects of cytochrome p450 epoxygenase‐derived eicosanoids.
Arch Biochem Biophys
433:
413–420,
2005.
|
1272. |
Cheng MK,
Doumad AB,
Jiang H,
Falck JR,
McGiff JC and
Carroll MA.
Epoxyeicosatrienoic acids mediate adenosine‐induced vasodilation in rat preglomerular microvessels (PGMV) via A2A receptors.
Br J Pharmacol
141:
441–448,
2004.
|
1273. |
Arima S,
Endo Y,
Yaoita H,
Omata K,
Ogawa S,
Tsunoda K,
Abe M,
Takeuchi K,
Abe K and
Ito S.
Possible role of P‐450 metabolite of arachidonic acid in vasodilator mechanism of angiotensin II type 2 receptor in the isolated microperfused rabbit afferent arteriole.
J Clin Invest
100:
2816–2823,
1997.
|
1274. |
Imig JD,
Inscho EW,
Deichmann PC,
Reddy KM and
Falck JR.
Afferent arteriolar vasodilation to the sulfonimide analog of 11, 12‐epoxygeicosatrienoic acid involves protein kinase A.
Hypertension
33
(part II):
408–413,
1999.
|
1275. |
Fukao M,
Mason HS,
Kenyon JL,
Horowitz B and
Keef KD.
Regulation of BK(Ca) channels expressed in human embryonic kidney 293 cells by epoxyeicosatrienoic acid.
Mol Pharmacol
59:
16–23,
2001.
|
1276. |
Pomposiello SI,
Quilley J,
Carroll MA,
Falck JR and
McGiff JC.
5,6‐epoxyeicosatrienoic acid mediates the enhanced renal vasodilation to arachidonic acid in the SHR.
Hypertension
42:
548–554,
2003.
|
1277. |
Imig JD,
Falck JR,
Wei S and
Capdevila JH.
Epoxygenase metabolites contribute to nitric oxide‐independent afferent arteriolar vasodilation in response to bradykinin.
J Vasc Res
38:
247–255,
2001.
|
1278. |
Node K,
Huo Y,
Ruan X,
Yang B,
Spiecker M,
Ley K,
Zeldin DC and
Liao JK.
Anti‐inflammatory properties of cytochrome P450 epoxygenase‐derived eicosanoids.
Science
285:
1276–1279,
1999.
|
1279. |
Imig JD.
Epoxygenase metabolites: epithelial and vascular actions.
Mol Biotechnol
16:
233–251,
2000.
|
1280. |
Brash AR.
Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate.
J Biol Chem
274:
23679–23682,
1999.
|
1281. |
Funk CD,
Keeney DS,
Oliw EH,
Boeglin WE and
Brash AR.
Functional expression and cellular localization of a mouse epidermal lipoxygenase.
J Biol Chem
271:
23338–23344,
1996.
|
1282. |
Natarajan R and
Nadler JL.
Lipid inflammatory mediators in diabetic vascular disease.
Arterioscler Thromb Vasc Biol
24:
1542–1548,
2004.
|
1283. |
Yamamoto S.
Mammalian lipoxygenases: molecular structures and functions.
Biochim Biophys Acta
1128:
117–131,
1992.
|
1284. |
Yiu SS,
Zhao X,
Inscho EW and
Imig JD.
12‐Hydroxyeicosatetraenoic acid participates in angiotensin II afferent arteriolar vasoconstriction by activating L‐type calcium channels.
J Lipid Res
44:
2391–2399,
2003.
|
1285. |
Ma Y‐H,
Harder DR,
Clark JE and
Roman RJ.
Effects of 12‐HETE on isolated dog renal arcuate arteries.
Am J Physiol
261:
H451–H456,
1991.
|
1286. |
Katoh T,
Takahashi K,
DeBoer DK,
Serhan CN and
Badr KF.
Renal hemodynamic actions of lipoxins in rats: a comparative physiological study.
Am J Physiol Renal Physiol
263:
F436–F442,
1992.
|
1287. |
Anning PB,
Coles B,
Bermudez‐Fajardo A,
Martin PE,
Levison BS,
Hazen SL,
Funk CD,
Kuhn H and
O'Donnell VB.
Elevated endothelial nitric oxide bioactivity and resistance to angiotensin‐dependent hypertension in 12/15‐lipoxygenase knockout mice.
Am J Pathol
166:
653–662,
2005.
|
1288. |
Imig JD.
Eicosanoids and renal vascular function in diseases.
Clin Sci (Lond)
111:
21–34,
2006.
|
1289. |
Dellipizzi A,
Pucci ML,
Mosny AY,
Deseyn K and
Nasjletti A.
Contribution of constrictor prostanoids to the calcium‐dependent basal tone in the aorta from rats with aortic coarctation‐induced hypertension: relationship to nitric oxide.
J Pharmacol Exp Ther
283:
75–81,
1997.
|
1290. |
Wilcox CS and
Welch WJ.
Thromboxane mediation of the pressor response to infused angiotensin II.
Am J Hyperiens
3:
242–249,
1990.
|
1291. |
Purdy KE and
Arendshorst WJ.
Prostaglandins buffer ANG II‐mediated increases in cytosolic calcium in preglomerular VSMC.
Am J Physiol
277:
F850–F858,
1999.
|
1292. |
Gonzalez MR,
Villa E,
Garcia‐Robles R,
Angulo J,
Peiro C,
Marin J and
Sanchez‐Ferrer CF.
Effects of indomethacin and iloprost on contraction of the afferent arterioles by endothelin‐1 in juxtamedullary nephron preparations from normotensive Wistar‐Kyoto and spontaneously hypertensive rats.
J Cardiovasc Pharmacol
28:
809–816,
1996.
|
1293. |
Forstermann U and
Neufang B.
The endothelium‐dependent vasodilator effect of acetylcholine: characterization of the endothelial relaxing factor with inhibitors of arachidonic acid metabolism.
Eur J Pharmacol
103:
65–70,
1984.
|
1294. |
McGiff JC,
Carroll MA and
Escalante B.
Arachidonate metabolites and kinins in blood pressure regulation.
Hypertension
18
(suppl III):
III‐150–III‐157,
1991.
|
1295. |
Wu XC,
Richards NT,
Michael J and
Johns E.
Relative roles of nitric oxide and cyclo‐oxygenase and lipoxygenase products of arachidonic acid in the contractile responses of rat renal arcuate arteries.
Br J Pharmacol
112:
369–376,
1994.
|
1296. |
Paliege A,
Mizel D,
Medina C,
Pasumarthy A,
Huang YG,
Bachmann S,
Briggs JP,
Schnermann JB and
Yang T.
Inhibition of nNOS expression in the macula densa by COX‐2‐derived prostaglandin E(2).
Am J Physiol Renal Physiol
287:
F152–F159,
2004.
|
1297. |
Wang D,
Chabrashvili T and
Wilcox CS.
Enhanced contractility of renal afferent arterioles from angiotensin‐infused rabbits: roles of oxidative stress, thromboxane prostanoid receptors, and endothelium.
Circ Res
94:
1436–1442,
2004.
|
1298. |
Katayama S,
Inaba M,
Maruno Y,
Omoto A,
Kawazu S,
Ishii J and
Sawada M.
Increased renal TXA2 synthesis in diabetes mellitus: simultaneous determination of urinary TXB2 and 2,3‐dinor‐TXB2.
Prostaglandins Leukot Essent Fatty Acids
39:
47–51,
1990,
|
1299. |
Pawloski JR and
Chapnick BM.
LTD4 and bradykinin evoke endothelium‐dependent relaxation of the renal vein: dissimilar mechanisms.
Am J Physiol
261:
H88–H95,
1991.
|
1300. |
Pawloski JR and
Chapnick BM.
Antagonism of LTD4‐evoked relaxation in canine renal artery and vein.
Am J Physiol Heart Circ Physiol
265:
H980–H985,
1993.
|
1301. |
Sellmayer A,
Uedelhoven WM,
Weber PC and
Bonventre JV.
Endogenous non‐cyclooxygenase metabolites of arachidonic acid modulate growth and mRNA levels of immediate‐early response genes in rat mesangial cells.
J Biol Chem
266:
3800–3807,
1991.
|
1302. |
Thibonnier M,
Bayer AL,
Laethem CL,
Koop DR and
Simonson MS.
Role of eicosanoids in vasopressin‐induced calcium mobilization in A7r5 vascular smooth muscle cells.
Am J Physiol Endocrinol Metabol
265:
E108–E114,
1993.
|
1303. |
Vazquez B,
Rios A and
Escalante B.
Arachidonic acid metabolism modulates vasopressin‐induced renal vasoconstriction.
Life Sci
56:
1455–1466,
1995.
|
1304. |
Kaide J,
Wang MH,
Wang JS,
Zhang F,
Gopal VR,
Falck JR,
Nasjletti A and
Laniado‐Schwartzman M.
Transfection of CYP4A1 cDNA increases vascular reactivity in renal interlobar arteries.
Am J Physiol Renal Physiol
284:
F51–F56,
2003.
|
1305. |
Zhao X,
Falck JR,
Gopal VR,
Inscho EW and
Imig JD.
P2X receptor‐stimulated calcium responses in preglomerular vascular smooth muscle cells involves 20‐hydroxyeicosatetraenoic acid.
J Pharmacol Exp Ther
311:
1211–1217,
2004.
|
1306. |
Hercule HC,
Wang MH and
Oyekan AO.
Contribution of cytochrome P450 4 A isoforms to renal functional response to inhibition of nitric oxide production in the rat.
J Physiol
551:
971–979,
2003.
|
1307. |
Wang JS,
Singh H,
Zhang F,
Ishizuka T,
Deng H,
Kemp R,
Wolin MS,
Hintze TH,
Abraham NG,
Nasjletti A and
Laniado‐Schwartzman M.
Endothelial dysfunction and hypertension in rats transduced with CYP4A2 adenovirus.
Circ Res
98:
962–969,
2006.
|
1308. |
Matsuda H,
Hayashi K,
Wakino S,
Kubota E,
Honda M,
Tokuyama H,
Takamatsu I,
Tatematsu S and
Saruta T.
Role of endothelium‐derived hyperpolarizing factor in ACE inhibitor‐induced renal vasodilation in vivo.
Hypertension
43:
603–609,
2004.
|
1309. |
Zhao X,
Quigley JE,
Yuan J,
Wang MH,
Zhou Y and
Imig JD.
PPAR‐alpha activator fenofibrate increases renal CYP‐derived eicosanoid synthesis and improves endothelial dilator function in obese Zucker rats.
Am J Physiol Heart Circ Physiol
290:
H2187–H2195,
2006.
|
1310. |
Carroll MA,
Doumad AB,
Li J,
Cheng MK,
Falck JR and
McGiff JC.
Adenosine 2A receptor vasodilation of rat preglomerular microvessels is mediated by EETs that activate the cAMP/PKA pathway.
Am J Physiol Renal Physiol
291:
F155–F161,
2006.
|
1311. |
Fulton D,
Balazy M,
McGiff JC and
Quilley J.
Possible contribution of platelet cyclooxygenase to the renal vascular action of 5,6‐epoxyeicosatrienoic acid.
J Pharmacol Exp Ther
277:
1195–1199,
1996.
|
1312. |
Caron N,
El Hajjam A,
Decleves AE,
Joly E,
Falck JR and
Kramp R.
Changes in renal haemodynamics induced by indomethacin in the rat involve cytochrome P450 arachidonic acid‐dependent epoxygenases.
Clin Exp Pharmacol Physiol
31:
683–690,
2004.
|
1313. |
Ren Y,
Garvin J and
Carretero OA.
Mechanism involved in brady‐kinin‐induced efferent arteriole dilation.
Kidney Int
62:
544–549,
2002.
|
1314. |
Wang H,
Garvin JL,
Falck JR,
Ren Y,
Sankey SS and
Carretero OA.
Glomerular cytochrome P‐450 and cyclooxygenase metabolites regulate efferent arteriole resistance.
Hypertension
46:
1175–1179,
2005.
|
1315. |
Schmelzer KR,
Kubala L,
Newman JW,
Kim IH,
Eiserich JP and
Hammock BD.
Soluble epoxide hydrolase is a therapeutic target for acute inflammation.
Proc Natl Acad Sci USA
102:
9772–9777,
2005.
|
1316. |
Franco M,
Bell PD and
Navar LG.
Evaluation of prostaglandins as mediators of tubuloglomerular feedback.
Am J Physiol Renal Physiol
254:
F642–F649,
1988.
|
1317. |
Olsson RA and
Pearson JD.
Cardiovascular Purinoceptors.
Physiol Rev
70:
761–845,
1990.
|
1318. |
Ralevic V and
Burnstock G.
Receptors for purines and pyrimidines.
Pharmacol Rev
50:
413–492,
1998.
|
1319. |
Boeynaems JM,
Communi D,
Gonzalez NS and
Robaye B.
Overview of the P2 receptors.
Semin Thromb Hemost
31:
139–149,
2005.
|
1320. |
Burnstock G.
Purinergic signalling.
Br J Pharmacol
147
(Suppl 1):
S172–S181,
2006.
|
1321. |
Burnstock G and
Knight GE.
Cellular distribution and functions of P2 receptor subtypes in different systems.
Int Rev Cytol
240:
31–304,
2004.
|
1322. |
Gachet C.
Regulation of platelet functions by P2 receptors.
Annu Rev Pharmacol Toxicol
46:
277–300,
2006.
|
1323. |
Kunapuli SP and
Daniel JL.
P2 receptor subtypes in the cardiovascular system.
Biochem J
36
(Pt 3):
513–523,
1998.
|
1324. |
Williams M and
Jarvis MF.
Purinergic and pyrimidinergic receptors as potential drug targets.
Biochem Pharmacol
59:
1173–1185,
2000.
|
1325. |
Bailey MA,
Turner CM,
Hus‐Citharel A,
Marchetti J,
Imbert‐Teboul M,
Milner P,
Burnstock G and
Unwin RJ.
P2Y receptors present in the native and isolated rat glomerulus.
Nephron Physiol
96:
79–90,
2004.
|
1326. |
Chan CM,
Unwin RJ,
Bardini M,
Oglesby IB,
Ford APDW,
Townsend‐Nicholson A and
Burnstock G.
Localization of P2X1 purinoceptors by autoradiography and immunohistochemistry in rat kidneys.
Am J Physiol Renal Physiol
274:
F799–F804,
1998.
|
1327. |
Turner CM,
Vonend O,
Chan C,
Burnstock G and
Unwin RJ.
The pattern of distribution of selected ATP‐sensitive P2 receptor subtypes in normal rat kidney: an immunohistological study.
Cells Tissues Organs
175:
105–117,
2003.
|
1328. |
Unwin RJ,
Bailey MA and
Burnstock G.
Purinergic signaling along the renal tubule: the current state of play.
News Physiol Sci
18:
237–241,
2003.
|
1329. |
Vitzthum H,
Weiss B,
Bachleitner W,
Kramer BK and
Kurtz A.
Gene expression of adenosine receptors along the nephron.
Kidney Int
65:
1180–1190,
2004.
|
1330. |
Bailey MA,
Hillman KA and
Unwin RJ.
P2 receptors in the kidney.
J Auton Nerv Syst
81:
264–270,
2000.
|
1331. |
Jackson EK and
Raghvendra DK.
The extracellular cyclic AMP‐adenosine pathway in renal physiology.
Annu Rev Physiol
66:
571–599,
2004.
|
1332. |
Vallon V,
Muhlbauer B and
Osswald H.
Adenosine and kidney function.
Physiol Rev
86:
901–940,
2006.
|
1333. |
Burnstock G.
