References |
1. |
Donald DE.
Splanchnic circulation. In:
Handbook of Physiology, Section 2: The Cardiovascular System. Volume III. The Peripheral Circulation and Organ Blood Flow, Part 1,
eds Shepherd JT and
Abboud FM,
Bethesda, MD:
The American Physiological Society,
1983.
pp. 219–240.
|
2. |
Lundgren O.
Microcirculation of the gastrointestinal tract and pan creas. In:
Handbook of Physiology, Section 2: The Cardiovascular System. Volume TV. Microcirculation, Part 1,
eds Renkin EM and
Michel CC.
Bethesda, MD:
The American Physiological Society,
1984,
pp. 799–864.
|
3. |
Granger DN,
Kvietys PR,
Korthuis RJ and
Premen AJ.
Microcirculation of the intestinal mucosa. In:
Handbook of Physiology, Section 6: The Gastrointestinal System. Volume I. Motility and Circulation, Part 2,
ed. Wood JD.
Bethesda, MD:
The American Physiological Society,
1989,
pp. 1405–1474.
|
4. |
Kvietys PR,
Granger DN and
Harper SL.
Circulation of the pancreas and salivary glands. In:
Handbook of Physiology, Section 6: The Gastrointestinal System. Volume 1. Motility and Circulation, Part 2,
ed. Wood JD.
Bethesda, MD:
The American Physiological Society,
1989,
pp. 1565–1596.
|
5. |
Lautt WW.
Hepatic circulation. In:
Handbook of Physiology, Section 6: The Gastrointestinal System. Volume I. Motility and Circulation, Part 2,
ed. Wood JD,
Bethesda, MD:
The American Physiological Society,
1989,
pp. 1519–1564.
|
6. |
Crissinger KD and
Granger DN.
Gastrointestinal blood flow. In:
Textbook of Gastroenterology,
4th Edition,
Vol. 1,
eds Yamada T,
Alpers DH,
Kaplowitz N,
Laine L,
Owyang C and
Powell DW.
Philadelphia:
Lippincott Williams & Wilkins,
2003,
pp. 498–520.
|
7. |
Hatoum OA,
Miura H and
Binion DG.
The vascular contribution in the pathogenesis of inflammatory bowel disease.
Am J Physiol Heart Circ Physiol
285:
H1791–H1796,
2003.
|
8. |
Korthuis RJ.
Inflammatory bowel disease: role of the intestinal circulation. In:
Pathophysiology of the Splanchnic Circulation,
Vol. II,
eds Kvietys PR,
Barrowman JA and
Granger DN,
Boca Raton:
CRC Press
1987,
pp. 67–88.
|
9. |
Guslandi M,
Polli D,
Sorghi M and
Tittobello A.
Rectal blood flow in ulcerative colitis.
Am J Gastroenterol
90:
579–580,
1995.
|
10. |
Bolondi L,
Gaiani S,
Brignola C,
Campieri M,
Rigamonti A,
Zironi G,
Gionchetti P,
Belloli C,
Miglioli M and
Barbara L.
Changes in splanchnic hemodynamics in inflammatory bowel disease. Noninvasive assessment by Doppler ultrasound flowmetry.
Stand J Gastroenterol
27:
501–507,
1992.
|
11. |
Hulten L,
Lindhagen J,
Lundgren O,
Fasth S and
Ahren C.
Regional intestinal blood flow in ulcerative colitis and Crohn's disease.
Gastroenterology
72:
388–396,
1977.
|
12. |
Satoyoshi K,
Akita Y,
Nozu F,
Yoshikawa N and
Mitamura K.
Hemodynamics in the colonic mucosa of rats with dextran sulfate‐induced colitis in the early phase.
J Gastroenterol
31:
512–517,
1996.
|
13. |
Garrelds IM,
Heiligers JP,
Van Meeteren ME,
Duncker DJ,
Saxena PR,
Meijssen MA and
Zijlstra FJ.
Intestinal blood flow in murine colitis induced with dextran sulfate sodium.
Dig Dis Sci
47:
2231–2236,
2002.
|
14. |
Kruschewski M,
Foitzik T,
Perez‐Canto A,
Hubotter A and
Buhr HJ.
Changes of colonic mucosal microcirculation and histology in two colitis models. An experimental study using intravital microscopy and a new histological scoring system.
Dig Dis Sci
46:
2336–2343,
2001.
|
15. |
Deniz M,
Cetinel S and
Kurtel H.
Blood flow alterations in TNBS‐induced colitis: role of endothelin receptors.
Inflammation res
53:
329–336,
2004.
|
16. |
Hatoum OA,
Binion DG,
Otterson MF and
Gutterman DD.
Acquired Microvascular dysfunction in inflammatory bowel disease: loss of nitric oxide‐mediated vasodilation.
Gastroenterology
125:
58–69,
2003.
|
17. |
Granger DN,
Grisham MB and
Kvietys PR.
Mechanisms of microvascular injury. In:
Physiology of the Gastrointestinal Tract,
ed. Johnson LR,
New York:
Raven Press,
1994,
pp. 1693–1722.
|
18. |
Bienvenu K,
Granger DN and
Perry MA.
Flow dependence of leukocyte‐endothelial cell adhesion in postcapillary venules. In:
Physiology and Pathophysiology of Leukocyte Adhesion,
eds Granger DN and
Schmid‐Schonbein G.
New York:
Oxford University Press,
1995,
pp. 278–293.
|
19. |
Atherton A and
Born GVR.
Relationship between the velocity of rolling granulocytes and that of the blood flow in venules.
J Physiol
233:
157–165,
1973.
|
20. |
Perry MA and
Granger DN,
Role of CD11/CD18 in shear rate‐dependent leukocyte‐endothelial cell interactions in cat mesenteric venules.
J Clin Invest
87:
1798–1804,
1991.
|
21. |
Nazziola E and
House SD.
Effects of hydrodynamic and leukocyte‐endothelium specificity on leukocyte‐endothelium interactions.
Microvasc Res
44:
127–142,
1992.
|
22. |
Granger DN and
Kubes P.
The microcirculation and inflammation: modulation of leukocyte‐endothelial cell adhesion.
J Leukoc Biol
55:
662–675,
1994.
|
23. |
Russell J,
Cooper D,
Tailor A,
Stokes KY and
Granger DN.
Low venular shear rates promote leukocyte‐dependent recruitment of adherent platelets.
Am J Physiol Gastrointest Liver Physiol
284:
G123–G129,
2003.
|
24. |
Tailor A,
Cooper D and
Granger DN.
Platelet‐vessel wall interactions in the microcirculation.
Microcirculation,
2005.
|
25. |
Vowinkel T,
Mori M,
Krieglstein CF,
Russell J,
Saijo F,
Bharwani S,
Turnage RH,
Davidson WS,
Tso P,
Granger DN and
Kalogeris TJ.
Apolipoprotein A‐IV inhibits experimental colitis.
J Clin Invest
114:
260–269,
2004.
|
26. |
Cooper D,
Russell J,
Chitman KD,
Williams MC,
Wolf RE and
Granger DN.
Leukocyte dependence of platelet adhesion in postcapillary venules.
Am J Physiol
286:
H1895–H1900,
2004.
|
27. |
Tailor A and
Granger DN.
Hypercholesterolemia promotes leukocyte‐dependent platelet adhesion in murine postcapillary venules.
Microcirculation
11:
597–603,
2004.
|
28. |
Huo Y,
Schober A,
Forlow SB,
Smith DF,
Hyman MC,
Jung S,
Littman DR,
Weber C and
Ley K.
Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E.
Nat Med
9:
61–67,
2003.
|
29. |
Cerwinka WH,
Cooper D,
Krieglstein CF,
Ross CR,
McCord JM and
Granger DN.
Superoxide mediates endotoxin‐induced platelet‐endothelial cell adhesion in intestinal venules.
Am J Physiol
284:
H535–H541,
2003.
|
30. |
Mebius RE.
Organogenesis of lymphoid tissues.
Nat Rev Immunol
3:
292–303,
2003.
|
31. |
Mowat AM.
Anatomical basis of tolerance and immunity to intestinal antigens.
Nat Rev Immunol
3:
331–341,
2003.
|
32. |
Owen RL and
Jones AL.
Epithelial cell specialization within human Peyer's patches: an ultrastructural study of intestinal lymphoid follicles.
Gastroenterology
66:
189–203,
1974.
|
33. |
von Andrian UH and
Mackay CR.
T‐cell function and migration. Two sides of the same coin.
N Engl J Med
343:
1020–1034,
2000.
|
34. |
Briskin M,
Winsor‐Hines D,
Shyjan A,
Cochran N,
Bloom S,
Wilson J,
McEvoy LM,
Butcher EC,
Kassam N,
Mackay CR,
Newman W and
Ringler DJ.
Human mucosal addressin cell adhesion molecule‐1 is preferentially expressed in intestinal tract and associated lymphoid tissue.
Am J Pathol
151:
97–110,
1997.
|
35. |
Berlin C,
Bargatze RF,
Campbell JJ,
von Andrian UH,
Szabo MC,
Hasslen SR,
Nelson RD,
Berg EL,
Erlandsen SL and
Butcher EC.
alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow.
Cell
80:
413–422,
1995.
|
36. |
Hamann A,
Andrew DP,
Jablonski‐Westrich D,
Holzmann B and
Butcher EC.
Role of alpha4‐integrins in lymphocyte homing to mucosal tissues in vivo.
J Immunol
152:
3282–3293,
1994.
|
37. |
Bargatze RF,
Jutila MA and
Butcher EC.
Distinct roles of L‐selectin and integrins alpha 4 beta 7 and LFA‐1 in lymphocyte homing to Peyer's patch‐HEV in situ: the multistep model confirmed and refined.
Immunity
3:
99–108,
1995.
|
38. |
Fujimori H,
Miura S,
Koseki S,
Hokari R,
Komoto S,
Hara Y,
Hachimura S,
Kaminogawa S and
Ishii H.
Intravital observation of adhesion of lamina propria lymphocytes to microvessels of small intestine in mice.
Gastroenterology
122:
734–744,
2002.
|
39. |
Streeter PR,
Rouse BT and
Butcher EC.
Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes.
J Cell Biol
107:
1853–1862,
1988.
|
40. |
Rosen SD,
Hwang ST,
Giblin PA and
Singer MS.
High‐endothelialvenule ligands for L‐selectin: identification and functions.
Biochem Soc Trans
25:
428–433,
1997.
|
41. |
Berg EL,
McEvoy LM,
Berlin C,
Bargatze RF and
Butcher EC.
L‐selectin‐mediated lymphocyte rolling on MAdCAM‐1.
Nature
366:
695–698,
1993.
|
42. |
von Andrian UH and
Mempel TR.
Homing and cellular traffic in lymph nodes.
Nat Rev Immunol
3:
867–878,
2003.
|
43. |
Arbones ML,
Ord DC,
Ley K,
Ratech H,
Maynard‐Curry C,
Otten G,
Capon DJ and
Tedder TF.
Lymphocyte homing and leukocyte rolling and migration are impaired in L‐selectin‐deficient mice.
Immunity
1:
247–260,
1994.
|
44. |
Maly P,
Thall A,
Petryniak B,
Rogers CE,
Smith PL,
Marks RM,
Kelly RJ,
Gersten KM,
Cheng G,
Saunders TL,
Camper SA,
Camphausen RT,
Sullivan FX,
Isogai Y,
Hindsgaul O,
von Andrian UH and
Lowe JB.
The alpha(1–3)fucosyltransferase Fuc‐TVII controls leukocyte trafficking through an essential role in L‐, E‐, and P‐selectin ligand biosynthesis.
Cell
86:
643–653,
1996.
|
45. |
Butcher EC,
Williams M,
Youngman K,
Rott L and
Briskin M.
Lymphocyte trafficking and regional immunity.
Adv Immunol
72:
209–253,
1999.
|
46. |
Ruegg C,
Postigo AA,
Sikorski EE,
Butcher EC,
Pytela R and
Erle DJ.
Role of integrin alpha 4 beta 7/alpha 4 beta P in lymphocyte adherence to fibronectin and VCAM‐1 and in homotypic cell clustering.
J Cell Biol
117:
179–189,
1992.
|
47. |
Williams MB and
Butcher EC.
Homing of naïve and memory T lymphocyte subsets to Peyer's patches, lymph nodes, and spleen.
J Immunol
159:
1746–1752,
1997.
|
48. |
Westermann J,
Geismar U,
Sponholz A,
Bode U,
Sparshott SM and
Bell EB.
CD4+ T cells of both the naïve and the memory pheno‐type enter rat lymph nodes and Peyer's patches via high endothelial venules: within the tissue their migratory behavior differs.
Eur J Immunol
21:
3174–3181,
1997.
|
49. |
Weninger W,
Crowley MA,
Manjunath N and
von Andrian UH.
Migratory properties of naïve, effector, and memory CD8(+) T cells.
J Exp Med
194:
953–966,
2001.
|
50. |
Weninger W,
Manjunath N and
von Andrian UH.
Migration and differentiation of CD8+ T cells.
