References |
1. |
Alm A and
Bill A.
Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues.
Exp Eye Res
15:
15–29,
1973a.
|
2. |
Tornquist P and
Alm A.
Retinal and choroidal contribution to retinal metabolism in vivo. A study in pigs.
Acta Physiol Scand
106:
351–357,
1979.
|
3. |
Hickam JB,
Sieker HO and
Frayser R.
Studies of retinal circulation and A‐V oxygen difference in man.
Tr Am Clin Climatol Assoc
71:
34–44,
1959.
|
4. |
Delori FC.
Noninvasive technique for oximetry of blood in retinal vessels.
Appl Optics
27:
1113–1125,
1988.
|
5. |
Toussaint D,
Kuwabara H and
Cogan DG.
Retinal vascular patterns. II. Human retinal vessels studied in three dimensions.
Arch Ophthalmol
65:
575–581,
1961.
|
6. |
Henkind P.
Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative.
Br J Ophthalmol
51:
115–123,
1967.
|
7. |
Snodderly DM,
Weinhaus RS and
Choi JC.
Neural‐vascular relationships in central retina of macaque monkeys (Macaco fascicularis).
J Neurosci
12
(4):
1169–1193,
1992.
|
8. |
Pournaras CJ.
Retinal oxygen distribution. Its role in the physiopathology of vasoproliferative microangiopathies.
Retina
15:
332–347,
1995.
|
9. |
Ishikawa T.
Fine structure of retinal vessels in man and the macaque monkey.
Invest Ophthalmol Vis Sci
2:
1–15,
1963.
|
10. |
Kassab GS and
Fung YC.
A hemodynamic analysis of coronary capillary blood flow based on anatomic and distensibility data.
Am J Physiol
277:
H2158–H2166,
1999, (Heart Circ Physiol 46).
|
11. |
Cunha‐Vaz J.
Review. The blood‐ocular barriers.
Surv Ophthalmol
23
(5):
279–296,
1979.
|
12. |
Hayreh SS.
Segmental nature of the choroidal vasculature.
Br J Ophthalmol
59:
631–648,
1975.
|
13. |
Fryczkowski AW,
Sherman MD and
Walker J.
Observations on the lobular organization of the human choriocapillaris.
Int Ophthalmol
15:
109–120,
1991.
|
14. |
Hayreh SS.
The blood supply of the optic nerve head and the evaluation of it‐myth and reality.
Prog Retin Eye Res
20:
563–593,
2001.
|
15. |
Tilton RG.
Capillary pericytes: perspectives and future trends.
J Electron Microsc Tech
19:
327–344,
1991.
|
16. |
Geijer C and
Bill A.
Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys.
Invest Ophthalmol Vis Sci
18
(10):
1030–1042,
1979.
|
17. |
Hayreh SS.
Anatomy and physiology of the optic nerve head.
Trans Am Acad Ophthalmol Otolaryngol
78:
OP240–OP254,
1974.
|
18. |
Harris A,
Shoemaker JA and
Cioffi GA.
Assessment of human ocular hemodynamics.
Surv Ophthalmol
42
(6):
509–533,
1998.
|
19. |
Flammer J,
Orgül S,
Costa VP,
Orzalesi N,
Krieglstein GK,
Serra LM,
Renard J‐P and
Stefansson E.
The impact of ocular blood flow in glaucoma.
Prog Retin Eye Res
21:
359–393,
2002.
|
20. |
Rechtman E,
Harris A,
Kumar R,
Cantor LB,
Ventrapragada S,
Desai M,
Friedman S,
Kagemann L and
Garzozi HJ.
An update on retinal circulation assessment technologies.
Curr Eye Res
27:
329–343,
2003.
|
21. |
Kaiser HJ,
Schötzau A and
Flammer J.
Blood‐flow velocities in the extraocular vessels in normal volunteers.
Am J Ophthalmol
122:
364–370,
1996.
|
22. |
Kouvidis GK,
Benos A,
Kyriakopoulou G,
Anastopoulos G and
Triantafyllou D.
Color Doppler ultrasonography of the ophthalmic artery: flow parameters in normal subjects.
Int Angiol
19:
319–325,
2000.
|
23. |
Gracner T.
Ocular blood flow velocity determined by color Doppler imaging in diabetic retinopathy.
Ophthalmologica
218:
237–242,
2004.
|
24. |
Hosking SL,
Harris A,
Chung HS,
Jonescu‐Cuypers CP,
Kagemann L,
Roff Hilton EJ and
Garzozi H.
Ocular haemodynamic responses to induced hypercapnia and hyperoxia in glaucoma.
Br J Ophthalmol
88:
406–411,
2004.
|
25. |
Taner P,
Kara SA,
Akarsu C and
Ergin A.
The effects of darkness on retrobulbar hemodynamics in patients with early stages retinitis pigmentosa.
Int Ophthalmol
25:
95–99,
2004.
|
26. |
Lieb WE,
Cohen SM,
Merton DA,
Shields JA,
Mitchell DJ and
Goldberg BB.
Color Doppler imaging of the eye and orbit.
Arch Ophthalmol
109:
527–531,
1991.
|
27. |
Ho AC,
Lieb WE,
Flaharty PM,
Sergott RC,
Brown GC,
Bosley TM and
Savino PJ.
Color Doppler imaging of the ocular ischemic syndrom.
Ophthalmology
99:
1453–1462,
1992.
|
28. |
Lieb WE.
Color Doppler ultrasonography of the eye and orbit.
Curr Opin Ophthal
4:
68–75,
1993.
|
29. |
Steigerwalt RD, Jr.,
Belcaro G,
Cesarone MR,
Laurora G,
De Sanctis MT and
Milazzo M.
Doppler ultrasonography of the central retinal artery in normals treated with topical timolol.
Eye
7:
403–406,
1993.
|
30. |
Tamaki Y,
Nagahara M,
Yamashita H and
Kikuchi M.
Blood velocity in the ophthalmic artery determined by color Doppler imaging in normal subjects and diabetics.
Jpn J Ophthalmol
37:
385–392,
1993.
|
31. |
Williamson TH and
Harris A.
Ocular blood flow measurement.
Br J Ophthalmol
78:
939–945,
1994.
|
32. |
Greenfield DS,
Heggerick PA and
Hedges TR.
Color Doppler imaging of normal orbital vasculature.
Ophthalmology
102:
1598–1605,
1995.
|
33. |
Baxter GM and
Williamson TH.
Color Doppler imaging of the eye: normal ranges, reproducibility, and observer variation.
J Utrasound Med
14:
91–96,
1995.
|
34. |
Netland PA,
Grosskreutz CL,
Feke GT and
Hart U.
Color Doppler ultrasound analysis of ocular circulation after topical calcium channel blocker.
Am J Ophthalmol
119:
694–700,
1995.
|
35. |
Mendivil A,
Cuartero V and
Mendivil MP.
Color Doppler imaging of the ocular vessels.
Graefe 's Arch Clin Exp Ophthalmol
233:
135–139,
1995.
|
36. |
Rankin SJA,
Walman BE,
Buckley AR and
Drance SM.
Color Doppler imaging and spectral analysis of the optic nerve vasculature in glaucoma.
Am J Ophthalmol
119:
685–693,
1995.
|
37. |
Butt Z,
McKillop G,
O'Brien C,
Allan P and
Aspinall P.
Measurement of ocular blood flow velocity using colour Doppler imaging in low tension glaucoma.
Eye
9:
29–33,
1995.
|
38. |
Guthoff RF,
Berger RW,
Winkler P,
Helmke K and
Chumbley LC.
Doppler ultrasonography of the ophthalmic and central‐retinal vessels.
Arch Ophthalmol
109:
532–536,
1991.
|
39. |
Hiroki M,
Miyashita K,
Yoshida H,
Hirai S and
Fukuyama H.
Central retinal artery Doppler flow parameters reflect the severity of cerebral small‐vessel disease.
Stroke
34:
92–94,
2003.
|
40. |
Pourcelot L.
Diagnostic ultrasound for cerebral vascular diseases. In:
Present and Future of Diagnostic Ultrasound,
eds Donald I and
Levi S.
Rotterdam:
Kooyker.
1976,
pp. 141–147.
|
41. |
Polska E,
Kircher K,
Ehrlich P,
Vecsei PV and
Schmetterer L.
RI in central retinal artery as assessed by CDI does not correspond to retinal vascular resistance.
Am J Physiol Heart Circ Physiol
280:
H1442–H1447,
2001.
|
42. |
Wolf S,
Jung F,
Kiesewetter H,
Körber N and
Reim M.
Video fluorescein angiography: method and clinical application.
Graefe's Arch Clin Exp Ophthalmol
227:
145–151,
1989.
|
43. |
Wolf S,
Arend O and
Reim M.
Measurement of retinal hemodynamics with scanning laser ophthalmoscopy: reference values and variation.
Surv Ophthalmol
38
(Suppl,):
S95–s100,
1994.
|
44. |
Hickam JB and
Frayser R.
A photographic method for measuring the mean retinal circulation time using fluorescein.
Invest Ophthalmol Vis Sci
4
(5):
876–884,
1965.
|
45. |
Ben‐Sira I,
Riva CE and
Roberts W.
Fluorophotometric recording of fluorescein dilution curves in human retinal vessels.
Invest Ophthalmol Vis Sci
12:
310–312,
1973.
|
46. |
Riva CE and
Ben‐Sira I.
Two‐point fluorophotometer for the human ocular fundus.
Appl Optics
14:
2691–2693,
1975.
|
47. |
Sperber GO and
Aim A.
Retinal mean transit time determined with an impulse‐response analysis form video fluorescein angiograms.
Acta Ophthalmol Scand
75:
532–536,
1997.
|
48. |
Bulpitt CJ and
Dollery CT.
Estimation of retinal blood flow by measurement of the mean circulation time.
Cardiovasc Res
5:
406–412,
1971.
|
49. |
Soeldner JS,
Christacopoulos PD and
Gleason RE.
Mean retinal circulation time as determined by fluorescein angiography in normal, prediabetic, and chemical‐diabetic subjects.