Purinergic nerves.
Pharmacol Rev
24:
509–581,
1972.
|
1334. |
Fredholm BB,
Arslan G,
Halldner L,
Kull B,
Schulte G and
Wasserman W.
Structure and function of adenosine receptors and their genes.
Naunyn Schmiedebergs Arch Pharmacol
362:
364–374,
2000.
|
1335. |
Jackson EK,
Zhu C and
Tofovic SP.
Expression of adenosine receptors in the preglomerular microcirculation.
Am J Physiol Renal Physiol
283:
F41–F51,
2002.
|
1336. |
Nishiyama A,
Inscho EW and
Navar LG.
Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity.
Am J Physiol Renal Physiol
280:
F406–F414,
2001.
|
1337. |
Akbar M,
Okajima F,
Tomura H,
Shimegi S and
Kondo Y.
A single species of A1 adenosine receptor expressed in Chinese hamster ovary cells not only inhibits cAMP accumulation but also stimulates phospholipase C and arachidonate release.
Mol Pharmacol
45:
1036–1042,
1994.
|
1338. |
Gerwins P and
Fredholm BB.
Activation of adenosine A1 and bradykinin receptors increases protein kinase C and phospholipase D activity in smooth muscle cells.
Naunyn Schmiedebergs Arch Pharmacol
351:
186–193,
1995.
|
1339. |
Hansen PB,
Castrop H,
Briggs J and
Schnermann J.
Adenosine induces vasoconstriction through Gi‐dependent activation of phospholipase C in isolated perfused afferent arterioles of mice.
J Am Soc Nephrol
14:
2457–2465,
2003.
|
1340. |
Jockers R,
Linder ME,
Hohenegger M,
Nanoff C,
Bertin B,
Strosberg AD,
Marullo S and
Freissmuth M.
Species difference in the G protein selectivity of the human and bovine A1‐adenosine receptor.
J Biol Chem
269:
32077–32084,
1994.
|
1341. |
Palmer TM,
Gettys TW and
Stiles GL.
Differential interaction with and regulation of multiple G‐proteins by the rat A3 adenosine receptor.
J Biol Chem
270:
16895–16902,
1995.
|
1342. |
Olah ME.
Identification of A2a adenosine receptor domains involved in selective coupling to Gs. Analysis of chimeric A1/A2a adenosine receptors.
J Biol Chem
272:
337–344,
1997.
|
1343. |
Pierce KD,
Furlong TJ,
Selbie LA and
Shine J.
Molecular cloning and expression of an adenosine A2b receptor from human brain.
Biochem Biophys Res Commun
187:
86–93,
1992.
|
1344. |
North RA and
Surprenant A.
Pharmacology of cloned P2X receptors.
Annu Rev Pharmacol Toxicol
40:
563–580,
2000.
|
1345. |
Chaulet H,
Desgranges C,
Renault MA,
Dupuch F,
Ezan G,
Peiretti F,
Loirand G,
Pacaud P and
Gadeau AP.
Extracellular nucleotides induce arterial smooth muscle cell migration via osteopontin.
Circ Res
89:
772–778,
2001.
|
1346. |
Eppel GA,
Ventura S and
Evans RG.
Regional vascular responses to ATP and ATP analogues in the rabbit kidney in vivo: roles for adenosine receptors and prostanoids.
Br J Pharmacol
149:
523–531,
2006.
|
1347. |
Inscho EW and
Cook AK.
P2 receptor‐mediated afferent arteriolar vasoconstriction during calcium blockade.
Am J Physiol Renal Physiol
282:
F245–F255,
2002.
|
1348. |
Inscho EW,
LeBlanc EA,
Pham BT,
White SM and
Imig JD.
Purinoceptor‐mediated calcium signaling in preglomerular smooth muscle cells.
Hypertension
33
(part II):
195–200,
1999.
|
1349. |
Sauzeau V,
Le Jeune H,
Cario‐Toumaniantz C,
Vaillant N,
Gadeau AP,
Desgranges C,
Scalbert E,
Chardin P,
Pacaud P and
Loirand G.
P2Y(1), P2Y(2), P2Y(4), and P2Y(6) receptors are coupled to Rho and Rho kinase activation in vascular myocytes.
Am J Physiol Heart Circ Physiol
278:
H1751–H1761,
2000.
|
1350. |
Pearson JD,
Slakey LL and
Gordon JL.
Stimulation of prostaglandin production through purinoceptors on cultured porcine endothelial cells.
Biochem J
214:
273–276,
1983.
|
1351. |
Pirotton S,
Communi D,
Motte S,
Janssens R and
Boeynaems JM.
Endothelial P2‐purinoceptors: subtypes and signal transduction.
J Auton Pharmacol
16:
353–356,
1996.
|
1352. |
Barnard EA,
Simon J and
Webb TE.
Nucleotide receptors in the nervous system. An abundant component using diverse transduction mechanisms.
Mol Neurobiol
15:
103–129,
1997.
|
1353. |
Communi D,
Janssens R,
Suarez‐Huerta N,
Robaye B and
Boeynaems JM.
Advances in signalling by extracellular nucleotides. The role and transduction mechanisms of P2Y receptors.
Cell Signal
12:
351–360,
2000.
|
1354. |
Ralevic V.
Mechanism of prolonged vasorelaxation to ATP in the rat isolated mesenteric arterial bed.
Br J Pharmacol
132:
685–692,
2001.
|
1355. |
Bo X and
Burnstock G.
Heterogeneous distribution of [3 H]alpha, beta‐methylene ATP binding sites in blood vessels.
J Vasc Res
30:
87–101,
1993.
|
1356. |
Leipziger J.
Control of epithelial transport via luminal P2 receptors.
Am J Physiol Renal Physiol
284:
F419–F432,
2003.
|
1357. |
Lewis CJ and
Evans RJ.
P2X receptor immunoreactivity in different arteries from the femoral, pulmonary, cerebral, coronary and renal circulations.
J Vasc Res
38:
332–340,
2001.
|
1358. |
Schwiebert EM.
ATP release mechanisms. ATP receptors and purinergic signaling along the nephron.
Clin Exp Pharmacol Physiol
28:
340–350,
2001.
|
1359. |
Schwiebert EM and
Zsembery A.
Extracellular ATP as a signaling molecule for epithelial cells.
Biochim Biophys Acta
1615:
7–32,
2003.
|
1360. |
Zhao X,
Cook AK,
Field M,
Edwards B,
Zhang S,
Zhang Z,
Pollock JS,
Imig JD and
Inscho EW.
Impaired Ca2+ signaling attenuates P2X receptor‐mediated vasoconstriction of afferent arterioles in angiotensin II hypertension.
Hypertension
46:
562–568,
2005.
|
1361. |
Weaver DR and
Reppert SM.
Adenosine receptor gene expression in rat kidney.
Am J Physiol
263:
F991–F995,
1992.
|
1362. |
Pawelczyk T,
Grden M,
Rzepko R,
Sakowicz M and
Szutowicz A.
Region‐specific alterations of adenosine receptors expression level in kidney of diabetic rat.
Am J Pathol
167:
315–325,
2005.
|
1363. |
Smith JA,
Sivaprasadarao A,
Munsey TS,
Bowmer CJ and
Yates MS.
Immunolocalisation of adenosine A(1) receptors in the rat kidney.
Biochem Pharmacol
61:
237–244,
2001.
|
1364. |
Zou AP,
Wu F,
Li PL and
Cowley AW, Jr.
Effect of chronic salt loading on adenosine metabolism and receptor expression in renal cortex and medulla in rats.
Hypertension
33:
511–516,
1999.
|
1365. |
Harada H,
Chan CM,
Loesch A,
Unwin R and
Burnstock G.
Induction of proliferation and apoptotic cell death via P2Y and P2X receptors, respectively, in rat glomerular mesangial cells.
Kidney Int
57:
949–958,
2000.
|
1366. |
Mohaupt MG,
Fischer T,
Schwobel J,
Sterzel RB and
Schulze‐Lohoff E.
Activation of purinergic P2Y2 receptors inhibits inducible NO synthase in cultured rat mesangial cells.
Am J Physiol
275:
F103–F110,
1998.
|
1367. |
Bailey MA,
Imbert‐Teboul M,
Turner C,
Marsy S,
Srai K,
Burnstock G and
Unwin RJ.
Axial distribution and characterization of basolateral P2Y receptors alone the rat renal tubule.
Kidney Int
58:
1893–1901,
2000.
|
1368. |
Carmines PK and
Inscho EW.
Renal arteriolar angiotensin responses during varied adenosine receptor activation.
Hypertension
23
(suppl 1):
I‐114–I‐119,
1994.
|
1369. |
Drury AN and
Szent‐Gyorgyi A.
The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart.
J Physiol bond
68:
213–237,
1929.
|
1370. |
Hansen PB,
Hashimoto S,
Oppermann M,
Huang Y,
Briggs JP and
Schnermann J.
Vasoconstrictor and vasodilator effects of adenosine in the mouse kidney due to preferential activation of A1 or A2 adenosine receptors.
J Pharmacol Exp Ther
315:
1150–1157,
2005.
|
1371. |
Hansen PB and
Schnermann J.
Vasoconstrictor and vasodilator effects of adenosine in the kidney.
Am J Physiol Renal Physiol
285:
F590–F599,
2003.
|
1372. |
Holz FG and
Steinhausen M.
Renovascular effects of adenosine receptor agonists.
Renal Physiol
10:
272–282,
1987.
|
1373. |
Ibarrola AM,
Inscho EW,
Vari RC and
Navar LG.
Influence of adenosine receptor blockade on renal function and renal autoregulation.
J Am Soc Nephrol
2:
991–999,
1991.
|
1374. |
Inscho EW,
Carmines PK and
Navar LG.
Juxtamedullary afferent arteriolar responses to PI and P2 purinergic stimulation.
Hypertension
17:
1033–1037,
1991.
|
1375. |
Kawabata M,
Ogawa T and
Takabatake T.
Control of rat glomerular microcirculation by juxtaglomerular adenosine A1 receptors.
Kidney Int
54:
S‐228–S‐230,
1998.
|
1376. |
Osswald H,
Spielman WS and
Knox FG.
Mechanism of adenosine‐mediated decreases in glomerular filtration rate in dogs.
Circ Res
43:
465–469,
1978.
|
1377. |
Schnermann J,
Traynor T,
Yang T,
Arend L,
Huang YG,
Smart A and
Briggs JP.
Tubuloglomerular feedback: new concepts and developments.
Kidney Int Suppl
67:
S40–S45,
1998.
|
1378. |
Traynor T,
Yang T,
Huang YG,
Arend L,
Oliverio MI,
Coffman T,
Briggs JP and
Schnermann J.
Inhibition of adenosine‐1 receptor‐mediated preglomerular vasoconstriction in AT1A receptor‐deficient mice.
Am J Physiol Renal Physiol
275:
F922–F927,
1998.
|
1379. |
Weihprecht H,
Lorenz JN,
Briggs JP and
Schnermann J.
Vasomotor effects of purinergic agonists in isolated rabbit afferent arterioles.
Am J Physiol Renal Physiol
263:
F1026–F1033,
1992.
|
1380. |
Weihprecht H,
Lorenz JN,
Briggs JP and
Schnermann J.
Synergistic effects of angiotensin and adenosine in the renal microvasculature.
Am J Physiol Renal Physiol
266:
F227–F239,
1994.
|
1381. |
Aki Y,
Tomohiro A,
Nishiyama A,
Kiyomoto K,
Kimura S and
Abe Y.
Effects of KW‐3902, a selective and potent adenosine A, receptor antagonist, on renal hemodynamics and urine formation in anesthetized dogs.
Pharmacology
55:
193–201,
1997.
|
1382. |
Miura K,
Okumura M,
Yamanaka S,
Kim S and
Iwao H.
Effects of activation of renal adenosine A2 receptor on renal function and renin release in dogs.
Japn J Pharmacol
80:
173–176,
1999.
|
1383. |
Okumura M,
Miura K,
Yamashita Y,
Yukimura T and
Yamamoto K.
Role of endothelium‐derived relaxing factor in the in vivo renal vascular action of adenosine in dogs.
J Pharmacol Exp Ther
260:
1262–1267,
1992.
|
1384. |
Eltze M and
Ullrich B.
Characterization of vascular P2 purinoceptors in the rat isolated perfused kidney.
Pflügers Arch
306:
139–152,
1996.
|
1385. |
Fernandez O,
Wangensteen R,
Osuna A and
Vargas F.
Renal vascular reactivity to P(2)‐purinoceptor activation in spontaneously hypertensive rats.
Pharmacology
60:
47–50,
2000.
|
1386. |
Vargas F,
Moreno MRR and
Osuna A.
Renal vascular reactivity to ATP in ageing rats.
Med Sci Res
24:
263–265,
1996.
|
1387. |
Vargas F,
Osuna A and
Fernandezrivas A.
Renal vascular reactivity to ATP in hyper‐ and hypothyroid rats.
Experientia
52:
225–229,
1996.
|
1388. |
Churchill PC and
Ellis VR.
Pharmacological characterization of the renovascular P2 purinergic receptors.
J Pharmacol Exper Ther
265:
334–338,
1993.
|
1389. |
Needleman P,
Minkes MS and
Douglas JR.
Stimulation of prostaglandin biosynthesis by adenine nucleotides. Profile of prostaglandin release by perfused organs.
Circ Res
34:
455–460,
1974.
|
1390. |
Dobrowolski L,
Walkowska A,
Kompanowska‐Jezierska E,
Kuczeriszka M and
Sadowski J.
Effects of ATP on rat renal haemodynamics and excretion: role of sodium intake, nitric oxide and cytochrome P450.
Acta Physiol (Oxf)
189:
77–85,
2007.
|
1391. |
Knight GE,
Oliver‐Redgate R and
Burnstock G.
Unusual absence of endothelium‐dependent or ‐independent vasodilatation to purines or pyrimidines in the rat renal artery.
Kidney Int
64:
1389–1397,
2003.
|
1392. |
Ren Y,
Garvin JL and
Carretero OA.
Efferent arteriole tubuloglomerular feedback in the renal nephron.
Kidney Int
59:
222–229,
2001.
|
1393. |
Inscho EW.
Renal microvascular effects of P2 receptor stimulation.
Clin Exp Pharmacol Physiol
28:
332–339,
2001.
|
1394. |
Mitchell KD and
Navar LG.
Modulation of tubuloglomerular feedback responsiveness by extracellular ATP.
Am J Physiol Renal Physiol
264:
F458–F466,
1993.
|
1395. |
Eppel GA,
Ventura S,
Denton KM and
Evans RG.
Lack of contribution of P2X receptors to neurally mediated vasoconstriction in the rabbit kidney in vivo.
Acta Physiol (Oxf)
186:
197–207,
2006.
|
1396. |
Wangensteen R,
Fernandez O,
Sainz J,
Quesada A,
Vargas F and
Osuna A.
Contribution of endothelium‐derived relaxing factors to 2Y‐purinoceptor‐induced vasodilation in the isolated rat kidney.
Gen Pharmacol
35:
129–133,
2000.
|
1397. |
Inscho EW,
Belott TP,
Mason MJ,
Smith JB and
Navar LG.
Extracellular ATP increases cytosolic calcium in cultured rat renal arterial smooth muscle cells.
Clin Exp Pharmacol Physiol
23:
503–507,
1996.
|
1398. |
Inscho EW,
Ohishi K,
Cook AK,
Belott TP and
Navar LG.
Calcium activation mechanisms in the renal microvascular response to extracellular ATP.
Am J Physiol Renal Physiol
268:
F876–F884,
1995.
|
1399. |
White SM,
Imig JD,
Kim T‐T,
Hauschild BC and
Inscho EW.