Immunol Rev
186:
221–233,
2002.
|
51. |
McEvoy LM,
Sun H,
Frelinger JG and
Butcher EC.
Anti‐CD43 inhibition of T cell homing.
J Exp Med
185:
1493–1498,
1997.
|
52. |
Salmi M,
Tonka S,
Berg EL,
Butcher EC and
Jalkanen S.
Vascular adhesion protein I (VAP‐1) mediates lymphocyte subtype‐specific, selectin‐independeni recognition of vascular endothelium in human lymph nodes.
J Exp Med
186:
589–600,
1997.
|
53. |
Miura S,
Tsuzuki Y,
Fukumura D,
Serizawa H,
Suematsu M,
Kurose I,
Imaeda H,
Kimura H,
Nagata H,
Tsuchiya M, et al.
Intravital demonstration of sequential migration process of lymphocyte subpopulations in rat Peyer's patches.
Gastroenterology
109:
1113–1123,
1995.
|
54. |
Stein JV,
Rot A,
Luo Y,
Narasimhaswamy M,
Nakano H,
Gunn MD,
Matsuzawa A,
Quackenbush EJ,
Dorf ME and
von Andrian UH.
The CC chemokine thymus‐derived chemotactic agent 4 (TCA‐4, secondary lymphoid tissue chemokine, 6Ckine, exodus‐2) triggers lymphocyte function‐associated antigen I‐mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules.
J Exp Med
191:
61–76,
2000.
|
55. |
Warnock RA,
Campbell JJ,
Dorf ME,
Matsuzawa A,
McEvoy LM and
Butcher EC.
The role of chemokines in the microenvironmental control of T versus B cell arrest in Peyer's patch high endothelial venules.
J Exp Med
191:
77–88,
2000.
|
56. |
Baekkevold ES,
Yamanaka T,
Palframan RT,
Carlsen HS,
Reinholt FP,
von Andrian UH,
Brandtzaeg P and
Haraldsen G.
The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment.
J Exp Med
193:
1105–1112,
2001.
|
57. |
Giagulli C,
Scarpini E,
Ottoboni L,
Narumiya S,
Butcher EC,
Constantin G and
Laudanna C.
RhoA and zeta PKC control distinct modalities of LFA‐1 activation by chemokines: critical role of LFA‐1 affinity triggering in lymphocyte in vivo homing.
Immunity
20:
25–35,
2004.
|
58. |
Tang ML,
Steeber DA,
Zhang XQ and
Tedder TF.
Intrinsic differences in L‐selectin expression levels affect T and B lymphocyte subset‐specific recirculation pathways.
J Immunol
160:
5113–5121,
1998.
|
59. |
Luther SA,
Tang HL,
Hyman PL,
Farr AG and
Cyster JG.
Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the pit/pit mouse.
Proc Natl Acad Sci USA
97:
12694–12699,
2000.
|
60. |
Okada T,
Ngo VN,
Ekland EH,
Forster R,
Lipp M,
Littman DR and
Cyster JG.
Chemokine requirements for B cell entry to lymph nodes and Peyer's patches.
J Exp Med
196:
65–75,
2002.
|
61. |
Ebisuno Y,
Tanaka T,
Kanemitsu N,
Kanda H,
Yamaguchi K,
Kaisho T,
Akira S and
Miyasaka M.
Cutting edge: the B cell chemokine CXC chemokine ligand 13/B lymphocyte chemoattractant is expressed in the high endothelial venules of lymph nodes and Peyer's patches and affects B cell trafficking across high endothelial venules.
J Immunol
171:
1642–1646,
2003.
|
62. |
Anderson AO and
Anderson ND.
Lymphocyte emigration from high endothelial venules in rat lymph nodes.
Immunology
31:
731–748,
1976.
|
63. |
Yamaguchi K and
Schoefl GI.
Blood vessels of the Peyer's patch in the mouse: III. High‐endothelium venules.
Anat Rec
206:
419–438,
1983.
|
64. |
Cho Y and
De Bruyn PP.
Internal structure of the postcapillary high‐endothelial venules of rodent lymph nodes and Peyer's patches and the transendothelial lymphocyte passage.
Am J Anat
177:
481–490,
1986.
|
65. |
Phillips R and
Ager A.
Activation of pertussis toxin‐sensitive CXCL12 (SDF‐1) receptors mediates transendothelial migration of T lymphocytes across lymph node high endothelial cells.
Eur J Immunol
32:
837–847,
2002.
|
66. |
Miyasaka M and
Tanaka T.
Lymphocyte trafficking across high endothelial venules: dogmas and enigmas.
Nat Rev Immunol
4:
360–370,
2003.
|
67. |
Nagakubo D,
Murai T,
Tanaka T,
Usui T,
Matsumoto M,
Sekiguchi K and
Miyasaka M.
A high endothelial venule secretory protein, mac25/angiomodulin, interacts with multiple high endothelial venule‐associated molecules including chemokinesm.
J Immunol
171:
553–561,
2003.
|
68. |
Stoll S,
Delon J,
Brotz TM and
Germain RN.
Dynamic imaging of T cell‐dendritic cell interactions in lymph nodes.
Science
296:
1873–1876,
2002.
|
69. |
Miller MJ,
Wei SH,
Parker I and
Cahalan MD.
Two‐photon imaging of lymphocyte motility and antigen response in intact lymph node.
Science
296:
1869–1873,
2002.
|
70. |
Bousso P and
Robey E.
Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes.
Nat Immunol
4:
579–585,
2003.
|
71. |
Miller MJ,
Wei SH,
Cahalan MD and
Parker I.
Autonomous T cell trafficking examined in vivo with intravital two‐photon microscopy.
Proc Natl Acad Sci USA
100:
2604–2609,
2003.
|
72. |
Miller MJ,
Hejazi AS,
Wei SH,
Cahalan MD and
Parker I.
T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node.
Proc Natl Acad Sci USA
101:
998–1003,
2003.
|
73. |
Breitfeld D,
Ohl L,
Kremmer E,
Ellwart J,
Sallusto F and
Lipp M,
R, Forster. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production.
J Exp Med
192:
1545–1552,
2000.
|
74. |
Schaniel C,
Pardali E,
Sallusto F,
Speletas M,
Ruedl C,
Shimizu T,
Seidl T,
Andersson J,
Melchers F,
Rolink AG and
Sideras P.
Activated murine B lymphocytes and dendritic cells produce a novel CC chemokine which acts selectively on activated T cells.
J Exp Med
188:
451–463,
1998.
|
75. |
Schaniel C,
Sallusto F,
Ruedl C,
Sideras P,
Melchers F and
Rolink AG.
Three chemokines with potential functions in T lymphocyte‐independent and ‐dependent B lymphocyte stimulation.
Eur J Immunol
29:
2934–2947,
1999.
|
76. |
Azzali G,
Vitale M and
Arcari ML.
Infrastructure of absorbing peripheral lymphatic vessel (ALPA) in guinea pig Peyer's patches.
Microvasc Res
64:
289–301,
2002.
|
77. |
Azzali G.
Structure, lymphatic vascularization and lymphocyte migration in mucosa‐associated lymphoid tissue.
Immunol Rev
195:
178–189,
2003.
|
78. |
Nagata H,
Miyairi M,
Sekizuka E,
Morishita T,
Tatemichi M,
Miura S and
Tsuchiya M.
In vivo visualization of lymphatic microvessels and lymphocyte migration through rat Peyer's patches.
Gastroenterology
106:
1548–1553,
1994.
|
79. |
Rothkotter HJ,
Huber T,
Barman NN and
Pabst R.
Lymphoid cells in afferent and efferent intestinal lymph: lymphocyte subpoputations and cell migration.
Clin Exp Immunol
92:
317–322,
1993.
|
80. |
Farstad IN,
Norstem J and
Brandtzaeg P.
Phenotypes of B and T cells in human intestinal and mesenteric lymph.
Gastroenterology
112:
163–173,
1997.
|
81. |
Miura S,
Sekizuka E,
Nagata H,
Oshio C,
Minamitani H,
Suematsu M,
Suzuki M,
Hamada Y,
Kobayashi K,
Asakura H and
Tsuchiya M.
Increased lymphocyte transport by lipid absorption in rat mesenteric lymphatics.
Am J Physiol
253:
G596–G600,
1987.
|
82. |
Tsuzuki Y,
Miura S,
Kurose I,
Suematsu M,
Higuchi H,
Shigematsu T,
Kimura H,
Serizawa H,
Hokari R,
Akiba Y,
Yagita H,
Okumura K,
Tso P,
Granger DN and
Ishii H.
Enhanced lymphocyte interaction in postcapillary venules of Peyer's patches during fat absorption in rats.
Gastroenterology
112:
813–825,
1997.
|
83. |
Miura S,
Serizawa H,
Tsuzuki Y,
Kurose I,
Suematsu M,
Higuchi H,
Shigematsu T,
Hokari R,
Hirokawa M,
Kimura H and
Ishii H.
Vasoactive intestinal peptide modulates T lymphocyte migration in Peyer's patches of rat small intestine.
Am J Physiol
272:
G92–G99,
1997.
|
84. |
Hokari R,
Miura S,
Fujimori H,
Tsuzuki Y,
Shigematsu T,
Higuchi H,
Kimura H,
Kurose I,
Serizawa H,
Suematsu M,
Yagita H,
Granger DN and
Ishii H.
Nitric oxide modulates T‐lymphocyte migration in Peyer's patches and villous submucosa of rat small intestine.
Gastroenterology
115:
618–627,
1998.
|
85. |
Irjala H,
Elima K,
Johansson EL,
Merinen M,
Kontula K,
Alanen K,
Grenman R,
Salmi M and
Jalkanen S.
The same endothelial receptor controls lymphocyte traffic both in vascular and lymphatic vessels.
Eur J Immunol
33:
815–824,
2003.
|
86. |
Chiba K,
Yanagawa Y,
Masubuchi Y,
Kataoka H,
Kawaguchi T,
Ohtsuki M and
Hoshino Y.
FTY720, a novel immunosuppressant. induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing.
J Immunol
160:
5037–5044,
1998.
|
87. |
Henning G,
Ohl L,
Junt T,
Reiterer P,
Brinkmann V,
Nakano H,
Hohenberger W,
Lipp M and
Forster R.
CC chemokine receptor 7‐dependent and ‐independent pathways for lymphocyte homing: modulation by FTY720.
J Exp Med
194:
1875–1881,
2001.
|
88. |
Mandala S,
Hajdu R,
Bergstrom J,
Quackenbush E,
Xie J,
Milligan J,
Thornton R,
Shei GJ,
Card D,
Keohane C,
Rosenbach M,
Hale J,
Lynch CL,
Rupprecht K,
Parsons W and
Rosen H.
Alteration of lymphocyte trafficking by sphingosine‐1‐phosphate receptor agonists.
Science
296:
346–349,
2002.
|
89. |
Honig SM,
Fu S,
Mao X,
Yopp A,
Gunn MD,
Randolph GJ and
Bromberg JS.
FTY720 stimulates multidrug transporter‐ and cysteinyl leukotriene‐dependent T cell chemotaxis to lymph nodes.
J Clin Invest
111:
627–637,
2003.
|
90. |
Garside P,
Ingulli E,
Merica RR,
Johnson JG,
Noelle RJ and
Jenkins MK.
Visualization of specific B and T lymphocyte interactions in the lymph node.
Science
281:
96–99,
1998.
|
91. |
Cyster JG.
Chemokines and cell migration in secondary lymphoid organs.
Science
286:
2098–2102,
1999.
|
92. |
McDermott MR and
Bienenstock J.
Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal. respiratory, and genital tissues.
J Immunol
122:
1892–1898,
1979.
|
93. |
Mackay CR,
Marston WL,
Dudler L,
Spertini O,
Tedder TF and
Hein WR.
Tissue‐specific migration pathways by phenotypically distinct subpopulations of memory T cells.
Eur J Immunol
22:
887–895,
1992.
|
94. |
Kantele A,
Zivny J,
Hakkinen M,
Elson CO and
Mestecky J.
Differential homing commitments of antigen‐specific T cells after oral or parenteral immunization in humans.
J Immunol
162:
5173–5177,
1999.
|
95. |
Stagg AJ,
Kamm MA and
Knight SC.
Intestinal dendritic cells increase T cell expression of alpha4beta7 integrin.
Eur J Immunol
32:
1445–1454,
2002.
|
96. |
Johansson‐Lindbom B,
Svensson M,
Wurbel MA,
Malissen B,
Marquez G and
Agace W.
Selective generation of gut tropic T cells in gut‐associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant.
J Exp Med
198:
963–969,
2003.
|
97. |
Mora JR,
Bono MR,
Manjunath N,
Weninger W,
Cavanagh LL,
Rosemblatt M and
von Andrian UH.
Selective imprinting of gut‐homing T cells by Peyer's patch dendritic cells.
Nature
424:
88–93,
2003.
|
98. |
Szabo MC,
Butcher EC and
McEvoy LM.
Specialization of mucosal follicular dendritic cells revealed by mucosal addressin‐cell adhesion molecule‐1 display.
J Immunol
158:
5584–5588,
1997.
|
99. |
Kunkel EJ and
Butcher EC.