Diabetes
25
(suppl. 2):
903–908,
1976.
|
50. |
van Heuven WAJ,
Malik AB,
Schaffer CA,
Cohen D and
Mehu M.
Retinal blood flow derived from dye dilution curves.
Arch Ophthalmol
95:
297–301,
1977.
|
51. |
Fonda S and
Bagolini B.
Relative photometric measurements of retinal circulation (dromofluorograms).
Arch Ophthalmol
95:
302–307,
1977.
|
52. |
Eberli B,
Riva CE and
Feke GT.
Mean circulation time of fluorescein in retinal vascular segments.
Arch Ophthalmol
97:
145–148,
1979.
|
53. |
Blair NP,
Feke GT,
Morales‐Stoppello J,
Riva CE,
Goger DG,
Collas G and
McMeel JW.
Prolongation of the retinal mean circulation time in diabetes.
Arch Ophthalmol
100:
764–768,
1982.
|
54. |
Yoshida A,
Feke GT,
Morales‐Stoppello J,
Collas GD,
Goger DG and
McMeel JW.
Retinal blood flow alterations during progression of diabetic retinopathy.
Arch Ophthalmol
101:
225–227,
1983.
|
55. |
Jung F,
Kiesenwetter H,
Körber N,
Wolf S,
Reim M and
Müller G.
Quantification of characteristic blood‐flow parameters in the vessels of the retina with a picture analysis system for video‐fluorescence angiograms: initial findings.
Graefe's Arch Clin Exp Ophthalmol
221:
133–136,
1983.
|
56. |
Koyama T,
Matsuo N,
Shimizu K,
Mihara M,
Tsuchida Y,
Wolf S and
Reim M.
Retinal circulation times in quantitative fluorescein angiography.
Graefe's Arch Clin Exp Ophthalmol
228:
442–446,
1990.
|
57. |
Bjärnhall G,
Mäepea O,
Sperber GO and
Linden C.
Analysis of mean retinal transit time form fluorescein angiography in human eyes: normal values and reproducibility.
Acta Ophthalmol Scand
880:
652–655,
2002.
|
58. |
Huber K,
Plange N,
Remky A and
Arend O.
Comparison of colour Doppler imaging and retinal scanning laser fluorescein angioraphy in healthy volunteers and normal pressure glaucoma patients.
Acta Ophthalmol Scand
82:
426–431,
2004.
|
59. |
Riva CE,
Grunwald JE,
Sinclair SH and
Petrig BL.
Blood velocity and volumetric flow rate in human retinal vessels.
Invest Ophthalmol Vis Sci
26:
1124–1132,
1985.
|
60. |
Feke GT,
Tagawa H,
Deupree DM,
Goger DG,
Sebag J and
Weiter JJ.
Blood flow in the normal human retina.
Invest Ophthalmol Vis Sci
30:
58–65,
1989.
|
61. |
Grunwald JE,
Riva CE,
Baine J and
Brucker AJ.
Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control.
Invest Ophthalmol Vis Sci
33:
356–363,
1992.
|
62. |
Yoshida A,
Feke GT,
Ogasawara H,
Goger DG and
McMeel JW.
Retinal hemodynamics in middle‐aged normal subjects.
Ophthalmic Res
28:
343–350,
1996.
|
63. |
Garcia JPS, Jr.,
Garcia PT and
Rosen RB.
Retinal blood flow in the normal human eye using the canon laser blood flowmeter.
Ophthalmic Res
34:
295–299,
2002.
|
64. |
Feke GT,
Goger DG,
Tagawa H and
Delori FC.
Laser Doppler technique for absolute measurement of blood speed in retinal vessels.
IEEE Trans Biomed Eng
BME‐34:
673–680,
1987.
|
65. |
Khoobehi B,
Peyman GA,
Niesman MR and
Oncel M.
Measurement of retinal blood velocity and flow rate in primates using a liposome dye system.
Ophthalmology
96:
905–912,
1989.
|
66. |
Guran T,
Zeimer RC,
Shahidi M and
Mori MT.
Quantitative analysis of retinal hemodynamics using targeted dye delivery.
Invest Ophthalmol Vis Sci
31:
2300–2306,
1990.
|
67. |
Bulpitt CJ,
Kohner EM and
Dollery CT.
Velocity profiles in the retinal microcirculation.
7th Eur Conf Microcirc
11:
448–452,
1972.
|
68. |
Yazdanfar S,
Rollins AM and
Izatt JA.
Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography.
Optics Lett
25:
1448–1450,
2000.
|
69. |
Yazdanfar S,
Rollins AM and
Izatt JA.
In vivo imaging of human retinal flow dynamics by color Dopper optical coherence tomography.
Arch Ophthalmol
121:
235–239,
2003.
|
70. |
Leitgeb RA,
Schmetterer L,
Drexler W and
Fercher AF.
Real‐time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography.
Optics Express
11:
3116–3121,
2003.
|
71. |
Logean E,
Schmetterer L and
Riva CE.
Velocity profile of red blood cells in human retinal vessels using confocal scanning laser Doppler velocimetry.
Laser Phys
13:
45–51,
2003.
|
72. |
Lipowsky HH.
Shear stress in the circulation. In:
Flow‐Dependent Regulation of Vascular Function,
eds Bevan JA,
Kaley G and
Rubanyi GM.
New York:
Oxford University Press,
1995,
pp. 28–45.
|
73. |
Charm SE and
Kurlang GS.
Blood Flow in the Microcirculation.
New York:
John Wiley & Sons,
1974.
|
74. |
Nagaoka T and
Yoshida A.
Noninvasive evaluation of wall shear stress on retinal microcirculation in humans.
Invest Ophthalmol Vis Sci
47:
1113–1119,
2006.
|
75. |
Wolf S,
Arend O,
Toonen H,
Bertram B,
Jung F and
Reim M.
Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results.
Ophthalmology
98:
996–1000,
1991.
|
76. |
Yang Y,
Kim S and
Kim J.
Fluorescent dots in fluorescein angiograhy and fluorescein leukocyte angiography using a scanning laser ophthalmoscope in humans.
Ophthalmology
104:
1670–1676,
1997.
|
77. |
Riva CE and
Petrig BL.
Blue field entoptic phenomenon and blood velocity in the retinal capillaries.
J Opt Soc Am
70:
1234–1238,
1980.
|
78. |
Robinson F,
Petrig BL,
Sinclair SH,
Riva CE and
Grunwald JE.
Does topical phenylephrine, tropicamide, or proparacaine affect macular blood flow?
Ophthalmology
92:
1130–1132,
1985.
|
79. |
Fallon TJ,
Maxwell D and
Kohner EM.
Retinal vascular autoregulation in conditions of hyperoxia and hypoxia using the blue field entoptic phenomenon.
Ophthalmology
92:
701–705,
1985.
|
80. |
Fallon TJ,
Chowiencyzk P and
Kohner EM.
Measurement of retinal blood flow in diabetes by the blue‐light entoptic phenomenon.
Br J Ophthalmol
70:
43–46,
1986.
|
81. |
Lotfi K and
Grunwald JE.
The effect of caffeine on the human macular circulation.
Invest Ophthalmol Vis Sci
32:
3028–3032,
1991.
|
82. |
Grunwald JE,
Piltz J,
Patel N,
Bose S and
Riva CE.
Effect of aging on retinal macular microcirculation: a blue field simulation study.
Invest Ophthalmol Vis Sci
34:
3609–3613,
1993.
|
83. |
Scheiner AJ,
Riva CE,
Kazahaya K and
Petrig BL.
Effect of flicker on macular blood flow assessed by the blue field simulation technique.
Invest Ophthalmol Vis Sci
35:
3436–3441,
1994.
|
84. |
Grunwald JE,
Riva CE,
Petrig BL,
Brucker AJ,
Schwartz SS,
Braunstein SN,
Dupont J and
Grunwald S.
Strict control of glycaemia: effects on blood flow in the large retinal vessels and in the macular microcirculation.
Br J Ophthalmol
79:
735–741,
1995.
|
85. |
Arend O,
Harris A,
Sponsel WE,
Remky A,
Reim M and
Wolf S.
Macular capillary panicle velocities: a blue field and scanning laser comparison.
Graefe's Arch Clin Exp Ophthalmol
233:
244–249,
1995.
|
86. |
Harris A,
Arend O,
Bohnke K,
Kroepfi E,
Danis R and
Martin B.
Retinal blood flow during dynamic exercise.
Graefe's Arch Clin Exp Ophthalmol
234:
440–444,
1996.
|
87. |
Forcier P,
Kergoat H and
Lovasik JV.
Macular hemodynamic responses to short‐term acute exercise in young healthy adults.
Vision Res
38:
181–186,
1998.
|
88. |
Loukovaara S,
Kaaja R and
Immonen I.
Macular capillary blood flow velocity by blue‐field entoptoscopy in diabetic and healthy women during pregnancy and postpartum period.
Graefe's Arch Clin Exp Ophthalmol
240:
982,
2002.
|
89. |
Fuchsjager‐Mayrl G,
Malec M,
Polska E,
Jilma B,
Wolzt M and
Schmetterer L.
Effects of granulocyte colony stimulating factor on retinal leukocyte and erythrocyte flux in the human retina.
Invest Ophthalmol Vis Sci
43:
1520–1524,
2002.
|
90. |
Murray CD.
The physiological principle of minimum work. 1. The vascular system and the cost of blood volume.
Proc Natl Acad Sci USA
12:
207–214,
1926.
|
91. |
Dorner GT,
Polska E,
Garhöfer G,
Zawinka C,
Frank B and
Schmetterer L.
Calculation of the diameter of the central retinal artery from noninvasive measurements in humans.
Curr Eye Res
25:
341–345,
2002.
|
92. |
O'Day DM,
Fish MB,
Aronson SB,
Pollycove M and
Coon A.
Ocular blood flow measurement by nuclide labeled microspheres.
Arch Ophthalmol
86:
205–209,
1971.
|
93. |
Aim A,
Bill A and
Young FA.
The effects of pilocarpine and neostigmine on the blood flow through the anterior uvea in monkeys. A study with radioactively labelled microspheres.