Calcium signaling pathways utilized by P2X receptors in freshly isolated preglomerular MVSMC.
Am J Physiol Renal Physiol
280:
F1054–F1061,
2001.
|
1400. |
Inscho EW,
Cook AK,
Imig JD,
Vial C and
Evans RJ.
Renal autoregulation in P2X1 knockout mice.
Acta Physiol Scand
181:
445–453,
2004.
|
1401. |
Gutierrez AM,
Kornfeld M and
Persson AE.
Calcium response to adenosine and ATP in rabbit afferent arterioles.
Acta Physiol Scand
166:
175–181,
1999.
|
1402. |
Castrop H.
Mediators of tubuloglomerular feedback regulation of glomerular filtration: ATP and adenosine.
Acta Physiol (Oxf)
189:
3–14,
2007.
|
1403. |
Vallon V.
Tubuloglomerular feedback and the control of glomerular filtration rate.
News Physiol Sci
18:
169–174,
2003.
|
1404. |
Schnermann J,
Weihprecht H and
Briggs JP.
Inhibition of tubuloglomerular feedback during adenosine1 receptor blockade.
Am J Physiol Renal Physiol
258:
F553–F561,
1990.
|
1405. |
Thomson S,
Bao D,
Deng A and
Vallon V.
Adenosine formed by 5′‐nucleotidase mediates tubuloglomerular feedback.
J Clin Invest
106:
289–298,
2000.
|
1406. |
Ren Y,
Arima S,
Carretero OA and
Ito S.
Possible role of adenosine in macula densa control of glomerular hemodynamics.
Kidney Int
61:
169–176,
2002.
|
1407. |
Huang DY,
Vallon V,
Zimmermann H,
Koszalka P,
Schrader J and
Osswald H.
Ecto‐5′‐nucleotidase (cd73)‐dependent and ‐independent generation of adenosine participates in the mediation of tubuloglomerular feedback in vivo.
Am J Physiol Renal Physiol
291:
F282–F288,
2006.
|
1408. |
Feng MG and
Navar LG.
Adenosine A2 receptor activation attenuates afferent arteriolar autoregulation during adenosine receptor saturation in rats.
Hypertension
50
(4):
744–749,
2007.
|
1409. |
Brown R,
Ollerstam A,
Johansson B,
Skott O,
Gebre‐Medhin S,
Fredholm B and
Persson AE.
Abolished tubuloglomerular feedback and increased plasma renin in adenosine A(1) receptor‐deficient mice.
Am J Physiol Regul Integr Comp Physiol
281:
R1362–R1367,
2001.
|
1410. |
Hashimoto S,
Huang Y,
Briggs J and
Schnermann J.
Reduced autoregulatory effectiveness in adenosine 1 receptor‐deficient mice.
Am J Physiol Renal Physiol
290:
F888–F891,
2006.
|
1411. |
Just A and
Arendshorst WJ.
A novel mechanism of renal blood flow autoregulation and the autoregulatory role of A1 adenosine receptors in mice.
Am J Physiol Renal Physiol
293:
F1489–F1500,
2007.
|
1412. |
Vallon V,
Richter K,
Huang DY,
Rieg T and
Schnermann J.
Functional consequences at the single‐nephron level of the lack of adenosine A1 receptors and tubuloglomerular feedback in mice.
Pflugers Arch
448:
214–221,
2004.
|
1413. |
Hansen PB,
Hashimoto S,
Briggs J and
Schnermann J.
Attenuated renovascular constrictor responses to angiotensin II in adenosine 1 receptor knockout mice.
Am J Physiol Regul Integr Comp Physiol
285:
R44–R49,
2003.
|
1414. |
Premen AJ,
Hall JE,
Mizelle HL and
Cornell JE.
Maintenance of renal autoregulation during infusion of aminophylline or adenosine.
Am J Physiol Renal Physiol
248:
F366–F373,
1985.
|
1415. |
Inscho EW,
Cook AK and
Navar LG.
Pressure‐mediated vasoconstriction of juxtamedullary afferent arterioles involves P2‐purino‐ceptor activation.
Am J Physiol Renal Physiol
271:
F1077–F1085,
1996.
|
1416. |
Liu R,
Bell PD,
Peti‐Peterdi J,
Kovacs G,
Johansson A and
Persson AE.
Purinergic receptor signaling at the basolateral membrane of macula densa cells.
J Am Soc Nephrol
13:
1145–1151,
2002.
|
1417. |
Nishiyama A,
Jackson KE,
Majid DS,
Rahman M and
Navar LG.
Renal interstitial fluid ATP responses to arterial pressure and tubuloglomerular feedback activation during calcium channel blockade.
Am J Physiol Heart Circ Physiol
290:
H772–H777,
2006.
|
1418. |
Nishiyama A,
Majid DSA,
Taher KA,
Miyatake A and
Navar LG.
Relation between renal interstitital ATP concentrations and autoregulation‐mediated changes in renal vascular resistance.
Circ Res
86:
656–662,
2000.
|
1419. |
Jensen ME,
Odgaard E,
Christensen MH,
Praetorius HA and
Leipziger J.
Flow‐induced [Ca2+]i increase depends on nucleotide release and subsequent purinergic signaling in the intact nephron.
J Am Soc Nephrol
18:
2062–2070,
2007.
|
1420. |
Karczewska J,
Martyniec L,
Dzierzko G,
Stepinski J and
Angielski S.
The relationship between constitutive ATP release and its extracellular metabolism in isolated rat kidney glomeruli.
J Physiol Pharmacol
58:
321–333,
2007.
|
1421. |
Sabolic I,
Culic O,
Lin S‐H and
Brown D.
Localization of ecto‐ATPase in rat kidney and isolated renal cortical membrane vesicles.
Am J Physiol
262:
F217–F228,
1992.
|
1422. |
Satriano J,
Wead L,
Cardus A,
Deng A,
Boss GR,
Thomson SC and
Blantz RC.
Regulation of ecto‐5′‐nucleotidase by NaCl and nitric oxide: potential roles in tubuloglomerular feedback and adaptation.
Am J Physiol Renal Physiol
291:
F1078–F1082,
2006.
|
1423. |
Solini A,
Iacobini C,
Ricci C,
Chiozzi P,
Amadio L,
Pricci F,
Di Mario U,
Di Virgilio F and
Pugliese G.
Purinergic modulation of mesangial extracellular matrix production: role in diabetic and other glomerular diseases.
Kidney Int
67:
875–885,
2005.
|
1424. |
Takenaka T,
Okada H,
Kanno Y,
Inoue T,
Ryuzaki M,
Nakamoto H,
Kawachi H,
Shimizu F and
Suzuki H.
Exogenous 5′‐nucleotidase improves glomerular autoregulation in Thy‐1 nephritic rats.
Am J Physiol Renal Physiol
290:
F844–F853,
2006.
|
1425. |
Takenaka T,
Inoue T,
Kanno Y,
Okada H,
Hill CE and
Suzuki H.
Connexins 37 and 40 transduce purinergic signals mediating renal autoregulation.
Am J Physiol Regul Integr Comp Physiol,
2007.
|
1426. |
Boim MA,
Stella SR,
Pereira AB and
Schor N.
Heterogeneity of glomerular perfusion and filtration induced by epinephrine and norepinephrine.
Braz J Med Biol Res
30:
1023–1031,
1997.
|
1427. |
Sjöquist M,
Goransson A,
Källskog Ö and
Ulfendahl HR.
The influence of tubulo‐glomerular feedback on the autoregulation of filtration rate in superficial and deep glomeruli.
Acta Physiol Scand
122:
235–242,
1984.
|
1428. |
Munger KA and
Jackson EK.
Effects of selective A1 receptor blockade on glomerular hemodynamics: Involvement of renin‐angiotensin system.
Am J Physiol Renal Physiol
267:
F783–F790,
1994.
|
1429. |
Griffin KA,
Picken MM and
Bidani AK.
Autoregulatory mechanisms important in hypertensive injury.
J Clin Invest
96:
793–800,
1995.
|
1430. |
Anderson WP,
Kett MM,
Stevenson KM,
Edgley AJ,
Denton KM and
Fitzgerald SM.
Renovascular hypertension: structural changes in the renal vasculature.
Hypertension
36:
648–652,
2000.
|
1431. |
Fitzgerald SM,
Evans RG,
Bergström G and
Anderson WP.
Renal hemodynamic responses to intrarenal infusion of ligands for the putative angiotensin IV receptor in anesthetized rats.
J Cardiovasc Pharmacol
34:
206–211,
1999.
|
1432. |
Imig JD and
Inscho EW.
Adaptations of the renal microcirculation to hypertension.
Microcirculation
9:
315–328,
2002.
|
1433. |
Inscho EW,
Carmines PK,
Cook AK and
Navar LG.
Afferent arteriolar responsiveness to altered perfusion pressure in renal hypertension.
Hypertension
15:
748–752,
1990.
|
1434. |
Inscho EW,
Imig JD,
Deichmann PC and
Cook AK.
Candesartan cilexetil protects against loss of autoregulatory efficiency in angiotensin II‐infused rats.
J Am Soc Nephrol
10:
S178–S183,
1999.
|
1435. |
Persson AE,
Brown R,
Liu R and
Ollerstam A.
Nitric oxide modulates and adenosine mediates the tubuloglomerular feedback mechanism.
Acta Physiol Scand
176:
91–94,
2002.
|
1436. |
Persson PB.
Renal blood flow autoregulation in blood pressure control.
Curr Opin Nephrol Hypertens
11:
67–72,
2002.
|
1437. |
Ploth DW,
Roy RN,
Huang W‐C and
Navar LG.
Impaired renal blood flow and cortical pressure autoregulation in contralateral kidneys of Goldblatt hypertensive rats.
Hypertension
3:
67–74,
1981.
|
1438. |
Racasan S,
Joles JA,
Boer P,
Koomans HA and
Braam B.
NO dependency of RBF and autoregulation in the spontaneously hypertensive rat.
Am J Physiol Renal Physiol
285:
F105–F112,
2003.
|
1439. |
Vonend O,
Turner CM,
Chan CM,
Loesch A,
Dell'Anna GC,
Srai KS,
Burnstock G and
Unwin RJ.
Glomerular expression of the ATP‐sensitive P2X receptor in diabetic and hypertensive rat models.
Kidney Int
66:
157–166,
2004.
|
1440. |
Welch WJ.
Adenosine type 1 receptor antagonists in fluid retaining disorders.
Expert Opin Investig Drugs
11:
1553–1562,
2002.
|
1441. |
Graciano ML,
Mouton CR,
Patterson ME,
Seth DM,
Mullins JJ and
Mitchell KD.
Renal vascular and tubulointerstitial inflammation and proliferation in Cypla1‐Ren2 transgenic rats with inducible ANG II‐dependent malignant hypertension.
Am J Physiol Renal Physiol
292:
F1858–F1866,
2007.
|
1442. |
Graciano ML,
Nishiyama A,
Jackson KE,
Seth DM,
Ortiz RM,
Prieto‐Carrasquero M,
Kobori H and
Navar LG.
Purinergic receptors contribute to early mesangial cell transformation and renal vessel hypertrophy during angiotnesin II‐induced hypertension.
Am J Physiol Renal Physiol
294:
2008,
1992.
|
1443. |
Liu R and
Persson AE.
Effects of nitric oxide on P2Y receptor resensitization in spontaneously hypertensive rat mesangial cells.
J Hypertens
20:
1835–1842,
2002.
|
1444. |
Cowley AW, Jr.
Long‐term control of arterial blood pressure.
Physiol Rev
72:
231–300,
1992.
|
1445. |
Hansell P,
Nygren A and
Ueda J.
Influence of verapamil on regional renal blood flow: a study using multichannel laser‐Doppler flowmetry.
Acta Physiol Scand
139:
15–20,
1990.
|
1446. |
Lu S,
Roman RJ,
Mattson DL and
Cowley AW, Jr.
Renal medullary interstitial infusion of diltiazem alters sodium and water excretion in rats.
Am J Physiol Regul Integr Comp Physiol
263:
R1064–R1070,
1992.
|
1447. |
Moffat DB.
The fine structure of the blood vessels of the renal medulla with particular reference to the control of the medullary circulation.
J Ultrastruct Res
19:
532–545,
1967.
|
1448. |
Chou S‐Y,
Porush JG and
Faubert PF.
Renal medullary circulation: hormonal control.
Kidney Int
37:
1–13,
1990.
|
1449. |
Zimmerhackl BL,
Robertson CR and
Jamison RL.
The medullary microcirculation.
Kidney Int
31:
641–647,
1987.
|
1450. |
Hansell P.
Evaluation of methods for estimating renal medullary blood flow.
Renal Physiol Biochem
15:
217–230,
1992.
|
1451. |
Mattson DL,
Lu S,
Roman RJ and
Cowley AW, Jr.
Relationship between renal perfusion pressure and blood flow in different regions of the kidney.
Am J Physiol Regul Integr Comp Physiol
264:
R578–R583,
1993.
|
1452. |
Fahraeus R.
The suspension stability of blood.
Physiol Rev
9:
241–274,
1929.
|
1453. |
Pappenheimer JR and
Kinter WB.
Hematocrit ratio of blood within mammalian kidney and its significance for renal hemodynamics.
Am J Physiol
185:
377–390,
1956.
|
1454. |
Fourman J and
Moffat DB.
The effect of intra‐arterial cushions on plasma skimming in small arteries.
J Physiol
158:
374–380,
1961.
|
1455. |
Moffat DB and
Creasey M.
The fine structure of the intra‐arterial cushions at the origins of the juxtamedullary afferent arterioles in the rat kidney.
J Anat
110:
409–419,
1971.
|
1456. |
Lilienfield LS,
Rose JC and
Lassen NA.
Diverse distribution of red cells and albumin in the dog kidney.
Circ Res
6:
810–815,
1958.
|
1457. |
Rasmussen SN.
Red cell and plasma volume flows to the inner medulla of the rat kidney: determinations by means of a step function input indicator technique.
Pflugers Arch
373:
153–159,
1978.
|
1458. |
Zimmerhackl B,
Dussel R and
Steinhausen M.
Erythrocyte flow and dynamic hematocrit in the renal papilla of the rat.
Am J Physiol
249:
F898–F902,
1985.
|
1459. |
Gaehtgens P.
Flow of blood through narrow capillaries: rheological mechanisms determining capillary hematocrit and apparent viscosity.
Biorheology
17:
183–189,
1980.
|
1460. |
Pries AR and
Gaehtgens P.
Generalization of the Fahraeus principle for microvessel networks.
Am J Physiol Heart Circ Physiol
251:
H1324–H1332,
1986.
|
1461. |
Cowley AW, Jr.
Role of the renal medulla in volume and arterial pressure regulation.
Am J Physiol
273:
R1–r15,
1997.
|
1462. |
Cowley AW, Jr.,
Mori T,
Mattson D and
Zou AP.
Role of renal NO production in the regulation of medullary blood flow.
Am J Physiol Regul Integr Comp Physiol
284:
R1355–R1369,
2003.
|
1463. |
Fenoy FJ and
Roman RJ.
Effect of volume expansion on papillary blood flow and sodium excretion.
Am J Physiol Renal Physiol
260:
F813–F822,
1991.
|
1464. |
Mattson DL.
Importance of the renal medullary circulation in the control of sodium excretion and blood pressure.
Am J Physiol Regul Integr Comp Physiol
284:
R13–R27,
2003.
|
1465. |
Mattson DL and
Wu F.
Control of arterial blood pressure and renal sodium excretion by nitric oxide synthase in the renal medulla.