Plasma‐cell homing.
Nat Rev Immunol
3:
822–829,
2003.
|
100. |
Bell EB,
Sparshott SM and
Ager A.
Migration pathways of CD4 T cell subsets in vivo: the CD45RC‐ subset enters the thymus via alpha 4 integrin‐VCAM‐1 interaction.
Int Immunol
7:
1861–1871,
1995.
|
101. |
Kim CH,
Rott L,
Kunkel EJ,
Genovese MC,
Andrew DP,
Wu L and
Butcher EC.
Rules of chemokine receptor association with T cell polarization in vivo.
J Clin Invest
108:
1331–1339,
2001.
|
102. |
Kunkel EJ,
Campbell JJ,
Haraldsen G,
Pan J,
Boisvert J,
Roberts AI,
Ebert EC,
Vierra MA,
Goodman SB,
Genovese MC,
Wardlaw AJ,
Greenberg HB,
Parker CM,
Butcher EC,
Andrew DP and
Agace WW.
Lymphocyte CC chemokine receptor 9 and epithelial thymus‐expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: Epithelial expression of tissue‐specific chemokines as an organizing principle in regional immunity.
J Exp Med
192:
761–768,
2000.
|
103. |
Papadakis KA,
Prehn J,
Moreno ST,
Cheng L,
Kouroumalis EA,
Deem R,
Breaverman T,
Ponath PD,
Andrew DP,
Green PH,
Hodge MR,
Binder SW and
Targan SR.
CCR9‐positive lymphocytes and thymus‐expressed chemokine distinguish small bowel from colonic Crohn's disease.
Gastroenterology
121:
246–254,
2001.
|
104. |
Wurbel MA,
Philippe JM,
Nguyen C,
Victorero G,
Freeman T,
Wooding P,
Miazek A,
Mattei MG,
Malissen M,
Jordan BR,
Malissen B,
Carrier A and
Naquet P.
The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double‐ and single‐positive thymocytes expressing the TECK receptor CCR9.
Eur J Immunol
30:
262–271,
2000.
|
105. |
Kunkel EJ,
Campbell DJ and
Butcher EC.
Chemokines in lymphocyte trafficking and intestinal immunity.
Microcirculation
10:
313–323,
2003.
|
106. |
Papadakis KA,
Landers C,
Prehn J,
Kouroumalis EA,
Moreno ST,
Gutierrez‐Ramos JC,
Hodge MR and
Targan SR.
CC chemokine receptor 9 expression defines a subset of peripheral blood lymphocytes with mucosal T cell phenotype and Th1 or T‐regulatory 1 cytokine profile.
J Immunol
171:
159–165,
2003.
|
107. |
Hosoe N,
Miura S,
Watanabe C,
Tsuzuki Y,
Hokari R,
Oyama T,
Fujiyama Y,
Nagata H and
Ishii H.
Demonstration of functional role of TECK/CCL25 in T lymphocyte‐endothelium interaction in inflamed and uninflamed intestinal mucosa.
Am J Physiol Gastrointest Liver Physiol
286:
G458–G466,
2004.
|
108. |
Suzuki K,
Oida T,
Hamada H,
Hitotsumatsu O,
Watanabe M,
Hibi T,
Yamamoto H,
Kubota E,
Kaminogawa S and
Ishikawa H.
Gut cryptopatches: direct evidence of extrathymic anatomical sites for intestinal T lymphopoiesis.
Immunity
13:
691–702,
2000.
|
109. |
Koseki S,
Miura S,
Fujimori H,
Hokari R,
Komoto S,
Hara Y,
Ogino T,
Nagata H,
Goto M,
Hachimura S,
Kaminogawa S and
Ishii H.
In situ demonstration of intraepithelial lymphocyte adhesion to villus microvessels of the small intestine.
Int Immunol
13:
1165–1174,
2001.
|
110. |
Wurbel MA,
Malissen M,
Guy‐Grand D,
Meffre E,
Nussenzweig MC,
Richelme M,
Carrier A and
Malissen B.
Mice lacking the CCR9 CC‐chemokine receptor show a mild impairment of early T‐ and B‐cell development and a reduction in T‐cell receptor gammadelta(+) gut intraepithelial lymphocytes.
Blood
98:
2626–2632,
2001.
|
111. |
Farstad IN,
Haistensen TS,
Lazarovits AI,
Norstein J,
Fausa O and
Brandtzaeg P.
intestinal B‐cell blasts Human, plasma cells express the mucosal homing receptor integrin alpha 4 beta 7.
Scand J Immunol
42:
662–672,
1995.
|
112. |
Bowman EP,
Kuklin NA,
Youngman KR,
Lazarus NH,
Kunkel EJ,
Pan J,
Greenberg HB and
Butcher EC.
The intestinal chemokine thymus‐expressed chemokine (CCL25) attracts IgA antibody‐secreting cells.
J Exp Med
195:
269–275,
2002.
|
113. |
Lazarus NH,
Kunkel EJ,
Johnston B,
Wilson E,
Youngman KR and
Butcher EC.
A common mucosal chemokine (mucosae‐associated epithelial chemokine/CCL28) selectively attracts IgA plasmablasts.
J Immunol
170:
3799–3805,
2003.
|
114. |
Kunkel EJ,
Kim CH,
Lazarus NH,
Vierra MA,
Soler D,
Bowman EP and
Butcher EC.
CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab‐secreting cells.
J Clin Invest
111:
1001–1010,
2003.
|
115. |
Yang SK,
Eckmann L,
Panja A and
Kagnoff MF.
Differential and regulated expression of C‐X‐C, C‐C, and C‐chemokines by human colon epithelial cells.
Gastroenterology
113:
1214–1223,
1997.
|
116. |
Dwinell MB,
Eckmann L,
Leopard JD,
Varki NM and
Kagnoff MF.
Chemokine receptor expression by human intestinal epithelial cells.
Gastroenterology
117:
359–367,
1999.
|
117. |
Agace WW,
Roberts Al,
Wu L,
Greineder C,
Ebert EC and
Parker CM.
Human intestinal lamina propria and intraepithelial lymphocytes express receptors specific for chemokines induced by inflammation.
Eur J Immunol
30:
819–826,
2000.
|
118. |
Izadpanah A,
Dwinell MB,
Eckmann L,
Varki NM and
Kagnoff MF.
Regulated MIP‐3alpha/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity.
Am J Physiol Gastrointest Liver Physiol
280:
G710–G719,
2001.
|
119. |
Dwinell MB,
Lugering N,
Eckmann L and
Kagnoff MF.
Regulated production of interferon‐inducible T‐cell chemoattractants by human intestinal epithelial cells.
Gastroenterology
120:
49–59,
2001.
|
120. |
Smith JM,
Johanesen PA,
Wendt MK,
Binion DG and
Dwinell MB.
CXCL12 activation of CXCR4 regulates mucosal host defense through stimulation of epithelial cell migration and promotion of intestinal barrier integrity.
Am J Physiol Gastrointest Liver Physiol
16,
2004, Sep 9 [Epub ahead of print].
|
121. |
Davenport MP,
Grimm MC and
Lloyd AR.
A homing selection hypothesis for T‐cell trafficking.
Immunol Today
21:
315–317,
2000.
|
122. |
Sallusto F,
Kremmer E,
Palermo B,
Hoy A,
Ponath P,
Qin S,
Forster R,
Lipp M and
Lanzavecchia A.
Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells.
Eur J Immunol
29:
2037–2045,
1999.
|
123. |
Beilhack A and
Rockson SG.
Immune traffic: a functional overview.
Lymphatic Res Biol
1:
219–234,
2003.
|
124. |
Austrup F,
Vestweber D,
Borges E,
Lohning M,
Brauer R,
Herz U,
Renz H,
Hallmann R,
Scheffold A,
Radbruch A and
Hamann A.
P‐ and E‐selectin mediate recruitment of T‐helper‐1 but not T‐helper‐2 cells into inflammed tissues.
Nature
385:
81–83,
1997.
|
125. |
Xie H,
Lim YC,
Luscinskas FW and
Lichtman AH.
Acquisition of selectin binding and peripheral homing properties by CD4(+) and CD8(+) T cells.
J Exp Med
189:
1765–1776,
1999.
|
126. |
Bonecchi R,
Bianchi G,
Bordignon PP,
D'Ambrosio D,
Lang R,
Borsatti A,
Sozzani S,
Allavena P,
Gray PA,
Mantovani A and
Sinigaglia F.
Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s.
J Exp Med
187:
129–134,
1998.
|
127. |
Masopust D,
Vezys V,
Marzo AL and
Lefrancois L.
Preferential localization of effector memory cells in nonlymphoid tissue.
Science
291:
2413–2417,
2001.
|
128. |
Lee HO,
Cooper CJ,
Choi JH,
Alnadjim Z and
Barrett TA.
The state of CD4+ T cell activation is a major factor for determining the kinetics and location of T cell responses to oral antigen.
J Immunol
168:
3833–3838,
2002.
|
129. |
Haddad W,
Cooper CJ,
Zhang Z,
Brown JB,
Zhu Y,
Issekutz A,
Fuss I,
Lee HO,
Kansas GS and
Barrett TA.
P‐selectin and PSGL‐1 are major determinants for Th1 cell recruitment to nonlymphoid effector sites in the intestinal lamina propria.
J Exp Med
198:
369–377,
2003.
|
130. |
Papadakis KA.
Chemokines in inflammatory bowel disease.
Curr Allergy Asthma Rep
4:
83–89,
2004.
|
131. |
Watanabe C,
Miura S,
Hokari R,
Teramoto K,
Ogino T,
Komoto S,
Hara Y,
Koseki S,
Tsuzuki Y,
Nagata H,
Granger DN and
Ishii H.
Spatial heterogeneity of TNF‐alpha‐induced T cell migration to colonic mucosa is mediated by MAdCAM‐1 and VCAM‐1.
Am J Physiol Gastrointest Liver Physiol
283:
G1379–G1387,
2002.
|
132. |
Randolph GJ,
Inaba K,
Robbiani DF,
Steinman RM and
Muller WA.
Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo.
Immunity
11:
753–761,
1999.
|
133. |
Rotta G,
Edwards EW,
Sangaietti S,
Bennett C,
Ronzoni S,
Colombo MP,
Steinman RM,
Randolph GJ and
Rescigno M.
Lipopolysaccharide or whole bacteria block the conversion of inflammatory monocytes into dendritic cells in vivo.
J Exp Med
198:
1253–1263,
2003.
|
134. |
Geissmann F,
Jung S and
Littman DR.
Blood monocytes consist of two principal subsets with distinct migratory properties.
Immunity
19:
71–82,
2003.
|
135. |
McEvoy LM,
Jutila MA,
Tsao PS,
Cooke JP and
Butcher EC.
Anti‐CD43 inhibits monocyte‐endothelial adhesion in inflammation and atherogenesis.
Blood
90:
3587–3594,
1997.
|
136. |
Ishii N,
Tsuzuki Y,
Matsuzaki K,
Miyazaki J,
Okada Y,
Hokari R,
Kawaguchi A,
Nagao S,
Itoh K and
Miura S.
Endotoxin stimulates monocyte‐endothelial cell interactions in mouse intestinal Peyer's patches and villus mucosa.
Clin Exp Immunol
135:
226–232,
2004.
|
137. |
Taub DD,
Lloyd AR,
Conlon K,
Wang JM,
Ortaldo JR,
Harada A,
Matsushima K,
Kelvin DJ and
Oppenheim JJ.
Recombinant human interferon‐inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells.
J Exp Med
177:
1809–1814,
1993.
|
138. |
Gerszten RE,
Garcia‐Zepeda EA,
Lim YC,
Yoshida M,
Ding HA,
Gimbrone MA, Jr.,
Luster AD,
Luscinskas FW and
Rosenzweig A.
MCP‐1 and IL‐8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions.
Nature
398:
718–723,
1999.
|
139. |
Palframan RT,
Jung S,
Cheng G,
Weninger W,
Luo Y,
Dorf M,
Littman DR,
Rollins BJ,
Zweerink H,
Rot A and
von Andrian UH.
Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues.
J Exp Med
194:
1361–1373,
2001.
|
140. |
Janatpour MJ,
Hudak S,
Sathe M,
Sedgwick JD and
McEvoy LM.
Tumor necrosis factor‐dependent segmental control of MIG expression by high endothelial venules in inflamed lymph nodes regulates monocyte recruitment.
J Exp Med
194:
1375–1384,
2001.
|
141. |
Iwasaki A and
Kelsall BL.
Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)‐3alpha, MIP‐3beta, and secondary lymphoid organ chemokine.
J Exp Med
191:
1381–1394,
2000.
|
142. |
Iwasaki A and
Kelsall BL.
Unique functions of CD11b+, CD8 alpha+, and double‐negative Peyer's patch dendritic cells.
J Immunol
166:
4884–4890,
2001.
|
143. |
Shreedhar VK,
Kelsall BL and
Neutra MR.
Cholera toxin induces migration of dendritic cells from the subepithelial dome region to T‐ and B‐cell areas of Peyer's patches.
