Comprehensive Physiology Wiley Online Library

The Renal Microcirculation

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Introduction
2 Structural‐Functional Aspects Unique to the Renal Microcirculation
2.1 Microvasculature of the renal cortex
2.2 Glomerular and peritubular capillary networks
2.3 Renal interstitium and lymphatics
2.4 Microvasculature of the renal medulla
2.5 Juxtaglomerular complex and macula densa
2.6 Innervation of the renal vascular structures
3 Fluid and Solute Transcapillary Exchange in Renal Microcirculation
3.1 Glomerular ultrafiltration
3.2 Restricted permeability to macromolecules in glomerular capillaries
3.3 Peritubular capillaries and uptake of tubular reabsorbate
3.4 Regulation of the filtration coefficient
3.5 Transport of solutes and water in medullary microvasculature
4 Vascular Activating Mechanisms and Intrinsic Control of Renal Microcirculation
4.1 Membrane activating mechanisms
4.2 Mechanosensitive responses and renal autoregulation
4.3 TGF mechanism
5 Endothelial Interactions with Renal Vasculature
5.1 Endothelial‐derived vasoactive factors
5.2 Nitric oxide
5.3 Endothelin and renal hemodynamics
5.4 Endothelin effects on renal microcirculation
5.5 Heme oxygenase and CO
5.6 Reactive oxygen species
6 Renin‐Angiotensin System
6.1 Intrarenal formation of Ang II
6.2 Intrarenal angiotensin receptors
6.3 Actions of Ang II on renal microvasculature and renal hemodynamics
6.4 Differential activation and signal transduction mechanisms on afferent and efferent arterioles
6.5 Responses to ACE inhibitors and Ang II receptor blockers
6.6 Actions of intrarenally formed Ang II and renal interstitial Ang II
6.7 Modulation of TGF responsiveness by Ang II
6.8 Synergistic interactions between renal vascular and tubular effects of Ang II
7 Arachidonic Acid Related Paracrine Factors: Cyclooxygenase, Lipoxygenase, Cytochrome P450 Pathways
7.1 Enzymes that metabolize eicosanoids
7.2 Renal microcirculatory actions of COX metabolites
7.3 Renal microcirculatory actions of CYP metabolites
7.4 Renal microcirculatory actions of LOX metabolites
7.5 Renal microvascular interactions between hormonal and paracrine factors and eicosanoids
7.6 Role of eicosanoids in renal autoregulation
7.7 Conclusions
8 Purinergic Factors Regulating the Renal Microcirculation
8.1 Overview of purinoceptors
8.2 Purinoceptors and their expression in the kidney
8.3 Purinoceptors and renal hemodynamics
8.4 Purinoceptors and the renal microcirculation: single vessel studies
8.5 Purinoceptors and renal autoregulation and TGF
9 Mechanisms Regulating Medullary Microcirculation
9.1 Introduction
9.2 Reduction of intramedullary hematocrit
9.3 The unique requirements of renal medullary perfusion
9.4 Autoregulation and pressure natriuresis
9.5 Diuresis and vasopressin
9.6 Angiotensin and medullary perfusion
9.7 Nitric oxide
9.8 Reactive oxygen species
9.9 Carbon monoxide
9.10 Endothelial‐derived hyperpolarizing factor
9.11 Arachadonic acid metabolite
9.12 Kinins
9.13 Adenosine
9.14 Endothelins
10 Neural Factors and Catecholamines
10.1 Innervation of the renal vascular structures
10.2 Neural effects on renal hemodynamics and microcirculation
10.3 Segmental vascular resistance and glomerular hemodynamics
10.4 Effects of renal nerves on autoregulation
10.5 Neural interactions with paracrine factors
10.6 Co‐neurotransmitters
10.7 Afferent renal nerves
11 Concluding Comments
Figure 1. Figure 1.

Microvascular anatomy of the kidney. Outer, middle and juxtamedullary nephrovascular units and outer medullary bundles are shown. In the left panel, nephrons are shown without the vascular structures with distal nephron segments in darker color. The center panel shows only the vascular structures with arterial vessels in red and venous vessels in blue. The right panel shows the combined nephro‐vascualr units. Representative efferent and peritubular capillary systems for only a few nephrons are shown to illustrate the different patterns. Peritubular capillary blood vessels in the cortex are derived from superficial and mid‐cortical nephrons, while juxtamedullary nephrons gave rise to descending vasa recta (DVR). DVR from bundle periphery supply the interbundle capillary plexus while those in the center supply blood to the inner medulla. See text for further detail. From Ref. 20. (See page 14 in colour section at the back of the book)

Figure 2. Figure 2.

Renal vasculature filled with red polymer and single juxtamedullary nephron filled with yellow polymer showing a long loop of Henle

(Courtesy of Daniel Casellas). (See page 14 in colour section at the back of the book)
Figure 3. Figure 3.

Microvascular structures of cortex. (A) depicts an isolated renal corpuscle (RC) with attached AA. The groove (asterisk) is the point of attachment to the macula densa. (B) is a vascular cast of a glomerular capillary system. (C) is a scanning EM of a single glomerular capillary revealing all cell types including the endothelium and endothelial fenestrations, the basement membrane and interdigitating podocyte foot processes. A mesangial cell is seen in intercapillary position. (D) shows a peritubular capillary of the outer cortex. Characteristically, the endothelial cells are flattened with many small fenestrae bridged by a diaphragm and an attenuated basement membrane (BM). From Ref. 2.

Figure 4. Figure 4.

Comparison of DVR and AVR wall characteristics. Electron micrograph of DVR and AVR in rat vascular bundles. DVR have a continuous endothelium and AVR are fenestrated. Note the minimal interstitium that exists between vessels in this region.

Reproduced with permission from Ref. 61
Figure 5. Figure 5.

Tubular vascular relationships and collecting duct clusters in the inner medulla. (A) A CD cluster (blue) is surrounded by DVR (red) and thin DLH (green). Neither DVR nor thin DLH are incorporated into the center of the cluster. (B) A CD cluster (blue) has both AVR (red) and thin ALH (green) in its surroundings and within the cluster. (C) Idealized crossectional depiction of a CD cluster (blue) in relationship to AVR (red) and thin ALH (green). AVR and thin ALH are diffusely distributed around and within the CD cluster. (D) Idealized cross sectional depiction of thin DLH (purple) and DVR (aqua) surrounding open regions in which CD clusters reside. From Ref. 62,78. See page 15 in colour section at the back of the book)

Figure 6. Figure 6.

Close relationship of ascending vasa recta and collecting ducts in the inner medulla. (A) Four AVR (red) surround a single inner medullary CD (blue). Successive panels show rotations as specified by the idealized depiction above each panel. (B) Transmission electron micrograph of an inner medullary CD surrounded by four AVR that abutt the abluminal surface (AVR lumens identified with asterisks). Bar = 1 micron. From Ref. 62. (See page 15 in colour section at the back of the book)

Figure 7. Figure 7.

In vitro tubuloglomerular feedback visualized using multiphoton laser‐scanning fluorescence image of the living isolated perfused cortical thick ascending limb (cTAL) with attached glomerulus (G) labeled with membrane staining dye TMA‐DPH. Note the macula densa (MD) cells

(Courtesy of P. D. Bell). (See page 15 in colour section at the back of the book)
Figure 8. Figure 8.

Multicolor labeling of the in vitro microperfused juxtaglomerular apparatus with attached glomerulus. Cell membranes of tubular epithelium (cortical thick ascending limb [cTAL] containing the macula densa), vascular endothelium of afferent arteriole (AA), and glomerulus (G) are labeled with R18 (red), renin granules with quinacrine (green), and cell nuclei with Hoechst 33342 (blue). From Ref. 94. (See page 15 in colour section at the back of the book)

Figure 9. Figure 9.

Depiction of the hydraulic and oncotic forces responsible for filtration of fluid of the glomerulus and reabsorption of fluid into the peritubular capillaries. Representative values for humans are provided. Insert shows representative profiles in the net hydrostatic pressure gradient and glomerular plasma colloid osmotic pressure (πg) along the length of the glomerular capillaries. Profile A represents continued filtration throughout glomerular capillaries while profile B represents achievement of filtration pressure equilibrium. Profile C represents the change in response to volume expansion and vasodilation. Revised from Ref. 1.

Figure 10. Figure 10.

Passage of macromolecules across glomerular capillaries. Representative sieving curves for several test molecules in the glomerular circulation. The curve representing neutral molecules is based on data obtained with use of polyvinylpyrrolidone and neutral dextran. The curves for anionic and cationic molecules are based on studies with charged dextrans. Also shown are the sieving values for neutral horseradish peroxidase (neutral HRP) and for albumin. The smaller molecules are shown to have a sieving coefficient of 1.0. Revised from Ref. 1.

Figure 11. Figure 11.

Movement of water NaCl and urea in the renal medullary microcirculation. The majority of blood flow to the medulla arises from juxtamedullary efferent arterioles with a minor fraction from periglomerular shunt pathways. In the outer stripe of the outer medulla, juxtamedullary efferent arterioles give rise to DVR that coalesce with AVR to form vascular bundles which are the prominent feature of the inner stripe of the outer medulla. DVR on the periphery of vascular bundles perfuse the interbundle capillary plexus. DVR in the center of the bundles continue to perfuse the inner medulla. Vascular bundles disappear in the inner medulla and VR because dispersed with thin loops of Henle and collecting ducts. DVR have a continuous endothelium (inset) and are surrounded by contractile pericytes. In contrast, the AVR endothelium is highly fenestrated. As blood flows toward the papillary tip. NaCl and urea diffuse into DVR and out of AVR. Transmural gradients of NaCl and urea drive water efflux across the DVR wall via aquaporin‐1 water channels.

Reproduced with permission Ref. 86
Figure 12. Figure 12.

Aquaporin‐1 mediated osmotic water permeability (Pf) of DVR. (A) Pf was measured in glutaraldehyde fixed rat DVR by measuring the rate of transmural water flux generated by a bath > lumen NaCl gradient. Sequential measurements in controls were stable. In contrast, exposure to p‐chloromercuribenzene sulfonate (pCMBS, 2 mM), an agent that covalently binds to cysteine residues on aquaporin‐1, reduced Pf to nearly zero. From Ref. 217. (B) Pf measured in AQP1 null (−/−) or replete (+/+) murine DVR by transmural gradients of NaCl, urea, glucose or raffinose. When NaCl was the solute used to drive water flux, deletion of AQP1 reduced Pf from ∼1100μ/s to nearly zero. Water flux driven by raffinose (MW 564) was markedly reduced by AQP1 deletion (compare AQP1 −/− to +/+), but remained unexpectedly high. Similarly, glucose (MW 180) and urea (MW 60) gradients drove measurable water flux across AQP1 (−/−) DVR.

Reproduced with permission from Refs. 216,217
Figure 13. Figure 13.

Vascular and tubular urea recycling in the kidney. Short and long loops of Henle and vasa recta are shown. The UTA2 urea transporter is expressed in the thin descending limbs of Henle. The UTB urea transporter is expressed in DVR endothelium and red blood cells (not shown). Thin descending limbs of short looped nephrons become associated with vascular bundles so that urea recycling from thin limbs to DVR via UTA2 and UTB is accommodated. UTB is not expressed by the AVR endothelium but AVR are fenestrated and urea permeability is high. Thus urea in AVR plasma and RBCs readily recycles back to DVR in vascular bundles using UTB in the RBC membrane and DVR endothelium. The UTAl, A3 and A4 collecting duct urea transporters conduct urea from the lumen to the inner medullary interstitium. C. cortex: OS. outer stripe of outer medulla: IS. inner stripe of outer medulla: IM, inner medulla.

Reproduced with permission from Ref. 244
Figure 14. Figure 14.

Characteristic autoregulatory relationships between renal arterial pressure and renal blood flow, glomerular filtration rate, intrarenal pressures and segmental vascular resistances. PG is glomerular capillary pressure, PPT is proximal tubular pressure, PC is parttibular capillary pressure, and Pt is renal interstitial fluid pressure. Revised from Ref. 1.

Figure 15. Figure 15.

Autoregulatory responses in afferent arteriolar diameter and blood flow to changes in perfusion pressure in in vitro juxtamedullary nephron preparation with intact myogenic and TGF mechanisms and after elimination of TGF mechanism. Control (•) responses were observed with intact flow to macula densa, TGF was interrupted by transection of loops of Henle (papillectomy) (○), and residual myogenic mechanism was then blocked with 10μM diltiazem (▪). *p < 0.05 compared with respective basal value at 100mmHg. p < 0.01 compared with control condition at a similar pressure (Modified from Ref. 292).

Figure 16. Figure 16.

Absolute and relative afferent arteriolar dynamic responses to pressure step from 100 to 150mmHg at differing levels of TGF activity obtained in juxtamedullary nephron preparation. The responses with intact flow to the macula densa are shown as open circles (O). The responses during acetazolamide‐induced enhancement of TGF activity are shown as closed circles (•). The responses after cessation of distal flow imposed by transection of the loops of Henle are shown as closed triangles (▴). (Modified from Ref. 478 and unpublished observations).

Figure 17. Figure 17.

Tubuloglomerular feedback mechanism. Micropuncture procedures used to assess TGF responses (left) and representative relationships between distal nephron volume delivery and single‐nephron GFR responses. Effects of some agents that decrease sensitivity of TGF responses and agents that increase sensitivity of TGF responses are indicated. NOS. nitric oxide synthase; HETE, 20‐hydroxyeico‐satetraenoic acid; PGI2, prostacyclin, Modified from Ref, 473, (See page 16 in colour section at the back of the book)

Figure 18. Figure 18.

Overview of apical and basolateral membrane transport systems in macula densa cell. (Modified from Ref, 521).

Figure 19. Figure 19.

Release of ATP from macula densa cells. PCI2 cells loaded with fura 2 were positioned in close proximity to the basolateral aspect of macula densa cells with attached ascending limb. In response to increases in luminal NaCl concentration the increased fluorescence reflected release of ATP, ATP release was prevented by furosemide in lumen. Suramin in bath was used to block P2 receptors demonstrating specificity of the response, From Ref. 556, Illustrtion by E. Inscho, (See page 16 in colour section at the back of the book)

Figure 20. Figure 20.

(A) Relationships between luminal NaCl, TGF responses and release of ATP, NO and PGE2 from macula densa cells. Increases in luminal NaCl concentration lead to decreases in stop flow pressure (PSF) reflecting predominant afferent arteriolar constriction and leading to increases in ATP causing vasoconstriction partially compensated by increases in nitric oxide. In contrast. PGE2 release is greater at low NaCl concentrations and decreases with increases in luminal NaCl concentration. (B) Cartoon of macula densa cell signaling molecules and actions on adjoining extraglomerular mesangial cells and arteriolar vascular smooth muscle cells (provided by P. D. Bell).

Figure 21. Figure 21.

Effects of NOS inhibition with nitro‐L‐arginine on autoregulatory responses of renal blood flow (RBF), cortical blood flow (CBF), MBF, and glomerular filtration rate (GFR). Control responses are shown as open circles (○). NOS inhibition, shown as closed circles (•), reduced RBF, CBF and MBF without changing GFR, but autoregulatory capability remained intact. The responses to a NO donor, s‐nitroso‐n‐acetylpenicillamine (SNAP) are shown as open triangles and restored the flows back to control levels. From Ref. 680.

Figure 22. Figure 22.

Effects of L‐SMTC (nNOS inhibitor) on afferent arteriolar diameters of juxtamedullary nephron preparation in microns. Arteriolar responses to L‐SMTC were performed using different groups of the kidneys; that is control kidneys (open circle), papillectomized kidneys (open triangle), acetazolamide‐treated kidneys (closed circle), and papillectomized kidneys treated with acetazolamide (closed triangle). nNOS inhibition reduced both afferent and efferent arteriolar diameters and this response was enhanced when distal delivery was increased by acetazolamide. After interruption of distal delivery, the vasoconstriction in response to L‐SMTC was markedly reduced even during treatment with acetazolamide. From Ref. 746.

Figure 23. Figure 23.

(A) Influence of endogenous ET‐1 on renal blood flow in anesthetized Sprague‐Dawley rats. Effect of ET receptor antagonism on basal renal hemodynamics. Blocking ETA receptors increased RBF while blocking ETB receptors decreased RBF. Data from Ref. 735. (B) Acute renal vasoconstriction produced by exogenous ET‐1, ET‐1 + the ETA receptor antagonist BQ123, ET‐1 + the ETB receptor antagonist BQ‐788, and ETB receptor stimulation with the selective agonists S6C or IRL‐1620. All agents were either injected or infused into the renal artery of anesthetized Sprague‐Dawley rats. *p < 0.01 vs. ET‐1 response. Data from Ref. 833.

Figure 24. Figure 24.

Enzymatic cascade of the renin angiotensin system. (Modified from Navar et al., In: Molecular Mechanisms in Hypertension, edited by Re R, DiPette DJ, Schiffrin EL and Sowers JR. Taylor & Francis Group, 2006, p. 3–14).

Figure 25. Figure 25.

Renal vascular actions of AT 1 and AT2 receptors.

Figure 26. Figure 26.

Role of L and T‐type Ca2+ channels in Ang II‐mediated afferent and efferent arteriolar vasoconstriction. The vasoconstrictor effects of Ang II on afferent arterioles are blocked by both L‐type and T‐type Ca2+ channel blockers. In contrast, the efferent vasoconstrictor effects of Ang II are not blocked by L‐type Ca2+ channel blockers, but are blocked by T‐type Ca2+ channel blockers. Data compiled from Refs. 288,295.

Figure 27. Figure 27.

Arachidonic acid metabolism by COX, CYP and LOX pathways. COX enzymes generate PGH2 that can be metabolized by synthases to from TXA2, PGE2 and PGI2. CYP enzymes can generate HETEs and EETs. EETs can be hydrolyzed by SEH to form DHETEs. LOX enzymes generate HETEs, LTs, and LXs.

Figure 28. Figure 28.

Endothelial eicosanoids mediate renal microvascular dilation. Diagram of renal microvessel depicting bradykinin‐mediated endothelial generation of COX and CYP products that lead to relaxation of the adjacent vascular smooth muscle cells. (See page 17 in colour section at the back of the book)

Figure 29. Figure 29.

Renal microvascular eicosanoids mediate constriction. Diagram of renal microvessel depicting vasoconstrictor‐mediated generation of COX, LOX and CYP products that contribute to the vasoconstriction response. (See page 17 in colour section at the back of the book)

Figure 30. Figure 30.

Purinoceptors (P1 and P2 receptors) and postulated intracellular cascades in renal vascular smooth muscle cells. Mechanisms for activation of P1 and P2 purinoceptors by adenosine monophosphate (AMP), adenosine, adenosine triphosphate (ATP) and adenosine diphosphate (ADP), respectively as shown in arrows. Gp, GTP‐binding proteins; Gi, inhibitory G‐protein; Gs, stimulatory G‐protein; IP3, inositol‐1,4,5‐triphosphate: SR, sarcoplasmic reticulum; PLC, phospholipase C; VOC, voltage‐operated calcium channel; ROC, receptor‐operated calcium channel; cAMP, cyclic adenosine monphosphate; ECTO‐5′‐NT, ecto‐5′‐nucleotidase. Symbols (+), stimulation; (−), inhibition. (See page 17 in colour section at the back of the book)

Figure 31. Figure 31.

Afferent and efferent arteriolor responses to ATP in blood‐perfused rat juxtamedullary nephron preparation. The diameter of the afferent arteriole decreases rapidly within a few seconds in response to superfusion with ATP and then increases slightly but remains significantly smaller than control (black circles). The efferent arterioles do not respond even to high concentration of ATP (gray circles). Data taken from Ref. 674.

Figure 32. Figure 32.

Relationships between renal arterial pressure and renal vascular resistance (top left) and renal interstitial fluid ATP concentration (bottom left). Renal interstitial ATP concentrations decrease consistently in response to reductions in RAP. The changes in autoregulatory related changes in renal vascular resistance are positively correlated with the changes in renal interstitial fluid ATP concentrations. These data demonstrate an association between the autoregulatory adjustments in RVR and the interstitial ATP concentration. (From Ref. 1418). Renal interstitial concentrations of ATP were decreased consistently in response to reductions in RAP. Interestingly, changes in ATP concentration were highly correlated with the changes in the autoregulatory associated alterations in renal vascular resistance. Thus, these data demonstrated an association between the autoregulatory adjustments in RVR and the interstitial ATP concentration, and support the hypothesis that RIF ATP is involved in the mechanism of renal autoregulation.

Figure 33. Figure 33.

Effect of the P2X1 receptor blocker, NF279, on afferent arteriolar responses to increases in renal perfusion pressure (RPP). The diameter of the afferent arterioles was significantly decreased in response to increasing RPP during control period (black circles). NF 279 inhibited the pressure‐mediated afferent arteriolar response (grey circles). Each point represents mean vessel diameter measured at 12‐s intervals throughout each pressure period, *p < 0.05 vs. diameter at 100 mmHg. Data taken from Ref. 550.

Figure 34. Figure 34.

Effect of P2X blocker NF279 on the afferent arteriolar response to the A1 agonist N6‐cyclopentyl adenosine (CPA) from P2X1 knockout mouse kidney. Afferent arterioles constricted in response to administration of CPA in the absence (black circles) and presence of NF279 (grey circles). *p < 0.05 vs. diameter at 100 mmHg. Data taken from Ref. 550.

Figure 35. Figure 35.

Intrarenal hematocrit. 51Cr‐RBC's and 131I‐IgM (plasma volume marker) were simultaneously infused into the kidney. An equilibration period of either 1 or 10 min followed before ligation of the renal artery and vein. The distribution of RBC's and plasma were inferred by measuring activity of the isotopes in tissue and dividing their ratio by the systemic ratio. The hematocrit of inner medullary blood is lower than that either whole kidney, cortex or outer medulla. Data redrawn with permission from Ref. 1457. Rasmussen S.N. Intrarenal red cell and plasma volumes in the nondiuretic rat. Pflugers Archives 342: 61–72, 1973.

Figure 36. Figure 36.

Periglomerular shunts. The afferent arteriole (AA) of juxtamedullary glomeruli occasionally give rise to a side branch (AV) which forms descending vasa recta (VR). The efferent arteriole (EA) of the juxtamedullary glomerulus is visible (arrowhead), 16m sphere; bar, 100m. Thus, it is probable that some blood flow that reaches the renal medulla bypasses juxtamedullary glomeruli by shunts such as the one illustrated, but the overall fraction of medullary blood flow derived from shunts is probably small (i.e. < 10%).

Reproduced with permission from Ref. 28
Figure 37. Figure 37.

Renal autoregulation in different regions of volume expanded rats. An electromagnetic flow probe on the renal artery was used to measure total renal blood flow. Laser‐Doppler flow probes were inserted into the renal parenchyma at various depths to measure regional blood flow in the outer and inner medulla. (A) Total renal blood flow and cortical tissue blood flow show stability of blood flow over a range of perfusion pressure. In these volume expanded rats (see text), the small fraction of blood flow that reaches the outer or inner medulla is not autoregulated. (B) However, medullary blood flow is autoregulated in hydropenic rats. (C) Renal interstitial hydrostatic pressure (RIHP) is higher and increases to a greater degree with renal perfusion pressure in volume expanded animals. (D) When renal perfusion pressure is increased, urinary sodium excretion (UNaV) increases much more markedly in volume expanded than in hydropenic animals. From Refs 1451,1461.

Figure 38. Figure 38.

Pressure natriuresis and autoregulation of medullary blood flow in dog kidneys. In anesthetized dog kidneys, both outer and inner medullary blood flow exhibit highly efficient autoregulation in response to changes in renal arterial pressure. Pressure natriuresis is observed in the presence of medullary blood flow autoregulation. From Ref. 1469.

Figure 39. Figure 39.

Arginine vasopressin (AVP), inner medullary blood flow and urine osmolality. To control plasma vasopressin concentrations, decerebrate rats were infused with AVP. Increasing AVP concentration within the physiological range caused a reduction of inner medullary blood flow and an improvement in urinary concentration.

Reproduced with permission from Ref. 1497
Figure 40. Figure 40.

Adenosine vasodilates the renal medulla; effect of intrarenal infusion of adenosine receptor A1 or A2 subtype agonists. Cortical and medullary blood flow measurements were obtained using laser‐Doppler flowmetry with optical fibers placed on the kidney surface or inserted into the renal parenchyma, respectively. Left and right panels show the respective effects of either A1 or A2 receptor stimulation with subtype specific agonists. At time = 0, the Al agonist N6‐cyclopentyladenosine (left panels) or the A2 agonist CGS‐21680C (right panels) were transiently infused (1 min) into the renal parenchyma. The A1 agonist transiently reduced both cortical and medullary blood flow while the A2 agonist caused a predominant increase in blood flow to the medulla.

Reproduced with permission from Ref. 1634
Figure 41. Figure 41.

Effects of electrical stimulation of renal efferent nerves at 1–5 Hz on single nephron GFR. plasma flow, and resistance of preglomerular vessels and efferent arterioles. Data from Ref. 1710,1711.



Figure 1.

Microvascular anatomy of the kidney. Outer, middle and juxtamedullary nephrovascular units and outer medullary bundles are shown. In the left panel, nephrons are shown without the vascular structures with distal nephron segments in darker color. The center panel shows only the vascular structures with arterial vessels in red and venous vessels in blue. The right panel shows the combined nephro‐vascualr units. Representative efferent and peritubular capillary systems for only a few nephrons are shown to illustrate the different patterns. Peritubular capillary blood vessels in the cortex are derived from superficial and mid‐cortical nephrons, while juxtamedullary nephrons gave rise to descending vasa recta (DVR). DVR from bundle periphery supply the interbundle capillary plexus while those in the center supply blood to the inner medulla. See text for further detail. From Ref. 20. (See page 14 in colour section at the back of the book)



Figure 2.

Renal vasculature filled with red polymer and single juxtamedullary nephron filled with yellow polymer showing a long loop of Henle

(Courtesy of Daniel Casellas). (See page 14 in colour section at the back of the book)


Figure 3.

Microvascular structures of cortex. (A) depicts an isolated renal corpuscle (RC) with attached AA. The groove (asterisk) is the point of attachment to the macula densa. (B) is a vascular cast of a glomerular capillary system. (C) is a scanning EM of a single glomerular capillary revealing all cell types including the endothelium and endothelial fenestrations, the basement membrane and interdigitating podocyte foot processes. A mesangial cell is seen in intercapillary position. (D) shows a peritubular capillary of the outer cortex. Characteristically, the endothelial cells are flattened with many small fenestrae bridged by a diaphragm and an attenuated basement membrane (BM). From Ref. 2.



Figure 4.

Comparison of DVR and AVR wall characteristics. Electron micrograph of DVR and AVR in rat vascular bundles. DVR have a continuous endothelium and AVR are fenestrated. Note the minimal interstitium that exists between vessels in this region.

Reproduced with permission from Ref. 61


Figure 5.

Tubular vascular relationships and collecting duct clusters in the inner medulla. (A) A CD cluster (blue) is surrounded by DVR (red) and thin DLH (green). Neither DVR nor thin DLH are incorporated into the center of the cluster. (B) A CD cluster (blue) has both AVR (red) and thin ALH (green) in its surroundings and within the cluster. (C) Idealized crossectional depiction of a CD cluster (blue) in relationship to AVR (red) and thin ALH (green). AVR and thin ALH are diffusely distributed around and within the CD cluster. (D) Idealized cross sectional depiction of thin DLH (purple) and DVR (aqua) surrounding open regions in which CD clusters reside. From Ref. 62,78. See page 15 in colour section at the back of the book)



Figure 6.

Close relationship of ascending vasa recta and collecting ducts in the inner medulla. (A) Four AVR (red) surround a single inner medullary CD (blue). Successive panels show rotations as specified by the idealized depiction above each panel. (B) Transmission electron micrograph of an inner medullary CD surrounded by four AVR that abutt the abluminal surface (AVR lumens identified with asterisks). Bar = 1 micron. From Ref. 62. (See page 15 in colour section at the back of the book)



Figure 7.

In vitro tubuloglomerular feedback visualized using multiphoton laser‐scanning fluorescence image of the living isolated perfused cortical thick ascending limb (cTAL) with attached glomerulus (G) labeled with membrane staining dye TMA‐DPH. Note the macula densa (MD) cells

(Courtesy of P. D. Bell). (See page 15 in colour section at the back of the book)


Figure 8.

Multicolor labeling of the in vitro microperfused juxtaglomerular apparatus with attached glomerulus. Cell membranes of tubular epithelium (cortical thick ascending limb [cTAL] containing the macula densa), vascular endothelium of afferent arteriole (AA), and glomerulus (G) are labeled with R18 (red), renin granules with quinacrine (green), and cell nuclei with Hoechst 33342 (blue). From Ref. 94. (See page 15 in colour section at the back of the book)



Figure 9.

Depiction of the hydraulic and oncotic forces responsible for filtration of fluid of the glomerulus and reabsorption of fluid into the peritubular capillaries. Representative values for humans are provided. Insert shows representative profiles in the net hydrostatic pressure gradient and glomerular plasma colloid osmotic pressure (πg) along the length of the glomerular capillaries. Profile A represents continued filtration throughout glomerular capillaries while profile B represents achievement of filtration pressure equilibrium. Profile C represents the change in response to volume expansion and vasodilation. Revised from Ref. 1.



Figure 10.

Passage of macromolecules across glomerular capillaries. Representative sieving curves for several test molecules in the glomerular circulation. The curve representing neutral molecules is based on data obtained with use of polyvinylpyrrolidone and neutral dextran. The curves for anionic and cationic molecules are based on studies with charged dextrans. Also shown are the sieving values for neutral horseradish peroxidase (neutral HRP) and for albumin. The smaller molecules are shown to have a sieving coefficient of 1.0. Revised from Ref. 1.



Figure 11.

Movement of water NaCl and urea in the renal medullary microcirculation. The majority of blood flow to the medulla arises from juxtamedullary efferent arterioles with a minor fraction from periglomerular shunt pathways. In the outer stripe of the outer medulla, juxtamedullary efferent arterioles give rise to DVR that coalesce with AVR to form vascular bundles which are the prominent feature of the inner stripe of the outer medulla. DVR on the periphery of vascular bundles perfuse the interbundle capillary plexus. DVR in the center of the bundles continue to perfuse the inner medulla. Vascular bundles disappear in the inner medulla and VR because dispersed with thin loops of Henle and collecting ducts. DVR have a continuous endothelium (inset) and are surrounded by contractile pericytes. In contrast, the AVR endothelium is highly fenestrated. As blood flows toward the papillary tip. NaCl and urea diffuse into DVR and out of AVR. Transmural gradients of NaCl and urea drive water efflux across the DVR wall via aquaporin‐1 water channels.

Reproduced with permission Ref. 86


Figure 12.

Aquaporin‐1 mediated osmotic water permeability (Pf) of DVR. (A) Pf was measured in glutaraldehyde fixed rat DVR by measuring the rate of transmural water flux generated by a bath > lumen NaCl gradient. Sequential measurements in controls were stable. In contrast, exposure to p‐chloromercuribenzene sulfonate (pCMBS, 2 mM), an agent that covalently binds to cysteine residues on aquaporin‐1, reduced Pf to nearly zero. From Ref. 217. (B) Pf measured in AQP1 null (−/−) or replete (+/+) murine DVR by transmural gradients of NaCl, urea, glucose or raffinose. When NaCl was the solute used to drive water flux, deletion of AQP1 reduced Pf from ∼1100μ/s to nearly zero. Water flux driven by raffinose (MW 564) was markedly reduced by AQP1 deletion (compare AQP1 −/− to +/+), but remained unexpectedly high. Similarly, glucose (MW 180) and urea (MW 60) gradients drove measurable water flux across AQP1 (−/−) DVR.

Reproduced with permission from Refs. 216,217


Figure 13.

Vascular and tubular urea recycling in the kidney. Short and long loops of Henle and vasa recta are shown. The UTA2 urea transporter is expressed in the thin descending limbs of Henle. The UTB urea transporter is expressed in DVR endothelium and red blood cells (not shown). Thin descending limbs of short looped nephrons become associated with vascular bundles so that urea recycling from thin limbs to DVR via UTA2 and UTB is accommodated. UTB is not expressed by the AVR endothelium but AVR are fenestrated and urea permeability is high. Thus urea in AVR plasma and RBCs readily recycles back to DVR in vascular bundles using UTB in the RBC membrane and DVR endothelium. The UTAl, A3 and A4 collecting duct urea transporters conduct urea from the lumen to the inner medullary interstitium. C. cortex: OS. outer stripe of outer medulla: IS. inner stripe of outer medulla: IM, inner medulla.

Reproduced with permission from Ref. 244


Figure 14.

Characteristic autoregulatory relationships between renal arterial pressure and renal blood flow, glomerular filtration rate, intrarenal pressures and segmental vascular resistances. PG is glomerular capillary pressure, PPT is proximal tubular pressure, PC is parttibular capillary pressure, and Pt is renal interstitial fluid pressure. Revised from Ref. 1.



Figure 15.

Autoregulatory responses in afferent arteriolar diameter and blood flow to changes in perfusion pressure in in vitro juxtamedullary nephron preparation with intact myogenic and TGF mechanisms and after elimination of TGF mechanism. Control (•) responses were observed with intact flow to macula densa, TGF was interrupted by transection of loops of Henle (papillectomy) (○), and residual myogenic mechanism was then blocked with 10μM diltiazem (▪). *p < 0.05 compared with respective basal value at 100mmHg. p < 0.01 compared with control condition at a similar pressure (Modified from Ref. 292).



Figure 16.

Absolute and relative afferent arteriolar dynamic responses to pressure step from 100 to 150mmHg at differing levels of TGF activity obtained in juxtamedullary nephron preparation. The responses with intact flow to the macula densa are shown as open circles (O). The responses during acetazolamide‐induced enhancement of TGF activity are shown as closed circles (•). The responses after cessation of distal flow imposed by transection of the loops of Henle are shown as closed triangles (▴). (Modified from Ref. 478 and unpublished observations).



Figure 17.

Tubuloglomerular feedback mechanism. Micropuncture procedures used to assess TGF responses (left) and representative relationships between distal nephron volume delivery and single‐nephron GFR responses. Effects of some agents that decrease sensitivity of TGF responses and agents that increase sensitivity of TGF responses are indicated. NOS. nitric oxide synthase; HETE, 20‐hydroxyeico‐satetraenoic acid; PGI2, prostacyclin, Modified from Ref, 473, (See page 16 in colour section at the back of the book)



Figure 18.

Overview of apical and basolateral membrane transport systems in macula densa cell. (Modified from Ref, 521).



Figure 19.

Release of ATP from macula densa cells. PCI2 cells loaded with fura 2 were positioned in close proximity to the basolateral aspect of macula densa cells with attached ascending limb. In response to increases in luminal NaCl concentration the increased fluorescence reflected release of ATP, ATP release was prevented by furosemide in lumen. Suramin in bath was used to block P2 receptors demonstrating specificity of the response, From Ref. 556, Illustrtion by E. Inscho, (See page 16 in colour section at the back of the book)



Figure 20.

(A) Relationships between luminal NaCl, TGF responses and release of ATP, NO and PGE2 from macula densa cells. Increases in luminal NaCl concentration lead to decreases in stop flow pressure (PSF) reflecting predominant afferent arteriolar constriction and leading to increases in ATP causing vasoconstriction partially compensated by increases in nitric oxide. In contrast. PGE2 release is greater at low NaCl concentrations and decreases with increases in luminal NaCl concentration. (B) Cartoon of macula densa cell signaling molecules and actions on adjoining extraglomerular mesangial cells and arteriolar vascular smooth muscle cells (provided by P. D. Bell).



Figure 21.

Effects of NOS inhibition with nitro‐L‐arginine on autoregulatory responses of renal blood flow (RBF), cortical blood flow (CBF), MBF, and glomerular filtration rate (GFR). Control responses are shown as open circles (○). NOS inhibition, shown as closed circles (•), reduced RBF, CBF and MBF without changing GFR, but autoregulatory capability remained intact. The responses to a NO donor, s‐nitroso‐n‐acetylpenicillamine (SNAP) are shown as open triangles and restored the flows back to control levels. From Ref. 680.



Figure 22.

Effects of L‐SMTC (nNOS inhibitor) on afferent arteriolar diameters of juxtamedullary nephron preparation in microns. Arteriolar responses to L‐SMTC were performed using different groups of the kidneys; that is control kidneys (open circle), papillectomized kidneys (open triangle), acetazolamide‐treated kidneys (closed circle), and papillectomized kidneys treated with acetazolamide (closed triangle). nNOS inhibition reduced both afferent and efferent arteriolar diameters and this response was enhanced when distal delivery was increased by acetazolamide. After interruption of distal delivery, the vasoconstriction in response to L‐SMTC was markedly reduced even during treatment with acetazolamide. From Ref. 746.



Figure 23.

(A) Influence of endogenous ET‐1 on renal blood flow in anesthetized Sprague‐Dawley rats. Effect of ET receptor antagonism on basal renal hemodynamics. Blocking ETA receptors increased RBF while blocking ETB receptors decreased RBF. Data from Ref. 735. (B) Acute renal vasoconstriction produced by exogenous ET‐1, ET‐1 + the ETA receptor antagonist BQ123, ET‐1 + the ETB receptor antagonist BQ‐788, and ETB receptor stimulation with the selective agonists S6C or IRL‐1620. All agents were either injected or infused into the renal artery of anesthetized Sprague‐Dawley rats. *p < 0.01 vs. ET‐1 response. Data from Ref. 833.



Figure 24.

Enzymatic cascade of the renin angiotensin system. (Modified from Navar et al., In: Molecular Mechanisms in Hypertension, edited by Re R, DiPette DJ, Schiffrin EL and Sowers JR. Taylor & Francis Group, 2006, p. 3–14).



Figure 25.

Renal vascular actions of AT 1 and AT2 receptors.



Figure 26.

Role of L and T‐type Ca2+ channels in Ang II‐mediated afferent and efferent arteriolar vasoconstriction. The vasoconstrictor effects of Ang II on afferent arterioles are blocked by both L‐type and T‐type Ca2+ channel blockers. In contrast, the efferent vasoconstrictor effects of Ang II are not blocked by L‐type Ca2+ channel blockers, but are blocked by T‐type Ca2+ channel blockers. Data compiled from Refs. 288,295.



Figure 27.

Arachidonic acid metabolism by COX, CYP and LOX pathways. COX enzymes generate PGH2 that can be metabolized by synthases to from TXA2, PGE2 and PGI2. CYP enzymes can generate HETEs and EETs. EETs can be hydrolyzed by SEH to form DHETEs. LOX enzymes generate HETEs, LTs, and LXs.



Figure 28.

Endothelial eicosanoids mediate renal microvascular dilation. Diagram of renal microvessel depicting bradykinin‐mediated endothelial generation of COX and CYP products that lead to relaxation of the adjacent vascular smooth muscle cells. (See page 17 in colour section at the back of the book)



Figure 29.

Renal microvascular eicosanoids mediate constriction. Diagram of renal microvessel depicting vasoconstrictor‐mediated generation of COX, LOX and CYP products that contribute to the vasoconstriction response. (See page 17 in colour section at the back of the book)



Figure 30.

Purinoceptors (P1 and P2 receptors) and postulated intracellular cascades in renal vascular smooth muscle cells. Mechanisms for activation of P1 and P2 purinoceptors by adenosine monophosphate (AMP), adenosine, adenosine triphosphate (ATP) and adenosine diphosphate (ADP), respectively as shown in arrows. Gp, GTP‐binding proteins; Gi, inhibitory G‐protein; Gs, stimulatory G‐protein; IP3, inositol‐1,4,5‐triphosphate: SR, sarcoplasmic reticulum; PLC, phospholipase C; VOC, voltage‐operated calcium channel; ROC, receptor‐operated calcium channel; cAMP, cyclic adenosine monphosphate; ECTO‐5′‐NT, ecto‐5′‐nucleotidase. Symbols (+), stimulation; (−), inhibition. (See page 17 in colour section at the back of the book)



Figure 31.

Afferent and efferent arteriolor responses to ATP in blood‐perfused rat juxtamedullary nephron preparation. The diameter of the afferent arteriole decreases rapidly within a few seconds in response to superfusion with ATP and then increases slightly but remains significantly smaller than control (black circles). The efferent arterioles do not respond even to high concentration of ATP (gray circles). Data taken from Ref. 674.



Figure 32.

Relationships between renal arterial pressure and renal vascular resistance (top left) and renal interstitial fluid ATP concentration (bottom left). Renal interstitial ATP concentrations decrease consistently in response to reductions in RAP. The changes in autoregulatory related changes in renal vascular resistance are positively correlated with the changes in renal interstitial fluid ATP concentrations. These data demonstrate an association between the autoregulatory adjustments in RVR and the interstitial ATP concentration. (From Ref. 1418). Renal interstitial concentrations of ATP were decreased consistently in response to reductions in RAP. Interestingly, changes in ATP concentration were highly correlated with the changes in the autoregulatory associated alterations in renal vascular resistance. Thus, these data demonstrated an association between the autoregulatory adjustments in RVR and the interstitial ATP concentration, and support the hypothesis that RIF ATP is involved in the mechanism of renal autoregulation.



Figure 33.

Effect of the P2X1 receptor blocker, NF279, on afferent arteriolar responses to increases in renal perfusion pressure (RPP). The diameter of the afferent arterioles was significantly decreased in response to increasing RPP during control period (black circles). NF 279 inhibited the pressure‐mediated afferent arteriolar response (grey circles). Each point represents mean vessel diameter measured at 12‐s intervals throughout each pressure period, *p < 0.05 vs. diameter at 100 mmHg. Data taken from Ref. 550.



Figure 34.

Effect of P2X blocker NF279 on the afferent arteriolar response to the A1 agonist N6‐cyclopentyl adenosine (CPA) from P2X1 knockout mouse kidney. Afferent arterioles constricted in response to administration of CPA in the absence (black circles) and presence of NF279 (grey circles). *p < 0.05 vs. diameter at 100 mmHg. Data taken from Ref. 550.



Figure 35.

Intrarenal hematocrit. 51Cr‐RBC's and 131I‐IgM (plasma volume marker) were simultaneously infused into the kidney. An equilibration period of either 1 or 10 min followed before ligation of the renal artery and vein. The distribution of RBC's and plasma were inferred by measuring activity of the isotopes in tissue and dividing their ratio by the systemic ratio. The hematocrit of inner medullary blood is lower than that either whole kidney, cortex or outer medulla. Data redrawn with permission from Ref. 1457. Rasmussen S.N. Intrarenal red cell and plasma volumes in the nondiuretic rat. Pflugers Archives 342: 61–72, 1973.



Figure 36.

Periglomerular shunts. The afferent arteriole (AA) of juxtamedullary glomeruli occasionally give rise to a side branch (AV) which forms descending vasa recta (VR). The efferent arteriole (EA) of the juxtamedullary glomerulus is visible (arrowhead), 16m sphere; bar, 100m. Thus, it is probable that some blood flow that reaches the renal medulla bypasses juxtamedullary glomeruli by shunts such as the one illustrated, but the overall fraction of medullary blood flow derived from shunts is probably small (i.e. < 10%).

Reproduced with permission from Ref. 28


Figure 37.

Renal autoregulation in different regions of volume expanded rats. An electromagnetic flow probe on the renal artery was used to measure total renal blood flow. Laser‐Doppler flow probes were inserted into the renal parenchyma at various depths to measure regional blood flow in the outer and inner medulla. (A) Total renal blood flow and cortical tissue blood flow show stability of blood flow over a range of perfusion pressure. In these volume expanded rats (see text), the small fraction of blood flow that reaches the outer or inner medulla is not autoregulated. (B) However, medullary blood flow is autoregulated in hydropenic rats. (C) Renal interstitial hydrostatic pressure (RIHP) is higher and increases to a greater degree with renal perfusion pressure in volume expanded animals. (D) When renal perfusion pressure is increased, urinary sodium excretion (UNaV) increases much more markedly in volume expanded than in hydropenic animals. From Refs 1451,1461.



Figure 38.

Pressure natriuresis and autoregulation of medullary blood flow in dog kidneys. In anesthetized dog kidneys, both outer and inner medullary blood flow exhibit highly efficient autoregulation in response to changes in renal arterial pressure. Pressure natriuresis is observed in the presence of medullary blood flow autoregulation. From Ref. 1469.



Figure 39.

Arginine vasopressin (AVP), inner medullary blood flow and urine osmolality. To control plasma vasopressin concentrations, decerebrate rats were infused with AVP. Increasing AVP concentration within the physiological range caused a reduction of inner medullary blood flow and an improvement in urinary concentration.

Reproduced with permission from Ref. 1497


Figure 40.

Adenosine vasodilates the renal medulla; effect of intrarenal infusion of adenosine receptor A1 or A2 subtype agonists. Cortical and medullary blood flow measurements were obtained using laser‐Doppler flowmetry with optical fibers placed on the kidney surface or inserted into the renal parenchyma, respectively. Left and right panels show the respective effects of either A1 or A2 receptor stimulation with subtype specific agonists. At time = 0, the Al agonist N6‐cyclopentyladenosine (left panels) or the A2 agonist CGS‐21680C (right panels) were transiently infused (1 min) into the renal parenchyma. The A1 agonist transiently reduced both cortical and medullary blood flow while the A2 agonist caused a predominant increase in blood flow to the medulla.

Reproduced with permission from Ref. 1634


Figure 41.

Effects of electrical stimulation of renal efferent nerves at 1–5 Hz on single nephron GFR. plasma flow, and resistance of preglomerular vessels and efferent arterioles. Data from Ref. 1710,1711.