Acta Physiol Scand
168:
149–154,
2000.
|
1466. |
Cupples WA and
Marsh DJ.
Autoregulation of blood flow in renal medulla of the rat: no role for angiotensin II.
Can J Physiol Pharmacol
66:
833–836,
1988.
|
1467. |
Galskov A and
Nissen OI.
Autoregulation of directly measured blood flows in the superficial and deep venous drainage areas of the cat kidney.
Circ Res
30:
97–103,
1972.
|
1468. |
Majid DSA,
Godfrey M and
Navar LG.
Pressure natriuresis and renal medullary blood flow in dogs.
Hypertension
29:
1051–1057,
1997.
|
1469. |
Majid DSA,
Godfrey M and
Omoro S.
Pressure natriuresis and autoregulation of inner medullary blood flow in canine kidney.
Hypertension
29
(part 2):
210–215,
1997.
|
1470. |
Majid DSA and
Navar LG.
Medullary blood flow responses to changes in arterial pressure in canine kidney.
Am J Physiol Renal Physiol
270:
F833–F838,
1996.
|
1471. |
Roman RJ and
Kaldunski ML.
Renal cortical and papillary blood flow in spontaneously hypertensive rats.
Hypertension
11:
657–663,
1988.
|
1472. |
Roman RJ,
Cowley AW,
Garcia‐Estan AW and
Lombard JH.
Pressure‐diuresis in volume‐expanded rats: cortical and medullary hemodynamics.
Hypertension
12:
168–176,
1988.
|
1473. |
Romero JC and
Knox FG.
Mechanisms underlying pressure‐related natriuresis: the role of the renin‐angiotensin and prostaglandin systems: state of the art lecture.
Hypertension
11:
724–738,
1988.
|
1474. |
Cowley AW, Jr,
Control of the renal medullary circulation by vasopressin V1 and V2 receptors in the rat.
Exp Physiol
85
(Spec No):
223S–231S,
2000.
|
1475. |
Eppel GA,
Bergstrom G,
Anderson WP and
Evans RG.
Autoregulation of renal medullary blood flow in rabbits.
Am J Physiol Regul Integr Comp Physiol
284:
R233–R244,
2003.
|
1476. |
Casellas D,
Bouriquet N and
Moore LC.
Branching patterns and autoregulatory responses of juxtamedullary afferent arterioles.
Am J Physiol Renal Physiol
272:
F416–F421,
1997.
|
1477. |
Moore LC and
Casellas D.
Tubuloglomerular feedback dependence of autoregulation in rat juxtamedullary afferent arterioles.
Kidney Int
37:
1402–1408,
1990.
|
1478. |
Zhang Z and
Pallone TL.
Response of descending vasa recta to luminal pressure.
Am J Physiol Renal Physiol
287:
F535–F542,
2004.
|
1479. |
Dickhout JG,
Mori T and
Cowley AW, Jr.
Tubulovascular nitric oxide crosstalk: buffering of angiotensin II‐induced medullary vasoconstriction.
Cire Res
91:
487–493,
2002.
|
1480. |
Pallone TL,
Silldorff EP and
Zhang Z.
Inhibition of calcium signaling in descending vasa recta endothelia by ANG II.
Am J Physiol Heart Cire Physiol
278:
H1248–H1255,
2000.
|
1481. |
Silldorff EP,
Kreisberg MS and
Pallone TL.
Adenosine modulates vasomotor tone in outer medullary descending vasa recta of the rat.
J Clin Invest
98:
18–23,
1996.
|
1482. |
Haas JA,
Granger JP and
Knox FG.
Effect of renal perfusion pressure on sodium reabsorption from proximal tubules of superficial and deep nephrons,
Am J Physiol Renal Physiol
250:
F425–F429,
1986.
|
1483. |
Khraibi AA,
Haas JA and
Knox FG.
Effect of renal perfusion pressure on renal interstitial hydrostatic pressure in rats.
Am J Physiol Renal Physiol
256:
F165–F170,
1989.
|
1484. |
Khraibi AA and
Knox FG.
Effect of renal decapsulation on renal interstitial hydrostatic pressure and natriuresis.
Am J Physiol Regullntegr Comp Physiol
257:
R44–R48,
1989.
|
1485. |
Granger JP,
Haas JA,
Pawlowska D and
Knox FG.
Effect of direct increases in renal interstitial hydrostatic pressure on sodium excretion.
Am J Physiol Renal Physiol
254:
F527–F532,
1988.
|
1486. |
Haas JA,
Granger JP and
Knox FG.
Effect of intrarenal volume expansion on proximal sodium reabsorption.
Am J Physiol Renal Physiol
255:
F1178–F1182,
1988.
|
1487. |
Ahmed F,
Kemp BA,
Howell NL,
Siragy HM and
Carey RM.
Extracellular renal guanosine cyclic 3′5′‐monophosphate modulates nitric oxide and pressure‐induced natriuresis:
Hypertension
50:
958–963,
2007.
|
1488. |
Navar LG and
Majid DSA.
Interactions between arterial pressure and sodium excretion.
Curr Opin Nephrol Hypertens
5:
64–71,
1996.
|
1489. |
Bankir L.
Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor‐mediated effects.
Cardiovasc Res
51:
372–390,
2001.
|
1490. |
Thurau K.
Renal hemodynamics.
Am J Med
36:
698–719,
1964.
|
1491. |
Bayle F,
Eloy L,
Trinh‐Trang‐Tan MM,
Grunfeld JP and
Bankir L.
Papillary plasma flow in rats, I, Relation to urine osmolality in normal and Brattleboro rats with hereditary diabetes insipidus.
Pflugers Arch
394:
211–216,
1982.
|
1492. |
Gussis GL,
Robertson CR and
Jamison RL.
Erythrocyte velocity in vasa recta: effect of antidiuretic hormone and saline loading.
Am J Physiol
237:
F326–F332,
1979.
|
1493. |
Kiberd B,
Robertson CR,
Larson T and
Jamison RL.
Effect of V2‐receptor‐mediated changes on inner medullary blood flow induced by AVP.
Am J Physiol Renal Physiol
253:
F576–F581,
1987.
|
1494. |
Zimmerhackl B,
Robertson CR and
Jamison RL.
Effect of arginine vasopressin on renal medullary blood flow. A videomi‐croscopic study in the rat.
J Clin Invest
76:
770–778,
1985.
|
1495. |
Nakanishi K,
Mattson DL,
Gross V,
Roman RJ and
Cowley AW,
Jr. Control of renal medullary blood flow by vasopressin V1 and V2 receptors.
Am J Physiol Regul Integr Comp Physiol
269:
R193–R200,
1995.
|
1496. |
Franchini KG and
Cowley AW, Jr.
Renal cortical and medullary blood flow responses during water restriction: role of vasopressin.
Am J Physiol Renal Physiol
270:
R1257–R1264,
1996.
|
1497. |
Franchini KG and
Cowley AW, Jr.
Sensitivity of the renal medullary circulation to plasma vasopressin.
Am J Physiol Regul Integr Comp Physiol
271:
R647–R653,
1996.
|
1498. |
Harrison‐Bernard LM and
Carmines PK.
Juxtamedullary microvascular responses to arginine vasopressin in rat kidney.
Am J Physiol Renal Physiol
267:
F249–F256,
1994.
|
1499. |
Fallet RW,
Ikenaga H,
Bast JP and
Carmines PK.
Relative contributions of Ca2+ mobilization and influx in renal arteriolar contractile responses to arginine vasopressin.
AJP‐Renal Physiol
288:
F545–F551,
2005.
|
1500. |
Edwards RM,
Trizna W and
Kinter LB.
Renal microvascular effects of vasopressin and vasopressin antagonists.
Am J Physiol Renal Physiol
256:
F274–F278,
1989.
|
1501. |
Turner MR and
Pallone TL.
Vasopressin constricts outer medullary descending vasa recta isolated from rat kidneys.
Am J Physiol Renal Physiol
272:
F147–F151,
1997.
|
1502. |
Correia AG,
Denton KM and
Evans RG.
Effects of activation of vasopressin‐V1‐receptors on regional kidney blood flow and glomerular arteriole diameters.
J Hypertens
19:
649–657,
2001.
|
1503. |
Aki Y,
Tamaki T,
Kiyomoto H,
He H,
Yoshida H,
Iwao H and
Abe Y.
Nitric oxide may participate in V2 vasopressin‐receptor‐medi‐ated renal vasodilation.
J Cardiovasc Pharmacol
23:
331–336,
1994.
|
1504. |
Liard JF.
L‐NAME antagonizes vasopressin V2‐induced vasodilatation in dogs.
Am J Physiol
266:
H99–H106,
1994.
|
1505. |
Naitoh M,
Suzuki H,
Murakami M,
Matsumoto A,
Ichihara A,
Nakamoto H,
Yamamura Y and
Saruta T.
Arginine vasopressin produces renal vasodilation via V2 receptors in conscious dogs.
Am J Physiol Regul Integr Comp Physiol
265:
R934–R942,
1993.
|
1506. |
Rudichenko VM and
Beierwaltes WH.
Arginine vasopressin‐induced renal vasodilation mediated by nitric oxide.
J Vase Res
32:
100–105,
1995.
|
1507. |
Tamaki T,
Kiyomoto K,
He H,
Tomohiro A,
Nishiyama A,
Aki Y,
Kimura S and
Abe Y.
Vasodilation induced by vasopressin V2 receptor stimulation in afferent arterioles.
Kidney Int
49:
722–729,
1996.
|
1508. |
Park F,
Mattson DL,
Skelton MM and
Cowley AW,
Jr. Localization of the vasopressin V1a and V2 receptors within the renal cortical and medullary circulation.
Am J Phyisol
273:
R243–R251,
1997.
|
1509. |
Park F,
Zou A‐P and
Cowley AW.
Arginine vasopressin‐medi‐ated stimulation of nitric oxide within the rat renal medulla.
Hypertension
32:
896–901,
1998.
|
1510. |
Mori T,
Dickhout JG and
Cowley AW, Jr.
Vasopressin increases intracellular NO concentration via Ca(2+) signaling in inner medullary collecting duct.
Hypertension
39:
465–469,
2002.
|
1511. |
O'Connor PM and
Cowley AW, Jr.
Vasopressin‐induced nitric oxide production in rat inner medullary collecting duct is dependent on V2 receptor activation of the phosphoinositide pathway.
Am J Physiol Renal Physiol
293:
F526–F532,
2007.
|
1512. |
Evans RG,
Madden AC and
Denton KM.
Diversity of responses of renal cortical and medullary blood flow to vasoconstrictors in conscious rabbits.
Acta Physiol Scand
169:
297–308,
2000.
|
1513. |
Szentivanyi M, Jr.,
Park F,
Maeda CY and
Cowley AW, Jr.
Nitric oxide in the renal medulla protects from vasopressin‐induced hypertension.
Hypertension
35:
740–745,
2000.
|
1514. |
Harrison‐Bernard LM and
Carmines PK.
Impact of cyclooxygenase blockade on juxtamedullary microvascular responses to angiotensin II in rat kidney.
Clin Exp Pharmacol Physiol
22:
732–738,
1995.
|
1515. |
Steinhausen M,
Kucherer H,
Parekh N,
Weis S,
Wiegman DL and
Wilhelm KR.
Angiotensin II control of the renal microcirculation: effect of blockade by saralasin.
Kidney Int
30:
56–61,
1986.
|
1516. |
Cupples WA,
Sakai T and
Marsh DJ.
Angiotensin II and prostaglandins in control of vasa recta blood flow.
Am J Physiol Renal Physiol
254:
F417–F424,
1988.
|
1517. |
Faubert PF,
Chou S‐Y and
Porush JG.
Regulation of papillary plasma flow by angiotensin II.
Kidney Int
32:
472–478,
1987.
|
1518. |
Roman RJ,
Kaldunski ML,
Scicli AG and
Carretero OA.
Influence of kinins and angiotensin II on the regulation of papillary blood flow.
Am J Physiol Renal Physiol
255:
F690–F698,
1988.
|
1519. |
Kohagura K,
Endo Y,
Ito O,
Arima S,
Omata K and
Ito S.
Endogenous nitric oxide and epoxyeicosatrienoic acids modulate angiotensin II‐induced constriction in the rabbit afferent arteriole.
Acta Physiol Scand
168:
107–112,
2000.
|
1520. |
Yang S,
Silldorff EP and
Pallone TL.
Effect of norepinephrine and acetylcholine on outer medullary descending vasa recta.
Am J Physiol
269:
H710–H716,
1995.
|
1521. |
Matsuda H,
Hayashi K,
Arakawa K,
Kubota E,
Honda M,
Tokuyama H,
Suzuki H,
Yamamoto T,
Kajiya F and
Saruta T.
Distinct modulation of superficial and juxtamedullary arterioles by prostaglandin in vivo.
Hypertens Res
25:
901–910,
2002.
|
1522. |
Silldorff EP and
Pallone TL.
Adenosine signaling in outer medullary descending vasa recta.
Am J Physiol Regul Integr Comp Physiol
280:
R854–R861,
2001.
|
1523. |
Carey RM.
Update on the role of the AT2 receptor.
Curr Opin Nephrol Hypertens
14:
67–71,
2005.
|
1524. |
Carey RM,
Jin X,
Wang Z and
Siragy HM.
Nitric oxide: a physiological mediator of the type 2 (AT2) angiotensin receptor.
Acta Physiol Scand
168:
65–71,
2000.
|
1525. |
Patzak A,
Kleinmann F,
Lai EY,
Kupsch E,
Skelweit A and
Mrowka R.
Nitric oxide counteracts angiotensin II induced contraction in efferent arterioles in mice.
Acta Physiol Scand
181:
439–444,
2004.
|
1526. |
Patzak A,
Lai EY,
Mrowka R,
Steege A,
Persson PB and
Persson AE.
AT1 receptors mediate angiotensin II‐induced release of nitric‐oxide in afferent arterioles.
Kidney Int
66:
1949–1958,
2004.
|
1527. |
Endo Y,
Arima S,
Yaoita H,
Omata K,
Tsunoda K,
Takeuchi K,
Abe K and
Ito S.
Function of angiotensin II type 2 receptor in the postglomerular efferent arteriole,
Kidney Int Suppl
63:
S205–S207,
1997.
|
1528. |
Rhinehart K,
Handelsman CA,
Silldorff EP and
Pallone TL.
ANG II AT2 receptor modulates AT1 receptor‐mediated descending vasa recta endothelial Ca2+ signaling.
Am J Physiol Heart Circ Physiol
284:
H779–H789,
2003.
|
1529. |
Zhang Z,
Rhinehart K,
Kwon W,
Weinman E and
Pallone TL.
ANG II signaling in vasa recta pericytes by PKC and reactive oxygen species.
Am J Physiol Heart Circ Physiol
287:
H773–H781,
2004.
|
1530. |
Endo Y,
Arima S,
Yaoita H,
Tsunoda K,
Omata K and
Ito S.
Vasodilation mediated by angiotensin II type 2 receptor is impaired in afferent arterioles of young spontaneously hypertensive rats.
J Vase Res
35:
421–427,
1998.
|
1531. |
Goto M,
Mukoyama M,
Sugawara A,
Suganami T,
Kasahara M,
Yahata K,
Makino H,
Suga S,
Tanaka I and
Nakao K.
Expression and role of angiotensin II type 2 receptor in the kidney and mesangial cells of spontaneously hypertensive rats.
Hypertens Res
25:
125–133,
2002.
|
1532. |
Badzynska B,
GrzeJec‐Mojzesowicz M,
Dobrowolski L and
Sadowski J.