Infect Immun
71:
504–509,
2003.
|
144. |
Cook DN,
Prosser DM,
Forster R,
Zhang J,
Kuklin NA,
Abbondanzo SJ,
Niu XD,
Chen SC,
Manfra DJ,
Wiekowski MT,
Sullivan LM,
Smith SR,
Greenberg HB,
Narula SK and
Lipp M,
S.A. Lira,
CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue.
Immunity
12:
495–503,
2000.
|
145. |
Varona R,
Villares R,
Carramolino L,
Goya I,
Zaballos A,
Gutierrez J,
Torres M,
Martinez‐A C and
Marquez G.
CCR6‐deficient mice have impaired leukocyte homeostasis and altered contact hypersensitivity and delayed‐type hypersensitivity responses.
J Clin Invest
107:
R37–R45,
2001.
|
146. |
Bilsborough J,
George TC,
Norment A and
Viney JL.
Mucosal CD8alpha+ DC, with a plasmacytoid phenotype. induce differentiation and support function of T cells with regulatory properties.
Immunology
108:
481–492,
2003.
|
147. |
Cella M,
Jarrossay D,
Facchetti F,
Alebardi O,
Nakajima H,
Lanzavecchia A and
Colonna M.
Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon.
Nat Med
5:
919–923,
1999.
|
148. |
Rescigno M,
Urbano M,
Valzasina B,
Francolini M,
Rotta G,
Bonasio R,
Granucci F,
Kraehenbuhl JP and
Ricciardi‐Castagnoli P.
Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria.
Nat Immunol
2:
361–367,
2001.
|
149. |
Becker C,
Wirtz S,
Blessing M,
Pirhonen J,
Strand D,
Bechthold O,
Frick J,
Galle PR,
Autenrieth I and
Neurath MF.
Constitutive p40 promoter activation and IL‐23 production in the terminal ileum mediated by dendritic cells.
J Clin Invest
112:
693–706,
2003.
|
150. |
Sallusto F,
Schaerli P,
Loetscher P,
Schaniel C,
Lenig D,
Mackay CR,
Qin S and
Lanzavecchia A.
Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation.
Eur J Immunol
28:
2760–2769,
1998.
|
151. |
Gunn MD,
Kyuwa S,
Tarn C,
Kakiuchi T,
Matsuzawa A,
Williams LT and
Nakano H.
Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization.
J Exp Med
189:
451–460,
1999.
|
152. |
Robbiani DF,
Finch RA,
Jager D,
Muller WA,
Sartorelli AC and
Randolph GJ.
The leukotriene C(4) transporter MRPI regulates CCL19 (MIP‐3beta, ELC)‐dependent mobilization of dendritic cells to lymph nodes.
Cell
103:
757–768,
2000.
|
153. |
Xu H,
Guan H,
Zu G,
Bullard D,
Hanson J,
Slater M and
Elmets CA.
The role of ICAM‐1 molecule in the migration of Langerhans cells in the skin and regional lymph node.
Eur J Immunol
31:
3085–3093,
2001.
|
154. |
Pugh CW,
MacPherson GG and
Steer HW.
Characterization of non‐lymphoid cells derived from rat peripheral lymph.
J Exp Med
157:
1758–1779,
1983.
|
155. |
Turnbull E and
MacPherson G.
lmmunobiology of dendritic cells in the rat.
Immunol Rev
184:
58–68,
2001.
|
156. |
MacPherson GG,
Jenkins CD,
Stein MJ and
Edwards C.
Endotoxin‐mediated dendritic cell release from the intestine. Characterization of released dendritic cells and TNF dependence.
J Immunol
154:
1317–1322,
1995.
|
157. |
Martln‐Fontecha A,
Sebastiani S,
Hopken UE,
Uguccioni M,
Lipp M,
Lanzavecchia A and
Sallusto F.
Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming.
J Exp Med
198:
615–621,
2003.
|
158. |
Kobayashi H,
Miura S,
Nagata H,
Tsuzuki Y,
Hokari R,
Ogino T,
Watanabe C,
Azuma T and
Ishii H.
In situ demonstration of dendritic cell migration from rat intestine to mesenteric lymph nodes: relationships to maturation and role of chemokines.
J Leukoc Biol
75:
434–442,
2004.
|
159. |
Huang FP,
Platt N,
Wykes M,
Major JR,
Powell TJ,
Jenkins CD and
MacPherson GG.
A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes.
J Exp Med
191:
435–444,
2000.
|
160. |
Lyoda T,
Shimoyama S,
Liu K,
Omatsu Y,
Akiyama Y,
Maeda Y,
Takahara K,
Steinman RM and
Inaba K.
The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo.
J Exp Med
195:
1289–1302,
2002.
|
161. |
Mishra A,
Hogan SP,
Lee JJ,
Foster PS and
Rothenberg ME.
Fundamental signals that regulate eosinophil homing to the gastrointestinal tract.
J Clin Invest
103:
1719–1727,
1999.
|
162. |
Rothenberg ME,
Mishra A,
Brandt EB and
Hogan SP.
Gastrointestinal eosinophils.
Immunol Rev
179:
139–155,
2001.
|
163. |
Grisham FS and
Laroux MB.
Immunological basis of inflammatory bowel disease: Role of the microcirculation.
Microcirculation
8:
283–301,
2001.
|
164. |
Middleton SJ,
Shorthouse M and
Hunter JO.
Increased nitric oxide synthesis in ulcerative colitis.
Lancet
341:
465–466,
1993.
|
165. |
Rachmilewitz D,
Stamler JS,
Bachwich D,
Karmeli F,
Ackerman Z and
Podolsky DK.
Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease.
Gut
36:
718–723,
1995.
|
166. |
Kimura H,
Miura S,
Shigematsu T,
Ohkubo N,
Tsuzuki Y,
Kurose I,
Higuchi H,
Akiba Y,
Hokari R,
Hirokawa M,
Serizawa H and
Ishii H.
Increased nitric oxide production and inducible nitric oxide synthase activity in colonic mucosa of patients with active ulcerative colitis and Crohn's disease.
Dig Dis Sci
42:
1047–1054,
1999.
|
167. |
Binion DG,
Fu S,
Ramanujam KS,
Chai YC,
Dweik RA,
Drazba JA,
Wade JG,
Ziats NP,
Erzurum SC and
Wilson KT.
iNOS expression in human intestinal microvascular endothelial cells inhibits leukocyte adhesion.
Am J Physiol
275:
G592–G603,
1998.
|
168. |
Kimura H,
Hokari R,
Miura S,
Shigematsu T,
Hirokawa M,
Akiba Y,
Kurose I,
Higuchi H,
Fujimori H,
Tsuzuki Y,
Serizawa H and
Ishii H.
Increased expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in colonic mucosa of patients with active ulcerative colitis.
Gut
42:
180–187,
1998.
|
169. |
Hokari R,
Kato S,
Matsuzaki K,
Kuroki M,
Iwai A,
Kawaguchi A,
Nagao S,
Miyahara T,
Itoh K,
Sekizuka E,
Nagata H,
Ishii H and
Miura S.
Reduced sensitivity of inducible nitric oxide synthase‐deficient mice to chronic colitis.
Free Radic Biol Med
31:
153–163,
2001.
|
170. |
Krieglstein CF,
Cerwinka WH,
Laroux FS,
Salter JW,
Russell JM,
Schuermann G,
Grisham MB,
Ross CR and
Granger DN.
Regulation of murine intestinal inflammation by reactive metabolites of oxygen and nitrogen: divergent roles of superoxide and nitric oxide.
J Exp Med
194:
1207–1218,
2001.
|
171. |
Bonder CS and
Kubes P.
The future of GI and liver research: editorial perspectives: II. Modulating leukocyte recruitment to splanchnic organs to reduce inflammation.
Am J Physiol Gastrointest Liver Physiol
284:
G729–G733,
2003.
|
172. |
Jones SC,
Banks RE,
Haidar A,
Gearing AJ,
Hemingway IK,
Ibbotson SH,
Dixon MF and
Axon AT.
Adhesion molecules in inflammatory bowel disease.
Gut
36:
724–730,
1995.
|
173. |
Nakamura S,
Ohtani H,
Watanabe Y,
Fukushima K,
Matsumoto T,
Kitano A,
Kobayashi K and
Nagura H.
In situ expression of the cell adhesion molecules in inflammatory bowel disease. Evidence of immunologic activation of vascular endothelial cells.
Lab Invest
69:
77–85,
1993.
|
174. |
Kawachi S,
Jennings S,
Panes J,
Cockrell A,
Laroux FS,
Gray L,
Perry M,
van der Heyde H,
Balish E,
Granger DN,
Specian RA and
Grisham MB.
Cytokine and endothelial cell adhesion molecule expression in interleukin‐10‐deficient mice.
Am J Physiol Gastrointest Liver Physiol
278:
G734–G743,
2000.
|
175. |
Bendjelloul F,
Maly P,
Mandys V,
Jtrkovska M,
Prokesova L,
Tuckova L and
Tlaskalova‐Hogenova H.
Intercellular adhesion molecule‐1 (ICAM‐1) deficiency protects mice against severe forms of experimentally induced colitis.
Clin Exp Immunol
119:
57–63,
2000.
|
176. |
Yacyshyn BR,
Bowen‐Yacyshyn MB,
Jewell L,
Tami JA,
Bennett CF,
Kisner DL and
Shanahan WR, Jr.
A placebo‐controlled trial of ICAM‐1 antisense oligonucleotide in the treatment of Crohn's disease.
Gastroenterology
114:
1133–1142,
1998.
|
177. |
Soriano A,
Salas A,
Salas A,
Sans M,
Gironella M,
Elena M,
Anderson DC,
Pique JM and
Panes J.
VCAM‐1, but not ICAM‐1 or MAdCAM‐1, immunoblockade ameliorates DSS‐induced colitis in mice.
Lab Invest
80:
1541–1551,
2000.
|
178. |
D'Agata ID,
Paradis K,
Chad Z,
Bonny Y and
Seidman E.
Leucocyte adhesion deficiency presenting as a chronic ileocolitis.
Gut
39:
605–608,
1996.
|
179. |
Bums RC,
Rivera‐Nieves J,
Moskaluk CA,
Matsumoto S,
Cominelli F and
Ley K.
Antibody blockade of ICAM‐1 and VCAM‐1 ameliorates inflammation in the SAMP‐1/Yit adoptive transfer model of Crohn's disease in mice.
Gastroenterology
121:
1428–1436,
2001.
|
180. |
Kato S,
Hokari R,
Matsuzaki K,
Iwai A,
Kawaguchi A,
Nagao S,
Miyahara T,
Itoh K,
Ishii H and
Miura S.
Amelioration of murine experimental colitis by inhibition of mucosal addressin cell adhesion molecule‐1.
J Pharmacol Exp Ther
295:
183–189,
2000.
|
181. |
Shigematsu T,
Specian RD,
Wolf RE,
Grisham MB and
Granger DN.
MAdCAM mediates lymphocyte‐endothelial cell adhesion in a murine model of chronic colitis.
Am J Physiol Gastrointest Liver Physiol
281:
G1309–G1315,
2001.
|
182. |
Hokari R,
Kato S,
Matsuzaki K,
Iwai A,
Kawaguchi A,
Nagao S,
Miyahara T,
Itoh K,
Sekizuka E,
Nagata H,
Ishii H,
Iizuka T,
Miyasaka M and
Miura S.
Involvement of mucosal addressin cell adhesion molecule‐1 (MAdCAM‐1) in the pathogenesis of granulomatous colitis in rats.
Clin Exp Immunol
126:
259–265,
2001.
|
183. |
Picarella D,
Hurlbut P,
Rottman J,
Shi X,
Butcher E and
Ringler DJ.
Monoclonal antibodies specific for beta 7 integrin and mucosal addressin cell adhesion molecule‐1 (MAdCAM‐1) reduce inflammation in the colon of scid mice reconstituted with CD45RBhigh CD4+ T cells.
J Immunol
158:
2099–2106,
1997.
|
184. |
Hesterberg PE,
Winsor‐Hines D,
Briskin MJ,
Soler‐Ferran D,
Merrill C,
Mackay CR,
Newman W and
Ringler DJ.
Rapid resolution of chronic colitis in the cotton‐top tamarin with an antibody to a gut‐homing integrin alpha 4 beta 7.
Gastroenterology
111:
1373–1380,
1996.
|
185. |
Gordon FH,
Lai CW,
Hamilton MI,
Allison MC,
Srivastava ED,
Fouweather MG,
Donoghue S,
Greenlees C,
Subhani J,
Amlot PL and
Pounder RE.
A randomized placebo‐controlled trial of a humanized monoclonal antibody to alpha4 integrin in active Crohn's disease.
Gastroenterology
121:
268–274,
2001.
|
186. |
Ghosh S,
Goldin E,
Gordon FH,
Malchow HA,
Rask‐Madsen J,
Rutgeerts P,
Vyhnalek P,
Zadorova Z,
Palmer T and
Donoghue S.
Natalizumab Pan‐European Study Group. Natalizumab for active Crohn's disease.