Exp Eye Res
15:
31–36,
1973.
|
94. |
Rassam SM,
Patel V,
Chen HC and
Kohner EM.
Regional retinal blood flow and vascular autoregulation.
Eye
10:
331–337,
1996.
|
95. |
Kimura I,
Shinoda K,
Tanino T,
Ohtake Y,
Mashima Y and
Oguchi Y.
Scanning laser Doppler flowmeter study of retinal blood flow in macular area of healthy volunteers.
Br J Ophthalmol
87:
1469–1473,
2003.
|
96. |
Langham ME,
Farrell RA,
O'Brien V,
Silver DM and
Schilder P.
Non‐invasive mesurement of pulsatile blood flow in the human eye. In:
Ocular Blood Flow in Glaucoma,
eds Lambrou GN and
Greve EL.
Amsterdam:
Kugler & Ghedini Publication,
1989,
pp. 93–99.
|
97. |
Trew DR,
James CB,
Thomas SHL,
Sutton R and
Smith SE.
Factors influencing the ocular pulse‐the heart rate.
Graefe's Arch Clin Exp Ophthalmol
229:
553–556,
1991.
|
98. |
Ravalico G,
Toffoli G,
Pastori G,
Crocè M and
Carderini S.
Age‐related ocular blood flow changes.
Invest Ophthalmol Vis Sci
37:
2645–2650,
1996.
|
99. |
MacKinnon JR,
O'Brien C,
Swa K,
Aspinall P,
Butt Z and
Cameron D.
Pulsatile ocular blood flow in untreated diabetic retinopathy.
Acta Ophthalmol Scand
75:
661–664,
1997.
|
100. |
Yang YC,
Hulbert MF,
Batterbury M and
Clearkin LG.
Pulsatile ocular blood flow measurements in healthy eyes: reproducibility and reference values.
J Glaucoma
6:
175–179,
1997.
|
101. |
Fontana L,
Poinoosawmy D,
Bunce CV,
O'Brien C and
Hitchings RA.
Pulsatile ocular blood flow investigation in asymmetric normal tension glaucoma and normal subjects.
Br J Ophthalmol
82:
731–736,
1998.
|
102. |
Mori F,
Konno S,
Hikichi T,
Yamaguchi Y,
Ishiko S and
Yoshida.
Factors affecting pulsatile ocular blood flow in normal subjects.
Br J Ophthalmol
85:
529–530,
2001.
|
103. |
Gekkieva M,
Orgul S,
Ghergel D,
Gugleta K,
Prunte C and
Flammer J.
The influence of sex difference in measurements with the Langham ocular blood flow system.
Jpn J Ophthalmol
45:
528–532,
2001.
|
104. |
Aydin A,
Wollstein G,
Price L and
Schuman JS.
Evaluating pulsatile ocular blood flow analysis in normal and treated glaucomatous eyes.
Am J Ophthalmol
136:
448–453,
2003.
|
105. |
Gunvant P,
Baskaran M,
Vijaya L,
Hansen BC,
Joseph IS,
Watkins RJ,
Broadway DC and
O'Leary DJ.
Comparison of pulsatile ocular blood flow in Indians and Europeans.
Eye
19:
1163–1168,
2005.
|
106. |
Zhang MZ,
Fu ZF and
Zheng C.
A comparison study of pulsatile ocular blood flow in normal eyes and primary open angle glaucoma.
Zhonghua Yan Ke Za Zhi
40:
250–253,
2004.
|
107. |
Williamson TH,
Lowe GDO and
Baxter GM.
Influence of age, systemic blood pressure, smoking and blood viscosity on orbital blood velocities.
Br J Ophthalmol
79:
17–22,
1995.
|
108. |
Lam AK and
Chan ST.
The effect of age on ocular blood supply determined by pulsatile ocular blood flow and color Doppler ultrasonography.
Optom Vis Sci
80:
305–311,
2003.
|
109. |
Haefliger IO and
Anderson DR.
Blood flow regulation in the optic nerve head. In:
Part one. Anatomy and Physiology,
ed. Robert Ritch MB.
St. Louis:
Mosby‐Year Book,
1997,
pp. 189–197.
|
110. |
Harris A,
Harris M,
Biller J,
Garzozi H,
Zarfty D,
Ciulla TA and
Martin B.
Aging affects the retrobulbar circulation differently in women and men.
Arch Ophthalmol
118:
1076–1080,
2000.
|
111. |
Groh M,
Michelson G,
Langhans MJ and
Harazny J.
Influence of age on retinal and optic nerve head blood circulation.
Ophthalmology
103:
529–534,
1996.
|
112. |
Gillies WE,
Brooks AM,
Scott M and
Ryan L.
Comparison of colour Doppler imaging of orbital vessels in elderly compared with young adult patients.
Aust New Zeal J Ophthalmol
27:
173–175,
1999.
|
113. |
Embleton SJ,
Hosking SL,
Roff Hilton EJ and
Cunliffe IA.
Effect of senescence on ocular blood flow in the retina, neuroretinal rim and lamina cribrosa, using scanning laser Doppler flowmetry.
Eye
16:
156–162,
2002.
|
114. |
Boehm AG,
Kodier AU and
Pillunat LE.
The effect of age on optic nerve head blood flow.
Invest Ophthalmol Vis Sci
46:
1291–1295,
2005.
|
115. |
Rizzo JF,
Feke GT,
Goger DG,
Ogasawara H and
Weiter JJ.
Optic nerve head blood speed as a function of age in normal human subjects.
Invest Ophthalmol Vis Sci
32:
3263–3272,
1991.
|
116. |
Balazsi AG,
Rootman J,
Drance SM,
Schulzer M and
Douglas GR.
The effect of age on the nerve fiber population of human optic nerve.
Am J Ophthalmol
97:
760–766,
1984.
|
117. |
Lee WR,
Blass GE and
Shaw DC.
Age‐related retinal vasculopathy.
Eye
1:
296–303,
1987.
|
118. |
Jonas JB,
Nguyen NX and
Naumann GO.
The retinal nerve fiber layer in normal eye.
Ophthalmology
96:
627–632,
1989.
|
119. |
Repka MX and
Quigley HA.
The effect of age on normal human optic nerve fiber number and diameter.
Ophthalmology
96:
26–32,
1989.
|
120. |
Gao H and
Hallyfield JG.
Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells.
Invest Ophthalmol Vis Sci
33:
1–21,
1992.
|
121. |
Dallinger S,
Findl O,
Strenn K,
Eichler HG,
Wolzt M and
Schmetterer L.
Age dependence of choroidal blood flow.
J Am Geriatr Soc
46:
484–487,
1998.
|
122. |
Grunwald JE,
Hariprasad SM and
Dupont J.
Effect of aging on foveolar choroidal circulation.
Arch Ophthalmol
116:
150–154,
1998.
|
123. |
Straubhaar M,
Orgül S,
Gugleta K,
Schötzau A,
Erb C and
Flammer J.
Choroidal laser Doppler flowmetry in healthy subjects.
Arch Ophthalmol
118:
211–215,
2000.
|
124. |
Feeney‐Burns L,
Hilderbrand ES and
Eldridge S.
Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells.
Invest Ophthalmol Vis Sci
25:
195–200,
1984.
|
125. |
Feeney‐Burns L,
Burns R and
Gao C‐L.
Age‐related macular changes in humans.
Am J Ophthalmol
109:
265–278,
1990.
|
126. |
Dohi Y,
Kojima M,
Sato K and
Luscher TF.
Age‐related changes in vascular smooth muscle and endothelium.
Drugs Aging
7:
278–291,
1995.
|
127. |
Ramrattan RS,
van der Schaft TL,
Mooy CM,
de Bruijn WC,
Mulder PG and
de Jong PT.
Morphometric analysis of bruch's membrane, the choriocapillaris, and the choroid in aging.
Invest Ophthalmol Vis Sci
35:
2857–2864,
1994.
|
128. |
Ito YN,
Mori K,
Young‐Duvall J and
Yoneya S.
Aging changes of the choroidal dye filling pattern in indocyanine green angiography of normal subjects.
Retina
21:
237–242,
2001.
|
129. |
Lemmingson W.
Über das Vorkommen von Vasomotion im. Retinakreislauf.
Graefe's Arch Clin Exp Ophthalmol
176:
368–377,
1968.
|
130. |
Braun RD,
Linsenmeier RA and
Yancey CM.
Spontaneous fluctuations in oxygen tension in the cat retina.
Microvasc Res
44:
73–84,
1992.
|
131. |
Buerk DG and
Riva CE.
Vasomotion and spontaneous low‐frequency oscillations in blood flow and nitric oxide in cat optic nerve head.
Microvasc Res
55:
103–112,
1998.
|
132. |
Riva CE,
Pournaras CJ,
Poitry Yamate CL and
Petrig BL.
Rhythmic changes in velocity, volume, and flow of blood in the optic nerve head tissue.
Microvasc Res
40:
36–45,
1990.
|
133. |
Osusky R,
Schoetzau A and
Flammer J.
Variations in the blood flow of the human optic nerve head.
Eur J Ophthalmol
4:
364–369,
1997.
|
134. |
Riva CE,
Maret Y,
Polak K and
Logean E.
Wavelet transform (wt) of temporal fluctuations in optic nerve and choroidal blood flow and retinal vessel diameter.
Invest Ophthalmol Vis Sci
41:
516,
2000.
|
135. |
Fuchsjäger‐Mayrl G.
Retinal blood flow and systemic blood pressure in healthy young subjects.
Graefe's Arch ClinExp Ophthalmol
239:
673–677,
2001.
|
136. |
Polak K,
Polska E,
Luksch A,
Dorner G,
Fuchsjager‐Mayrl G,
Findl O,
Eichler HG,
Wolzt M and
Schmetterer L.
Choroidal blood flow and arterial blood pressure.
Eye
17:
84–88,
2003.
|
137. |
Fuchsjäger‐Mayrl G,
Kally B,
Georgopoulos M,
Rainer G,
Kircher K,
Buehl W,
Amoako‐Mensah T,
Eichler HG,
Vass C and
Schmetterer L.
Ocular blood flow and systemic blood pressure in patients with primary open‐angle glaucoma and ocular hypertension.