Differential effect of angiotensin II on blood circulation in the renal medulla and cortex of anaesthetised rats.
J Physiol
538:
159–166,
2002.
|
1533. |
Duke LM,
Eppel GA,
Widdop RE and
Evans RG.
Disparate roles of AT2 receptors in the renal cortical and medullary circulations of anesthetized rabbits.
Hypertension
42:
200–205,
2003.
|
1534. |
Chin SY,
Wang C‐T,
Majid DSA and
Navar LG.
Renoprotective effects of nitric oxide in angiotensin II‐induced hypertension in the rat.
Am J Physiol Renal Physiol
274:
F876–F882,
1998.
|
1535. |
Navar LG,
Ichihara A,
Chin SY and
Imig JD.
Nitric oxide‐angi‐otensin II interactions in angiotensin II‐dependent hypertension.
Acta Physiol Scand
168:
139–147,
2000.
|
1536. |
Szentivanyi M, Jr.,
Zou AP,
Mattson DL,
Soares P, Moreno C, Roman RJ and Cowley AW, Jr. Renal medullary nitric oxide deficit of Dahl S rats enhances hypertensive actions of angiotensin II.
Am J Physiol Regul Integr Comp Physiol
283:
R266–R272,
2002.
|
1537. |
Zou A‐P,
Wu F and
Cowley AW, Jr.
Protective effect of angiotensin II‐induced increase in nitric oxide in the renal medullary circulation.
Hypertension
31
(part 2):
271–276,
1998.
|
1538. |
Navar LG.
The intrarenal renin‐angiotensin system in hypertension.
Kidney Int
65:
1522–1532,
2004.
|
1539. |
Navar LG and
Nishiyama A.
Why are angiotensin concentrations so high in the kidney?
Curr Opin Nephrol Hypertens
13:
107–115,
2004.
|
1540. |
Mattson DL,
Lu S,
Nakanishi K,
Papanek PE and
Cowley AW, Jr.
Effect of chronic renal medullary nitric oxide inhibition on blood pressure.
Am J Physiol
266:
H1918–H1926,
1994.
|
1541. |
Nakanishi K,
Mattson DL and
Cowley AW, Jr.
Role of renal medullary blood flow in the development of L‐NAME hypertension in rats.
Am J Physiol Regul Integr Comp Physiol
268:
R317–R323,
1995.
|
1542. |
Biondi ML,
Dousa T,
Vanhoutte P and
Romero JC.
Evidences for the existence of endothelium‐derived relaxing factor in the renal medulla.
Am J Hypertens
3:
876–878,
1990.
|
1543. |
McKee M,
Scavone C and
Nathanson JA.
Nitric oxide, cGMP, and hormone regulation of active sodium transport.
Proc Natl Acad Sci USA
91:
12056–12060,
1994.
|
1544. |
Moridani BA and
Kline RL.
Effect of endogenous L‐arginine on the measurement of nitric oxide synthase activity in the rat kidney.
Can J Physiol Pharmacol
74:
1210–1214,
1996.
|
1545. |
Zou A‐P and
Cowley AW.
Nitric oxide in renal cortex and medulla. An in vivo microdialysis study.
Hypertension
29
(part 2):
194–198,
1997.
|
1546. |
Chen PY and
Sander PW.
L‐Arginine abrogates salt‐senitive hypertension in Dahl/Rapp rats.
J Clin Invest
88:
1559–1567,
1991.
|
1547. |
Larson TS and
Lockhart JC.
Restoration of vasa recta hemodynamics and pressure natriuresis in SHR by L‐arginine.
Am J Physiol Renal Physiol
268:
F907–F912,
1995.
|
1548. |
Miyata N and
Cowley AW, Jr.
Renal intramedullary infusion of L‐arginine prevents reduction of medullary blood flow and hypertension in Dahl salt‐sensitive rats.
Hypertension
33
(part II):
446–450,
1999.
|
1549. |
Miyata N,
Zou AP,
Mattson DL and
Cowley AW, Jr.
Renal medullary interstitial infusion of L‐arginine prevents hypertension in Dahl salt‐sensitive rats.
Am J Physiol
275:
R1667–R1673,
1998.
|
1550. |
Kakoki M,
Zou AP and
Mattson DL.
The influence of nitric oxide synthase 1 on blood flow and interstitial nitric oxide in the kidney.
Am J Physiol Regul Integr Comp Physiol
281:
R91–R97,
2001.
|
1551. |
Mattson DL and
Bellehumeur TG.
Neural nitric oxide synthase in the renal medulla and blood pressure regulation.
Hypertension
28:
297–303,
1996.
|
1552. |
Mattson DL,
Maeda CY,
Bachman TD and
Cowley AW.
Inducible nitric oxide synthase and blood pressure.
Hypertension
31
(part 1):
15–20,
1998.
|
1553. |
Garvin JL and
Ortiz PA.
The role of reactive oxygen species in the regulation of tubular function.
Acta Physiol Scand
179:
225–232,
2003.
|
1554. |
Ortiz PA and
Garvin JL.
Role of nitric oxide in the regulation of nephron transport.
Am J Physiol Renal Physiol
282:
F777–F784,
2002.
|
1555. |
Ortiz PA and
Garvin JL.
Superoxide stimulates NaCl absorption by the thick ascending limb.
Am J Physiol Renal Physiol
283:
F957–F962,
2002.
|
1556. |
Pallone TL,
Silldorff EP and
Cheung JY.
Response of isolated rat descending vasa recta to bradykinin.
Am J Physiol
274:
H752–H759,
1998.
|
1557. |
Zou AP and
Cowley AW, Jr.
Alpha(2)‐adrenergic receptor‐mediated increase in NO production buffers renal medullary vasoconstriction.
Am J Physiol Regul Integr Comp Physiol
279:
R769–R777,
2000.
|
1558. |
Szentivanyi M, Jr.,
Zou AP,
Maeda CY,
Mattson DL and
Cowley AW, Jr.
Increase in renal medullary nitric oxide synthase activity protects from norepinephrine‐induced hypertension.
Hypertension
35:
418–423,
2000.
|
1559. |
Yuan B and
Cowley AW, Jr.
Evidence that reduced renal medullary nitric oxide synthase activity of dahl s rats enables small elevations of arginine vasopressin to produce sustained hypertension.
Hypertension
37:
524–528,
2001.
|
1560. |
Agmon Y,
Peleg H,
Greenfeld Z,
Rosen S and
Brezis M.
Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat.
J Clin Invest
94:
1069–1075,
1994.
|
1561. |
Heyman SN,
Rosen S,
Darmon D,
Goldfarb M,
Bitz H,
Shina A and
Brezis M.
Endotoxin‐induced renal failure. II. A role for tubular hypoxic damage.
Exp Nephrol
8:
275–282,
2000.
|
1562. |
James PE,
Bacic G,
Grinberg OY,
Goda F,
Dunn JF,
Jackson SK and
Swartz HM.
Endotoxin‐induced changes in intrarenal pO2, measured by in vivo electron paramagnetic resonance oximetry and magnetic resonance imaging.
Free Radic Biol Med
21:
25–34,
1996.
|
1563. |
Kone BC and
Baylis C.
Biosynthesis and homeostatic roles of nitric oxide in the normal kidney.
Am J Physiol Renal Physiol
272:
F561–F578,
1997.
|
1564. |
Mattson DL,
Lu S and
Cowley AW, Jr.
Role of nitric oxide in the control of the renal medullary circulation.
Clin Exp Pharmacol Physiol
24:
587–590,
1997.
|
1565. |
Mattson DL and
Wu F.
Nitric oxide synthase activity and isoforms in rat renal vasculature.
Hypertension
35:
337–341,
2000.
|
1566. |
Kakoki M,
Kim HS,
Arendshorst WJ and
Mattson DL.
L‐Arginine uptake affects nitric oxide production and blood flow in the renal medulla.
Am J Physiol Regul Integr Comp Physiol
287:
R1478–R1485,
2004.
|
1567. |
Kakoki M,
Wang W and
Mattson DL.
Cationic amino acid transport in the renal medulla and blood pressure regulation.
Hypertension
39:
287–292,
2002.
|
1568. |
Wu F,
Cholewa B and
Mattson DL.
Characterization of L‐arginine transporters in rat renal inner medullary collecting duct.
Am J Physiol Regul Integr Comp Physiol
278:
R1506–R1512,
2000.
|
1569. |
Zewde T,
Wu F and
Mattson DL.
Influence of dietary NaCl on L‐arginine transport in the renal medulla.
Am J Physiol Regul Integr Comp Physiol
286:
R89–R93,
2004.
|
1570. |
Mori T and
Cowley AW, Jr.
Angiotensin II‐NAD(P)H oxidase‐stimulated superoxide modifies tubulovascular nitric oxide cross‐talk in renal outer medulla.
Hypertension
42:
588–593,
2003.
|
1571. |
Rhinehart KL and
Pallone TL.
Nitric oxide generation by isolated descending vasa recta.
Am J Physiol Heart Circ Physiol
281:
H316–H324,
2001.
|
1572. |
Ozawa Y,
Hayashi K,
Wakino S,
Kanda T,
Homma K,
Takamatsu I,
Tatematsu S,
Yoshioka K and
Saruta T.
Free radical activity depends on underlying vasoconstrictors in renal microcirculation.
Clin Exp Hypertens
26:
219–229,
2004.
|
1573. |
Mori T,
O'Connor PM,
Abe M and
Cowley AW, Jr.
Enhanced superoxide production in renal outer medulla of Dahl salt‐sensitive rats reduces nitric oxide tubular‐vascular cross‐talk.
Hypertension
49:
1336–1341,
2007.
|
1574. |
Chen YF,
Cowley AW, Jr. and
Zou AP.
Increased H(2)O(2) counteracts the vasodilator and natriuretic effects of superoxide dismutation by tempol in renal medulla.
Am J Physiol Regul Integr Comp Physiol
285:
R827–R833,
2003.
|
1575. |
Makino A,
Skelton MM,
Zou AP and
Cowley AW, Jr.
Increased renal medullary H2O2 leads to hypertension.
Hypertension
42:
25–30,
2003.
|
1576. |
Makino A,
Skelton MM,
Zou AP,
Roman RJ and
Cowley AW, Jr.
Increased renal medullary oxidative stress produces hypertension.
Hypertension
39:
667–672,
2002.
|
1577. |
Meng S,
Roberts LJ,
Cason GW,
Curry TS and
Manning RD, Jr.
Superoxide dismutase and oxidative stress in Dahl salt‐sensitive and ‐resistant rats.
Am J Physiol Regul Integr Comp Physiol
283:
R732–R738,
2002.
|
1578. |
Zhang Z,
Rhinehart K,
Solis G,
Pittner J,
Lee‐Kwon W,
Welch WJ,
Wilcox CS and
Pallone TL.
Chronic ANG II infusion increases NO generation by rat descending vasa recta.
Am J Physiol Heart Circ Physiol
288:
H29–H36,
2005.
|
1579. |
Schoonmaker GC,
Fallet RW and
Carmines PK.
Superoxide anion curbs nitric oxide modulation of afferent arteriolar ANG II responsiveness in diabetes mellitus.
Am J Physiol Renal Physiol
278:
F302–F309,
2000.
|
1580. |
Schnackenberg CG,
Welch WJ and
Wilcox CS.
Normalization of blood pressure and renal vascular resistance in SHR with a membrane‐permeable superoxide dismutase mimetic. Role of nitric oxide.
Hypertension
32:
59–64,
1998.
|
1581. |
Schnackenberg CG and
Wilcox CS.
Two‐week administration of tempol attenuates both hypertension and renal excretion of I‐iso prostaglandin F2a.
Hypertension
33
(part II):
424–428,
1999.
|
1582. |
Chabrashvili T,
Kitiyakara C,
Blau J,
Karber A,
Aslam S,
Welch WJ and
Wilcox CS.
Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression.
Am J Physiol Regul Integr Comp Physiol
285:
R117–R124,
2003.
|
1583. |
Welch WJ,
Baumgartl H,
Lubbers D and
Wilcox CS.
Renal oxygenation defects in the spontaneously hypertensive rat: role of AT1 receptors.
Kidney Int
63:
202–208,
2003.
|
1584. |
Welch WJ,
Blau J,
Xie H,
Chabrashvili T and
Wilcox CS.
Angiotensin‐induced defects in renal oxygenation: role of oxidative stress.
Am J Physiol Heart Circ Physiol
288:
H22–H28,
2005.
|
1585. |
Zou A‐P,
Billington H,
Su N and
Cowley AW, Jr.
Expression and actions of heme oxygenase in the renal medulla of rats.
Hypertension
35:
342–347,
2000.
|
1586. |
Yang ZZ,
Zhang AY,
Yi FX,
Li PL and
Zou AP.
Redox regulation of HIF‐1 alpha levels and HO‐1 expression in renal medullary interstitial cells.
Am J Physiol Renal Physiol
284:
F1207–F1215,
2003.
|
1587. |
Yang ZZ and
Zou AP.
Transcriptional regulation of heme oxygenases by HIF‐1 alpha in renal medullary interstitial cells.
Am J Physiol Renal Physiol
281:
F900–F908,
2001.
|
1588. |
Tian W,
Bonkovsky HL,
Shibahara S and
Cohen DM.
Urea and hypertonicity increase expression of heme oxygenase‐1 in murine renal medullary cells.
Am J Physiol Renal Physiol
281:
F983–F991,
2001.
|
1589. |
Akagi R,
Takahashi T and
Sassa S.
Cytoprotective effects of heme oxygenase in acute renal failure.
Contrib Nephrol
148:
70–85,
2005.
|
1590. |
Li N,
Yi F,
dos Santos EA,
Donley DK and
Li PL.
Role of renal medullary heme oxygenase in the regulation of pressure natriuresis and arterial blood pressure.
Hypertension
49:
148–154,
2007.
|
1591. |
Jamison RL,
Work J and
Schafer JA.
New pathways for potassium transport in the kidney.
Am J Physiol
242:
F297–F312,
1982.
|
1592. |
Pallone TL and
Jamison RL.
Effect of ureteral excision on inner medullary solute concentration in rats.
Am J Physiol
255:
F1225–F1229,
1988.
|
1593. |
Imig JD,
Zhao X,
Capdevila JH,
Morisseau C and
Hammock BD.
Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension.
Hypertension
39:
690–694,
2002.
|
1594. |
Imig JD,
Zhao X,
Falck JR,
Wei S and
Capdevila JH.
Enhanced renal microvascular reactivity to angiotensin II in hypertension is ameliorated by the sulfonimide analog of 11,12‐epoxyeicosatrienoic acid.
J Hypertens
19:
935–992,
2001.
|
1595. |
Zhao X,
Pollock DM,
Inscho EW,
Zeldin DC and
Imig JD.
Decreased renal cytochrome P450 2C enzymes and impaired vasodilation are associated with angiotensin salt‐sensitive hypertension.
Hypertension
41:
709–714,
2003.
|
1596. |
Yu Z,
Huse LM,
Adler P,
Graham L,
Ma J,
Zeldin DC and
Kroetz DL.
Increased CYP2J expression and epoxyeicosatrienoic acid formation in spontaneously hypertensive rat kidney.
Mol Pharmacol
57:
1011–1020,
2000.
|
1597. |
Yu Z,
Xu F,
Huse LM,
Morisseau C,
Draper AJ,
Newman JW,
Parker C,
Graham L,
Engler MM,
Hammock BD,
Zeldin DC and
Kroetz DL.
Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids.
Circ Res
87:
992–998,
2000.
|
1598. |
Zhao X,
Yamamoto T,
Newman JW,
Kim IH,
Watanabe T,
Hammock BD,
Stewart J,
Pollock JS,
Pollock DM and
Imig JD.