N Engl J Med
348:
24–32,
2003.
|
187. |
Feagan BG,
Greenberg GR,
Wild G,
Fedorak RN,
Pare P,
McDonald JW,
Dube R,
Cohen A,
Steinhartn AH,
Landau S,
Aguzzi RA,
Fox IH,
Vandervoort MK.
Treatment of Ulcerative Colitis with a Humanized Antibody to the alpha4beta7 Integrin.
N Eng J Med
352:
2499–2507.
|
188. |
Sydora BC,
Wagner N,
Lohler J,
Yakoub G,
Kronenberg M,
Muller W and
Aranda R.
Beta7 Integrin expression is not required for the localization of T cells to the intestine and colitis pathogenesis.
Clin Exp Immunol
129:
35–42,
2002.
|
189. |
Rijcken EM,
Laukoetter MG,
Anthoni C,
Meier S,
Mennigen R,
Spiegel HU,
Bruewer M,
Senninger N,
Vestweber D and
Krieglstein CF.
Immunoblockade of PSGL‐1 attenuates established experimental murine colitis by reduction of leukocyte rolling.
Am J Physiol Gastrointest Liver Physiol
287:
G115–G124,
2004.
|
190. |
Collins CE and
Rampton DS.
Review article: platelets in inflammatory bowel disease‐pathogenetic role and therapeutic implications.
Aliment Pharmacol Ther
11:
237–247,
1997.
|
191. |
Suzuki K,
Sugimura K,
Hasegawa K,
Yoshida K,
Suzuki A,
Ishizuka K,
Ohtsuka K,
Honma T,
Narisawa R and
Asakura H.
Activated platelets in ulcerative colitis enhance the production of reactive oxygen species by polymorphonuclear leukocytes.
Scand J Gastroenterol
36:
1301–1306,
2001.
|
192. |
Danese S,
Katz JA,
Saibeni S,
Papa A,
Gasbarrini A,
Vecchi M and
Fiocchi C.
Activated platelets are the source of elevated levels of soluble CD40 Iigand in the circulation of inflammatory bowel disease patients.
Gut
52:
1435–1441,
2003.
|
193. |
Danese S,
de la Motte C,
Sturm A,
Vogel JD,
West GA,
Strong SA,
Katz JA and
Fiocchi C.
Platelets trigger a CD40‐dependent inflammatory response in the microvasculature of inflammatory bowel disease patients.
Gastroenterology
124:
1249–1264,
2003.
|
194. |
Mori M,
Salter JW,
Vowinkel T,
Krieglstein CF,
Stokes KY and
Granger DN.
Molecular determinants of the prothrombogenic phenotype assumed by inflamed colonic venules.
Am J Physiol Gastrointest Liver Physiol,
2004.
|
195. |
Vowinkel T,
Mori M,
Krieglstein CF,
Russell J,
Saijo F,
Bharwani S,
Turnage RH,
Davidson WS,
Tso P,
Granger DN and
Kalogeris TJ.
Apolipoprotein A‐IV inhibits experimental colitis.
J Clin Invest
114:
260–269,
2004.
|
196. |
Ajuebor MN and
Swain MG.
Role of chemokines and chemokine receptors in the gastrointestinal tract.
Immunology
105:
137–143,
2002.
|
197. |
Mahida YR,
Ceska M,
Effenberger F,
Kurlak L,
Lindley I and
Hawkey CJ.
Enhanced synthesis of neutrophil‐activating peptide‐1/interleukin‐8 in active ulcerative colitis.
Clin Sri (Lond)
82:
273–275,
1992.
|
198. |
Izzo RS,
Witkon K,
Chen AI,
Hadjiyane C,
Weinstein MI and
Pellecchia C.
Neutrophil‐activating peptide (interleukin‐8) in colonic mucosa from patients with Crohn's disease.
Scand J Gastroenterol
28:
296–300,
1993.
|
199. |
Nielsen OH,
Rudiger N,
Gaustadnes M and
Horn T.
Intestinal interleukin‐8 concentration and gene expression in inflammatory bowel disease.
Scand J Gastroenterol
32:
1028–1034,
1997.
|
200. |
Z'Graggen K,
Walz A,
Mazzucchelli L,
Strieter RM and
Mueller C.
The C‐X‐C chemokine ENA‐78 is preferentially expressed in intestinal epithelium in inflammatory bowel disease.
Gastroenterology
113:
808–816,
1997.
|
201. |
Reinecker HC,
Loh EY,
Ringler DJ,
Mehta A,
Rombeau JL and
MacDermott RP,
Monocyte‐chemoattractant protein 1 gene expression in intestinal epithelial cells and inflammatory bowel disease mucosa.
Gastroenterology
108:
40–50,
1995.
|
202. |
Mazzucchelli L,
Hauser C,
Zgraggen K,
Wagner HE,
Hess MW,
Laissue JA and
Mueller C.
Differential in situ expression of the genes encoding the chemokines MCP‐1 and RANTES in human inflammatory bowel disease.
J Pathol
178:
201–206,
1996.
|
203. |
Grimm MC and
Doe WF.
Chemokines in IBD mucosa: expression of RANTES, MIP‐1alpha, MIP‐1beta and interferon inducible protein 10 by macrophages, lymphocytes, endothelial cells and granulomas.
Inflammatory Bowel Dis
2:
88–96,
1996.
|
204. |
Vainer B,
Nielsen OH and
Horn T.
Expression of E‐selectin, sialyl Lewis X, and macrophage inflammatory protein‐1 alpha by colonic epithelial cells in ulcerative colitis.
Dig Dis Sci
43:
596–608,
1998.
|
205. |
Uguccioni M,
Gionchetti P,
Robbiani DF,
Rizzello F,
Peruzzo S,
Campieri M and
Baggiolini M.
Increased expression of IP‐10, IL‐8, MCP‐I, and MCP‐3 in ulcerative colitis.
Am J Pathol
155:
331–336,
1999.
|
206. |
Banks C,
Bateman A,
Payne R,
Johnson P and
Sheron N.
Chemokine expression in IBD, Mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn's disease.
J Pathol
199:
28–35,
2003.
|
207. |
Andres PG,
Beck PL,
Mizoguchi E,
Mizoguchi A,
Bhan AK,
Dawson T,
Kuziel WA,
Maeda N,
MacDermott RP,
Podolsky DK and
Reinecker HC,
Mice with a selective deletion of the CC chemokine receptors 5 or 2 are protected from dextran sodium sulfate‐mediated colitis: lack of CC chemokine receptor 5 expression results in a NK1.1+ lymphocyte‐associated Th2‐type immune response in the intestine.
J Immunol
164:
6303–6312,
2001.
|
208. |
Ajuebor MN,
Hogaboam CM,
Kunkel SL,
Proudfoot AE and
Wallace JL,
The chemokine RANTES is a crucial mediator of the progression from acute to chronic colitis in the rat.
J Immunol
166:
552–558,
2001.
|
209. |
Luster AD.
Chemokines regulate lymphocyte homing to the intestinal mucosa.
Gastroenterology
120;
291–294,
2001.
|
210. |
Shibahara T,
Wilcox JN,
Couse T and
Madara JL,
Characterization of epithelial chemoattractants for human intestinal intraepithelial lymphocytes.
Gastroenterology
120;
60–70,
2001.
|
211. |
Qin S,
Rottman JB,
Myers P,
Kassam N,
Weinblatt M,
Loetscher M,
Koch AE,
Moser B and
Mackay CR,
The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions.
J Clin Invest
101:
746–754,
1998.
|
212. |
Singh UP,
Singh S,
Taub DD and
Lillard JW, Jr,
Inhibition of IFN‐gamma‐inducible protein‐10 abrogates colitis in IL‐10−/− mice,
J Immunol
171:
1401–1406,
2003.
|
213. |
Sasaki S,
Yoneyama H,
Suzuki K,
Suriki H,
Aiba T,
Watanabe S,
Kawauchi Y,
Kawachi H,
Shimizu F,
Matsushima K,
Asakura H and
Narumi S.
Blockade of CXCL10 protects mice from acute colitis and enhances crypt cell survival.
Eur J Immunol
32:
3197–3205,
2002.
|
214. |
Garcia‐Zepeda EA,
Rothenberg ME,
Ownbey RT,
Celestin J,
Leder P and
Luster AD.
Human eotaxin is a specific chemoattractant for eosinophil cells and provides a new mechanism to explain tissue eosinophilia,
Nat Med
2:
449–156,
1996.
|
215. |
Carlsen HS,
Baekkevold ES,
Johansen FE,
Haraldsen G and
Brandtzaeg P,
B cell attracting chemokine 1 (CXCLI3) and its receptor CXCR5 are expressed in normal and aberrant gut associated lymphoid tissue.
Gut
51:
364–371,
2002.
|
216. |
Hjelmstrom P,
Fjell J,
Nakagawa T,
Sacca R,
Cuff CA and
Ruddle NH.
Lymphoid tissue homing chemokines are expressed in chronic inflammation.
Am J Pathol
156:
1133–1138,
2000.
|
217. |
Weninger W,
Carlsen HS,
Goodarzi M,
Moazed F,
Crowley MA,
Baekkevold ES,
Cavanagh LL and
von Andrian UH.
Naive T cell recruitment to nonlymphoid tissues: a role for endothelium‐expressed CC chemokine ligand 21 in autoimmune disease and lymphoid neogenesis.
J Immunol
170:
4638–4648,
2003.
|
218. |
Spahn TW and
Kucharzik T.
Modulating the intestinal immune system: the role of lymphotoxin and GALT organs.
Gut
53:
456–465,
2004.
|
219. |
Mackay F,
Browning JL,
Lawton P,
Shah SA,
Comiskey M,
Bhan AK,
Mizoguchi E,
Terhorst C and
Simpson SJ.
Both the lymphotoxin and tumor necrosis factor pathways are involved in experimental murine models of colitis.
Gastroenterology
115:
1464–1475,
1998.
|
220. |
Stopfer P,
Obermeier F,
Dunger N,
Falk W,
Farkas S,
Janotta M,
Moller A,
Mannel DN and
Hehlgans T.
Blocking lymphotoxin‐beta receptor activation diminishes inflammation via reduced mucosal addressin cell adhesion molecule‐1 (MAdCAM‐1) expression and leucocyte margination in chronic DSS‐induced colitis.
Clin Exp Immunol
136:
21–29,
2004.
|
221. |
Spahn TW,
Herbst H,
Rennert PD,
Lugering N,
Maaser C,
Kraft M,
Fontana A,
Weiner HL,
Domschke W and
Kucharzik T.
Induction of colitis in mice deficient of Peyer's patches and mesenteric lymph nodes is associated with increased disease severity and formation of colonic lymphoid patches.
Am J Pathol
161:
2273–2282,
2002.
|
222. |
Dohi T,
Rennert PD,
Fujihashi K,
Kiyono H,
Shirai Y,
Kawamura YI and
Browning JL,
J.R. McGhee.
Elimination of colonic patches with lymphotoxin beta receptor‐Ig prevents Th2 cell‐type colitis.
J Immunol
167:
2781–2790,
2001.
|
223. |
Elson CO,
Sartor RB,
Tennyson GS and
Riddell RH.
Experimental models of inflammatory bowel disease.
Gastroenterology
109:
1344–1367,
1995.
|
224. |
Sartor RB.
The influence of normal microbial flora on the development of chronic mucosal inflammation.
Res Immunol
148:
567–576,
1997.
|
225. |
Rath HC,
Herfarth HH,
Ikeda JS,
Grenther WB,
Hamm TE, Jr.,
Balish E,
Taurog JD,
Hammer RE,
Wilson KH and
Sartor RB.
Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA‐B27/human beta2 microglobulin transgenic rats.
J Clin Invest
98:
945–953,
1996.
|
226. |
Sellon RK,
Tonkonogy S,
Schultz M,
Dieleman LA,
Grenther W,
Balish E,
Rennick DM and
Sartor RB.
Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin‐10‐deficient mice.
Infect Immun
66:
5224–5231,
1998.
|
227. |
Cong Y,
Brandwein SL,
McCabe RP,
Lazenby A,
Birkenmeier EH,
Sundberg JP and
Elson CO.
CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitic C3H/HeJBir mice: increased T helper cell type I response and ability to transfer disease.
J Exp Med
187:
855–864,
1998.
|
228. |
Cario E and
Podolsky DK.
Differential alteration in intestinal epithelial cell expression of toll‐like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease.
Infect Immun
68:
7010–7017,
2000.
|
229. |
Franchimont D,
Vermeire S,
El Housni H,
Pierik M,
Van Steen K,
Gustot T,
Quertinmont E,
Abramowicz M,
Van Gossum A,
Deviere J and
Rutgeerts P.
Deficient host‐bacteria interactions in inflammatory bowel disease? The toll‐like receptor (TLR)‐4 Asp299gly polymorphism is associated with Crohn's disease and ulcerative colitis.
Gut
53:
987–992,
2004.
|
230. |
Hugot JP,
Chamaillard M,
Zouali H,
Lesage S,
Cezard JP,
Belaiche J,
Aimer S,
Tysk C,
O'Morain A,
Gassull M,
Binder V,
Finkel Y,
Cortot A,
Modigliani R,
Laurent‐Puig P,
Gower‐Rousseau C,
Macry J,
Colombel JF,
Sahbatou M and
Thomas G.