References
 1. Arendshorst WJ and Navar LG. Renal circulation and glomerular hemodynamics. In: Diseases of the Kidney and Urinary Trct, ed. Schrier RW. Philadelphia: Lippincoti Williams & Wilkins, 2007, pp. 54–95.
 2. Navar LG, Evan AP and Rosivall L. Microcirculation of the kidneys. In: The Physiology and Pharmacology of the Microcirculation, ed. Mortillaro N. New York: Academic Press, 1983, pp. 397–488.
 3. Navar LG, Inscho EW, Majid SA, Imig JD, Harrison‐Bernard LM and Mitchell KD, Paracrine regulation of the renal microcirculation. Physiol Rev 76: 425–536, 1996.
 4. Pallone TL, Robertson CR and Jamison RL, Renal medullary microcirculation. Physiol Rev 70: 885–920, 1990.
 5. Hura C and Stein JH Renal blood flow. In: Handbook of Physiology, Section 8: Renal Physiology, ed, Windhager EE, New York: Oxford University Press, 1992, pp. 1129–1184.
 6. Brezis M, Agmon Y and Epstein FH, Determinants of intrarenal oxygenation, I. Effects of diuretics. Am J Physiol 267: F1059–F1062, 1994.
 7. Brezis M, Heyman SN and Epstein FH, Determinants of intrarenal oxygenation II. Hemodynamic effects. Am J Physiol Renal Physiol 267: F1063–F1068, 1994.
 8. Leong CL, Anderson WP, O'Connor PM and Evans RG, Evidence that renal arterial‐venous oxygen shunting contributes to dynamic regulation of renal oxygenation. Am J Physiol Renal Physiol 292: F1726–F1733, 2007.
 9. Lübbers DW and Baumgartl H. Heterogeneities and profiles of oxygen pressure in brain and kidney as examples of the pO2 distribution in the living tissue. Kidney Int 51: 372–380, 1997.
 10. Welch WJ, Baumgartl H, Lubbers D and Wilcox CS. Nephron pO2 and renal oxygen usage in the hypertensive rat kidney. Kidney Int 59: 230–237, 2001.
 11. O'Connor PM, Kett MM, Anderson WP and Evans RG. Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow. Am J Physiol Renal Physiol 290: F688–F694, 2006.
 12. Navar LG, Bell PD and Evan AP The regulation of glomerular filtration rate in mammalian kidneys. In: Physiology of Membrane Disorders, eds Andreoli TE, Hoffman J, Fanestil D and Shultz SG, New York: Plenum Medical Book Co., 1986, pp. 637–667.
 13. Schnermann J and Levine DZ, Paracrine factors in tubuloglomerular feedback: adenosine, ATP, and nitric oxide. Annu Rev Physiol 65: 501–529, 2003.
 14. Dworkin LD and Brenner BM Biophysical basis of glomerular filtration. In: The Kidney‐Physiology and Pathophysiology, eds Seldin DW and Giebisch G, Philadelphia: Lippincott Williams & Wilkins, 2000, pp. 749–769.
 15. Pallone TL and Cao C. Renal cortical and medullary microcirculations: structure and function. In: The Kidney: Physiology and Pathophysiology, eds Alpern RJ and Hebert SC. San Diego: Elsevier Inc., 2007, pp. 627–670.
 16. Hebert SC, Reilly RF and Kriz W. Structural‐functional relationships in the kidney. In: Diseases of the kidney and urinary tract, ed. Schrier RW. Philadelphia: Lippincott Williams & Wilkins, 2001, pp. 3–57.
 17. MacCallum DB. The bearing of degenerating glomeruli on the problem of the vascular supply of the mammalion kidney. Am J Anatomy 65: 69–103, 1939.
 18. Fourman J and Moffat DB. The Blood Vessels of the Kidney. Oxford. UK: Blackwell Scientific, 1971.
 19. Kriz W. Structural organization of the renal medulla: comparative and functional aspects. Am J Physiol Regul Integr Comp Physiol 241: R3–R16, 1981.
 20. Beeuwkes R, III and Bonventre JV, Tubular organization and vascular‐tubular relations in the dog kidney. Am J Physiol 229: 695–713, 1975.
 21. Gatlone VH, Luft FC and Evan AP, Renal afferent and efferent arterioles of the rabbit. Am J Physiol 247: F219–F228, 1984.
 22. Gomez RA, Chevalier RL, Everett AD, Elwood JP, Peach MJ, Lynch KR and Carey RM. Recruitment of renin gene‐expressing cells in adult rat kidney. Am J Physiol Renal Physiol 259: F660–F665, 1990.
 23. Evan AP and Dail WG, Jr. Efferent arterioles in the cortex of the rat kidney. Anat Rec 187: 135–145, 1977.
 24. Beeuwkes R, III. The vascular organization of the kidney. Ann Rev Physiol 42: 531–542, 1980.
 25. Evans RG, Eppel GA, Anderson WP and Denton KM. Mechanisms underlying the differential control of blood flow in the renal medulla and cortex. J Hypertens 22: 1439–1451, 2004.
 26. Koester HL, Locke JC and Swann HG. Effluent constrictions in the renal vascular system. Tex Rep Biol Med 13: 251–271, 1955.
 27. Navar LG. Minimal preglomerular resistance and calculation of normal glomerular pressure. Am J Physiol 219: 1658–1664, 1970.
 28. Casellas D and Mimran A. Shunting in renal microvasculature of the rat: a scanning electron microscopic study of corrosion casts, Anat Rec 201: 237–248, 1981.
 29. Kanwar YS and Venkatachalam MA. Ultrastructure of glomerulus and juxtaglomerular apparatus. In: Handbook of Physiology, Section 8, Renal Physiology, ed. Windhager EE. New York: Oxford University Press, 1992, pp. 3–20.
 30. Rosivall L. Juxtaglomerular apparatus: morphological and functional correlations. In: Nephrology, Hypertension, Dialysis, Transplantation, Hungarian, eds Andreoli TE, Ritz E and Rosivall L. Budapest: Kidney Foundation, 2006, pp. 45–54.
 31. Rosivall L, Mirzahosseini S, Toma I, Sipos A and Peti‐Peterdi J. Fluid flow in the juxtaglomerular interstitium visualized in vivo. Am J Physiol Renal Physiol 291: F1241–F1247, 2006.
 32. Rosivall L and Taugner R. The morphological basis of fluid balance in the interstitium of the juxtaglomerular apparatus. Cell Tissue Res 243: 525–533, 1986.
 33. Jorgensen F and Bentzon MW. The ultastructure of the normal human glomerulus. Thickness of glomerular basement membrane. Lab Invest 18: 42–48, 1968.
 34. Kanwar YS and Farquhar MG. Presence of heparan sulfate in the glomerular basement membrane. Proc Natl Acad Sci USA 76: 1303–1307, 1979.
 35. Mohos SC and Skoza L. Histochemical demonstration and localization of sialoproteins in the glomerulus. Exp Mol Pathol 12: 316–323, 1970.
 36. Mohos SC and Skoza L. Variations in the sialic acid concentration of glomerular basement membrane preparations obtained by ultrasonic treatment. J Celt Biol 45: 450–455, 1970.
 37. Maddox DA, Deen WM and Brenner BM. Glomerular filtration. In: Handbook of Physiology, Section 8: Renal Physiology, ed, Windhager E. New York: Oxford University Press, 1992, pp. 1:545–1:638.
 38. Ohlson M, Haraldsson B and Haraldss S. Glomerular size and charge selectivity in the rat as revealed by FITC‐Ficoll and albumin. Am J Physiol Renal Physiol 279: F84–F91, 2000.
 39. Ojteg G, Nygren K and Wolgast M. Permeability of renal capillaries. II. Transport of neutral and charged protein molecular probes. Acta Physiol Scand 129: 287–294, 1987.
 40. Russo LM, Sandoval RM, McKee M, Osicka TM, Collins AB, Brown D, Molitoris BA and Comper WD. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Intl 71: 504–513, 2007.
 41. Deen WM, Lazzara MJ and Myers BD. Structural determinants of glomerular permeability. Am J Physiol Renal Physiol 281: F579–F596, 2001.
 42. Kawachi H, Koike H, Kurihara H, Sakai T and Shimizu F. Cloning of rat homologue of podocin: expression in proteinuric states and in developing glomeruli. J Am Soc Nephrol 14: 46–56, 2003.
 43. Ardaillou R, Chansel D, Chatziantoniou C and Dussaule JC. Mesangial AT1 receptors: expression, signaling, and regulation. J Am Soc Nephrol 10 (Suppl 11): S40–S46, 1999.
 44. Rivera I, Zhang S, Fuller BS, Edwards B, Seki T, Wang MH, Marrero MB and Inscho EW, P2 receptor regulation of [Ca2+]i in cultured mouse mesangial cells. Am J Physiol Renal Physiol 292: F1380–F1389, 2007.
 45. Evan AP and Hay DA. Ultrastructure of the developing vascular system in the puppy kidney. Anat Rec 199: 481–489, 1981.
 46. Albertine KH and O'Morchoe CC. Distribution and density of the canine renal cortical lymphatic system. Kidney Int 16: 470–480, 1979.
 47. McIntosh GH and Morris B. The lymphatics of the kidney and the formation of renal lymph. J Physiol 214: 365–376, 1971.
 48. Nordquist RE, Bell RD, Sinclair RJ and Keyl MJ. The distribution and ultrastructural morphology of lymphatic vessels in the canine renal cortex. Lymphology 6: 13–19, 1973.
 49. Rojo‐Ortega JM, Yeghiayan E and Genest J. Lymphatic capillaries in the renal cortex of the rat. An electron microscopic study. Lab Invest 29: 336–341, 1973.
 50. Lemley KV and Kriz W. Anatomy of the renal interstitium. Kidney Int 39: 370–381, 1991.
 51. Faarup P, Saelan H and Ryo G. Correlation between tubules and capillaries and size of interstitial space in the functioning rat kidney. Influence of different types of preparation. Acta Pathol Microbiol Scand [A] 79: 607–616, 1971.
 52. Temm C and Dominguez JH. Microcirculation: nexus of comorbidities in diabetes. Am J Physiol Renal Physiol 293: F486–F493, 2007.
 53. Michel CC. Renal medullary microcirculation: architecture and exchange. Microcirculation 2: 125–139, 1995.
 54. Pallone TL, Cao C and Zhang Z. Inhibition of K+ conductance in descending vasa recta pericytes by ANG II, Am J Physiol Renal Physiol 287: F1213–F1222, 2004.
 55. Pannabecker TL, Abbott DE and Dantzler WH. Three‐dimensional functional reconstruction of inner medullary thin limbs of Henle's loop. Am J Physiol Renal Physiol 286: F38–F45, 2004.
 56. Jamison RL and Kriz W Urinary Concentrating Mechanism: Structure and Function. New York, Oxford: Oxford University Press, 1982.
 57. Shepro D and Morel NML. Pericyte physiology. FASEB J 7: 1031–1038, 1993.
 58. Park F, Mattson DL, Roberts LA and Cowley AW, Jr. Evidence for the presence of smooth muscle alpha‐actin within pericytes of the renal medulla. Am J Physiol 273: R1742–R1748, 1997.
 59. Mink D, Schiller A, Kriz W and Taugner R. Interendothelial junctions in kidney vessels. Cell Tissue Res 236: 567–576, 1984.
 60. Schwartz MM. Karnovsky MJ and Vehkatachalam MA, Ultrastructural differences between rat inner medullary descending and ascending vasa recta. Lab Invest 35: 161–170, 1976.
 61. Pallone TL, Work J, Myers RL and Jamison RL. Transport of sodium and urea in outer medullary descending vasa recta. J Clin Invest 93: 212–222, 1994.
 62. Pannabecker TL and Dantzler WH. Three‐dimensional architecture of inner medullary vasa recta. Am J Physiol Renal Physiol 290: F1355–F1366, 2006.
 63. Bankir L and de Rouffignac C. Urinary concentrating ability: insights from comparative anatomy. Am J Physiol 249: R643–R666, 1985.
 64. Lemley KV and Kriz W. Cycles and separations: the histotopography of the urinary concentrating process. Kidney Int 31: 538–548, 1987.
 65. Bankir L, Kaissling B, de Rouffignac C and Kriz W. The vascular organization of the kidney of Psammomys obesus. Anat Embryol (Berl) 155: 149–160, 1979.
 66. Holliger C, Lemley KV, Schmitt SL, Thomas FC, Robertson CR and Jamison RL, Direct determination of vasa recta blood flow in the rat renal papilla. Circ Res 53: 401–413, 1983.
 67. Marsh DJ and Segel LA. Analysis of countercurrent diffusion exchange in blood vessels of the renal medulla. Am J Physiol 221: 817–828, 1971.
 68. Knepper MA, Danielson RA, Saidel GM and Post RS. Quantitative analysis of renal medullary anatomy in rats and rabbits. Kidney Int 12: 313–323, 1977.
 69. Muirhead EE, Germain G, Leach BE, Pitcock JA, Stephenson P, Brooks B, Brosius WL, Daniels EG and Hinman JW, Production of renomedullary prostaglandins by renomedullary interstitial cells grown in tissue culture. Circ Res 31 (Suppl‐72), 1972.
 70. Takahashi‐Iwanaga H. The three‐dimensional cytoarchitecture of the interstitial tissue in the rat kidney. Cell Tissue Res 264: 269–281, 1991.
 71. Hughes AK, Barry WH and Kohan DE. Identification of a contractile function for renal medullary interstitial cells. J Clin Invest 96: 411–416, 1995.
 72. Thomas CJ, Woods RL, Evans RG, Alcorn D, Christy IJ and Anderson WP. Evidence for a renomedullary vasodepressor hormone. Clin Exp Pharmacol Physiol 23: 777–785, 1996.
 73. Zhuo JL, Renomedullary interstitial cells: a target for endocrine and paracrine actions of vasoactive peptides in the renal medulla. Clin Exp Pharmacol Physiol 27: 465–473, 2000.
 74. Zusman RM and Keiser HR. Prostaglandin biosynthesis by rabbit renomedullary interstitial cells in tissue culture, Stimulation by angiotensin II, bradykinin and arginine vasopressin. J Clin Invest 60: 215–222, 1977.
 75. Zhai XY, Birn H, Jensen KB, Thomsen JS, Andreasen A and Christensen EI. Digital three‐dimensional reconstruction and ultrastructure of the mouse proximal tubule. J Am Soc Nephrol 14: 611–619, 2003.
 76. Zhai XY, Thomsen JS, Birn H, Kristoffersen IB, Andreasen A and Christensen EI. Three‐dimensional reconstruction of the mouse nephron. J Am Soc Nephrol 17: 77–88, 2006.
 77. Pannabecker TL and Dantzler WH. Three‐dimensional lateral and vertical relationships of inner medullary loops of Henle and collecting ducts. Am J Physiol Renal Physiol 287: F767–F774, 2004.
 78. Pannabecker TL, Dahlmann A, Brokl OH and Dantzler WH. Mixed descending‐ and ascending‐type thin limbs of Henle's loop in mammalian renal inner medulla. Am J Physiol Renal Physiol 278: F202–F208, 2000.
 79. Promeneur D, Bankir L, Hu MC and Trinh‐Trang‐Tan MM. Renal tubular and vascular urea transporters: influence of antidiuretic hormone on messenger RNA expression in Brattleboro rats. J Am Soc Nephrol. 1359‐1366, 1998.
 80. MacPhee PJ and Michel CC. Fluid uptake from the renal medulla into the ascending vasa recta in anaesthetized rats. J Physiol 487: 169–183, 1995.
 81. MacPhee PJ and Michel CC, Subatmospheric closing pressures in individual microvessels of rats and frogs. J Physiol 484 (Pt 1): 183–187, 1995.
 82. Layton AT and Layton HE. A region‐based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base‐case results. Am J Physiol Renal Physiol 289: FI346–F1366, 2005.
 83. Layton AT and Layton HE. A region‐based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity. Am J Physiol Renal Physiol 289: F1367–F1381, 2005.
 84. Layton AT, Pannabecker TL, Dantzler WH and Layton HE. Two modes for concentrating urine in rat inner medulla. Am J Physiol Renal Physiol 287: F816–F839, 2004.
 85. Kuhn W and Ryffel R. Herstellung konzentrierter Losungen aus verdunnten durch blosse Membranwirkung. (Ein Modellversuch zur Function der Niere). Hoppe‐Seylers Z Physiol Chem 276: 145–178, 1942.
 86. Pallone TL, Turner MR, Edwards A and Jamison RL. Countercurrent exchange in the renal medulla. Am J Physiol Regul Integr Comp Physiol 284: R1153–R1175, 2003.
 87. Barajas L, Salido EC, Liu L and Powers KV. The juxtaglomerular apparatus: A morphologic perspective. In: Hypertension: Pathophysiology, Diagnosis, and Management, eds Laragh JH and Brenner BM. New York: Raven Press, Ltd., 1995, pp. 1335–1347.
 88. Bankir L, Bouby N and Trinh‐Trang‐Tan MM. The role of the kidney in the maintenance of water balance. In: Bailliere's Clinical Endocrinology and Metabolism, Water and Salt Homeostasis in Health and Disease, ed. Baylis PH. London: Bailliere, 1989, pp. 249–311.
 89. Davenport JR and Yoder BK. An incredible decade for the primary cilium: a look at a once‐forgotten organelle. Am J Physiol Renal Physiol 289: F1159–F1169, 2005.
 90. Miyamori I, Itoh Y, Matsubara T, Koshida H and Takeda R. Systemic and regional effects of endothelin in rabbits: effects of endothelin antibody. Clin Exp Pharmacol Physiol 17: 691–696, 1990.
 91. Siroky BJ, Ferguson WB, Fuson AL, Xie Y, Fintha A, Komlosi P, Yoder BK, Schwiebert EM, Guay‐Woodford LM and Bell PD. Loss of primary cilia results in deregulated and unabated apical calcium entry in ARPKD collecting duct cells. Am J Physiol Renal Physiol 290: F1320–F1328, 2006.
 92. Navar LG and Bell PD. Romancing the macula densa at UAB. Kidney Int Suppl 66: S34–S40, 2004.
 93. Bell PD, Lapointe JY and Peti‐Peterdi J. Macula densa cell signaling. Annu Rev Physiol 65: 481–500, 2003.
 94. Peti‐Peterdi J. Multiphoton imaging of renal tissues in vitro. Am J Physiol Renal Physiol 288: F1079–F1083, 2005.
 95. Barajas L and Muller J. The innervation of the juxtaglomerular apparatus and surrounding tubules: a quantitative analysis by serial section electron microscopy. J Ultrastruct Res 43: 107–132, 1973.
 96. Baylis C, Engels K and Beierwaltes WH. β‐adrenoceptor‐stimulated renin release is blunted in old rats. J Am Soc Nephrol 9: 1318–1320, 1998.
 97. Briggs JP and Schnermann J. Control of renin release and glomerular vascular tone by the juxtaglomerular apparatus. In: Hypertension: Pathophysiology, Diagnosis, and Management, eds Laragh JH and Brenner BM, New York: Raven Press, ltd. 1995, pp. 1359–1385.
 98. DiBona GF and Kopp UC, Neural control of renal function. Physiol Rev 77: 75–197, 1997.
 99. Hackenthal E, Paul M, Ganten D and Taugner R, Morphology physiology, and molecular biology of renin secretion. Physiol Rev 70: 1067–1116, 1990.
 100. Dorup J, Morsing P and Rasch R. Tubule‐tubule and tubule‐arteriole contacts in rat kidney distal nephrons. Lab Investig 67: 761–769, 1992.
 101. Ren Y, Garvin JL, Liu R and Carretero OA, Crosstalk between the connecting tubule and the afferent arteriole regulates renal microcirculation. Kidney Int 71: 1116–1121, 2007.
 102. Ren Y, Garvin JL, Liu R and Carretero OA. Possible mechanism of efferent arteriole (Ef‐Art) tubuloglomerular feedback. Kidney Int 71: 861–866, 2007.
 103. Skott O and Briggs JP. Direct demonstration of macula densa‐mediated renin secretion. Science 237: 1618–1620, 1987.
 104. Barajas L. Innervation of the renal cortex. Fed Proc 37: 1192–1201, 1978.
 105. Denton KM, Luff SE, Shweta A and Anderson WP. Differential neural control of glomerular ultrafiltration. Clin Exp Pharmacol Physiol 31: 380–386, 2004.
 106. Bischoff A and Michel MC. Renal effects of neuropeptide Y. Pflugers Arch 435: 443–453, 1998.
 107. Bohmann C, von KI and Rump LC. P2‐receptor modulation of noradrenergic neurotransmission in rat kidney. Br J Pharmacol 121: 1255–1262, 1997.
 108. Schwartz DD and Malik KU. Renal periarterial nerve stimulation‐induced vasoconstriction at low frequencies is primarily due to release of a purinergic transmitter in the rat. J Pharmacol Exp Ther 250: 764–771, 1989.
 109. Vonend O, Stegbauer J, Sojka J, Habbel S, Quack I, Robaye B, Boeynaems JM and Rump LC. Noradrenaline and extracellular nucleotide cotransmission involves activation of vasoconstrictive P2X(1,3)‐ and P2Y6‐like receptors in mouse perfused kidney. Br J Pharmacol 145: 66–74, 2005.
 110. Vonend O, Habbel S, Stegbauer J, Roth J, Hein L and Rump LC. Alpha(2A)‐adrenoceptors regulate sympathetic transmitter release in mice kidneys. Br J Pharmacol 150: 121–127, 2007.
 111. Salomonsson M, Brannstrom K and Arendshorst WJ. alpha(1)‐Adrenoceptor subtypes in rat renal resistance vessels: in vivo and in vitro studies. Am J Physiol Renal Physiol 278: F138–F147, 2000.
 112. Salomonsson M, Oker M, Kim S, Hua, Faber JE and Arendshorst WJ. α‐Adrenoceptor receptor subtypes in the preglomerular vasculature: PCR and radioliganding binding studies. Am J Physiol Renal Physiol 281: F172–F178, 2001.
 113. Dinerstein RJ, Vannice J, Henderson RC, Roth LJ, Goldberg LI and Hoffmann PC. Histofluorescence techniques provide evidence for dopamine‐containing neuronal elements in canine kidney. Science 205: 497–499, 1979.
 114. Landis EM and Pappenheimer JR. Exchange of substances through the capillary wall. Handbook of Physiology, Circulation. Washington: Am. Physiol. Soc., 1963, pp. 962–1034.
 115. Kedem O and Katchalsky A. Thermodynamic analysis of the permeability of biological membranes to non‐electrolytes. Biochim Biophys Acta 27: 229–246, 1958.
 116. Arendshorst WJ and Gottschalk CW. Glomerular ultrafiltration dynamics: historical perspective. Am J Physiol 248: F163–F174, 1985.
 117. Brenner BM, Deen WM and Robertson CR. Determinants of glomerular filtration rate. Annu Rev Physiol 38: 11–19, 1976.
 118. Oken DE. An analysis of glomerular dynamics in rat, dog. and man. Kidney Int 22: 136–145, 1982.
 119. Navar PD and Navar LG. Relationship between colloid osmotic pressure and plasma protein concentration in the dog. Am J Physiol 233: H295–H298, 1977.
 120. Lowenstein J, Beranbaum ER, Chasis H and Baldwin DS. Intrarenal pressure and exaggerated natriuresis in essential hypertension. Clin Sci 38: 359–374, 1970.
 121. Willassen Y and Ofstad J. Renal sodium excretion and the peritubular capillary physical factors in essential hypertension. Hypertension 2: 771–779, 1980.
 122. Blantz RC. Segmental renal vascular resistance single nephron. Annu Rev Physiol 42: 573–588, 1980.
 123. Baylis C and Brenner BM. The physiologic determinants of glomerular ultrafiltration. Rev Physiol Biochem Pharmacol 80: 1–46, 1978.
 124. Carmines PK, Perry MD, Hazelrig JB and Navar LG. Effects of pre‐glomerular and postglomerular vascular resistance alterations on filtration fraction. Kidney Int 31 (Suppl 20): S‐229–S‐232, 1987.
 125. Curry FR. Microvascular solute and water transport. Microcirculation 12: 17–31, 2005.
 126. Lambert PP, Du BR, Decoodt P, Gassee JP and Verniory A. Determination of glomerular intracapillary and transcapillary pressure gradients from sieving data. II, A physiological study in the normal dog. Pflugers Arch 359: 1–22, 1975.
 127. Taylor AE and Granger DN. Exchange of macromolecules across the microcirculation. In: Microcirculation, eds Renkin E and Michel C. Baltimore: American Physiological Society, 1984, p. 467.
 128. Whiteside C and Silverman M. Determination of glomerular permselectivity to neutral dextrans in the dog. Am J Physiol 245: F485–F495, 1983.
 129. Larson M, Hermansson K and Wolgast M. Hydraulic permeability of the peritubular and glomerular capillary membranes in the rat kidney. Acta Physiol Scand 117: 251–261, 1983.
 130. Ohlson M, Sorensson J and Haraldsson B. A gel‐membrane model of glomerular charge and size selectivity in series. Am J Physiol Renal Physiol 280: F396–F405, 2001.
 131. Renkin EM. Capillary transport of macromolecules: pores and other endothelial pathways. J Appl Physiol 58: 315–325, 1985.
 132. Wolgast M and Wahlstrom H. Characteristics of the glomerular capillary membrane of the rat kidney as a hydrated gel. 1. Hypothetical structure. Acta Physiol Scand 158: 213–224, 1996.
 133. Blouch K, Deen WM, Fauvel JP, Bialek J, Derby G and Myers BD. Molecular configuration and glomerular size selectivity in healthy and nephrotic humans. Am J Physiol Renal Physiol 273: F430–F437, 1997.
 134. Deen WM. What determines glomerular capillary permeability? J Clin Invest 114: 1412–1414, 2004.
 135. Lemley KV, Blouch K, Abdullah I, Boothroyd DB, Bennett PH, Myers BD and Nelson RG. Glomerular permselectivity at the onset of nephropathy in type 2 diabetes mellitus. J Am Soc Nephrol 11: 2095–2105, 2000.
 136. Bohrer MP, Baylis C, Humes HD, Glassock RJ, Robertson CR and Brenner BM. Permselectivity of the glomerular capillary wall. Facilitated filtration of circulating polycations. J Clin Invest 61: 72–78, 1978.
 137. Chang RL, Deen WM, Robertson CR and Brenner BM. Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions. Kidney Int 8: 212–218, 1975.
 138. Rennke HG, Patel Y and Venkatachalam MA. Glomerular filtration of proteins: clearance of anionic, neutral, and cationic horseradish peroxidase in the rat. Kidney Int 13: 278–288, 1978.
 139. Bohrer MP, Deen WM, Robertson CR, Troy JL and Brenner BM. Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall. J Gen Physiol 74: 583–593, 1979.
 140. Rennke HG and Venkatachalam MA. Glomerular permeability of macromolecules. Effect of molecular configuration on the fractional clearance of uncharged dextran and neutral horseradish peroxidase in the rat. J Clin Invest 63: 713–717, 1979.
 141. Russo LM, Bakris GL and Comper WD. Renal handling of albumin: a critical review of basic concepts and perspective. Am J Kidney Dis 39: 899–919, 2002.
 142. Jeansson M and Haraldsson B. Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am J Physiol Renal Physiol 290: F111–F116, 2006.
 143. Roberts M, Lindheimer MD and Davison JM. Altered glomerular permselectivity to neutral dextrans and heteroporous membrane modeling in human pregnancy. Am J Physiol Renal Physiol 270: F338–F343, 1996.
 144. Venturoli D and Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am J Physiol Renal Physiol 288: F605–F613, 2005.
 145. Baylis C, Deen WM, Myers BD and Brenner BM. Effects of some vasodilator drugs on transcapillary fluid exchange in renal cortex. Am J Physiol 230: 1148–1158, 1976.
 146. Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P and Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82: 205–244, 2002.
 147. Ott CE, Cuche J‐L and Knox FG. Measurement of renal interstitial fluid pressure with polyethylene matrix capsules. J Appl Physiol 38: 937–941, 1975.
 148. Ott CE and Knox FG. Tissue pressures and fluid dynamics in the kidney. Federation Proceedings 35: 1872–1875, 1976.
 149. Ott CE, Navar LG and Guyton AC. Pressures in static and dynamic states from capsules implanted in the kidney. Am J Physiol 221: 394–400, 1971.
 150. Wolgast M. Renal interstitium and lymphatics. The Kidney: Physiology and Pathophysiology. New York: Raven Press: Seldin DW and Giebisch G, 1985, pp. 497–517.
 151. Aukland K, Bogusky RT and Renkin EM. Renal cortical interstitium and fluid absorption by peritubular capillaries. Am J Physiol‐Renal Physiol 266: F175–F184, 1994.
 152. Granger JP and Sohaug MJ. Renal interstitial hydrostatic pressure during verapamil‐induced natriuresis. Am J Physiol Regul Integr Comp Physiol 262: R432–R436, 1992.
 153. Michel C. Exchange of fluid and solutes across microvascular walls. In: The Kidney: Physiology and Pathophysiology. eds Seldin DW and Giebisch G. New York: Raven Press, 2000, p. 61.
 154. Whiteside C and Silverman M. Postglomerular capillary solute flux restricted by shape and charge in the dog. Am J Physiol Renal Physiol 253: F500–F512, 1987.
 155. Gonzalez‐Campoy JM, Long C, Roberts D, Berndt TJ, Romero JC and Knox FG. Renal interstitial hydrostatic pressure and PGE2 in pressure natriuresis. Am J Physiol Renal Physiol 260: F643–F649, 1991.
 156. Garcia NH, Ramsey CR and Knox FG. Understanding the role of paracellular transport in the proximal tubule. News Physiol Sci 13: 38–43 1998.
 157. Weinstein AM. Mathematical models of renal fluid and electrolyte transport: acknowledging our uncertainty. Am J Physiol Renal Physiol 284: F871–F884, 2003.
 158. Weinstein AM and Windhager EE. The paracellular shunt of proximal tubule. J Membr Biol 184: 241–245, 2001.
 159. Balkovetz DF. Claudins at the gate: determinants of renal epithelial tight junction paracellular permeability. Am J Physiol Renal Physiol 290: F572–F579, 2006.
 160. Van Itallie CM and Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol 68: 403–429, 2006.
 161. Cowley AW, Jr., Roman RJ and Krieger JE. Pathways linking renal excretion and arterial pressure with vascular structure and function. Clin Exp Pharmacol Physiol 18: 21–27, 1991.
 162. Roman RJ. Pressure‐diuresis in volume‐expanded rats: tubular rea‐bsorption in superficial and deep nephrons. Hypertension 12: 177–183, 1988.
 163. LeBrie SJ. Renal peritubular capillary permeability to macromol‐ecules. Am J Physiol 213: 1225–1232, 1967.
 164. Hargens AR, Tucker BJ and Blantz RC. Renal lymph protein in the rat. Am J Physiol 233: F269–F273, 1977.
 165. Wilcox CS and Dzau VJ. Effect of captopril on the release of the components of the renin‐angiotensin system into plasma and lymph. J Am Soc Nephrol 2: 1241–1250, 1992.
 166. Oliver J. Nephrons and kidneys. Harper & Row, 1968, 47–50.
 167. Morton MJ, Hutchinson K, Mathieson PW, Witherden IR, Saleem MA and Hunter M. Human podocytes possess a stretch‐sensitive, Ca2+‐activated K+ channel: potential implications for the control of glomerular filtration. J Am Soc Nephrol 15: 2981–2987, 2004.
 168. Sharma R, Lovell HB, Wiegmann TB and Savin VJ. Vasoactive substances induce cytoskeletal changes in cultured rat glomerular epithelial cells. J Am Soc Nephrol 3: 1131–1138, 1992.
 169. Arendshorst WJ. Altered reactivity of tubuloglomerular feedback. Ann Rev Physiol 49: 295–317, 1987.
 170. Beach RE and Good DW. Effects of adenosine on ion transport in rat medullary thick ascending limb. Am J Physiol 263: F482–F487, 1992.
 171. Drumond MC, Kristal B, Myers BD and Deen WM. Structural basis for reduced glomerular filtration capacity in nephrotic humans. J Clin Invest 94: 1187–1195, 1994.
 172. Neumann KH, Kellner C, Kuhn K, Stolte H and Schurek HJ. Age‐dependent thickening of glomerular basement membrane has no major effect on glomerular hydraulic conductivity. Nephrol Dial Transplant 19: 805–811, 2004.
 173. Arendshorst WJ, Brannstrom K and Ruan X. Actions of angiotensin II on the renal microvasculature. J Am Soc Nephrol 10 (Suppl 11): S149–S161, 1999.
 174. Baylis C and Brenner BM. Modulation by prostaglandin synthesis inhibitors of the action of exogenous angiotensin II on glomerular ultrafiltration in the rat. Ore Res 43: 889–898, 1978.
 175. Blantz RC, Konnen KS and Tucker BJ. Angiotensin II effects upon the glomerular microcirculation and ultrafiltration coefficient of the rat. J Clin Invest 57: 419–434, 1976.
 176. Hintze TH. Significance of renal vasodilation after administration of atrial natriuretic factor in the conscious dog. Hypertension 12: 143–151, 1988.
 177. Ichikawa I and Brenner BM. Evidence for glomerular actions of ADH and dibutyryl cyclic AMP in the rat. Am J Physiol 233: F102–F1I7, 1977.
 178. Ichikawa I, Miele JF and Brenner BM. Reversal of renal cortical actions of angiotensin II by verapamil and manganese. Kidney Int 16: 137–147, 1979.
 179. Kon V and Badr KF. Biological actions and pathophysiologic significance of endothelin in the kidney. Kidney Int 40: 1–12, 1991.
 180. Myers BD, Deen WM and Brenner BM. Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat. Circ Res 37: 101–110, 1975.
 181. Schor N, Ichikawa I and Brenner BM. Mechanisms of action of various hormones and vasoactive substances on glomerular ultrafiltration in the rat. Kidney Int 20: 442–451, 1981.
 182. Steiner RW, Tucker BJ and Blantz RC. Glomerular hemodynamics in rats with chronic sodium depletion, Effect of saralasin. J Clin Invest 64: 503–512, 1979.
 183. Schor N, Ichikawa I and Brenner BM, Glomerular adaptations to chronic dietary salt restriction or excess. Am J Physiol 238: F428–F436, 1980.
 184. Heller J, Kramer HJ and Horacek V. The effect of kinin and prostaglandin inhibitors on the renal response to angiotensin‐converting enzyme inhibition: a micropuncture study in the dog. Pflügers Arch 427: 219–224, 1994.
 185. Navar LG, Jirakulsomchok D, Bell PD, Thomas CE and Huang WC. Influence of converting enzyme inhibition on renal hemodynamics and glomerular dynamics in sodium‐restricted dogs. Hypertension 4: 58–68, 1982.
 186. Yared A, Albrightson‐Winslow C, Griswold D, Takahashi K, Fogo A and Badr KF. Functional significance of leukotriene B4 in normal and glomerulonephritic kidneys. J Am Soc Nephrol 2: 45–56, 1991.
 187. Baylis C, Ichikawa I, Willis WT, Wilson CB and Brenner BM. Dynamics of glomerular ultrafiltration, IX, Effects of plasma protein concentration. Am J Physiol 232: F58–F71, 1977.
 188. Blantz RC, Rector FC, Jr. and Seldin DW. Effect of hyperoncotic albumin expansion upon glomerular ultrafiltration in the rat. Kidney Int 6: 209–221, 1974.
 189. Thomas CE, Bell PD and Navar LG. Glomerular filtration dynamics in the dog during elevated plasma colloid osmotic pressure. Kidney Int 15: 502–512, 1979.
 190. Andrews PM and Coffey AK. Cytoplasmic contractile elements in glomerular cells. Fed Proc 42: 3046–3052, 1983.
 191. Kriz W, Hackenthal E, Nobiling R, Sakai T and Elger M. A role for podocytes to counteract capillary wall distension. Kidney Int 45: 369–376, 1994.
 192. Ardaillou R. Biology of glomerular cells in culture. Cell Biol Toxicol 12: 257–261, 1996.
 193. Dworkin LD, Ichikawa I and Brenner BM, Hormonal modulation of glomerular function. Am J Physiol 244: F95–F104, 1983.
 194. Mene P, Simonson MS and Dunn MJ, Physiology of the mesangial cell. Physiol Rev 69: 1347–1424, 1989.
 195. Stockand JD and Sansom SC. Glomerular mesangial cells: electro‐physiology and regulation of contraction. Physiol Rev 78: 723–744, 1998.
 196. Ma R, Pluznick JL and Sansom SC. Ion channels in mesangial cells: function, malfunction, or fiction. Physiology (Bethesda) 20: 102–111, 2005.
 197. Scharschmidt LA and Dunn MJ. Prostaglandin synthesis by rat glomerular mesangial cells in culture. J Clin Invest 71: 1756–1764, 1983.
 198. Scharschmidt LA, Lianos E and Dunn MJ. Arachidonate metabolites and the control of glomerular function. Federation Proc 42: 3058–3063, 1983.
 199. Elger M, Drenckhahn D, Nobiling R, Mundel P and Kriz W. Cultured rat mesangial cells contain smooth muscle alpha‐actin not found in vivo. Am J Pathol 142: 497–509, 1993.
 200. Nakai K, Ito C, Yumura W, Horita S, Nihei H, Sugino N and Nagai R. Difference of myosin heavy chain expression between mesangial cells and vascular smooth muscles. Nippon Jinzo Gakkai Shi 37: 428–435, 1995.
 201. Lshino T, Kobayashi R, Wakui H, Fukushima Y, Nakamoto Y and Miura AB. Biochemical characterization of contractile proteins of rat cultured mesangial cells. Kidney Int 39: 1118–1124, 1991.
 202. Kriz W, Elger M, Lemley K and Sakai T. Structure of the glomerular mesangium: a biomechanical interpretation. Kidney Int Suppt 30: S2–S9, 1990.
 203. Kriz W, Elger M, Mundel P and Lemley KV. Structure‐stabilizing forces in the glomerular tuft. J Am Soc Nephrol 5: 1731–1739, 1995.
 204. Pagtalunan ME, Rasch R, Rennke HG and Meyer TW. Morphometric analysis of effects of angiotensin II on glomerular structure in rats. Am J Physiol Renal Physiol 268: F82–F88, 1995.
 205. Denton KM, Fennessy PA, Alcorn D and Anderson WP. Morphometirc analysis of the actions of angiotensin II on renal arterioles and glomeruli. Am J Physiol Renal Physiol 262: F367–F372, 1992.
 206. Anderson WP, Alcorn D, Gilchrist AI, Whiting JM and Ryan GB. Glomerular actions of ANG II during reduction of renal artery pressure: a morphometric analysis. Am J Physiol 256: F1021–F1026, 1989.
 207. Black MJ, Briscoe TA, Dunstan HJ, Bertram JF and Johnston CI. Effect of angiotensin‐converting enzyme inhibition on renal filtration surface area in hypertensive rats. Kidney Int 60: 1837–1843, 2001.
 208. Dunstan HJ, Briscoe TA, Bertram JF, Johnston CI and Black MJ. Angiotensin‐converting enzyme inhibition in adult hypertensive rats: a stereological study of renal filtration surface area. Clin Exp Pharmacol Physiol 30: 72–76, 2003.
 209. Iordache BE, Imberti O, Foglieni C, Remuzzi G, Bertani T and Remuzzi A. Effects of angiotensin‐converting enzyme inhibition on glomerular capillary wall ultrastructure in MWF/Ztm rats. J Am Soc Nephrol 5: 1378–1384, 1994.
 210. Ballermann BJ. Glomerular endothelial cell differentiation. Kidney Int 67: 1668–1671, 2005.
 211. Satchell SC, Anderson KL and Mathieson PW. Angiopoietin I and vascular endothelial growth factor modulate human glomerular endothelial cell barrier properties. J Am Soc Nephrol 15: 566–574, 2004.
 212. Rostgaard J and Qvortrup K. Sieve plugs in fenestrae of glomerular capillaries—site of the filtration barrier? Cells Tissues Organs 170: 132–138, 2002.
 213. Bedford JJ, Leader JP and Walker RJ. Aquaporin expression in normal human kidney and in renal disease. J Am Soc Nephrol 14: 2581–2587, 2003.
 214. Maunsbach AB, Marples D, Chin E, Ning G, Bondy C, Agre P and Nielsen S. Aquaporin‐1 water channel expression in human kidney. J Am Soc Nephrol 8: 1–14, 1997.
 215. Pallone TL. Vasoconstriction of outer medullary vasa recta by angiotensin II is modulated by prostaglandin E2. Am J Physiol Renal Physiol 266: F850–F857, 1994.
 216. Pallone TL, Edwards A, Ma T, Silldorff EP and Verkman AS. Requirement of aquaporin‐1 for NaCl‐driven water transport across descending vasa recta. J Clin Invest 105: 215–222, 2000.
 217. Pallone TL, Kishore BK, Nielsen S, Agre P and Knepper MA. Evidence that aquaporin‐1 mediates NaCl‐induced water flux across descending vasa recta. Am J Physiol Renal Physiol 272: F587–F596, 1997.
 218. Pallone TL and Turner MR. Molecular sieving of small solutes by outer medullary descending vasa recta. Am J Physiol Renal Physiol 272: F579–F586, 1997.
 219. Thomas SR. Cycles and separations in a model of the renal medulla. Am J Physiol 275: F671–F690, 1998.
 220. Johnston PA, Battilana CA, Lacy FB and Jamison RL. Evidence for a concentration gradient favoring outward movement of sodium from the thin loop of Henle. J Clin Invest 59: 234–240, 1977.
 221. Gottschalk CW and Mylle M. Micropuncture study of the mammalian urinary concentrating mechansm: Evidence for the countercur‐rent hypothesis. Am J Physiol 196: 927–936, 1959.
 222. Marsh DJ and Azen SP. Mechanism of NaCl reabsorption by hamster thin ascending limbs of Henle's loop. Am J Physiol 228: 71–79, 1975.
 223. Sanjana VM, Johnston PA, Deen WM, Robertson CR, Brenner BM and Jamison RL. Hydraulic and oncotic pressure measurements in inner medulla of mammalian kidney. Am J Physiol 228: 1921–1926, 1975.
 224. Sanjana VM, Johnston PA, Robertson CR and Jamison RL. An examination of transcapillary water flux in renal inner medulla. Am J Physiol 231: 313–318, 1976.
 225. Zimmerhackl B, Robertson CR and Jamison RL. Fluid uptake in the renal papilla by vasa recta estimated by two methods simultaneously. Am J Physiol 248: F347–F353, 1985.
 226. Goransson A, Sjoquist M and Ulfendahl HR. Superficial and juxtamedullary nephron function during converting enzyme inhibition. Am J Physiol 251: F25–F33, 1986.
 227. Pallone TL, Yagil Y and Jamison RL. Effect of small‐solute gradients on transcapillary fluid movement in renal inner medulla. Am J Physiol 257: F547–F553, 1989.
 228. Pallone TL, Work J and Jamison RL. Resistance of descending vasa recta to the transport of water. Am J Physiol Renal Physiol 259: F688–F697, 1990.
 229. Pallone TL. Extravascular protein in the renal medulla: analysis by two methods. Am J Physiol Regul Integr Comp Physiol 266: R1429–R1436, 1994.
 230. Mendez RE, Dunn BR, Troy JL and Brenner BM. Atrial natriuretic peptide and furosemide effects on hydraulic pressure in the renal papilla. Kidney Int 34: 36–42, 1988.
 231. Edwards A and Pallone TL. A multiunit model of solute and water removal by inner medullary vasa recta. Am J Physiol 274: H1202–H1210, 1998.
 232. Thurau K, Sugiura T and Lilienfield LS. Micropuncture of renal vasa recta in hydropenic hamsters. Circ Res 8: 383, 1960.
 233. Pallone TL, Morgenthaler TL and Deen WM. Analysis of microvascular water and solute exchanges in the renal medulla. Am J Physiol 247: F303–F315, 1984.
 234. Ullrich KJ, Pehlin G and Espinar‐lafuente M. [Water and electrolyte flow in the vascular counterflow system of the renal medulla, With a theoretical contribution by R, Schloegl: “Salt transport by non‐loaded porous membranes”]. Pftugers Arch Gesamte Physiol Menschen Tiere 273: 562–572, 1961.
 235. Garcia‐Estan J and Roman RJ. Role of renal interstitial hydrostatic pressure in the pressure diuresis response. Am J Physiol Renal Physiol 256: F63–F70, 1989.
 236. Haas JA, Khraibi AA, Perrella MA and Knox FG. Role of renal interstitial hydrostatic pressure in natriuresis of systemic nitric oxide inhibition. Am J Physiol Renal Physiol 164: F411–F414, 1993.
 237. Majid DSA, Said KE, Omoro SA and Navar LG, Nitric oxide dependency of arterial pressure‐induced changes in renal interstitial hydrostatic pressure in dogs. Circ Res 88: 347–351, 2001.
 238. Pallone TL. Effect of sodium chloride gradients on water flux in rat descending vasa recta. J Clin Invest 87: 12–19, 1991.
 239. Nielsen S, Pallone T, Smith BL, Christensen EI, Agre P and Maunsbach AB. Aquaporin‐1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am J Physiol 268: F1023–F1037, 1995.
 240. Nielsen S, Smith BL, Christensen EI and Agre P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA 90: 7275–7279, 1993.
 241. Edwards A and Pallone TL. Facilitated transport in vasa recta: theoretical effects on solute exchange in the medullary microcircualtion. Am J Physiol Renal Physiol 272: F505–F514, 1997.
 242. Turner MR and Pallone TL. Hydraulic and diffusional permeabilities of isolated outer medullary descending vasa recta from the rat. Am J Physiol 272: H392–H400, 1997.
 243. Pallone TL, Transport of sodium chloride and water in rat ascending vasa recta. Am J Physiol Renal Physiol 261: F519–F525, 1991.
 244. Yang B and Bankir L. Urea and urine concentrating ability: new insights from studies in mice. Am J Physiol Renal Physiol 288: F881–F896, 2005.
 245. Yang B and Verkman AS. Urea transporter UT3 functions as an efficient water channel. Direct evidence for a common water/urea pathway. J Biol Chem 273: 9369–9372, 1998.
 246. Pallone TL, Nielsen S, Silldorff EP and Yang S. Diffusive transport of solute in the rat medullary microcirculation. Am J Physiol Renal Physiol 269: F55–F63, 1995.
 247. Morgan T and Berliner RW. Permeability of the loop of Henle, vasa recta, collecting duct to water, urea, sodium. Am J Physiol 215: 108–115, 1968.
 248. Pallone TL. Characterization of the urea transporter in outer medullary descending vasa recta. Am J Physiol 267: R260–R267, 1994.
 249. Promeneur D, Rousselet G, Bankir L, Bailly P, Cartron JP, Ripoche P and Trinh‐Trang‐Tan MM. Evidence for distinct vascular and tubular urea transporters in the rat kidney. J Am Soc Nephrol 1: 852–860, 1996.
 250. Bankir L, Chen K and Yang B. Lack of UT‐B in vasa recta and red blood cells prevents urea‐induced improvement of urinary concentrating ability. Am J Physiol Renal Physiol 286: F144–F151, 2004.
 251. Shayakul C, Knepper MA, Smith CP, DiGiovanni SR and Hediger MA. Segmental localization of urea transporter mRNAs in rat kidney. Am J Physiol 272: F654–F660, 1997.
 252. Shayakul C, Steel A and Hediger MA. Molecular cloning and characterization of the vasopressin‐regulated urea transporter of rat kidney collecting ducts. J Clin Invest 98: 2580–2587, 1996.
 253. Xu Y, Olives B, Bailly P, Fischer E, Ripoche P, Ronco P, Cartron JP and Rondeau E. Endothelial cells of the kidney vasa recta express the urea transporter HUT 11. Kidney Int 51: 138–146, 1997.
 254. Yang B, Bankir L, Gillespie A, Epstein CJ and Verkman AS. Urea‐selective concentrating defect in transgenic mice lacking urea transporter UT‐B. J Biol Chem 277: 10633–10637, 2002.
 255. Kaissling B, de Rouffignac C, Barrett JM and Kriz W. The structural organization of the kidney of the desert rodent Psammomys obesus. Anat Embryol (Berl) 148: 121–143, 1975.
 256. Macey RI and Yousef LW. Osmotic stability of red cells in renal circulation requires rapid urea transport. Am J Physiol 254: C669–C674, 1988.
 257. Sands JM. Renal urea transporters. Curr Opin Nephrol Hypertens 13: 525–532, 2004.
 258. Trinh‐Trang‐Tan MM, Lasbennes F, Gane P, Roudier N, Ripoche P, Cartron JP and Bailly P. UT‐B1 proteins in rat: tissue distribution and regulation by antidiuretic hormone in kidney. Am J Physiol Renal Physiol 283: F912–F922, 2002.
 259. Kim D, Klein JD, Racine S, Murrell BP and Sands JM. Urea may regulate urea transporter protein abundance during osmotic diuresis. Am J Physiol Renal Physiol 288: F188–F197, 2005.
 260. Jung JY, Madsen KM, Han KH, Yang CW, Knepper MA, Sands JM and Kim J. Expression of urea transporters in potassium‐depleted mouse kidney. Am J Physiol Renal Physiol 285: F1210–F1224, 2003.
 261. Klein JD, Gunn RB, Roberts BR and Sands JM. Down‐regulation of urea transporters in the renal inner medulla of lithium‐fed rats. Kidney lnt 61: 995–1002, 2002.
 262. Li C, Klein JD, Wang W, Knepper MA, Nielsen S, Sands JM and Frokiaer J. Altered expression of urea transporters in response to ureteral obstruction. Am J Physiol Renal Physiol 286: F1154–F1162, 2004.
 263. Lim SW, Li C, Sun BK, Han KH, Kim WY, Oh YW, Lee JU, Kador PF, Knepper MA, Sands JM, Kim J and Yang CW. Long‐term treatment with cyclosporine decreases aquaporins and urea transporters in the rat kidney. Am J Physiol Renal Physiol 287: F139–F151, 2004.
 264. Pallone TL. Resistance of ascending vasa recta to transport of water. Am J Physiol Renal Physiol 260: F303–F310, 1991.
 265. Pallone TL, Molecular sieving of albumin by the ascending vasa recta wall. J Clin Invest 90: 30–34, 1992.
 266. Koepsell H, Nicholson WA, Kriz W and Hohling HJ. Measurements of exponential gradients of sodium and chlorine in the rat kidney medulla using the electron microprobe. Pflugers Arch 350: 167–184, 1974.
 267. Wang W and Michel CC. Effects of anastomoses on solute tran‐scapillary exchange in countercurrent systems. Microcirculation 4: 381–390, 1997.
 268. Wang W, Parker KH and Michel CC. Theoretical studies of steady‐state transcapillary exchange in countercurrent systems. Microcirculation 3: 301–311, 1996.
 269. Chou CL and Knepper MA. In vitro perfusion of chinchilla thin limb segments: segmentation and osmotic water permeability. Am J Physiol 263: F417–F426, 1992.
 270. Chou CL, Nielsen S and Knepper MA. Structural‐functional correlation in chinchilla long loop of Henle thin limbs: a novel papillary subsegment. Am J Physiol 265: F863–F874, 1993.
 271. Edwards A, Delong MJ and Pallone TL. Interstitial water and solute recovery by inner medullary vasa recta. Am J Physiol Renal Physiol 278: F257–F269, 2000.
 272. Bell RD, Keyl MJ, Shrader FR, Jones EW and Henry LP. Renal lymphatics: the internal distribution. Nephron 5: 454–463, 1968.
 273. Kriz W and Dieterich HJ. [The lymphatic system of the kidney in some mammals. Light and electron microscopic investigations]. Z Anat Entwicklungsgesch 131: 111–147, 1970.
 274. Carone FA, Everett BA, Blondeel NJ and Stolarczyk J. Renal localization of albumin and its function in the concentrating mechanism. Am J Physiol 212: 387–393, 1967.
 275. Lassen NA, Longley JB and Lilienfield LS. Concentration of albumin in renal papilla. Science 128: 720–721, 1958.
 276. Lilienfield LS, Maganzini HC and Bauer MH, Blood flow in the renal medulla. Circ Res 9: 614–617, 1961.
 277. Moffat DB. Extravascular protein in the renal medulla. Q J Exp Physiol Cogn Med Sci 54: 60–67, 1969.
 278. Pomerantz RM, Slotkoff LM and Lilienfield LS. Histochemical and microanatomical differences between renal cortical and medullary interstitium. In: Progress in Pyelonephritis, ed. Kass EH. Philadelphia: F. A. Davis Co., 1965, p. 434.
 279. Slotkoff LM and Lilienfield LS. Extravascular renal albumin. Am J Physiol 212: 400–406, 1967.
 280. Wilde WS and Vorburger C. Albumin multiplier in kidney vasa recta analyzed by microspectrophotometry of T‐1824. Am J Physiol 213: 1233–1243, 1967.