Invest Ophthalmol Vis Sci
45:
834–839,
2004.
|
138. |
Niknam RM,
Schocket LS,
Metelitsina T,
DuPont JC and
Grunwald JE.
Effect of hypertension on foveolar choroidal haemodynamics.
Br J Ophthalmol
88:
1263–1265,
2004.
|
139. |
Laties AM.
Central retinal artery innervation. Absence of adrenergic innervation to the intraocular branches.
Arch Ophthalmol
77:
405–409,
1967.
|
140. |
Sieker HO and
Hickam JB.
Normal and impaired retinal vascular reactivity.
Circ Res
7:
79–83,
1953.
|
141. |
Dollery CT,
Hill DW,
Mailer CM and
Ramalho PS.
High oxygen pressure and the retinal blood‐vessels.
The Lancet:
291‐292,
1964.
|
142. |
Deutsch TA,
Read JS,
Ernest JT and
Goldstick TK.
Effects of oxygen and carbon dioxide on the retinal vasculature in humans.
Arch Ophthalmol
101:
1278–1280,
1983.
|
143. |
Riva CE,
Grunwald JE and
Sinclair SH.
Laser doppler velocimetry study of the effect of pure oxygen breathing on retinal blood flow.
Invest Ophthalmol Vis Sci
24:
47–51,
1983.
|
144. |
Riva CE,
Pournaras CJ and
Tsacopoulos M.
Regulation of local oxygen tension and blood flow in the inner retinal during hyperoxia.
J Appl Physiol
61:
592–598,
1986.
|
145. |
Pakola SJ and
Grunwald JE.
Effects of oxygen and carbon dioxide on human retinal circulation.
Invest Ophthalmol Vis Sci
34:
2866–2870,
1993.
|
146. |
Kiss B,
Polska E,
Dorner G,
Polak K,
Findl O,
Mayrl GF,
Eichler HG,
Wolzt M and
Schmetterer L.
Retinal blood flow during hyperoxia in humans revisited: concerted results using different measurement techniques.
Microvasc Res
64:
75–85,
2002.
|
147. |
Jean‐Louis S,
Lovasik JV and
Kergoat H.
Systemic hyperoxia and retinal vasomotor responses.
Invest Ophthalmol Vis Sci
46:
1714–1720,
2005.
|
148. |
Wimpissinger B,
Resch H,
Berisha F,
Weigert G,
Schmetterer L and
Polak K.
Response of retinal blood flow to systemic hyperoxia in smokers and nonsmokers.
Graefe's Arch Clin Exp Ophthalmol
243:
646–652,
2005.
|
149. |
Hickam JB and
Frayser R.
Studies of the retinal circulation in man, observations on vessel diameter, arteriovenous oxygen difference, and mean circulation time.
Circulation
33:
302–316,
1966.
|
150. |
Sponsel WE,
DePaul KL and
Zetlan SR.
Retinal hemodynamic effects of carbon dioxide, hyperoxia, and mild hypoxia.
Invest Ophthalmol Vis Sci
33:
1864–1869,
1992.
|
151. |
Langhans MJ,
Michelson G and
Groh MJM.
Effect of breathing 100% oxygen on retinal and optic nerve head capillary blood flow in smokers and non‐smokers.
Br J Ophthalmol
81:
365–369,
1997.
|
152. |
Schmetterer L,
Findl O,
Strenn K,
Graselli U,
Kastner J,
Eichler HG and
Wolzt M.
Role of NO in the O2 and CO2 responsiveness of cerebral and ocular circulation in humans.
Am J Physiol Society
273:
R2005–R2012,
1997.
|
153. |
Chung HS,
Harris A,
Halter PJ,
Kagemann L,
Roff EJ,
Garzozi HJ,
Hosking SL and
Martin BJ.
Regional differences in retinal vascular reactivity.
Invest Ophthalmol Vis Sci
40:
2448–2453,
1999.
|
154. |
Harris A,
Douglas RA,
Pillunat L,
Joos K,
Knighton RW,
Kagemann L and
Martin BJ.
Laser Doppler flowmetry measurement of changes in human optic nerve head blood flow in response to blood gas perturbations.
J Glaucoma
5:
258–265,
1996.
|
155. |
Haefliger IO,
Lietz A,
Griesser SM,
Ulrich A,
Schötzau A,
Hendrickson P and
Flammer J.
Modulation of Heidelberg retinal flowmeter parameter flow at the papilla of healthy subjects: effect of carbogen, oxygen, high intraocular pressure, and beta‐blocker.
Surv Ophthalmol
43:
S59–S65,
1999.
|
156. |
Aim A and
Bill A.
The oxygen supply to the retina. I. Effects of changes in intraocular and arterial pO2 and pCO2 on the oxygen tension in the vitreous body of the cat.
Acta Physiol Scand
84:
261–274,
1972.
|
157. |
Kergoat H and
Faucher C.
Effects of oxygen and carbogen breathing on choroidal hemodynamics in humans.
Invest Ophthalmol Vis Sci
40:
2906–2911,
1999.
|
158. |
Schmetterer L,
Dallinger S,
Findl O,
Graselli U,
Eichler HG and
Wolzt M.
A comparison between laser interferometric measurement of fundus pulsation and pneumotonometric measurement of pulsatile ocular blood flow. 2. Effects of changes in pCO2 and pO2 and of isoproterenol.
Eye
1:
46–52,
2000.
|
159. |
Geiser MH,
Riva CE,
Dorner GT,
Diermann U,
Luksch A and
Schmetterer L.
Response of choroidal blood flow in the foveal region to hyperoxia and hyperoxia‐hypercapnia.
Curr Eye Res
21
(2):
669–676,
2000.
|
160. |
Dallinger S,
Dorner GT,
Wenzel R,
Graselli U,
Findl O,
Eichler HG and
Schmetterer L.
Endothelin‐1 contributes to hyperoxia‐induced vasoconstriction in the human retina.
Invest Ophthalmol Vis Sci
41:
864–869,
2000.
|
161. |
Zhu Y,
Park TS and
Gidday JM.
Mechanisms of hyperoxia‐induced reductions in retinal blood flow in newborn pig.
Exp Eye Res
67:
357–369,
1998.
|
162. |
Haefliger I,
Chen Q and
Anderson DR.
Effect of oxygen on relaxation of retinal pericytes by sodium nitroprusside.
Graefe's Arch Clin Exp Ophthalmol
235:
388–392,
1997.
|
163. |
Cusick PL,
Benson OO,
Capt MD and
Boothby WM.
Effect of anoxia and of high concentration of oxygen on the retinal vessels: preliminary report.
Proc Staff Meeting Mayo Clinic
15:
500–502,
1940.
|
164. |
Strenn K,
Menapace R,
Rainer G,
Findl O,
Wolzt M and
Schmetterer L.
Reproducibility and sensitivity of scanning laser Doppler flowmetry during graded changes in pO2.
Br J Ophthalmol
81:
360–364,
1997.
|
165. |
Delaey C and
Van de Voorde J.
Retinal arterial tone is controlled by a retinal‐derived relaxing factor.
Circ Res
83:
714–720,
1998.
|
166. |
Kaley G.
Novel vasodilator released by retinal tissue.
Circ Res
83:
772–773,
1998.
|
167. |
Kergoat H,
Marinier JA and
Lovasik JV.
Effects of transient mild systemic hypoxia on the pulsatile choroidal blood flow in healthy young human adults.
Curr Eye Res
30:
465–470,
2005.
|
168. |
Dorner GT,
Garhöfer G,
Zawinka C,
Kiss B and
Schmetterer L.
Response of retinal blood flow to CO2‐breathing in humans.
Eur J Ophthalmol
12:
459–466,
2002.
|
169. |
Hickam JB and
Frayser R.
A photographic method for measuring the mean retinal circulation time using fluorescein.
Invest Ophthalmol Vis Sci
4
(5):
876–884,
1963.
|
170. |
Harris A,
Arend O,
Wolf S,
Cantor LB and
Martin BJ.
CO2 dependence of retinal arterial and capillary blood velocity.
Acta Ophthalmol Scand
73:
421–424,
1995.
|
171. |
Roff El,
Harris A,
Chung HS,
Hosking SL,
Morrison AM,
Halter PJ and
Kagemann L.
Comprehensive assessment of retinal, choroidal and retrobulbar haemodynamics during blood gas perturbation.
Graefe's Arch Clin Exp Ophthalmol
237:
984–990,
1999.
|
172. |
Riva CE,
Cranstoun SD,
Grunwald JE and
Petrig BL.
Choroidal blood flow in the foveal region of the human ocular fundus.
Invest Ophthalmol Vis Sci
35:
4273–4281,
1994.
|
173. |
Wimpissinger B,
Resch H,
Berisha F,
Weigert G,
Schmetterer L and
Polak K.
Response of choroidal blood flow to carbogen breathing in smokers and non‐smokers.
Br J Ophthalmol
6:
776–781,
2004.
|
174. |
Tsacopoulos M and
Levy S.
Intraretinal acid‐base studies using pH glass microelectrodes: effect of respiratory and metabolic acidosis and alkalosis on inner‐retinal pH.
Exp Eye Res
23:
495–504,
1976.
|
175. |
Pournaras CJ,
Tsacopoulos M and
Chapuis P.
Studies on the role of prostaglandins in the regulation of retinal blood flow.
Exp Eye Res
26:
687–697,
1978.
|
176. |
Bayerle‐Eder M,
Wolzt M,
Polska E,
Langenberger H,
Pleiner J,
Teherani D,
Rainer G,
Polak K,
Eichler HG and
Schmetterer L.
Hypercapnia‐induced cerebral and ocular vasodilation is not altered by glibenclamide in humans.
Am J Physiol Regul Integr Comp Physiol
278:
R1167–R1673,
2000.
|
177. |
Lind AR,
Taylor SH,
Humphreys PW,
Kennelly BM and
Donald KW.
The circulatory effects of sustained voluntary muscle contraction.
Clin Sci
27:
229–244,
1964.
|
178. |
Robinson F,
Riva CE,
Grunwald JE,
Petrig BL and
Sinclair SH.