Association of NOD2 leucine‐rich repeat variants with susceptibility to Crohn's disease.
Nature
411:
599–603,
2001.
|
231. |
Ogura Y,
Bonen DK,
Inohara N,
Nicolae DL,
Chen FF,
Ramos R,
Britton H,
Moran T,
Karaliuskas R,
Duerr RH,
Achkar JP,
Brant SR,
Bayless TM,
Kirschner BS,
Hanauer SB,
Nunez G and
Cho JH.
A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease.
Nature
411:
603–606,
2001.
|
232. |
Komatsu S,
Berg RD,
Russell JM,
Nimura Y and
Granger DN.
Enteric microflora contribute to constitutive ICAM‐1 expression on vascular endothelial cells.
Am J Physiol Gastrointest Liver Physiol
279:
G186–G191,
2000.
|
233. |
Veltkamp C,
Tonkonogy SL,
De Jong YP,
Albright C,
Grenther WB,
Balish E,
Terhorst C and
Sartor RB.
Continuous stimulation by normal luminal bacteria is essential for the development and perpetuation of colitis in Tg(epsilon26) mice.
Gastroenterology
120:
900–913,
2001.
|
234. |
Waidmann M,
Allemand Y,
Lehmann J,
di Genaro S,
Bucheler N,
Hamann A and
Autenrieth IB.
Microflora reactive IL‐10 producing regulatory T cells are present in the colon of IL‐2 deficient mice but lack efficacious inhibition of IFN‐gamma and TNF‐alpha production.
Gut
50:
170–179,
2002.
|
235. |
Fiorucci S,
Antonelli E,
Morelli O and
Morelli A.
Pathogenesis of non‐steroidal anti‐inflammatory drug gastropathy.
Ital J Gastroenterol Hepatol
31
(Suppl 1):
S6–S13,
1999.
|
236. |
Kitahora T and
Guth PH.
Effect of aspirin plus hydrochloric acid on the gastric mucosal microcirculation.
Gastroenterology
93:
810–817,
1987.
|
237. |
Tarnawski A,
Stachura J,
Gergely H and
Hollander D.
Gastric microvascular endothelium: a major target for aspirin‐induced injury and arachidonic acid protection. An ultrastructural analysis in the rat.
Eur J Clin Invest
20:
432–440,
1990.
|
238. |
Wallace JL,
Keenan CM and
Granger DN.
Gastric ulceration induced by nonsteroidal anti‐inflammatory drugs is a neutrophil‐dependent process.
Am J Physiol
259:
G462–G467,
1990.
|
239. |
Lee M,
Aldred K,
Lee E and
Feldman M.
Aspirin‐induced acute gastric mucosal injury is a neutrophil‐dependent process in rats.
Am J Physiol
263:
G920–G926,
1992.
|
240. |
Arndt H,
Palitzsch KD,
Anderson DC,
Rusche J,
Grisham MB and
Granger DN.
Leucocyte‐endothelial cell adhesion in a model of intestinal inflammation.
Gut
37:
374–379,
1995.
|
241. |
Wallace JL,
Arfors KE and
McKnight GW.
A monoclonal antibody against the CD18 leukocyte adhesion molecule prevents indomethacin‐induced gastric damage in the rabbit.
Gastroenterology
100:
878–883,
1991.
|
242. |
Yoshida N,
Takemura T,
Granger DN,
Anderson DC,
Wolf RE,
McIntire LV and
Kvietys PR.
Molecular determinants of aspirin‐induced neutrophil adherence to endothelial cells.
Gastroenterology
105:
715–724,
1993.
|
243. |
Fiorucci S,
Santucci L,
Gerli R,
Brunori PM,
Federici B,
Ugolini B,
Fabbri C and
Morelli A.
NSAIDs upregulate beta 2‐integrin expression on human neutrophils through a calcium‐dependent pathway.
Aliment Pharmacol Ther
11:
619–630,
1997.
|
244. |
Krieglstein CF,
Salter JW,
Cerwinka WH,
Russell JM,
Schuermann G,
Bruewer M,
Laroux FS,
Grisham MB and
Granger DN.
Role of intercellular adhesion molecule 1 in indomethacin‐induced ileitis.
Biochem Biophys Res Commun
282:
635–642,
2001.
|
245. |
Melarange R,
Gentry C,
Toseland CD,
Smith PH and
Fuller J.
Neutropenia does not prevent etodolac‐ or indomethacin‐induced gastrointestinal damage in the rat.
Dig Dis Sci
40:
2694–2703,
1995.
|
246. |
Anthony A,
Sim R,
Dhillon AP,
Pounder RE and
Wakefield AJ.
Gastric mucosal contraction and vascular injury induced by indometh‐acin precede neutrophil infiltration in the rat.
Gut
39:
363–368,
1996.
|
247. |
Anthony A,
Pounder RE,
Dhillon AP and
Wakefield AJ.
Vascular anatomy defines sites of indomethacin induced jejunal ulceration along the mesenteric margin.
Gut
41:
763–770,
1997.
|
248. |
Lee M,
Kallal SM and
Feldman M.
Omeprazole prevents indomethacin‐induced gastric ulcers in rabbits.
Aliment Pharmacol Ther
10:
571–576,
1996.
|
249. |
Miura S,
Suematsu M,
Tanaka S,
Nagata H,
Houzawa S,
Suzuki M,
Kurose I,
Serizawa H and
Tsuchiya M.
Microcirculatory disturbance in indomethacin‐induced intestinal ulcer.
Am J Physiol
261:
G213–G219,
1991.
|
250. |
Kelly DA,
Piasecki C,
Anthony A,
Dhillon AP,
Pounder RE and
Wakefield AJ.
Focal reduction of villous blood flow in early indomethacin enteropathy: a dynamic vascular study in the rat.
Gut
42:
366–373,
1998.
|
251. |
Asako H,
Kubes P,
Wallace J,
Gaginella T,
Wolf RE and
Granger DN.
Indomethacin‐induced leukocyte adhesion in mesenteric venules: role of lipoxygenase products.
Am J Physiol
262:
G903–G908,
1992.
|
252. |
Santucci L,
Fiorucci S,
Giansanti M,
Brunori PM,
Di Matteo FM and
Morelli A.
Pentoxifylline prevents indomethacin induced acute gastric mucosal damage in rats: role of tumour necrosis factor alpha.
Gut
35:
909–915,
1994.
|
253. |
Santucci L,
Fiorucci S,
Di Matteo FM and
Morelli A.
Role of tumor necrosis factor alpha release and leukocyte margination in indomethacin‐induced gastric injury in rats.
Gastroenterology
108:
393–401,
1995.
|
254. |
Appleyard CB,
McCafferty DM,
Tigley AW,
Swain MG and
Wallace JL.
Tumor necrosis factor mediation of NSAID‐induced gastric damage: role of leukocyte adherence.
Am J Physiol
270:
G42–G48,
1996.
|
255. |
Beck PL,
Xavier R,
Lu N,
Nanda NN,
Dinauer M,
Podolsky DK and
Seed B.
Mechanisms of NSAID‐induced gastrointestinal injury defined using mutant mice.
Gastroenterology
119:
699–705,
2000.
|
256. |
Stadnyk AW,
Dollard C,
Issekutz TB and
Issekutz AC.
Neutrophil migration into indomethacin induced rat small intestinal injury is CD11a/CD18 and CD11b/CD18 co‐dependent.
Gut
50:
629–635,
2002.
|
257. |
Whittle BJ.
Pharmacological approach to the prevention of non‐steroidal anti‐inflammatory drug‐induced gastropathy.
Ital J Gastroenterol Hepatol
31
(Suppl 1):
S43–S47,
1999.
|
258. |
Wallace JL,
Bak A,
McKnight W,
Asfaha S,
Sharkey KA and
MacNaughton WK.
Cyclooxygenase 1 contributes to inflammatory responses in rats and mice: implications for gastrointestinal toxicity.
Gastroenterology
115:
101–109,
1998.
|
259. |
Sigthorsson G,
Simpson RJ,
Walley M,
Anthony A,
Foster R,
Hotz‐Behoftsitz C,
Palizban A,
Pombo J,
Watts J,
Morham SG and
Bjarnason I.
COX‐1 and 2, intestinal integrity, and pathogenesis of nonsteroidal anti‐inflammatory drug enteropathy in mice.
Gastroenterology
122:
1913–1923,
2002.
|
260. |
Whittle BJ,
Laszlo F,
Evans SM and
Moncada S.
Induction of nitric oxide synthase and microvascular injury in the rat jejunum provoked by indomethacin.
Br J Pharmacol
116:
2286–2290,
1995.
|
261. |
Evans SM and
Whittle BJ.
Role of bacteria and inducible nitric oxide synthase activity in the systemic inflammatory microvascular response provoked by indomethacin in the rat.
Eur J Pharmacol
461:
63–71,
2003.
|
262. |
Arndt H,
Kullmann F,
Reuss F,
Scholmerich J and
Palitzsch KD.
Glutamine attenuates leukocyte‐endothelial cell adhesion in indomethacin‐induced intestinal inflammation in the rat.
JPEN J Parenter Enteral Nutr
23:
12–18,
1999.
|
263. |
Yamada T,
Hoshino M,
Hayakawa T,
Ohhara H,
Yamada H,
Nakazawa T,
Inagaki T,
Iida M,
Ogasawara T,
Uchida A,
Hasegawa C,
Murasaki G,
Miyaji M,
Hirata A and
Takeuchi T.
Dietary diosgenin attenuates subacute intestinal inflammation associated with indomethacin in rats.
Am J Physiol
273:
G355–G364,
1997.
|
264. |
Reuter BK,
Davies NM and
Wallace JL.
Nonsteroidal antiinflammatory drug enteropathy in rats: role of permeability, bacteria. and enterohepatic circulation.
Gastroenterology
112:
109–117,
1997.
|
265. |
Wallace JL and
Granger DN.
The cellular and molecular basis of gastric mucosal defense.
FASEB J
10:
731–740,
1996.
|
266. |
Yoshida N,
Granger DN,
Evans DJ, Jr.,
Evans DG,
Graham DY,
Anderson DC,
Wolf RE and
Kvietys PR.
Mechanisms involved in Helicobacter pylori‐induced inflammation.
Gastroenterology
105:
1431–1440,
1993.
|
267. |
Kurose I,
Granger DN,
Evans DJ, Jr.,
Evans DG,
Graham DY,
Miyasaka M,
Anderson DC,
Wolf RE,
Cepinskas G and
Kvietys PR.
Helicobacter pylori‐induced microvascular protein leakage in rats: role of neutrophils, mast cells, and platelets.
Gastroenterology
107:
70–79,
1994.
|
268. |
Kalia N,
Jacob S,
Brown NJ,
Reed MWR,
Morton D and
Bardhan KD.
Studies on the gastric mucosal microcirculation, 2. Helicobacter pylori water soluble extracts induce platelet aggregation in the gastric mucosal microcirculation in vivo.
Gut
41:
748–752,
1997.
|
269. |
Elizalde JI,
Gómez J,
Panés J,
Lozano M,
Casadevall M,
Ramirez J,
Pizcueta P,
Marco F,
Rojas FD,
Granger DN and
Piqué JM.
Platelet activation in mice and human Helicobacter pylori infection.
J Clin Invest
100:
996–1005,
1997.
|
270. |
Kalia N,
Bardhan KD,
Reed MWR,
Jacob S and
Brown NJ.
Mechanisms of Helicobacter pylori‐induced rat gastric mucosal microcirculatory disturbances in vivo.
Dig Dis Sci
45:
763–772,
2000.
|
271. |
Kalia N,
Bardhan KD,
Reed MWR,
Jacob S and
Brown NJ.
Effects of chronic administration of Helicobacter pylori extracts on rat gastric mucosal microcirculation in vivo.
Dig Dis Sci
45:
1343–1351,
2000.
|
272. |
Kalia N,
Bardhan KD,
Atherton JC and
Brown NJ.
Toxigenic Helicobacter pylori induces changes in the gastric mucosal microcirculation in rats.
Gut
51:
641–647,
2002.
|
273. |
Suzuki H,
Mori M,
Seto K,
Miyazawa M,
Kai A,
Suematsu M,
Yoneta T,
Miura S and
Ishii H.
Polaprezinc attenuates the Helicobacter pylori‐induced gastric mucosal leucocyte activation in Mongolian gerbils—a study using intravital videomicroscopy.
Aliment Pharmacol Ther
15:
715–725,
2001.
|
274. |
Crowe SE,
Alvarez L,
Dytoc M,
Hunt RH,
Muller M,
Sherman P,
Patel J,
Jin Y and
Ernst PB.
Expression of interleukin 8 and CD54 by human gastric epithelium after Helicobacter pylori infection in vitro.
Gastroenterology
108:
65–74,
1995.
|
275. |
Crabtree JE.
Role of cytokines in pathogenesis of Helicobacter pylori‐induced mucosal damage.