Soluble epoxide hydrolase inhibition protects the kidney from hypertension‐induced damage.
J Am Soc Nephrol
15:
1244–1253,
2004.
|
1599. |
Itskovitz HD,
Stemper J,
Pacholczyk D and
McGiff JC.
Renal prostaglandins: determinants of intrarenal distribution of blood flow in the dog.
Clin Sci Mol Med Suppl
45
(Suppl 1):
321s–324s,
1973.
|
1600. |
Larsson C and
Anggard E.
Increased juxtamedullary blood flow on stimulation of intrarenal prostaglandin biosynthesis.
Eur J Pharmacol
25:
326–334,
1974.
|
1601. |
Lemley KV,
Schmitt SL,
Holliger C,
Dunn MJ,
Robertson CR and
Jamison RL.
Prostaglandin synthesis inhibitors and vasa recta erythrocyte velocities in the rat.
Am J Physiol Renal Physiol
247:
F562–F567,
1984.
|
1602. |
Badzynska B,
Grzelec‐Mojzesowicz M and
Sadowski J.
Prostaglandins but not nitric oxide protect renal medullary perfusion in anaesthetised rats receiving angiotensin II.
J Physiol
548:
875–880,
2003.
|
1603. |
Oliver JJ,
Eppel GA,
Rajapakse NW and
Evans RG.
Lipoxygenase and cyclo‐oxygenase products in the control of regional kidney blood flow in rabbits.
Clin Exp Pharmacol Physiol
30:
812–819,
2003.
|
1604. |
Parekh N and
Zou A‐P.
Role of prostaglandins in renal medullary circulation: response to different vasoconstrictors.
Am J Physiol Renal Physiol
271:
F653–F658,
1996.
|
1605. |
Roman RJ and
Lianos E.
Influence of prostaglandins on papillary blood flow and pressure‐natriuretic response.
Hypertension
15:
29–35,
1990.
|
1606. |
Heyman SN,
Brezis M,
Epstein FH,
Spokes K,
Silva P and
Rosen S.
Early renal medullary hypoxic injury from radiocontrast and indomethacin.
Kidney Int
40:
632–642,
1991.
|
1607. |
Heyman SN,
Fuchs S,
Jaffe R,
Shina A,
Ellezian L,
Brezis M and
Rosen S.
Renal microcirculation and tissue damage during acute ureteral obstruction in the rat: Effect of saline infusion, indomethacin and radiocontrast.
Kidney Int
51:
653–663,
1997.
|
1608. |
Campean V,
Theilig F,
Paliege A,
Breyer M and
Bachmann S.
Key enzymes for renal prostaglandin synthesis: site‐specific expression in rodent kidney (rat. mouse).
Am J Physiol Renal Physiol
285:
F19–F32,
2003.
|
1609. |
Harris RC,
Zhang MZ and
Cheng HF.
Cyclooxygenase‐2 and the renal renin‐angiotensin system.
Acta Physiol Scand
181:
543–547,
2004.
|
1610. |
Yang T.
Regulation of cyclooxygenase‐2 in renal medulla.
Acta Physiol Scand
177:
417–421,
2003.
|
1611. |
Lopez R,
Llinas MT,
Roig F and
Salazar FJ.
Role of nitric oxide and cyclooxygenase‐2 in regulating the renal hemodynamic response to norepinephrine.
Am J Physiol Regul Integr Comp Physiol
284:
R488–R493,
2003.
|
1612. |
Deng A,
Wead LM and
Blantz RC.
Temporal adaptation of tubuloglomerular feedback: effects of COX‐2.
Kidney Int
66:
2348–2353,
2004.
|
1613. |
Zhang MZ,
Sanchez LP,
McKanna JA and
Harris RC.
Regulation of cyclooxygenase expression by vasopressin in rat renal medulla.
Endocrinology
145:
1402–1409,
2004.
|
1614. |
Birck R,
Krzossok S,
Knoll T,
Braun C,
Der Woude FJ and
Rohmeiss P.
Preferential COX‐2 inhibitor, meloxicam, compromises renal perfusion in euvolemic and hypovolemic rats.
Exp Nephrol
8:
173–180,
2000.
|
1615. |
Zewde T and
Mattson DL.
Inhibition of cyclooxygenase‐2 in the rat renal medulla leads to sodium‐sensitive hypertension.
Hypertension
44:
424–428,
2004.
|
1616. |
Kuczeriszka M,
Badzynska B and
Kompanowska‐Jezierska E.
Cytochrome P‐450 monooxygenases in control of renal haemodynamics and arterial pressure in anaesthetized rats.
J Physiol Pharmacol
57
(Suppl II):
179–185,
2006.
|
1617. |
Oyekan AO.
Differential effects of 20‐hydroxyeicosatetraenoic acid on intrarenal blood flow in the rat.
J Pharmacol Exp Ther
313:
1289–1295,
2005.
|
1618. |
Rajapakse NW,
Roman RJ,
Falck JR,
Oliver JJ and
Evans RG.
Modulation of VI‐receptor‐mediated renal vasoconstriction by epoxyeicosatrienoic acids.
Am J Physiol Regul Integr Comp Physiol
287:
R181–R187,
2004.
|
1619. |
Ogungbade GO,
Akinsanmi LA,
Jiang H and
Oyekan AO.
Role of epoxyeicosatrienoic acids in renal functional response to inhibition of NO production in the rat.
Am J Physiol Renal Physiol
285:
F955–F964,
2003.
|
1620. |
Figueroa CD,
Gonzalez CB,
Grigoriev S,
Alla SA,
Haasemann M,
Jarnagin K and
Muller‐Esterl W.
Probing for the bradykinin B2 receptor in rat kidney by anti‐peptide and anti‐ligand antibodies.
J Histochem Cytochem
43:
137–148,
1995.
|
1621. |
Figueroa CD,
Maclver AG,
Mackenzie JC and
Bhoola KD.
Localisation of immunoreactive kininogen and tissue kallikrein in the human nephron.
Histochemistry
89:
437–442,
1988.
|
1622. |
Hermann A,
Braun A,
Figueroa CD,
Müller‐Esterl W,
Fritz H and
Rehbock J.
Expression and cellular localization of kininogens in the human kidney.
Kidney Int
50:
79–84,
1996.
|
1623. |
Proud D,
Knepper MA and
Pisano JJ.
Distribution of immunoreactive kallikrein along the rat nephron.
Am J Physiol
244:
F510–F515,
1983.
|
1624. |
Vio CP and
Figueroa CD.
Subcellular localization of renal kallikrein by ultrastructural immunocytochemistry.
Kidney Int
28:
36–42,
1985.
|
1625. |
Vio CP and
Figueroa CD.
Evidence for a stimulatory effect of high potassium diet on renal kallikrein.
Kidney Int
31:
1327–1334,
1987.
|
1626. |
Hall JM.
Bradykinin receptors: pharmacological properties and biological roles.
Pharmacol Ther
56:
131–190,
1992.
|
1627. |
Bascands J‐L,
Pecher C,
Rouaud S,
Emond C,
Tack JL,
Bastie MJ,
Burch R,
Regoli D and
Girolami J‐P.
Evidence for existence of two distinct bradykinin receptors on rat mesangial cells.
Am J Physiol Renal Physiol
264:
F548–F556,
1993.
|
1628. |
Ren Y,
Garvin JL,
Falck JR,
Renduchintala KV and
Carretero OA.
Glomerular autacoids stimulated by bradykinin regulate efferent arteriole tone.
Kidney Int
63:
987–993,
2003.
|
1629. |
Seino M,
Abe K,
Nushiro N,
Omata K,
Kasai Y and
Yoshinaga K.
Contribution of bradykinin to maintenance of blood pressure and renal blood flow in anaesthetized spontaneously hypertensive rats.
J Hypertens Suppl
6:
S401–S403,
1988.
|
1630. |
Mattson DL and
Cowley AW, Jr.
Kinin actions on renal papillary blood flow and sodium excretion.
Hypertension
21:
961–965,
1993.
|
1631. |
Omoro SA,
Majid DSA,
El‐Dahr SS and
Navar LG.
Kinin influences on renal regional blood flow responses to angiotensin‐converting enzyme inhibition in dogs.
Am J Physiol Renal Physiol
276:
F271–F277,
1999.
|
1632. |
Tornel J,
Madrid MI,
Garcia‐Salom M,
Wirth KJ and
Fenoy FJ.
Role of kinins in the control of renal papillary blood flow pressure natriuresis, and arterial pressure.
Circ Res
86:
589–595,
2000.
|
1633. |
Pittner J,
Rhinehart K and
Pallone TL.
Ouabain modulation of endothelial calcium signaling in descending vasa recta.
Am J Physiol Renal Physiol
291:
F761–F769,
2006.
|
1634. |
Agmon Y,
Dinour D and
Brezis M.
Disparate effects of adenosine A1‐ and A2‐receptor agonists on intrarenal blood flow.
Am J Physiol
265:
F802–F806,
1993.
|
1635. |
McCoy DE,
Bhattacharya S,
Olson BA,
Levier DG,
Arend LJ and
Speilman WS.
The renal adenosine system: structure, function and regulation.
Sem Nephrol
13:
31–40,
1993.
|
1636. |
Miyamoto M,
Yagil Y,
Larson T,
Robertson C and
Jamison RL.
Effects of intrarenal adenosine on renal function and medullary blood flow in the rat.
Am J Physiol Renal Physiol
255:
F1230–F1234,
1988.
|
1637. |
Zou A‐P,
Nithipatikom K,
Li P‐L and
Cowley AW, Jr.
Role of renal medullary adenosine in the control of blood flow and sodium excretion.
Am J Physiol Regul Integr Comp Physiol
276:
R790–R798,
1999.
|
1638. |
Kreisberg MS,
Silldorff EP and
Pallone TL.
Localization of ade‐nosine‐receptor subtype mRNA in rat outer medullary descending vasa recta by RT‐PCR.
Am J Physiol
272:
H1231–H1238,
1997.
|
1639. |
Baranowski RL and
Westernfelder C.
Estimation of renal interstitial adenosine and purine metabolites by microdialysis.
Am J Physiol Renal Physiol
267:
F174–F182,
1994.
|
1640. |
Jackson EK and
Dubey RK.
Role of the extracellular cAMP‐adenosine pathway in renal physiology.
Am J Physiol Renal Physiol 281:
F597–F612,
2001.
|
1641. |
Dinour D and
Brezis M.
Effects of adenosine on intrarenal oxygenation.
Am J Physiol Renal Physiol
261:
F787–F791,
1991.
|
1642. |
Beach RE,
Watts IBA,
Good DW,
Benedict CR and
Dubose TD, Jr.
Effects of graded oxygen tension on adenosine release by renal medullary and thick ascending limb suspensions.
Kidney Int
39:
836–842,
1991.
|
1643. |
Terada Y,
Tomita K,
Nonoguchi H and
Marumo F.
Different localization of two types of endothelin receptor mRNA in micro‐dissected rat nephron segments using reverse transcription and polymerase chain reaction assay.
J Clin Invest
90:
107–112,
1992.
|
1644. |
Zhuo J,
Dean R,
Maric C,
Aldred PG,
Harris P,
Alcorn D and
Mendelsohn FA.
Localization and interactions of vasoactive peptide receptors in renomedullary interstitial cells of the kidney.
Kidney Int Suppl
67:
S22–S28,
1998.
|
1645. |
Kotelevtsev Y and
Webb DJ.
Endothelin as a natriuretic hormone: the case for a paracrine action mediated by nitric oxide.
Cardiovasc Res
51:
481–488,
2001.
|
1646. |
Krum H,
Viskoper RJ,
Lacourciere Y,
Budde M and
Charlon V.
The effect of an endothelin‐receptor antagonist, bosentan, on blood pressure in patients with essential hypertension, Bosentan Hypertension Investigators.
N Engl J Med
338:
784–790,
1998.
|
1647. |
Naicker S and
Bhoola KD.
Endothelins: vasoactive modulators of renal function in health and disease.
Pharmacol Ther
90:
61–88,
2001.
|
1648. |
Plato CF and
Garvin JL.
Nitric oxide endothelin and nephron transport: potential interaction.
Clin Exp Pharmacol Physiol
26:
262–268,
1999.
|
1649. |
Boesen EI and
Pollock DM.
Acute increases of renal medullary osmolality stimulate endothelin release from the kidney.
Am J Physiol Renal Physiol,
2006.
|
1650. |
Bloom IT,
Bentley FR,
Wilson MA and
Garrison RN.
In vivo effects of endothelin on the renal microcirculation.
J Surg Res
54:
274–280,
1993.
|
1651. |
Kitamura K,
Tanaka T,
Kato J,
Eto T and
Tanaka K.
Regional distribution of immunoreactive endothelin in porcine tissue: abundance in inner medulla of kidney.
Biochem Biophys Res Commun
161:
348–352,
1989.
|
1652. |
Konishi F,
Okada Y,
Takaoka M,
Gariepy CE,
Yanagisawa M and
Matsumura Y.
Role of endothelin ET(B) receptors in the renal hemodynamic and excretory responses to big endothelin‐1.
Eur J Pharmacol
451:
177–184,
2002.
|
1653. |
Schroeder AC,
Imig JD,
LeBlanc EA,
Pham BT,
Pollock DM and
Inscho EW.
Endothelin‐mediated calcium signaling in preglomerular smooth muscle cells.
Hypertension
35:
280–286,
2000.
|
1654. |
Pallone TL and
Silldorff EP.
Pericyte regulation of renal medullary blood flow.
Exp Nephrol
9:
165–170,
2001.
|
1655. |
Hoffman A,
Abassi ZA,
Brodsky S,
Ramadan R and
Winaver J.
Mechanisms of big endothelin‐1‐induced diuresis and natriuresis: role of ET(B) receptors.
Hypertension
35:
732–739,
2000.
|
1656. |
Vassileva I,
Mountain C and
Pollock DM.
Functional role of ETB receptors in the renal medulla.
Hypertension
41:
1359–1363,
2003.
|
1657. |
Guo X and
Yang T.
Endothelin B receptor antagonism in the rat renal medulla reduces urine flow rate and sodium excretion.
Exp Biol Med (Maywood)
231:
1001–1005,
2006.
|
1658. |
Gariepy CE,
Ohuchi T,
Williams SC,
Richardson JA and
Yanagisawa M.
Salt‐sensitive hypertension in endothelin‐B receptor‐deficient rats.
J Clin Invest
105:
925–933,
2000.
|
1659. |
Gariepy CE,
Williams SC,
Richardson JA,
Hammer RE and
Yanagisawa M.
Transgenic expression of the endothelin‐B receptor prevents congenital intestinal aganglionosis in a rat model of Hirschsprung disease.
J Clin Invest
102:
1092–1101,
1998.
|
1660. |
Pollock DM.
Contrasting pharmacological ETB receptor blockade with genetic ETB deficiency in renal responses to big ET‐1.
Physiol Genomics
6:
39–43,
2001.
|
1661. |
Sasser JM,
Pollock JS and
Pollock DM.
Renal endothelin in chronic angiotensin II hypertension.
Am J Physiol Regul Integr Comp Physiol
283:
R243–R248,
2002.
|
1662. |
Molero MM,
Giulumian AD,
Reddy VB,
Ludwig LM,
Pollock JS,
Pollock DM,
Rusch NJ and
Fuchs LC.
Decreased endothelin binding and [Ca2+]i signaling in microvessels of DOCA‐salt hypertensive rats.
J Hypertens
20:
1799–1805,
2002.
|
1663. |
DiBona GF.