 281. Venkatachalam MA and Karnovsky MJ. Extravascular protein in the kidney. An ultrastructural study of its relation to renal peritubular capillary permeability using protein tracers. Lab Invest 27: 435–444, 1972.
 282. Shimamura T and Morrison AB. Vascular permeability of the renal medullary vessels in the mouse and rat. Am J Pathol 71: 155–163, 1973.
 283. Feng MG, Li M and Navar LG. T‐type calcium channels in the regulation of afferent and efferent arterioles in rats. Am J Physiol Renal Physiol 286: F331–F337, 2004.
 284. Hansen PB, Jensen BL, Andreasen D and Skott O. Differential expression of T‐ and L‐type voltage‐dependent calcium channels in renal resistance vessels. Circ Res 89: 630–638, 2001.
 285. Perez‐Reyes E. Molecular physiology of low‐voltage‐activated t‐type calcium channels. Physiol Rev 83: 117–161, 2003.
 286. Gordienko DV, Clausen C and Goligorsky MS. Ionic currents and endothelin signaling in smooth muscle cells from rat renal resistance arteries. Am J Physiol 266: F325–F341, 1994.
 287. Hall DA, Carmines PK and Sansom SC. Dihydropyridine‐sensitive Ca(2+) channels in human glomerular mesangial cells. AJP‐Renal Physiol 278: F97–F103, 2000,
 288. Carmines PK and Navar LG. Disparate effects of Ca channel blockade on afferent and efferent arteriolar responses to ANG II. Am J Physiol Renal Physiol 256: F1015–F1020, 1989.
 289. Loutzenhiser R, Hayashi K and Epstein M. Divergent effects of KCl‐induced depolarization on afferent and efferent arterioles. Am J Physiol Renal Physiol 257: F561–F564, 1989.
 290. Mitchell KD and Navar LG. Tubuloglomerular feedback responses during peritubular infusions of calcium channel blockers. Am J Physiol Renal Physiol 258: F537–F544, 1990.
 291. Navar LG, Champion WJ and Thomas CE, Effects of calcium channel blockade on renal vascular resistance responses to changes in perfusion pressure and angiotensin‐converting enzyme inhibition in dogs. Circ Res 58: 874–881, 1986.
 292. Takenaka T, Harrison‐Bernard LM, Inscho EW. Carmines PK and Navar LG, Autoregulation of afferent arteriolar blood flow in jux‐tamedullary nephrons. Am J Physiol Renal Physiol 267: F879–F887, 1994.
 293. Carmines PK, Mitchell KD and Navar LG. Effects of calcium antagonists on renal hemodynamics and glomerular function. Kidney Int 41 (Suppl 36): S‐43–S‐48, 1992.
 294. Conger JD and Falk SA, KC1 and angiotensin responses in isolated rat renal arterioles: effects of diltiazem and low‐calcium medium. Am J Physiol Renal Physiol 264: F134–F140, 1993.
 295. Feng MG and Navar LG. Angiotensin H‐mediated constriction of afferent and efferent arterioles involves T‐type Ca2+ channel activation. Am J Nephrol 24: 641–648, 2004.
 296. Loutzenhiser R, Epstein M and Horton C. Inhibition by diltiazem of pressure‐induced afferent vasoconstriction in the isolated perfused rat kidney. Am J Cardiol 59: 72A–75A, 1987.
 297. Carmines PK, Fowler BC and Bell PD. Segmentally distinct effects of depolarization on intracellular [Ca2+] in renal arterioles. Am J Physiol Renal Physiol 265: F677–F685, 1993.
 298. Inscho EW, Mason MJ, Schroeder AC, Deichmann PC, Stiegler ID and Imig JD. Agonist‐induced calcium regulation in freshly isolated renal microvascular smooth muscle cells. J Am Soc Nephrol 8: 569–579, 1997.
 299. Loutzenhiser R, Chilton L and Trottier G. Membrane potential measurements in renal afferent and efferent arterioles: actions of angiotensin II. Am J Physiol Renal Physiol 273: F307–F314, 1997.
 300. Fleming JT, Parekh N and Steinhausen M. Calcium antagonists preferentially dilate preglomerular vessels of hydronephrotic kidney. Am J Physiol 253: F1157–F1163, 1987.
 301. Helou CM and Marchetti J. Morphological heterogeneity of renal glomerular arterioles and distinct [Ca2+]i responses to ANG II. Am J Physiol 273: F84–F96, 1997.
 302. Inscho EW, Schroeder AC, Deichmann PC and Imig JD. ATP‐mediated Ca2+ signaling in preglomerular smooth muscle cells. Am J Physiol 276: F450–F456, 1999.
 303. Iversen BM and Arendshorst WJ. Exaggerated Ca+ signaling in preglomerular arteriolar smooth muscle cells of genetically hypertensive rats. Am J Physiol Renal Physiol 276: F260–F270, 1999.
 304. Loutzenhiser K and Loutzenhiser R. Angiotensin II‐induced Ca(2+) influx in renal afferent and efferent arterioles: differing roles of voltage‐gated and store‐operated Ca(2+) entry. Circ Res 87: 551–557, 2000.
 305. Navar LG, Inscho EW, Imig JD and Mitchell KD. Heterogeneous activation mechanisms in the renal microvasculature. Kidney Int Suppl 67: S17–S21, 1998.
 306. Salomonsson M and Arendshorst WJ. Calcium recruitment in renal vasculature: NE effects on blood flow and cytosolic calcium concentration. Am J Physiol 276: F700–F710, 1999.
 307. Salomonsson M and Arendshorst WJ. Norepinephrine‐induced calcium signaling pathways in afferent arterioles of genetically hypertensive rats. Am J Physiol Renal Physiol 281: F264–F272, 2001.
 308. Carmines PK, Ohishi K and Ikenaga H. Functional impairment of renal afferent arteriolar voltage‐gated calcium channels in rats with diabetes mellitus. J Clin Invest 98: 2564–2571, 1996.
 309. Griffin KA, Picken MM and Bidani AK. Deleterious effects of calcium channel blockade on pressure transmission and glomerular injury in rat remnant kidneys. J Clin Invest 96: 793–800, 1995.
 310. Baer PG and Navar LG. Renal vasodilation and uncoupling of blood flow and filtration rate autoregulation. Kidney Int 4: 12–21, 1973.
 311. Majid DSA and Navar LG. Suppression of blood flow autoregulation plateau during nitric oxide blockade in canine kidney. Am J Physiol Renal Physiol 262: F40–F46, 1992.
 312. Rosivall L, Youngblood P and Navar LG. Renal autoregulatory efficiency during angiotensin‐converting enzyme inhibition in dogs on a low sodium diet. Renal Physiol 9: 18–28, 1986.
 313. Feng MG and Navar LG. Nitric oxide synthase inhibition activates L‐ and T‐type Ca2+ channels in afferent and efferent arterioles. Am J Physiol Renal Physiol 290: F873–F879, 2006.
 314. Hansen PB, Jensen BL, Andreasen D, Friis UG and Skott O. Vascular smooth muscle cells express the alpha(1A) subunit of a P‐/Q‐type voltage‐dependent Ca(2+)Channel, and It is functionally important in renal afferent arterioles. Circ Res 87: 896–902, 2000.
 315. Ozawa Y, Hayashi K, Nagahama T, Fujiwara K and Saruta T. Effect of T‐type selective calcium antagonist on renal microcirculation: studies in the isolated perfused hydronephrotic kidney. Hypertension 38: 343–347, 2001.
 316. Salomonsson M, Sorensen CM, Arendshorst WJ, Steendahl J and Holstein‐Rathlou NH. Calcium handling in afferent arterioles. Acta Physiol Scand 181: 421–429, 2004.
 317. Hayashi K, Ozawa Y, Wakino S, Kanda T, Homma K, Takamatsu I, Tatematsu S and Saruta T. Cellular mechanism for mibefradil‐induced vasodilation of renal microcirculation: studies in the isolated perfused hydronephrotic kidney. J Cardiovasc Pharmacol 42: 697–702, 2003.
 318. Hayashi K, Ozawa Y, Fujiwara K, Wakino S, Kumagai H and Saruta T. Role of actions of calcium antagonists on efferent arterioles—with special references to glomerular hypertension. Am J Nephrol 23: 229–244, 2003.
 319. Imig JD, Cook AK and Inscho EW. Postglomerular vasoconstriction to angiotensin II and norepinephrine depends on intracellular calcium release. Gen Pharmac 34: 409–415, 2000.
 320. Inscho EW, Imig JD and Cook AK. Afferent and efferent arteriolar vasoconstriction to angiotensin II and norepinephrine involves release of Ca2+ from intracellular stores. Hypertension 29 (part 2): 222–227, 1997.
 321. Jentsch TJ. Chloride transport in the kidney: lessons from human disease and knockout mice. J Am Soc Nephrol 16: 1549–1561, 2005.
 322. Lsshiki T, Amodeo C, Messerli FH, Pegram BL and Frohlich ED. Diltiazem maintains renal vasodilation without hyperfiltration in hypertension: studies in essential hypertension man and the spontaneously hypertensive rat. Cardiovasc Drugs Ther 1: 359–366, 1987.
 323. Isshiki T, Pegram BL and Frohlich ED. Hemodynamic comparison of diltiazem and TA‐3090 in spontaneously hypertensive and normal Wistar‐Kyoto rats. Am J Cardiol 62: 79G–84G, 1988.
 324. Nakamura Y, Ono H and Frohlich ED. Differential effects of T‐ and L‐type calcium antagonists on glomerular dynamics in spontaneously hypertensive rats. Hypertension 34: 273–278, 1999.
 325. Goligorsky MS, Colflesh D, Gordienko D and Moore LC. Branching points of renal resistance arteries are enriched in L‐type calcium channels and initiate vasoconstriction. Am J Physiol Renal Physiol 268: F251–F257, 1995.
 326. Rhinehart K, Zhang Z and Pallone TL. Ca(2+) signaling and membrane potential in descending vasa recta pericytes and endothelia. Am J Physiol Renal Physiol 283: F852–F860, 2002.
 327. Zhang Z, Rhinehart K and Pallone TL. Membrane potential controls calcium entry into descending vasa recta pericytes. Am J Physiol Regul Integr Comp Physiol 283: R949–R957, 2002.
 328. Lee‐Kwon W, Goo JH, Zhang Z, Silldorff EP and Pallone TL. Vasa recta voltage gated Na+ channel NaV1.3 is regulated by calmodulin. Am J Physiol Renal Physiol, 2006.
 329. Zhang Z, Cao C, Lee‐Kwon W and Pallone TL. Descending vasa recta pericytes express voltage operated Na+ conductance in the rat. J Physiol 567: 445–457, 2005.
 330. Parekh AB and Putney JW, Jr. Store‐operated calcium channels. Physiol Rev 85: 757–810, 2005.
 331. Clapham DE. TRP channels as cellular sensors. Nature 426: 517–524, 2003.
 332. Facemire CS, Mohler PJ and Arendshorst WJ. Expression and relative abundance of short transient receptor potential channels in the rat renal microcirculation. Am J Physiol Renal Physiol 286: F546–F551, 2004.
 333. Ma R, Du J, Sours S and Ding M. Store‐operated Ca2+ channel in renal microcirculation and glomeruli. Exp Biol Med (Maywood) 231: 145–153, 2006.
 334. Takenaka T, Suzuki H, Okada H, Inoue T, Kanno Y, Ozawa Y, Hayashi K and Saruta T. Transient receptor potential channels in rat renal microcirculation: actions of angiotensin II. Kidney Int 62: 558–565, 2002.
 335. Fellner SK and Arendshorst WJ. Capacitative calcium entry in smooth muscle cells from preglomerular vessels. Am J Physiol 277: F533–F542, 1999.
 336. Fellner SK and Arendshorst WJ. Store‐operated Ca2+ entry is exaggerated in fresh preglomerular vascular smooth muscle cells of SHR. Kidney lnt 61: 2132–2141, 2002.
 337. Fellner SK and Arendshorst WJ. Ryanodine receptor and capacitative Ca2+ entry in fresh preglomerular vascular smooth muscle cells. Kidney Int 58: 1686–1694, 2000.
 338. Fellner SK and Arendshorst WJ. Voltage‐gated Ca2+ entry and ryanodine receptor Ca2+ ‐induced Ca2+ release in preglomerular arterioles. Am J Physiol Renal Physiol 292: F1568–F1572, 2007.
 339. Wilson SM, Mason HS, Smith GD, Nicholson N, Johnston L, Janiak R and Hume JR. Comparative capacitative calcium entry mechanisms in canine pulmonary and renal arterial smooth muscle cells. J Physiol 543: 917–931, 2002.
 340. Feng JJ and Arendshorst WJ. Calcium signaling mechanisms in renal vascular responses to vasopressin in genetic hypertension. Hypertension 30: 1223–1231, 1997.
 341. Large WA. Receptor‐operated Ca2(+)‐permeable nonselective cation channels in vascular smooth muscle: a physiologic perspective. J Cardiovasc Electrophysiol 13: 493–501, 2002.
 342. Ruegg UT, Wallnofer A, Weir S and Cauvin C. Receptor‐operated calcium‐permeable channels in vascular smooth muscle. J Cardiol Pharmacol 14: S49–S58, 1989.
 343. Facemire CS and Arendshorst WJ. Calmodulin mediates norepine‐phrine‐induced receptor‐operated calcium entry in preglomerular resistance arteries. Am J Physiol Renal Physiol 289: F127–F136, 2005.
 344. Albert AP and Large WA. Store‐operated Ca2+‐permeable nonselective cation channels in smooth muscle cells. Cell Calcium 33: 345–356, 2003.
 345. Beech DJ, Muraki K and Flemming R. Non‐selective cationtc channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 559: 685–706, 2004.
 346. Du J, Sours‐Brothers S, Coleman R, Ding M, Graham S, Kong DH and Ma R. Canonical transient receptor potential 1 channel is involved in contractile function of glomerular mesangial cells. J Am Soc Nephrol 18: 1437–1445, 2007.
 347. Goel M, Sinkins WG, Zuo CD, Estacion M and Schilling WP. Identification and localization of TRPC channels in the rat kidney. Am J Physiol Renal Physiol 290: F1241–F1252, 2006.
 348. Fellner SK and Arendshorst WJ. Angiotensin II‐stimulted calcium entry mechanism in afferent arterioles: role of transient receptor potential canonical channels and reverse Na+/Ca2+ exchange. Am J Physiol Renal Physiol, 2007.
 349. Spassova MA, Hewavitharana T, Xu W, Soboloff J and Gill DL. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103: 16586–16591, 2006.
 350. Welsh DG, Morielli AD, Nelson MT and Brayden JE. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90: 248–250, 2002.
 351. Ma R, Smith S, Child A, Carmines PK and Sansom SC. Store‐operated Ca2+ channels in human glomerular mesangial cells. Am J Physiol Renal Physiol 278: F954–F961, 2000.
 352. Li WP, Tsiokas L, Sansom SC and Ma R. Epidermal growth factor activates store‐operated Ca2+ channels through an inositol 1,4,5‐trisphosphate‐independent pathway in human glomerular mesangial cells. J Biol Chem 279: 4570–4577, 2004.
 353. Ma R, Pluznick J, Kudlacek P and Sansom SC. Protein kinase C activates store‐operated Ca(2+) channels in human glomerular mesangial cells. J Biol Chem 276: 25759–25765, 2001.
 354. Ma R and Sansom SC. Epidermal growth factor activates store‐operated calcium channels in human glomerular mesangial cells. J Am Soc Nephrol 12: 47–53, 2001.
 355. Ma R, Kudlacek PE and Sansom SC. Protein kinase Calpha participates in activation of store‐operated Ca2+ channels in human glomerular mesangial cells. Am J Physiol Cell Physiol 283: C1390–C1398, 2002.
 356. Putney JW, Jr. Capacitative calcium entry: sensing the calcium stores. J Cell Biol 169: 381–382, 2005.
 357. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G and Stauderman KA. STIM1. an essential and conserved component of store‐operated Ca2+ channel function. J Cell Biol 169: 435–445, 2005.
 358. Wang X, Pluznick JL, Wei P, Padanilam BJ and Sansom SC. TRPC4 forms store‐operated Ca2+ channels in mouse mesangial cells. Am J Physiol Cell Physiol 287: C357–C364, 2004.
 359. Lee‐Kwon W, Wade JB, Zhang Z, Pallone TL and Weinman E. Expression of TRPC 4 channel protein that interacts with NHERF‐2 in rat Descending Vasa Recta. Am J Physiol Cell Physiol, 2005.
 360. Putney JW, Jr. Trebak M, Vazquez G, Wedel B and Bird GS. Signalling mechanisms for TRPC3 channels. Novartis Found Symp 258: 123–133, 2004.
 361. Freichel M, Vennekens R, Olausson J, Hoffmann M, Muller C, Stolz S, Scheunemann J, Weissgerber P and Flockerzi V. Functional role of TRPC proteins in vivo: lessons from TRPC‐deficient mouse models. Biochem Biophys Res Commun 322: 1352–1358, 2004.
 362. Dietrich A, Mederos YS, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T and Birnbaumer L. Increased vascular smooth muscle contractility in TRPC6 −/− mice. Mol Cell Biol 25: 6980–6989, 2005.
 363. Kitamura K and Yamazaki J. Chloride channels and their functional roles in smooth muscle tone in the vasculature. Jpn J Pharmacol 85: 351–357, 2001.
 364. Large WA and Wang Q. Characteristics and physiological role of the Ca(2+)‐activated Cl− conductance in smooth muscle. Am J Physiol 271: C435–C454, 1996.
 365. Carmines PK. Segment‐specific effect of chloride channel blockade on rat renal arteriolar contractile responses to angiotensin II. Am J Hypertens 8: 90–94, 1995.
 366. Fuller AJ, Hauschild BC, Gonzalez‐Villalobos R, Awayda MS, Imig JD, Inscho EW and Navar LG. Calcium and Chloride Channel Activation by Angiotensin II‐AT1 Receptors in Preglomerular Vascular Smooth Muscle Cells. Am J Physiol Renal Physiol 289: F760–F767, 2005.
 367. Hansen PB, Jensen BL and Skott O. Chloride regulates afferent arteriolar contraction in response to depolarization. Hypertension 32: 1066–1070, 1998.
 368. Jensen BL, Ellekvist P and Skott O. Chloride is essential for contraction of afferent arterioles after agonists and potassium. Am J Physiol Renal Physiol 272: F389–F396, 1997.
 369. Scholz H and Kurtz A. Differential regulation of cytosolic calcium between afferent arteriolar smooth muscle cells from mouse kidney. Pflugers Arch‐Eur J Physiol 431: 46–51, 1995.
 370. Takenaka T, Kanno Y, Kitamura Y, Hayashi K, Suzuki H and Saruta T. Role of chloride channels in afferent arteriolar constriction. Kidney Int 50: 864–872, 1996.
 371. Steendahl J, Holstein‐Rathlou NH, Sorensen CM and Salomonsson M. Effects of chloride channel blockers on rat renal vascular responses to angiotensin II and norepinephrine. Am J Physiol Renal Physiol 286: F323–F330, 2004.
 372. Jensen BL and Skott O. Blockade of chloride channels by DIDS stimulates renin release and inhibits contraction of afferent arterioles. Am J Physiol Renal Physiol 270: F718–F727, 1996.
 373. Pallone TL and Huang JM. Control of descending vasa recta pericyte membrane potential by angiotensin II. Am J Physiol Renal Physiol 282: F1064–F1074, 2002.
 374. Pallone TL, Zhang Z and Rhinehart K. Physiology of the renal medullary microcirculation. Am J Physiol Renal Physiol 284: F253–F266, 2003.
 375. Zhang Z, Huang JM, Turner MR, Rhinehart KL and Pallone TL. Role of chloride in constriction of descending vasa recta by angiotensin II. Am J Physiol Regul Integr Comp Physiol 280: R1878–R1886, 2001.
 376. Gelband CH and Hume JR. [Ca2+]i inhibition of K+ channels in canine renal artery. Novel mechanism for agonist‐induced membrane depolarization. Circ Res 77: 121–130, 1995.
 377. Harder DR, Gilbert R and Lombard JH. Vascular muscle cell deop‐Iarization and activation in renal arteries on elevation of transmural pressure. Am J Physiol 253: F778–F781, 1987.
 378. Buhrle CP, Nobiling R, Mannek E, Schneider D, Hackenthal E and Taugner R. The afferent glomerular arteriole: immunocytochemical and electrophysiological investigations. J Cardiovasc Pharmacol 6 (Suppl 2): S383–S393, 1984.
 379. Buhrle CP, Nobiling R and Taugner R. Intracellular recordings from renin‐positive cells of the afferent glomerular arteriole. Am J Physiol 249: F272–F281, 1985.
 380. Buhrle CP, Scholz H, Hackenthal E, Nobiling R and Taugner R. Epithelioid cells: membrane potential changes induced by substances influencing renin secretion. Mol Cell Endocrinol 45: 37–47, 1986.
 381. Kurtz A and Penner R. Angiotensin II induces oscillations of intracellular calcium and blocks anomalous inward rectifying potassium current in mouse renal juxtaglomerular cells. Proc Natl Acad Sci USA 86: 3423–3427, 1989.
 382. Nobiling R, Buhrle CP, Hackenthal E, Helmchen U, Steinhausen M, Whalley A and Taugner R. Ultrastructure, renin status, contractile and electrophysiological properties of the afferent glomerular arteriole in the rat hydronephrotic kidney. Virchows Archiv A Pathol Anat 410: 31–42, 1986.
 383. Fishman MC. Membrane potential of juxtaglomerular cells. Nature 260: 542–544, 1976.
 384. Friis UG, Jorgensen F, Andreasen D, Jensen BL and Skott O. Molecular and functional identification of cyclic AMP‐sensitive BKCa potassium channels (ZERO variant) and L‐type voltage‐dependent calcium channels in single rat juxtaglomerular cells. Circ Res 93: 213–220, 2003.
 385. Leichtle A, Rauch U, Albinus M, Benohr R Kalbacher H, Mack AF, Veh RW, Quast U and Russ U. Electrophysiological and molecular characterization of the inward rectifier in juxtaglomerular cells from rat kidney. J Physiol 560: 365–376, 2004.
 386. Russ U, Rauch U and Quast U. Pharmacological evidence for a KATP channel in renin‐secreting cells from rat kidney. J Physiol 517 (Pt 3): 781–790, 1999.
 387. Nelson MT and Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268: C799–C822, 1995.
 388. Betts LC and Kozlowski RZ. Electrophysiological effects of endothelin‐1 and their relationship to contraction in rat renal arterial smooth muscle. Br J Pharmacol 130: 787–796, 2000.
 389. Gelband CH and Hume JR. Ionic currents in single smooth muscle cells of the canine renal artery. Circ Res 71: 745–758, 1992.
 390. Gelband CH, Ishikawa T, Post JM, Keef KD and Hume JR. Intracellular divalent cations block smooth muscle K+ channels. Circ Res 73: 24–34, 1993.
 391. Gebremedhin D, Kaldunski M, Jacobs ER, Harder DR and Roman RJ. Coexistence of two types of Ca2+‐activated K+ channels in rat renal arterioles. Am J Physiol Renal Physiol 270: F69–F81, 1996.
 392. Li L, Wu J and Jiang C. Differential expression of Kir6.l and SUR2B mRNAs in the vasculature of various tissues in rats. J Membr Biol 196: 61–69, 2003.
 393. Maier KG and Roman RJ. Cytochrome P450 metabolites of arachidonic acid in the control of renal function. Curr Opin Nephrol Hypertens 10: 81–87, 2001.
 394. Sun X, Cao K, Yang G, Huang Y, Hanna ST and Wang R. Selective expression of Kir6.1 protein in different vascular and non‐vascular tissues. Biochem Pharmacol 67: 147–156, 2004.
 395. Zou A‐P, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D, Harder DR and Roman RJ. 20‐HETE is an endogenous inhibitor of the large‐conductance Ca2+‐activated K+ channel in renal arterioles. Am J Physiol Regul Inlegr Comp Physiol 270: R228–R237, 1996.
 396. Zou A‐P, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D, Harder DR and Roman RJ. Stereospecific effects of epoxyeicosa‐trienoic acid on renal vascular tone and K+ channel activity. Am J Physiol Renal Physiol 270: F822–F832, 1996.
 397. Alonso‐Galicia M, Sun CW, Falck JR, Harder DR and Roman RJ. Contribution of 20‐HETE to the vasodilator actions of nitric oxide in renal arteries. Am J Physiol 275: F370–F378, 1998.
 398. Fergus DJ, Martens JR and England SK. Kv channel subunits that contribute to voltage‐gated K+ current in renal vascular smooth muscle. Pflugers Arch 445: 697–704, 2003.
 399. Kaide JI, Zhang F, Wei Y, Jiang H, Yu C, Wang WH, Balazy M, Abraham NG and Nasjletti A. Carbon monoxide of vascular origin attenuates the sensitivity of renal arterial vessels to vasoconstrictors. J Clin Invest 107: 1163–1171, 2001.
 400. Ma YH, Gebremedhin D, Schwartzman ML, Falck JR, Clark JE, Masters BS, Harder DR and Roman RJ. 20‐Hydroxyeicosatetraenoic acid is an endogenous vasoconstrictor of canine renal arcuate arteries. Circ Res 72: 126–136, 1993.
 401. Prior HM, Yates MS and Beech DJ. Role of K+ channels in A2A adenosine receptor‐mediated dilation of the pressurized renal arcuate artery. Br J Pharmacol 126: 494–500, 1999.
 402. Prior HM, Yates MS and Beech DJ. Functions of large conductance Ca2+‐activated (BKCa), delayed rectifier (KV) and background K+ channels in the control of membrane potential in rabbit renal arcuate artery. J Physiol 511 (Pt 1): 159–169, 1998.
 403. Martens JR and Gelband CH. Alterations in rat interlobar artery membrane potential and K+ channels in genetic and nongenetic hypertension. Circ Res 79: 295–301, 1996.
 404. Martens JR and Gelband CH. Ion channels in vascular smooth muscle: alterations in essential hypertension. Proc Soc Exp Biol Med 218: 192–203, 1998.
 405. Sun CW, Alonso‐Galicia M, Taheri MR, Falck JR, Harder DR and Roman RJ. Nitric oxide‐20‐hydroxygeicosatetraenoic acid interaction in the regulation of K+ channel activity and vascular tone in renal arterioles. Circ Res 83: 1069–1079, 1998.
 406. Sun CW, Falck JR, Harder DR and Roman RJ. Role of tyrosine kinase and PKC in the vasoconstrictor response to 20‐HETE in renal arterioles. Hypertension 33 (part II): 414–418, 1999.
 407. Chilton L and Loutzenhiser R. Functional evidence for an inward rectifier potassium current in rat renal afferent arterioles. Circ Res 88: 152–158, 2001.
 408. Eckman DM and Nelson MT. Potassium ions as vasodilators: role of inward rectifier potassium channels. Circ Res 88: 132–133, 2001.
 409. Fallet RW, Bast JP, Fujiwara K, Ishii N, Sansom SC and Carmines PK. Influence of Ca2+‐activated K+ channels on rat renal arteriolar responses to deolarizing agonists. Am J Physiol Renal Physiol 280: F583–F591, 2001.
 410. Kirton CA and Loutzenhiser R. Alterations in basal protein kinase C activity modulate renal afferent arteriolar myogenic reactivity. Am J Physiol 275: H467–H475, 1998.
 411. Loutzenhiser RD and Parker MJ. Hypoxia inhibits myogenic reactivity of renal afferent arterioles by activating ATP‐sensitive K+ channels. Circ Res 74: 861–869, 1994.
 412. Metzger F and Quast U. Binding of [3H]‐P1075, an opener of ATP‐sensitive K+channels, to rat glomerular preparations. Naunyn Schmiedebergs Arch Pharmacol 354: 452–459, 1996.
 413. Reslerova M and Loutzenhiser R. Divergent mechanisms of ATP‐sensitive K+ channel‐induced vasodilation in renal afferent and efferent arterioles. Evidence of L‐type Ca2+ channel‐dependent and ‐independentactions of pinacidil. Circ Res 77: 1114–1120, 1995.
 414. Reslerova M and Loutzenhiser R. Renal microvascular actions of calcitonin gene‐related peptide. Am J Physiol Renal Physiol 274: F1078–F1085, 1998.
 415. Tang L, Parker M, Fei Q and Loutzenhiser R. Afferent arteriolar adenosine A2a receptors are coupled to KATP in in vitro perfused hydronephrotic rat kidney. Am J Physiol 277: F926–F933, 1999.
 416. Wang D, Borrego‐Conde LJ, Falck JR, Sharma KK, Wilcox CS and Umans JG. Contributions of nitric oxide, EDHF, and EETs to endothelium‐dependent relaxation in renal afferent arterioles. Kidney Int 63: 2187–2193, 2003.
 417. Wang X, Trottier G and Loutzenhiser R. Determinants of renal afferent arteriolar actions of bradykinin: evidence that multiple pathways mediate responses attributed to EDHF. Am J Physiol Renal Physiol 285: F540–F549, 2003.
 418. Barber RD, Woolf AS and Henderson RM. Potassium conductances and proliferation in conditionally immortalized renal glomerular mesangial cells from the H‐2Kb‐tsA58 transgenic mouse. Biochim Biophys Acta 1355: 191–203, 1997.
 419. Cermak R, Kleta R, Forssmann WG and Schlatter E. Natriuretic peptides increase a K+ conductance in rat mesangial cells. Pflugers Arch 431: 571–577, 1996.
 420. Kudlacek PE, Pluznick JL, Ma R, Padanilam B and Sansom SC. Role of hbetal in activation of human mesangial BK channels by cGMP kinase. Am J Physiol Renal Physiol 285: F289–F294, 2003.
 421. Matsunaga H, Yamashita N, Miyajima Y, Okuda T, Chang H, Ogata E and Kurokawa K. Ion channel activities of cultured rat mesangial cells. Am J Physiol Renal Physiol 251: F808–F814, 1991.
 422. Sansom SC, Ma R, Carmines PK and Hall DA. Regulation of Ca(2+)‐activated K(+) channels by multifunctional Ca(2+)/calmodulin‐dependent protein kinase. Am J Physiol Renal Physiol 279: F283–F288, 2000.
 423. Stockand JD and Sansom SC. Large Ca(2 +)‐activated K+ channels responsive to angiotensin II in cultured human mesangial cells. Am J Physiol 267: C1080–C1086, 1994.
 424. Szamosfalvi B, Cortes P, Alviani R, Asano K, Riser BL, Zasuwa G and Yee J. Putative subunits of the rat mesangial KATP: a type 2B sulfonylurea receptor and an inwardly rectifying K+ channel. Kidney Int 61: 1739–1749, 2002.
 425. Sansom SC and Stockand JD. Physiological role of large, Ca2+‐activated K+ channels in human glomerular mesangial cells. Clin Exp Pharmacol Physiol 23: 76–82, 1996.
 426. Sansom SC, Stockand JD, Hall D and Williams B. Regulation of large calcium‐activated potassium channels by protein phosphatase 2A. J Biol Chem 272: 9902–9906, 1997.
 427. Stockand JD and Sansom SC. Activation by methylene blue of large Ca(2+)‐activated K+ channels. Biochim Biophys Acta 1285: 123–126, 1996.
 428. Stockand JD and Sansom SC. Role of large Ca(2+)‐activated K+ channels in regulation of mesangial contraction by nitroprusside and ANP. Am J Physiol 270: C1773–C1779, 1996.
 429. Marchetti J, Praddaude F, Rajerison R, Ader JL and Alhenc‐Gelas F. Bradykinin attenuates the [Ca(2+](i) response to angiotensin II of renal juxtamedullary efferent arterioles via an EDHF. Br J Pharmacol 132: 749–759, 2001.
 430. Cao C, Goo JH, Lee‐Kwon W and Pallone TL. Vasa recta pericytes express a strong inward rectifier K+ conductance. Am J Physiol Regul Integr Comp Physiol 290: R1601–R1607, 2006.
 431. Cao C, Lee‐Kwon W, Silldorff EP and Pallone TL. KATP channel conductance of descending vasa recta pericytes. Am J Physiol Renal Physiol 289: F1235–F1245, 2005.
 432. Quayle JM, Nelson MT and Standen NB. ATP‐sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 77: 1165–1232, 1997.
 433. Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM and Weston AH. EDHF: bringing the concepts together. Trends Pharmacol Sci 23: 374–380, 2002.
 434. Fleming I. Cytochrome P450 epoxygenases as EDHF synthase(s). Pharmacol Res 49: 525–533, 2004.
 435. Popp R, Brandes RP, Ott G, Busse R and Fleming I. Dynamic modulation of interendothelial gap junctional communication by 11, 12‐epoxyeicosatrienoic acid. Circ Res 90: 800–806, 2002.
 436. Imig JD. Eicosanoid regulation of the renal vasculature. Am J Physiol Renal Physiol 279: F965–F981, 2000.
 437. Imig JD, Navar LG, Roman RJ, Reddy KK and Falck JR. Actions of epoxygenase metabolites on the preglomerular vasculature. J Am Soc Nephrol 7: 2364–2370, 1996.
 438. Lorenz JN, Schnermann J, Brosius FC, Briggs JP and Furspan PB. Intracellular ATP can regulate afferent arteriolar tone via ATP‐sensitive K+ channels in the rabbit. J Clin Invest 90: 733–740, 1992.
 439. Loutzenhiser R. Inward rectifier currents in pericytes. Am J Physiol Regul Integr Comp Physiol 290: R1598–R1600, 2006.
 440. Stockand JD, Silverman M, Hall D, Derr T, Kubacak B and Sansom SC. Arachidonic acid potentiates the feedback response of mesangial BKCa channels to angiotensin II. Am J Physiol Renal Physiol 214: F658–F664, 1998.
 441. De Wit C. Connexins pave the way for vascular communication. News Physiol Sci 19: 148–153, 2004.
 442. Dhein S. Peptides acting at gap junctions. Peptides 23: 1701–1709, 2002.
 443. Figueroa XF, Isakson BE and Duling BR. Connexins: gaps in our knowledge of vascular function. Physiology (Bethesda) 19: 277–284, 2004.
 444. Haefliger JA, Nicod P and Meda P. Contribution of connexins to the function of the vascular wall. Cardiovasc Res 62: 345–356, 2004.
 445. Little TL, Beyer EC and Duling BR. Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am J Physiol 268: H729–H739, 1995.
 446. De Wit C, Roos F, Bolz SS, Kirchhoff S, Kruger O, Willecke K and Pohl U. Impaired conduction of vasodilation along arterioles in connexin40‐deficient mice. Circ Res 86: 649–655, 2000.
 447. De Wit C, Roos F, Bolz SS and Pohl U. Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion. Physiol Genomics 13: 169–177, 2003.
 448. Figueroa XF, Paul DL, Simon AM, Goodenough DA, Day KH, Damon DN and Duling BR. Central role of connexin40 in the propagation of electrically activated vasodilation in mouse cremasteric arterioles in vivo. Circ Res 92: 793–800, 2003.
 449. Haefliger JA, Krattinger N, Martin D, Pedrazzini T, Capponi A, Doring B, Plum A, Charollais A, Willecke K and Meda P. Connexin43‐dependent mechanism modulates renin secretion and hypertension. J Clin Invest 116: 405–413, 2006.
 450. Liao Y, Day KH, Damon DN and Duling BR. Endothelial cell‐specific knockout of connexin 43 causes hypotension and bradycardia in mice. Proc Natl Acad Sci USA 98: 9989–9994, 2001.
 451. Earley S, Resta TC and Walker BR. Disruption of smooth muscle gap junctions attenuates myogenic vasoconstriction of mesenteric resistance arteries. Am J Physiol Heart Circ Physiol 287: H2677–H2686, 2004.
 452. Arensbak B, Mikkelsen HB, Gustafsson F, Christensen T and Holstein‐Rathlou NH. Expression of connexin 37, 40, and 43 mRNA and protein in renal preglomerular arterioles. Histochem Cell Biol 115: 479–487, 2001.
 453. Hwan SK and Beyer EC. Heterogeneous localization of connexin40 in the renal vasculature. Microvasc Res 59: 140–148, 2000.
 454. Silverstein DM, Thornhill BA, Leung JC, Vehaskari VM, Craver RD, Trachtman HA and Chevalier RL. Expression of connexins in the normal and obstructed developing kidney. Pediatr Nephrol 18: 216–224, 2003.
 455. Zhang J and Hill CE. Differential connexin expression in preglomerular and postglomerular vasculature: accentuation during diabetes. Kidney Int 68: 1171–1185, 2005.
 456. Haefliger J‐A, Demotz S, Braissant O, Suter E, Waeber B, Nicod P and Meda P. Connexins 40 and 43 are differentially regulated within the kdineys of rats with renovascular hypertension. Kidney Int 60: 190–201, 2001.
 457. Barajas L, Liu L and Tucker M. Localization of connexin43 in rat kidney. Kidney Int 46: 621–626, 1994.
 458. Guo R, Liu L and Barajas L. RT‐PCR study of the distribution of connexin 43 mRNA in the glomerulus and renal tubular segments. Am J Physiol 275: R439–R447, 1998.
 459. Hillis GS, Duthie LA, Mlynski R, McKay NG, Mistry S, MacLeod AM, Simpson JG and Haites NE. The expression of connexin 43 in human kidney and cultured renal cells. Nephron 75: 458–463, 1997.
 460. Zhang JH, Kawashima S, Yokoyama M, Huang P and Hill CE. Increased eNOS accounts for changes in connexin expression in renal arterioles during diabetes. Anal Rec A Discov Mol Cell Evol Biol 288: 1000–1008, 2006.
 461. De Vriese AS, Van d V and Lameire NH. Effects of connexin‐mimetic peptides on nitric oxide synthase‐ and cyclooxygenase‐independent renal vasodilation. Kidney Int 61: 177–185, 2002.
 462. Karagiannis J, Rand M and Li CG. Role of gap junctions in endothelium‐derived hyperpolarizing factor‐mediated vasodilatation in rat renal artery. Acta Pharmacol Sin 25: 1031–1037, 2004.
 463. Udosen IT, Jiang H, Hercule HC and Oyekan AO. Nitric oxide‐epoxygenase interactions and arachidonate‐induced dilation of rat renal microvessels. Am J Physiol Heart Circ Physiol 285: H2054–H2063, 2003.
 464. Salomonsson M, Gustafsson F, Andreasen D, Jensen BL and Holstein‐Rathlou NH. Local electric stimulation causes conducted calcium response in rat interlobular arteries. Am J Physiol Renal Physiol 283: F473–F480, 2002.
 465. Zhang Q, Cao C, Mangano M, Zhang Z, Silldorff EP, Lee‐Kwon W, Payne K and Pallone TL. Descending vasa recta endothelium is an electrical syncytium. Am J Physiol Regul Integr Comp Physiol, 2006.
 466. Kurtz L, Schweda F, De Wit C, Kriz W, Witzgall R, Warth R, Sauter A, Kurtz A and Wagner C. Lack of connexin 40 causes displacement of renin‐producing cells from afferent arterioles to the extraglomerular mesangium. J Am Soc Nephrol 18: 1103–1111, 2007.
 467. Cupples WA and Braam B. Assessment of renal autoregulation. Am J Physiol Renal Physiol 292: F1105–F1123, 2007.
 468. Holstein‐Rathlou NH and Marsh DJ. Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics. Physiol Rev 74: 637–681, 1994.
 469. Just A. Mechanisms of renal blood flow autoregulation: dynamics and contributions. Am J Physiol Regul Integr Comp Physiol 292: R1–R17, 2007.
 470. Loutzenhiser R, Bidani A and Chilton L. Renal myogenic response: kinetic attributes and physiological role. Circ Res 90: 1316–1324, 2002.
 471. Loutzenhiser R, Bidani AK and Wang X. Systolic pressure and the myogenic response of the renal afferent arteriole. Acta Physiol Stand 181: 407–413, 2004.
 472. Navar LG. Renal autoregulation: perspectives from whole kidney and single nephron studies. Am J Physiol Renal Physiol 234: F357–F370, 1978.
 473. Navar LG. Integrating multiple paracrine regulators of renal microvascular dynamics. Am J Physiol Renal Physiol 274: F433–F444, 1998.
 474. Corradi A and Arendshorst WJ. Rat renal hemodynamics during venous compression: roles of nerves and prostaglandins. Am J Physiol 248: F810–F820, 1985.
 475. Daniels FH, Arendshorst WJ and Roberds RG. Tubuloglomerular feedback and autoregulation in spontaneously hypertensive rats. Am J Physiol Renal Physiol 258: F1479–F1489, 1990.
 476. Navar LG, Bell PD and Burke TJ. Role of a macula densa feedback mechanism as a mediator of renal autoregulation. Kidney Int 22 (Suppl 12): S157–S164, 1982.
 477. Just A and Arendshorst WJ. Dynamics and contribution of mechanisms mediating renal blood flow autoregulation. Am J Physiol Regul Integr Comp Physiol 285: R619–R631, 2003.
 478. Walker M, III, Harrison‐Bernard LM, Cook AK and Navar LG. Dynamic interaction between myogenic and TGF mechanisms in afferent arteriolar blood flow autoregulation. Am J Physiol Renal Physiol 279: F858–F865, 2000.
 479. Cupples WA and Loutzenhiser RD. Dynamic autoregulation in the in vitro perfused hydronephrotic rat kidney. Am J Physiol Renal Physiol 275: F126–F130, 1998.
 480. Carmines PK, Inscho EW and Gensure RC. Arterial pressure effects on preglomerular microvasculature of juxtamedullary nephrons. Am J Physiol Renal Physiol 258: F94–F102, 1990.
 481. Casellas D, Carmines PK and Navar LG. Microvascular reactivity of in vitro blood perfused juxtamedullary nephrons from rats. Kidney Int 28: 752–759, 1985.
 482. Casellas D and Navar LG. In vitro perfusion of juxtamedullary nephrons in rats. Am J Physiol Renal Physiol 246: F349–F358, 1984.
 483. Bidani AK, Hacioglu R, Abu Amarah I, Williamson GA, Loutzenhiser R and Griffin KA. “Step” vs. “dynamic” autoregulation: implications for susceptibility to hypertensive injury. Am J Physiol Renal Physiol 285: F113–F120, 2003.
 484. Roman RJ and Harder DR. Cellular and ionic signal transduction mechanisms for the mechanical activation of renal arterial vascular smooth muscle. J Am Soc Nephrol 4: 986–996, 1993.
 485. Hill MA, Falcone JC and Meininger GA. Evidence for protein kinase C involvement in arteriolar myogenic reactivity. Am J Physiol 259: H1586–H1594, 1990.
 486. Just A, Olson AJ, Falck JR and Arendshorst WJ. NO and NO‐independent mechanisms mediate ETB receptor buffering of ET‐1‐induced renal vasoconstriction in the rat. Am J Physiol Regul Integr Comp Physiol 288: R1168–R1177, 2005.
 487. Just A. Nitric oxide and renal autoregulation. Kidney Blood Press Res 20: 201–204, 1997.
 488. Just A, Ehmke H, Wittmann U and Kirchheim HR. Tonic and phasic influences of nitric oxide on renal blood flow autoregulation in conscious dogs. Am J Physiol Renal Physiol 276: F442–F449, 1999.
 489. Harrison‐Bernard LM and Navar LG. Renal cortical and medullary microvascular blood flow autoregulation in rat. Kidney Int 50 (suppl 57): S‐23–S‐29, 1996.
 490. Bell TD, DiBona GF, Wang Y and Brands MW. Mechanisms for renal blood flow control early in diabetes as revealed by chronic flow measurement and transfer function analysis. J Am Soc Nephrol 17: 2184–2192, 2006.
 491. Just A, Ehmke H, Toktomambetova L and Kirchheim HR. Dynamic characteristics and underlying mechanisms of renal blood flow autoregulation in the conscious dog. Am J Physiol Renal Physiol 280: F1062–F1071, 2001.
 492. Babij P and Periasamy M. Myosin heavy chain isoform diversity in smooth muscle is produced by differential RNA processing. J Mol Biol 210: 673–679, 1989.
 493. Shiraishi M, Wang X, Walsh MP, Kargacin G, Loutzenhiser K and Loutzenhiser R. Myosin heavy chain expression in renal afferent and efferent arterioles: relationship to contractile kinetics and function. FASEB J 17: 2284–2286, 2003.
 494. Patzak A, Petzhold D, Wronski T, Martinka P, Babu GJ, Periasamy M, Haase H and Morano I. Constriction velocities of renal afferent and efferent arterioles of mice are not related to SMB expression. Kidney Int 68: 2726–2734, 2005.
 495. Kimura K, Nagai R, Sakai T, Aikawa M, Kuro‐o M, Kobayashi N, Shirato I, Inagami T, Oshi M, Suzuki N, Oba S, Mise N, Tojo A, Hirata Y, Goto A, Yazaki Y and Omata M. Diversity and variability of smooth muscle phenotypes of renal arterioles as revealed by myosin isoform expression. Kidney Int 48: 372–382, 1995.
 496. Taugner R, Rosivall L, Buhrle CP and Groschel‐Stewart U. Myosin content and vasoconstrictive ability of the proximal and distal (renin‐positive) segments of the preglomerular arteriole. Cell Tissue Res 248: 579–588, 1987.
 497. Chan WL, Holstein‐Rathlou NH and Yip KP. Integrin mobilizes intracellular Ca(2+) in renal vascular smooth muscle cells. Am J Physiol Cell Physiol 280: C593–C603, 2001.
 498. Davis MJ and Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79: 387–423, 1999.
 499. Martinez‐Lemus LA, Wu X, Wilson E, Hill MA, Davis GE, Davis MJ and Meininger GA. Integrins as unique receptors for vascular control. J Vasc Res 40: 211–233, 2003.
 500. Drummond HA, Gebremedhin D and Harder DR. Degenerin/epithelial Na+ channel proteins: components of a vascular mechanosensor. Hypertension 44: 643–648, 2004.
 501. Inscho EW, Cook AK, Mui V and Imig JD. Calcium mobilization contributes to pressure‐mediated afferent arteriolar vasoconstriction. Hypertension 31 (part 2): 421–428, 1998.
 502. D'Angelo G and Meininger GA. Transduction mechanisms involved in the regulation of myogenic activity. Hypertension 23 (part2): 1096–1105, 1994.
 503. Meininger GA and Davis MJ. Cellular mechanisms involved in the vascular myogenic response. Am J Physiol Heart Circ Physiol 263: H647–H659, 1992.
 504. Liu Y, Harder DR and Lombard JH. Myogenic activation of canine small renal arteries after nonchemical removal of the endothelium. Am J Physiol Heart Circ Physiol 267: H302–H307, 1994.
 505. Narayanan J, Imig M, Roman RJ and Harder DR. Pressurization of isolated renal arteries increases inositol trisphosphate and diacylglycerol. Am J Physiol Heart Circ Physiol 266: H1840–H1845, 1994.
 506. Eskinder H, Harder DR and Lombard JH. Role of the vascular endothelium in regulating the response of small arteries of the dog kidney to transmural pressure elevation and reduced PO2. Circ Res 66: 1427–1435, 1990.
 507. Jernigan NL and Drummond HA. Vascular ENaC proteins are required for renal myogenic constriction. Am J Physiol Renal Physiol 289: F891–F901, 2005.
 508. Nakamura A, Hayashi K, Ozawa Y, Fujiwara K, Okubo K, Kanda T, Wakino S and Saruta T. Vessel‐ and vasoconstrictor‐dependent role of rho/rho‐kinase in renal microvascular tone. J Vasc Res 40: 244–251, 2003.
 509. Cavarape A, Bauer J, Bartoli E, Endlich K and Parekh N. Effects of angiotensin II, arginine vasopressin and tromboxane A2 in renal vascular bed: role of rho‐kinase. Nephrol Dial Transplant 18: 1764–1769, 2003.
 510. Briggs JP and Schnermann J. The tubuloglomerular feedback mechanism: functional and biochemical aspects. Ann Rev Physiol 49: 251–273, 1987.
 511. Braam B, Mitchell KD, Koomans HA and Navar LG. Relevance of the tubuloglomerular feedback mechanism in pathophysiology. J Am Soc Nephrol 4: 1257–1274, 1993.
 512. Komlosi P, Fintha A and Bell PD. Renal Cell‐to‐Cell Communication via Extracellular ATP. Physiology (Bethesda) 20: 86–90, 2005.
 513. Schnermann J. Micropuncture analysis of tubuloglomerular feedback regulation in transgenic mice. J Am Soc Nephrol 10: 2614–2619, 1999.
 514. Schnermann J. The juxtaglomerular apparatus: from anatomical peculiarity to physiological relevance. J Am Soc Nephrol 14: 1681–1694, 2003.
 515. Blantz RC and Deng A. Coordination of kidney filtration and tubular reabsorption: considerations on the regulation of metabolic demand for tubular reabsorption. Acta Physiol Hung 94: 83–94, 2007.
 516. Nishiyama A, Majid DSA, Walker HI, Miyatake MA and Navar LG. Renal interstitial ATP responses to changes in arterial pressure during alterations in tubuloglomerular feedback activity. Hypertension 37: 753–759, 2001.
 517. Thomson SC, Vallon V and Blantz RC. Resetting protects efficiency of tubuloglomerular feedback. Kidney Int Suppl 67: S65–S70, 1998.
 518. Marsh DJ, Sosnovtseva OV, Chon KH and Holstein‐Rathlou NH. Nonlinear interactions in renal blood flow regulation. Am J Physiol Regul Integr Comp Physiol 288: RI143–RI159, 2005.
 519. Marsh DJ, Sosnovtseva OV, Pavlov AN, Yip KP and Holstein‐Rathlou NH. Frequency encoding in renal blood flow regulation. Am J Physiol Regul Integr Comp Physiol 288: RII60–RII67, 2005.
 520. Thomson S, Vallon V and Blantz RC. Asymmetry of tubuloglomerular feedback effector mechanism with respect to ambient tubular flow. Am J Physiol Renal Physiol 271: F1123–F1130, 1996.
 521. Komlosi P, Fintha A and Bell PD. Current mechanisms of macula densa cell signalling. Acta Physiol Scand 181: 463–469, 2004.
 522. Bell PD, Navar LG, Ploth DW and McLean CB. Tubuloglomerular feedback responses during perfusion with nonelectrolyte solutions in the rat. Kidney Int 18: 460–471, 1980.
 523. Schnermann J, Ploth DW and Hermle M. Activation of tubuloglomerular feedback by chloride transport. Pflügers Arch 362: 229–240, 1976.
 524. Lapointe J‐Y, Bell PD and Cardinal J. Direct evidence for apical Na +:2CI ‐:K+ cotransport in macula densa cells. Am J Physiol Renal Physiol 258: F1466–F1469, 1990.
 525. Schlatter E, Salomonsson M, Persson AEG and Greger R. Macula densa cells sense luminal NaCl concentration via furosemide sensitive Na+2CI‐K+ cotransport. Pflügers Arch 414: 286–290, 1989.
 526. Oppermann M, Mizel D, Kim SM, Chen L, Faulhaber‐Walter R, Huang Y, Li C, Deng C, Briggs J, Schnermann J and Castrop H. Renal function in mice with targeted disruption of the A isoform of the Na‐K‐2CI co‐transporter. J Am Soc Nephrol 18: 440–448, 2007.
 527. Schnermann J and Marver D. ATPase activity in macula densa cells of the rabbit kidney. Pflügers Arch 407: 82–86, 1986.
 528. Peti‐Peterdi J, Bebok Z, Lapointe JY and Bell PD. Novel regulation of cell [Na(+] in macula densa cells: apical Na(+) recycling by H‐K‐ATPase. Am J Physiol Renal Physiol 282: F324–F329, 2002.
 529. Lorenz JN, Dostanic‐Larson I, Shull GE and Lingrel JB. Ouabain inhibits tubuloglomerular feedback in mutant mice with ouabain‐sensitive alpha1 Na, K‐ATPase. J Am Soc Nephrol 17: 2457–2463, 2006.
 530. Bell PD, Lapointe J and Cardinal J. Direct measurement of baso‐lateral membrane potentials from cells of the macula densa. Am J Physiol Renal Physiol 257: F463–F468, 1989.
 531. Lapointe J‐Y, Bell PD, Hurst AM and Cardinal J. Basolateral ionic permeabilities of macula densa cells. Am J Physiol Renal Physiol. 260: F856–F860, 1991.
 532. Ren Y, Yu H, Wang H, Carretero OA and Garvin JL. Nystatin and valinomycin induce tubuloglomerular feedback. Am J Physiol Renal Physiol 281: F1102–F1108, 2001.
 533. Hurst AM, Lapointe J‐Y, Laamarti A and Bell PD. Basic properties and potential regulators of the apical K+ channel in macula densa cells. J Gen Physiol 103: 1055–1070, 1994.
 534. Vallon V, Osswald H, Blantz RC and Thomson S. Potential role of luminal potassium in tubuloglomerular feedback. J Am Soc Nephrol 8: 1831–1837, 1997.
 535. Peti‐Peterdi J, Chambrey R, Bebok Z, Biemesderfer D, St John PL, Abrahamson DR, Warnock DG and Bell PD. Macula densa Na(+)/H(+) exchange activities mediated by apical NHE2 and basolateral NHE4 isoforms. Am J Physiol Renal Physiol 278: F452–F463, 2000.