Retinal blood flow autoregulation in response to an acute increase in blood pressure.
Invest Ophthalmol Vis Sci
27:
722–726,
1986.
|
179. |
Riva CE,
Titzé P,
Hero M and
Movaffaghy A.
Choroidal blood flow during isometric exercises.
Invest Ophthalmol Vis Sci
38:
2338–2343,
1997.
|
180. |
Kiss B,
Dallinger S,
Polak K,
Findl O,
Eichler HG and
Schmetterer L.
Ocular hemodynamics during isometric exercise.
Microvasc Res
61:
1–13,
2001.
|
181. |
Dumskyj MJ,
Eriksen JE,
Doré CJ and
Kohner EM.
Autoregulation in the human retinal circulation: assessment using isometric exercise, laser Doppler velocimetry, and computer‐assisted image analysis.
Microvasc Res
51:
378–392,
1996.
|
182. |
Movaffaghy A,
Chamot SR,
Petrig BL and
Riva CE.
Blood flow in the human optic nerve head during isometric exercise.
Exp Eye Res
67:
561–568,
1998.
|
183. |
Blum M,
Bachmann K,
Wintzer D,
Riemer T,
Vilser W and
Strobel J.
Noninvasive measurement of the Bayliss effect in retinal autoregulation.
Graefe's Arch Clin Exp Ophthalmol
237:
296–300,
1999.
|
184. |
Alm A and
Bill A.
The effect of stimulation of the cervical sympathetic chain on retinal oxygen tension and on uveal, retinal and cerebral blood flow in cats.
Acta Physiol Scand
88:
84–94,
1973.
|
185. |
Alm A.
The effect of sympathetic stimulation on blood flow through the uvea, retina and optic nerve in monkeys (Macaca irus).
Exp Eye Res
25:
19–24,
1977.
|
186. |
Ernest JT.
The effect of systolic hypertension on rhesus monkey eyes after ocular sympathectomy.
Am J Ophthalmol
84:
341–344,
1977.
|
187. |
Fuchsjäger‐Mayrl G,
Luksch A,
Malec M,
Polska E,
Wolzt M and
Schmetterer L.
Role of endothelin‐1 in choroidal blood flow regulation during isometric exercice in healthy humans.
Invest Ophthalmol Vis Sci
44:
728–733,
2003.
|
188. |
Luksch A,
Polska E,
Imhof A,
Schering J,
Fuchsjäger‐Mayrl G,
Wolzt M and
Schmetterer L.
Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans.
Invest Ophthalmol Vis Sci
44:
734–739,
2003.
|
189. |
Marcus DF,
Edelhauser HF,
Maksud MG and
Wiley RL.
Effects of a sustained muscular contraction on human intraocular pressure.
Clin Sci Mol Med
47:
249–257,
1974.
|
190. |
McArdle WD,
Katch FL and
Katch VL.
The cardiovascular system.
Exercise Physiology. Energy, Nutrition, and Human Performance.
Williams & Wilkins,
1996,
pp. 267–283.
|
191. |
Schmidt KG,
Mittag TW,
Pavlovic S and
Hessemer V.
Influence of physical exercise and nifedipine on ocular pulse amplitude.
Graefe's Arch Clin Exp Ophthalmol
234:
527–532,
1996.
|
192. |
Lovasik JV,
Kergoat H,
Riva CE,
Petrig BL and
Geiser MH.
Choroidal blood flow during exercise‐induced changes in the ocular perfusion pressure.
Invest Ophthalmol Vis Sci
44:
2126–2132,
2003.
|
193. |
Yatsuka Y,
Matsukubo S,
Tsutsumi K,
Kotegawa T,
Nakamura K and
Nakano S.
Ophthalmic artery flow velocity after pyhsical exercice in healthy men.
Jpn J Ophthalmol
40:
103–110,
1996.
|
194. |
Bill A,
Linder M and
Linder J.
The protective role of ocular sympathetic vasomotor nerves in acute arterial hypertension.
Bibl Anat
16:
30–35,
1977.
|
195. |
Michelson G,
Groh M and
Gründler A.
Regulation of ocular blood flow during increases of arterial blood pressure.
Br J Ophthalmol
78:
461–465,
1994.
|
196. |
Sayegh FN and
Weigelin E.
Functional ophthalmodynamometry. Comparison between brachial and ophthalmic blood pressure in sitting and supine position.
Angiology
34:
176–182,
1983.
|
197. |
James CB and
Smith SE.
The effect of posture on the intraocular pressure and pulsatile ocular blood flow in patients with non‐arteritic anterior ischaemic optic neuropathy.
Eye
5:
309–314,
1991.
|
198. |
Evans DW,
Harris A,
Garrett M,
Chung HS and
Kagemann L.
Glaucoma patients demonstrate faulty autoregulation of ocular blood flow during posture change.
Br J Ophthalmol
83:
809–813,
1999.
|
199. |
Longo A,
Geiser MH and
Riva CE.
Posture changes and subfoveal choroidal blood flow.
Invest Ophthalmol Vis Sci
45:
546–551,
2004.
|
200. |
Kothe AC.
The effect of posture on intraocular pressure and pulsatile ocular blood flow in normal and glaucomatous eyes.
Surv Ophthalmol
38:
S191–S197,
1994.
|
201. |
Baxter GM,
Williamson TH,
McKillop G and
Dutton GN.
Color Doppler ultrasound of orbital and optic nerve blood flow: effects of posture and timolol 0.5%.
Invest Ophthalmol Vis Sci
33:
604–610,
1992.
|
202. |
Lovasik JV and
Kergoat H.
Gravity‐induced homeostatic reactions in the macular and choroidal vasculature of the human eye.
Aviat Space Environ Med:
1010‐1014,
1994.
|
203. |
Trew DR and
Smith SE.
Postural studies in pulsatile ocular blood flow: I ocular hypertension and normotension.
Br J Ophthalmol
75:
466–470,
1991.
|
204. |
Kaeser P,
Orgul S,
Zawinka C,
Reinhard G and
Flammer J.
Influence of change in body position on choroidal blood flow in normal subjects.
Br J Ophthalmol
89:
1302–1305,
2005.
|
205. |
Rojanapongpun P and
Drance SM.
The response of blood flow velocity in the ophthalmic artery and blood flow of the finger to warm and cold stimuli in glaucomatous patients.
Graefe's Arch Clin Exp Ophthalmol
231:
375–377,
1993.
|
206. |
Nagaoka T,
Mori F and
Yoshida A.
Retinal artery response to acute systemic blood pressure increase during cold pressor test in humans.
Invest Ophthalmol Vis Sci
43:
1941–1945,
2002.
|
207. |
Nicolela MT,
Ferrier SN,
Morrison CA,
Archibald ML,
LeVatte TL,
Wallace K,
Chauhan BC and
LeBlanc RP.
Effects of cold‐induced vasospasm in glaucoma: the role of endothelin‐1.
Invest Ophthalmol Vis Sci
44:
2565–2572,
2003.
|
208. |
Bill A.
Autonomic nervous control of uveal blood flow.
Acta Physiol Scand
56:
70–81,
1962.
|
209. |
Stjernschantz J,
Alm A and
Bill A.
Effects of intracranial oculomotor nerve stimulation on ocular blood flow in rabbits: modification by indomethacin.
Exp Eye Res
23:
461–469,
1976.
|
210. |
Stjernschantz J,
Geijer C and
Bill A.
Electrical stimulation of the fifth cranial nerve in rabbits: effects on ocularblood flow, extravascular albumin content and intraocular pressure.
Exp Eye Res
28:
229–238,
1979.
|
211. |
Stjernschantz J and
Bill A.
Vasomotor effects of facial nerve stimulation: noncholinergic vasodilatation in the eye.
Acta Physiol Scand
109:
45–50,
1980.
|
212. |
Guyton AC,
Jones CJ and
Coleman TJ.
Circulatory Physiology: Cardiac Output and its Regulation,
2nd ed.
Philadelphia:
W.B. Saunders Company,
1973.
|
213. |
Riva CE and
Loebl M.
Autoregulation of blood flow in the capillaries of the human macula.
Invest Ophthalmol Vis Sci
16
(6):
568–571,
1977.
|
214. |
Riva CE,
Sinclair SH and
Grunwald JE.
Autoregulation of retinal circulation in response to decrease of perfusion pressure.
Invest Ophthalmol Vis Sci
21:
34–38,
1981.
|
215. |
Riva CE,
Grunwald JE and
Petrig BL.
Autoregulation of human retinal blood flow.
Invest Ophthalmol Vis Sci
27:
1706–1712,
1986.
|
216. |
Grunwald JE,
Sinclair SH and
Riva CE.
Autoregulation of the retinal circulation in response to decrease of intraocular pressure below normal.
Invest Ophthalmol Vis Sci
23:
124–127,
1982.
|
217. |
Pillunat LE,
Anderson DR,
Knighton RW,
Joos KM and
Feuer WJ.
Autoregulation of human optic nerve head circulation in response to increased intraocular pressure.
Exp Eye Res
64:
737–744,
1997.
|
218. |
Riva CE,
Hero M,
Titzé P and
Petrig BL.
Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure.
Graefe's Arch Clin Exp Ophthalmol
235:
618–626,
1997.
|
219. |
Aaslid R,
Lindegaard K‐F,
Sorteberg W and
Nornes H.
Cerebral autoregulation dynamics in humans.
Stroke
20:
45–52,
1989.
|
220. |
Florence G and
Seylaz J.
Rapid autoregulation of cerebral blood flow: a laser Doppler flowmetry study.
J Cerebr Blood Flow Metabol
12:
674–680,
1992.
|
221. |
Delaey C and
Van de Voorde J.
Pressure‐induced myogenic responses in isolated bovine retinal arteries.
Invest Ophthalmol Vis Sci
41:
1871–1875,
2000.
|
222. |
Jeppesen P,
Aalkjaer C and
Bek T.
Bradykinin relaxation in small porcine retinal arterioles.
Invest Ophthalmol Vis Sci
43:
1891–1895,
2002.
|
223. |
Pournaras CJ.