Physiology in perspective: the wisdom of the body, neural control of the kidney.
Am J Physiol Regul Integr Comp Physiol
289:
R633–R641,
2005.
|
1664. |
Gottschalk CW,
Moss NG and
Colindres R.
Neural control of renal function in health and disease. In:
The Kidney: Physiology and Pathophysiology,
eds Seldin DW and
Giebisch G.
New York:
Raven Press,
1985,
pp. 581–611.
|
1665. |
Walker LA,
Buscemi‐Bergin M and
Gellai M.
Renal hemodynamics in conscious rats: effects of anesthesia, surgery, and recovery.
Am J Physiol
245:
F67–F74,
1983.
|
1666. |
Walker LA,
Gellai M and
Valtin H.
Renal response to pentobarbital anesthesia in rats: effect of interrupting the renin‐angiotensin system.
J Pharmacol Exp Ther
236:
721–728,
1986.
|
1667. |
Chen ZJ and
Minneman KP.
Recent progress in alphal‐adrenergic receptor research.
Acta Pharmacol Sin
26:
1281–1287,
2005.
|
1668. |
Michel MC and
Rump LC.
alpha‐Adrenergic regulation of human renal function.
Fundam Clin Pharmacol
10:
493–503,
1996.
|
1669. |
Pirola CJ,
Alvarez AL,
Finkielman S and
Nahmod VE.
Release of acetylcholine from isolated canine renal tissue.
Am J Physiol Renal Physiol
260:
F198–F203,
1991.
|
1670. |
Thomas CE,
Ott CE,
Bell PD,
Knox FG and
Navar LG.
Glomerular filtration dynamics during renal vasodilation with acetylcholine in the dog.
Am J Physiol Renal Physiol
244:
F606–F611,
1983.
|
1671. |
Edwards RM.
Response of isolated renal arterioles to acetylcholine, dopamine and bradykinin.
Am J Physiol
248:
F183–F189,
1985.
|
1672. |
Hayashi K,
Loutzenhiser R,
Epstein M,
Suzuki H and
Saruta T.
Multiple factors contribute to acetylcholine‐induced renal afferent arteriolar vasodilation during myogenic and norepinephrine‐and KCl‐induced vasoconstriction. Studies in the isolated perfused hydronephrotic kidney.
Circ Res
75:
821–828,
1994.
|
1673. |
Olsen NV,
Hansen JM,
Ladefoged SD,
Fogh‐Andersen N,
Nielsen SL and
Leyssac PP.
Overall renal and tubular function during infusion of amino acids in normal man.
Clin Sci
78:
497–501,
1990.
|
1674. |
Ozawa Y,
Hayashi K,
Nagahama T,
Fujiwara K,
Kanda T,
Homma K and
Saruta T.
Distinct role of nitric oxide and endothelium‐derived hyperpolarizing factor in renal microcirculation. Studies in the isolated perfused hydronephrotic kidney.
Nephron
92:
905–913,
2002.
|
1675. |
Wang X and
Loutzenhiser R.
Determinants of renal microvascular response to ACh: afferent and efferent arteriolar actions of EDHF.
Am J Physiol Renal Physiol
282:
F124–F132,
2002.
|
1676. |
Luff SE,
Hengstberger SG,
Mclachlan EM and
Anderson WP.
Two types of sympathetic axon innervating the juxtaglomerular arterioles of the rabbit and rat kidney differ structurally from those supplying other arteries.
J Neurocytol
20:
781–795,
1991.
|
1677. |
Luff SE,
Hengstberger SG,
Mclachlan EM and
Anderson WP.
Distribution of sympathetic neuroeffector junctions in the juxtaglomerular region of the rabbit kidney.
J Auton Nerv Syst
40:
239–253,
1992.
|
1678. |
Thomson SC,
Tucker BJ,
Gabbai FB and
Blantz RC.
Glomerular hemodynamics and alpha‐2‐adrenoceptor stimulation: the role of renal nerves.
Am J Physiol
258:
F21–F27,
1990.
|
1679. |
Persson PB,
Gimpl G and
Lang RE.
Importance of neuropeptide Y in the regulation of kidney function.
Ann N Y Acad Sci
611:
156–165,
1990.
|
1680. |
Rump LC,
Vonend O and
Oberhauser V.
ATP release and degradation in the kidney: modulatory role of neuropeptide Y (NPY).
Nephrol Dial Transplant
14
(Suppl 4):
48–49,
1999.
|
1681. |
Gao L,
Zhu C and
Jackson EK.
Alpha 2‐adrenoceptors potentiate angiotensin II‐ and vasopressin‐induced renal vasoconstriction in spontaneously hypertensive rats.
J Pharmacol Exp Ther
305:
581–586,
2003.
|
1682. |
Salomonsson M,
Brannstrom K and
Arendshorst WJ.
a1‐Adrenoceptor subtypes in rat renal resistance vessels: in vivo and in vitro studies.
Am J Physiol
278:
F138–F147,
2000.
|
1683. |
Walkowska A,
Kompanowska‐Jezierska E and
Sadowski J.
Nitric oxide and renal nerves: comparison of effects on renal circulation and sodium excretion in anesthetized rats.
Kidney Int
66:
705–712,
2004.
|
1684. |
Malpas SC and
Evans RG.
Do different levels and patterns of sympathetic activation all provoke renal vasoconstriction?
J Auton Nerv Syst
69:
72–82,
1998.
|
1685. |
Barrett CJ,
Navakatikyan MA and
Malpas SC.
Long‐term control of renal blood flow: what is the role of the renal nerves?
Am J Physiol Regul Integr Comp Physiol
280:
R1534–R1545,
2001.
|
1686. |
Janssen BJA,
Malpas SC,
Burke SL and
Head GA.
Frequency‐dependent modulation of renal blood flow by renal nerve activity in conscious rabbits.
Am J Physiol Regul Integr Comp Physiol
273:
R597–R608,
1997.
|
1687. |
Eppel GA,
Lee LL and
Evans RG.
alpha‐Adrenoceptor subtypes mediating regional kidney blood flow responses to renal nerve stimulation.
Auton Neurosci
112:
15–24,
2004.
|
1688. |
Evans RG and
Anderson WP.
Renal effects of infusion of rilme‐nidine and guanabenz in conscious dogs: contribution of peripheral and central nervous system alpha 2‐adrenoceptors.
Br J Pharmacol
116:
1557–1570,
1995.
|
1689. |
Gellai M and
Ruffolo RR.
Renal effects of selective alpha‐1 and alpha‐2 adrenoceptor agonists in conscious, normotensive rats.
J Pharmacol Exp Ther
240:
723–728,
1987.
|
1690. |
Richer C,
Lefevre‐Borg F,
Lechaire J,
Gomeni C,
Gomeni R,
Giudicelli JF and
Cavero I.
Systemic and regional hemodynamic characterization of alpha‐1 and alpha‐2 adrenoceptor agonists in pithed rats.
J Pharmacol Exp Ther
240:
944–953,
1987.
|
1691. |
Strandhoy JW,
Wolff DW and
Buckalew VM, Jr.
Renal alpha 1‐ and alpha 2‐adrenoceptor mediated vasoconstriction in dogs.
J Hypertens Suppl
2:
S151–S153,
1984.
|
1692. |
Wolff DW,
Colindres RE and
Strandhoy JW.
Unmasking sensitive alpha 2‐adrenoceptor‐mediated renal vasoconstriction in conscious rats.
Am J Physiol Renal Physiol
257:
F1132–F1139,
1989.
|
1693. |
De Leeuw PW,
van Es PN,
de Bos R and
Birkenhager WH.
Role of alpha 1‐ and alpha 2‐adrenergic receptors in the human hypertensive kidney.
Hypertension
9:
III210–III212,
1987.
|
1694. |
Evans RG,
Burke SL,
Lambert GW and
Head GA.
Renal responses to acute reflex activation of renal sympathetic nerve activity and renal denervation in secondary hypertension.
Am J Physiol Regul Integr Comp Physiol
293:
R1247–R1256,
2007.
|
1695. |
Gross R and
Kirchheim H.
Effects of bilateral carotid and auditory stimulation on renal blood flow and sympathetic nerve activity in the conscious dog.
Pflugers Arch
383:
233–239,
1980.
|
1696. |
Moss NG.
Renal function and renal afferent and efferent nerve activity.
Am J Physiol
243:
F425–F433,
1982.
|
1697. |
Malpas SC,
Evans RG,
Head GA and
Lukoshkova EV.
Contribution of renal nerves to renal blood flow variability during hemorrhage.
Am J Physiol Regul Integr Comp Physiol
274:
R1283–R1294,
1998.
|
1698. |
Mueller PJ,
O'Hagan KP,
Skogg KA,
Buckwalter JB and
Clifford PS.
Renal hemodynamic responses to dynamic exercise in rabbits.
J Appl Physiol
85:
1605–1614,
1998.
|
1699. |
Koba S,
Yoshida T and
Hayashi N.
Renal sympathetic and circulatory responses to activation of the exercise pressor reflex in rats.
Exp Physiol
91:
111–119,
2006.
|
1700. |
Momen A,
Bower D,
Boehmer J,
Kunselman AR,
Leuenberger UA and
Sinoway LI.
Renal blood flow in heart failure patients during exercise.
Am J Physiol Heart Circ Physiol
287:
H2834–H2839,
2004.
|
1701. |
Momen A,
Bower D,
Leuenberger UA,
Boehmer J,
Lerner S,
Alfrey EJ,
Handly B and
Sinoway LI.
Renal vascular response to static handgrip exercise: sympathetic vs. autoregulatory control.
Am J Physiol Heart Circ Physiol
289:
H1770–H1776,
2005.
|
1702. |
Pricher MP,
Holowatz LA,
Williams JT,
Lockwood JM and
Halliwill JR.
Regional hemodynamics during postexercise hypotension. I. Splanchnic and renal circulations.
J Appl Physiol
97:
2065–2070,
2004.
|
1703. |
Cowley AW, Jr. and
Lohmeier TE.
Changes in renal vascular sensitivity and arterial pressure associated with sodium intake during long‐term intrarenal norepinephrine infusion in dogs.
Hypertension
1:
549–558,
1979.
|
1704. |
Lohmeier TE.
The sympathetic nervous system and long‐term blood pressure regulation.
Am J Hypertens
14:
147S–154S,
2001.
|
1705. |
Ichihara A,
Inscho EW,
Imig JD,
Michel RE and
Navar LG.
Role of renal nerves in afferent arteriolar reactivity in angiotensin‐induced hypertension.
Hypertension
29
(part 2):
442–449,
1997.
|
1706. |
Jacob F,
Clark LA,
Guzman PA and
Osborn JW.
Role of renal nerves in development of hypertension in DOCA‐salt model in rats: a telemetric approach.
Am J Physiol Heart Circ Physiol
289:
H1519–H1529,
2005.
|
1707. |
Katholi RE.
Renal nerves in the pathogenesis of hypertension in experimental animals and humans.
Am J Physiol
245:
F1–F14,
1983.
|
1708. |
Vari RC,
Zinn S,
Verburg KM and
Freeman RH.
Renal nerves and the pathogenesis of angiotensin‐induced hypertension.
Hypertension
9:
345–349,
1987.
|
1709. |
Winternitz SR and
Oparil S.
Importance of the renal nerves in the pathogenesis of experimental hypertension.
Hypertension
4:
III108–III114,
1982.
|
1710. |
Hermansson K,
Larson M,
Kallskog O and
Wolgast M.
Influence of renal nerve activity on arteriolar resistance, ultrafiltration dynamics and fluid reabsorption.
Pflugers Arch
389:
85–90,
1981.
|
1711. |
Kon V.
Neural control of renal circulation.
Miner Electrolyte Metab
15:
33–43,
1989.
|
1712. |
Denton KM,
Shweta A and
Anderson WP.
Preglomerular and postglomerular resistance responses to different levels of sympathetic activation by hypoxia.
J Am Soc Nephrol
13:
27–34,
2002.
|
1713. |
Edwards RM and
Trizna W.
Characterization of a‐adrenoceptors on isolated rabbit renal arterioles.
Am J Physiol Renal Physiol
254:
F178–F183,
1988.
|
1714. |
Casellas D,
Bouriquet N,
Artuso A,
Walcott B and
Moore LC.
New method for imaging innervation of the renal preglomerular vasculature, Alterations in hypertensive rats.
Microcirculation
7:
429–437,
2000.
|
1715. |
Fleming JT,
Zhang C,
Chen J and
Porter JP.
Selective preglomerular constriction to nerve stimulation in rat hydronephrotic kidneys.
Am J Physiol Renal Physiol
262:
F348–F353,
1992.
|
1716. |
Chen J and
Fleming JT.
Juxtamedullary afferent and efferent arterioles constrict to renal nerve stimulation.
Kidney Int
44:
684–691,
1993.
|
1717. |
Arendshorst WJ.
Autoregulation of renal blood flow in spontaneously hypertensive rats.
Circ Res
44:
344–349,
1979.
|
1718. |
Selkurt EE.
Effect of pulse pressure and mean arterial pressure modification on renal hemodynamics and electrolyte and water excretion.
Circ
4:
541–551,
1951.
|
1719. |
Shipley RE and
Study RS.
Changes in renal blood flow, extraction of inulin, glomerular filtration rate, tissue pressure and urine flow with acute alterations of renal artery blood pressure.
Am J Physiol
167:
676–688,
1951.
|
1720. |
Osborn JL,
Francisco LL and
DiBona GF.
Effect of renal nerve stimulation on renal blood flow autoregulation and antinatriuresis during reductions in renal perfusion pressure.
Proc Soc Exp Biol Med
168:
77–81,
1981.
|
1721. |
Ehmke H,
Persson PB,
Seyfarth M and
Kirchheim HR.
Neurogenic control of pressure natriuresis in conscious dogs.
Am J Physiol Renal Physiol
259:
F466–F473,
1990.
|
1722. |
Persson PB,
Ehmke H,
Nafz B and
Kirchheim HR.
Resetting of renal autoregulation in conscious dogs: angiotensin II and alpha 1‐adrenoceptors.
Pflügers Arch
417:
42–47,
1990.
|
1723. |
Pollock DM and
Arendshorst WJ.
Tubuloglomerular feedback and blood flow autoregulation during DA1‐induced renal vasodilation.
Am J Physiol
258:
F627–F635,
1990.
|
1724. |
Abu‐Amarah I,
Ajikobi DO,
Bachelard H,
Cupples WA and
Salevsky FC.
Responses of mesenteric and renal blood flow dynamics to acute denervation in anesthetized rats.
Am J Physiol Regul Integr Comp Physiol
275:
R1543–R1552,
1998.
|
1725. |
DiBona GF and
Sawin LL.
Effect of renal denervation on dynamic autoregulation of renal blood flow.
Am J Physiol Renal Physiol
286:
F1209–F1218,
2004.
|
1726. |
Just A,
Wittmann U,
Ehmke H and
Kirchheim HR.
Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback.
J Physiol (Lond)
506:
275–290,
1998.
|
1727. |
Guild SJ,
Barrett CJ,
Evans RG and
Malpas SC.
Interactions between neural and hormonal mediators of renal vascular tone in anaesthetized rabbits.
Exp Physiol
88:
229–241,
2003.
|
1728. |
Hermansson K,
Kallskog O and
Wolgast M.
Effect of renal nerve stimulation on the activity of the tubuloglomerular feedback mechanism.
Acta Physiol Scand
120:
381–385,
1984.
|
1729. |
Takabatake T.
Feedback regulation of glomerular filtration rate in the denervated rat kidney.