Dig Dis Sci
43
(9 Suppl):
46S–55S,
1998.
|
276. |
Suzuki M,
Miura S,
Suematsu M,
Fukumura D,
Kurose I,
Suzuki H,
Kai A,
Kudoh Y,
Ohashi M and
Tsuchiya M.
Helicobacter pylori‐associated ammonia production enhances neutrophil‐dependent gastric mucosal cell injury.
Am J Physiol
263:
G719–G725,
1992.
|
277. |
Mannick EE,
Bravo LE,
Zarama G,
Realpe JL,
Zhang XJ,
Ruiz B,
Fontham ET,
Mera R,
Miller MJ and
Correa P.
Inducible nitric oxide synthase, nitrotyrosine, and apoptosis in Helicobacter pylori gastritis: effect of antibiotics and antioxidants.
Cancer Res
56:
3238–3243,
1996.
|
278. |
Sakaguchi AA,
Miura S,
Takeuchi T,
Hokari R,
Mizumori M,
Yoshida H,
Higuchi H,
Mori M,
Kimura H,
Suzuki H and
Ishii H.
Increased expression of inducible nitric oxide synthase and peroxynitrite in Helicobacter pylori gastric ulcer.
Free Radic Biol Med
27:
781–789,
1999.
|
279. |
Wyatt JI and
Rathbone BJ.
Immune response of the gastric mucosa to Campylobacter pylori.
Scand J Gastroenterol Suppl
142:
44–49,
1988.
|
280. |
Mohammadi M,
Czinn S,
Redline R and
Nedrud J.
Helicobacter‐specific cell‐mediated immune responses display a predominant Thl phenotype and promote a delayed‐type hypersensitivity response in the stomachs of mice.
J Immunol
156:
4729–4738,
1996.
|
281. |
Bamford KB,
Fan X,
Crowe SE,
Leary JF,
Gourley WK,
Luthra GK,
Brooks EG,
Graham DY,
Reyes VE and
Ernst PB.
Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype.
Gastroenterology
114:
482–492,
1998.
|
282. |
Quiding‐Järbrink M,
Ahlstedt I,
Lindholm C,
Johansson EL and
Lönroth H.
Homing commitment of lymphocytes activated in the human gastric and intestinal mucosa.
Gut
49:
519–525,
2001.
|
283. |
Mattsson A,
Lönroth H,
Quiding‐Järbrink M and
Svennerholm AM.
Induction of B cell responses in the stomach of Helicobacter pylori‐ infected subjects after oral cholera vaccination.
J Clin Invest
102:
51–56,
1998.
|
284. |
Yamaoka Y,
Kita M,
Kodama T,
Sawai N,
Tanahashi T,
Kashima K and
Imanishi J.
Chemokines in the gastric mucosa in Helicobacter pylori infection.
Gut
42:
609–617,
1998.
|
285. |
Sato Y,
Sugimura K,
Mochizuki T,
Honma T,
Suriki H,
Tashiro K,
Ishizuka K,
Narisawa R,
Ichida T,
Van Thiel DH and
Asakura H.
Regional differences on production of chemokines in gastric mucosa between Helicobacter pylori‐positive duodenal ulcer and gastric ulcer.
Dig Dis Sci
44:
2390–2396,
1999.
|
286. |
Kikuchi T,
Kato K,
Ohara S,
Sekine H,
Arikawa T,
Suzuki T,
Noguchi K,
Saito M,
Saito Y,
Nagura H,
Toyota T and
Shimosegawa T.
The relationship between persistent secretion of RANTES and residual infiltration of eosinophils and memory T lymphocytes after Helicobacter pylori eradication.
J Pathol
192:
243–250,
2000.
|
287. |
Michetti M,
Kelly CP,
Kraehenbuhl JP,
Bouzourene H and
Michetti P.
Gastric mucosal alpha(4)beta(7)‐integrin‐positive CD4 T lymphocytes and immune protection against helicobacter infection in mice.
Gastroenterology
119:
109–118,
2000.
|
288. |
Hatanaka K,
Hokari R,
Matsuzaki K,
Kato S,
Kawaguchi A,
Nagao S,
Suzuki H,
Miyazaki K,
Sekizuka E,
Nagata H,
Ishii H and
Miura S.
Increased expression of mucosal addressin cell adhesion molecule‐1 (MAdCAM‐1) and lymphocyte recruitment in murine gastritis induced by Helicobacter pylori.
Clin Exp Immunol
130:
183–189,
2002.
|
289. |
Genta RM,
Hamner HW and
Graham DY.
Gastric lymphoid follicles in Helicobacter pylori infection: frequency, distribution, and response to triple therapy.
Hum Pathol
24:
577–583,
1993.
|
290. |
Wotherspoon AC,
Ortiz‐Hidalgo C,
Falzon MR and
Isaacson PG.
Helicobacter pylori‐associated gastritis and primary B‐cell gastric lymphoma.
Lancet
338:
1175–1176,
1991.
|
291. |
Dogan A,
Du M,
Koulis A,
Briskin MJ and
Isaacson PG.
Expression of lymphocyte homing receptors and vascular addressins in low‐grade gastric B‐cell lymphomas of mucosa‐associated lymphoid tissue.
Am J Pathol
151:
1361–1369,
1997.
|
292. |
Koulis A,
Diss T,
Isaacson PG and
Dogan A.
Characterization of tumor‐infiltrating T lymphocytes in B‐cell lymphomas of mucosa‐associated lymphoid tissue.
Am J Pathol
151:
1353–1360,
1997.
|
293. |
Drillenburg P,
van der Voort R,
Koopman G,
Dragosics B,
van Krieken JH,
Kluin P,
Meenan J,
Lazarovits AI,
Radaszkiewicz T and
Pals ST.
Preferential expression of the mucosal homing receptor integrin alpha 4 beta 7 in gastrointestinal non‐Hodgkin's lymphomas.
Am J Pathol
150:
919–927,
1997.
|
294. |
Mazzucchelli L,
Blaser A,
Kappeler A,
Scharli P,
Laissue JA,
Baggiolini M and
Uguccioni M.
BCA‐1 is highly expressed in Helicobacter pylori‐induced mucosa‐associated lymphoid tissue and gastric lymphoma.
J Clin Invest
104:
R49–R54,
1999.
|
295. |
Nishi T,
Okazaki K,
Kawasaki K,
Fukui T,
Tamaki H,
Matsuura M,
Asada M,
Watanabe T,
Uchida K,
Watanabe N,
Nakase H,
Ohana M,
Hiai H and
Chiba T.
Involvement of myeloid dendritic cells in the development of gastric secondary lymphoid follicles in Helicobacter pylori‐infected neonatally thymectomized BALB/c mice.
Infect Immun
71:
2153–2162,
2003.
|
296. |
Jaeschke H.
Cellular adhesion molecules: regulation and functional significance in the pathogenesis of liver diseases. Am.
J. Physiol.
273:
G602–G611,
1997.
|
297. |
Jaeschke H,
Farhood A and
Smith CW.
Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo.
FASEB J.
4:
3355–3359,
1990.
|
298. |
Bonder CS,
Ajuebor MN,
Zbytnuik LD,
Kubes P and
Swain MG.
Essential role for neutrophil recruitment to the liver in concanavalin A‐induced hepatitis. J.
Immunol.
172:
45–53,
2004.
|
299. |
Muhlen KA,
Schumann J,
Wittke F,
Stenger S,
van Rooijen N,
van kaer L and
Tiegs G.
NK cells, but not NKT cells, are involved in Pseudomonas aeruginosa exotoxin A‐induced hepatotoxicity in mice.
J Immunol
172:
3034–3041,
2004.
|
300. |
Schumann J,
Wolf D,
Pahl A,
Brune K,
Papayannopoulou T,
van Rooijen N and
Tiegs G.
Importance of Kupffer cells for T‐cell‐dependent liver injury in mice.
Am J Pathol
157:
1671–1683,
2000.
|
301. |
Tiegs G,
Hentschel J and
Wendel A.
T cell‐dependent experimental liver injury in mice inducible by concanavalin A,
J Clin Invest
90:
196–203,
1992.
|
302. |
Springer TA and
Lasky LA.
Sticky sugars for selectins.
Nature
349:
196–197,
1991.
|
303. |
Patel KD,
Cuvelier SL and
Wiehler S.
Selectins: critical mediators of leukocyte recruitment.
Semin Immunol,
2001,
In press.
|
304. |
Springer TA.
Traffic signals of lymphocyte recirculation and leukocyte emigration: The multistep paradigm.
Cell
76:
301–314,
1994.
|
305. |
Luscinskas FW,
Ma S,
Nusrat A,
Parkos CA and
Shaw SK.
Leukocyte transendothelial migration: a junctional affair.
Semin Immunol,
186:
57–67,
2002.
|
306. |
Fox‐Robichaud A and
Kubes P.
Molecular mechanisms of tumor necrosis factor alpha‐stimulated leukocyte recruitment into the hepatic circulation.
Hepatology
31:
1123–1127,
2000.
|
307. |
McCuskey RS.
Microscopic methods for studying the microvas‐culature of internal organs. In:
Physical techniques in biology and medicine microvascular technology,
eds Barker CH and
Nastuk WF.
New York:
Academic,
1986,
pp. 247–264.
|
308. |
Chosay JG,
Essani NA,
Dunn CJ and
Jaeschke H.
Neutrophil margination and extravasation in sinusoids and venules of liver during endotoxin‐induced injury.
Am J Physiol
272:
G1195–G1200,
1997.
|
309. |
Wong J,
Johnston B,
Lee SS,
Bullard DC,
Smith CW,
Beaudet AL and
Kubes P.
A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature.
J Clin Invest
99:
2782–2790,
1997.
|
310. |
Li Y,
Muruve DA,
Collins RG,
Lee SS and
Kubes P.
The role of selectins and integrins in adenovirus vector‐induced neutrophil recruitment to the liver.
Eur J Immunol
32:
3443–3452,
2002.
|
311. |
Shi J,
Kokubo Y and
Wake K.
Expression of P‐selectin on hepatic endothelia and platelets promoting neutrophil removal by liver macrophages.
Blood
2:
520–528,
1998.
|
312. |
Wake K,
Decker K,
Kirn A,
Knook DL,
McCuskey RS,
Bourwens L and
Wisse E.
Cell biology and kinetics of Kupffer cells in the liver.
Int Rev Cytol
118:
173–229,
1989.
|
313. |
Linke R,
Wagner F,
Terajima H,
Theiry J,
Teupser D,
Leiderer R, and
Hammer C.
Prevention of initial perfusion failure during xenogeneic ex vivo liver perfusion by selectin inhibition.
Transplantation
66:
1265–1272,
1998.
|
314. |
Shi J,
Kokubo Y and
Wake K.
Expression of P‐selectin on hepatic endothelia and platelets pro neutrophil removal by liver macrophages.
Blood
92:
520–528,
1998.
|
315. |
Massaguer A,
Perez‐Del‐Pulgar S,
Engel P,
Serratosa J,
Bosch J and
Pizcueta P.
Concanavalin‐A‐induced liver injury is severly impaired in mice deficient in P‐selectin. J.
Leuk Biol
72:
262–270,
2002.
|
316. |
Essani NA,
Fisher MA,
Simmons CA,
Hoover JL,
Farhood A and
Jaeschke H.
Increased P‐selectin gene expression in the liver vasculature and its role in the pathophysiology of neutrophil‐induced liver injury in murine endotoxin shock.
J Leuk Biol
63:
288–296,
1998.
|
317. |
Klintman D,
Schramm R,
Menger MD and
Thorlacius H.
Leukocyte recruitment in hepatic injury: selectin‐mediated leukocyte rolling is a prerequisite for CD18‐dependent firm adhesion.
J Hepatol
36:
53–59,
2002.
|
318. |
Sawaya DE, Jr.,
Zibari GB,
Minardi A,
Bilton B,
Bumey D,
Granger DN,
McDonald JC and
Brown M.
P‐selectin contributes to the initial recruitment of rolling and adherent leukocytes in hepatic venules after ischemia/reperfusion.
Shock
12:
227–232,
1999.
|
319. |
Surinder S,
Yadav SS,
Howell DN,
Steeber DA,
Harland RC,
Tedder TR and
Clavien PA.
P‐selectin mediates reperfusion injury through neutrophil and platelet sequestration in the warm ischemic mouse liver.
Hepatohgy
29:
1494–1502,
1999.
|
320. |
Sakamoto N,
Zhaoli S,
Brengman ML,
Maemura K,
Ozaki M,
Bulkley GB and
Klein A.
Hepatic reticuloendothelial system dysfunction after ischemia‐peperfusion: role of p‐selectin‐mediated neutrophil accumulation.
Liver Transplant
9:
940–948,
2003.
|
321. |
Kubes P,
Payne D and
Woodman RC.
Molecular mechanisms of leukocyte recruitment in postischemic liver microcirculation.
Am J Physiol Gastroimest Liver Physiol
283:
G139–G147,
2002.
|
322. |
Khandoga A,
Biberthaler P,
Enders G,
Teupser D,
Axmann SM,
Luchting B,
Hutter J,
Messmer K and
Krombach F.
P‐selectin mediates platelet‐endothelial cell interactions and reperfusion injury in the mouse liver in vivo.