Autoregulation of ocular blood flow. In:
Ocular Blood Flow. New Insights Into the Pathogenesis of Ocular Diseases,
eds Kaiser HJ,
Flammer J and
Hendrickson Ph.
Basel:
Karger,
1996.
pp. 40–50.
|
224. |
Anderson DR.
Introductory comments on blood flow autoregulation in the optic nerve head and vascular risk factors in glaucoma.
Surv Ophthalmol
43:
S5–S9,
1999.
|
225. |
Okuno T,
Hiedehiro O,
Sugiyama T,
Yang Y and
Ikeda T.
Evidence that nitric oxide is involved in autoregulation in optic nerve head of rabbits.
Invest Ophthalmol Vis Sci
43:
784–789,
2002.
|
226. |
Kiel JW and
Shepherd AP.
Autoregulation of choroidal blood flow in the rabbit.
Invest Ophthalmol Vis Sci
33:
2399–2410,
1992.
|
227. |
Kiel JW and
van Heuven WAJ.
Ocular perfusion pressure and choroidal blood flow in the rabbit.
Invest Ophthalmol Vis Sci
36:
579–585,
1995.
|
228. |
Kiel JW.
The effect of arterial pressure on the ocular pressure‐volume relationship in the rabbit.
Exp Eye Res
60:
267–278,
1995.
|
229. |
Bill A.
Intraocular pressure and blood flow through the uvea.
Acta Ophthalmol
67:
336–348,
1962.
|
230. |
Friedman E.
Choroidal blood flow. Pressure‐flow relationships.
Arch Ophthalmol
83:
95–99,
1970.
|
231. |
Armaly MF and
Araki M.
Effect of ocular pressure on choroidal circulation in the cat and rhesus monkey.
Invest Ophthalmol Vis Sci
14:
584–591,
1975.
|
232. |
Yu DY,
Alder VA,
Cringle SJ and
Brown MJ.
Choroidal blood flow measured in the dog eye in vivo and in vitro by local hydrogen clearance polarography: validation of a technique and response to raised intraocular pressure.
Exp Eye Res
46:
289–303,
1988.
|
233. |
Gherezghiher T,
Okubo H and
Koss MC.
Choroidal and ciliary body blood flow analysis: application of laser Doppler flowmetry in experimental animals.
Exp Eye Res
53:
151–156,
1991.
|
234. |
Alm A.
Ocular circulation. In:
Adler's Physiology of the Eye,
eds William M and
Hart J.
St. Louis:
Mosby Year Book,
1992,
pp. 198–203.
|
235. |
Riva CE,
Titzé P and
Petrig BL.
Effect of acute decrease of perfusion pressure on choroidal blood flow in humans.
Invest Ophthalmol Vis Sci
38:
1752–1760,
1997.
|
236. |
Flügel C,
Tamm ER,
Mayer B and
Lütjen‐Drecoll E.
Species differences in choroidal vasodilative innervation: evidence for specific intrinsic nitrergic and VIP‐positive neurons in the human eye.
Invest Ophthalmol Vis Sci
35:
592–599,
1994.
|
237. |
Chamot SR,
Movaffaghy A,
Petrig BL and
Riva CE.
Iris blood flow response to acute decreases in ocular perfusion pressure: a laser Doppler flowmetry study in humans.
Exp Eye Res
70:
107–112,
2000.
|
238. |
Havelius U,
Hansen F,
Hindfelt B and
Krakau T.
Human ocular vasodynamic changes in light and darkness.
Invest Ophthalmol Vis Sci
40:
1850–1855,
1999.
|
239. |
Feke GT,
Zuckerman R,
Green GJ and
Weiter JJ.
Responses of human retinal blood flow to light and dark.
Invest Ophthalmol Vis Sci
24:
136–141,
1983.
|
240. |
Riva CE,
Grunwald JE and
Petrig BL.
Reactivity of the human retinal circulation to darkness: a laser Doppler velocimetry study.
Invest Ophthalmol Vis Sci
24:
737–740,
1983.
|
241. |
Hill DW and
Houseman J.
Retinal blood flow in the cat following periods of light and darkness.
Exp Eye Res
41:
219–225,
1985.
|
242. |
Riva CE,
Petrig BL and
Grunwald JE.
Near infrared retinal laser Doppler velocimetry.
Laser Ophthalmol
1:
211–215,
1987.
|
243. |
Barcsay G,
Seres A and
Németh J.
The diameters of the human retinal branch vessels do not change in darkness.
Invest Ophthalmol Vis Sci
44:
3115–3118,
2003.
|
244. |
Longo A,
Geiser MH and
Riva CE.
Subfoveal choroidal blood flow in response to light‐dark exposure.
Invest Ophthalmol Vis Sci
41:
2678–2683,
2000.
|
245. |
Fuchsjager‐Mayrl G,
Polska E,
Malec M and
Schmetterer L.
Unilateral light‐dark transitions affect choroidal blood flow in both eyes.
Vision Res
41:
2919–2924,
2001.
|
246. |
Riva CE,
Logean E,
Petrig BL and
Falsini B.
Effet de l'adaptation à l'obscurité sur le flux rétinien.
Klinische Monatsblätter für Augenheilkunde
216:
309–310,
2000.
|
247. |
Bill A and
Nilsson SF.
Control of ocular blood flow.
J Cardiovasc Pharmacol
7:
S96–S102,
1985.
|
248. |
Parver LM.
Temperature modulating action of choroidal blood flow.
Eye
5:
181–185,
1991.
|
249. |
Bill A and
Sperber GO.
Control of retinal and choroidal blood flow.
Eye
4:
319–325,
1990.
|
250. |
Morimoto N.
Study on choroidal blood flow at dark light adaptation.
Nippon Ganka Gakkai Zasshi
95:
235–240,
1991.
|
251. |
Wang L,
Kondo M and
Bill A.
Glucose metabolism in cat outer retina.
Invest Ophthalmol Vis Sci
38:
48–55,
1997.
|
252. |
Formaz F,
Riva CE and
Geiser MH.
Diffuse luminance flicker increases retinal vessel diameter in humans.
Curr Eye Res
16:
1252–1257,
1997.
|
253. |
Polak K,
Schmetterer L and
Riva CE.
Influence of flicker frequency on flicker induced changes of retinal vessel diameter.
Invest Ophthalmol Vis Sci
43:
2721–2726,
2002.
|
254. |
Nagel E and
Vilser W.
Flicker observation light induces diameter response in retinal arterioles: a clinical methodological study.
Br J Ophthalmol
88:
54–56,
2004.
|
255. |
Kotliar KE,
Vilser W,
Nagel E and
Lanzl IM.
Retinal vessel reaction in response to chromatic flickering light.
Graefe's Arch Clin Exp Ophthalmol
242:
377–392,
2004.
|
256. |
Riva CE and
Petrig BL.
The regulation of retinal and optic nerve blood flow: effect of diffuse luminance flicker determined by the laser Doppler and the blue field simulation techniques.
Les Seminaires Ophtalmologiques d'IPSEN. Vision et Adaptation.
Paris:
Elsevier,
1995,
pp. 61–71.
|
257. |
Harrison JM,
Elliot WR, III,
Kiel JW and
Sponsel WE.
Effect of 10 Hz flicker on retinal hemodynamics measured by the Heidelberg retina flowmeter.
Vision Science and its Applications, OSA Technical Digest series
1:
61–65,
1997.
|
258. |
Michelson G,
Patzelt A and
Harazny J.
Flickering light increases retinal blood flow.
Retina
22:
336–343,
2002.
|
259. |
Schmeisser ET,
Harrison JM,
Sutter EE,
Kiel J,
Elliott WR and
Sponsel WE.
Modification of the Heidelberg retinal flowmeter to record pattern and flicker induced blood flow changes.
Doc Ophthalmol
106:
257–263,
2003.
|
260. |
Garhöfer G,
Zawinka C,
Resch H,
Huemer KH,
Dorner GT and
Schmetterer L.
Diffuse luminance flicker increase blood flow in major retinal arteries and veins.
Vision Res
44:
833–838,
2004.
|
261. |
Riva CE,
Logean E and
Falsini B.
Temporal dynamics and magnitude of the blood flow response at the optic disk in normal subjects during functional retinal flicker‐stimulation.
Neurosci Lett
356:
75–78,
2004.
|
262. |
Riva CE,
Falsini B and
Logean E.
Flicker‐evoked response of human optic nerve head blood flow: luminance versus chromatic modulation.
Invest Ophthalmol Vis Sci
42:
756–762,
2001.
|
263. |
Riva CE,
Logean E and
Falsini B.
Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina.
Prog Retin Eye Res
24:
183–215,
2005.
|
264. |
Falsini B,
Riva CE and
Logean E.
Flicker‐evoked changes in human optic nerve blood flow: relationship with retinal neural activity.
Invest Ophthalmol Vis Sci
43:
2721–2726,
2002.
|
265. |
Riva CE and
Buerk DG.
Dynamic coupling of blood flow to function and metabolism in the optic nerve head.
Neuro ophthalmol
20:
45–54,
1998.
|
266. |
Attwell D and
Laughlin SB.
An energy budget for signaling in the grey matter of the brain.
J Cerebr Blood Flow Metabol
21:
1133–1145,
2001.
|
267. |
Heeger DJ and
Ress D.
What does fMRI tell us about neuronal activity?
Nat Rev Neurosci
3:
142–151,
2002.
|
268. |
Ido Y,
Chang K and
Williamson JR.
NADH augments blood flow in physiologically activated retina and visual cortex.
Proc Natl Acad Sci USA
101:
653–658,
2004.
|
269. |
Buerk DG,
Riva CE and
Cranstoun SD.
Frequency and luminance‐dependent blood flow and K+ ion changes during flicker stimuli in cat optic nerve head.
Invest Ophthalmol Vis Sci
36:
2216–2227,
1995.
|
270. |
Donati G,
Pournaras CJ,
Munoz J‐L,
Poitry S,
Poitry‐Yamate CL and
Tsacopoulos M.
Nitric oxide controls arteriolar tone in the retina of the miniature pig.
Invest Ophthalmol Vis Sci
36:
2228–2237,
1995.
|
271. |
Buerk DG,
Riva CE and
Cranstoun SD.