 536. Liu R, Carretero OA, Ren Y and Garvin JL. Increased intracellular pH at the macula densa activates nNOS during tubuloglomerular feedback. Kidney Int 67: 1837–1843, 2005.
 537. Kirk KL, Bell PD, Barfuss DW and Ribadeneira M. Direct visualization of the isolated and perfused macula densa. Am J Physiol Renal Physiol 248: F890–F894, 1985.
 538. Komlosi P, Fintha A and Bell PD. Unraveling the relationship between macula densa cell volume and luminal solute concentration/osmolality. Kidney Int 70: 865–871, 2006.
 539. Bell PD and Navar LG. Cytoplasmic calcium in the mediation of macula densa tubulo‐glomerular feedback responses. Science 215: 670–673, 1982.
 540. Peti‐Peterdi J and Bell PD. Cytosolic [Ca2+] signaling pathway in macula densa cells. Am J Physiol Renal Physiol 277: F472–F476, 1999.
 541. Ren Y, Liu R, Carretero OA and Garvin JL. Increased intracellular Ca++ in the macula densa regulates tubuloglomerular feedback. Kidney Int 64: 1348–1355, 2003.
 542. Liu R and Persson AE. Simultaneous changes of cell volume and cytosolic calcium concentration in macula densa cells caused by alterations of luminal NaCl concentration. J Physiol 563: 895–901, 2005.
 543. Lapointe JY, Bell PD, Sabirov RZ and Okada Y. Calcium‐activated nonselective cationic channel in macula densa cells. Am J Physiol Renal Physiol 285: F275–F280, 2003.
 544. Thurau K. Intrarenal action of angiotensin. Angiotensin (Handbook of Experimental Pharmacology, 37). New York: Springer‐Verlag, 1974, pp. 475–489.
 545. Thurau K and Mason J. The intrarenal function of the juxtaglomerular apparatus. In: Kidney and Urinary Tract Physiology (MTP International Review of Science: Physiology, series 1, vol. 1, ed. Thurau K. London: Butterworth, 1974, pp. 357–389.
 546. Kovacs G, Peti‐Peterdi J, Rosivall L and Bell PD. Angiotensin II directly stimulates macula densa Na‐2Cl‐K cotransport via apical AT(1) receptors. Am J Physiol Renal Physiol 282: F301–F306, 2002.
 547. Wang H, Garvin JL and Carretero OA. Angiotensin II enhances tubuloglomerular feedback via luminal AT(I) receptors on the macula densa. Kidney Int 60: 1851–1857, 2001.
 548. Harrison‐Bernard LM, Navar LG, Ho MM, Vinson GP and El‐Dahr SS. Immunohistochemical localization of ANG II AT1 receptor in adult rat kidney using a monoclonal antibody. Am J Physiol Renal Physiol 273: F170–F177, 1997.
 549. Nishiyama A and Navar LG. ATP mediates tubuloglomerular feedback. Am J Physiol Regul Integr Comp Physiol 283: R273–R275, 2002.
 550. Inscho EW, Cook AK, Imig JD, Vial C and Evans RJ. Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior. J Clin Invest 112: 1895–1905, 2003.
 551. Inscho EW, Cook AK, Mui V and Miller J. Direct assessment of renal microvascular responses to P2‐purinoceptor agonists. Am J Physiol Renal Physiol 274: F718–F727, 1998.
 552. Inscho EW, Mitchell KD and Navar LG. Extracellular ATP in the regulation of renal microvascular function. FASEB J 8: 319–328, 1994.
 553. Inscho EW and Navar LG. P2‐purinoceptor desensitization attenuates autoregulatory behavior in rat juxtamedullary afferent arterioles. J Am Soc Nephrol 4: 581, 1993.
 554. Majid DS, Inscho EW and Navar LG. P2 purinoceptor saturation by adenosine triphosphate impairs renal autoregulation in dogs. J Am Soc Nephrol 10: 492–498, 1999.
 555. Nishiyama A, Rahman M and Inscho EW. Role of interstitial ATP and adenosine in the regulation of renal hemodynamics and microvascular function. Hypertens Res 27: 791–804, 2004.
 556. Bell PD, Lapointe JY, Sabirov R, Hayashi S, Peti‐Peterdi J, Manabe Kl, Kovacs G and Okada Y. Macula densa cell signaling involves ATP release through a maxi anion channel. Proc Natl Acad Sci USA 100: 4322–4327, 2003.
 557. Komlosi P, Peti‐Peterdi J, Fuson AL, Fintha A, Rosivall L and Bell PD. Macula densa basolateral ATP release is regulated by luminal [NaCl] and dietary salt intake. Am J Physiol Renal Physiol 286: F1054–F1058, 2004.
 558. Inscho EW. P2 receptors in regulation of renal microvascular function. Am J Physiol Renal Physiol 280: F927–F944, 2001.
 559. Simonson MS and Dunn MJ. Endothelin: pathways of transmembrane signaling. Hypertension 15 (Suppl I): 1–5‐I‐12, 1990.
 560. Peti‐Peterdi J. Calcium wave of tubuloglomerular feedback. Am J Physiol Renal Physiol 291: F473–F480, 2006.
 561. Kallskog O and Marsh DJ. TGF‐initiated vascular interactions between adjacent nephrons in the rat kidney. Am J Physiol 259: F60–F64, 1990.
 562. Casellas D and Moore LC. Autoregulation and tubuloglomerular feedback in juxtamedullary glomerular arterioles. Am J Physiol Renal Physiol 258: F660–F669, 1990.
 563. Peti‐Peterdi J, Morishima S, Bell PD and Okada Y. Two‐photon excitation fluorescence imaging of the living juxtaglomerular apparatus. Am J Physiol Renal Physiol 283: F197–F201, 2002.
 564. Ren Y, Carretero OA and Garvin JL. Role of mesangial cells and gap junctions in tubuloglomerular feedback. Kidney Int 62: 525–531, 2002.
 565. Inscho EW. Modulation of renal microvascular function by adenosine. Am J Physiol Regul Integr Comp Physiol 285: R23–R25, 2003.
 566. Kishore BK, Isaac J, Fausther M, Tripp SR, Shi H, Gill PS, Braun N, Zimmermann H, Sevigny J and Robson SC. Expression of NTPDasel and NTPDase2 in murine kidney: relevance to regulation of P2 receptor signaling. Am J Physiol Renal Physiol 288: F1032–F1043, 2005.
 567. Vekaria RM, Shirley DG, Sevigny J and Unwin RJ. Immunolocalization of ectonucleotidases along the rat nephron. Am J Physiol Renal Physiol 290: F550–F560, 2006.
 568. Castrop H, Huang Y, Hashimoto S, Mizel D, Hansen P, Theilig F, Bachmann S, Deng C, Briggs J and Schnermann J. Impairment of tubuloglomerular feedback regulation of GFR in ecto‐5′‐nucleoti‐dase/CD73‐deficient mice. J Clin Invest 114: 634–642, 2004.
 569. Sun D, Samuelson LC, Yang T, Huang Y, Paliege A, Saunders T, Briggs J and Schnermann J. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci USA 98: 9983–9988, 2001.
 570. Ren Y, Garvin JL, Liu R and Carretero OA. Role of macula densa adenosine triphosphate (ATP) in tubuloglomerular feedback. Kidney Int 66: 1479–1485, 2004.
 571. Kessler SP, Hashimoto S, Senanayake PS, Gaughan C, Sen GC and Schnermann J. Nephron function in transgenic mice with selective vascular or tubular expression of Angiotensin‐converting enzyme. J Am Soc Nephrol 16: 3535–3542, 2005.
 572. Mitchell KD and Navar LG. Enhanced tubuloglomerular feedback during peritubular infusions of angiotensins I and II. Am J Physiol Renal Physiol 255: F383–F390, 1988.
 573. Ploth DW, Rudolph J, LaGrange R and Navar LG. Tubuloglomerular feedback and single nephron function after converting enzyme inhibition in the rat. J Clin Invest 64: 1325–1335, 1979.
 574. Schnermann JB, Traynor T, Yang T, Huang YG, Oliverio MI, Coffman T and Briggs JP. Absence of tubuloglomerular feedback responses in AT1A receptor‐deficient mice. Am J Physiol Renal Physiol 273: F315–F320, 1997.
 575. Liu R and Persson AE. Angiotensin II stimulates calcium and nitric oxide release from Macula densa cells through AT1 receptors. Hypertension 43: 649–653, 2004.
 576. Zhang MZ, Yao B, Cheng HF, Wang SW, Inagami T and Harris RC. Renal cortical cyclooxygenase 2 expression is differentially regulated by angiotensin II AT(1) and AT(2) receptors. Proc Natl Acad Sci USA 103: 16045–16050, 2006.
 577. Gill PS and Wilcox CS. NADPH oxidases in the kidney. Antioxid Redox Signal 8: 1597–1607, 2006.
 578. Komers R, Zdychova J, Cahova M, Kazdova L, Lindsley JN and Anderson S. Renal cyclooxygenase‐2 in obese Zucker (fatty) rats. Kidney Int 67: 2151–2158, 2005.
 579. Hebert SC. Bartter syndrome. Curr Opin Nephrol Hypertens 12: 527–532, 2003.
 580. Bachmann S, Bosse HM and Mundel P. Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am J Physiol Renal Physiol 268: F885–F898, 1995.
 581. Harris RC, Cheng H, Wang J, Zhang M and McKanna JA. Interactions of the renin‐angiotensin system and neuronal nitric oxide synthase in regulation of cyclooxygenase‐2 in the macula densa. Acta Physiol Scand 168: 47–51, 2000.
 582. Ichihara A and Navar LG. Neuronal NOS contributes to biphasic autoregulatory response during enhanced TGF activity. Am J Physiol Renal Physiol 277: F113–F120, 1999.
 583. Kovacs G, Komlosi P, Fuson A, Peti‐Peterdi J, Rosivall L and Bell PD. Neuronal nitric oxide synthase: its role and regulation in macula densa cells. J Am Soc Nephrol 14: 2475–2483, 2003.
 584. Liu R, Pittner J and Persson AE. Changes of cell volume and nitric oxide concentration in macula densa cells caused by changes in luminal NaCl concentration. J Am Soc Nephrol 13: 2688–2696, 2002.
 585. Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R and Schmidt HHHW. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci 89: 11993–11997, 1992.
 586. Welch WJ, Wilcox CS and Thomson SC. Nitric oxide and tubuloglomerular feedback. Sem Nephrol 19: 251–262, 1999.
 587. Ichihara A, Imig JD and Navar LG. Neuronal nitric oxide synthase‐dependent afferent arteriolar function in angiotensin II‐induced hypertension. Hypertension 33 (part II): 462–466, 1999.
 588. Vallon V, Traynor T, Barajas L, Huang YG, Briggs JP and Schnermann J. Feedback control of glomerular vascular tone in neuronal nitric oxide synthase knockout mice. J Am Soc Nephrol 12: 1599–1606, 2001.
 589. Herrera M, Ortiz PA and Garvin JL. Regulation of thick ascending limb transport: role of nitric oxide. Am J Physiol Renal Physiol 290: F1279–F1284, 2006.
 590. Hoagland KM, Flasch AK and Roman RJ. Inhibitors of 20‐HETE formation promote salt‐sensitive hypertension in rats. Hypertension 42: 669–673, 2003.
 591. Ren Y, Carretero OA and Garvin JL. Mechanism by which superoxide potentiates tubuloglomerular feedback. Hypertension 39: 624–628, 2002.
 592. Juncos R and Garvin JL. Superoxide enhances Na‐K‐2Cl cotrans‐porter activity in the thick ascending limb. Am J Physiol Renal Physiol 288: F982–F987, 2005.
 593. Liu R, Garvin JL, Ren Y, Pagano PJ and Carretero OA. Depolarization of the macula densa induces superoxide production via NAD(P)H oxidase. Am J Physiol Renal Physiol 292: F1867–F1872, 2007.
 594. Wilcox CS and Welch WJ. Interaction between nitric oxide and oxygen radicals in regulation of tubuloglomerular feedback. Acta Physiol Scand 168: 119–124, 2000.
 595. Ren YL, Garvin JL, Ito S and Carretero OA. Role of neuronal nitric oxide synthase in the macula densa. Kidney Int 60: 1676–1683, 2001.
 596. Alonso‐Galicia M, Falck JR, Reddy KM and Roman RJ. 20‐HETE agonists and antagonists in the renal circulation. Am J Physiol 277: F790–F796, 1999.
 597. Zou A‐P, Imig JD, Kaldunski M, Ortiz de Montellano PR, Sui Z and Roman RJ. Inhibition of renal vascular 20‐HETE production impairs autoregulation of renal blood flow. Am J Physiol Renal Physiol 266: F275–F282, 1994.
 598. Ichihara A, Imig JD and Navar LG. Cyclooxygenase‐2 modulates afferent arteriolar responses to increases in pressure. Hypertension 34 (part 2): 843–847, 1999.
 599. Breyer MD and Harris RC. Cyclooxygenase 2 and the kidney. Curr Opin Nephrol Hypertens 10: 89–98, 2001.
 600. Fuson AL, Komlosi P, Unlap TM, Bell PD and Peti‐Peterdi J. Immunolocalization of a microsomal prostaglandin E synthase in rabbit kidney. Am J Physiol Renal Physiol 285: F558–F564, 2003.
 601. Harris RC and Breyer MD. Physiological regulation of cyclooxygenase‐2 in the kidney. Am J Physiol Renal Physiol 281: F1–F11, 2001.
 602. Harris RC, McKanna JA, Akai Y, Jacobson HR, Dubois RN and Breyer MD. Cyclooxygenase‐2 is associated with the macula densa of rat kidney and increases with salt restriction. J Clin Invest 94: 2504–2510, 1994.
 603. Peti‐Peterdi J, Komlosi P, Fuson AL, Guan Y, Schneider A, Qi Z, Redha R, Rosivall L, Breyer MD and Bell PD. Luminal NaCl delivery regulates basolateral PGE2 release from macula densa cells. J Clin Invest 112: 76–82, 2003.
 604. Yang T, Park JM, Arend L, Huang Y, Topaloglu R, Pasumarthy A, Praetorius H, Spring K, Briggs JP and Schnermann J. Low chloride stimulation of prostaglandin E2 release and cyclooxygenase‐2 expression in a mouse macula densa cell line. J Biol Chem 275: 37922–37929, 2000.
 605. Cheng HF and Harris RC. Cyclooxygenases, the kidney, and hypertension. Hypertension 43: 525–530, 2004.
 606. Brannstrom K and Arendshorst WJ. Thromboxane A2 contributes to the enhanced tubuloglomerular feedback activity in young SHR. Am J Physiol 276: F758–F766, 1999.
 607. Welch WJ and Wilcox CS. Modulating role for thromboxane in the tubuloglomerular feedback response in the rat. J Clin Invest 81: 1843–1849, 1988.
 608. Welch WJ and Wilcox CS. Potentiation of tubuloglomerular feedback in the rat by thromboxane mimetic: Role of macula densa. J Clin Invest 89: 1857–1865, 1992.
 609. Schnermann J, Traynor T, Pohl H, Thomas DW, Coffman TM and Briggs JP. Vasoconstrictor responses in thromboxane receptor knockout mice: tubuloglomerular feedback and ureteral obstruction. Acta Physiol Scand 168: 201–207, 2000.
 610. Oldson DR, Moore LC and Layton HE. Effect of sustained flow perturbations on stability and compensation of tubuloglomerular feedback. Am J Physiol Renal Physiol 285: F972–F989, 2003.
 611. Castrop H, Lorenz JN, Hansen PB, Friis U, Mizel D, Oppermann M, Jensen BL, Briggs J, Skott O and Schnermann J. Contribution of the basolateral isoform of the Na‐K‐2Cl‐cotransporter (NKCC1/BSC2) to renin secretion. Am J Physiol Renal Physiol 289: F1185–F1192, 2005.
 612. Mitchell KD and Navar LG. The renin‐angiotensin‐aldosterone system in volume control. In: Bailliere's Clinical Endocrinology and Metabolism, ed. Baylis PH. London: Bailliere Tindall, 1989, pp. 393–430.
 613. Mitchell KD and Mullins JJ. ANG II dependence of tubuloglomerular feedback responsiveness in hypertensive ren‐2 transgenic rats. Am J Physiol Renal Physiol 268: F821–F828, 1995.
 614. Mitchell KD and Navar LG. Intrarenal actions of angiotensin II in the pathogenesis of experimental hypertension. In: Hypertension: Pathophysiology, Diagnosis, and Management, eds Laragh JH and Brenner BM. New York: Raven Press, Ltd., 1995, pp. 1437–1450.
 615. Morsing P, Stenberg A, Casellas D, Mimran A, Muller‐Suur C, Thorup C, Holm L and Persson AEG. Renal interstitial pressure and tubuloglomerular feedback control in rats during infusion of atrial natriuretic peptide (ANP). Acta Physiol Scand 146: 393–398, 1992.
 616. Persson AEG, Boberg U, Hahne B, Muller‐Suur R, Norlen B‐J and Selen G. Interstitial pressure as a modulator of tubuloglomerular feedback control. Kidney Int 22: S122–S128, 1982.
 617. Furchgott RF. The role of endothelium in the responses of vascular smooth muscle to drugs. Ann Rev Pharmacol Toxicol 24: 175–197, 1984.
 618. Furchgott RF and Vanhoutte PM. Endothelium‐derived relaxing and contracting factors. FASEB J 3: 2007–2018, 1989.
 619. Vane JR, Anggard EE and Bottin RM. Regulatory functions of the vascular endothelium. N Engl J Med 323: 27–36, 1990.
 620. Vanhoutte PM. Endothelium and control of vascular function. State of the art lecture. Hypertension 13: 658–667, 1989.
 621. Vanhoutte PM and Shimokawa H. Endothelium‐derived relaxing factor and coronary vasospasm. Circ 80: 1–9, 1989.
 622. Ignarro LJ. Biological actions and properties of endothelium‐derived nitric oxide formed and relased from artery and vein. Circ Res 65: 1–21, 1989.
 623. Ignarro LJ. Endothelium‐derived nitric oxide. FASEB J 3: 31–36, 1989.
 624. Ignarro LJ. Biosynthesis and metabolism of endothelium‐derived nitric oxide. Ann Rev Pharmacol Toxicol 30: 535–560, 1990.
 625. Ignarro LJ. Nitric Oxide: A Novel Signal Transduction Mechanism for Transcellular Communication. Hypertension 16: 477–483, 1990.
 626. Lancaster JR. Nitric oxide in cells. Am Sci 80: 248–259, 1992.
 627. Bhardwaj R and Moore PK. The effect of arginine and nitric oxide on resistance blood vessels of the perfused rat kidney. Br J Pharmacol 97: 739–744, 1989.
 628. Lieberthal W, Wolf EF, Rennke HG, Valeri CR and Levinsky NG. Renal ischemia and reperfusion impair endothelium‐dependent vascular relaxation. Am J Physiol Renal Physiol 256: F894–F900, 1989.
 629. Malomvolgyi B, Hadhazy P and Magyar K. Vasodilator: responses in perfused rabbit kidney: the role of endothelium. Arch int Pharmacodyn 292: 131–140, 1988.
 630. Yanagisawa M, Kurihara H, Kimura A, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K and Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cels. Nature Lond 332: 411–415, 1988.
 631. Badr KF, Murray JJ, Breyer MD, Takahashi K, Inagami T and Harris RC. Mesangial cell, glomerular and renal vascular responses to endothelin in the rat kidney. J Clin Invest 83: 336–342, 1989.
 632. Baylis C, Harton P and Engels K. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney. J Am Soc Nephrol 1: 875–881, 1990.
 633. Kon V, Yoshioka T, Fogo A and Ichikawa I. Glomerular actions of endothelin in vivo. J Clin Invest 83: 1762–1767, 1989.
 634. Lahera V, Salom MG, Fiksen‐Olsen MJ, Raij L and Romero JC. Effects of NG‐monomethyl‐1‐arginine and 1‐arginine on acetylcholine renal response. Hypertension 15: 659–663, 1990.
 635. Miller WL, Redfield MM and Burnett JC. Integrated cardiac, renal, and endocrine actions of endothelin. J Clin Invest 83: 317–320, 1989.
 636. King AJ and Brenner BM. Endothelium‐derived vasoactive factors and the renal vasculature. Am J Physiol 260: R653–R662, 1991.
 637. Marsden PA, Goligorsky MS and Brenner BM. Endothelial cell biology in relation to current concepts of vessel wall structure and function. J Am Soc Nephrol 1: 931–948, 1991.
 638. Pollock DM, Polakowski JS, Divish BJ and Opgenorth TJ. Angiotensin blockade reverses hypertension during long‐term nitric oxide synthase inhibition. Hypertension 21: 660–666, 1993.
 639. Raij L and Schultz PJ. Endothelium‐derived relaxing factor, nitric oxide: effects on and production by mesangial cells and the glomerulus. J Am Soc Nephrol 3: 1435–1441, 1993.
 640. Romero JC, Lahera V, Salom MG and Biondi ML. Role of the endothelium‐dependent relaxing factor nitric oxide on renal function. J Am Soc Nephrol 2: 1371–1387, 1992.
 641. Pacher P, Beckman JS and Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87: 315–424, 2007.
 642. Furchgott RF, Jothianandan D and Khan MT. Comparison of nitric oxide, S‐nitrosocysteine and EDRF as relaxants of rabbit aorta. Japan J Pharmacol 58 (Suppl II): 185P–191P, 1992.
 643. Marshall JJ and Kontos HA. Endothelium‐derived relaxing factors‐a perspective from in vivo Data. Hypertension 16: 371–386, 1990.
 644. Mulsch A, Vanin A, Mordvintcev P, Hauschildt S and Busse R. NO accounts completely for the oxygenated nitrogen species generated by enzymic L‐arginine oxygenation. Biochem J 288: 597–603, 1992.
 645. Henry Y, Lepoivre M, Drapier J‐C, Ducrocq C, Boucher J‐L and Guissani A. EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J 7: 1124–1134, 1993.
 646. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064, 1992.
 647. Pfeilschifter J, Kunz D and Muhl H. Nitric oxide: An inflammatory mediator of glomerular mesangial cells. Nephron 64: 518–525, 1993.
 648. Forstermann U, Schmidt HHHW, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M and Murad F. Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol 42: 1849–1857, 1991.
 649. Lamas S, Marsden PA, Li GK, Tempst P and Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 89: 6348–6352, 1992.
 650. Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Troso T and Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256: 225–228, 1992.
 651. Kunz D, Muhl H, Walker G and Pfeilschifter J. Two distinct signaling pathways trigger the expression of inducible nitric oxide synthase in rat renal mesangial cells. Proc Natl Acad Sci 91: 5387–5391, 1994.
 652. Marsden PA and Ballermann BJ. Tumor necrosis factor‐a activates soluble guanylate cyclase in bovine glomerular mesangial cells via an L‐arginine‐dependent mechanism. J Exp Med 172: 1843–1852, 1990.
 653. Mohaupt MG, Elzie JL, Ahn KY, Clapp WL, Wilcox CS and Kone BC. Differential expression and induction of mRNAs encoding two inducible nitric oxide synthases in rat kidney. Kidney lnt 46: 653–665, 1994.
 654. Moncada S. The first Robert Furchgott lecture: from endothelium‐dependent relaxation to the L‐arginine: NO pathway. Blood Vessels 27: 208–217, 1990.
 655. Muhl H, Kunz D and Pfeilschifter J. Expression of nitric oxide synthase in rat glomerular mesangial cells mediated by cyclic AMP. Br J Pharmacol 112: 1–8, 1994.
 656. Shultz PJ, Archer SL and Rosenberg ME. Inducible nitric oxide synthase mRNA and activity in glomerular mesangial cells. Kidney Int 46: 683–689, 1994.
 657. Shultz PJ, Tayeh MA, Marietta MA and Raij L. Synthesis and action of nitric oxide in rat glomerular mesangial cells. Am J Physiol Renal Physiol 261: F600–F606, 1991.
 658. Terada Y, Tomita K, Nonoguchi H and Marumo F. Polymerase chain reaction localization of constitutive nitric oxide synthase and soluble guanylate cyclase messenger RNAs in microdissected rat nephron segments. J Clin Invest 90: 659–665, 1992.
 659. Ujiie K, Drewett JG, Yuen PST and Star RA. Differential expression of mRNA for guanylyl cyclase‐linked endothelium‐derived relaxing factor receptor subunits in rat kidney. J Clin Invest 91: 730–734, 1993.
 660. Mundel P, Bachmann S, Bader M, Fischer A, Kummer W, Mayer B and Kriz W. Expression of nitric oxide synthase in kidney macula densa cells. Kidney lnt 42: 1017–1019, 1992.
 661. Liu L and Barajas L. Nitric oxide synthase immunoreactive neurons in the rat kidney. Neurosci Lett 161: 145–148, 1993.
 662. Tsukahara H, Krivenko Y, Moore LC and Goligorsky MS. Decrease in ambient [Cl−] stimulates nitric oxide release from cultured rat mesangial cells. Am J Physiol Renal Physiol 267: F190–F195, 1994.
 663. Schmidt HHHW, Lohmann SM and Walter U. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochimica et Biophysica Acta 1178: 153–175, 1993.
 664. Shultz PJ, Schorer AE and Raij L. Effects of endothelium‐derived relaxing factor and nitric oxide on rat mesangial cells. Am J Physiol Renal Physiol 258: F162–F167, 1990.
 665. Trottier G, Triggle CR, O'Neill SK and Loutzenhiser R. Cyclic GMP‐dependent and cyclic GMP‐independent actions of nitric oxide on the renal afferent arteriole. Br J Pharmacol 125: 563–569, 1998.
 666. Heuze‐Joubert I, Mennecier P, Simonet S, Laubie M and Verbeuren TJ. Effect of vasodilators, including nitric oxide, on the release od cGMP and cAMP in the isolated perfused rat kidney. Eur J Pharmacol 220: 161–171, 1992.
 667. Sandner P, Kornfeld M, Ruan X, Arendshorst WJ and Kurtz A. Nitric oxide/cAMP interactions in the control of rat renal vascular resistance. Circ Res 84: 186–192, 1999.
 668. Vanhoutte PM and Katusic ZS. Endothelium‐derived contracting factor: endothelin and/or superoxide union? Trends Pharmacol Sci 9: 229–230, 1988.
 669. Campbell WB and Gauthier KM. What is new in endothelium‐derived hyperpolarizing factors? Curr Opin Nephrol Hypertens 11 : 177–183, 2002.
 670. Campbell WB, Gebremedhin D, Pratt PF and Harder DR. Identification of epoxyeicosatrienoic acids as endothelium‐derived hyperpolarizing factors. Circ Res 78: 415–423, 1996.
 671. Kreisberg JI. Cell biology and biochemistry of the glomerular mesangium. Miner Electrolyte Metab 14: 167–175, 1988.
 672. Radermacher J, Forstermann U and Frolich JC. Endothelium‐derived relaxing factor influences renal vascular resistance. Am J Physiol Renal Physiol 259: F9–F17, 1990.
 673. Bascands J‐L, Pecher C, Bompart G, Rakotoarivony J, Tack JL and Girolami J‐P. Bradykinin‐induced in vitro contraction of rat mesangial cells via a B2 receptor type. Am J Physiol Renal Physiol 267: F871–F878, 1994.
 674. Inscho EW, Ohishi K and Navar LG. Effects of ATP on pre‐ and postglomerular juxtamedullary microvasculature. Am J Physiol Renal Physiol 263: F886–F893, 1992.
 675. Kremer S, Harper P, Hegele R and Skorecki K. Bradykinin stimulates a rise in cytosolic calcium in renal glomerular mesangial cells via a pertussis toxin insensitive pathway. Can J Physiol Pharmacol 66: 43–48, 1987.
 676. Lahera V, Salom MG, Fiksen‐Olsen MJ and Romero JC. Mediatory role of endothelium‐derived nitric oxide in renal vasodilatory and excretory effects of bradykinin. Am J Hypertens 4: 260–262, 1991.
 677. Salom MG, Lahera V and Romero JC, Role of prostaglandins and endothelium‐derived relaxing factor on the renal response to acetylcholine. Am J Physiol Renal Physiol 260: F145–F149, 1991.
 678. Tolins JP, Palmer RMJ, Moncada S and Raij L. Role of endothelium‐derived relaxing factor in regulation of renal hemodynamic responses. Am J Physiol Heart Circ Physiol 258: H655–H662, 1990.
 679. Baylis C and Qiu C. Importance of nitric oxide in the control of renal hemodynamics. [Review] [36 refs]. Kidney Int 49: 1727–1731, 1996.
 680. Majid DSA and Navar LG. Nitric oxide in the control of renal hemodynamics and excretory function. Am J Hypertens 14: 74S–82S, 2001.
 681. Siragy HM, Johns RA, Peach MJ and Carey RM. Nitric oxide alters renal function and guanosine 3′,5′‐cyclic monophosphate. Hypertension 19: 775–779, 1992.
 682. Baumann JE, Persson PB, Ehmke H, Nafz B and Kirchheim HR, Role of endothelium‐derived relaxing factor in renal autoregulation in conscious dogs. Am J Physiol Renal Physiol 263: F208–F213, 1992.
 683. Majid DSA, Godfrey M, Grisham MB and Navar LG. Relation between pressure natriuresis and urinary excretion of nitrate/nitrite in anesthetized dogs. Hypertension 25 (part 2): 860–865, 1995.
 684. Majid DSA and Navar LG. Blockade of distal nephron sodium transport attenuates pressure natriuresis in dogs. Hypertension 23 (part2): 1040–1045, 1994.
 685. Majid DSA, Williams A, Kadowitz PJ and Navar LG. Renal responses to intra‐arterial administration of nitric oxide donor in dogs. Hypertension 22: 535–541, 1993.
 686. Majid DSA, Williams A and Navar LG. Inhibition of nitric oxide synthesis attenuates pressure‐induced natriuretic responses in anesthetized dogs. Am J Physiol Renal Physiol 264: F79–F87, 1993.
 687. Naess PA, Kirkeboen KA, Christensen G and Kiil F. Inhibition of renal nitric oxide synthesis with NG‐monomethyl‐L‐arginine and NG‐nitro‐L‐arginine. Am J Physiol Renal Physiol 262: F939–F942, 1992.
 688. Perrella MA, Hildebrand FL, Jr., Margulies KB and Burnett JC, Jr. Endothelium‐derived relaxing factor in regulation of basal cardiopulmonary and renal function. Am J Physiol Regul Integr Comp Physiol 261: R323–R328, 1991.
 689. Yukimura T, Yamashita Y, Miura K, Okumura M, Yamanaka S and Yamamoto K. Renal effects of the nitric oxide synthase inhibitor, L‐NG‐nitroarginine, in dogs. Am J Hypertens 5: 484–487, 1992.
 690. Denton KM and Anderson WP. Intrarenal haemodynamic and glomerular respnses to inhibition of nitric oxide formation in rabbits. J Physiol 475: 159–167, 1994.
 691. Evans RG, Rankin AJ and Anderson WP. Interactions of blockade of nitric oxide synthase and angiotensin‐converting enzyme on renal function in conscious rabbits. J Cardiovasc Pharmacol 24: 542–551, 1994.
 692. Hajj‐ali AF, Reilly TM and Wong PC. Modulation of renal vasoconstrictor effect of NG‐nitro‐L‐arginine in rabbit by angiotensin II and alpha‐1 adrenergic receptor blockade. J Pharmacol Exp Ther 270: 1152–1157, 1994.
 693. Beierwaltes WH, Sigmon DH and Carretero OA. Endothelium modulates renal blood flow but not autoregulation. Am J Physiol Renal Physiol 262: F943–F949, 1992.
 694. Lahera V, Salom MG, Miranda‐Guardiola F, Moncada S and Romero JC. Effects of Ng‐nitro‐L‐arginine methyl ester on renal function and blood pressure. Am J Physiol Renal Physiol 261: F1033–F1037, 1991.
 695. Lockhart JC, Larson TS and Knox FG. Perfusion pressure and volume status determine the microvascular response of the rat kidney to NG‐monomethyl‐L‐arginine. Circ Res 75: 829–835, 1994.
 696. Nakamura T, Alberola AM and Granger JP. Role of renal interstitial pressure as a mediator of sodium retention during systemic blockade of nitric oxide. Hypertension 21: 956–960, 1993.
 697. Pucci ML, Lin L and Nasjletti A. Pressor and renal vasoconstrictor effects of NG‐nitro‐L‐arginine as affected by blockade of pressor mechanisms mediated by the sympathetic nervous system, angiotensin. prostanoids and vasopressin. J Pharmacol Exp Ther 261: 240–245, 1992.
 698. Shultz PJ and Tolins JP. Adaptation to increased dietary salt intake in the rat: role of endogenous nitric oxide. J Clin Invest 91: 642–650, 1993.
 699. Welch WJ, Wilcox CS, Aisaka K, Gross SS, Griffith OW, Fontoura BMA, Maack T and Levi R. Nitric oxide synthesis from L‐arginine modulates renal vascular resistance in isolated perfused and intact rat kidneys. J Cardiovasc Pharmacol 17 (Suppl. 3): S165–S168, 1991.
 700. Brezis M, Heyman SN, Dinour D, Epstein FH and Rosen S. Role of nitric oxide in renal medullary oxygenation: studies in isolated and intact rat kidneys. J Clin Invest 88: 390–395, 1991.
 701. Radermacher J, Klanke B, Kastner S, Haake G, Schurek HJ, Stolte HF and Frolich JC. Effect of arginine depletion on glomerular and tubular kidney function: studies in isolated perfused rat kidneys. Am J Physiol Renal Physiol 261: F779–F786, 1991.
 702. Radermacher J, Klanke B, Schurek HJ, Stolte HF and Frolich JC. Importance of NO/EDRF for glomerular and tubular function: Studies in the isolated perfused rat kidney. Kidney Int 41: 1549–1559, 1992.
 703. Chen C, Mitchell KD and Navar LG. Role of endothelium‐derived nitric oxide in the renal hemodynamic response to amino acid infusion. Am J Physiol Regul Integr Comp Physiol 263: R510–R516, 1992.
 704. Fenoy FJ, Ferrer P, Carbonell L and García‐Salom M. Role of nitric oxide on papillary blood flow and pressure natriuresis. Hypertension 25: 408–414, 1995.
 705. Salazar FJ, Pinilla JM, Lopez F, Romero JC and Quesada T. Renal effects of prolonged synthesis inhibition of endothelium‐derived nitric oxide. Hypertension 20: 113–117, 1992.
 706. Qiu C, Engels K and Baylis C. Angiotensin II and a1‐adrenergic tone in chronic nitric oxide blockade‐induced hypertension. Am J Physiol Renal Physiol 266: R1470–R1476, 1994.
 707. Granger JP, Alberola AM, Salazar FJ and Nakamura T. Control of renal hemodynamics during intrarenal and systemic blockade of nitric oxide synthesis in conscious dogs. J Cardiovasc Pharmacol 20 (Suppl. 12): S160–S162, 1992.
 708. Hirata Y, Matsuoka H, Kimura K, Sugimoto T, Hayakawa H and Suzuki E. Role of endothelium‐derived relaxing factor in endothelin‐induced renal vasoconstriction. J Cardiovasc Pharmacol 17 (Suppl. 7): S169–S171, 1991.
 709. Manning RD, Jr. and Hu L. Nitric oxide regulates renal hemodynamics and urinary sodium excretion in dogs. Hypertension 23: 619–625, 1994.
 710. Persson PB, Baumann JE, Ehmke H, Hackenthal E, Kirchheim HR and Nafz B. Endothelium‐derived NO stimulates pressure‐dependent renin release in conscious dogs. Am J Physiol Renal Physiol 264: F943–F947, 1993.
 711. Biondi ML, Bolterman RJ and Romero JC. Zonal changes of guanidine 3′,5′‐cyclic monophosphate related to endothelium‐derived relaxing factor in dog renal medulla. Renal Physiol Biochem 15: 16–22, 1992.
 712. Lahera V, Navarro J, Biondi ML, Ruilope LM and Romero JC. Exogenous cGMP prevents decrease in diuresis and natriuresis induced by inhibition of NO synthesis. Am J Physiol Renal Physiol 264: F344–F347, 1993.
 713. Suzuki H, Ikenaga H, Hishikawa K, Nakaki T, Kato R and Saruta T. Increases in NO2−/NO3− excretion in the urine as an indicator of the release of endothelium‐derived relaxing factor during elevation of blood pressure. Clin Sci 82: 631–634, 1992.
 714. Tolins JP and Shultz PJ. Endogenous nitric oxide synthesis determines sensitivity to the pressor effect of salt. Kidney Int 46: 230–236, 1994.
 715. Westberg G, Shultz PJ and Raij L. Exogenous nitric oxide prevents endotoxin‐induced glomerular thrombosis in rats. Kidney Int 46: 711–716, 1994.
 716. Sigmon DH, Carretero OA and Beierwaltes WH. Renal versus femoral hemodynamic response to endothelium‐derived relaxing factor synthesis inhibition. J Vasc Res 30: 218–223, 1993.
 717. Sonntag M, Deussen A and Schrader J. Role of nitric oxide in local blood flow control in the anaesthetized dog. Pflügers Arch 420: 194–199, 1992.
 718. Deng X, Welch WJ and Wilcox CS. Renal vasoconstriction during inhibition of NO synthase: Effects of dietary salt. Kidney Int 46: 639–646, 1994.
 719. Eisner D, Muntze A, Kromer EP and Riegger GAJ. Inhibition of synthesis of endothelium‐derived nitric oxide in conscious dogs: Hemodynamic, renal, and hormonal effects. Am J Hypertens 5: 288–291, 1992.
 720. Napathorn S, Chaiyabutr N, Buranakarl C, Pansin P, Pochanugool C, Sridama V and Sitprija V. Effects of acute arginine loading on renal and systemic hemodynamics in dogs. Nephron 60: 220–225, 1992.
 721. Qiu C, Engels K, Samsell L and Baylis C. Renal effects of actue amino acid infusion in hypertension induced by chronic nitric oxide blockade. Hypertension 25: 61–66, 1995.
 722. Salazar FJ, Alberola A, Nakamura T and Granger JP. Role of nitric oxide in the renal hemodynamic response to a meat meal. Am J Physiol Regul Integr Comp Physiol 267: R1050–R1055, 1994.
 723. Tolins JP and Raij L. Effects of amino acid infusion on renal hemodynamics: role of endothelium‐derived relaxing factor. Hypertension 17: 1045–1051, 1991.
 724. Tolins JP, Shultz PJ, Westberg G and Raij L. Renal hemodynamic effects of dietary protein in the rat: role of nitric oxide. J Lab Clin Med 125: 228–236, 1995.
 725. Moncada S, Palmer RMJ and Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109–142, 1991.
 726. Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ and Gruetter CA. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S‐nitrosothiols as active intermediates. J Pharmacol Exp Titer 218: 739–749, 1981.
 727. Macias‐Nunez JF, Garcia‐lglesias C, Santos JC, Snaz E and Lopez‐Novoa JM. Influence of plasma renin content, intrarenal angiotensin II. captopril. and calcium channel blockers on the vasoconstriction and renin release promoted by adenosine in the kidney. J Lab Clin Med 106: 562–567, 1985.
 728. Moncada S, Palmer RMJ and Higgs EA. The discovery of nitric oxide as the endogenous nitrovasodilator. Hypertension 12: 365–372, 1988.
 729. Zatz R and De Nucci G. Effects of acute nitric oxide inhibition on rat glomerular microcirculation. Am J Physiol Renal Physiol 261: F360–F363, 1991.
 730. DeNicola L, Blantz RC and Gabbai FB. Nitric oxide and angiotensin II: glomerular and tubular interaction in the rat. J Clin Investig 89: 1248–1256, 1992.
 731. Deng A and Baylis C. Locally produced EDRF controls preglomerular resistance and ultrafiltration coefficient. Am J Physiol Renal Physiol 264: F212–F215, 1993.
 732. Baylis C, Mitruka B and Deng A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 90: 278–281, 1992.
 733. Ohishi K, Carmines PK, Inscho EW and Navar LG. EDRF‐angiotensin II interactions in rat juxtamedullary afferent and efferent arterioles. Am J Physiol Renal Physiol 263: F900–F906, 1992.
 734. Edwards RM and Trizna W. Modulation of glomerular arteriolar tone by nitric oxide synthase inhibitors. J Am Soc Nephrol 4: 1127–1132, 1993.
 735. Ito S, Arima S, Ren YL, Juncos LA and Carretero OA. Endothelium‐derived relaxing factor/nitric oxide modulates angiotensin II action in the isolated microperfused rabbit afferent but not efferent arteriole. J Clin Invest 91: 2012–2019, 1993.
 736. Imig JD, Gebremedhin D, Harder DR and Roman RJ. Modulation of vascular tone in renal microcirculation by erythrocytes: role of EDRF. Am J Physiol Heart Circ Physiol 264: H190–H195, 1993.
 737. Imig JD and Roman RJ. Nitric oxide modulates vascular tone in preglomerular arterioles. Hypertension 19: 770–774, 1992.
 738. Thompson A, McGarry AE, Valeri CR and Lieberthal W. Stroma‐free hemoglobin increases blood pressure and GFR in the hypotensive rat: role of nitric oxide. J Appl Physiol 77: 2348–2354, 1994.
 739. Gulbins E, Hoffend J, Zou AP, Dietrich MS, Schlottmann K, Cavarape A and Steinhausen M. Endothelin and endothelium‐derived relaxing factor control of basal renovascular tone in hydronephrotic rat kidneys. J Physiol (Lond) 469: 571–582, 1993.
 740. Hoffend J, Cavarape A, Endlich K and Steinhausen M. Influence of endothelium‐derived relaxing factor on renal microvessels and pressure‐dependent vasodilation. Am J Physiol Renal Physiol 265: F285–F292, 1993.
 741. Bachmann S, Bosse HM and Mundel P. Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am J Physiol Renal Physiol 268: F885–F898, 1995.
 742. Tojo A, Gross SS, Zhang L, Tisher CC, Schmidt HHHW, Wilcox CS and Madsen KM. Immunocytochemical localization of distinct isoforms of nitric oxide synthase in the juxtaglomerular apparatus of normal rat kidney. J Am Soc Nephrol 4: 1438–1447, 1994.
 743. Ito S and Ren Y. Evidence for the role of nitric oxide in macula densa control of glomerular hemodynamics. J Clin Invest 92: 1093–1098, 1993.
 744. Thorup C and Persson AEG. Macula densa derived nitric oxide in regulation of glomerular capillary pressure. Kidney Int 49: 430–436, 1996.
 745. Vallon V and Thomson S. Inhibition of local nitric oxide synthase increases homeostatic efficiency of tubuloglomerular feedback. Am J Physiol Renal Physiol 269: F892–F899, 1995.
 746. Ichihara A, Inscho EW, Imig JD and Navar LG. Neuronal nitric oxide synthase modulates rat renal microvascular function. Am J Physiol Renal Physiol 274: F516–F524, 1998.
 747. Ichihara A, Imig JD, Inscho EW and Navar L. Cyclooxygenase‐2 participates in tubular flow‐dependent afferent arteriolar tone: interaction with neuronal NOS. Am J Physiol Renal Physiol 275: F605–F612, 1998.
 748. Ren Y, Garvin JL and Carretero OA. Role of macula densa nitric oxide and cGMP int he regulation of tubuloglomerular feedback. Kidney Int 58: 2053–2060, 2000.
 749. Kramp R, Fourmanoir P and Caron N. Endothelin resets renal blood flow autoregulatory efficiency during acute blockade of NO in the rat. Am J Physiol Renal Physiol 281: F1132–F1140, 2001.
 750. Just A and Arendshorst WJ. Nitric oxide blunts myogenic autoregulation in rat renal but not skeletal muscle circulation via tubuloglomerular feedback. J Physiol 569: 959–974, 2005.
 751. Wang X and Cupples WA. Interaction between nitric oxide and renal myogenic autoregulation in normotensive and hypertensive rats. Can J Physiol Pharmacol 79: 238–245, 2001.
 752. Wang X, Salevsky FC and Cupples WA. Nitric oxide, atrial natriuretic factor, and dynamic renal autoregulation. Can J Physiol Pharmacol 11: 777–786, 1999.
 753. Uhrenholt TR, Schjerning J, Vanhoutte PM, Jensen BL and Skott O. Intercellular calcium signaling and nitric oxide feedback during constriction of rabbit renal afferent arterioles. Am J Physiol Renal Physiol 292: F1124–F1131, 2007.
 754. Johnson RA and Freeman RH. Renin release in rats during blockade of nitric oxide synthesis. Am J Physiol Regul Integr Comp Physiol 266: R1723–R1729, 1994.
 755. Sigmon DH, Carretero OA and Beierwaltes WH. Angiotensin dependence of endothelium‐mediated renal hemodynamics. Hypertension 20: 643–650, 1992.
 756. Sigmon DH, Carretero OA and Beierwaltes WH. Plasma renin activity and the renal response to nitric oxide synthesis inhibition. J Am Soc Nephrol 3: 1288–1294, 1992.
 757. Takenaka T, Mitchell KD and Navar LG. Contribution of angiotensin II to renal hemodynamic and excretory responses to nitric oxide synthesis inhibition in the rat. J Am Soc Nephrol 4: 1046–1053, 1993.
 758. Alberola A, Pinilla JM, Quesada T, Romero JC, Salom MG and Salazar FJ. Role of nitric oxide in mediating renal response to volume expansion. Hypertension 19: 780–784, 1992.
 759. Manning RD, Jr., Hu L, Mizelle HL and Granger JP. Role of nitric oxide in long‐term angiotensin II‐induced renal vasoconstriction. Hypertension 21: 949–955, 1993.
 760. Manning RD, Jr., Hu L, Mizelle HL, Montani J‐P and Norton MW. Cardiovascular responses to long‐term blockade of nitric oxide synthesis. Hypertension 22: 40–48, 1993.
 761. Baylis C, Engels K, Samsell L and Harton P. Renal effects of acute endothelial‐derived relaxing factor blockade are not mediated by angiotensin II. Am J Physiol Renal Physiol 264: F74–F78, 1993.
 762. Sigmon DH and Beierwaltes WH. Angiotensin II: nitric oxide interaction and the distribution of blood flow. Am J Physiol Regul Integr Comp Physiol 265: R1276–R1283, 1993.
 763. Beierwaltes WH and Carretero OA. Nonprostanoid endothelium‐derived factors inhibit renin release. Hypertension 19 (suppl II): II‐68–11‐73, 1992.
 764. Sigmon DH, Carretero OA and Beierwaltes WH. Endothelium‐derived relaxing factor regulates renin release in vivo. Am J Physiol Renal Physiol 263: F256–F261, 1992.
 765. Gardes J, Gonzalez MF, Alhenc‐Gelas F and Ménard J. Influence of sodium diet on L‐NAME effects on renin release and renal vasoconstriction. Am J Physiol Renal Physiol 267: F798–F804, 1994.
 766. Scholz H and Kurtz A. Involvement of endothelium‐derived relaxing factor in the pressure control of renin secretion from isolated perfused kidney. J Clin Invest 91: 1088–1094, 1993.
 767. Schricker K, Bruna RD, Hamann M and Kurtz A. Endothelium derived relaxing factor is involved in the pressure control of renin gene expression in the kidney. Pflügers Arch 428: 261–268, 1994.
 768. Bank N, Aynedjian HS and Khan GA. Mechanism of vasoconstriction induced by chronic inhibition of nitric oxide in rats. Hypertension 24: 322–328, 1994.
 769. Kumagai K, Suzuki H, Ichikawa M, Jimbo M, Murakami M, Ryuzaki M and Saruta T. Nitric oxide increases renal blood flow by interacting with the sympathetic nervous system. Hypertension 24: 220–226, 1994.
 770. Haynes WG and Webb DJ. Endothelin as a regulator of cardiovascular function in health and disease. J Hypertens 16: 1081–1098, 1998.
 771. Matsaki T. The discovery, the present state, and the future prospects of endothelin. J Cardiol Pharmacol 13 (Suppl. 5): S1–S4, 1989.
 772. Yanagisawa M and Masaki T. Endothelin, a novel endothelium‐derived peptide. Biochem Pharmacol 38: 1877–1883, 1989.
 773. King A, Brenner BM and Anderson S. Endothelin: a potent renal and systemic vasoconstrictor peptide. Am J Physiol 256: F1051–F1058, 1989.
 774. Kohan DE. Endothelins in the kidney: physiology and pathophysiology. Am J Kidney Dis 22: 493–510, 1993.
 775. Rubanyi GM and Polokoff MA. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46: 325–415, 1994.
 776. Simonson MS. Endothelins: multifunctional renal peptides. Physiol Rev 73: 375–487, 1993.
 777. Simonson MS and Dunn MJ. Enodthelin peptides and the kidney. Ann Rev Physiol 55: 249–265, 1993.
 778. Karet FE and Davenport AP. Localization of endothelin peptides in human kidney. Kidney Int 49: 382–387, 1996.
 779. Marsden PA, Dorfman DM, Collins T, Brenner BM, Orkin SH and Ballermann BJ. Regulated expression of endothelin 1 in glomerular capillary endothelial cells. Am J Physiol Renal Physiol 261: F117–F125, 1991.
 780. D'Orleans‐Juste P, Plante M, Honore JC, Carrier E and Labonte J. Synthesis and degradation of endothelin‐1. Can J Physiol Pharmacol 81: 503–510, 2003.
 781. Dean R, Zhuo J, Alcorn D, Casley D and Mendelsohn FAO. Cellular distribution of 125 I‐endothelin‐1 binding in rat kidney following in vivo labeling. Am J Physiol Renal Physiol 267: F845–F852, 1994.
 782. Denton KM and Anderson WP. Vascular actions of endothelin in the rabbit kidney. Clin Exp Pharmacol Physiol 17: 861–872, 1990.
 783. Gellai M, De Wolf R, Pullen M and Nambi P. Distribution and functional role of renal ET receptor subtypes in normotensive and hypertensive rats. Kidney Int 46: 1287–1294, 1994.
 784. Pollock DM, Jenkins JM, Cook AK, Imig JD and Inscho EW. L‐type calcium channels in the renal microcirculatory response to endothelin. Am J Physiol Renal Physiol 288: F771–F777, 2005.
 785. Pollock DM and Opgenorth TJ. ETA receptor‐mediated responses to endothelin‐1 and big endothelin‐1 in the rat kidney. Br J Pharmacol 111: 729–732, 1994.
 786. Schulz E, Ruschitzka F, Lueders S, Heydenbluth R, Schrader J and Muller GA. Effects of endothelin on hemodynamics, prostaglandins, blood coagulation and renal function. Kidney Int 47: 795–801, 1995.
 787. Simonson MS and Dunn MJ. Cellular signaling by peptides of the endothelin gene family. FASEB J 4: 2989–3000, 1990.
 788. Wilkins FC, Jr., Alberola A, Mizelle HL, Opgenorth TJ and Granger JP. Systemic hemodynamics and renal function during long‐term pathophysiological increases in circulating endothelin. Am J Physiol Regul Integr Comp Physiol 268: R375–R381, 1995.
 789. Clozel M, Fischli W and Guilly C. Specific binding of endothelin on human vascular smooth muscle cells in culture. J Clin Invest 83: 1758–1761, 1989.
 790. Brooks DP, DePalma PD, PUllen M and Nambi P. Characterization of canine renal endothelin receptor subtypes and their function. J Pharmacol Expl Ther 268: 1091–1097, 1994.
 791. Maguire JJ, Kuc RE, O'Reilly G and Davenport AP. Vasoconstrictor endothelin receptors characterized in human renal artery and vein in vitro. Br J Pharmacol 113: 49–54, 1994.
 792. Nambi P, PUllen M, Wu HL, Aiyar N, Ohlstein EH and Edwards RM. Identification of endothelin receptor subtypes in human renal cortex and medulla using subtype‐selective ligands. Endocrinology 131: 1081–1086, 1992.
 793. Backer A, Bokemeyer D and Kramer HJ. Endothelin synthesis and receptors in porcine kidney. Acta Physiol Scand 171: 105–112, 2001.
 794. Nambi P, Wu HL, PUllen M, Aiyar N, Bryan H and Elliott J. Identification of endothelin receptor subtypes in rat kidney cortex using subtype‐selective ligands. Mol Pharmacol 42: 336–339, 1992.
 795. DeLeon H and Garcia R. Characterization of endothelin receptor subtypes in isolated rat renal preglomerular microvessels. Regul Pept 60: 1–8, 1995.
 796. Edwards RM and Trizna W. Characterization of 1251‐endothelin‐1 binding to rat and rabbit renal microvasculature. J Pharmacol Exp Ther 274: 1084–1089, 1995.
 797. Hocher B, Rohmeiss P, Diekmann F, Zart R, Vogt V, Schiller S, Bauer C, Koppenhagen K, Distler A and Gretz N. Distribution of endothelin receptor subtypes in the rat kidney. Renal and haemodynamic effects of the mixed (A/B) endothelin receptor antagonist bosentan. Eur J Clin Chem Clin Biochem 33: 463–472, 1995.
 798. Yukimura T, Notoya M, Mizojiri K, Mizuhira V, Matsuura T, Ebara T, Miura K, Kim S, Iwao H and Song K. High resolution localization of endothelin receptors in rat renal medulla. Kidney Int 50: 135–147, 1996.
 799. Kuc RE and Davenport AP. Endothelin‐A‐receptors in human aorta and pulmonary arteries are downregulated in patients with cardiovascular disease: an adaptive response to increased levels of endothelin‐1? J Cardiovasc Pharmacol 36: S377–S379, 2000.