Shock
18:
529–535,
2002.
|
323. |
Horie Y,
Wolf R,
Anderson DC and
Granger DN.
Hepatic leukostasis and hypoxic stress in adhesion molecule‐deficient mice after gut ischemia/reperfusion.
J Clin Invest
99:
781–788,
1997.
|
324. |
Garcia‐Criado FJ,
Palma‐Vargas JM.
Valdunciel‐Garcia JJ, Gomez‐Alonso A, Srivastava O, Ezrin A, Anderson MB and Toledo‐Pereyra MD, Sulfo‐lewis diminishes neutrophil infiltration and free radicals with minimal effect on serum cytokines after liver ischemia and reperfusion.
J Surg Res
70:
187–194,
1997.
|
325. |
Rubio‐Avilla JM,
Palma‐Vargas JM,
Collins JT,
Smejkal R,
Mclaren J,
Phillips LM and
Toledo‐Pereyra LH.
Sialyl lewis sup x analog improves liver function by decreasing neutrophil migration after hemorrhagic shock.
J Trauma Inj Infect Crit Care
43:
313–318,
1997.
|
326. |
Dulkanchainun TS,
Goss JA,
Imagawa DK,
Shaw GD,
Anselmo DM,
Ka Wang T,
Zhao D,
Busuttil AA,
Kato H,
Murray NG,
Kupiec‐Weglinski JW and
Busuttil RW.
Reduction of hepatic ischemia/reperfusion injury by a soluble P. glycoprotein ligand‐1.
Ann Surg
227:
832–840,
1998.
|
327. |
Green CE,
Pearson DN,
Camphausen RT,
Staunton DE and
Simon SI.
Shear‐dependent capping of L‐selectin and P‐selectin glycoprote ligand 1 by E‐selectin signals activation of high‐avidity beta2‐int on neutrophils.
J Immunol
172:
7780–7790,
2004.
|
328. |
Yadav SS,
Howell DN,
Gao W,
Steeber DA,
Harland RC and
Clavien PA.
L‐selectin and ICAM‐1 mediate reperfusion injury and neutrophil adhesion in the warm ischemic mouse liver.
Am J Gastroimest Liver Physiol
275:
G1341–G1352,
1998.
|
329. |
Walcheck B,
Moore KL,
McEver RP and
Kishimoto TK.
Neutrophil‐neutrophil interactions under hydrodynamic shear stress involve L‐selectin and PSGL‐1, A mechanism that amplifies initial leukocyte accumulation on P‐selectin in vitro.
J Clin Invest
98:
1081–1087,
1999.
|
330. |
Yao L,
Setiadi H,
Xia L,
Laszik Z,
Taylor FB and
McEver RP.
Divergent inducible expression of P‐selectin and E‐selectin in mice and primates.
Blood
94:
3820–3828,
1999.
|
331. |
Daneker GW,
Lund SA,
Caughman SW,
Swerlick RA,
Fishce AH and
Stalo Anes EW.
Culture and characterization of sinusoidal endothelial cells isola from human liver.
In Vitro Cell Dev Biol Anim
34:
370–377,
1998.
|
332. |
Steinhoff G,
Behrend M,
Schrader B,
Duijv S,
Duijvestijn AM and
Wonigeit K.
Expression patterns of leukocyte adhesion ligand molecules on h liver endothelia. Lack of ELAM‐I CD62 inducibility on sinu endothelia and distinct distribution of VCAM‐1, ICAM‐1, ICAM LFA‐3.
Am J Pathol
142:
481–188,
1993.
|
333. |
Adams DH,
Hubscher SG,
Fisher NC,
Williams A and
Robinson M.
Expression of E‐selectin and E‐selectin ligands in human liver inflammation.
Hepatohgy
24:
533–538,
1996.
|
334. |
Lautenschlager I,
Harma M,
Hockerstedt K,
Linnavuori K and
Loginov RE.
Human herpesvirus‐6 infection is associated with adhesion mole induction and lymphocyte infiltration in liver allografts.
J Hepatol
37:
648–654,
2002.
|
335. |
Li X,
Klintman D,
Weitz‐Schmidt G,
Schramm R and
Thorlacius H.
Lymphocyte function antigen‐1 mediates leukocyte adhesion and subsequent liver damage in endotoxemic mice.
Br J Pharmacol
141:
709–716,
2004.
|
336. |
Marubayashi S,
Oshiro Y,
Maeda T,
Fukuma K,
Okada K,
Hinoi T,
Ikeda M,
Yamada K,
Itoh H and
Dohi K.
Protective effect of monoclonal antibodies to adhesion molecules on rat liver ischemia‐reperfusion injury.
Surgery
122:
45–52,
1997.
|
337. |
Hamamoto I,
Hossain MA,
Mori S,
Maeba T and
Maeta H.
Impact of adhesion molecules of the selectin family on liver microcirculation at reperfusion following cold ischemia.
Transpl Int
9:
454–460,
1996.
|
338. |
Jaeschke H,
Farhood A,
Fisher MA and
Smith CW.
Sequestration of neutrophils in the hepatic vasculature during endotoxemia is independent of beta 2 integrins and intercellular adhesion molecule‐1.
Shock
6:
351–356,
1996.
|
339. |
Liu P,
McGuire GM,
Fisher MA,
Farhood A,
Smith CW and
Jaeschke H.
Activation of Kupffer cells and neutrophils for reactive oxygen formation is responsible for endotoxin‐enhanced liver injury after hepatic ischemia.
Shock
3:
56–62,
1995.
|
340. |
Johnston B and
Kubes P.
The alpha4‐integrin: an alternative pathway for neutrophil recruitment?
Immunol Today
20:
545–550,
1999.
|
341. |
Yachida S,
Kokudo Y,
Wakabayashi H,
Maeba T,
Kaneda K and
Maeta H.
Morphological and functional alterations to sinusoidal endothelial cells in the early phase of endotoxin‐induced liver failure after partial hepatectomy in rats.
Virchows Arch
433:
173–181,
1998.
|
342. |
Matsumoto G,
Tsunematsu S,
Tsukinoki K,
Ohmi Y,
Iwamiya M,
Lovera‐dos‐Santos A,
Daisuke T,
Shindo J and
Penniger JM.
Essential role of the adhesion receptor LFA‐1 for T cell‐dependent fulminant hepatitis.
Am Assoclmmunol
169:
7087–7096,
2002.
|
343. |
Emoto M,
Mitrucker HW,
Schmits R,
Mak TW and
Kaufmann SH.
Critical role of leukocyte function‐assocatied antigen‐1 in liver accumulation of CD4+NKT cells.
Am Assoc Immunol
162:
5094–5098,
1999.
|
344. |
Garcia‐Barcina M,
Lukomska Bw,
Gawron W,
Winnock M,
Vidal‐Vanaclocha F,
Bioulac‐Sage P,
Balabaud C and
Olszewski W.
Expression of cell adhesion molecules on liver‐associated lymphocytes and their ligands on sinusoidal lining cells in patients with benign or malignant liver disease.
Am J Pathol
146:
1406–1413,
1995.
|
345. |
Wolf D,
Hallmann R,
Hallmann G,
Sass M,
Sixt S,
Kuster B,
Fregien C,
Trautwein S and
Tiegs G.
INF‐a‐induces expression of adhesion molecules in the liver is under the control of TNFR1‐relevance for concanavalin a‐induced hepatitis.
J Immunol
166:
1300–1307,
2001.
|
346. |
Sakamoto S,
Okanoue T,
Itoh Y,
Sakamoto K,
Nishioji K,
Nakagawa Y,
Yoshida N,
Yoshikawa T and
Kashima K.
Intercellular adhesion molecule‐1 and CD 18 are involved in neutrophil adhesion and its cytotoxicity to cultured sinusoidal endothelial cells in rats.
Hepatohgy
26:
658–663,
1997.
|
347. |
Sakamoto S,
Okanoue T,
Itoh Y,
Nakagawa Y,
Nakamura H,
Morita A,
Daimon Y,
Sakamoto K,
Yoshida N,
Yoshikawa T and
Kashima K.
Involvement of Kupffer cells in the interaction between neutrophils and sinusoidal endothelial cells in rats.
Shock
18:
152–157,
2002.
|
348. |
Colletti LM,
Cortis A,
Lukacs N,
Kunkel SL,
Green M and
Strieter RM.
Tumor necrosis factor up‐regulates intercellular adhesion molecule 1, which is important in the neutrophil‐dependent lung and liver injury associated with hepatic ischemia and reperfusion in the rat.
Shock
10:
182–191,
1998.
|
349. |
Kono H,
Vesugi T,
Froh M,
Rusyn I,
Bradford BU and
Thurman RG.
ICAM‐1 is involved in the mechanism of alcohol‐induced liver in studies with knockout mice.
Am J Physiol Gastrointest Liver Physiol
280:
G1289–G1295,
2001.
|
350. |
Hamann A,
Kulgewitz K,
Austrup F and
Jablonski‐Westrick D.
Activation induces rapid and profound alterations in the trafficking of T cells.
Sur J Immunol
30:
3207–3218,
2000.
|
351. |
Rentsch M,
Post S,
Palma P,
Lang G,
Menger MD and
Messmer K.
Anti‐ICAM‐1 Blockade reduces postsinusoidal WBC adherence following cold ischemia and reperfusion, but does not improve early graft function in rat liver transplantation.
J Hepatol
32:
821–828,
2000.
|
352. |
Bacchi CE,
Marsh CL,
Perkins JD,
McVicar JP,
Hudkbenjamin CD,
Harlan JM,
Lobb R and
Alpers CE.
Expression of vascular cell adhesion molecule (VCAM‐1) in liver pancreas allograft rejection.
Am J Pathol
142:
579–591,
1993.
|
353. |
Adams DH,
Burr P,
Burra SG,
Hubscher E,
Elias S and
Newman W.
Endothelial activation and circulating vascular adhesion molecule alcoholic liver disease.
Hepatology
19:
588–594,
1994.
|
354. |
Jaruga B,
Hong F,
Kim W and
Gao B.
IFN‐β/STAT1 acts as a proinflammatory signal in T cell‐mediated hepatitis via induction of multiple chemokines and adhesion molecules: a critical role of IRF‐1.
Am J Physiol Gastrointest Liver Physiol
10:
1–26,
2004.
|
355. |
Shinichi I,
Matsuzaki Y,
Kimura T,
Unno R,
Ikegami T,
Shoda J,
Doy M,
Fukahori M and
Tanaka N.
Suppression of hepatic lesions in a murine graft‐versus‐host reaction by antibodies against adhesion molecules.
J Hepatol
32:
587–595,
2000.
|
356. |
Fogler WE,
Volker K,
McCormick KL,
Watanabe M,
Ortaldo JR and
Wiltrout RH.
NK cell infiltration into lung, liver, and subcutaneous B16 melanoma is mediated by VCAM‐1/VLA‐4 interaction.
Am Assoc Immunol
156:
4707–4714,
1996.
|
357. |
Essani NA,
Bajt ML,
Farhood A,
Vonderfecht SL and
Jaeschke H.
Transciptional activation of vascular cell adhesion molecule‐1 gene in vivo and its role in the pathophysiology of neutrophil‐induced liver injury in murine endotoxin shock.
J Immunol
12:
5941–5948,
2004.
|
358. |
McNab G,
Reeves JL,
Salmi M,
Hubscher S,
Jalkanen S and
Adams DH.
Vascular adhesion protein 1 mediates binding of T cells to human hepatic endothelium.
Gastroenterology
110:
522–528,
1996.
|
359. |
Lalor PF,
Edwards S,
McNab G,
Salmi M,
Jalkanen S and
Adams DH.
Vascular adhesion protein‐1 mediates adhesion and transmigration of lymphocytes on human hepatic endothelial cells.
J Immunol
169:
983–992,
2002.
|
360. |
Grant AJ,
Lalor PF,
Hubscher SG,
Briskin M and
Adams DH.
MAdCAM‐1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM‐1 in chronic inflammatory liver disease).
Hepatology
33:
1065–1072,
2001.
|
361. |
Chosay JG,
Fisher MA,
Farhood A,
Ready KA,
Dunn CJ and
Jaeschke H.
Role of PECAM‐1 (CD31) in neutrophil transmigration in muri models of liver and peritoneal inflammation.
Am J Physiol
274:
G776–G782,
1998.
|
362. |
Dillon P,
Belchis D,
Tracy T,
Cilley R,
Hafer L and
Krummel T.
Increased expression of intercellular adhesion molecules in biliary atresia.
Am J Pathol
145:
263–267,
1994.
|
363. |
Wayel J,
Dicken D,
Koo H,
Cerundolo L,
Rela M,
Nigel D,
Fuggle HV and
Fuggle SV.
Leukocyte Infiltration and Inflammatory antigen expression in cadaveric and Living‐Donor livers before.
Transplant
75
(12):
2001–2007,
2003.
|
364. |
Jeffrey R,
Fox‐Robichaud A and
Fox‐Robichaud S.
Hepatic leukocyte recruitment in a model of acute colitis.
Am Physiol Soc
283:
G561–G566,
2002.
|