Nitric oxide has a vasodilatory role in cat optic nerve head during flicker stimuli.
Microvasc Res
52:
13–26,
1996.
|
272. |
Kondo M,
Wang L and
Bill A.
The role of nitric oxide in hyperaemic response to flicker in the retina and optic nerve in cats.
Acta Ophthalmol Scand
75:
232–235,
1997.
|
273. |
Buerk DG and
Riva CE.
Adenosine enhances functional activation of blood flow in cat optic nerve head during photic stimulation independently from nitric oxide.
Microvasc Res
24:
254–264,
2002.
|
274. |
Metea MR and
Newman EA.
Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling.
J Neurosci
26:
2862–2870,
2006.
|
275. |
Dorner GT,
Garhöfer G,
Kiss B,
Polska E,
Polak K,
Riva CE and
Schmetterer L.
Nitric oxide regulates retinal vascular tone in man.
Am J Physiol Heart Circ Physiol
10,
2003.
|
276. |
Garhöfer G,
Zawinka C,
Huemer KH,
Schmetterer L and
Dorner G.
Flicker light‐induced vasodilatation in the human retina: effect of lactate and changes in mean arterial pressure.
Invest Ophthalmol Vis Sci
44:
5309–5314,
2003.
|
277. |
Huemer KH,
Garhöfer G,
Zawinka C,
Golestani E,
Litschauer B,
Schmetterer L and
Dorner GT.
Effects of dopamine on human retinal vessel diameter and its modulation during flicker stimulation.
Am J Physiol Heart Circ Physiol
284:
H358–H363,
2003.
|
278. |
Dorner GT,
Garhöfer G,
Huemer KH,
Riva CE,
Wolzt M and
Schmetterer L.
Hyperglycemia affects flicker‐induced vasodilation in the retina of healthy subjects.
Vision Res
43:
1495–1500,
2004.
|
279. |
Nagel E,
Vilser W and
Lanzl I.
Age, blood pressure, and vessel diameter as factors influencing the arterial retinal flicker response.
Invest Ophthalmol Vis Sci
45:
1486–1492,
2004.
|
280. |
Lovasik JV,
Kergoat H and
Wajszilber MA.
Blue flicker modifies the subfoveal choroidal blood flow in the human eye.
Am J Physiol Heart Circ Physiol
289:
H683–H691,
2005.
|
281. |
Furchgott RF and
Zawadzki JV.
The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.
Nature
288:
373–376,
1980.
|
282. |
Haefliger IO,
Meyer P,
Flammer J and
Luscher TF.
The vascular endothelium as a regulator of the ocular circulation: a new concept in ophthalmology.
Surv Ophthalmol
39:
123–132,
1994.
|
283. |
Haefliger IO,
Flammer J,
Bény JL and
Lüscher TF.
Endothelium‐dependent vasoactive modulation in the ophthalmic circulation.
Prog Retin Eye Res
20:
209–225,
2001.
|
284. |
Rees DD,
Palmer AM and
Moncada S.
Role of endothelium‐derived nitric oxide in the regulation of blood pressure.
Proc Natl Acad Sci USA
86:
3375–3378,
1989.
|
285. |
Yao K,
Tschudi M,
Flammer J and
Lüscher TF.
Endothelium‐dependent regulation of vascular ton of the porcine ophthalmic artery.
Invest Ophthalmol Vis Sci
32
(6):
1791–1798,
1991.
|
286. |
Haefliger IO,
Flammer J and
Lüscher TF.
Nitric oxide and endothelin‐1 are important regulators of human ophthalmic artery.
Invest Ophthalmol Vis Sci
33:
2340–2343,
1992.
|
287. |
Haefliger IO,
Zschauer A and
Anderson DR.
Relaxation of retinal pericyte contractile tone through the nitric oxide‐cyclic guanosine monophosphate pathway.
Invest Ophthalmol Vis Sci
35:
991–997,
1994.
|
288. |
Kawasaki Y,
Fujikado T,
Hosohata J,
Tano Y and
Tanaka Y.
The effect of nitric oxide on the contractile tone of Müller cells.
Ophthalmic Res
31:
387–391,
1999.
|
289. |
Deussen A,
Sonntag M and
Vogel R.
L‐arginine‐derived nitric oxide: a major determinant of uveal blood flow.
Exp Eye Res
57:
129–134,
1993.
|
290. |
Mann RM,
Riva CE,
Stone RA,
Barnes GE and
Cranstoun SD.
Nitric oxide and choroidal blood flow regulation.
Invest Ophthalmol Vis Sci
36:
925–930,
1995.
|
291. |
Granstam E,
Granstam SO,
Fellstrom B and
Lind L.
Endothelium‐dependent vasodilation in the uvea of hypertensive and normotensive rats.
Curr Eye Res
17:
189–196,
1998.
|
292. |
Koss MC.
Effect of nitric oxide synthesis inhibition on post‐occlusive choroidal blood flow in rats.
J Ocul Pharmacol Ther
16:
55–64,
2000.
|
293. |
Kiel JW.
Modulation of choroidal autoregulation in the rabbit.
Exp Eye Res
69:
413–429,
1999.
|
294. |
Harino S,
Nishimura K,
Kitanishi K,
Suzuki M and
Reinach P.
Role of nitric oxide in mediating retinal blood flow regulation in cats.
J Ocul Pharmacol Ther
15:
295–303,
1999.
|
295. |
Schmetterer L,
Krejcy K,
Kastner J,
Wolzt M,
Gouya G,
Findel O,
Lexer F,
Breiteneder H,
Fercher AF and
Eichler HG.
The effect of systemic nitric oxide‐synthase inhibition on ocular fundus pulsations in man.
Exp Eye Res
64:
305–312,
1997.
|
296. |
Luksch A,
Polak K,
Beier C,
Polska E,
Wolzt M,
Dorner GT,
Eichler HG and
Schmetterer L.
Effects of systemic NO synthase inhibition on choroidal and optic nerve head blood flow in healthy subjects.
Invest Ophthalmol Vis Sci
41:
3080–3084,
2000.
|
297. |
Delles C,
Michelson G,
Harazny J,
Oehmer S,
Hilgers KF and
Schmieder RE.
Impaired endothelial function of the retinal vasculature in hypertensive patients.
Stroke
35:
1289–1293,
2004.
|
298. |
Schmetterer L,
Wolzt M,
Graselli U,
Findel O,
Strenn K,
Simak S,
Kastner J,
Eichler HG and
Singer EA.
Nitric oxide synthase inhibition in the histamine headache model.
Cephalalgia
17:
175–182,
1997.
|
299. |
Schmetterer L,
Muller M,
Fasching P,
Diepolder C,
Gallenkamp A,
Zanaschka G,
Findl O,
Strenn K,
Mensik C,
Tschernko E,
Eichler HG and
Wolzt M.
Renal and ocular hemodynamic effects of insulin.
Diabetes
46:
1868–1874,
1997.
|
300. |
Dorner GT,
Garhöfer G,
Huemer KH,
Golestani E,
Zawinka C,
Schmetterer L and
Wolzt M.
Effects of adrenomedullin on ocular hemodynamic parameters in the choroid and the ophthalmic artery.
Invest Ophthalmol Vis Sci
44:
3947–3951,
2003.
|
301. |
Polak K,
Dorner G,
Kiss B,
Polska E,
Findl O,
Rainer G,
Eichler HG and
Schmetterer L.
Evaluation of the Zeiss retinal vessel analyser.
Br J Ophthalmol
84:
1285–1290,
2000.
|
302. |
Grunwald JE,
Iannaccone A and
Dupont J.
Effect of isosorbide mononitrate on the human optic nerve and choroidal circulations.
Br J Ophthalmol
83:
162–167,
1999.
|
303. |
Iannaccone AE,
Dupont J and
Grunwald JE.
Human retinal hemodynamics following administration of 5‐isosorbide mononitrate.
Curr Eye Res
20:
205–210,
2000.
|
304. |
Dallinger S,
Sieder A,
Strametz J,
Bayerle‐Eder M,
Wolzt M and
Schmetterer L.
Vasodilator effects of L‐arginine are stereospecific and augmented by insulin in humans.
Am J Physiol Endocrinol Metab
284:
E1106–E1111,
2003.
|
305. |
Schmetterer L and
Polak K.
Role of nitric oxide in the control of ocular blood flow.
Progr Retin Eye Res
20:
823–847,
2001.
|
306. |
Kass MA and
Holmberg NJ.
Prostaglandin and thromboxane synthesis by microsomes of rabbit ocular tissues.
Invest Ophthalmol Vis Sci
18:
166–171,
1979.
|
307. |
Hardy RJ,
Dumont I,
Bhattacharya M,
Hou X,
Lachapelle P,
Varma DR and
Chemtob S.
Oxidants, nitric oxide and prostanoids in the developing ocular vasculature: a basis for ischemic retinopathy.
Cardiovasc Res
47:
489–509,
2000.
|
308. |
Chemtob S,
Beharry K,
Rex J,
Chatterjee T,
Varma DR and
Aranda JV.
Ibuprofen enhances retinal and choroidal blood flow autoregulation in newborn piglets.
Invest Ophthalmol Vis Sci
32:
1799–1807,
1991.
|
309. |
Hardy P,
Abran D,
Li DY,
Fernandez H,
Varma DR and
Chemtob S.
Free radicals in retinal and choroidal blood flow autoregulation in the piglet: interaction with prostaglandins.
Invest Ophthalmol Vis Sci
35:
580–591,
1994.
|
310. |
Stjernschantz J,
Selen G,
Astin M and
Resul B.
Microvascular effects of selective prostaglandin analogues in the eye with special reference to latanoprost and glaucoma treatment.
Progr Retin Eye Res
19:
459–496,
2000.
|
311. |
Sponsel WE,
Paris G,
Trigo Y and
Pena M.
Comparative effects of latanoprost (Xalatan) and unoprostone (Rescula) in patients with open‐angle glaucoma and suspected glaucoma.
Am J Ophthalmol
134:
552–559,
2002.
|
312. |
Georgopoulos GT,
Diestelhorst M,
Fisher R,
Ruokonen P and
Krieglstein GK.