Kidney Int Suppl
12:
S129–S135,
1982.
|
1730. |
Takabatake T,
Ushiogi Y,
Ohta K and
Hattori N.
Attenuation of enhanced tubuloglomerular feedback activity in SHR by renal denervation.
Am J Physiol Renal Physiol
258:
F980–F985,
1990.
|
1731. |
Thorup C,
Kurkus J,
Morsing P and
Persson AEG.
Acute renal denervation causes time‐dependent resetting of the tubuloglomerular feedback mechanism.
Acta Physiol Scand
153:
43–49,
1995.
|
1732. |
Thorup C,
Kurkus J.
Ollerstam A and Persson AEG. Effects of acute and chronic unilateral renal denervation on the tubuloglomerular feedback mechanism.
Acta Physiol Scand
156:
139–145,
1996.
|
1733. |
Pelayo JC.
Renal adrenergic effector mechanisms: glomerular sites for prostaglandin interaction.
Am J Physiol Renal Physiol
254:
F184–F190,
1988.
|
1734. |
Yared A,
Kon V and
Ichikawa I.
Mechanism of preservation of glomerular perfusion and filtration during acute extracellular fluid volume depletion. Importance of intrarenal vasopressin‐prostaglandin interaction for protecting kidneys from constrictor action of vasopressin.
J Clin Invest
75:
1477–1487,
1985.
|
1735. |
Anderson RJ,
Henrich WL,
Gross PA and
Dillingham MA.
Role of renal nerves, angiotensin II, and prostaglandins in the antinatriuretic response to acute hypercapnic acidosis in the dog.
Circ Res
50:
294–300,
1982.
|
1736. |
Rajapakse NW,
Flower RL,
Eppel GA,
Denton KM,
Malpas SC and
Evans RG.
Prostaglandins and nitric oxide in regional kidney blood flow responses to renal nerve stimulation.
Pflugers Arch
449:
143–149,
2004.
|
1737. |
Gabbai FB,
Thomason SC,
Peterson O,
Wead L,
Malvey K and
Blantz RC.
Glomerular and tubular interactions between renal adrenergic activity and nitric oxide.
Am J Physiol Renal Physiol
268:
F1004–F1008,
1995.
|
1738. |
Thomson SC and
Vallon V.
α2‐adrenoceptors determine the response to nitric oxide inhibition in the rat glomerulus and proximal tubule.
J Am Soc Nephrol
6:
1482–1490,
1995.
|
1739. |
Thomson SC,
Gabbai FB,
Tucker BJ and
Blantz RC.
Interaction between a2‐adrenergic and angiotensin II systems in the control of glomerular hemodynamics as assessed by renal micropuncture in the rat.
J Clin Invest
90:
604–611,
1992.
|
1740. |
DiBona GF and
Sawin LL.
Effect of renal nerve stimulation on responsiveness of the rat renal vasculature.
Am J Physiol Renal Physiol
283:
F1056–F1065,
2002.
|
1741. |
Rajapakse NW,
Sampson AK,
Eppel GA and
Evans RG.
Angiotensin II and nitric oxide in neural control of intrarenal blood flow.
Am J Physiol Regul Integr Comp Physiol
289:
R745–R754,
2005.
|
1742. |
Walkowska A,
Badzynska B,
Kompanowska‐Jezierska E,
Johns EJ and
Sadowski J.
Effects of renal nerve stimulation on intrarenal blood flow in rats with intact or inactivated NO synthases.
Acta Physiol Scand
183:
99–105,
2005.
|
1743. |
Kirchheim HR,
Ehmke H,
Hackenthal E,
Lowe W and
Persson P.
Autoregulation of renal blood flow, glomerular filtration rate and renin release in conscious dogs.
Pflügers Arch
410:
441–449,
1987.
|
1744. |
Kirchheim HR,
Finke R,
Hackenthal E,
Lowe W and
Persson P.
Baroreflex sympathetic activation increases threshold pressure for the pressure‐dependent renin release in conscious dogs.
Pflugers Arch
405:
127–135,
1985.
|
1745. |
Osborn JL and
Kinstetter DD.
Effects of altered NaCl intake on renal hemodynamic and renin release responses to RNS.
Am J Physiol
253:
F976–F981,
1987.
|
1746. |
Bohmann C,
Rump LC,
Schaible U and
von Kügelgen I.
α‐Adrenoceptor modulation of norepinephrine and adenosine 5′‐triphosphate release in isolated kidneys of spontaneously hypertensive rats.
Hypertension
25:
1224–1231,
1995.
|
1747. |
Vonend O,
Oberhauser V,
von KI,
Apel TW,
Amann K,
Ritz E and
Rump LC.
ATP release in human kidney cortex and its mitogenic effects in visceral glomerular epithelial cells.
Kidney Int
61:
1617–1626,
2002.
|
1748. |
Oberhauser V,
Vonend O and
Rump LC.
Neuropeptide Y and ATP interact to control renovascular resistance in the rat.
J Am Soc Nephrol
10:
1179–1185,
1999.
|
1749. |
Dietrich MS,
Fretschner M,
Nobiling R,
Persson PB and
Steinhausen M.
Renovascular effects of neuropeptide‐Y in the split hydronephrotic rat kidney: non‐uniform pattern of vascular reactivity.
J Physiol (Lond)
444:
303–315,
1991.
|
1750. |
Blaze CA,
Mannon PJ,
Vigna SR,
Kherani AR and
Benjamin BA.
Peptide YY receptor distribution and subtype in the kidney: effect on renal hemodynamics and function in rats.
Am J Physiol
273:
F545–F553,
1997.
|
1751. |
Modin A,
Malmstrom RE and
Meister B.
Vascular neuropeptide Y Y1‐receptors in the rat kidney: vasoconstrictor effects and expression of Y1‐receptor mRNA.
Neuropeptides
33:
253–259,
1999.
|
1752. |
Aperia AC.
Intrarenal dopamine: a key signal in the interactive regulation of sodium metabolism.
Annu Rev Physiol
62:
621–647,
2000.
|
1753. |
Kapusta DR and
Robie NW.
Plasma dopamine in regulation of canine renal blood flow.
Am J Physiol Regul Integr Comp Physiol
255:
R379–R387,
1988.
|
1754. |
Dinerstein RJ,
Jones RT and
Goldberg LI.
Evidence for dopamine‐containing renal nerves.
Fed Proc
42:
3005–3008,
1983.
|
1755. |
Carey RM.
Theodore Cooper Lecture: renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure.
Hypertension
38:
297–302,
2001.
|
1756. |
Jose PA,
Eisner GM and
Felder RA.
Role of dopamine receptors in the kidney in the regulation of blood pressure.
Curr Opin Nephrol Hypertens
11:
87–92,
2002.
|
1757. |
Jose PA,
Raymond JR,
Bates MD,
Aperia A,
Felder RA and
Carey RM.
The renal dopamine receptors.
J Am Soc Nephrol
2:
1265–1278,
1992.
|
1758. |
Zeng C,
Yang Z,
Wang Z,
Jones J,
Wang X,
Altea J,
Mangrum AJ,
Hopfer U,
Sibley DR,
Eisner GM,
Felder RA and
Jose PA.
Interaction of angiotensin II type I and D5 dopamine receptors in renal proximal tubule cells.
Hypertension
45:
804–810,
2005.
|
1759. |
Jose PA,
Eisner GM and
Felder RA.
Regulation of blood pressure by dopamine receptors.
Nephron Physiol
95:
19–27,
2003.
|
1760. |
Luippold G,
Schneider S,
Vallon V,
Osswald H and
Mühlbauer B.
Postglomerular vasoconstriction induced by dopamine D3 receptor activation in anesthetized rats.
Am J Physiol Renal Physiol
278:
F570–F575,
2000.
|
1761. |
Tamaki T,
Hura CE and
Kunau RT, Jr.
Dopamine stimulates cAMP production in canine afferent arterioles via DA1 receptors.
Am J Physiol
256:
H626–H629,
1989.
|
1762. |
Kopp UC.
Renorenal reflexes: neural and functional responses.
Fed Proc
44:
2834–2839,
1985.
|
1763. |
Barajas L,
Liu L and
Powers K.
Anatomy of the renal innervation: intrarenal aspects and ganglia of origin.
Can J Physiol Pharmacol
70:
735–749,
1992.
|
1764. |
Kopp UC,
Cicha MZ,
Nakamura K,
Nusing RM,
Smith LA and
Hokfelt T.
Activation of EP4 receptors contributes to prostaglandin E2‐mediated stimulation of renal sensory nerves.
Am J Physiol Renal Physiol
287:
F1269–F1282,
2004.
|
1765. |
Kopp UC and
Smith LA.
Role of prostaglandins in renal sensory receptor activation by substance P and bradykinin.
Am J Physiol Regul Integr Comp Physiol
265:
R544–R551,
1993.
|
1766. |
Porter JP,
Said SI and
Ganong WF.
Vasoactive intestinal peptide stimulates renin zecretion in vitro: evidence for a direct action of the peptide on the renal juxtaglomerular cells.
Neuwendocrinology
36:
404–408,
1983.
|
1767. |
Bell D and
McDermott BJ.
Calcitonin gene‐related peptide in the cardiovascular system: characterization of receptor populations and their (patho)physiological significance.
Pharmacol Rev
48:
253–288,
1996.
|
1768. |
Geppetti P,
Baldi E,
Manzini S,
Del Bianco E,
Maggi CA,
Natali A and
Mannelli M.
Regional differences of adenylate cyclase stimulation by calcitonin and calcitonin gene‐related peptide in the human kidney.
J Clin Endocrinol Metab
69:
491–495,
1989.
|
1769. |
Elhawary AM and
Pang CC.
Renal vascular and tubular actions of calcitonin gene‐related peptide: effect of NG‐nitro‐L‐arginine methyl ester.
J Pharmacol Exp Ther
273:
56–63,
1995.
|
1770. |
Villarreal D,
Freeman RH,
Verburg KM and
Brands MW.
Effects of calcitonin gene‐related peptide on renal blood flow in the rat.
Proc Soc Exp Biol Med
188:
316–322,
1988.
|
1771. |
Ay I and
Tuncer M.
Mechanism of CGRP‐induced vasodilation in the rat isolated perfused kidney.
Pharmacology
71:
209–215,
2004.
|
1772. |
Castellucci A,
Maggi CA and
Evangelista S.
Calcitonin gene‐related peptide (CGRP)I receptor mediates vasodilation in the rat isolated and perfused kidney.
Life Sci
53:
L153–L158,
1993.
|
1773. |
Kurtz A,
Muff R and
Fischer JA.
Calcitonin gene products and the kidney.
Klin Wochenschr
67:
870–875,
1989.
|
1774. |
Gardiner SM,
Compton AM and
Bennett T.
Regional hemodynamic effects of calcitonin gene‐related peptide.
Am J Physiol
256:
R332–R338,
1989.
|
1775. |
Fletcher DR,
Braslis KG,
Shulkes A and
Hardy KJ.
Calcitonin gene related peptide: vasodilator in ovine hepatic and renal vasculature.
Clin Exp Pharmacol Physiol
17:
467–476,
1990.
|
1776. |
Verburg KM,
Freeman RH,
Villarreal D and
Brands MW.
Cardiovascular and renal effects of calcitonin gene‐related peptide in hypertensive dogs.
Peptides
10:
663–669,
1989.
|
1777. |
Edwards RM and
Trizna W.
Calcitonin gene‐related peptide: effects on renal arteriolar tone and tubular cAMP levels.
Am J Physiol
258:
F121–F125,
1990.
|
1778. |
Edwards RM,
Trizna W and
Aiyar N.
Adrenomedullin: a new peptide involved in cardiorenal homeostasis?
Exp Nephrol
5:
18–22,
1997.
|
1779. |
Jougasaki M and
Burnett JC, Jr.
Adrenomedullin: potential in physiology and pathophysiology.
Life Sci
66:
855–872,
2000.
|
1780. |
Nishikimi T.
Adrenomedullin in the kidney‐renal physiological and pathophysiological roles.
Curr Med Chem
14:
1689–1699,
2007.
|
1781. |
Majid DSA,
Kadowitz PJ,
Coy DH and
Navar LG.
Renal responses to intra‐arterial administration of adrenomedullin in dogs.
Am J Physiol Renal Physiol
270:
F200–F205,
1996.
|
1782. |
Fujisawa Y,
Nagai Y,
Miyatake A,
Miura K,
Shokoji T,
Nishiyama A,
Kimura S and
Abe Y.
Roles of adrenomedullin 2 in regulating the cardiovascular and sympathetic nervous systems in conscious rats.
Am J Physiol Heart Circ Physiol
290:
H1120–H1127,
2006.
|
1783. |
Nagaya N,
Nishikimi T,
Horio T,
Yoshihara F,
Kanazawa A,
Matsuo H and
Kangawa K.
Cardiovascular and renal effects of adrenomedullin in rats with heart failure.
Am J Physiol Regul Integr Comp Physiol
276:
R213–R218,
1999.
|
1784. |
Vari RC,
Adkins SD and
Samson WK.
Renal effects of adrenomedullin in the rat.
Proc Soc Exp Biol Med
211:
178–183,
1996.
|
1785. |
Minami K,
Segawa K,
Uezono Y,
Shiga Y,
Shiraishi M,
Ogata J and
Shigematsu A.
Adrenomedullin inhibits the pressor effects and decrease in renal blood flow induced by norepinephrine or angiotensin II in anesthetized rats.
Jpn J Pharmacol
86:
159–164,
2001.
|
1786. |
Elhawary AM,
Poon J and
Pang CC.
Effects of calcitonin gene‐related peptide receptor antagonists on renal actions of adrenomedullin.
Br J Pharmacol
115:
1133–1140,
1995.
|
1787. |
Hjelmqvist H,
Keil R,
Mathai M,
Hubschle T and
Gerstberger R.
Vasodilation and glomerular binding of adrenomedullin in rabbit kidney are not CGRP receptor mediated.
Am J Physiol
273:
R716–R724,
1997.
|
1788. |
Schwarz N,
Renshaw D,
Kapas S and
Hinson JP.
Adrenomedullin increases the expression of calcitonin‐like receptor and receptor activity modifying protein 2 mRNA in human microvascular endothelial cells.
J Endocrinol
190:
505–514,
2006.
|
1789. |
Hirata Y,
Hayakawa H,
Suzuki Y,
Suzuki E,
Ikenouchi H,
Kohmoto O,
Kimura K,
Kitamura K,
Eto T,
Kangawa K,
Matsuo H and
Omata M.
Mechanisms of adrenomedullin‐induced vasodilation in the rat kidney.
Hypertension
25
(part 2):
790–795,
1995.
|
1790. |
AI‐Barazanji KA and
Balment RJ.
The Renal and Vascular Effects of Central Angiotensin II and Atrial Natriuretic Factor in the Anaesthetized Rat.
J Physiol (Lond)
423:
485–493,
1990.
|
1791. |
Jensen BL,
Friis UG,
Hansen PB,
Andreasen D,
Uhrenholt T,
Schjerning J and
Skott O.
Voltage‐dependent calcium channels in the renal microcirculation.
Nephrol Dial Transplant
19:
1368–1373,
2004.
|
1792. |
Ozawa Y,
Hayashi K,
Nagahama T,
Fujiwara K,
Wakino S and
Saruta T.
Renal afferent and efferent arteriolar dilation by nilvadipine: studies in the isolated perfused hydronephrotic kidney.
J Cardiovasc Pharmacol
33:
243–247,
1999.
|
1793. |
Yang G and
Sigmund CD.
Regulatory elements required for human angiotensinogen expression in HepG2 cells are dispensable in transgenic mice.
Hypertension
31:
734–740,
1998.
|