 800. Telemaque‐Potts S, Kuc RE, Maguire JJ, Ohlstein E, Yanagisawa M and Davenport AP. Elevated systemic levels of endothelin‐1 and blood pressure correlate with blunted constrictor responses and downregulation of endothelin(A), but not endothelin(B), receptors in an animal model of hypertension. Clin Sci (Lond) 103 (Suppl 48): 357S–362S, 2002.
 801. Wang X, Douglas SA, Louden C, Vickery‐Clark LM, Feuerstein GZ and Ohlstein EH. Expression of endothelin‐1, endothelin‐3, endothelin‐converting enzyme‐1, and endothelin‐A and endothelin‐B receptor mRNA after angioplasty‐induced neointimal formation in the rat. Circ Res 78: 322–328, 1996.
 802. Redmond EM, Cahill PA, Hodges R, Zhang S and Sitzmann JV. Regulation of endothelin receptors by nitric oxide in cultured rat vascular smooth muscle cells. J Cell Physiol 166: 469–479, 1996.
 803. Ballew JR and Fink GD. Role of endothelin ETB receptor activation in angiotensin II‐induced hypertension: effects of salt intake. Am J Physiol Heart Circ Physiol 281: H2218–H2225, 2001.
 804. Eguchi S, Hirata Y, Imai T, Kanno K and Marumo F. Phenotypic change of endothelin receptor subtype in cultured rat vascular smooth muscle cells. Endocrinology 134: 222–228, 1994.
 805. Douglas SA and Ohlstein EH. Signal transduction mechanisms mediating the vascular actions of endothelin. J Vasc Res 34: 152–164, 1997.
 806. Hughes AK, Cline RC and Kohan DE. Alterations in renal endothelin‐1 production in the spontaneously hypertensive rat. Hypertension 20: 666–673, 1992.
 807. Kohan DE. Intrarenal endothelin‐1 and hypertension. Am J Kidney Dis 36: liv–lvi, 2000.
 808. Pollock DM. Renal endothelin in hypertension. Curr Opin Nephrol Hypertens 9: 157–164, 2000.
 809. Takahashi K, Katoh T, and Badr K F. Endothelin and endothelium‐derived relaxing factor in the control of glomerular filtration and renal blood flow. 1991, p. 3–19.
 810. Kohan DE. The renal medullary endothelin system in control of sodium and water excretion and systemic blood pressure. Curr Opin Nephrol Hypertens 15: 34–40, 2006.
 811. Stricklett PK, Hughes AK and Kohan DE. Endothelin‐1 stimulates NO production and inhibits cAMP accumulation in rat inner medullary collecting duct through independent pathways. Am J Physiol Renal Physiol 290: F1315–F1319, 2006.
 812. Munger KA, Takahashi K, Awazu M, Frazer M, Falk SA, Conger JD and Badr KF. Maintenance of endothelin‐induced renal arteriolar constriction in rats is cyclooxygenase dependent. Am J Physiol Renal Physiol 264: F637–F644, 1993.
 813. Banks RO. Effects of endothelin on renal function in dogs and rats. Am J Physiol Renal Physiol 258: F775–F780, 1990.
 814. Claria J, Jimenez W, La Villa G, Asbert M, Castro A, Llibre J, Arroyo V and Rivera F. Effects of endothelin on renal haemodynamics and segmental sodium handling in conscious rats. Acta Physiol Stand 141: 305–308, 1991.
 815. Clavell AL, Stingo AJ, Margulies KB, Brandt RR and Burnett JC, Jr. Role of endothelin receptor subtypes in the in vivo regulation of renal function. Am J Physiol Renal Physiol 268: F455–F460, 1995.
 816. Denton KM, Shweta A, Finkelstein L, Flower RL and Evans RG. Effect of endothelin‐1 on regional kidney blood flow and renal arteriole calibre in rabbits. Clin Exp Pharmacol Physiol 31: 494–501, 2004.
 817. Fretschner M, Endlich K, Gulbins E, Lang RE, Schlottmann K and Steinhausen M. Effects of endothelin on the renal microcirculation of the split hydronephrotic rat kidney. Renal Physiol Biochem 14: 112–127, 1991.
 818. Harris PJ, Zhuo J, Mendelsohn FAO and Skinner SL. Haemodynamic and renal tubular effects of low doses of endothelin in anesthetized rats. J Physiol 433: 25–39, 1991.
 819. Katoh T, Chang H, Uchida S, Okuda T and Kurokawa K. Direct effects of endothelin in the rat kidney. Am J Physiol Renal Physiol 258: F397–F402, 1990.
 820. Lin H, Sangmal M, Smith MJ, Jr. and Young DB. Effect of endothelin‐1 on glomerular hydraulic pressure and renin release in dogs. Hypertension 21: 845–851, 1993.
 821. Loutzenhiser R, Epstein M, Hayashi K and Horton C. Direct visualization of effects of endothelin on the renal microvasculature. Am J Physiol Renal Physiol 258: F61–F68, 1990.
 822. Stacy DL, Scott JW and Granger JP. Control of renal function during intrarenal infusion of endothelin. Am J Physiol Renal Physiol 258: F1232–F1236, 1990.
 823. Tsuchiya K, Naruse M, Sanaka T, Naruse K, Nitta K, Demura H and Sugino N. Effects of endothelin on renal regional blood flow in dogs. Eur J Pharmacol 166: 541–543, 1989.
 824. Yamashita Y, Yukimura T, Miura K, Okumura M and Yamamoto K. Effects of endothelin‐3 on renal functions. J Pharmacol Exp Ther 259: 1256–1260, 1992.
 825. Goetz KL, Want BC, Madwed JB, Zhu JL and Leadley RJ, Jr. Cardiovascular, renal, and endocrine responses to intravenous endothelin in conscious dogs. Am J Physiol 255: R1064–R1068, 1988.
 826. Matsumura Y, Hisaki K, Ohyama T, Hayashi K and Morimoto S. Effects of endothelin on renal function and renin secretion in anesthetized rats. Eur J Pharmacol 166: 577–580, 1989.
 827. Murakawa K, Kohno M, Yokokawa K, Yasunari K, Horio T, Kurihara N and Takeda T. Endothelin‐induced renal vasoconstriction and increase in cytosolic calcium in renal vascular smooth muscle cells. Clin Exper Theor Pract 12: 1037–1048, 1990.
 828. Pernow J, Boutier JF, Franco‐Cereceda A, Lacroix JS, Matran R and Lundberg JM. Potent selective vasoconstrictor effects of endothelin in the pig kidney in vivo. Acta Physiol Scand 134: 573–574, 1988.
 829. Pollock DM and Opgenorth TJ. Evidence for endothelin‐induced renal vasoconstriction independent of ETA receptor activation. Am J Physiol 264: R222–R226, 1993.
 830. Rabelink TJ, Kaasjager KAH, Boer P, Stroes EG, Braam B and Koomans HA. Effects of endothelin‐1 on renal function in humans: Implications for physiology and pathophysiology. Kidney Int 46: 376–381, 1994.
 831. Evans RG, Madden AC and Cotterill E. ET‐receptor subtypes: roles in regional renal vascular actions of exogenous and endogenous endothelins in anesthetized rabbits. J Cardiovasc Pharmacol 35: 677–685, 2000.
 832. Evans RG, Madden AC, Oliver JJ and Lewis TV. Effects of ETA‐and ETB‐receptor antagonists on regional kidney blood flow, and responses to intravenous endothelin‐1, in anaesthetized rabbits. J Hypertens 19: 1789–1799, 2001.
 833. Just A, Olson AJ and Arendshorst WJ. Dual constrictor and dilator actions of ET(B) receptors in the rat renal microcirculation: interactions with ET(A) receptors. Am J Physiol Renal Physiol 286: F660–F668, 2004.
 834. Matsuura T, Miura K, Ebara T, Yukimura T, Yamanaka S, Kim S and Iwao H. Renal vascular effects of the selective endothelin receptor antagonists in anaesthetized rats. Br J Pharmacol 122: 81–86, 1997.
 835. Matsuura T, Yukimura T, Kim S, Miura K and Iwao H. Selective blockade of endothelin receptor subtypes on systemis and renal vascular responses to endothelin‐1 and IRL1620, a selective endothelin ETB‐receptor agonist, in anesthetized rats. Japn J Pharmacol 71: 213–222, 1996.
 836. Cristol JP, Warner TD, Thiemermann C and Vane JR. Mediation via different receptors of the vasoconstrictor effects of endothelins and sarafotoxins in the systemic circulation and renal vasculature of the anaesthetized rat. Br J Pharmacol 108: 776–779, 1993.
 837. Gellai M. Physiological role of endothelin in cardiovascular and renal hemodynamics: studies in animals. Curr Opinn Nephrol Hypertens 6: 64–68, 1997.
 838. Gellai M, Fletcher T, PUllen M and Nambi P. Evidence for the existence of endothelin‐B receptor subtypes and their physiological roles in the rat. Am J Physiol 271: R254–R261, 1996.
 839. Wellings RP, Corder R, Warner TD, Cristol JP, Thiemermann C and Vane JR. Evidence from receptor antagonists of an important role for ETB receptor‐mediated vasoconstrictor effects of endothelin‐1 in the rat kidney. Br J Pharmacol 111: 515–520, 1994.
 840. Abassi Z, Francis B, Wessale J, Ovcharenko E, Winaver J and Hoffman A. Effects of endothelin receptors ET(A) and ET(B) blockade on renal haemodynamics in normal rats and in rats with experimental congestive heart failure. Clin Sci (Land) 103 (Suppl 48): 245S–248S, 2002.
 841. Abassi ZA, Ellahham S, Winaver J and Hoffman A. The intrarenal endothelin system and hypertension. News Physiol Sci 16: 152–156, 2001.
 842. D'Orleans‐Juste P, Claing A, Telemaque S, Maurice M‐C, Yano M and Gratton J‐P. Block of endothelin‐1‐induced release of thromboxane A2 from the guinea pig lung and nitric oxide from the rabbit kidney by a selective ETB receptor antagonist, BQ‐788. Br J Pharmacol 113: 1258–1262, 2004.
 843. Gellai M, De Wolf R, Fletcher T and Nambi P. Contribution of endogenous endothelin‐1 to the maintenance of vascular tone: role of nitric oxide. Pharmacology 55: 299–308, 1997.
 844. Marshall JL and Johns EJ. Influence of endothelins and sarafotoxin 6c and L‐NAME on renal vasoconstriction in the anesthetized rat. Br J Pharmacol 128: 809–815, 1999.
 845. Bohm F, Pernow J, Lindstrom J and Ahlborg G. ETA receptors mediate vasoconstriction, whereas ETB receptors clear endothelin‐1 in the splanchnic and renal circulation of healthy men. Clin Sci(Lond) 104: 143–151, 2003.
 846. Fukuroda T, Fujikawa T, Ozaki S, Ishikawa K, Yano M and Nishikibe M. Clearance of circulating endothelin‐1 by ETB receptors in rats. Biochem Biophys Res Commun 199: 1461–1465, 1994.
 847. Oyekan AO and McGiff JC. Cytochrome P‐450‐derived eicosanoids participate in the renal functional effects of ET‐1 in the anesthetized rat. Am J Physiol 274: R52–R61, 1998.
 848. Imig JD, Pham BT, LeBlanc EA, Reddy KM, Falck JR and Inscho EW. Cytochrome P450 and cyclooxygenase metabolites contribute to the endothelin‐1 afferent arteriolar vasoconstrictor and calcium responses. Hypertension 35: 307–312, 2000.
 849. Berthold H, Münter K, Just A, Kirchheim HR and Ehmke H. Stimulation of the renin‐angiotensin system by endothelin subtype A receptor blockade in conscious dogs. Hypertension 33: 1420–1424, 1999.
 850. Girchev R, Backer A, Markova P and Kramer HJ. Impaired response of the denervated kidney to endothelin receptor blockade in normotensive and spontaneously hypertensive rats. Kidney Int 65: 982–989, 2004.
 851. Girchev R, Backer A, Markova P and Kramer HJ. Renal endothelin system and excretory function in Wistar‐Kyoto and Long‐Evans rats. Acta Physiol (Oxf) 186: 67–76, 2006.
 852. Berthold H, Münter K, Just A, Kirchheim HR and Ehmke H. Contribution of endothelin to renal vascular tone and autoregulation in the conscious dog. Am J Physiol Renal Physiol 276: F417–F424, 1999.
 853. Honing MLH, Hijmering ML, Ballard DE, Yang YP, Padley RJ, Morrison PJ and Rabelink TJ. Selective ETA receptor antagonism with ABT‐627 atteuates all renal effects of endothelin in humans. J Am Soc Nephrol 11: 1498–1504, 2000.
 854. Schmetterer L, Dallinger S, Bobr B, Selenko N, Eichler HG and Wolzt M. Systemic and renal effects of an ETA receptor subtype‐specific antagonist in healthy subjects. Br J Pharmacol 124: 930–934, 1998.
 855. Schmidt A, Bayerle‐Eder M, Pleiner H, Zeisner C, Wolzt M, Mayer G and Schmetterer L. The renal and systemic hemodynamic effects of a nitric oxide‐synthase inhibitor are reversed by a selective endothelin(a) receptor antagonist in men. Nitric Oxide 5: 370–376, 2001.
 856. Dhaun N, Goddard J and Webb DJ. The endothelin system and its antagonism in chronic kidney disease. J Am Soc Nephrol 17: 943–955, 2006.
 857. Goddard J, Eckhart C, Johnston NR, Cumming AD, Rankin AJ and Webb DJ. Endothelin A receptor antagonism and angiotensin‐converting enzyme inhibition are synergistic via an endothelin B receptor‐mediated and nitric oxide‐dependent mechanism. J Am Soc Nephrol 15: 2601–2610, 2004.
 858. Kaasjager KAH, Shaw S, Koomans HA and Rabelink TJ. Role of endothelin receptor subtypes in the systemic and renal responses to endothelin‐1 in humans. J Am Soc Nephrol 8: 32–39, 1997.
 859. Gurbanov K, Rubinstein I, Hoffman A, Abassi Z, Better OS and Winaver J. Bosentan improves renal regional blood flow in rats with experimental congestive heart failure. Eur J Pharmacol 310: 193–196, 1996.
 860. Gurbanov K, Rubinstein I, Hoffman A, Abassi Z, Better OS and Winaver J. Differential regulation of renal regional blood flow by endothelin‐1. Am J Physiol Renal Physiol 271: F1166–F1172, 1996.
 861. Rubinstein I, Gurbanov K, Hoffman A, Better OS and Winaver J. Differential effect of endothelin‐1 on renal regional blood flow: role of nitric oxide. J Cardiovasc Pharmacol 26: S208–S210, 1995.
 862. Chan DP, Clavell A, Keiser J and Burnett JC, Jr. Effects of renin‐angiotensin system in mediating endothelin‐induced renal vasoconstriction: therapeutic implications. J Hypertens 12 (suppl 4): S43–S49, 1994.
 863. Kaasjager KAH, Koomans HA and Rabelink TJ. Effectiveness of enalapril versus nifedipine to antagonize blood pressure and the renal response to endothelin in humans. Hypertension 25 (part 1): 620–625, 1995.
 864. Ritthaler T, Delia BR, Kramer BK and Kurtz A. Endothelins inhibit cyclic‐AMP induced renin gene expression in cultured mouse juxtaglomerular cells. Kidney Int 50: 108–115, 1996.
 865. Ritthaler T, Scholz H, Ackermann M, Riegger G, Kurtz A and Kramer BK. Effects of endothelins on renin secretion from isolated mouse renal juxtaglomerular cells. Am J Physiol Renal Physiol 268: F39–F45, 1995.
 866. Riggleman A, Harvey J and Baylis C. Endothelin mediates some of the renal actions of acutely administered angiotensin II. Hypertension 38: 105–109, 2001.
 867. Saito M, Homma S, Yamatsu I, Sato M and Ohshima N. Visualization of renal microcirculation in isolated Munich‐Wistar rat kidneys: Effects of endothelin‐1 on renal hemodynamic activity. Jpn J Pharmacol 66: 221–229, 1994.
 868. Heller J, Kramer HJ and Horacek V. Action of endothelin‐1 on glomerular haemodynamics in the dog: lack of direct effects on glomerular ultrafiltration coefficient. Clin Sci 90: 385–391, 1996.
 869. Takabatake T, Ise T, Ohta K and Kobayashi K‐I. Effects of endothelin on renal hemodynamics and tubuloglomerular feedback. Am J Physiol Renal Physiol 263: F103–F108, 1992.
 870. Qiu C, Samsell L and Baylis C. Actions of endogenous endothelin on glomerular hemodynamics in the rat. Am J Physiol Regul Integr Comp Physiol 269: R469–R473, 1995.
 871. Qiu C and Baylis C. Endothelin and angiotensin mediate most glomerular responses to nitric oxide inhibition. Kidney Int 55: 2390–2396, 1999.
 872. Lanese DM, Yuan BH, McMurtry IF and Conger JD. Comparative sensitivities of isolated rat renal arterioles to endothelin. Am J Physiol Renal Physiol 263: F894–F899, 1992.
 873. Edwards RM, Trizna W and Ohlstein EH. Renal microvascular effects of endothelin. Am J Physiol Renal Physiol 259: F217–F221, 1990.
 874. Ozawa Y, Hasegawa T, Tsuchiya K, Yoshizumi M and Tamaki T. Effect of endothelin‐1 (1‐31) on the renal resistance vessels. J Med Invest 50: 87–94, 2003.
 875. Gandley RE, Conrad KP and McLaughlin MK. Endothelin and nitric oxide mediate reduced myogenic reactivity of small renal arteries from pregnant rats. Am J Physiol Regul Integr Comp Physiol 280: R1–R7, 2001.
 876. Silldorff EP, Yang S and Pallone TL. Prostaglandin E2 abrogates endothelin induced vasoconstriction in renal outer medullary descending vasa recta of the rat. J Clin Invest 95: 2734–2740, 1995.
 877. Inscho EW, Imig JD, Cook AK and Pollock DM. ETA and ETB receptors differentially modulate afferent and efferent arteriolar responses to endothelin. Br J Pharmacol 146: 1019–1026, 2005.
 878. Schneider MP, Inscho EW and Pollock DM. Attenuated vasoconstrictor responses to endothelin in afferent arterioles during a high‐salt diet. Am J Physiol Renal Physiol 292: F1208–F1214, 2007.
 879. Cavarape A and Bartoli E. Effects of BQ‐123 on systemic and renal hemodynamic responses to endothelin‐1 in the rat split hydronephrotic kidney. J Hypertens 16: 1449–1458, 1998.
 880. Cavarape A, Endlich K, Feletto F, Parekh N, Bartoli E and Steinhausen M. Contribution of endothelin receptors in renal microvessels in acute cyclosporine‐mediated vasoconstriction in rats. Kidney Int 53: 963–969, 1998.
 881. Endlich K, Hoffend J and Steinhausen M. Localization of endothelin ETA and ETB receptor‐mediated constriction in the renal microcirculation of rats. J Physiol (Lond) 497: 211–218, 1996.
 882. Cavarape A, Endlich N, Assaloni R, Bartoli E, Steinhausen M, Parekh N and Endlich K. Rho‐kinase inhibition blunts renal vasoconstriction induced by distinct signaling pathways in vivo. J Am Soc Nephrol 14: 37–45, 2003.
 883. Fellner SK and Arendshorst WJ. Endothelin A and B receptors of preglomerular vascular smooth muscle cells. Kidney Int 65: 1810–1817, 2004.
 884. Takenaka T, Epstein M, Forster H, Landry DW, Iijima K and Goligorsky MS. Attenuation of endothelin effects by a chloride channel inhibitor, indanyloxyacetic acid. Am J Physiol Renal Physiol 262: F799–F806, 1992.
 885. Ito S, Juncos LA, Nushiro N, Johnson CS and Carretero OA. Endothelium‐derived relaxing factor modulates endothelin action in afferent arterioles. Hypertension 17: 1052–1056, 1991.
 886. Cao LQ and Banks RO. Cardiovascular and renal actions of endothelin: effects of calcium‐channel blockers. Am J Physiol 258: F254–F258, 1990.
 887. Yukimura T, Miura K, Yamashita Y, Shimmen T, Okumura M, Yamanaka S, Saito M and Yamamoto K. Effects of the calcium channel antagonist nicardipine on renal action of endothelin in dogs. Contrib Nephrol 90: 105–110, 1991.
 888. Thai TL, Fellner SK and Arendshorst WJ. ADP‐ribosyl cyclase and ryanodine receptor activity contribute to basal renal vasomotor tone and agonist‐induced renal vasoconstriction in vivo. Am J Physiol Renal Physiol 293: F1107–F1114, 2007.
 889. Conrad KP, Gandley RE, Ogawa T, Nakanishi S and Danielson LA. Endothelin mediates renal vasodilation and hyperfiltration during pregnancy in chronically instrumented conscious rats. Am J Physiol 276: F767–F776, 1999.
 890. Edwards RM, PUllen M and Nambi P. Activation of endothelin ETB receptors increases glomerular cGMP via an L‐arginine‐dependent pathway. Am J Physiol Renal Physiol 263: F1020–F1025, 1992.
 891. Matsuo G, Matsumura Y, Tadano K, Hashimoto T and Morimoto S. Effects of sarafotoxin S6c on renal haemodynamics and urine formation in anaesthetized dogs. Clin Exp Pharmacol Physiol 24: 487–491, 1997.
 892. Abraham NG and Kappas A. Heme oxygenase and the cardiovascular‐renal system. Free Radic Biol Med 39: 1–25, 2005.
 893. Johnson RA, Lavesa M, Askari B, Abraham NG and Nasjletti A. A heme oxygenase product, presumably carbon monoxide, mediates a vasodepressor function in rats. Hypertension 25: 166–169, 1995.
 894. Kozma F, Johnson RA, Zhang F, Yu C, Tong X and Nasjletti A. Contribution of endogenous carbon monoxide to regulation of diameter in resistance vessels. Am J Physiol 276: R1087–R1094, 1999.
 895. Marks GS, Brien JF, Nakatsu K and McLaughlin BE. Does carbon monoxide have a physiological function? Trends Pharmacol Sci 12: 185–188, 1991.
 896. Morita T, Perrella MA, Lee ME and Kourembanas S. Smooth muscle cell‐derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci USA 92: 1475–1479, 1995.
 897. Wang R, Wu L and Wang Z. The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells. Pflugers Arch 434: 285–291, 1997.
 898. Tenhunen R, Marver HS and Schmid R. Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem 244: 6388–6394, 1969.
 899. Da Silva J‐L, Zand BA, Yang LM, Sabaawy HE, Lianos E and Abraham NG. Heme oxygenase isoform‐specific expression and distribution in the rat kidney. Kidney Int 59: 1448–1457, 2001.
 900. Hill‐Kapturczak N, Chang SH and Agarwal A. Heme oxygenase and the kidney. DNA Cell Biol 21: 307–321, 2002.
 901. Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37: 517–554, 1997.
 902. Maines MD, Trakshel GM and Kutty RK. Characterization of two constitutive forms of rat liver microsomal heme oxygenase, Only one molecular species of the enzyme is inducible. J Biol Chem 261: 411–419, 1986.
 903. Zhang F, Kaide JI, Rodriguez‐Mulero F, Abraham NG and Nasjletti A. Vasoregulatory function of the heme‐heme oxygenase‐carbon monoxide system. Am J Hypertens 14: 62S–67S, 2001.
 904. Kaide J, Zhang F, Wei Y, Wang W, Gopal VR, Falck JR, Laniado‐Schwartzman M and Nasjletti A. Vascular CO counterbalances the sensitizing influence of 20‐HETE on agonist‐induced vasoconstriction. Hypertension 44: 210–216, 2004.
 905. Johnson FK, Teran FJ, Prieto‐Carrasquero M and Johnson RA. Vascular effects of a heme oxygenase inhibitor are enhanced in the absence of nitric oxide. Am J Hypertens 15: 1074–1080, 2002.
 906. Rodriguez F, Kemp R, Balazy M and Nasjletti A. Effects of exogenous heme on renal function: role of heme oxygenase and cyclooxygenase. Hypertension 42: 680–684, 2003.
 907. Stec DE, Mattson DL and Roman RJ. Inhibition of renal outer medullary 20‐HETE production produces hypertension in Lewis rats. Hypertension 29 [part 2]: 315–319, 1997.
 908. Rodriguez F, Zhang F, Dinocca S and Nasjletti A. Nitric oxide synthesis influences the renal vascular response to heme oxygenase inhibition. Am J Physiol Renal Physiol 284: F1255–F1262, 2003.
 909. Yang L, Quan S, Nasjletti A, Laniado‐Schwartzman M and Abraham NG. Heme oxygenase‐1 gene expression modulates angiotensin II‐induced increase in blood pressure. Hypertension 43: 1221–1226, 2004.
 910. Aizawa T, Ishizaka N, Taguchi J, Nagai R, Mori I, Tang SS, Ingelfinger JR and Ohno M. Heme oxygenase‐1 is upregulated in the kidney of angiotensin II‐induced hypertensive rats : possible role in renoprotection. Hypertension 35: 800–806, 2000.
 911. Arregui B, Lopez B, Garcia SM, Valero F, Navarro C and Fenoy FJ. Acute renal hemodynamic effects of dimanganese decacarbonyl and cobalt protoporphyrin. Kidney Int 65: 564–574, 2004.
 912. O'Donaughy TL and Walker BR. Renal vasodilatory influence of endogenous carbon monoxide in chronically hypoxic rats. Am J Physiol Heart Circ Physiol 279: H2908–H2915, 2000.
 913. Zou AP, Billington H, Su N and Cowley AW, Jr. Expression and actions of heme oxygenase in the renal medulla of rats. Hypertension 35: 342–347, 2000.
 914. Li N, Yi F, dos Santos EA, Donley DK and Li PL. Role of Renal Medullary Heme Oxygenase in the Regulation of Pressure Natriuresis and Arterial Blood Pressure. Hypertension 45, 2006.
 915. Johnson FK and Johnson RA. Carbon monoxide promotes endothelium‐dependent constriction of isolated gracilis muscle arterioles. Am J Physiol Regul Integr Comp Physiol 285: R536–R541, 2003.
 916. Botros FT and Navar LG. Interaction between endogenously‐produced carbon monoxide and nitric oxide in regulation of renal afferent arterioles. Am J Physiol Heart Circ Physiol, 2006.
 917. Droge W. Free radicals in the physiological control of cell function. Physiol Rev 82: 47–95, 2002.
 918. Clempus RE and Griendling KK. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc Res 71: 216–225, 2006.
 919. Eiserich JP, Patel RP and O'Donnell VB. Pathophysiology of nitric oxide and related species: free radical reactions and modification of biomolecules. Mol Asp Med 19: 221–357, 1998.
 920. Taniyama Y and Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42: 1075–1081, 2003.
 921. Majid DS and Kopkan L. Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt‐sensitive hypertension. Clin Exp Pharmacol Physiol 34: 946–952, 2007.
 922. Schnackenberg CG. Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature. Am J Physiol Regul Integr Comp Physiol 282: R335–R342, 2002.
 923. Chen Y, Gill PS and Welch WJ. Oxygen availability limits renal NADPH‐dependent superoxide production. Am J Physiol Renal Physiol 289: F749–F753, 2005.
 924. Zou A‐P, Li N and Cowley AW, Jr. Production and actions of superoxide in the renal medulla. Hypertension 37: 547–553, 2001.
 925. Majid DS and Nishiyama A. Nitric oxide blockade enhances renal responses to superoxide dismutase inhibition in dogs. Hypertension 39: 293–297, 2002.
 926. Majid DS, Nishiyama A, Jackson KE and Castillo A. Superoxide scavenging attenuates renal responses to ANG II during nitric oxide synthase inhibition in anesthetized dogs. Am J Physiol Renal Physiol 288: F412–F419, 2005.
 927. Just A, Olson AJ, Whitten CL and Arendshorst WJ. Superoxide mediates acute renal vasoconstriction produced by angiotensin II and catecholamines by a mechanism independent of nitric oxide. Am J Physiol Heart Circ Physiol 292: H83–H92, 2007.
 928. Griendling KK and Ushio‐Fukai M. Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept 91: 21–27, 2000.
 929. Haque MZ and Majid DS. Assessment of Renal Functional Phenotype in Mice Lacking gp91PHOX Subunit of NAD(P)H Oxidase. Hypertension 43: 335–340, 2004.
 930. Kopkan L, Castillo A, Navar LG and Majid DS. Enhanced superoxide generation modulates renal function in ANG II‐induced hypertensive rats. Am J Physiol Renal Physiol 290: F80–F86, 2006.
 931. Kopkan L and Majid DS. Superoxide contributes to development of salt sensitivity and hypertension induced by nitric oxide deficiency. Hypertension 46: 1026–1031, 2005.
 932. Lopez B, Salom MG, Arregui B, Valero F and Fenoy FJ. Role of superoxide in modulating the renal effects of angiotensin II. Hypertension 42: 1150–1156, 2003.
 933. Reckelhoff JF and Romero JC. Role of oxidative stress in angiotensin‐induced hypertension. Am J Physiol Regul Integr Comp Physiol 284: R893–R912, 2003.
 934. Wilcox CS. Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am J Physiol Regul Integr Comp Physiol 289: R913–R935, 2005.
 935. Fellner SK and Arendshorst W. Endothelin‐A and ‐B receptors, superoxide, and Ca2+ signaling in afferent arterioles. Am J Physiol Renal Physiol 292: F175–F184, 2007.
 936. Fellner SK and Arendshorst WJ. Angiotensin II, reactive oxygen species, and Ca2+ signaling in afferent arterioles. Am J Physiol Renal Physiol 289: F1012–F1019, 2005.
 937. Fellner SK and Arendshorst WJ. Angiotensin II Ca2+ signaling in rat afferent arterioles: stimulation of cyclic ADP ribose and IP3 pathways. Am J Physiol Renal Physiol 288: F785–F791, 2005.
 938. Geiger J, Zou AP, Campbell WB and Li PL. Inhibition of cADP‐ribose formation produces vasodilation in bovine coronary arteries. Hypertension 35: 397–402, 2000.
 939. Liu Y and Gutterman DD. Oxidative stress and potassium channel function. Clin Exp Pharmacol Physiol 29: 305–311, 2002.
 940. Gao YJ and Lee RM. Hydrogen peroxide induces a greater contraction in mesenteric arteries of spontaneously hypertensive rats through thromboxane A(2) production. Br J Pharmacol 134: 1639–1646, 2001.
 941. Schnackenberg CG, Welch WJ and Wilcox CS. TP receptor‐mediated vasoconstriction in microperfused afferent arterioles: Roles of O2− and NO. Am J Physiol Renal Physiol 279: F302–F308, 2000.
 942. Cai H, Li Z, Dikalov S, Holland SM, Hwang J, Jo H, Dudley SC, Jr. and Harrison DG. NAD(P)H oxidase‐derived hydrogen peroxide mediates endothelial nitric oxide production in response to angiotensin II. J Biol Chem 277: 48311–48317, 2002.
 943. Liu R, Ren Y, Garvin JL and Carretero OA. Superoxide enhances tubuloglomerular feedback by constricting the afferent arteriole. Kidney Int 66: 268–274, 2004.
 944. Welch WJ, Tojo A and Wilcox CS. Roles of NO and oxygen radicals in tubuloglomerular feedback in SHR. Am J Physiol Renal Physiol 278: F769–F776, 2000.
 945. Huie RE and Padmaja S. The reaction of NO with superoxide. Free Radic Res Commun 18: 195–199, 1993.
 946. Fray JCS. Regulation of renin secretion by calcium and chemiosmotic forces: (patho)physiological considerations. Biochimica et Biophysica Acta 1097: 243–262, 1991.
 947. King JA, Lush DJ and Fray JCS. Regulation of renin processing and secretion: chemiosmotic control and novel secretory pathway. Am J Physiol‐Cell Physiol 265: C305–C320, 1993.
 948. Skott O and Jensen BL. Cellular and intrarenal control of renin secretion. Clin Sci 84: 1–10, 1993.
 949. Wilkes BM, Mento PF, Pearl AR, Hollander AM, Mossey RT, Bellucci A, Bluestone PA and Mailloux LU. Plasma angiotensins in anephric humans: evidence for an extrarenal angiotensin system. J Cardiovasc Pharmacol 17: 419–423, 1991.
 950. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira‐dos‐Santos AJ, da Costa J, Zhang L, Pei Y, Scholey J, Ferrario CM, Manoukian AS, Chappell MC, Backx PH, Yagil Y and Penninger JM. Angiotensin‐converting enzyme 2 is an essential regulator of heart function. Nature 417: 822–828, 2002.
 951. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE and Acton S. A novel angiotensin‐converting enzyme‐related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1‐9, Circ Res 87: E1–E9, 2000.
 952. Elased KM, Cunha TS, Gurley SB, Coffman TM and Morris M. New mass spectrometric assay for angiotensin‐converting enzyme 2 activity. Hypertension 47: 1010–1017, 2006.
 953. Gurley SB, Allred A, Le TH, Griffiths R, Mao L, Philip N, Haystead TA, Donoghue M, Breitbart RE, Acton SL, Rockman HA and Coffman TM. Altered blood pressure responses and normal cardiac phenotype in ACE2‐null mice. J Clin Invest 116: 2218–2225, 2006.
 954. Lely AT, Hamming I, van Goor H and Navis GJ. Renal ACE2 expression in human kidney disease. J Pathol 204: 587–593, 2004.
 955. Lush DJ, King JA and Fray JCS. Pathophysiology of low renin syndromes: sites of renal renin secretory impairment and prorenin overexpression. Kidney Int 43: 983–999, 1993.
 956. Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T and Sraer JD. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109: 1417–1427, 2002.
 957. Ichihara A, Suzuki F, Nakagawa T, Kaneshiro Y, Takemitsu T, Sakoda M, Nabi AH, Nishiyama A, Sugaya T, Hayashi M and Inagami T. Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor‐deficient mice. J Am Soc Nephrol 17: 1950–1961, 2006.
 958. Ganong WF. Origin of the angiotensin II secreted by cells. P S E B M 205: 213–219, 1994.
 959. Okamura T, Okunishi H, Ayajiki K and Toda N. Conversion of angiotensin I to angiotensin II in dog isolated renal artery: Role of two different angiotensin II‐generating enzymes. J Cardiovasc Pharmacol 15: 353–359, 1990.
 960. Yanagawa N, Capparelli AW, Jo OD, Friedal A, Barrett JD and Eggena P. Production of angiotensinogen and renin‐like activity by rabbit proximal tubular cells in culture. Kidney Int 39: 938–941, 1991.
 961. Urata H, Kinoshita A, Misono KS, Bumpus FM and Husain A. Identification of a highly specific chymase as the major angiotensin II‐forming enzyme in the human heart. J Biol Chem 265: 22348–22357, 1990.
 962. Urata H, Strobel F and Ganten D. Widespread tissue distribution of human chymase. J Hypertens 12 (suppl 9): S17–S22, 1994.
 963. Ikeda M, Sasaguri M, Maruta H and Arakawa K. Formation of angiotensin II by tonin‐inhibitor complex. Hypertension 11: 63–70, 1988.
 964. Morris BJ. Molecular biology of renin I: Gene and protein structure. synthesis and processing. J Hypertens 10: 209–214, 1992.
 965. Wintroub BU, Klickstein LB, Dzau VJ and Watt KWK. Granulocyte‐angiotensin system. Identification of angiotensinogen as the plasma protein substrate of leukocyte cathepsin G. Biochemistry 23: 227–232, 1984.
 966. Yamamoto K, Chappell MC, Broshnihan KB and Ferrario CM. In vivo metabolism of angiotensin I by neutral endopeptidase (EC 3.4.24.11) in spontaneously hypertensive rats. Hypertension 19: 692–696, 1992.
 967. Ferrario CM. Contribution of Angiotensin‐(1‐7) to cardiovascular physiology and pathology. Curr Hypertens Rep 5: 129–134, 2003.
 968. Handa RK, Ferrario CM and Strandhoy JW. Renal actions of angiotensin‐(1‐7): in vivo and in vitro studies. Am J Physiol Renal Physiol 270: F141–F147, 1996.
 969. Andreatta‐Van Leyen S, Romero MF, Khosla MC and Douglas JG. Modulation of phospholipase A2 activity and sodium transport by angiotensin‐(1‐7), Kidney Int 44: 932–936, 1993.
 970. Bell‐Quilley CP, Lin Y‐SR, Hilchey SD, Drugge ED and McGiff JC. Renovascular actions of angiotensin II in the isolated kidney of the rat: Relationship to lipoxygenases. J Pharmacol Exp Ther 267: 676–682, 1993.
 971. Santos RAS, Campagnole‐Santos MJ, Baracho NCV, Fontes MAP, Silva LCS, Neves LAA, Oliveira DR, Caligiorne SM, Silva ACSE and Khosla MC. Characterization of a new angiotensin antagonist selective for angiotensin‐(1‐7): Evidence that the actions of angiotensin‐(1‐7) are mediated by specific angiotensin receptors. Brain Res Bull 35: 293–298, 1994.
 972. Welches WR, Brosnihan KB and Ferrario CM. A comparison of the properties and enzymatic activites of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase 24.11. Life Sci 52: 1461–1480, 1993.
 973. Clark KL, Robertson MJ and Drew GM. A comparison of the characteristics of angiotensin receptors in the renal and mesenteric vascular beds of the anesthetized cat. J Cardiovasc Pharmacol 19: 515–524, 1992.
 974. Harding JW, Wright JW, Swanson GN, Hanesworth JM and Krebs LT. AT4 receptors: Specificity and distribution. Kidney Int 46: 1510–1512, 1994.
 975. Swanson GN, Hanesworth JM, Sardinia MF, Coleman JKM, Wright JW, Hall KL, Miller‐Wing AV, Stobb JW, Cook VI, Harding EC and Harding JW. Discovery of a distinct binding site for angiotensin II (3‐8), a putative angiotensin IV receptor. Regul Pept 40: 409–419, 1992.
 976. Li XC, Campbell DJ, Ohishi M, Yuan S and Zhuo JL. AT1 receptor‐activated signaling mediates angiotensin IV‐induced renal cortical vasoconstriction in rats. Am J Physiol Renal Physiol 290: F1024–F1033, 2006.
 977. Erdos EG. Angiotensin 1 converting enzyme and the changes in our concepts through the years. Hypertension 16: 363–370, 1990.
 978. Takada Y, Hiwada K, Unno M and Kokubu T. Immunocytochemical localization of angiotensin converting enzyme at the ultrastructural level in the human lung and kidney. Biomed Res 3: 169–174, 1982.
 979. Taugner R, Hackenthal E, Helmchen U, Ganten D, Kugler M, Marin‐Grez M, Nobiling R, Unger T, Lockwald I and Keilbach R. The intrarenal renin‐angiotensin system: An immunocytochemical study of the localization of renin, angiotensinogen, converting enzyme and the angiotensins in the kidney of mouse and rat. Klin Wochenschr 60: 1218–1222, 1982.
 980. Bruneval P, Hinglais N, Alhenc‐Gelas F, Tricottet V, Corvol P, Ménard J, Camilleri J‐P and Bariety J. Angiotensin I converting enzyme in human intestine and kidney, Ultrastructural immuno‐histochemical localization. Histochemistry 85: 73–80, 1986.
 981. Sibony M, Gasc J‐M, Soubrier F, Alhenc‐Gelas F and Corvol P. Gene expression and tissue localization of the two isoforms of angiotensin I converting enzyme. Hypertension 21: 827–835, 1993.
 982. Admiraal PJJ, Derkx FHM, Danser AHJ, Pieterman H and Schalekamp MADH. Metabolism and Production of Angiotensin I in Different Vascular Beds in Subjects With Hypertension. Hypertension 15: 44–55, 1990.
 983. Reams G, Villarreal D, Wu Z and Bauer JH. Renal tissue angiotensin II: response to infusions of angiotensin I and an angiotensin‐converting enzyme inhibitor. Am J Kidney Dis 22: 851–857, 1993.
 984. Rosivall L, Carmines PK and Navar LG. Effects of renal arterial angiotensin I infusion on glomerular dynamics in sodium replete dogs. Kidney Int 26: 263–268, 1984.
 985. Rosivall L and Navar LG. Effects on renal hemodynamics of intraarterial infusions of angiotensins I and II. Am J Physiol 245: F181–F187, 1983.
 986. Rosivall L, Rinder DF, Champion J, Khosla MC, Navar LG and Oparil S. Intrarenal angiotensin I conversion at normal and reduced renal blood flow in the dog. Am J Physiol 245: F408–F415, 1983.
 987. Rosivall L, Narkates AJ, Oparil S and Navar LG. De novo intrarenal formation of angiotensin II during control and enhanced renin secretion. Am J Physiol 252: F1118–F1123, 1987.
 988. Inagami T, Kawamura M, Naruse K and Okamura T Localization of components of the renin‐angiotensin system within the kidney. Federation Proc 45: 1414–1419, 1986.
 989. Wilcox CS and Peart WS. Release of renin and angiotensin II into plasma and lymph during hyperchloremia. Am J Physiol Renal Physiol 253: F734–F741, 1987.
 990. Bailie MD, Rector FC, Jr. and Seldin DW. Angiotensin II in arterial and renal venous plasma and renal lymph in the dog. J Clin Invest 50: 119–126, 1971.
 991. Nishiyama A, Seth DM and Navar LG. Renal interstitial fluid angiotensin 1 and angiotensin II concentrations during local angiotensin‐converting enzyme inhibition. J Am Soc Nephrol 13: 2207–2212, 2002.
 992. Nishiyama A, Seth DM and Navar LG. Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension 39: 129–134, 2002.
 993. Nishiyama A, Seth DM and Navar LG. Angiotensin II type 1 receptor‐mediated augmentation of renal interstitial fluid angiotensin II in angiotensin II‐induced hypertension. J Hypertens 21: 1897–1903, 2003.
 994. Siragy HM, Howell NL, Ragsdale NV and Carey RM. Renal interstitial fluid angiotensin: modulation by anesthesia epinephrine, sodium depletion and rennin inhibition. Hypertension 25: 1021–1024, 1995.
 995. Haller H, Lindschau C, Erdmann B, Quass P and Luft FC. Effects of intracellular angiotensin II in vascular smooth muscle cells. Circ Res 79: 765–772, 1996.
 996. Re RN. The cellular biology of angiotensin: Paracrine, autocrine and intracrine actions in cardiovascular tissues. J Mol Cell Cardiol 21 (Supplement V): 63–69, 1989.
 997. Anderson KM and Peach MJ. Receptor binding and internalization of a unique biologically active angiotensin II‐colloidal gold conjugate: Morphological analysis of angiotensin II processing in isolated vascular strips. J Vasc Res 31: 10–17, 1994.
 998. Eggena P, Zhu JH, Clegg K and Barrett JD. Nuclear angiotensin receptors induce transcription of renin and angiotensinogen mRNA. Hypertension 22: 496–501, 1993.
 999. Celio MR and Inagami T. Angiotensin II immunoreactivity coexists with renin in the juxtaglomerular granular cells of the kidney. Proc Natl Acad Sci USA 78: 3897–3900, 1981.
 1000. Taugner R, Mannek E, Nobiling R, Buhrle CP, Hackenthal E, Ganten D, Inagami T and Schroder H. Coexistence of renin and angiotensin II in epitheloid cell secretory granules of rat kidney. Histochemistry 81: 39–45, 1984.
 1001. Rightsel WA, Okamura T, Inagami T, Pitcock JA, Takii Y, Brooks B, Brown P and Muirhead EE. Juxtaglomerular cells grown as monolayer cell culture contain renin, angiotensin I‐converting enzyme, and angiotensin I and II/III. Circ Res 50: 822–829, 1982.
 1002. Braam B, Mitchell KD, Fox J and Navar LG. Proximal tubular secretion of angiotensin II in rats. Am J Physiol Renal Physiol 264: F891–F898, 1993.
 1003. Navar LG, Harrison‐Bernard LM, Nishiyama A and Kobori H. Regulation of intrarenal angiotensin II in hypertension. Hypertension 39: 316–322, 2002.
 1004. Navar LG, Harrison‐Bernard LM, Wang C‐T, Cervenka L and Mitchell KD. Concentrations and actions of intraluminal angiotensin II. J Am Soc Nephrol 10: S189–S195, 1999.
 1005. Navar LG, Lewis L, Hymel A, Braam B and Mitchell KD. Tubular fluid concentrations and kidney contents of angiotensins I and II in anesthetized rats. J Am Soc Nephrol 5: 1153–1158, 1994.
 1006. Seikaly MG, Arant BS, Jr. and Seney FD, Jr. Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest 86: 1352–1357, 1990.
 1007. Lalouel J‐M, Rohrwasser A, Terreros D, Morgan T and Ward K. Angiotensinogen in essential hypertension: from genetics to nephrology. J Am Soc Nephrol 12: 606–615, 2001.
 1008. Moe OW, Ujiie K, Star RA, Miller RT, Widell J, Alpern RJ and Henrich WL. Renin expression in renal proximal tubule. J Clin Invest 91: 774–779, 1993.
 1009. Prieto‐Carrasquero MC, Harrison‐Bernard LM, Kobori H, Ozawa Y, Hering‐Smith KS, Hamm LL and Navar LG. Enhancement of collecting duct renin in angiotensin II‐dependent hypertensive rats. Hypertension 44: 223–229, 2004.
 1010. Rohrwasser A, Morgan T, Dillon HF, Zhao L, Callaway CW, Hillas E, Zhang S, Cheng T, Inagami T, Ward K, Terreros DA and Lalouel JM. Elements of a paracrine tubular renin‐angiotensin system along the entire nephron. Hypertension 34: 1265–1274, 1999.
 1011. Darby 1A, Congiu M, Fernley RT, Sernia C and Coghlan JP. Cellular and ultrastructural location of angiotensinogen in rat and sheep kidney. Kidney Int 46: 1557–1560, 1994.
 1012. Hunt MK, Ramos SP, Geary KM, Norling LL, Peach MJ, Gomez RA and Carey RM. Colocalization and release of angiotensin and renin in renal cortical cells. Am J Physiol Renal Physiol 263: F363–F373, 1992.
 1013. Ingelfinger J, Zuo WM, Fon EA, Ellison KE and Dzau VJ. In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule. J Clin Invest 85: 417–423, 1990.
 1014. Schunkert H, Ingelfinger JR, Jacob H, Jackson B, Bouyounes B and Dzau VJ. Reciprocal feedback regulation of kidney angiotensinogen and renin mRNA expressions by angiotensin II. Am J Physiol Endocrinold Metabol 263: E863–E869, 1992.
 1015. Terada Y, Tomita K, Nonoguchi H and Marumo F. PCR localization of angiotensin II receptor and angiotensinogen mRNAs in rat kidney. Kidney Int 43: 1251–1259, 1993.
 1016. Douglas JG. Angiotensin receptor subtypes of the kidney cortex. Am J Physiol Renal Physiol 253: F1–F7, 1987.
 1017. Douglas JG and Hopfer U. Novel aspect of angiotensin receptors and signal transduction in the kidney. Ann Rev Physiol 56: 649–669, 1994.
 1018. Paxton WG, Runge M, Horaist C, Cohen C, Alexander RW and Bernstein KE. Immunohistochemical localization of rat angiotensin II AT1 receptor. Am J Physiol Renal Physiol 264: F989–F995, 1993.
 1019. Navar LG and Harrison‐Bernard LM. Intrarenal angiotensin II augmentation in angiotensin II dependent hypertension. Hypertens Res 23: 291–301, 2000.
 1020. Arendshorst WJ. Lessons on renal function from transgenic mice lacking different angiotensin II receptors. JRAAS 2: S167–S175, 2001.
 1021. Bumpus FM, Catt KJ, Chiu AT, Degasparo M, Goodfriend T, Husain A, Peach MJ, Taylor DG, Jr. and Timmermans PB. Nomenclature for angiotensin receptors. A report of the Nomenclature Committee of the Council for High Blood Pressure Research. Hypertension 17: 720–721, 1991.
 1022. Iwai N, Yamano Y, Chaki S, Konishi F, Bardhan S, Tibbetts C, Sasaki K, Hasegawa M, Matsuda Y and Inagami T. Rat angiotensin II receptor: cDNA sequence and regulation of the gene expression. Biochem Biophys Res Comm 177: 299–304, 1991.
 1023. Murphy TJ, Alexander RW, Griendling KK, Runge MS and Bernstein KE. Isolation of a cDNA encoding the vascular type‐1 angiotensin II receptor. Nature (Lond) 351: 233–236, 1991.
 1024. Nakajima M, Mukoyama M, Pratt RE, Horiuchi M and Dzau VJ. Cloning of cDNA and analysis of the gene for mouse angiotensin II type 2 receptor. Biochem Biophys Res Comm 197: 393–399, 1993.
 1025. Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, Matsuda Y and Inagami T. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type‐1 receptor. Nature 351: 230–233, 1991.
 1026. Tsuzuki S, Ichiki T, Nakakubo H, Kitami Y, Guo DF and Shirai H. Molecular cloning and expression of the gene encoding human angiotensin II type 2 receptor. Biochem Biophys Res Comm 200: 1449–1454, 1994.
 1027. Burns KD, Inagami T and Harris RC. Cloning of a rabbit kidney cortex AT1 angiotensin II receptor that is present in proximal tubule epithelium. Am J Physiol Renal Physiol 264: F645–F654, 1993.
 1028. Imanishi K, Nonoguchi H, Nakayama Y, Machida K, Ikebe M and Tomita K. Type 1A angiotensin II receptor is regulated differently in proximal and distal nephron segemnts. Hypertens Res 26: 405–411, 2003.
 1029. Mendelsohn FAO, Dunbar M, Allen A, Chou S‐T, Millan MA, Aguilera G and Catt KJ. Angiotensin II receptors in the kidney. Federation Proc 45: 1420–1425, 1986.
 1030. Zhuo J, Alcorn D, McCausland J and Mendelsohn FAO. Localization and regulation of angiotensin II receptors in renomedullary interstitial cells. Kidney Int 46: 1483–1485, 1994.
 1031. Iwai N and Inagami T. Identification of two subtypes in rat type I angiotensin II receptor. FEBS Lett 298: 257–260, 1992.
 1032. Sasamura H, Hein L, Krieger JE, Pratt RE, Kobilka BK and Dzau VJ. Cloning, characterization, and expression of two angiotensin receptor (AT‐1) isoforms from the mouse genome. Biochem Biophys Res Comm 185: 253–259, 1992.
 1033. Wang Z‐Q, Millatt LJ, Heiderstadt NT, Siragy HM, Johns RA and Carey RM. Differential regulation of renal angiotensin subtype AT1A and AT2 receptor protein in rats with angiotensin‐dependent hypertension. Hypertension 33: 96–101, 1999.
 1034. Miyata A, Park F, Li XF and Cowley AW, Jr. Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney. Am J Physiol Renal Physiol 277: F437–F446, 1999.
 1035. Gasc J‐M, Monnot C, Clauser E and Corvol P. Co‐expression of type 1 angiotensin II receptor (AT1 R) and renin mRNAs in juxtaglomerular cells of the rat kidney. Endocrinology 132: 2723–2725, 1993.
 1036. Meister B, Lippoldt A, Bunnemann B, Inagami T, Ganten D and Fuxe K. Cellular expression of angiotensin type‐1 receptor mRNA in the kidney. Kidney Int 44: 331–336, 1993.
 1037. Tufro‐McReddie A, Harrison JK, Everett AD and Gomez RA. Ontogeny of type 1 angiotensin II receptor gene expression in the rat. J Clin Invest 91: 530–537, 1993.
 1038. Bouby N, Hus‐Citharel A, Marchetti J, Bankir L, Corvol P and Llorens‐Cortes C. Expression of type 1 angiotensin II receptor subytpes and angiotensin II‐induced calcium mobilization along the rat nephron. J Am Soc Nephrol 8: 1658–1667, 1997.
 1039. Ruan X, Wagner C, Chatziantoniou C, Kurtz A and Arendshorst WJ. Regulation of angiotensin II receptor AT1 subtypes in renal afferent arterioles during chronic changes in sodium diet. J Clin Invest 99: 1072–1081, 1997.
 1040. Helou CM, Imbert‐Teboul M, Doucet A, Rajerison R, Chollet C, Alhenc‐Gelas F and Marchetti J. Angiotensin receptor subtypes in thin and muscular juxtamedullary efferent arterioles of rat kidney. Am J Physiol Renal Physiol 285: F507–F514, 2003.
 1041. Harrison‐Bernard LM, Cook AK, Oliverio MI and Coffman TM. Renal segmental microvascular responses to ANG II in AT1A receptor null mice. Am J Physiol Renal Physiol 284: F538–F545, 2003.
 1042. Ruan X, Oliverio MI, Coffman TM and Arendshorst WJ. Renal vascular reactivity in mice: angII‐induced vasoconstriction in AT1A receptor null mice. J Am Soc Nephrol 10: 2620–2630, 1999.
 1043. Ruan X, Purdy KE, Oliverio MI, Coffman TM and Arendshorst WJ. Effects of candesartan on angiotensin II‐induced renal vasoconstriction in rats and mice. J Am Soc Nephrol 10: S202–S207, 1999.
 1044. Cervenka L, Horacek V, Vaneckova I, Hubacek JA, Oliverio MI, Coffman TM and Navar LG. Essential role of AT1A receptor in the development of 2K1C hypertension. Hypertension 40: 735–741, 2002.
 1045. Park S, Bivona BJ and Harrison‐Bernard LM. Compromised renal microvascular reactivity of angiotensin type 1 double null mice. Am J Physiol Renal Physiol 293: F60–F67, 2007.
 1046. Norwood VF, Craig MR, Harris JM and Gomez RA. Differential expression of angiotensin II receptors during early renal morphogenesis. Am J Physiol Regul Integr Comp Physiol 272: R662–R668, 1997.
 1047. Carey RM and Siragy HM. The intrarenal renin‐angiotensin system and diabetic nephropathy. Trends Endocrinol Metab 14: 274–281, 2003.
 1048. de Gasparo M and Siragy HM. The AT2 receptor: fact, fancy and fantasy. Regul Pepl 81: 11–24, 1999.
 1049. Siragy HM and Carey RM. The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest 100: 264–269, 1997.
 1050. Siragy HM and Carey RM. Protective role of the angiotensin AT2 receptor in a renal wrap hypertension model. Hypertension 33: 1237–1242, 1999.
 1051. Inagami T, Guo D‐F and Kitami Y. Molecular biology of angiotensin II receptors: an overview. J Hypertens 12 (suppl 10): S83–S94, 1994.
 1052. Carey RM, Howell NL, Jin XH and Siragy HM. Angiotensin type 2 receptor‐mediated hypotension in angiotensin type‐1 receptor‐blocked rats. Hypertension 38: 1272–1277, 2001.
 1053. Carey RM, Wang ZQ and Siragy HM. Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. [Review] [92 refs]. Hypertension 35: 155–163, 2000.
 1054. Siragy HM and Carey RM. The subtype‐2 (AT2) angiotensin receptor regulates renal cyclic guanosine 3′,5′‐monophosphate and AT1 receptor‐mediated prostaglandin E2 production in conscious rats. J Clin Invest 97: 1978–1982, 1996.
 1055. Unger T and Sandmann S. Angiotensin receptor blocker selectivity at the AT1‐ and AT2‐receptors: conceptual and clinical effects. JRAAS 1: 6–9, 2000.
 1056. Gross V, Milia AF, Plehm R, Inagami T and Luft FC. Long‐term blood pressure telemetry in AT2 receptor‐disrupted mice. J Hypertens 18: 955–961, 2000.
 1057. Gross V, Schunck WH, Honeck H, Milia AF, Kargel E, Walther T, Bader M, Inagami T, Schneider W and Luft FC. Inhibition of pressure natriuresis in mice lacking the AT2 receptor. Kidney Int 57: 191–202, 2000.
 1058. Siragy HM, Inagami T, Ichiki T and Carey RM. Sustained hypersensitivity to angiotensin II and its mechanism in mice lacking the subtype‐2 (AT2) angiotensin receptor. Proc Natl Acad Sci USA 96: 6506–6510, 1999.
 1059. Tamura M, Takagi T, Howard EF, Landon EJ, Steimle A, Tanner M and Myers PR. Induction of angiotensin II subtype 2 receptor‐mediated blood pressure regulation in synthetic diet‐fed rats. J Hypertens 18: 1239–1246, 2000.
 1060. Chappell MC, Tallant EA, Diz DI and Ferrario CM. The renin‐angiotensin system and cardiovascular homeostasis. In: Drugs, Enzymes and Receptors of the Renin‐Angiotensin System: Celebrating a Century of Discovery, eds Husain A and Graham RM. Harwood Academic Publishers, 2000, pp. 3–22.
 1061. Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB and Diz DI. Counterregulatory actions of angiotensin‐(1‐7). Hypertension 30 (part 2): 535–541, 1997.
 1062. Stegbauer J, Vonend O, Oberhauser V and Rump LC. Effects of angiotensin‐(1‐7) and other bioactive components of the renin‐angiotensin system on vascular resistance and noradrenaline release in rat kidney. J Hypertens 21: 1391–1399, 2003.
 1063. Abassi Z, Brodsky S, Gealekman O, Rubinstein I, Hoffman A and Winaver J. Intrarenal expression and distrubution of cyclooxygenase isoforms in rats with experimental heart failure. Am J Physiol Renal Physiol 280: F43–F53, 2001.
 1064. Abbracchio MP and Burnstock G. Purinergic signalling: pathophysiological roles. Jpn J Pharmacol 78: 113–145, 1998.
 1065. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA and Weisman GA. International Union of Pharmacology LVIII: update on the P2Y G protein‐coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58: 281–341, 2006.
 1066. Abe M, O'Connor P, Kaldunski M, Liang M, Roman RJ and Cowley AW, Jr. Effect of sodium delivery on superoxide and nitric oxide in the medullary thick ascending limb. Am J Physiol Renal Physiol 291: F350–F357, 2006.
 1067. Abraham NG, Botros FT, Rezzani R, Rodella L, Bianchi R and Goodman AI. Differential effect of cobalt protoporphyrin on distributions of heme oxygenase in renal structure and on blood pressure in SHR. Cell Mol Biol (Noisy‐le‐grand) 48: 895–902, 2002.
 1068. Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de B SI, Heringer‐Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole‐Santos MJ, Schultheiss HP, Speth R and Walther T. Angiotensin‐(1‐7) is an endogenous ligand for the G protein‐coupled receptor Mas. Proc Natl Acad Sci USA 100: 8258–8263, 2003.
 1069. Corvol P, Jeunemaitre X, Charru A, Kotelevtsev Y and Soubrier F. Role of the renin‐angiotensin system in blood pressure regulation and in human hypertension: New insights from molecular genetics. Recent Progr Harm Res 50: 287–308, 1995.
 1070. Ferrario CM and Flack JM. Pathologic consequences of increased angiotensin II activity. Cardiovasc Drugs Ther 10: 511–518, 1996.
 1071. Griendling KK, Ushio‐Fukai M, Lassègue B and Alexander RW. Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension 29 (part 2): 366–373, 1997.
 1072. Ma X, Chapleau MW, Whiteis CA, Abboud FM and Bielefeldt K. Angiotensin selectively activates a subpopulation of postganglionic sympathetic neurons in mice. Circ Res 88: 787–793, 2001.
 1073. Wolf G. The renin‐angiotensin system and progression of renal diseases. Hamburg: Karger, 2002.
 1074. Wolf G and Ziyadeh F. The role of angiotensin II in diabetic nephropathy: emphasis on nonhemodynamic mechanisms. Am J Kidney Dis 29: 153–163, 1997.
 1075. Gilbert RE, Wu LL, Kelly DJ, Cox A, Wilkinson‐Berka JL, Johnston CI and Cooper ME. Pathological expression of renin and angiotensin II in the renal tubule after subtotal nephrectomy, Implications for the pathogenesis of tubulointerstitial fibrosis. Am J Pathol 155: 429–440, 1999.
 1076. Wolf G and Ziyadeh FN. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 56: 393–405, 1999.
 1077. Shao J, Nangaku M, Miyata T, Inagi R, Yamada K, Kurokawa K and Fujita T. Imbalance of T‐cell subsets in angiotensin II‐infused hypertensive rats with kidney injury. Hypertension 42: 31–38, 2003.
 1078. Franco M, Tapia E, Santamaria J, Zafra I, Garcia‐Torres R, Gordon KL, Pons H, Rodriguez‐turbe B, Johnson RJ and Herrera‐Acosta J. Renal cortical vasoconstriction contributes to development of salt‐sensitive hypertension after angiotensin II exposure. J Am Soc Nephrol 12: 2263–2271, 2001.
 1079. Alberola AM, Salazar FJ, Nakamura T and Granger JP. Interaction between angiotensin II and nitric oxide in control of renal hemodynamics in conscious dogs. Am J Physiol Regul Integr Comp Physiol 267: R1472–R1478, 1994.
 1080. Ichikawa 1 and Harris RC. Angiotensin actions in the kidney: renewed insight into the old hormone. Kidney Int 40: 583–596, 1991.
 1081. Keil J, Lehnfeld R, Reinhardt HW, Mohnhaupt R and Kaczmarczyk G. Acute effects of angiotensin II on renal haemodynamics and excretion in conscious dogs. Renal Physiol Biochem 12: 238–249, 1989.
 1082. Mitchell KD, Braam B and Navar LG. Hypertensinogenic mechanisms mediated by renal actions of renin‐angiotensin system. Hypertension 19 (Supplement I): I‐18–1‐27, 1992.
 1083. Navar LG and Langford HG. Effects of angiotensin on the renal circulation. In: Angiotensin (Handbuch der exp Pharmakol), eds Page IH and Bumpus FM. Berlin: Springer‐Verlag, 1974, pp. 455–474.
 1084. Eiken P, Emmeluth C, Schutten HJ and Bie P. Vasopressin and angiotensin II in the conscious dog: synergistic effects on renal excretory parameters? Clin Sci 83: 467–475, 1992.
 1085. Eadington DW, Freestone S, Waugh CJ, Swainson CP and Lee MR. Lithium pretreatment affects renal and systemic responses to angiotensin II infusion in normal man. Clin Sci 82: 543–549, 1992.
 1086. Gordon MS, Williams GH and Hollenberg NK. Renal and adrenal responsiveness to angiotensin II: influence of beta adrenergic blockade. Endocr Res 18: 115–131, 1992.
 1087. Vos PF, Boer P, Braam B and Koomans HA. Efficacy of intrarenal ACE‐inhibition estimated from the renal response to angiotensin I and II in humans. Kidney Int 47: 274–281, 1995.
 1088. Vos PF, Koomans HA, Boer P and Mees EJD. Effects of angiotensin II on renal sodium handling and diluting capacity in man pretreated with high‐salt diet and enalapril. Nephrol Dial Transplant 1: 991–996, 1992.
 1089. Navar LG, Saccomani G and Mitchell KD. Synergistic intrarenal actions of angiotensin on tubular reabsorption and renal hemodynamics. Am J Hypertens 4: 90–96, 1991.
 1090. Bugge JF and Stokke ES. Angiotensin II and renal prostaglandin release in the dog. Interactions in controlling renal blood flow and glomerular filtration rate. Acta Physiol Scand 150: 431–440, 1994.
 1091. Wilcox CS, Welch WJ and Snellen H. Thromboxane mediates renal hemodynamic response to infused angiotensin II. Kidney Int 40: 1090–1997, 1991.
 1092. Hall JE. Control of sodium excretion by angiotensin II: intrarenal mechanisms and blood pressure regulation. Am J Physiol Regul Integr Comp Physiol 250: R960–R972, 1986.
 1093. Hall JE, Guyton AC, Jackson TE, Coleman TG, Lohmeier TE and Trippodo NC. Control of glomerular filtration rate by renin‐angiotensin system. Am J Physiol 233: F366–F372, 1977.
 1094. Heller J and Horacek V. Angiotensin II: Preferential efferent constriction? Renal Physiol Basel 9: 357–365, 1986.
 1095. Steiner RW and Blantz RC. Acute reversal by saralasin of multiple intrarenal effects of angiotensin. Am J Physiol 237: F386–F391, 1979.
 1096. Tucker BJ, Mundy CA, Maciejewski AR, Printz MP, Ziegler MG, Pelayo JC and Blantz RC. Changes in glomerular hemodynamic response to angiotensin II after subacute renal denervation in rats. J Clin Invest 78: 680–688, 1986.
 1097. Navar LG and Rosivall L. Contribution of the renin angiotensin system to the control of intrarenal hemodynamics. Kidney Int 25: 857–868, 1984.
 1098. Maddox DA and Brenner BM. Glomerular ultrafiltration. In: The Kidney, eds Brenner BM and Rctor FC, Jr. Philadelphia: W.B. Saunders Co. 1991, pp. 205–244.
 1099. Elger M, Sakai T and Kriz W. Role of mesangial cell contraction in adaptation of the glomerular tuft to changes in extracellular volume. Pflügers Arch 415: 598–605, 1990.
 1100. Henger A, Huber T, Fischer K‐G, Nitschke R, Mundel P, Schollmeyer P, Greger R and Pavenstädt H. Angiotensin II increases the cytosolic calcium activity in rat podocytes in culture. Kidney Int 52: 687–693, 1997.
 1101. Hoffmann S, Podlich D, Hahnel B, Kriz W and Gretz N. Angiotensin II type 1 receptor overexpression in podocytes induces glomerulosclerosis in transgenic rats. J Am Soc Nephrol 15: 1475–1487, 2004.
 1102. Liebau MC, Lang D, Bohm J, Endlich N, Bek MJ, Witherden I, Mathieson PW, Saleem MA, Pavenstadt H and Fischer KG. Functional expression of the renin‐angiotensin system in human podocytes. Am J Physiol Renal Physiol 290: F710–F719, 2006.
 1103. Nitschke R, Henger A, Ricken S, Gloy J, Muller V, Greger R and Pavenstadt H. Angiotensin II increases the intracellular calcium activity in podocytes of the intact glomerulus. Kidney Int 57: 41–49, 2000.
 1104. Treeck B, Roald AB, Tenstad O and Aukland K. Effect of exogenous and endogenous angiotensin II on intrarenal distribution of glomerular filtration rate in rats. J Physiol 541: 1049–1057, 2002.
 1105. Mattson DL, Raff H and Roman RJ. Influence of angiotensin II on pressure natriuresis and renal hemodynamics in volume‐expanded rats. Am J Physiol Regul Integr Comp Physiol 29: R1200–R1209, 1991.
 1106. Huang C, Davis G and Johns EJ. A study of the action of angiotensin II on perfusion through the cortex and papilla of the rat kidney. Exp Physiol 76: 787–798, 1991.
 1107. Omoro S, Majid DSA, El‐Dahr S and Navar LG. Roles of ANG II and bradykinin in the renal regional blood flow responses to ACE inhibition in sodium‐depleted dogs. Am J Physiol Renal Physiol 279: F289–F293, 2000.
 1108. Carmines PK, Morrison TK and Navar LG. Angiotensin II effects on microvascular diameters of in vitro blood‐perfused juxtamed‐ullary nephrons. Am J Physiol 251: F610–F618, 1986.
 1109. Mitchell KD and Navar LG. Superficial nephron responses to peritubular capillary infusions of angiotensins I and II. Am J Physiol Renal Physiol 252: F818–F824, 1987.
 1110. Click RL, Joyner WL and Gilmore JP. Reactivity of glomerular afferent and efferent arterioles in renal hypertension. Kidney Int 15: 109–115, 1979.
 1111. Dietrich MS, Endlich K, Parekh N and Steinhausen M. Interaction between adenosine and angiotensin II in renal microcirculation. Microvasc Res 41: 275–288, 1991.
 1112. Loutzenhiser R, Epstein M, Hayashi K, Takenaka T and Forster H. Characterization of the renal microvascular effects of angiotensin II antagonist. DuP 753: studies in isolated perfused hydronephrotic kidneys. Am J Hypertens 4: 309S–314S, 1991.
 1113. Steinhausen M, Sterzel RB, Fleming JT, Kuhn R and Weis S. Acute and chronic effects of angiotensin II on the vessels of the split hydronephrotic kidney. Kidney Int 31 (supplement 20): S64–S73, 1987.
 1114. Edwards RM. Segmental effects of norepinephrine and angiotensin II on isolated renal microvessels. Am J Physiol 244: F526–F534, 1983.
 1115. Ito S, Johnson CS and Carretero OA. Modulation of angiotensin II‐induced vasoconstriction by endothelium‐derived relaxing factor in the isolated microperfused rabbit afferent arteriole. J Clin Invest 87: 1656–1663, 1991.
 1116. Weihprecht H, Lorenz JN, Briggs JP and Schnermann J. Vasoconstrictor effect of angiotensin and vasopressin in isolated rabbit afferent arterioles. Am J Physiol Renal Physiol 261: F273–F282, 1991.
 1117. Yuan BH, Robinette JB and Conger JD. Effect of angiotensin II and norepinephrine on isolated rat afferent and efferent arterioles. Am J Physiol Renal Physiol 258: F741–F750, 1990.
 1118. Muller‐Schweinitzer E and Olea‐Baza I. Pharmacological evidence for the existence of a local renin‐angiotensin sysetem in porcine interlobar renal arteries. Br J Pharmacol 101: 89–92, 1990.
 1119. Bottari SP, de Gasparo M, Steckelings UM and Levens NR. Angiotensin II receptor subtypes: characterization, signalling mechanisms, and possible physiological implications. Front Neuroendocrinal 14: 123–171, 1993.
 1120. Freeman EJ and Tallant EA. Vascular smooth‐muscle cells contain A1 angiotensin receptors coupled to phospholipase D activation. Biochem J 304: 543–548, 1994.
 1121. Madhun ZT, Ernsberger P, Ke F‐C, Zhou J, Hopfer U and Douglas JG. Signal transduction mediated by angiotensin II receptor subtypes expressed in rat renal mesangial cells. Regul Pept 44: 149–157, 1993.
 1122. Smith JB. Angiotensin‐receptor signaling in cultured vascular smooth muscle cells. Am J Physiol Renal Physiol 250: F759–F769, 1986.
 1123. Alexander RW, Brock TA and Gimbrone MA, Jr. Angiotensin increases inositol trisphosphate and calcium in vascular smooth muscle. Hypertension 7: 447–454, 1985.
 1124. Haller H, Lindschau C, Quass P, Distler A and Luft FC. Nuclear calcium signaling is initiated by cytosolic calcium surges in vascular smooth muscle cells. Kidney Int 46: 1653–1662, 1994.
 1125. Li XC, Carretero OA, Navar LG and Zhuo JL. AT1 receptor‐mediated accumulation of extracellular angiotensin II in proximal tubule cells: role of cytoskeleton microtubules and tyrosine phosphatases. Am J Physiol Renal Physiol 291: F375–F383, 2006.
 1126. Kondo T, Konishi F, Inui H and Inagami T. Diacylglycerol formation from phosphatidylcholine in angiotensin II‐stimulated vascular smooth muscle cells. Biochem Biophys Res Commun 187: 1460–1465, 1992.
 1127. Dubey RK, Roy A and Overbeck HW. Culture of renal arteriolar smooth muscle cells: mitogenic responses to angiotensin II. Circ Res 71: 1143–1152, 1992.
 1128. Ochsner M, Huwiler A, Fleck T and Pfeilschifter J. Protein kinase C inhibitors potentiate angiotensin II‐induced phosphoinositide hydrolysis and intracellular Ca2+ mobilization in renal mesangial cells. Eur J Pharmacol‐Mol Pharmacol Sect 245: 15–21, 1993.
 1129. Pfeilschifter J. Protein kinase C from rat renal mesangial cells: its role in homologous desenitization of angiotensin II‐induced polyphosphoinositide hydrolysis. Biochimica et Biophysica Acta 969: 263–270, 1988.
 1130. Pfeilschifter J and Bauer C. Different effects of phorbol ester on angiotensin II‐ and stable GTP analogue‐induced activation of polyphosphoinositide phosphodiesterase in membranes isolated from rat renal mesangial cells. Biochem J 248: 209–215, 1987.
 1131. Pfeilschifter J and Huwiler A. A role for protein kinase C‐e in angiotensin II stimulation of phospholipase D in rat renal mesangial cells. FEBS 331: 267–271, 1993.
 1132. Henrion D, Laher I, Laporte R and Bevan JA. Further evidence from an elastic artery that angiotensin II amplifies noradrenaline‐induced contraction through activation of protein kinase C. Eur J Pharmacol 224: 13–20, 1992.
 1133. Fandrey J and Jelkmann W. Prostaglandin E2 and atriopeptin III oppose the contractile effect of angiotensin II in rat kidney mesangial cell cultures. Prostaglandins 36: 249–257, 1988.
 1134. Conger JD, Falk SA and Robinette JB. Angiotensin II‐induced changes in smooth muscle calcium in rat renal arterioles. J Am Soc Nephrol 3: 1792–1803, 1993.
 1135. Loutzenhiser R, Hayashi K and Epstein M. Calcium antagonists augment glomerular filtration rate of angiotensin II‐vasoconstricted isolated perfused rat kidneys by dilating afferent but not efferent arterioles. J Cardiovasc Pharmacol 12 (suppl 6): S149, 1988.
 1136. Ohnishi J, Ishido M, Shibata T, Inagami T, Murakami K and Miyazaki H. The rat angiotensin II AT1A receptor couples with three different signal transduction pathways. Biochem Biophys Res Comm 186: 1094–1101, 1992.
 1137. Ohya Y and Sperelakis N. Involvement of a GTP‐binding protein in stimulating action of angiotensin II on calcium channels in vascular smooth muscle cells. Circ Res 68: 763–771, 1991.
 1138. Cogan MG. Angiotensin II: a powerful controller of sodium transport in the early proximal tubule. Hypertension 15: 451–458, 1990.
 1139. Ganz MB, Boyarsky G, Boron WF and Sterzel RB. Effects of angiotensin II and vasopressin on intracellular pH of glomerular mesangial cells. Am J Physiol Renal Physiol 254: F787–F794, 1988.
 1140. Iversen BM and Arendshorst WJ. ANG II and vasopressin stimulate calcium entry in dispersed smooth muscle cells of preglomerular arteiroles. Am J Physiol 274: F498–F508, 1998.
 1141. Iversen BM and Arendshorst WJ. AT1 calcium signaling in renal vascular smooth muscle cells. J Am Soc Nephrol 10: S84–S89, 1999.
 1142. Saccomani G, Mitchell KD and Navar LG. Angiotensin II stimulation of Na+ ‐H+ exchange in proximal tubule cells. Am J Physiol Renal Physiol 258: F1188–F1195, 1990.
 1143. Kremer SG, Breuer WV and Skorecki KL. Vasoconstrictor hormones depolarize renal glomerular mesangial cells by activating chloride channels. J Cell Physiol 138: 97–105, 1989.
 1144. Ling BN, Seal EE and Eaton DC. Regulation of mesangial cell ion channels by insulin and angiotensin II. Possible role in diabetic glomerular hyperfiltration. J Clin Invest 92: 2141–2151, 1993.
 1145. Okuda T, Yamashita N and Kurokawa K. Angiotensin II and vasopressin stimulate calcium‐activated chloride conductance in rat mesangial cells. J Clin Invest 78: 1443–1448, 1986.
 1146. Wilcox CS. Renal haemodynamics during hyperchloraemia in the anaesthetized dog: Effects of captopril. J Physiol (Lond) 406: 27–34, 1988.
 1147. Quilley CP, Lin Y‐SR and McGiff JC. Chloride anion concentration as a determinant of renal vascular responsiveness to vasoconstrictor agents. Br J Pharmacol 108: 106–110, 1993.
 1148. Schweda F, Riegger AJG, Kurtz A and Kramer BK. Store‐operated calcium influx inhibits renin secretion. Am J Physiol Renal Physiol 279: F170–F176, 2000.
 1149. Loutzenhiser R and Epstein M. Effects of calcium channel antagonists on renal hemodynamics. Am J Physiol Renal Physiol 249: F619–F629, 1985.
 1150. Takahara A, Suzuki‐Kusaba M, Hisa H and Satoh S. Effects of a novel Ca2+ entry blocker, CD‐349, and TMB‐8 on renal vasoconstriction induced by angiotensin II and vasopressin in dogs. J Cardiovasc Pharmacol 16: 966–970, 1990.
 1151. Bauer J and Parekh N. Variations in cell signaling pathways for different vasoconstrictor agonists in renal circulation of the rat. Kidney Int 63: 2178–2186, 2003.
 1152. Ruan X and Arendshorst WJ. Calcium entry and mobilization signaling pathways in ANG II‐induced renal vasoconstriction in vivo. Am J Physiol 270: F398–F405, 1996.
 1153. Nagahama T, Hayashi K, Ozawa Y, Takenaka T and Saruta T. Role of protein kinase C in angiotensin II‐induced constriction of renal microvessels. Kidney Int 57: 215–223, 2000.
 1154. Ruan X and Arendshorst WJ. Role of protein kinase C in angiotensin II‐induced renal vasoconstriction in genetically hypertensive rats. Am J Physiol 270: F945–F952, 1996.
 1155. Scholz H and Kurtz A. Role of protein kinase C in renal vasoconstriction caused by angiotensin II. Am J Physiol‐Cell Physiol 259: C421–C426, 1990.
 1156. Takenaka T, Forster H and Epstein M. Protein kinase C and calcium channel activation as determinants of renal vasoconstriction by angiotensin II and endothelin. Circ Res 73: 743–750, 1993.
 1157. Honda M, Hayashi K, Matsuda H, Kubota E, Tokuyama H, Okubo K, Takamatsu I, Ozawa Y and Saruta T. Divergent renal vasodilator action of L‐ and T‐type calcium antagonists in vivo. J Hypertens 19: 2031–2037, 2001.
 1158. Clappison BH, Anderson WP and Johnston CI. Role of the kallikrein‐kinin system in the renal effects of angiotensin‐converting enzyme inhibition in anaesthetized dogs. Clin Exp Pharmacol Physiol 8: 509–513, 1981.
 1159. Jover B, Saladini D, Nafrialdi N, Dupont M and Mimran A. Effect of losartan and enalapril on renal adaptation to sodium restriction in rat. Am J Physiol Renal Physiol 267: F281–F288, 1994.
 1160. Rassier ME, Li T and Zimmerman BG. Analysis of influence of extra‐ and intrarenally formed angiotensin II on renal blood flow. J Cardiovasc Pharmacol 8 (Suppl. 10): S106–S110, 1986.
 1161. Vos PF, Boer P and Koomans HA. Effects of enalapril on renal sodium handling in healthy subjects on low. intermediate, and high sodium intake. J Cardiovasc Pharmacol 22: 27–32, 1993.
 1162. Kimbrough HM, Jr., Vaughan ED, Jr., Carey RM and Ayers CR. Effect of intrarenal angiotensin II blockade on renal function in conscious dogs. Circ Res 40: 174–178, 1977.
 1163. Fagard RH, Amery AK and Lijnen PJ. Renal responses to angiotensin II and 1‐Sar‐8‐Ala‐AII in sodium replete and deplete dogs. Pflügers Arch 374: 199–204, 1978.
 1164. Hall JE, Guyton AC, Smith MJ, Jr. and Coleman TG. Chronic blockade of angiotensin II formation during sodium deprivation. Am J Physiol 237: F424–F432, 1979.
 1165. Kon V, Fogo A and Ichikawa I. Bradykinin causes selective efferent arteriolar dilation during angiotensin I converting enzyme inhibition. Kidney Int 44: 545–550, 1993.
 1166. Verburg KM, Kadam JRC, Young GA, Rosenberg SH and Kleinert HD. Effect of intrarenal renin inhibition on renal hemodynamics and excretory function. Am J Physiol Regul Integr Comp Physiol 259: R7–R14, 1990.
 1167. Verburg KM, Kleinert HD, Chekal MA, Kadam JRC and Young GA. Renal hemodynamic and excretory responses to renin inhibition induced by A‐64662. J Pharmacol Exp Ther 252: 449–455, 1990.
 1168. Persson P, Ehmke H and Kirchheim H. Influence of the renin‐angiotensin system on the autoregulation of renal blood flow and glomerular filtration rate in conscious dogs. Acta Physiol Scand 134: 1–7, 1988.
 1169. He J and Marsh DJ. Effect of captopril on fluctuations of blood pressure and renal blood flow in rats. Am J Physiol Renal Physiol 264: F37–F44, 1993.
 1170. Steinhausen M and Holz FG. Autoregulation of glomerular blood flow during converting‐enzyme inhibition by captopril. Biomed Biochim Acta 46: 1005–1009, 1987.
 1171. Clappison BH, Anderson WP and Johnston CI. Renal hemodynamics and renal kinins after angiotensin converting enzyme inhibition. Kidney Int 20: 615–620, 1981.
 1172. Zimmerman BG, Raich PC, Vavrek RJ and Stewart JM. Bradykinin contribution to renal blood flow effect of angiotensin converting enzyme inhibitor in the conscious sodium‐restricted dog. Circ Res 66: 242–248, 1990.
 1173. Fenoy FJ, Scicli G, Carretero O and Roman RJ. Effect of an angiotensin II and a kinin receptor antagonist on the renal hemodynamic response to captopril. Hypertension 17: 1038–1044, 1991.
 1174. Bauer JH and Reams GP. Renal effects of angiotensin converting enzyme inhibitors in hypertension. Am J Med 81 (suppl 4C): 19–27, 1986.
 1175. Brunner HR. The renin‐angiotensin system in hypertension: an update. Hospital Practice: 71–81, 1990.
 1176. Hall JE. Regulation of glomerular filtration rate and sodium excretion by angiotensin II. Federation Proceedings 45: 1431–1437, 1986.
 1177. Kastner PR, Hall JE and Guyton AC. Control of glomerular filtration rate: role of intrarenally formed angiotensin II. Am J Physiol 246: F897–F906, 1984.
 1178. Valvo E, Casagrande P, Bedogna V, Antiga L, Alberti D, Zamboni M, Perobelli L, Dal Santo F and Maschio G. Systemic and renal effects of a new angiotensin converting enzyme inhibitor benazepril, in essential hypertension. J Hypertens 8: 991–995, 1990.
 1179. Ichikawa I, Ferrone RA, Duchin KL, Manning M, Dzau VJ and Brenner BM. Relative contribution of vasopressin and angiotensin II to the altered renal microcirculatory dynamics in two kidney Goldblatt hypertension. Circ Res 53: 592–602, 1983.
 1180. Clark KL, Robertson MJ and Drew GM. Role of angiotensin AT1 and AT2 receptors in mediating the renal effects of angiotensin II in the anaesthetized dog. Br J Pharmacol 109: 148–156, 1993.
 1181. Keiser JA, Bjork FA, Hodges JC and Taylor DG, Jr. Renal hemodynamic and excretory responses to PD 123319 and losartan. nonpeptide AT1 and AT2 subtype‐specific angiotensin II ligands. J Pharmacol Exp Ther 262: 1154–1160, 1992.
 1182. Wienen W and Entzeroth M. Effects on binding characteristics and renal function of the novel, non‐pepttde angiotensin II antagonist BIBR 277 in the rat. J Hypertens 12: 119–128, 1994.
 1183. Chan DP, Sandok EK, Aahrus LL, Heublein DM and Burnett JC, Jr. Renal‐specific actions of angiotensin II receptor antagonism in the anesthetized dog. Am J Hypertens 5: 354–360, 1992.
 1184. Tamaki T, Nishiyama A, Yoshida H, He H, Fukui T, Yamamoto A, Aki Y, Kimura S, Iwao H, Miyatake A and Abe Y. Effects of EXP3174, a non‐peptide angiotensin II receptor antagonist, on renal hemodynamics and renal function in dogs. Eur J Pharmacol 236: 15–21, 1993.
 1185. Zhuo J, Thomas D, Harris PJ and Skinner SL. The role of endogenous angiotensin II in the regulation of renal haemodynamics and proximal fluid reabsorption in the rat. J Physiol (Lond) 453: 1–13, 1992.
 1186. Reams G, Villarreal D and Bauer JH. Intrarenal metabolism of angiotensin II. Am J Physiol Renal Physiol 258: F1510–F1515, 1990.
 1187. Holm L, Morsing P, Casellas D and Persson AEG. Resetting of the pressure range for blood flow autoregulation in the rat kidney. Acta Physiol Scand 138: 395–401, 1990.
 1188. Mitchell KD and Navar LG. Influence of intrarenally generated angiotensin II on renal hemodynamics and tubular reabsorption. Renal Physiol Biochem 14: 155–163, 1991.
 1189. Imig JD and Deichmann PC. Afferent arteriolar responses to ANG II involve activation of PLA2 and modulation by lipoxygenase and P‐450 pathways. Am J Physiol Renal Physiol 273: F274–F282, 1997.
 1190. Schnermann J and Briggs J. Role of the renin‐angiotensin system in tubuloglomerular feedback. Fed Proc 45: 1426–1430, 1986.
 1191. Thurau K, Tubulo‐glomerular feedback. In: Advances in Physiological Sciences (Kidney and Body Fluids), vol. 11, ed. Takacs L. New York: Pergamon Press, Inc., 1981, pp. 75–82.
 1192. Braam B, Mitchell KD and Navar LG. Modulation of tubuloglomerular feedback responsiveness by angiotensin II AT1 receptors. In: Current Advances in ACE Inhihition‐3, eds MacGregor GA and Sever PS. Tokyo: Churchill‐Livingstone, 1994, pp. 155–158.
 1193. Huang W‐C, Bell PD, Harvey D, Mitchell KD and Navar LG. Angiotensin influences on tubuloglomerular feedback mechanism in hypertensive rats. Kidney Int 34: 631–637, 1988.
 1194. Mitchell KD and Navar LG. Responses of the tubuloglomerular feedback mechanism to ACE inhibitors and angiotensin II. In: Diuretics III: Chemistry, Pharmacology, and Clinical Applications, Vol. 3, eds Puschett JB and Greenberg A. Elsevier Science Publishing Co., Inc., 1990, pp. 764–768.
 1195. Persson AE, Gushwa LC and Blantz RC. Feedback pressure‐flow responses in normal and angiotensin‐prostaglandin blocked rats. Am J Physiol Renal Physiol 247: F925–F931, 1984.
 1196. Ploth DW and Roy RN. Renin‐angiotensin influences on tubuloglomerular feedback activity in the rat. Kidney Int 22 (Suppl 12): S114–S121, 1982.
 1197. Braam B, Navar LG and Mitchell KD. Modulation of tubuloglomerular feedback by angiotensin II type 1 receptors during the development of Goldblatt hypertension. Hypertension 25: 1232–1237, 1995.
 1198. Ploth DW. Angiotensin‐dependent renal mechanisms in two‐kidney one‐clip renal vascular hypertension. Am J Physiol Renal Physiol 245: F131–F141, 1983.
 1199. Turkstra E, Braam B and Koomans HA. Normal TGF responsiveness during chronic treatment with angiotensin‐converting enzyme inhibition‐Role of ATI receptors. Hypertension 36: 818–823, 2000.
 1200. Traynor T, Yang T, Huang YG, Krege JH, Briggs JP, Smithies O and Schnermann J. Tubuloglomerular feedback in ACE‐deficient mice. Am J Physiol Renal Physiol 276: F751–F757, 1999.
 1201. Ichihara A, Hayashi M, Koura Y, Tada Y, Sugaya T, Hirota N and Saruta T. Blunted tubuloglomerular feedback by absence of angiotensin type 1 A receptor involves neuronal NOS. Hypertension 40: 934–939, 2002.
 1202. Peti‐Peterdi J and Bell PD. Regulation of macula densa Na: H exchange by angiotensin II. Kidney Int 54: 2021–2028, 1998.
 1203. Navar LG, Harrison‐Bernard LM, Imig JD and Mitchell KD. Renal actions of angiotensin II at AT1 receptor blockers. In: Angiotensin II Receptor Antagonists, eds Epstein M and Brunner HR. Philadelphia: Hanley & Belfus, Inc., 2000, pp. 189–214.
 1204. Navar LG and Hamm LL. The kidney in blood pressure regulation. In: Atlas of Diseases of the Kidney, Hypertension and the Kidney, ed. Wilcox CS. Philadelphia: Current Medicine, Inc., 1999, pp. 1.1–1.22.
 1205. Wang C‐T, Chin SY and Navar LG. Impairment of pressure‐natriuresis and renal autoregulation in ANG II‐infused hypertensive rats. Am J Physiol Renal Physiol 279: F319–F325, 2000.
 1206. Bloch RD, Zikos D, Fisher KA, Schleicher L, Oyama M, Cheng J‐C, Skopicki HA, Sukowski EJ, Cragoe EJ, Jr. and Peterson DR. Activation of proximal tubular Na+ ‐H+ exchange by angiotensin II. Am J Physiol Renal Physiol 263: F135–F143, 1992.
 1207. Cano A, Miller RT, Alpern RJ and Preisig PA. Angiotensin II stimulation of Na‐H antiporter activity is cAMP independent in OKP cells. Am J Physiol Renal Physiol 266: C1603–C1608, 1994.
 1208. Li L, Wang Y‐P, Capparelli AW, Jo OD and Yanagawa N. Effect of luminal angiotensin II on proximal tubule fluid transport: role of apical phospholipase A2. Am J Physiol Renal Physiol 266: F202–F209, 1994.
 1209. Harris PJ and Navar LG. Tubular transport responses to angiotensin. Am J Physiol Renal Physiol 248: F621–F630, 1985.
 1210. Schuster VL, Kokko JP and Jacobson HR. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J Clin Invest 73: 507–515, 1984.
 1211. Xie MH, Liu FY, Wong PC, Timmermans PBMWM and Cogan MG. Proximal nephron and renal effects of DuP 753, a nonpeptide angiotensin II receptor antagonist. Kidney Int 38: 473–479, 1990.
 1212. Yanagawa N. Potential role for local luminal angiotensin II in proximal tubule sodium transport. Kidney Int 39 (Suppl. 32): S‐33–S‐36, 1991.
 1213. Hao CM and Breyer MD. Physiologic and pathophysiologic roles of lipid mediators in the kidney. Kidney Int 71: 1105–1115, 2007.
 1214. Roman RJ. P‐450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82: 131–185, 2002.
 1215. Smith WL, Marnett LJ and DeWitt DL. Prostaglandin and thromboxane biosynthesis. Pharmacol Ther 49: 153–179, 1991.
 1216. Yang T, Singh I, Pham H, Sun D, Smart A, Schnermann JB and Briggs JP. Regulation of cyclooxygenase expression in the kidney by dietary salt intake. Am J Physiol 274: F481–F489, 1998.
 1217. Qi Z, Hao CM, Langenbach RI, Breyer RM, Redha R, Morrow JD and Breyer MD. Opposite effects of cyclooxygenase‐1 and ‐2 activity on the pressor response to angiotensin II. J Clin Invest 110: 61–69, 2002.
 1218. Breyer RM, Bagdassarian CK, Myers SA and Breyer MD. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 41: 661–690, 2001.
 1219. Breyer MD, Zhang Y, Guan YF, Hao CM, Hebert RL and Breyer RM. Regulation of renal function by prostaglandin E receptors. Kidney Int Suppl 67: S88–S94, 1998.
 1220. Sugimoto Y, Namba T, Shigemoto R, Negishi M, Ichikawa A and Narumiya S. Distinct cellular localization of mRNAs for three subtypes of prostaglandin E receptor in kidney. Am J Physiol Renal Physiol 266: F823–F828, 1994.
 1221. Purdy KE and Arendshorst WJ. EP1 and EP4 receptors mediate prostaglandin E2 actions in the microcirculation of the rat kidney. Am J Physiol Renal Physiol 279: F755–F764, 2000.
 1222. Tang L, Loutzenhiser K and Loutzenhiser R. Biphasic actions of prostaglandin E(2) on the renal afferent arteriole: role of EP(3) and EP(4) receptors. Circ Res 86: 663–670, 2000.
 1223. Audoly LP, Ruan X, Wagner VA, Goulet JL, Tilley SL, Koller BH, Coffman TM and Arendshorst WJ. Role of EP(2) and EP(3) PGE(2) receptors in control of murine renal hemodynamics. Am. J. Physiol. Heart Circ. Physiol 280: H327–H333, 2001.
 1224. Purdy KE and Arendshorst WJ. Iloprost inhibits inositol‐1,4,5‐trisphosphate‐mediated calcium mobilization stimulated by angiotensin II in cultured preglomerular vascular smooth muscle cells. J Am Soc Nephrol 12: 19–28, 2001.
 1225. Breyer MD, Jacobson HR and Breyer RM. Functional and molecular aspects of renal prostaglandin receptors. J Am Soc Nephrol 7: 8–17, 1996.
 1226. Coleman RA, Smith WL and Narumiya S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46: 205–229, 1994.
 1227. Imig JD, Breyer MD and Breyer RM. Contribution of prostaglandin EP(2) receptors to renal microvascular reactivity in mice. Am J Physiol Renal Physiol 283: F415–F422, 2002.
 1228. Zhang Y, Guan Y, Schneider A, Brandon S, Breyer RM and Breyer MD. Characterization of murine vasopressor and vasodepressor prostaglandin E(2) receptors. Hypertension 35: 1129–1134, 2000.
 1229. Badzynska B and Sadowski J. Renal hemodynamic responses to intrarenal infusion of acetylcholine: comparison with effects of PGE2 and NO donor. Kidney Int 69: 1774–1779, 2006.
 1230. Mene P and Dunn MJ. Eicosanoids and control of mesangial cell contraction. Circ Res 62: 916–925, 1988.
 1231. Kennedy CR, Zhang Y, Brandon S, Guan Y, Coffee K, Funk CD, Magnuson MA, Oates JA, Breyer MD and Breyer RM. Salt‐sensitive hypertension and reduced fertility in mice lacking the prostaglandin EP2 receptor. Nat Med 5: 217–220, 1999.
 1232. Schweda F, Klar J, Narumiya S, Nusing RM and Kurtz A. Stimulation of renin release by prostaglandin E2 is mediated by EP2 and EP4 receptors in mouse kidneys. Am J Physiol Renal Physiol 287: F427–F433, 2004.
 1233. Nasrallah R and Hebert RL. Prostacyclin signaling in the kidney: implications for health and disease. Am J Physiol Renal Physiol 289: F235–F246, 2005.
 1234. Chaudhari A, Gupta S and Kirschenbaum MA. Biochemical evidence for PGI2 and PGE2 receptors in the rabbit renal preglomerular microvasculature. Biochim Biophys Acta 1053: 156–161, 1990.
 1235. Ruan X, Chatziantoniou C and Arendshorst WJ. Impaired prostaglandin E(2)/prostaglandin 1(2) receptor‐G(s) protein interactions in isolated renal resistance arterioles of spontaneously hypertensive rats. Hypertension 34: 1134–1140, 1999.
 1236. Chatziantoniou C and Arendshorst WJ. Prostaglandin interactions with angiotensin, norepinephrine, and thromboxane in rat renal vasculature. Am J Physiol Renal Physiol 262: F68–F76, 1992.
 1237. Chatziantoniou C, Daniels FH and Arendshorst WJ. Exaggerated renal vascular reactivity to angiotensin and thromboxane in young genetically hypertensive rats. Am J Physiol Renal Physiol 259: F372–F382, 1990.
 1238. Fujino T, Nakagawa N, Yuhki K, Hara A, Yamada T, Takayama K, Kuriyama S, Hosoki Y, Takahata O, Taniguchi T, Fukuzawa J, Hasebe N, Kikuchi K, Narumiya S and Ushikubi F. Decreased susceptibility to renovascular hypertension in mice lacking the prostaglandin 12 receptor IP. J Clin Invest 114: 805–812, 2004.
 1239. Hayashi K, Loutzenhiser R and Epstein M. Direct evidence that thromboxane mimetic U44069 preferentially constricts the afferent arteriole. J Am Soc Nephrol 8: 25–31, 1997.
 1240. Offermanns S, Laugwitz KL, Spicher K and Schultz G. G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci USA 91: 504–508, 1994.
 1241. Ohkubo S, Nakahata N and Ohizumi Y. Thromboxane A2‐mediated shape change: independent of Gq‐phospholipase C‐Ca2+ pathway in rabbit platelets. Br J Pharmacol 117: 1095–1104, 1996.
 1242. Fukunaga M, Yura T, Grygorczyk R and Badr KF. Evidence for the distinct nature of F2‐isoprostane receptors from those of thromboxane A. Am J Physiol Renal Physiol 272: F477–F483, 1997.
 1243. Takahashi K, Nammour TM, Fukunaga M, Ebert J, Morrow JD, Roberts ILJ, Hoover RL and Badr KF. Glomerular actions of a free radical‐generated novel prostaglandin, 8‐epi‐prostaglandin F2a, in the rat. Evidence for interaction with thromboxane A, receptors. J Clin Invest 90: 136–141, 1992.
 1244. Kawada N, Dennehy K, Solis G, Modlinger P, Hamel R, Kawada JT, Aslam S, Moriyama T, Imai E, Welch WJ and Wilcox CS. TP receptors regulate renal hemodynamics during angiotensin II slow pressor response. Am J Physiol Renal Physiol 287: F753–F759, 2004.
 1245. Welch WJ. Effects of isoprostane on tubuloglomerular feedback: roles of TP receptors, NOS, and salt intake. Am J Physiol Renal Physiol 288: F757–F762, 2005.
 1246. Boffa JJ, Just A, Coffman TM and Arendshorst WJ. Thromboxane receptor mediates renal vasoconstriction and contributes to acute renal failure in endotoxemic mice. J Am Soc Nephrol 15: 2358–2365, 2004.
 1247. Imig JD and Navar LG. Afferent arteriolar response to arachi donic acid: involvement of metabolic pathways. Am J Physiol Renal Physiol 271: F87–F93, 1996.
 1248. Imig JD. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am J Physiol Renal Physiol 289: F496–F503, 2005.
 1249. Fleming I. Cytochrome p450 and vascular homeostasis. Circ Res 89: 753–762, 2001.
 1250. Harder DR, Campbell WB and Roman RJ. Role of cytochrome P‐450 enzymes and metabolites of arachidonic acid in the control of vascular tone. J Vasc Res 32: 79–92, 1995.
 1251. McGiff JC and Quilley J. 20‐HETE and the kidney: resolution of old problems and new beginnings. Am J Physiol 277: R607–R623, 1999.
 1252. Ortiz PA and Garvin JL. Intrarenal transport and vasoactive substances in hypertension. Hypertension 38: 621–624, 2001.
 1253. Quilley J, Fulton D and McGiff JC. Hyperpolarizing factors. Biochem Pharmacol 54: 1059–1070, 1997.
 1254. Roman RJ, Maier KG, Sun CW, Harder DR and Alonso‐Galicia M. Renal and cardiovascular actions of 20‐hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids. Clin Exp Pharmacol Physiol 27: 855–865, 2000.
 1255. Sarkis A, Lopez B and Roman RJ. Role of 20‐hydroxyeicosaletraenoic acid and epoxyeicosatrienoic acids in hypertension. Curr Opin Nephrol Hypertens 13: 205–214, 2004.
 1256. Oyekan A, Balazy M and McGiff JC. Renal oxygenases: differential contribution to vasoconstriction induced by ET‐1 and ANG II. Am J Physiol Regul Integr Comp Physiol 273: R293–R300, 1997.
 1257. Arima S, Omata K, Ito S, Tsunoda K and Abe K. 20‐HETE requires increased vascular tone to constrict rabbit afferent arterioles. Hypertension 27 (part 2): 781–785, 1996.
 1258. Harder DR, Narayanan J, Birks EK, Liard JF, Imig JD, Lombard JH, Lange AR and Roman RJ Identification of a putative microvascular oxygen sensor. Circ Res 79: 54–61, 1996.
 1259. Imig JD, Zou A‐P, Stec DE, Harder DR, Falck JR and Roman RJ. Formation and actions of 20‐hydroxyeicosatetraenoic acid in rat renal arterioles. Am J Physiol Regul Integr Comp Physiol 270: R217–R227, 1996.
 1260. Alonso‐Galicia M, Maier KG, Greene AS, Cowley AW, Jr. and Roman RJ. Role of 20‐hydroxyeicosatetraenoic acid in the renal and vasoconstrictor actions of angiotensin II. Am J Physiol Regul Integr Comp Physiol 283: R60–R68, 2002.
 1261. Kohagura K, Arima S, Endo Y, Chiba Y, Ito O, Abe M, Omata K and Ito S. Involvement of cytochrome P450 metabolites in the vascular action of angiotensin II on the afferent arterioles. Hypertens Res 24: 551–557, 2001.
 1262. Hercule HC and Oyekan AO. Cytochrome P450 omega/omega‐1 hydroxylase‐derived eicosanoids contribute to endothelin(A) and endothelin(B) receptor‐mediated vasoconstriction to endothelin‐1 in the rat preglomerular arteriole. J Pharmacol Exp Ther 292: 1153–1160, 2000.
 1263. Zhao X, Inscho EW, Bondlela M, Falck JR and Imig JD. The CYP450 hydroxylase pathway contributes to P2X receptor‐mediated afferent arteriolar vasoconstriction. Am J Physiol Heart Circ Physiol 281: H2089–H2096, 2001.
 1264. Joly E, Seqqat R, Flamion B, Caron N, Michel A, Imig JD and Kramp R. Increased renal vascular reactivity to ANG II after unilateral nephrectomy in the rat involves 20‐HETE. Am J Physiol Regul Integr Comp Physiol 291: R977–R986, 2006.
 1265. Imig JD, Falck JR and Inscho EW. Contribution of cytochrome P450 epoxygenase and hydroxylase pathways to afferent arteriolar autoregulatory responsiveness. Br J Pharmacol 127: 1399–1405, 1999.
 1266. Alonso‐Galicia M, Drummond HA, Reddy KK, Falck JR and Roman RJ. Inhibition of 20‐HETE production contributes to the vascular responses to nitric oxide. Hypertension 29 (part 2): 320–325, 1997.
 1267. Capdevila JH and Falck JR. The CYP P450 arachidonic acid monooxygenases: from cell signaling to blood pressure regulation. Biochem Biophys Res Commun 285: 571–576, 2001.
 1268. Capdevila JH, Nakagawa K and Holla V. The CYP P450 arachidonate monooxygenases: enzymatic relays for the control of kidney function and blood pressure. Adv Exp Med Biol 525: 39–46, 2003.
 1269. Gainer JV, Bellamine A, Dawson EP, Womble KE, Grant SW, Wang Y, Cupples LA, Guo CY, Demissie S, O'Donnell CJ, Brown NJ, Waterman MR and Capdevila JH. Functional variant of CYP4A11 20‐hydroxyeicosatetraenoic acid synthase is associated with essential hypertension. Circulation 111: 63–69, 2005.
 1270. Carroll MA, Garcia MP, Falck JR and McGiff JC. Cyclooxygeanse dependency of the renovascular actions of cytochrome P450‐dervied arachidonate metabolites. J Pharmacol Exp Ther 260: 104–109, 1992.
 1271. Spiecker M and Liao JK. Vascular protective effects of cytochrome p450 epoxygenase‐derived eicosanoids. Arch Biochem Biophys 433: 413–420, 2005.
 1272. Cheng MK, Doumad AB, Jiang H, Falck JR, McGiff JC and Carroll MA. Epoxyeicosatrienoic acids mediate adenosine‐induced vasodilation in rat preglomerular microvessels (PGMV) via A2A receptors. Br J Pharmacol 141: 441–448, 2004.
 1273. Arima S, Endo Y, Yaoita H, Omata K, Ogawa S, Tsunoda K, Abe M, Takeuchi K, Abe K and Ito S. Possible role of P‐450 metabolite of arachidonic acid in vasodilator mechanism of angiotensin II type 2 receptor in the isolated microperfused rabbit afferent arteriole. J Clin Invest 100: 2816–2823, 1997.
 1274. Imig JD, Inscho EW, Deichmann PC, Reddy KM and Falck JR. Afferent arteriolar vasodilation to the sulfonimide analog of 11, 12‐epoxygeicosatrienoic acid involves protein kinase A. Hypertension 33 (part II): 408–413, 1999.
 1275. Fukao M, Mason HS, Kenyon JL, Horowitz B and Keef KD. Regulation of BK(Ca) channels expressed in human embryonic kidney 293 cells by epoxyeicosatrienoic acid. Mol Pharmacol 59: 16–23, 2001.
 1276. Pomposiello SI, Quilley J, Carroll MA, Falck JR and McGiff JC. 5,6‐epoxyeicosatrienoic acid mediates the enhanced renal vasodilation to arachidonic acid in the SHR. Hypertension 42: 548–554, 2003.
 1277. Imig JD, Falck JR, Wei S and Capdevila JH. Epoxygenase metabolites contribute to nitric oxide‐independent afferent arteriolar vasodilation in response to bradykinin. J Vasc Res 38: 247–255, 2001.
 1278. Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K, Zeldin DC and Liao JK. Anti‐inflammatory properties of cytochrome P450 epoxygenase‐derived eicosanoids. Science 285: 1276–1279, 1999.
 1279. Imig JD. Epoxygenase metabolites: epithelial and vascular actions. Mol Biotechnol 16: 233–251, 2000.
 1280. Brash AR. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274: 23679–23682, 1999.
 1281. Funk CD, Keeney DS, Oliw EH, Boeglin WE and Brash AR. Functional expression and cellular localization of a mouse epidermal lipoxygenase. J Biol Chem 271: 23338–23344, 1996.
 1282. Natarajan R and Nadler JL. Lipid inflammatory mediators in diabetic vascular disease. Arterioscler Thromb Vasc Biol 24: 1542–1548, 2004.
 1283. Yamamoto S. Mammalian lipoxygenases: molecular structures and functions. Biochim Biophys Acta 1128: 117–131, 1992.
 1284. Yiu SS, Zhao X, Inscho EW and Imig JD. 12‐Hydroxyeicosatetraenoic acid participates in angiotensin II afferent arteriolar vasoconstriction by activating L‐type calcium channels. J Lipid Res 44: 2391–2399, 2003.
 1285. Ma Y‐H, Harder DR, Clark JE and Roman RJ. Effects of 12‐HETE on isolated dog renal arcuate arteries. Am J Physiol 261: H451–H456, 1991.
 1286. Katoh T, Takahashi K, DeBoer DK, Serhan CN and Badr KF. Renal hemodynamic actions of lipoxins in rats: a comparative physiological study. Am J Physiol Renal Physiol 263: F436–F442, 1992.
 1287. Anning PB, Coles B, Bermudez‐Fajardo A, Martin PE, Levison BS, Hazen SL, Funk CD, Kuhn H and O'Donnell VB. Elevated endothelial nitric oxide bioactivity and resistance to angiotensin‐dependent hypertension in 12/15‐lipoxygenase knockout mice. Am J Pathol 166: 653–662, 2005.
 1288. Imig JD. Eicosanoids and renal vascular function in diseases. Clin Sci (Lond) 111: 21–34, 2006.
 1289. Dellipizzi A, Pucci ML, Mosny AY, Deseyn K and Nasjletti A. Contribution of constrictor prostanoids to the calcium‐dependent basal tone in the aorta from rats with aortic coarctation‐induced hypertension: relationship to nitric oxide. J Pharmacol Exp Ther 283: 75–81, 1997.
 1290. Wilcox CS and Welch WJ. Thromboxane mediation of the pressor response to infused angiotensin II. Am J Hyperiens 3: 242–249, 1990.
 1291. Purdy KE and Arendshorst WJ. Prostaglandins buffer ANG II‐mediated increases in cytosolic calcium in preglomerular VSMC. Am J Physiol 277: F850–F858, 1999.
 1292. Gonzalez MR, Villa E, Garcia‐Robles R, Angulo J, Peiro C, Marin J and Sanchez‐Ferrer CF. Effects of indomethacin and iloprost on contraction of the afferent arterioles by endothelin‐1 in juxtamedullary nephron preparations from normotensive Wistar‐Kyoto and spontaneously hypertensive rats. J Cardiovasc Pharmacol 28: 809–816, 1996.
 1293. Forstermann U and Neufang B. The endothelium‐dependent vasodilator effect of acetylcholine: characterization of the endothelial relaxing factor with inhibitors of arachidonic acid metabolism. Eur J Pharmacol 103: 65–70, 1984.
 1294. McGiff JC, Carroll MA and Escalante B. Arachidonate metabolites and kinins in blood pressure regulation. Hypertension 18 (suppl III): III‐150–III‐157, 1991.
 1295. Wu XC, Richards NT, Michael J and Johns E. Relative roles of nitric oxide and cyclo‐oxygenase and lipoxygenase products of arachidonic acid in the contractile responses of rat renal arcuate arteries. Br J Pharmacol 112: 369–376, 1994.
 1296. Paliege A, Mizel D, Medina C, Pasumarthy A, Huang YG, Bachmann S, Briggs JP, Schnermann JB and Yang T. Inhibition of nNOS expression in the macula densa by COX‐2‐derived prostaglandin E(2). Am J Physiol Renal Physiol 287: F152–F159, 2004.
 1297. Wang D, Chabrashvili T and Wilcox CS. Enhanced contractility of renal afferent arterioles from angiotensin‐infused rabbits: roles of oxidative stress, thromboxane prostanoid receptors, and endothelium. Circ Res 94: 1436–1442, 2004.
 1298. Katayama S, Inaba M, Maruno Y, Omoto A, Kawazu S, Ishii J and Sawada M. Increased renal TXA2 synthesis in diabetes mellitus: simultaneous determination of urinary TXB2 and 2,3‐dinor‐TXB2. Prostaglandins Leukot Essent Fatty Acids 39: 47–51, 1990,
 1299. Pawloski JR and Chapnick BM. LTD4 and bradykinin evoke endothelium‐dependent relaxation of the renal vein: dissimilar mechanisms. Am J Physiol 261: H88–H95, 1991.
 1300. Pawloski JR and Chapnick BM. Antagonism of LTD4‐evoked relaxation in canine renal artery and vein. Am J Physiol Heart Circ Physiol 265: H980–H985, 1993.
 1301. Sellmayer A, Uedelhoven WM, Weber PC and Bonventre JV. Endogenous non‐cyclooxygenase metabolites of arachidonic acid modulate growth and mRNA levels of immediate‐early response genes in rat mesangial cells. J Biol Chem 266: 3800–3807, 1991.
 1302. Thibonnier M, Bayer AL, Laethem CL, Koop DR and Simonson MS. Role of eicosanoids in vasopressin‐induced calcium mobilization in A7r5 vascular smooth muscle cells. Am J Physiol Endocrinol Metabol 265: E108–E114, 1993.
 1303. Vazquez B, Rios A and Escalante B. Arachidonic acid metabolism modulates vasopressin‐induced renal vasoconstriction. Life Sci 56: 1455–1466, 1995.
 1304. Kaide J, Wang MH, Wang JS, Zhang F, Gopal VR, Falck JR, Nasjletti A and Laniado‐Schwartzman M. Transfection of CYP4A1 cDNA increases vascular reactivity in renal interlobar arteries. Am J Physiol Renal Physiol 284: F51–F56, 2003.
 1305. Zhao X, Falck JR, Gopal VR, Inscho EW and Imig JD. P2X receptor‐stimulated calcium responses in preglomerular vascular smooth muscle cells involves 20‐hydroxyeicosatetraenoic acid. J Pharmacol Exp Ther 311: 1211–1217, 2004.
 1306. Hercule HC, Wang MH and Oyekan AO. Contribution of cytochrome P450 4 A isoforms to renal functional response to inhibition of nitric oxide production in the rat. J Physiol 551: 971–979, 2003.
 1307. Wang JS, Singh H, Zhang F, Ishizuka T, Deng H, Kemp R, Wolin MS, Hintze TH, Abraham NG, Nasjletti A and Laniado‐Schwartzman M. Endothelial dysfunction and hypertension in rats transduced with CYP4A2 adenovirus. Circ Res 98: 962–969, 2006.
 1308. Matsuda H, Hayashi K, Wakino S, Kubota E, Honda M, Tokuyama H, Takamatsu I, Tatematsu S and Saruta T. Role of endothelium‐derived hyperpolarizing factor in ACE inhibitor‐induced renal vasodilation in vivo. Hypertension 43: 603–609, 2004.
 1309. Zhao X, Quigley JE, Yuan J, Wang MH, Zhou Y and Imig JD. PPAR‐alpha activator fenofibrate increases renal CYP‐derived eicosanoid synthesis and improves endothelial dilator function in obese Zucker rats. Am J Physiol Heart Circ Physiol 290: H2187–H2195, 2006.
 1310. Carroll MA, Doumad AB, Li J, Cheng MK, Falck JR and McGiff JC. Adenosine 2A receptor vasodilation of rat preglomerular microvessels is mediated by EETs that activate the cAMP/PKA pathway. Am J Physiol Renal Physiol 291: F155–F161, 2006.
 1311. Fulton D, Balazy M, McGiff JC and Quilley J. Possible contribution of platelet cyclooxygenase to the renal vascular action of 5,6‐epoxyeicosatrienoic acid. J Pharmacol Exp Ther 277: 1195–1199, 1996.
 1312. Caron N, El Hajjam A, Decleves AE, Joly E, Falck JR and Kramp R. Changes in renal haemodynamics induced by indomethacin in the rat involve cytochrome P450 arachidonic acid‐dependent epoxygenases. Clin Exp Pharmacol Physiol 31: 683–690, 2004.
 1313. Ren Y, Garvin J and Carretero OA. Mechanism involved in brady‐kinin‐induced efferent arteriole dilation. Kidney Int 62: 544–549, 2002.
 1314. Wang H, Garvin JL, Falck JR, Ren Y, Sankey SS and Carretero OA. Glomerular cytochrome P‐450 and cyclooxygenase metabolites regulate efferent arteriole resistance. Hypertension 46: 1175–1179, 2005.
 1315. Schmelzer KR, Kubala L, Newman JW, Kim IH, Eiserich JP and Hammock BD. Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc Natl Acad Sci USA 102: 9772–9777, 2005.
 1316. Franco M, Bell PD and Navar LG. Evaluation of prostaglandins as mediators of tubuloglomerular feedback. Am J Physiol Renal Physiol 254: F642–F649, 1988.
 1317. Olsson RA and Pearson JD. Cardiovascular Purinoceptors. Physiol Rev 70: 761–845, 1990.
 1318. Ralevic V and Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev 50: 413–492, 1998.
 1319. Boeynaems JM, Communi D, Gonzalez NS and Robaye B. Overview of the P2 receptors. Semin Thromb Hemost 31: 139–149, 2005.
 1320. Burnstock G. Purinergic signalling. Br J Pharmacol 147 (Suppl 1): S172–S181, 2006.
 1321. Burnstock G and Knight GE. Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240: 31–304, 2004.
 1322. Gachet C. Regulation of platelet functions by P2 receptors. Annu Rev Pharmacol Toxicol 46: 277–300, 2006.
 1323. Kunapuli SP and Daniel JL. P2 receptor subtypes in the cardiovascular system. Biochem J 36 (Pt 3): 513–523, 1998.
 1324. Williams M and Jarvis MF. Purinergic and pyrimidinergic receptors as potential drug targets. Biochem Pharmacol 59: 1173–1185, 2000.
 1325. Bailey MA, Turner CM, Hus‐Citharel A, Marchetti J, Imbert‐Teboul M, Milner P, Burnstock G and Unwin RJ. P2Y receptors present in the native and isolated rat glomerulus. Nephron Physiol 96: 79–90, 2004.
 1326. Chan CM, Unwin RJ, Bardini M, Oglesby IB, Ford APDW, Townsend‐Nicholson A and Burnstock G. Localization of P2X1 purinoceptors by autoradiography and immunohistochemistry in rat kidneys. Am J Physiol Renal Physiol 274: F799–F804, 1998.
 1327. Turner CM, Vonend O, Chan C, Burnstock G and Unwin RJ. The pattern of distribution of selected ATP‐sensitive P2 receptor subtypes in normal rat kidney: an immunohistological study. Cells Tissues Organs 175: 105–117, 2003.
 1328. Unwin RJ, Bailey MA and Burnstock G. Purinergic signaling along the renal tubule: the current state of play. News Physiol Sci 18: 237–241, 2003.
 1329. Vitzthum H, Weiss B, Bachleitner W, Kramer BK and Kurtz A. Gene expression of adenosine receptors along the nephron. Kidney Int 65: 1180–1190, 2004.
 1330. Bailey MA, Hillman KA and Unwin RJ. P2 receptors in the kidney. J Auton Nerv Syst 81: 264–270, 2000.
 1331. Jackson EK and Raghvendra DK. The extracellular cyclic AMP‐adenosine pathway in renal physiology. Annu Rev Physiol 66: 571–599, 2004.
 1332. Vallon V, Muhlbauer B and Osswald H. Adenosine and kidney function. Physiol Rev 86: 901–940, 2006.
 1333. Burnstock G. Purinergic nerves. Pharmacol Rev 24: 509–581, 1972.
 1334. Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G and Wasserman W. Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol 362: 364–374, 2000.
 1335. Jackson EK, Zhu C and Tofovic SP. Expression of adenosine receptors in the preglomerular microcirculation. Am J Physiol Renal Physiol 283: F41–F51, 2002.
 1336. Nishiyama A, Inscho EW and Navar LG. Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity. Am J Physiol Renal Physiol 280: F406–F414, 2001.
 1337. Akbar M, Okajima F, Tomura H, Shimegi S and Kondo Y. A single species of A1 adenosine receptor expressed in Chinese hamster ovary cells not only inhibits cAMP accumulation but also stimulates phospholipase C and arachidonate release. Mol Pharmacol 45: 1036–1042, 1994.
 1338. Gerwins P and Fredholm BB. Activation of adenosine A1 and bradykinin receptors increases protein kinase C and phospholipase D activity in smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol 351: 186–193, 1995.
 1339. Hansen PB, Castrop H, Briggs J and Schnermann J. Adenosine induces vasoconstriction through Gi‐dependent activation of phospholipase C in isolated perfused afferent arterioles of mice. J Am Soc Nephrol 14: 2457–2465, 2003.
 1340. Jockers R, Linder ME, Hohenegger M, Nanoff C, Bertin B, Strosberg AD, Marullo S and Freissmuth M. Species difference in the G protein selectivity of the human and bovine A1‐adenosine receptor. J Biol Chem 269: 32077–32084, 1994.
 1341. Palmer TM, Gettys TW and Stiles GL. Differential interaction with and regulation of multiple G‐proteins by the rat A3 adenosine receptor. J Biol Chem 270: 16895–16902, 1995.
 1342. Olah ME. Identification of A2a adenosine receptor domains involved in selective coupling to Gs. Analysis of chimeric A1/A2a adenosine receptors. J Biol Chem 272: 337–344, 1997.
 1343. Pierce KD, Furlong TJ, Selbie LA and Shine J. Molecular cloning and expression of an adenosine A2b receptor from human brain. Biochem Biophys Res Commun 187: 86–93, 1992.
 1344. North RA and Surprenant A. Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 40: 563–580, 2000.
 1345. Chaulet H, Desgranges C, Renault MA, Dupuch F, Ezan G, Peiretti F, Loirand G, Pacaud P and Gadeau AP. Extracellular nucleotides induce arterial smooth muscle cell migration via osteopontin. Circ Res 89: 772–778, 2001.
 1346. Eppel GA, Ventura S and Evans RG. Regional vascular responses to ATP and ATP analogues in the rabbit kidney in vivo: roles for adenosine receptors and prostanoids. Br J Pharmacol 149: 523–531, 2006.
 1347. Inscho EW and Cook AK. P2 receptor‐mediated afferent arteriolar vasoconstriction during calcium blockade. Am J Physiol Renal Physiol 282: F245–F255, 2002.
 1348. Inscho EW, LeBlanc EA, Pham BT, White SM and Imig JD. Purinoceptor‐mediated calcium signaling in preglomerular smooth muscle cells. Hypertension 33 (part II): 195–200, 1999.
 1349. Sauzeau V, Le Jeune H, Cario‐Toumaniantz C, Vaillant N, Gadeau AP, Desgranges C, Scalbert E, Chardin P, Pacaud P and Loirand G. P2Y(1), P2Y(2), P2Y(4), and P2Y(6) receptors are coupled to Rho and Rho kinase activation in vascular myocytes. Am J Physiol Heart Circ Physiol 278: H1751–H1761, 2000.
 1350. Pearson JD, Slakey LL and Gordon JL. Stimulation of prostaglandin production through purinoceptors on cultured porcine endothelial cells. Biochem J 214: 273–276, 1983.
 1351. Pirotton S, Communi D, Motte S, Janssens R and Boeynaems JM. Endothelial P2‐purinoceptors: subtypes and signal transduction. J Auton Pharmacol 16: 353–356, 1996.
 1352. Barnard EA, Simon J and Webb TE. Nucleotide receptors in the nervous system. An abundant component using diverse transduction mechanisms. Mol Neurobiol 15: 103–129, 1997.
 1353. Communi D, Janssens R, Suarez‐Huerta N, Robaye B and Boeynaems JM. Advances in signalling by extracellular nucleotides. The role and transduction mechanisms of P2Y receptors. Cell Signal 12: 351–360, 2000.
 1354. Ralevic V. Mechanism of prolonged vasorelaxation to ATP in the rat isolated mesenteric arterial bed. Br J Pharmacol 132: 685–692, 2001.
 1355. Bo X and Burnstock G. Heterogeneous distribution of [3 H]alpha, beta‐methylene ATP binding sites in blood vessels. J Vasc Res 30: 87–101, 1993.
 1356. Leipziger J. Control of epithelial transport via luminal P2 receptors. Am J Physiol Renal Physiol 284: F419–F432, 2003.
 1357. Lewis CJ and Evans RJ. P2X receptor immunoreactivity in different arteries from the femoral, pulmonary, cerebral, coronary and renal circulations. J Vasc Res 38: 332–340, 2001.
 1358. Schwiebert EM. ATP release mechanisms. ATP receptors and purinergic signaling along the nephron. Clin Exp Pharmacol Physiol 28: 340–350, 2001.
 1359. Schwiebert EM and Zsembery A. Extracellular ATP as a signaling molecule for epithelial cells. Biochim Biophys Acta 1615: 7–32, 2003.
 1360. Zhao X, Cook AK, Field M, Edwards B, Zhang S, Zhang Z, Pollock JS, Imig JD and Inscho EW. Impaired Ca2+ signaling attenuates P2X receptor‐mediated vasoconstriction of afferent arterioles in angiotensin II hypertension. Hypertension 46: 562–568, 2005.
 1361. Weaver DR and Reppert SM. Adenosine receptor gene expression in rat kidney. Am J Physiol 263: F991–F995, 1992.
 1362. Pawelczyk T, Grden M, Rzepko R, Sakowicz M and Szutowicz A. Region‐specific alterations of adenosine receptors expression level in kidney of diabetic rat. Am J Pathol 167: 315–325, 2005.
 1363. Smith JA, Sivaprasadarao A, Munsey TS, Bowmer CJ and Yates MS. Immunolocalisation of adenosine A(1) receptors in the rat kidney. Biochem Pharmacol 61: 237–244, 2001.
 1364. Zou AP, Wu F, Li PL and Cowley AW, Jr. Effect of chronic salt loading on adenosine metabolism and receptor expression in renal cortex and medulla in rats. Hypertension 33: 511–516, 1999.
 1365. Harada H, Chan CM, Loesch A, Unwin R and Burnstock G. Induction of proliferation and apoptotic cell death via P2Y and P2X receptors, respectively, in rat glomerular mesangial cells. Kidney Int 57: 949–958, 2000.
 1366. Mohaupt MG, Fischer T, Schwobel J, Sterzel RB and Schulze‐Lohoff E. Activation of purinergic P2Y2 receptors inhibits inducible NO synthase in cultured rat mesangial cells. Am J Physiol 275: F103–F110, 1998.
 1367. Bailey MA, Imbert‐Teboul M, Turner C, Marsy S, Srai K, Burnstock G and Unwin RJ. Axial distribution and characterization of basolateral P2Y receptors alone the rat renal tubule. Kidney Int 58: 1893–1901, 2000.
 1368. Carmines PK and Inscho EW. Renal arteriolar angiotensin responses during varied adenosine receptor activation. Hypertension 23 (suppl 1): I‐114–I‐119, 1994.
 1369. Drury AN and Szent‐Gyorgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol bond 68: 213–237, 1929.
 1370. Hansen PB, Hashimoto S, Oppermann M, Huang Y, Briggs JP and Schnermann J. Vasoconstrictor and vasodilator effects of adenosine in the mouse kidney due to preferential activation of A1 or A2 adenosine receptors. J Pharmacol Exp Ther 315: 1150–1157, 2005.
 1371. Hansen PB and Schnermann J. Vasoconstrictor and vasodilator effects of adenosine in the kidney. Am J Physiol Renal Physiol 285: F590–F599, 2003.
 1372. Holz FG and Steinhausen M. Renovascular effects of adenosine receptor agonists. Renal Physiol 10: 272–282, 1987.
 1373. Ibarrola AM, Inscho EW, Vari RC and Navar LG. Influence of adenosine receptor blockade on renal function and renal autoregulation. J Am Soc Nephrol 2: 991–999, 1991.
 1374. Inscho EW, Carmines PK and Navar LG. Juxtamedullary afferent arteriolar responses to PI and P2 purinergic stimulation. Hypertension 17: 1033–1037, 1991.
 1375. Kawabata M, Ogawa T and Takabatake T. Control of rat glomerular microcirculation by juxtaglomerular adenosine A1 receptors. Kidney Int 54: S‐228–S‐230, 1998.
 1376. Osswald H, Spielman WS and Knox FG. Mechanism of adenosine‐mediated decreases in glomerular filtration rate in dogs. Circ Res 43: 465–469, 1978.
 1377. Schnermann J, Traynor T, Yang T, Arend L, Huang YG, Smart A and Briggs JP. Tubuloglomerular feedback: new concepts and developments. Kidney Int Suppl 67: S40–S45, 1998.
 1378. Traynor T, Yang T, Huang YG, Arend L, Oliverio MI, Coffman T, Briggs JP and Schnermann J. Inhibition of adenosine‐1 receptor‐mediated preglomerular vasoconstriction in AT1A receptor‐deficient mice. Am J Physiol Renal Physiol 275: F922–F927, 1998.
 1379. Weihprecht H, Lorenz JN, Briggs JP and Schnermann J. Vasomotor effects of purinergic agonists in isolated rabbit afferent arterioles. Am J Physiol Renal Physiol 263: F1026–F1033, 1992.
 1380. Weihprecht H, Lorenz JN, Briggs JP and Schnermann J. Synergistic effects of angiotensin and adenosine in the renal microvasculature. Am J Physiol Renal Physiol 266: F227–F239, 1994.
 1381. Aki Y, Tomohiro A, Nishiyama A, Kiyomoto K, Kimura S and Abe Y. Effects of KW‐3902, a selective and potent adenosine A, receptor antagonist, on renal hemodynamics and urine formation in anesthetized dogs. Pharmacology 55: 193–201, 1997.
 1382. Miura K, Okumura M, Yamanaka S, Kim S and Iwao H. Effects of activation of renal adenosine A2 receptor on renal function and renin release in dogs. Japn J Pharmacol 80: 173–176, 1999.
 1383. Okumura M, Miura K, Yamashita Y, Yukimura T and Yamamoto K. Role of endothelium‐derived relaxing factor in the in vivo renal vascular action of adenosine in dogs. J Pharmacol Exp Ther 260: 1262–1267, 1992.
 1384. Eltze M and Ullrich B. Characterization of vascular P2 purinoceptors in the rat isolated perfused kidney. Pflügers Arch 306: 139–152, 1996.
 1385. Fernandez O, Wangensteen R, Osuna A and Vargas F. Renal vascular reactivity to P(2)‐purinoceptor activation in spontaneously hypertensive rats. Pharmacology 60: 47–50, 2000.
 1386. Vargas F, Moreno MRR and Osuna A. Renal vascular reactivity to ATP in ageing rats. Med Sci Res 24: 263–265, 1996.
 1387. Vargas F, Osuna A and Fernandezrivas A. Renal vascular reactivity to ATP in hyper‐ and hypothyroid rats. Experientia 52: 225–229, 1996.
 1388. Churchill PC and Ellis VR. Pharmacological characterization of the renovascular P2 purinergic receptors. J Pharmacol Exper Ther 265: 334–338, 1993.
 1389. Needleman P, Minkes MS and Douglas JR. Stimulation of prostaglandin biosynthesis by adenine nucleotides. Profile of prostaglandin release by perfused organs. Circ Res 34: 455–460, 1974.
 1390. Dobrowolski L, Walkowska A, Kompanowska‐Jezierska E, Kuczeriszka M and Sadowski J. Effects of ATP on rat renal haemodynamics and excretion: role of sodium intake, nitric oxide and cytochrome P450. Acta Physiol (Oxf) 189: 77–85, 2007.
 1391. Knight GE, Oliver‐Redgate R and Burnstock G. Unusual absence of endothelium‐dependent or ‐independent vasodilatation to purines or pyrimidines in the rat renal artery. Kidney Int 64: 1389–1397, 2003.
 1392. Ren Y, Garvin JL and Carretero OA. Efferent arteriole tubuloglomerular feedback in the renal nephron. Kidney Int 59: 222–229, 2001.
 1393. Inscho EW. Renal microvascular effects of P2 receptor stimulation. Clin Exp Pharmacol Physiol 28: 332–339, 2001.
 1394. Mitchell KD and Navar LG. Modulation of tubuloglomerular feedback responsiveness by extracellular ATP. Am J Physiol Renal Physiol 264: F458–F466, 1993.
 1395. Eppel GA, Ventura S, Denton KM and Evans RG. Lack of contribution of P2X receptors to neurally mediated vasoconstriction in the rabbit kidney in vivo. Acta Physiol (Oxf) 186: 197–207, 2006.
 1396. Wangensteen R, Fernandez O, Sainz J, Quesada A, Vargas F and Osuna A. Contribution of endothelium‐derived relaxing factors to 2Y‐purinoceptor‐induced vasodilation in the isolated rat kidney. Gen Pharmacol 35: 129–133, 2000.
 1397. Inscho EW, Belott TP, Mason MJ, Smith JB and Navar LG. Extracellular ATP increases cytosolic calcium in cultured rat renal arterial smooth muscle cells. Clin Exp Pharmacol Physiol 23: 503–507, 1996.
 1398. Inscho EW, Ohishi K, Cook AK, Belott TP and Navar LG. Calcium activation mechanisms in the renal microvascular response to extracellular ATP. Am J Physiol Renal Physiol 268: F876–F884, 1995.
 1399. White SM, Imig JD, Kim T‐T, Hauschild BC and Inscho EW. Calcium signaling pathways utilized by P2X receptors in freshly isolated preglomerular MVSMC. Am J Physiol Renal Physiol 280: F1054–F1061, 2001.
 1400. Inscho EW, Cook AK, Imig JD, Vial C and Evans RJ. Renal autoregulation in P2X1 knockout mice. Acta Physiol Scand 181: 445–453, 2004.
 1401. Gutierrez AM, Kornfeld M and Persson AE. Calcium response to adenosine and ATP in rabbit afferent arterioles. Acta Physiol Scand 166: 175–181, 1999.
 1402. Castrop H. Mediators of tubuloglomerular feedback regulation of glomerular filtration: ATP and adenosine. Acta Physiol (Oxf) 189: 3–14, 2007.
 1403. Vallon V. Tubuloglomerular feedback and the control of glomerular filtration rate. News Physiol Sci 18: 169–174, 2003.
 1404. Schnermann J, Weihprecht H and Briggs JP. Inhibition of tubuloglomerular feedback during adenosine1 receptor blockade. Am J Physiol Renal Physiol 258: F553–F561, 1990.
 1405. Thomson S, Bao D, Deng A and Vallon V. Adenosine formed by 5′‐nucleotidase mediates tubuloglomerular feedback. J Clin Invest 106: 289–298, 2000.
 1406. Ren Y, Arima S, Carretero OA and Ito S. Possible role of adenosine in macula densa control of glomerular hemodynamics. Kidney Int 61: 169–176, 2002.
 1407. Huang DY, Vallon V, Zimmermann H, Koszalka P, Schrader J and Osswald H. Ecto‐5′‐nucleotidase (cd73)‐dependent and ‐independent generation of adenosine participates in the mediation of tubuloglomerular feedback in vivo. Am J Physiol Renal Physiol 291: F282–F288, 2006.
 1408. Feng MG and Navar LG. Adenosine A2 receptor activation attenuates afferent arteriolar autoregulation during adenosine receptor saturation in rats. Hypertension 50 (4): 744–749, 2007.
 1409. Brown R, Ollerstam A, Johansson B, Skott O, Gebre‐Medhin S, Fredholm B and Persson AE. Abolished tubuloglomerular feedback and increased plasma renin in adenosine A(1) receptor‐deficient mice. Am J Physiol Regul Integr Comp Physiol 281: R1362–R1367, 2001.
 1410. Hashimoto S, Huang Y, Briggs J and Schnermann J. Reduced autoregulatory effectiveness in adenosine 1 receptor‐deficient mice. Am J Physiol Renal Physiol 290: F888–F891, 2006.
 1411. Just A and Arendshorst WJ. A novel mechanism of renal blood flow autoregulation and the autoregulatory role of A1 adenosine receptors in mice. Am J Physiol Renal Physiol 293: F1489–F1500, 2007.
 1412. Vallon V, Richter K, Huang DY, Rieg T and Schnermann J. Functional consequences at the single‐nephron level of the lack of adenosine A1 receptors and tubuloglomerular feedback in mice. Pflugers Arch 448: 214–221, 2004.
 1413. Hansen PB, Hashimoto S, Briggs J and Schnermann J. Attenuated renovascular constrictor responses to angiotensin II in adenosine 1 receptor knockout mice. Am J Physiol Regul Integr Comp Physiol 285: R44–R49, 2003.
 1414. Premen AJ, Hall JE, Mizelle HL and Cornell JE. Maintenance of renal autoregulation during infusion of aminophylline or adenosine. Am J Physiol Renal Physiol 248: F366–F373, 1985.
 1415. Inscho EW, Cook AK and Navar LG. Pressure‐mediated vasoconstriction of juxtamedullary afferent arterioles involves P2‐purino‐ceptor activation. Am J Physiol Renal Physiol 271: F1077–F1085, 1996.
 1416. Liu R, Bell PD, Peti‐Peterdi J, Kovacs G, Johansson A and Persson AE. Purinergic receptor signaling at the basolateral membrane of macula densa cells. J Am Soc Nephrol 13: 1145–1151, 2002.
 1417. Nishiyama A, Jackson KE, Majid DS, Rahman M and Navar LG. Renal interstitial fluid ATP responses to arterial pressure and tubuloglomerular feedback activation during calcium channel blockade. Am J Physiol Heart Circ Physiol 290: H772–H777, 2006.
 1418. Nishiyama A, Majid DSA, Taher KA, Miyatake A and Navar LG. Relation between renal interstitital ATP concentrations and autoregulation‐mediated changes in renal vascular resistance. Circ Res 86: 656–662, 2000.
 1419. Jensen ME, Odgaard E, Christensen MH, Praetorius HA and Leipziger J. Flow‐induced [Ca2+]i increase depends on nucleotide release and subsequent purinergic signaling in the intact nephron. J Am Soc Nephrol 18: 2062–2070, 2007.
 1420. Karczewska J, Martyniec L, Dzierzko G, Stepinski J and Angielski S. The relationship between constitutive ATP release and its extracellular metabolism in isolated rat kidney glomeruli. J Physiol Pharmacol 58: 321–333, 2007.
 1421. Sabolic I, Culic O, Lin S‐H and Brown D. Localization of ecto‐ATPase in rat kidney and isolated renal cortical membrane vesicles. Am J Physiol 262: F217–F228, 1992.
 1422. Satriano J, Wead L, Cardus A, Deng A, Boss GR, Thomson SC and Blantz RC. Regulation of ecto‐5′‐nucleotidase by NaCl and nitric oxide: potential roles in tubuloglomerular feedback and adaptation. Am J Physiol Renal Physiol 291: F1078–F1082, 2006.
 1423. Solini A, Iacobini C, Ricci C, Chiozzi P, Amadio L, Pricci F, Di Mario U, Di Virgilio F and Pugliese G. Purinergic modulation of mesangial extracellular matrix production: role in diabetic and other glomerular diseases. Kidney Int 67: 875–885, 2005.
 1424. Takenaka T, Okada H, Kanno Y, Inoue T, Ryuzaki M, Nakamoto H, Kawachi H, Shimizu F and Suzuki H. Exogenous 5′‐nucleotidase improves glomerular autoregulation in Thy‐1 nephritic rats. Am J Physiol Renal Physiol 290: F844–F853, 2006.
 1425. Takenaka T, Inoue T, Kanno Y, Okada H, Hill CE and Suzuki H. Connexins 37 and 40 transduce purinergic signals mediating renal autoregulation. Am J Physiol Regul Integr Comp Physiol, 2007.
 1426. Boim MA, Stella SR, Pereira AB and Schor N. Heterogeneity of glomerular perfusion and filtration induced by epinephrine and norepinephrine. Braz J Med Biol Res 30: 1023–1031, 1997.
 1427. Sjöquist M, Goransson A, Källskog Ö and Ulfendahl HR. The influence of tubulo‐glomerular feedback on the autoregulation of filtration rate in superficial and deep glomeruli. Acta Physiol Scand 122: 235–242, 1984.
 1428. Munger KA and Jackson EK. Effects of selective A1 receptor blockade on glomerular hemodynamics: Involvement of renin‐angiotensin system. Am J Physiol Renal Physiol 267: F783–F790, 1994.
 1429. Griffin KA, Picken MM and Bidani AK. Autoregulatory mechanisms important in hypertensive injury. J Clin Invest 96: 793–800, 1995.
 1430. Anderson WP, Kett MM, Stevenson KM, Edgley AJ, Denton KM and Fitzgerald SM. Renovascular hypertension: structural changes in the renal vasculature. Hypertension 36: 648–652, 2000.
 1431. Fitzgerald SM, Evans RG, Bergström G and Anderson WP. Renal hemodynamic responses to intrarenal infusion of ligands for the putative angiotensin IV receptor in anesthetized rats. J Cardiovasc Pharmacol 34: 206–211, 1999.
 1432. Imig JD and Inscho EW. Adaptations of the renal microcirculation to hypertension. Microcirculation 9: 315–328, 2002.
 1433. Inscho EW, Carmines PK, Cook AK and Navar LG. Afferent arteriolar responsiveness to altered perfusion pressure in renal hypertension. Hypertension 15: 748–752, 1990.
 1434. Inscho EW, Imig JD, Deichmann PC and Cook AK. Candesartan cilexetil protects against loss of autoregulatory efficiency in angiotensin II‐infused rats. J Am Soc Nephrol 10: S178–S183, 1999.
 1435. Persson AE, Brown R, Liu R and Ollerstam A. Nitric oxide modulates and adenosine mediates the tubuloglomerular feedback mechanism. Acta Physiol Scand 176: 91–94, 2002.
 1436. Persson PB. Renal blood flow autoregulation in blood pressure control. Curr Opin Nephrol Hypertens 11: 67–72, 2002.
 1437. Ploth DW, Roy RN, Huang W‐C and Navar LG. Impaired renal blood flow and cortical pressure autoregulation in contralateral kidneys of Goldblatt hypertensive rats. Hypertension 3: 67–74, 1981.
 1438. Racasan S, Joles JA, Boer P, Koomans HA and Braam B. NO dependency of RBF and autoregulation in the spontaneously hypertensive rat. Am J Physiol Renal Physiol 285: F105–F112, 2003.
 1439. Vonend O, Turner CM, Chan CM, Loesch A, Dell'Anna GC, Srai KS, Burnstock G and Unwin RJ. Glomerular expression of the ATP‐sensitive P2X receptor in diabetic and hypertensive rat models. Kidney Int 66: 157–166, 2004.
 1440. Welch WJ. Adenosine type 1 receptor antagonists in fluid retaining disorders. Expert Opin Investig Drugs 11: 1553–1562, 2002.
 1441. Graciano ML, Mouton CR, Patterson ME, Seth DM, Mullins JJ and Mitchell KD. Renal vascular and tubulointerstitial inflammation and proliferation in Cypla1‐Ren2 transgenic rats with inducible ANG II‐dependent malignant hypertension. Am J Physiol Renal Physiol 292: F1858–F1866, 2007.
 1442. Graciano ML, Nishiyama A, Jackson KE, Seth DM, Ortiz RM, Prieto‐Carrasquero M, Kobori H and Navar LG. Purinergic receptors contribute to early mesangial cell transformation and renal vessel hypertrophy during angiotnesin II‐induced hypertension. Am J Physiol Renal Physiol 294: 2008, 1992.
 1443. Liu R and Persson AE. Effects of nitric oxide on P2Y receptor resensitization in spontaneously hypertensive rat mesangial cells. J Hypertens 20: 1835–1842, 2002.
 1444. Cowley AW, Jr. Long‐term control of arterial blood pressure. Physiol Rev 72: 231–300, 1992.
 1445. Hansell P, Nygren A and Ueda J. Influence of verapamil on regional renal blood flow: a study using multichannel laser‐Doppler flowmetry. Acta Physiol Scand 139: 15–20, 1990.
 1446. Lu S, Roman RJ, Mattson DL and Cowley AW, Jr. Renal medullary interstitial infusion of diltiazem alters sodium and water excretion in rats. Am J Physiol Regul Integr Comp Physiol 263: R1064–R1070, 1992.
 1447. Moffat DB. The fine structure of the blood vessels of the renal medulla with particular reference to the control of the medullary circulation. J Ultrastruct Res 19: 532–545, 1967.
 1448. Chou S‐Y, Porush JG and Faubert PF. Renal medullary circulation: hormonal control. Kidney Int 37: 1–13, 1990.
 1449. Zimmerhackl BL, Robertson CR and Jamison RL. The medullary microcirculation. Kidney Int 31: 641–647, 1987.
 1450. Hansell P. Evaluation of methods for estimating renal medullary blood flow. Renal Physiol Biochem 15: 217–230, 1992.
 1451. Mattson DL, Lu S, Roman RJ and Cowley AW, Jr. Relationship between renal perfusion pressure and blood flow in different regions of the kidney. Am J Physiol Regul Integr Comp Physiol 264: R578–R583, 1993.
 1452. Fahraeus R. The suspension stability of blood. Physiol Rev 9: 241–274, 1929.
 1453. Pappenheimer JR and Kinter WB. Hematocrit ratio of blood within mammalian kidney and its significance for renal hemodynamics. Am J Physiol 185: 377–390, 1956.
 1454. Fourman J and Moffat DB. The effect of intra‐arterial cushions on plasma skimming in small arteries. J Physiol 158: 374–380, 1961.
 1455. Moffat DB and Creasey M. The fine structure of the intra‐arterial cushions at the origins of the juxtamedullary afferent arterioles in the rat kidney. J Anat 110: 409–419, 1971.
 1456. Lilienfield LS, Rose JC and Lassen NA. Diverse distribution of red cells and albumin in the dog kidney. Circ Res 6: 810–815, 1958.
 1457. Rasmussen SN. Red cell and plasma volume flows to the inner medulla of the rat kidney: determinations by means of a step function input indicator technique. Pflugers Arch 373: 153–159, 1978.
 1458. Zimmerhackl B, Dussel R and Steinhausen M. Erythrocyte flow and dynamic hematocrit in the renal papilla of the rat. Am J Physiol 249: F898–F902, 1985.
 1459. Gaehtgens P. Flow of blood through narrow capillaries: rheological mechanisms determining capillary hematocrit and apparent viscosity. Biorheology 17: 183–189, 1980.
 1460. Pries AR and Gaehtgens P. Generalization of the Fahraeus principle for microvessel networks. Am J Physiol Heart Circ Physiol 251: H1324–H1332, 1986.
 1461. Cowley AW, Jr. Role of the renal medulla in volume and arterial pressure regulation. Am J Physiol 273: R1–r15, 1997.
 1462. Cowley AW, Jr., Mori T, Mattson D and Zou AP. Role of renal NO production in the regulation of medullary blood flow. Am J Physiol Regul Integr Comp Physiol 284: R1355–R1369, 2003.
 1463. Fenoy FJ and Roman RJ. Effect of volume expansion on papillary blood flow and sodium excretion. Am J Physiol Renal Physiol 260: F813–F822, 1991.
 1464. Mattson DL. Importance of the renal medullary circulation in the control of sodium excretion and blood pressure. Am J Physiol Regul Integr Comp Physiol 284: R13–R27, 2003.
 1465. Mattson DL and Wu F. Control of arterial blood pressure and renal sodium excretion by nitric oxide synthase in the renal medulla. Acta Physiol Scand 168: 149–154, 2000.
 1466. Cupples WA and Marsh DJ. Autoregulation of blood flow in renal medulla of the rat: no role for angiotensin II. Can J Physiol Pharmacol 66: 833–836, 1988.
 1467. Galskov A and Nissen OI. Autoregulation of directly measured blood flows in the superficial and deep venous drainage areas of the cat kidney. Circ Res 30: 97–103, 1972.
 1468. Majid DSA, Godfrey M and Navar LG. Pressure natriuresis and renal medullary blood flow in dogs. Hypertension 29: 1051–1057, 1997.
 1469. Majid DSA, Godfrey M and Omoro S. Pressure natriuresis and autoregulation of inner medullary blood flow in canine kidney. Hypertension 29 (part 2): 210–215, 1997.
 1470. Majid DSA and Navar LG. Medullary blood flow responses to changes in arterial pressure in canine kidney. Am J Physiol Renal Physiol 270: F833–F838, 1996.
 1471. Roman RJ and Kaldunski ML. Renal cortical and papillary blood flow in spontaneously hypertensive rats. Hypertension 11: 657–663, 1988.
 1472. Roman RJ, Cowley AW, Garcia‐Estan AW and Lombard JH. Pressure‐diuresis in volume‐expanded rats: cortical and medullary hemodynamics. Hypertension 12: 168–176, 1988.
 1473. Romero JC and Knox FG. Mechanisms underlying pressure‐related natriuresis: the role of the renin‐angiotensin and prostaglandin systems: state of the art lecture. Hypertension 11: 724–738, 1988.
 1474. Cowley AW, Jr, Control of the renal medullary circulation by vasopressin V1 and V2 receptors in the rat. Exp Physiol 85 (Spec No): 223S–231S, 2000.
 1475. Eppel GA, Bergstrom G, Anderson WP and Evans RG. Autoregulation of renal medullary blood flow in rabbits. Am J Physiol Regul Integr Comp Physiol 284: R233–R244, 2003.
 1476. Casellas D, Bouriquet N and Moore LC. Branching patterns and autoregulatory responses of juxtamedullary afferent arterioles. Am J Physiol Renal Physiol 272: F416–F421, 1997.
 1477. Moore LC and Casellas D. Tubuloglomerular feedback dependence of autoregulation in rat juxtamedullary afferent arterioles. Kidney Int 37: 1402–1408, 1990.
 1478. Zhang Z and Pallone TL. Response of descending vasa recta to luminal pressure. Am J Physiol Renal Physiol 287: F535–F542, 2004.
 1479. Dickhout JG, Mori T and Cowley AW, Jr. Tubulovascular nitric oxide crosstalk: buffering of angiotensin II‐induced medullary vasoconstriction. Cire Res 91: 487–493, 2002.
 1480. Pallone TL, Silldorff EP and Zhang Z. Inhibition of calcium signaling in descending vasa recta endothelia by ANG II. Am J Physiol Heart Cire Physiol 278: H1248–H1255, 2000.
 1481. Silldorff EP, Kreisberg MS and Pallone TL. Adenosine modulates vasomotor tone in outer medullary descending vasa recta of the rat. J Clin Invest 98: 18–23, 1996.
 1482. Haas JA, Granger JP and Knox FG. Effect of renal perfusion pressure on sodium reabsorption from proximal tubules of superficial and deep nephrons, Am J Physiol Renal Physiol 250: F425–F429, 1986.
 1483. Khraibi AA, Haas JA and Knox FG. Effect of renal perfusion pressure on renal interstitial hydrostatic pressure in rats. Am J Physiol Renal Physiol 256: F165–F170, 1989.
 1484. Khraibi AA and Knox FG. Effect of renal decapsulation on renal interstitial hydrostatic pressure and natriuresis. Am J Physiol Regullntegr Comp Physiol 257: R44–R48, 1989.
 1485. Granger JP, Haas JA, Pawlowska D and Knox FG. Effect of direct increases in renal interstitial hydrostatic pressure on sodium excretion. Am J Physiol Renal Physiol 254: F527–F532, 1988.
 1486. Haas JA, Granger JP and Knox FG. Effect of intrarenal volume expansion on proximal sodium reabsorption. Am J Physiol Renal Physiol 255: F1178–F1182, 1988.
 1487. Ahmed F, Kemp BA, Howell NL, Siragy HM and Carey RM. Extracellular renal guanosine cyclic 3′5′‐monophosphate modulates nitric oxide and pressure‐induced natriuresis: Hypertension 50: 958–963, 2007.
 1488. Navar LG and Majid DSA. Interactions between arterial pressure and sodium excretion. Curr Opin Nephrol Hypertens 5: 64–71, 1996.
 1489. Bankir L. Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor‐mediated effects. Cardiovasc Res 51: 372–390, 2001.
 1490. Thurau K. Renal hemodynamics. Am J Med 36: 698–719, 1964.
 1491. Bayle F, Eloy L, Trinh‐Trang‐Tan MM, Grunfeld JP and Bankir L. Papillary plasma flow in rats, I, Relation to urine osmolality in normal and Brattleboro rats with hereditary diabetes insipidus. Pflugers Arch 394: 211–216, 1982.
 1492. Gussis GL, Robertson CR and Jamison RL. Erythrocyte velocity in vasa recta: effect of antidiuretic hormone and saline loading. Am J Physiol 237: F326–F332, 1979.
 1493. Kiberd B, Robertson CR, Larson T and Jamison RL. Effect of V2‐receptor‐mediated changes on inner medullary blood flow induced by AVP. Am J Physiol Renal Physiol 253: F576–F581, 1987.
 1494. Zimmerhackl B, Robertson CR and Jamison RL. Effect of arginine vasopressin on renal medullary blood flow. A videomi‐croscopic study in the rat. J Clin Invest 76: 770–778, 1985.
 1495. Nakanishi K, Mattson DL, Gross V, Roman RJ and Cowley AW, Jr. Control of renal medullary blood flow by vasopressin V1 and V2 receptors. Am J Physiol Regul Integr Comp Physiol 269: R193–R200, 1995.
 1496. Franchini KG and Cowley AW, Jr. Renal cortical and medullary blood flow responses during water restriction: role of vasopressin. Am J Physiol Renal Physiol 270: R1257–R1264, 1996.
 1497. Franchini KG and Cowley AW, Jr. Sensitivity of the renal medullary circulation to plasma vasopressin. Am J Physiol Regul Integr Comp Physiol 271: R647–R653, 1996.
 1498. Harrison‐Bernard LM and Carmines PK. Juxtamedullary microvascular responses to arginine vasopressin in rat kidney. Am J Physiol Renal Physiol 267: F249–F256, 1994.
 1499. Fallet RW, Ikenaga H, Bast JP and Carmines PK. Relative contributions of Ca2+ mobilization and influx in renal arteriolar contractile responses to arginine vasopressin. AJP‐Renal Physiol 288: F545–F551, 2005.
 1500. Edwards RM, Trizna W and Kinter LB. Renal microvascular effects of vasopressin and vasopressin antagonists. Am J Physiol Renal Physiol 256: F274–F278, 1989.
 1501. Turner MR and Pallone TL. Vasopressin constricts outer medullary descending vasa recta isolated from rat kidneys. Am J Physiol Renal Physiol 272: F147–F151, 1997.
 1502. Correia AG, Denton KM and Evans RG. Effects of activation of vasopressin‐V1‐receptors on regional kidney blood flow and glomerular arteriole diameters. J Hypertens 19: 649–657, 2001.
 1503. Aki Y, Tamaki T, Kiyomoto H, He H, Yoshida H, Iwao H and Abe Y. Nitric oxide may participate in V2 vasopressin‐receptor‐medi‐ated renal vasodilation. J Cardiovasc Pharmacol 23: 331–336, 1994.
 1504. Liard JF. L‐NAME antagonizes vasopressin V2‐induced vasodilatation in dogs. Am J Physiol 266: H99–H106, 1994.
 1505. Naitoh M, Suzuki H, Murakami M, Matsumoto A, Ichihara A, Nakamoto H, Yamamura Y and Saruta T. Arginine vasopressin produces renal vasodilation via V2 receptors in conscious dogs. Am J Physiol Regul Integr Comp Physiol 265: R934–R942, 1993.
 1506. Rudichenko VM and Beierwaltes WH. Arginine vasopressin‐induced renal vasodilation mediated by nitric oxide. J Vase Res 32: 100–105, 1995.
 1507. Tamaki T, Kiyomoto K, He H, Tomohiro A, Nishiyama A, Aki Y, Kimura S and Abe Y. Vasodilation induced by vasopressin V2 receptor stimulation in afferent arterioles. Kidney Int 49: 722–729, 1996.
 1508. Park F, Mattson DL, Skelton MM and Cowley AW, Jr. Localization of the vasopressin V1a and V2 receptors within the renal cortical and medullary circulation. Am J Phyisol 273: R243–R251, 1997.
 1509. Park F, Zou A‐P and Cowley AW. Arginine vasopressin‐medi‐ated stimulation of nitric oxide within the rat renal medulla. Hypertension 32: 896–901, 1998.
 1510. Mori T, Dickhout JG and Cowley AW, Jr. Vasopressin increases intracellular NO concentration via Ca(2+) signaling in inner medullary collecting duct. Hypertension 39: 465–469, 2002.
 1511. O'Connor PM and Cowley AW, Jr. Vasopressin‐induced nitric oxide production in rat inner medullary collecting duct is dependent on V2 receptor activation of the phosphoinositide pathway. Am J Physiol Renal Physiol 293: F526–F532, 2007.
 1512. Evans RG, Madden AC and Denton KM. Diversity of responses of renal cortical and medullary blood flow to vasoconstrictors in conscious rabbits. Acta Physiol Scand 169: 297–308, 2000.
 1513. Szentivanyi M, Jr., Park F, Maeda CY and Cowley AW, Jr. Nitric oxide in the renal medulla protects from vasopressin‐induced hypertension. Hypertension 35: 740–745, 2000.
 1514. Harrison‐Bernard LM and Carmines PK. Impact of cyclooxygenase blockade on juxtamedullary microvascular responses to angiotensin II in rat kidney. Clin Exp Pharmacol Physiol 22: 732–738, 1995.
 1515. Steinhausen M, Kucherer H, Parekh N, Weis S, Wiegman DL and Wilhelm KR. Angiotensin II control of the renal microcirculation: effect of blockade by saralasin. Kidney Int 30: 56–61, 1986.
 1516. Cupples WA, Sakai T and Marsh DJ. Angiotensin II and prostaglandins in control of vasa recta blood flow. Am J Physiol Renal Physiol 254: F417–F424, 1988.
 1517. Faubert PF, Chou S‐Y and Porush JG. Regulation of papillary plasma flow by angiotensin II. Kidney Int 32: 472–478, 1987.
 1518. Roman RJ, Kaldunski ML, Scicli AG and Carretero OA. Influence of kinins and angiotensin II on the regulation of papillary blood flow. Am J Physiol Renal Physiol 255: F690–F698, 1988.
 1519. Kohagura K, Endo Y, Ito O, Arima S, Omata K and Ito S. Endogenous nitric oxide and epoxyeicosatrienoic acids modulate angiotensin II‐induced constriction in the rabbit afferent arteriole. Acta Physiol Scand 168: 107–112, 2000.
 1520. Yang S, Silldorff EP and Pallone TL. Effect of norepinephrine and acetylcholine on outer medullary descending vasa recta. Am J Physiol 269: H710–H716, 1995.
 1521. Matsuda H, Hayashi K, Arakawa K, Kubota E, Honda M, Tokuyama H, Suzuki H, Yamamoto T, Kajiya F and Saruta T. Distinct modulation of superficial and juxtamedullary arterioles by prostaglandin in vivo. Hypertens Res 25: 901–910, 2002.
 1522. Silldorff EP and Pallone TL. Adenosine signaling in outer medullary descending vasa recta. Am J Physiol Regul Integr Comp Physiol 280: R854–R861, 2001.
 1523. Carey RM. Update on the role of the AT2 receptor. Curr Opin Nephrol Hypertens 14: 67–71, 2005.
 1524. Carey RM, Jin X, Wang Z and Siragy HM. Nitric oxide: a physiological mediator of the type 2 (AT2) angiotensin receptor. Acta Physiol Scand 168: 65–71, 2000.
 1525. Patzak A, Kleinmann F, Lai EY, Kupsch E, Skelweit A and Mrowka R. Nitric oxide counteracts angiotensin II induced contraction in efferent arterioles in mice. Acta Physiol Scand 181: 439–444, 2004.
 1526. Patzak A, Lai EY, Mrowka R, Steege A, Persson PB and Persson AE. AT1 receptors mediate angiotensin II‐induced release of nitric‐oxide in afferent arterioles. Kidney Int 66: 1949–1958, 2004.
 1527. Endo Y, Arima S, Yaoita H, Omata K, Tsunoda K, Takeuchi K, Abe K and Ito S. Function of angiotensin II type 2 receptor in the postglomerular efferent arteriole, Kidney Int Suppl 63: S205–S207, 1997.
 1528. Rhinehart K, Handelsman CA, Silldorff EP and Pallone TL. ANG II AT2 receptor modulates AT1 receptor‐mediated descending vasa recta endothelial Ca2+ signaling. Am J Physiol Heart Circ Physiol 284: H779–H789, 2003.
 1529. Zhang Z, Rhinehart K, Kwon W, Weinman E and Pallone TL. ANG II signaling in vasa recta pericytes by PKC and reactive oxygen species. Am J Physiol Heart Circ Physiol 287: H773–H781, 2004.
 1530. Endo Y, Arima S, Yaoita H, Tsunoda K, Omata K and Ito S. Vasodilation mediated by angiotensin II type 2 receptor is impaired in afferent arterioles of young spontaneously hypertensive rats. J Vase Res 35: 421–427, 1998.
 1531. Goto M, Mukoyama M, Sugawara A, Suganami T, Kasahara M, Yahata K, Makino H, Suga S, Tanaka I and Nakao K. Expression and role of angiotensin II type 2 receptor in the kidney and mesangial cells of spontaneously hypertensive rats. Hypertens Res 25: 125–133, 2002.
 1532. Badzynska B, GrzeJec‐Mojzesowicz M, Dobrowolski L and Sadowski J. Differential effect of angiotensin II on blood circulation in the renal medulla and cortex of anaesthetised rats. J Physiol 538: 159–166, 2002.
 1533. Duke LM, Eppel GA, Widdop RE and Evans RG. Disparate roles of AT2 receptors in the renal cortical and medullary circulations of anesthetized rabbits. Hypertension 42: 200–205, 2003.
 1534. Chin SY, Wang C‐T, Majid DSA and Navar LG. Renoprotective effects of nitric oxide in angiotensin II‐induced hypertension in the rat. Am J Physiol Renal Physiol 274: F876–F882, 1998.
 1535. Navar LG, Ichihara A, Chin SY and Imig JD. Nitric oxide‐angi‐otensin II interactions in angiotensin II‐dependent hypertension. Acta Physiol Scand 168: 139–147, 2000.
 1536. Szentivanyi M, Jr., Zou AP, Mattson DL, Soares P, Moreno C, Roman RJ and Cowley AW, Jr. Renal medullary nitric oxide deficit of Dahl S rats enhances hypertensive actions of angiotensin II. Am J Physiol Regul Integr Comp Physiol 283: R266–R272, 2002.
 1537. Zou A‐P, Wu F and Cowley AW, Jr. Protective effect of angiotensin II‐induced increase in nitric oxide in the renal medullary circulation. Hypertension 31 (part 2): 271–276, 1998.
 1538. Navar LG. The intrarenal renin‐angiotensin system in hypertension. Kidney Int 65: 1522–1532, 2004.
 1539. Navar LG and Nishiyama A. Why are angiotensin concentrations so high in the kidney? Curr Opin Nephrol Hypertens 13: 107–115, 2004.
 1540. Mattson DL, Lu S, Nakanishi K, Papanek PE and Cowley AW, Jr. Effect of chronic renal medullary nitric oxide inhibition on blood pressure. Am J Physiol 266: H1918–H1926, 1994.
 1541. Nakanishi K, Mattson DL and Cowley AW, Jr. Role of renal medullary blood flow in the development of L‐NAME hypertension in rats. Am J Physiol Regul Integr Comp Physiol 268: R317–R323, 1995.
 1542. Biondi ML, Dousa T, Vanhoutte P and Romero JC. Evidences for the existence of endothelium‐derived relaxing factor in the renal medulla. Am J Hypertens 3: 876–878, 1990.
 1543. McKee M, Scavone C and Nathanson JA. Nitric oxide, cGMP, and hormone regulation of active sodium transport. Proc Natl Acad Sci USA 91: 12056–12060, 1994.
 1544. Moridani BA and Kline RL. Effect of endogenous L‐arginine on the measurement of nitric oxide synthase activity in the rat kidney. Can J Physiol Pharmacol 74: 1210–1214, 1996.
 1545. Zou A‐P and Cowley AW. Nitric oxide in renal cortex and medulla. An in vivo microdialysis study. Hypertension 29 (part 2): 194–198, 1997.
 1546. Chen PY and Sander PW. L‐Arginine abrogates salt‐senitive hypertension in Dahl/Rapp rats. J Clin Invest 88: 1559–1567, 1991.
 1547. Larson TS and Lockhart JC. Restoration of vasa recta hemodynamics and pressure natriuresis in SHR by L‐arginine. Am J Physiol Renal Physiol 268: F907–F912, 1995.
 1548. Miyata N and Cowley AW, Jr. Renal intramedullary infusion of L‐arginine prevents reduction of medullary blood flow and hypertension in Dahl salt‐sensitive rats. Hypertension 33 (part II): 446–450, 1999.
 1549. Miyata N, Zou AP, Mattson DL and Cowley AW, Jr. Renal medullary interstitial infusion of L‐arginine prevents hypertension in Dahl salt‐sensitive rats. Am J Physiol 275: R1667–R1673, 1998.
 1550. Kakoki M, Zou AP and Mattson DL. The influence of nitric oxide synthase 1 on blood flow and interstitial nitric oxide in the kidney. Am J Physiol Regul Integr Comp Physiol 281: R91–R97, 2001.
 1551. Mattson DL and Bellehumeur TG. Neural nitric oxide synthase in the renal medulla and blood pressure regulation. Hypertension 28: 297–303, 1996.
 1552. Mattson DL, Maeda CY, Bachman TD and Cowley AW. Inducible nitric oxide synthase and blood pressure. Hypertension 31 (part 1): 15–20, 1998.
 1553. Garvin JL and Ortiz PA. The role of reactive oxygen species in the regulation of tubular function. Acta Physiol Scand 179: 225–232, 2003.
 1554. Ortiz PA and Garvin JL. Role of nitric oxide in the regulation of nephron transport. Am J Physiol Renal Physiol 282: F777–F784, 2002.
 1555. Ortiz PA and Garvin JL. Superoxide stimulates NaCl absorption by the thick ascending limb. Am J Physiol Renal Physiol 283: F957–F962, 2002.
 1556. Pallone TL, Silldorff EP and Cheung JY. Response of isolated rat descending vasa recta to bradykinin. Am J Physiol 274: H752–H759, 1998.
 1557. Zou AP and Cowley AW, Jr. Alpha(2)‐adrenergic receptor‐mediated increase in NO production buffers renal medullary vasoconstriction. Am J Physiol Regul Integr Comp Physiol 279: R769–R777, 2000.
 1558. Szentivanyi M, Jr., Zou AP, Maeda CY, Mattson DL and Cowley AW, Jr. Increase in renal medullary nitric oxide synthase activity protects from norepinephrine‐induced hypertension. Hypertension 35: 418–423, 2000.
 1559. Yuan B and Cowley AW, Jr. Evidence that reduced renal medullary nitric oxide synthase activity of dahl s rats enables small elevations of arginine vasopressin to produce sustained hypertension. Hypertension 37: 524–528, 2001.
 1560. Agmon Y, Peleg H, Greenfeld Z, Rosen S and Brezis M. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat. J Clin Invest 94: 1069–1075, 1994.
 1561. Heyman SN, Rosen S, Darmon D, Goldfarb M, Bitz H, Shina A and Brezis M. Endotoxin‐induced renal failure. II. A role for tubular hypoxic damage. Exp Nephrol 8: 275–282, 2000.
 1562. James PE, Bacic G, Grinberg OY, Goda F, Dunn JF, Jackson SK and Swartz HM. Endotoxin‐induced changes in intrarenal pO2, measured by in vivo electron paramagnetic resonance oximetry and magnetic resonance imaging. Free Radic Biol Med 21: 25–34, 1996.
 1563. Kone BC and Baylis C. Biosynthesis and homeostatic roles of nitric oxide in the normal kidney. Am J Physiol Renal Physiol 272: F561–F578, 1997.
 1564. Mattson DL, Lu S and Cowley AW, Jr. Role of nitric oxide in the control of the renal medullary circulation. Clin Exp Pharmacol Physiol 24: 587–590, 1997.
 1565. Mattson DL and Wu F. Nitric oxide synthase activity and isoforms in rat renal vasculature. Hypertension 35: 337–341, 2000.
 1566. Kakoki M, Kim HS, Arendshorst WJ and Mattson DL. L‐Arginine uptake affects nitric oxide production and blood flow in the renal medulla. Am J Physiol Regul Integr Comp Physiol 287: R1478–R1485, 2004.
 1567. Kakoki M, Wang W and Mattson DL. Cationic amino acid transport in the renal medulla and blood pressure regulation. Hypertension 39: 287–292, 2002.
 1568. Wu F, Cholewa B and Mattson DL. Characterization of L‐arginine transporters in rat renal inner medullary collecting duct. Am J Physiol Regul Integr Comp Physiol 278: R1506–R1512, 2000.
 1569. Zewde T, Wu F and Mattson DL. Influence of dietary NaCl on L‐arginine transport in the renal medulla. Am J Physiol Regul Integr Comp Physiol 286: R89–R93, 2004.
 1570. Mori T and Cowley AW, Jr. Angiotensin II‐NAD(P)H oxidase‐stimulated superoxide modifies tubulovascular nitric oxide cross‐talk in renal outer medulla. Hypertension 42: 588–593, 2003.
 1571. Rhinehart KL and Pallone TL. Nitric oxide generation by isolated descending vasa recta. Am J Physiol Heart Circ Physiol 281: H316–H324, 2001.
 1572. Ozawa Y, Hayashi K, Wakino S, Kanda T, Homma K, Takamatsu I, Tatematsu S, Yoshioka K and Saruta T. Free radical activity depends on underlying vasoconstrictors in renal microcirculation. Clin Exp Hypertens 26: 219–229, 2004.
 1573. Mori T, O'Connor PM, Abe M and Cowley AW, Jr. Enhanced superoxide production in renal outer medulla of Dahl salt‐sensitive rats reduces nitric oxide tubular‐vascular cross‐talk. Hypertension 49: 1336–1341, 2007.
 1574. Chen YF, Cowley AW, Jr. and Zou AP. Increased H(2)O(2) counteracts the vasodilator and natriuretic effects of superoxide dismutation by tempol in renal medulla. Am J Physiol Regul Integr Comp Physiol 285: R827–R833, 2003.
 1575. Makino A, Skelton MM, Zou AP and Cowley AW, Jr. Increased renal medullary H2O2 leads to hypertension. Hypertension 42: 25–30, 2003.
 1576. Makino A, Skelton MM, Zou AP, Roman RJ and Cowley AW, Jr. Increased renal medullary oxidative stress produces hypertension. Hypertension 39: 667–672, 2002.
 1577. Meng S, Roberts LJ, Cason GW, Curry TS and Manning RD, Jr. Superoxide dismutase and oxidative stress in Dahl salt‐sensitive and ‐resistant rats. Am J Physiol Regul Integr Comp Physiol 283: R732–R738, 2002.
 1578. Zhang Z, Rhinehart K, Solis G, Pittner J, Lee‐Kwon W, Welch WJ, Wilcox CS and Pallone TL. Chronic ANG II infusion increases NO generation by rat descending vasa recta. Am J Physiol Heart Circ Physiol 288: H29–H36, 2005.
 1579. Schoonmaker GC, Fallet RW and Carmines PK. Superoxide anion curbs nitric oxide modulation of afferent arteriolar ANG II responsiveness in diabetes mellitus. Am J Physiol Renal Physiol 278: F302–F309, 2000.
 1580. Schnackenberg CG, Welch WJ and Wilcox CS. Normalization of blood pressure and renal vascular resistance in SHR with a membrane‐permeable superoxide dismutase mimetic. Role of nitric oxide. Hypertension 32: 59–64, 1998.
 1581. Schnackenberg CG and Wilcox CS. Two‐week administration of tempol attenuates both hypertension and renal excretion of I‐iso prostaglandin F2a. Hypertension 33 (part II): 424–428, 1999.
 1582. Chabrashvili T, Kitiyakara C, Blau J, Karber A, Aslam S, Welch WJ and Wilcox CS. Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression. Am J Physiol Regul Integr Comp Physiol 285: R117–R124, 2003.
 1583. Welch WJ, Baumgartl H, Lubbers D and Wilcox CS. Renal oxygenation defects in the spontaneously hypertensive rat: role of AT1 receptors. Kidney Int 63: 202–208, 2003.
 1584. Welch WJ, Blau J, Xie H, Chabrashvili T and Wilcox CS. Angiotensin‐induced defects in renal oxygenation: role of oxidative stress. Am J Physiol Heart Circ Physiol 288: H22–H28, 2005.
 1585. Zou A‐P, Billington H, Su N and Cowley AW, Jr. Expression and actions of heme oxygenase in the renal medulla of rats. Hypertension 35: 342–347, 2000.
 1586. Yang ZZ, Zhang AY, Yi FX, Li PL and Zou AP. Redox regulation of HIF‐1 alpha levels and HO‐1 expression in renal medullary interstitial cells. Am J Physiol Renal Physiol 284: F1207–F1215, 2003.
 1587. Yang ZZ and Zou AP. Transcriptional regulation of heme oxygenases by HIF‐1 alpha in renal medullary interstitial cells. Am J Physiol Renal Physiol 281: F900–F908, 2001.
 1588. Tian W, Bonkovsky HL, Shibahara S and Cohen DM. Urea and hypertonicity increase expression of heme oxygenase‐1 in murine renal medullary cells. Am J Physiol Renal Physiol 281: F983–F991, 2001.
 1589. Akagi R, Takahashi T and Sassa S. Cytoprotective effects of heme oxygenase in acute renal failure. Contrib Nephrol 148: 70–85, 2005.
 1590. Li N, Yi F, dos Santos EA, Donley DK and Li PL. Role of renal medullary heme oxygenase in the regulation of pressure natriuresis and arterial blood pressure. Hypertension 49: 148–154, 2007.
 1591. Jamison RL, Work J and Schafer JA. New pathways for potassium transport in the kidney. Am J Physiol 242: F297–F312, 1982.
 1592. Pallone TL and Jamison RL. Effect of ureteral excision on inner medullary solute concentration in rats. Am J Physiol 255: F1225–F1229, 1988.
 1593. Imig JD, Zhao X, Capdevila JH, Morisseau C and Hammock BD. Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension 39: 690–694, 2002.
 1594. Imig JD, Zhao X, Falck JR, Wei S and Capdevila JH. Enhanced renal microvascular reactivity to angiotensin II in hypertension is ameliorated by the sulfonimide analog of 11,12‐epoxyeicosatrienoic acid. J Hypertens 19: 935–992, 2001.
 1595. Zhao X, Pollock DM, Inscho EW, Zeldin DC and Imig JD. Decreased renal cytochrome P450 2C enzymes and impaired vasodilation are associated with angiotensin salt‐sensitive hypertension. Hypertension 41: 709–714, 2003.
 1596. Yu Z, Huse LM, Adler P, Graham L, Ma J, Zeldin DC and Kroetz DL. Increased CYP2J expression and epoxyeicosatrienoic acid formation in spontaneously hypertensive rat kidney. Mol Pharmacol 57: 1011–1020, 2000.
 1597. Yu Z, Xu F, Huse LM, Morisseau C, Draper AJ, Newman JW, Parker C, Graham L, Engler MM, Hammock BD, Zeldin DC and Kroetz DL. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ Res 87: 992–998, 2000.
 1598. Zhao X, Yamamoto T, Newman JW, Kim IH, Watanabe T, Hammock BD, Stewart J, Pollock JS, Pollock DM and Imig JD. Soluble epoxide hydrolase inhibition protects the kidney from hypertension‐induced damage. J Am Soc Nephrol 15: 1244–1253, 2004.
 1599. Itskovitz HD, Stemper J, Pacholczyk D and McGiff JC. Renal prostaglandins: determinants of intrarenal distribution of blood flow in the dog. Clin Sci Mol Med Suppl 45 (Suppl 1): 321s–324s, 1973.
 1600. Larsson C and Anggard E. Increased juxtamedullary blood flow on stimulation of intrarenal prostaglandin biosynthesis. Eur J Pharmacol 25: 326–334, 1974.
 1601. Lemley KV, Schmitt SL, Holliger C, Dunn MJ, Robertson CR and Jamison RL. Prostaglandin synthesis inhibitors and vasa recta erythrocyte velocities in the rat. Am J Physiol Renal Physiol 247: F562–F567, 1984.
 1602. Badzynska B, Grzelec‐Mojzesowicz M and Sadowski J. Prostaglandins but not nitric oxide protect renal medullary perfusion in anaesthetised rats receiving angiotensin II. J Physiol 548: 875–880, 2003.
 1603. Oliver JJ, Eppel GA, Rajapakse NW and Evans RG. Lipoxygenase and cyclo‐oxygenase products in the control of regional kidney blood flow in rabbits. Clin Exp Pharmacol Physiol 30: 812–819, 2003.
 1604. Parekh N and Zou A‐P. Role of prostaglandins in renal medullary circulation: response to different vasoconstrictors. Am J Physiol Renal Physiol 271: F653–F658, 1996.
 1605. Roman RJ and Lianos E. Influence of prostaglandins on papillary blood flow and pressure‐natriuretic response. Hypertension 15: 29–35, 1990.
 1606. Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P and Rosen S. Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int 40: 632–642, 1991.
 1607. Heyman SN, Fuchs S, Jaffe R, Shina A, Ellezian L, Brezis M and Rosen S. Renal microcirculation and tissue damage during acute ureteral obstruction in the rat: Effect of saline infusion, indomethacin and radiocontrast. Kidney Int 51: 653–663, 1997.
 1608. Campean V, Theilig F, Paliege A, Breyer M and Bachmann S. Key enzymes for renal prostaglandin synthesis: site‐specific expression in rodent kidney (rat. mouse). Am J Physiol Renal Physiol 285: F19–F32, 2003.
 1609. Harris RC, Zhang MZ and Cheng HF. Cyclooxygenase‐2 and the renal renin‐angiotensin system. Acta Physiol Scand 181: 543–547, 2004.
 1610. Yang T. Regulation of cyclooxygenase‐2 in renal medulla. Acta Physiol Scand 177: 417–421, 2003.
 1611. Lopez R, Llinas MT, Roig F and Salazar FJ. Role of nitric oxide and cyclooxygenase‐2 in regulating the renal hemodynamic response to norepinephrine. Am J Physiol Regul Integr Comp Physiol 284: R488–R493, 2003.
 1612. Deng A, Wead LM and Blantz RC. Temporal adaptation of tubuloglomerular feedback: effects of COX‐2. Kidney Int 66: 2348–2353, 2004.
 1613. Zhang MZ, Sanchez LP, McKanna JA and Harris RC. Regulation of cyclooxygenase expression by vasopressin in rat renal medulla. Endocrinology 145: 1402–1409, 2004.
 1614. Birck R, Krzossok S, Knoll T, Braun C, Der Woude FJ and Rohmeiss P. Preferential COX‐2 inhibitor, meloxicam, compromises renal perfusion in euvolemic and hypovolemic rats. Exp Nephrol 8: 173–180, 2000.
 1615. Zewde T and Mattson DL. Inhibition of cyclooxygenase‐2 in the rat renal medulla leads to sodium‐sensitive hypertension. Hypertension 44: 424–428, 2004.
 1616. Kuczeriszka M, Badzynska B and Kompanowska‐Jezierska E. Cytochrome P‐450 monooxygenases in control of renal haemodynamics and arterial pressure in anaesthetized rats. J Physiol Pharmacol 57 (Suppl II): 179–185, 2006.
 1617. Oyekan AO. Differential effects of 20‐hydroxyeicosatetraenoic acid on intrarenal blood flow in the rat. J Pharmacol Exp Ther 313: 1289–1295, 2005.
 1618. Rajapakse NW, Roman RJ, Falck JR, Oliver JJ and Evans RG. Modulation of VI‐receptor‐mediated renal vasoconstriction by epoxyeicosatrienoic acids. Am J Physiol Regul Integr Comp Physiol 287: R181–R187, 2004.
 1619. Ogungbade GO, Akinsanmi LA, Jiang H and Oyekan AO. Role of epoxyeicosatrienoic acids in renal functional response to inhibition of NO production in the rat. Am J Physiol Renal Physiol 285: F955–F964, 2003.
 1620. Figueroa CD, Gonzalez CB, Grigoriev S, Alla SA, Haasemann M, Jarnagin K and Muller‐Esterl W. Probing for the bradykinin B2 receptor in rat kidney by anti‐peptide and anti‐ligand antibodies. J Histochem Cytochem 43: 137–148, 1995.
 1621. Figueroa CD, Maclver AG, Mackenzie JC and Bhoola KD. Localisation of immunoreactive kininogen and tissue kallikrein in the human nephron. Histochemistry 89: 437–442, 1988.
 1622. Hermann A, Braun A, Figueroa CD, Müller‐Esterl W, Fritz H and Rehbock J. Expression and cellular localization of kininogens in the human kidney. Kidney Int 50: 79–84, 1996.
 1623. Proud D, Knepper MA and Pisano JJ. Distribution of immunoreactive kallikrein along the rat nephron. Am J Physiol 244: F510–F515, 1983.
 1624. Vio CP and Figueroa CD. Subcellular localization of renal kallikrein by ultrastructural immunocytochemistry. Kidney Int 28: 36–42, 1985.
 1625. Vio CP and Figueroa CD. Evidence for a stimulatory effect of high potassium diet on renal kallikrein. Kidney Int 31: 1327–1334, 1987.
 1626. Hall JM. Bradykinin receptors: pharmacological properties and biological roles. Pharmacol Ther 56: 131–190, 1992.
 1627. Bascands J‐L, Pecher C, Rouaud S, Emond C, Tack JL, Bastie MJ, Burch R, Regoli D and Girolami J‐P. Evidence for existence of two distinct bradykinin receptors on rat mesangial cells. Am J Physiol Renal Physiol 264: F548–F556, 1993.
 1628. Ren Y, Garvin JL, Falck JR, Renduchintala KV and Carretero OA. Glomerular autacoids stimulated by bradykinin regulate efferent arteriole tone. Kidney Int 63: 987–993, 2003.
 1629. Seino M, Abe K, Nushiro N, Omata K, Kasai Y and Yoshinaga K. Contribution of bradykinin to maintenance of blood pressure and renal blood flow in anaesthetized spontaneously hypertensive rats. J Hypertens Suppl 6: S401–S403, 1988.
 1630. Mattson DL and Cowley AW, Jr. Kinin actions on renal papillary blood flow and sodium excretion. Hypertension 21: 961–965, 1993.
 1631. Omoro SA, Majid DSA, El‐Dahr SS and Navar LG. Kinin influences on renal regional blood flow responses to angiotensin‐converting enzyme inhibition in dogs. Am J Physiol Renal Physiol 276: F271–F277, 1999.
 1632. Tornel J, Madrid MI, Garcia‐Salom M, Wirth KJ and Fenoy FJ. Role of kinins in the control of renal papillary blood flow pressure natriuresis, and arterial pressure. Circ Res 86: 589–595, 2000.
 1633. Pittner J, Rhinehart K and Pallone TL. Ouabain modulation of endothelial calcium signaling in descending vasa recta. Am J Physiol Renal Physiol 291: F761–F769, 2006.
 1634. Agmon Y, Dinour D and Brezis M. Disparate effects of adenosine A1‐ and A2‐receptor agonists on intrarenal blood flow. Am J Physiol 265: F802–F806, 1993.
 1635. McCoy DE, Bhattacharya S, Olson BA, Levier DG, Arend LJ and Speilman WS. The renal adenosine system: structure, function and regulation. Sem Nephrol 13: 31–40, 1993.
 1636. Miyamoto M, Yagil Y, Larson T, Robertson C and Jamison RL. Effects of intrarenal adenosine on renal function and medullary blood flow in the rat. Am J Physiol Renal Physiol 255: F1230–F1234, 1988.
 1637. Zou A‐P, Nithipatikom K, Li P‐L and Cowley AW, Jr. Role of renal medullary adenosine in the control of blood flow and sodium excretion. Am J Physiol Regul Integr Comp Physiol 276: R790–R798, 1999.
 1638. Kreisberg MS, Silldorff EP and Pallone TL. Localization of ade‐nosine‐receptor subtype mRNA in rat outer medullary descending vasa recta by RT‐PCR. Am J Physiol 272: H1231–H1238, 1997.
 1639. Baranowski RL and Westernfelder C. Estimation of renal interstitial adenosine and purine metabolites by microdialysis. Am J Physiol Renal Physiol 267: F174–F182, 1994.
 1640. Jackson EK and Dubey RK. Role of the extracellular cAMP‐adenosine pathway in renal physiology. Am J Physiol Renal Physiol 281: F597–F612, 2001.
 1641. Dinour D and Brezis M. Effects of adenosine on intrarenal oxygenation. Am J Physiol Renal Physiol 261: F787–F791, 1991.
 1642. Beach RE, Watts IBA, Good DW, Benedict CR and Dubose TD, Jr. Effects of graded oxygen tension on adenosine release by renal medullary and thick ascending limb suspensions. Kidney Int 39: 836–842, 1991.
 1643. Terada Y, Tomita K, Nonoguchi H and Marumo F. Different localization of two types of endothelin receptor mRNA in micro‐dissected rat nephron segments using reverse transcription and polymerase chain reaction assay. J Clin Invest 90: 107–112, 1992.
 1644. Zhuo J, Dean R, Maric C, Aldred PG, Harris P, Alcorn D and Mendelsohn FA. Localization and interactions of vasoactive peptide receptors in renomedullary interstitial cells of the kidney. Kidney Int Suppl 67: S22–S28, 1998.
 1645. Kotelevtsev Y and Webb DJ. Endothelin as a natriuretic hormone: the case for a paracrine action mediated by nitric oxide. Cardiovasc Res 51: 481–488, 2001.
 1646. Krum H, Viskoper RJ, Lacourciere Y, Budde M and Charlon V. The effect of an endothelin‐receptor antagonist, bosentan, on blood pressure in patients with essential hypertension, Bosentan Hypertension Investigators. N Engl J Med 338: 784–790, 1998.
 1647. Naicker S and Bhoola KD. Endothelins: vasoactive modulators of renal function in health and disease. Pharmacol Ther 90: 61–88, 2001.
 1648. Plato CF and Garvin JL. Nitric oxide endothelin and nephron transport: potential interaction. Clin Exp Pharmacol Physiol 26: 262–268, 1999.
 1649. Boesen EI and Pollock DM. Acute increases of renal medullary osmolality stimulate endothelin release from the kidney. Am J Physiol Renal Physiol, 2006.
 1650. Bloom IT, Bentley FR, Wilson MA and Garrison RN. In vivo effects of endothelin on the renal microcirculation. J Surg Res 54: 274–280, 1993.
 1651. Kitamura K, Tanaka T, Kato J, Eto T and Tanaka K. Regional distribution of immunoreactive endothelin in porcine tissue: abundance in inner medulla of kidney. Biochem Biophys Res Commun 161: 348–352, 1989.
 1652. Konishi F, Okada Y, Takaoka M, Gariepy CE, Yanagisawa M and Matsumura Y. Role of endothelin ET(B) receptors in the renal hemodynamic and excretory responses to big endothelin‐1. Eur J Pharmacol 451: 177–184, 2002.
 1653. Schroeder AC, Imig JD, LeBlanc EA, Pham BT, Pollock DM and Inscho EW. Endothelin‐mediated calcium signaling in preglomerular smooth muscle cells. Hypertension 35: 280–286, 2000.
 1654. Pallone TL and Silldorff EP. Pericyte regulation of renal medullary blood flow. Exp Nephrol 9: 165–170, 2001.
 1655. Hoffman A, Abassi ZA, Brodsky S, Ramadan R and Winaver J. Mechanisms of big endothelin‐1‐induced diuresis and natriuresis: role of ET(B) receptors. Hypertension 35: 732–739, 2000.
 1656. Vassileva I, Mountain C and Pollock DM. Functional role of ETB receptors in the renal medulla. Hypertension 41: 1359–1363, 2003.
 1657. Guo X and Yang T. Endothelin B receptor antagonism in the rat renal medulla reduces urine flow rate and sodium excretion. Exp Biol Med (Maywood) 231: 1001–1005, 2006.
 1658. Gariepy CE, Ohuchi T, Williams SC, Richardson JA and Yanagisawa M. Salt‐sensitive hypertension in endothelin‐B receptor‐deficient rats. J Clin Invest 105: 925–933, 2000.
 1659. Gariepy CE, Williams SC, Richardson JA, Hammer RE and Yanagisawa M. Transgenic expression of the endothelin‐B receptor prevents congenital intestinal aganglionosis in a rat model of Hirschsprung disease. J Clin Invest 102: 1092–1101, 1998.
 1660. Pollock DM. Contrasting pharmacological ETB receptor blockade with genetic ETB deficiency in renal responses to big ET‐1. Physiol Genomics 6: 39–43, 2001.
 1661. Sasser JM, Pollock JS and Pollock DM. Renal endothelin in chronic angiotensin II hypertension. Am J Physiol Regul Integr Comp Physiol 283: R243–R248, 2002.
 1662. Molero MM, Giulumian AD, Reddy VB, Ludwig LM, Pollock JS, Pollock DM, Rusch NJ and Fuchs LC. Decreased endothelin binding and [Ca2+]i signaling in microvessels of DOCA‐salt hypertensive rats. J Hypertens 20: 1799–1805, 2002.
 1663. DiBona GF. Physiology in perspective: the wisdom of the body, neural control of the kidney. Am J Physiol Regul Integr Comp Physiol 289: R633–R641, 2005.
 1664. Gottschalk CW, Moss NG and Colindres R. Neural control of renal function in health and disease. In: The Kidney: Physiology and Pathophysiology, eds Seldin DW and Giebisch G. New York: Raven Press, 1985, pp. 581–611.
 1665. Walker LA, Buscemi‐Bergin M and Gellai M. Renal hemodynamics in conscious rats: effects of anesthesia, surgery, and recovery. Am J Physiol 245: F67–F74, 1983.
 1666. Walker LA, Gellai M and Valtin H. Renal response to pentobarbital anesthesia in rats: effect of interrupting the renin‐angiotensin system. J Pharmacol Exp Ther 236: 721–728, 1986.
 1667. Chen ZJ and Minneman KP. Recent progress in alphal‐adrenergic receptor research. Acta Pharmacol Sin 26: 1281–1287, 2005.
 1668. Michel MC and Rump LC. alpha‐Adrenergic regulation of human renal function. Fundam Clin Pharmacol 10: 493–503, 1996.
 1669. Pirola CJ, Alvarez AL, Finkielman S and Nahmod VE. Release of acetylcholine from isolated canine renal tissue. Am J Physiol Renal Physiol 260: F198–F203, 1991.
 1670. Thomas CE, Ott CE, Bell PD, Knox FG and Navar LG. Glomerular filtration dynamics during renal vasodilation with acetylcholine in the dog. Am J Physiol Renal Physiol 244: F606–F611, 1983.
 1671. Edwards RM. Response of isolated renal arterioles to acetylcholine, dopamine and bradykinin. Am J Physiol 248: F183–F189, 1985.
 1672. Hayashi K, Loutzenhiser R, Epstein M, Suzuki H and Saruta T. Multiple factors contribute to acetylcholine‐induced renal afferent arteriolar vasodilation during myogenic and norepinephrine‐and KCl‐induced vasoconstriction. Studies in the isolated perfused hydronephrotic kidney. Circ Res 75: 821–828, 1994.
 1673. Olsen NV, Hansen JM, Ladefoged SD, Fogh‐Andersen N, Nielsen SL and Leyssac PP. Overall renal and tubular function during infusion of amino acids in normal man. Clin Sci 78: 497–501, 1990.
 1674. Ozawa Y, Hayashi K, Nagahama T, Fujiwara K, Kanda T, Homma K and Saruta T. Distinct role of nitric oxide and endothelium‐derived hyperpolarizing factor in renal microcirculation. Studies in the isolated perfused hydronephrotic kidney. Nephron 92: 905–913, 2002.
 1675. Wang X and Loutzenhiser R. Determinants of renal microvascular response to ACh: afferent and efferent arteriolar actions of EDHF. Am J Physiol Renal Physiol 282: F124–F132, 2002.
 1676. Luff SE, Hengstberger SG, Mclachlan EM and Anderson WP. Two types of sympathetic axon innervating the juxtaglomerular arterioles of the rabbit and rat kidney differ structurally from those supplying other arteries. J Neurocytol 20: 781–795, 1991.
 1677. Luff SE, Hengstberger SG, Mclachlan EM and Anderson WP. Distribution of sympathetic neuroeffector junctions in the juxtaglomerular region of the rabbit kidney. J Auton Nerv Syst 40: 239–253, 1992.
 1678. Thomson SC, Tucker BJ, Gabbai FB and Blantz RC. Glomerular hemodynamics and alpha‐2‐adrenoceptor stimulation: the role of renal nerves. Am J Physiol 258: F21–F27, 1990.
 1679. Persson PB, Gimpl G and Lang RE. Importance of neuropeptide Y in the regulation of kidney function. Ann N Y Acad Sci 611: 156–165, 1990.
 1680. Rump LC, Vonend O and Oberhauser V. ATP release and degradation in the kidney: modulatory role of neuropeptide Y (NPY). Nephrol Dial Transplant 14 (Suppl 4): 48–49, 1999.
 1681. Gao L, Zhu C and Jackson EK. Alpha 2‐adrenoceptors potentiate angiotensin II‐ and vasopressin‐induced renal vasoconstriction in spontaneously hypertensive rats. J Pharmacol Exp Ther 305: 581–586, 2003.
 1682. Salomonsson M, Brannstrom K and Arendshorst WJ. a1‐Adrenoceptor subtypes in rat renal resistance vessels: in vivo and in vitro studies. Am J Physiol 278: F138–F147, 2000.
 1683. Walkowska A, Kompanowska‐Jezierska E and Sadowski J. Nitric oxide and renal nerves: comparison of effects on renal circulation and sodium excretion in anesthetized rats. Kidney Int 66: 705–712, 2004.
 1684. Malpas SC and Evans RG. Do different levels and patterns of sympathetic activation all provoke renal vasoconstriction? J Auton Nerv Syst 69: 72–82, 1998.
 1685. Barrett CJ, Navakatikyan MA and Malpas SC. Long‐term control of renal blood flow: what is the role of the renal nerves? Am J Physiol Regul Integr Comp Physiol 280: R1534–R1545, 2001.
 1686. Janssen BJA, Malpas SC, Burke SL and Head GA. Frequency‐dependent modulation of renal blood flow by renal nerve activity in conscious rabbits. Am J Physiol Regul Integr Comp Physiol 273: R597–R608, 1997.
 1687. Eppel GA, Lee LL and Evans RG. alpha‐Adrenoceptor subtypes mediating regional kidney blood flow responses to renal nerve stimulation. Auton Neurosci 112: 15–24, 2004.
 1688. Evans RG and Anderson WP. Renal effects of infusion of rilme‐nidine and guanabenz in conscious dogs: contribution of peripheral and central nervous system alpha 2‐adrenoceptors. Br J Pharmacol 116: 1557–1570, 1995.
 1689. Gellai M and Ruffolo RR. Renal effects of selective alpha‐1 and alpha‐2 adrenoceptor agonists in conscious, normotensive rats. J Pharmacol Exp Ther 240: 723–728, 1987.
 1690. Richer C, Lefevre‐Borg F, Lechaire J, Gomeni C, Gomeni R, Giudicelli JF and Cavero I. Systemic and regional hemodynamic characterization of alpha‐1 and alpha‐2 adrenoceptor agonists in pithed rats. J Pharmacol Exp Ther 240: 944–953, 1987.
 1691. Strandhoy JW, Wolff DW and Buckalew VM, Jr. Renal alpha 1‐ and alpha 2‐adrenoceptor mediated vasoconstriction in dogs. J Hypertens Suppl 2: S151–S153, 1984.
 1692. Wolff DW, Colindres RE and Strandhoy JW. Unmasking sensitive alpha 2‐adrenoceptor‐mediated renal vasoconstriction in conscious rats. Am J Physiol Renal Physiol 257: F1132–F1139, 1989.
 1693. De Leeuw PW, van Es PN, de Bos R and Birkenhager WH. Role of alpha 1‐ and alpha 2‐adrenergic receptors in the human hypertensive kidney. Hypertension 9: III210–III212, 1987.
 1694. Evans RG, Burke SL, Lambert GW and Head GA. Renal responses to acute reflex activation of renal sympathetic nerve activity and renal denervation in secondary hypertension. Am J Physiol Regul Integr Comp Physiol 293: R1247–R1256, 2007.
 1695. Gross R and Kirchheim H. Effects of bilateral carotid and auditory stimulation on renal blood flow and sympathetic nerve activity in the conscious dog. Pflugers Arch 383: 233–239, 1980.
 1696. Moss NG. Renal function and renal afferent and efferent nerve activity. Am J Physiol 243: F425–F433, 1982.
 1697. Malpas SC, Evans RG, Head GA and Lukoshkova EV. Contribution of renal nerves to renal blood flow variability during hemorrhage. Am J Physiol Regul Integr Comp Physiol 274: R1283–R1294, 1998.
 1698. Mueller PJ, O'Hagan KP, Skogg KA, Buckwalter JB and Clifford PS. Renal hemodynamic responses to dynamic exercise in rabbits. J Appl Physiol 85: 1605–1614, 1998.
 1699. Koba S, Yoshida T and Hayashi N. Renal sympathetic and circulatory responses to activation of the exercise pressor reflex in rats. Exp Physiol 91: 111–119, 2006.
 1700. Momen A, Bower D, Boehmer J, Kunselman AR, Leuenberger UA and Sinoway LI. Renal blood flow in heart failure patients during exercise. Am J Physiol Heart Circ Physiol 287: H2834–H2839, 2004.
 1701. Momen A, Bower D, Leuenberger UA, Boehmer J, Lerner S, Alfrey EJ, Handly B and Sinoway LI. Renal vascular response to static handgrip exercise: sympathetic vs. autoregulatory control. Am J Physiol Heart Circ Physiol 289: H1770–H1776, 2005.
 1702. Pricher MP, Holowatz LA, Williams JT, Lockwood JM and Halliwill JR. Regional hemodynamics during postexercise hypotension. I. Splanchnic and renal circulations. J Appl Physiol 97: 2065–2070, 2004.
 1703. Cowley AW, Jr. and Lohmeier TE. Changes in renal vascular sensitivity and arterial pressure associated with sodium intake during long‐term intrarenal norepinephrine infusion in dogs. Hypertension 1: 549–558, 1979.
 1704. Lohmeier TE. The sympathetic nervous system and long‐term blood pressure regulation. Am J Hypertens 14: 147S–154S, 2001.
 1705. Ichihara A, Inscho EW, Imig JD, Michel RE and Navar LG. Role of renal nerves in afferent arteriolar reactivity in angiotensin‐induced hypertension. Hypertension 29 (part 2): 442–449, 1997.
 1706. Jacob F, Clark LA, Guzman PA and Osborn JW. Role of renal nerves in development of hypertension in DOCA‐salt model in rats: a telemetric approach. Am J Physiol Heart Circ Physiol 289: H1519–H1529, 2005.
 1707. Katholi RE. Renal nerves in the pathogenesis of hypertension in experimental animals and humans. Am J Physiol 245: F1–F14, 1983.
 1708. Vari RC, Zinn S, Verburg KM and Freeman RH. Renal nerves and the pathogenesis of angiotensin‐induced hypertension. Hypertension 9: 345–349, 1987.
 1709. Winternitz SR and Oparil S. Importance of the renal nerves in the pathogenesis of experimental hypertension. Hypertension 4: III108–III114, 1982.
 1710. Hermansson K, Larson M, Kallskog O and Wolgast M. Influence of renal nerve activity on arteriolar resistance, ultrafiltration dynamics and fluid reabsorption. Pflugers Arch 389: 85–90, 1981.
 1711. Kon V. Neural control of renal circulation. Miner Electrolyte Metab 15: 33–43, 1989.
 1712. Denton KM, Shweta A and Anderson WP. Preglomerular and postglomerular resistance responses to different levels of sympathetic activation by hypoxia. J Am Soc Nephrol 13: 27–34, 2002.
 1713. Edwards RM and Trizna W. Characterization of a‐adrenoceptors on isolated rabbit renal arterioles. Am J Physiol Renal Physiol 254: F178–F183, 1988.
 1714. Casellas D, Bouriquet N, Artuso A, Walcott B and Moore LC. New method for imaging innervation of the renal preglomerular vasculature, Alterations in hypertensive rats. Microcirculation 7: 429–437, 2000.
 1715. Fleming JT, Zhang C, Chen J and Porter JP. Selective preglomerular constriction to nerve stimulation in rat hydronephrotic kidneys. Am J Physiol Renal Physiol 262: F348–F353, 1992.
 1716. Chen J and Fleming JT. Juxtamedullary afferent and efferent arterioles constrict to renal nerve stimulation. Kidney Int 44: 684–691, 1993.
 1717. Arendshorst WJ. Autoregulation of renal blood flow in spontaneously hypertensive rats. Circ Res 44: 344–349, 1979.
 1718. Selkurt EE. Effect of pulse pressure and mean arterial pressure modification on renal hemodynamics and electrolyte and water excretion. Circ 4: 541–551, 1951.
 1719. Shipley RE and Study RS. Changes in renal blood flow, extraction of inulin, glomerular filtration rate, tissue pressure and urine flow with acute alterations of renal artery blood pressure. Am J Physiol 167: 676–688, 1951.
 1720. Osborn JL, Francisco LL and DiBona GF. Effect of renal nerve stimulation on renal blood flow autoregulation and antinatriuresis during reductions in renal perfusion pressure. Proc Soc Exp Biol Med 168: 77–81, 1981.
 1721. Ehmke H, Persson PB, Seyfarth M and Kirchheim HR. Neurogenic control of pressure natriuresis in conscious dogs. Am J Physiol Renal Physiol 259: F466–F473, 1990.
 1722. Persson PB, Ehmke H, Nafz B and Kirchheim HR. Resetting of renal autoregulation in conscious dogs: angiotensin II and alpha 1‐adrenoceptors. Pflügers Arch 417: 42–47, 1990.
 1723. Pollock DM and Arendshorst WJ. Tubuloglomerular feedback and blood flow autoregulation during DA1‐induced renal vasodilation. Am J Physiol 258: F627–F635, 1990.
 1724. Abu‐Amarah I, Ajikobi DO, Bachelard H, Cupples WA and Salevsky FC. Responses of mesenteric and renal blood flow dynamics to acute denervation in anesthetized rats. Am J Physiol Regul Integr Comp Physiol 275: R1543–R1552, 1998.
 1725. DiBona GF and Sawin LL. Effect of renal denervation on dynamic autoregulation of renal blood flow. Am J Physiol Renal Physiol 286: F1209–F1218, 2004.
 1726. Just A, Wittmann U, Ehmke H and Kirchheim HR. Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback. J Physiol (Lond) 506: 275–290, 1998.
 1727. Guild SJ, Barrett CJ, Evans RG and Malpas SC. Interactions between neural and hormonal mediators of renal vascular tone in anaesthetized rabbits. Exp Physiol 88: 229–241, 2003.
 1728. Hermansson K, Kallskog O and Wolgast M. Effect of renal nerve stimulation on the activity of the tubuloglomerular feedback mechanism. Acta Physiol Scand 120: 381–385, 1984.
 1729. Takabatake T. Feedback regulation of glomerular filtration rate in the denervated rat kidney. Kidney Int Suppl 12: S129–S135, 1982.
 1730. Takabatake T, Ushiogi Y, Ohta K and Hattori N. Attenuation of enhanced tubuloglomerular feedback activity in SHR by renal denervation. Am J Physiol Renal Physiol 258: F980–F985, 1990.
 1731. Thorup C, Kurkus J, Morsing P and Persson AEG. Acute renal denervation causes time‐dependent resetting of the tubuloglomerular feedback mechanism. Acta Physiol Scand 153: 43–49, 1995.
 1732. Thorup C, Kurkus J. Ollerstam A and Persson AEG. Effects of acute and chronic unilateral renal denervation on the tubuloglomerular feedback mechanism. Acta Physiol Scand 156: 139–145, 1996.
 1733. Pelayo JC. Renal adrenergic effector mechanisms: glomerular sites for prostaglandin interaction. Am J Physiol Renal Physiol 254: F184–F190, 1988.
 1734. Yared A, Kon V and Ichikawa I. Mechanism of preservation of glomerular perfusion and filtration during acute extracellular fluid volume depletion. Importance of intrarenal vasopressin‐prostaglandin interaction for protecting kidneys from constrictor action of vasopressin. J Clin Invest 75: 1477–1487, 1985.
 1735. Anderson RJ, Henrich WL, Gross PA and Dillingham MA. Role of renal nerves, angiotensin II, and prostaglandins in the antinatriuretic response to acute hypercapnic acidosis in the dog. Circ Res 50: 294–300, 1982.
 1736. Rajapakse NW, Flower RL, Eppel GA, Denton KM, Malpas SC and Evans RG. Prostaglandins and nitric oxide in regional kidney blood flow responses to renal nerve stimulation. Pflugers Arch 449: 143–149, 2004.
 1737. Gabbai FB, Thomason SC, Peterson O, Wead L, Malvey K and Blantz RC. Glomerular and tubular interactions between renal adrenergic activity and nitric oxide. Am J Physiol Renal Physiol 268: F1004–F1008, 1995.
 1738. Thomson SC and Vallon V. α2‐adrenoceptors determine the response to nitric oxide inhibition in the rat glomerulus and proximal tubule. J Am Soc Nephrol 6: 1482–1490, 1995.
 1739. Thomson SC, Gabbai FB, Tucker BJ and Blantz RC. Interaction between a2‐adrenergic and angiotensin II systems in the control of glomerular hemodynamics as assessed by renal micropuncture in the rat. J Clin Invest 90: 604–611, 1992.
 1740. DiBona GF and Sawin LL. Effect of renal nerve stimulation on responsiveness of the rat renal vasculature. Am J Physiol Renal Physiol 283: F1056–F1065, 2002.
 1741. Rajapakse NW, Sampson AK, Eppel GA and Evans RG. Angiotensin II and nitric oxide in neural control of intrarenal blood flow. Am J Physiol Regul Integr Comp Physiol 289: R745–R754, 2005.
 1742. Walkowska A, Badzynska B, Kompanowska‐Jezierska E, Johns EJ and Sadowski J. Effects of renal nerve stimulation on intrarenal blood flow in rats with intact or inactivated NO synthases. Acta Physiol Scand 183: 99–105, 2005.
 1743. Kirchheim HR, Ehmke H, Hackenthal E, Lowe W and Persson P. Autoregulation of renal blood flow, glomerular filtration rate and renin release in conscious dogs. Pflügers Arch 410: 441–449, 1987.
 1744. Kirchheim HR, Finke R, Hackenthal E, Lowe W and Persson P. Baroreflex sympathetic activation increases threshold pressure for the pressure‐dependent renin release in conscious dogs. Pflugers Arch 405: 127–135, 1985.
 1745. Osborn JL and Kinstetter DD. Effects of altered NaCl intake on renal hemodynamic and renin release responses to RNS. Am J Physiol 253: F976–F981, 1987.
 1746. Bohmann C, Rump LC, Schaible U and von Kügelgen I. α‐Adrenoceptor modulation of norepinephrine and adenosine 5′‐triphosphate release in isolated kidneys of spontaneously hypertensive rats. Hypertension 25: 1224–1231, 1995.
 1747. Vonend O, Oberhauser V, von KI, Apel TW, Amann K, Ritz E and Rump LC. ATP release in human kidney cortex and its mitogenic effects in visceral glomerular epithelial cells. Kidney Int 61: 1617–1626, 2002.
 1748. Oberhauser V, Vonend O and Rump LC. Neuropeptide Y and ATP interact to control renovascular resistance in the rat. J Am Soc Nephrol 10: 1179–1185, 1999.
 1749. Dietrich MS, Fretschner M, Nobiling R, Persson PB and Steinhausen M. Renovascular effects of neuropeptide‐Y in the split hydronephrotic rat kidney: non‐uniform pattern of vascular reactivity. J Physiol (Lond) 444: 303–315, 1991.
 1750. Blaze CA, Mannon PJ, Vigna SR, Kherani AR and Benjamin BA. Peptide YY receptor distribution and subtype in the kidney: effect on renal hemodynamics and function in rats. Am J Physiol 273: F545–F553, 1997.
 1751. Modin A, Malmstrom RE and Meister B. Vascular neuropeptide Y Y1‐receptors in the rat kidney: vasoconstrictor effects and expression of Y1‐receptor mRNA. Neuropeptides 33: 253–259, 1999.
 1752. Aperia AC. Intrarenal dopamine: a key signal in the interactive regulation of sodium metabolism. Annu Rev Physiol 62: 621–647, 2000.
 1753. Kapusta DR and Robie NW. Plasma dopamine in regulation of canine renal blood flow. Am J Physiol Regul Integr Comp Physiol 255: R379–R387, 1988.
 1754. Dinerstein RJ, Jones RT and Goldberg LI. Evidence for dopamine‐containing renal nerves. Fed Proc 42: 3005–3008, 1983.
 1755. Carey RM. Theodore Cooper Lecture: renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure. Hypertension 38: 297–302, 2001.
 1756. Jose PA, Eisner GM and Felder RA. Role of dopamine receptors in the kidney in the regulation of blood pressure. Curr Opin Nephrol Hypertens 11: 87–92, 2002.
 1757. Jose PA, Raymond JR, Bates MD, Aperia A, Felder RA and Carey RM. The renal dopamine receptors. J Am Soc Nephrol 2: 1265–1278, 1992.
 1758. Zeng C, Yang Z, Wang Z, Jones J, Wang X, Altea J, Mangrum AJ, Hopfer U, Sibley DR, Eisner GM, Felder RA and Jose PA. Interaction of angiotensin II type I and D5 dopamine receptors in renal proximal tubule cells. Hypertension 45: 804–810, 2005.
 1759. Jose PA, Eisner GM and Felder RA. Regulation of blood pressure by dopamine receptors. Nephron Physiol 95: 19–27, 2003.
 1760. Luippold G, Schneider S, Vallon V, Osswald H and Mühlbauer B. Postglomerular vasoconstriction induced by dopamine D3 receptor activation in anesthetized rats. Am J Physiol Renal Physiol 278: F570–F575, 2000.
 1761. Tamaki T, Hura CE and Kunau RT, Jr. Dopamine stimulates cAMP production in canine afferent arterioles via DA1 receptors. Am J Physiol 256: H626–H629, 1989.
 1762. Kopp UC. Renorenal reflexes: neural and functional responses. Fed Proc 44: 2834–2839, 1985.
 1763. Barajas L, Liu L and Powers K. Anatomy of the renal innervation: intrarenal aspects and ganglia of origin. Can J Physiol Pharmacol 70: 735–749, 1992.
 1764. Kopp UC, Cicha MZ, Nakamura K, Nusing RM, Smith LA and Hokfelt T. Activation of EP4 receptors contributes to prostaglandin E2‐mediated stimulation of renal sensory nerves. Am J Physiol Renal Physiol 287: F1269–F1282, 2004.
 1765. Kopp UC and Smith LA. Role of prostaglandins in renal sensory receptor activation by substance P and bradykinin. Am J Physiol Regul Integr Comp Physiol 265: R544–R551, 1993.
 1766. Porter JP, Said SI and Ganong WF. Vasoactive intestinal peptide stimulates renin zecretion in vitro: evidence for a direct action of the peptide on the renal juxtaglomerular cells. Neuwendocrinology 36: 404–408, 1983.
 1767. Bell D and McDermott BJ. Calcitonin gene‐related peptide in the cardiovascular system: characterization of receptor populations and their (patho)physiological significance. Pharmacol Rev 48: 253–288, 1996.
 1768. Geppetti P, Baldi E, Manzini S, Del Bianco E, Maggi CA, Natali A and Mannelli M. Regional differences of adenylate cyclase stimulation by calcitonin and calcitonin gene‐related peptide in the human kidney. J Clin Endocrinol Metab 69: 491–495, 1989.
 1769. Elhawary AM and Pang CC. Renal vascular and tubular actions of calcitonin gene‐related peptide: effect of NG‐nitro‐L‐arginine methyl ester. J Pharmacol Exp Ther 273: 56–63, 1995.
 1770. Villarreal D, Freeman RH, Verburg KM and Brands MW. Effects of calcitonin gene‐related peptide on renal blood flow in the rat. Proc Soc Exp Biol Med 188: 316–322, 1988.
 1771. Ay I and Tuncer M. Mechanism of CGRP‐induced vasodilation in the rat isolated perfused kidney. Pharmacology 71: 209–215, 2004.
 1772. Castellucci A, Maggi CA and Evangelista S. Calcitonin gene‐related peptide (CGRP)I receptor mediates vasodilation in the rat isolated and perfused kidney. Life Sci 53: L153–L158, 1993.
 1773. Kurtz A, Muff R and Fischer JA. Calcitonin gene products and the kidney. Klin Wochenschr 67: 870–875, 1989.
 1774. Gardiner SM, Compton AM and Bennett T. Regional hemodynamic effects of calcitonin gene‐related peptide. Am J Physiol 256: R332–R338, 1989.
 1775. Fletcher DR, Braslis KG, Shulkes A and Hardy KJ. Calcitonin gene related peptide: vasodilator in ovine hepatic and renal vasculature. Clin Exp Pharmacol Physiol 17: 467–476, 1990.
 1776. Verburg KM, Freeman RH, Villarreal D and Brands MW. Cardiovascular and renal effects of calcitonin gene‐related peptide in hypertensive dogs. Peptides 10: 663–669, 1989.
 1777. Edwards RM and Trizna W. Calcitonin gene‐related peptide: effects on renal arteriolar tone and tubular cAMP levels. Am J Physiol 258: F121–F125, 1990.
 1778. Edwards RM, Trizna W and Aiyar N. Adrenomedullin: a new peptide involved in cardiorenal homeostasis? Exp Nephrol 5: 18–22, 1997.
 1779. Jougasaki M and Burnett JC, Jr. Adrenomedullin: potential in physiology and pathophysiology. Life Sci 66: 855–872, 2000.
 1780. Nishikimi T. Adrenomedullin in the kidney‐renal physiological and pathophysiological roles. Curr Med Chem 14: 1689–1699, 2007.
 1781. Majid DSA, Kadowitz PJ, Coy DH and Navar LG. Renal responses to intra‐arterial administration of adrenomedullin in dogs. Am J Physiol Renal Physiol 270: F200–F205, 1996.
 1782. Fujisawa Y, Nagai Y, Miyatake A, Miura K, Shokoji T, Nishiyama A, Kimura S and Abe Y. Roles of adrenomedullin 2 in regulating the cardiovascular and sympathetic nervous systems in conscious rats. Am J Physiol Heart Circ Physiol 290: H1120–H1127, 2006.
 1783. Nagaya N, Nishikimi T, Horio T, Yoshihara F, Kanazawa A, Matsuo H and Kangawa K. Cardiovascular and renal effects of adrenomedullin in rats with heart failure. Am J Physiol Regul Integr Comp Physiol 276: R213–R218, 1999.
 1784. Vari RC, Adkins SD and Samson WK. Renal effects of adrenomedullin in the rat. Proc Soc Exp Biol Med 211: 178–183, 1996.
 1785. Minami K, Segawa K, Uezono Y, Shiga Y, Shiraishi M, Ogata J and Shigematsu A. Adrenomedullin inhibits the pressor effects and decrease in renal blood flow induced by norepinephrine or angiotensin II in anesthetized rats. Jpn J Pharmacol 86: 159–164, 2001.
 1786. Elhawary AM, Poon J and Pang CC. Effects of calcitonin gene‐related peptide receptor antagonists on renal actions of adrenomedullin. Br J Pharmacol 115: 1133–1140, 1995.
 1787. Hjelmqvist H, Keil R, Mathai M, Hubschle T and Gerstberger R. Vasodilation and glomerular binding of adrenomedullin in rabbit kidney are not CGRP receptor mediated. Am J Physiol 273: R716–R724, 1997.
 1788. Schwarz N, Renshaw D, Kapas S and Hinson JP. Adrenomedullin increases the expression of calcitonin‐like receptor and receptor activity modifying protein 2 mRNA in human microvascular endothelial cells. J Endocrinol 190: 505–514, 2006.
 1789. Hirata Y, Hayakawa H, Suzuki Y, Suzuki E, Ikenouchi H, Kohmoto O, Kimura K, Kitamura K, Eto T, Kangawa K, Matsuo H and Omata M. Mechanisms of adrenomedullin‐induced vasodilation in the rat kidney. Hypertension 25 (part 2): 790–795, 1995.
 1790. AI‐Barazanji KA and Balment RJ. The Renal and Vascular Effects of Central Angiotensin II and Atrial Natriuretic Factor in the Anaesthetized Rat. J Physiol (Lond) 423: 485–493, 1990.
 1791. Jensen BL, Friis UG, Hansen PB, Andreasen D, Uhrenholt T, Schjerning J and Skott O. Voltage‐dependent calcium channels in the renal microcirculation. Nephrol Dial Transplant 19: 1368–1373, 2004.
 1792. Ozawa Y, Hayashi K, Nagahama T, Fujiwara K, Wakino S and Saruta T. Renal afferent and efferent arteriolar dilation by nilvadipine: studies in the isolated perfused hydronephrotic kidney. J Cardiovasc Pharmacol 33: 243–247, 1999.
 1793. Yang G and Sigmund CD. Regulatory elements required for human angiotensinogen expression in HepG2 cells are dispensable in transgenic mice. Hypertension 31: 734–740, 1998.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

L Gabriel Navar, William J Arendshorst, Thomas L Pallone, Edward W Inscho, John D Imig, P Darwin Bell. The Renal Microcirculation. Compr Physiol 2011, Supplement 9: Handbook of Physiology, The Cardiovascular System, Microcirculation: 550-683. First published in print 2008. doi: 10.1002/cphy.cp020413