The short‐term effect of latanoprost on intraocular pressure and pulsatile ocular blood flow.
Acta Ophthalmol Scand
80:
54–58,
2002.
|
313. |
Liu CJ,
Ko YC,
Cheng CY,
Chiu AW,
Chou JC,
Huang A and
Liu JH.
Changes in intraocular pressure and ocular perfusion pressure after latanoprost 0.005% or brimonidine tartrate 0.2% in normal‐tension glaucoma patients.
Ophthalmology
109:
2241–2247,
2002.
|
314. |
Moncada S and
Vane JR.
Prostacyclin: homeostatic regulator or biological curiosity?
Clin Sci (Lond)
61:
369–372,
1981.
|
315. |
Hardy P,
Abran D,
Hou X,
Lahaie I,
Peri KJ,
Asselin P,
Varma DR and
Chemtob S.
A major role for prostacyclin in nitric oxide‐induced ocular vasorelaxation in the piglet.
Circ Res
83:
721–729,
1998.
|
316. |
Meyer P,
Flammer J and
Lüscher TF.
Endothelium‐dependent regulation of the ophthalmic microcirculation in the perfused porcine eye: role of nitric oxide and endothelins.
Invest Ophthalmol Vis Sci
34:
3614–3621,
1993.
|
317. |
Hata Y,
Clermont AC,
Yamauchi T,
Pierce EA,
Suzuma I,
Kagokawa H,
Yoshikawa H,
Robinson GS,
Ishibashi T,
Hashimoto T,
Umeda F,
Bursell SE and
Aiello LP.
Retinal expression, regulation, and functional bioactivity of prostacyclin‐stimulating factor.
J Clin Invest
106:
541–550,
2000.
|
318. |
Sandow SL.
Factors, fiction and endothelium‐derived hyperpolarizing factor.
Clin Exp Pharmacol Physiol
31:
563–570,
2004.
|
319. |
McNeish AJ,
Wilson WS and
Martin W.
Dominant role of an endothelium‐derived hyperpolarizing factor (EDHF)‐like vasodilator in the ciliary vascular bed of the bovine isolated perfused eye.
Br J Pharmacol
134:
912–920,
2001.
|
320. |
Rubanyi GM and
Polokoff MA.
Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology.
Pharmacol Rev
46:
325–415,
1994.
|
321. |
Nyborg NC,
Prieto D,
Benedito S and
Nielsen PJ.
Endothelin‐1‐induced contraction of bovine retinal small arteries is reversible and abolished by nitrendipine.
Invest Ophthalmol Vis Sci
32:
27–31,
1991.
|
322. |
Haefliger IO,
Flammer J and
Lüscher TF.
Heterogeneity of endothelium‐dependent regulation in ophthalmic and ciliary arteries.
Invest Ophthalmol Vis Sci
34:
1722–1730,
1993.
|
323. |
White LR,
Bakken IJ,
Sjaavaag I,
Elsas T,
Vincent MB and
Edvinsson L.
Vasoactivity mediated by endothelin ETA and ETB receptors in isolated porcine ophthalmic artery.
Acta Physiol Seand
157:
245–252,
1996.
|
324. |
Granstam E,
Wang and
Bill A.
Ocular effects of endothelin‐1 in the cat.
Curr Eye Res
11:
325–332,
1992.
|
325. |
Nishimura K,
Riva CE,
Harino S,
Reinach P,
Cranstoun SD and
Mita S.
Effects of endothelin‐1 on optic nerve head blood flow in cats.
J Ocul Pharmacol Ther
12:
75–83,
1996.
|
326. |
Takagi C,
King GL,
Takagi H,
Lin HW,
Clermont AC and
Bursell SE.
Endothelin‐1 action via endothelial receptors is a primary mechanism modulating retinal circulatory response to hyperoxia.
Invest Ophthalmol Vis Sci
37:
2099–2109,
1996.
|
327. |
Kiel JW.
Endothelin modulation of choroidal blood flow in the rabbit.
Exp Eye Res
71:
543–550,
2000.
|
328. |
Schmetterer L,
Findl O,
Strenn K,
Jilma B,
Graselli U,
Eichler HG and
Wolzt M.
Effects of endothelin‐1 (ET‐1) on ocular hemodynamics.
Curr Eye Res
16:
687–692,
1997.
|
329. |
Polak K,
Petternel V,
Luksch A,
Krohn J,
Findel O,
Polska E and
Schmetterer L.
Effect of endothelin and BQ123 on ocular blood flow parameters in healthy subjects.
Invest Ophthalmol Vis Sci
42:
2949–2956,
2001.
|
330. |
Polak K,
Luksch A,
Frank B,
Jandrasits K,
Polska E and
Schmetterer L.
Regulation of human retinal blood flow by endothelin‐1.
Exp Eye Res
76:
633–640,
2003.
|
331. |
Strenn K,
Matulla B,
Wolzt M,
Findl O,
Bekes MC,
Lamsfuss U,
Graselli U,
Rainer G,
Menapace R,
Eichler HG and
Schmetterer L.
Reversal of endothelin‐1‐induced ocular hemodynamic effects by low‐dose nifedipine in humans.
Clin Pharmacol Ther
63:
54–63,
1998.
|
332. |
Polska E,
Doelemeyer A,
Luksch A,
Ehrlich P,
Kaehler N,
Percicot C and
Lambrou GN.
Partial antagonism of endothelin 1‐induced vasoconstriction in the human choroid by topical unoprostone isopropyl.
Arch Ophthalmol
120:
348–352,
2002.
|
333. |
Igic R and
Kojovic V.
Angiotensin I converting enzyme (kininase II) in ocular tissues.
Exp Eye Res
30:
299–303,
1980.
|
334. |
Ferrari‐Dileo G,
Davis EB and
Anderson DR.
Angiotensin II binding receptors in retinal and optic nerve head blood vessels. An autoradiographic approach.
Invest Ophthalmol Vis Sci
32:
21–26,
1991.
|
335. |
Nyborg NC,
Nielsen PJ,
Prieto D and
Benedito S.
Angiotensin II does not contract bovine retinal resistance arteries in vitro.
Exp Eye Res
50:
469–474,
1990.
|
336. |
Nyborg NC and
Nielsen PJ.
Angiotensin‐II contracts isolated human posterior ciliary arteries.
Invest Ophthalmol Vis Sci
31:
2471–2473,
1990.
|
337. |
Spicher T,
Orgul S,
Gugleta K,
Teuchner B and
Flammer J.
The effect of losartan potassium on choroidal hemodynamics in healthy subjects.
J Glaucoma
11:
177–182,
2002.
|
338. |
Matulla B,
Streit G,
Pieh S,
Findel O,
Entlicher J,
Graselli U,
Eichler HG,
Wolzt M and
Schmetterer L.
Effect of losartan on cerebral and ocular circulation in healthy subjects.
Br J Clin Pharmacol
44:
369–375,
1997.
|
339. |
Krejcy K,
Wolzt M,
Kreuzer C,
Breiteneder H,
Schütz W,
Eichler HG and
Schmetterer L.
Characterization of angiotensin‐II effects on cerebral and ocular circulation by noninvasive methods.
Br J Clin Pharmacol
43:
501–508,
1997.
|
340. |
Granstam E and
Nilsson SF.
Non‐adrenergic sympathetic vasoconstriction in the eye and some other facial tissues in the rabbit.
Eur J Pharmacol
175:
175–186,
1990.
|
341. |
Kawarai M and
Koss MC.
Sympathetic vasodilation in the rat anterior choroid mediated by beta(1)‐adrenoceptors.
Eur J Pharmacol
386:
227–233,
1999.
|
342. |
Nilsson SF,
Linder J and
Bill A.
Characteristics of uveal vasodilation produced by facial nerve stimulation in monkeys, cats and rabbits.
Exp Eye Res
40:
841–852,
1985.
|
343. |
Linder J.
Effects of facial nerve section and stimulation on cerebral and ocular blood flow in hemorrhagic hypotension.
Acta Physiol Seand
112:
193,
1981.
|
344. |
Steinle JJ,
Krizsan‐Agbas D and
Smith PG.
Regional regulation of choroidal blood flow by autonomic innervation in the rat.
Am J Physiol Regul Integr Comp Physiol
279:
R202–R209,
2000.
|
345. |
Stone RA and
Kuwayama Y.
The nervous system and intraocular pressure. In:
The Glaucomas,
eds Ritch E,
Shields MB and
Ku DN.
St. Louis:
Mosby,
1989,
pp. 257–279.
|
346. |
Elsas T,
Uddman R and
Sundler F.
Pituitary adenylate cyclase‐activating peptide‐immunoreactive nerve fibers in the cat eye.
Graefe's Arch Clin Exp Ophthalmol
234:
573–580,
1996.
|
347. |
Yamamoto R,
Bredt DS,
Snyder SH and
Stone RA.
The localization of nitric oxide synthase in the rat eye and related cranial ganglia.
Neuroscience
54:
189–200,
1993.
|
348. |
Nilsson SF.
The significance of nitric oxide for parasympathetic vasodilation in the eye and other tissues in the cat.
Exp Eye Res
70:
61–72,
2000.
|
349. |
Alm A.
Effects of norepinephrine, angiotensin, dihydroergotamine, papaverine, isoproterenol, histamine, nicotinic acid, and xanthinol nicotinate on retinal oxygen tension in cats.
Acta Ophthalmol
50:
707–719,
1972.
|
350. |
Jandrasits K,
Luksch A,
Soregi G,
Dorner GT,
Polak K and
Schmetterer L.
Effect of noradrenaline on retinal blood flow in healthy subjects.
Ophthalmology
109:
291–295,
2002.
|
351. |
Kitanishi K,
Harino S,
Okamoto N,
Tani Y and
Nishimura K.
Optic nerve head and choroidal circulation measured by laser Doppler flowmetry in response to intravenous administration of noradrenaline.
Nippon Ganka Gakkai Zasshi
101:
215–219,
1997.
|
352. |
Bruinink A,
Dawis S,
Niemeyer G and
Lichtensteiger W.
Catecholaminergic binding sites in cat retina, pigment epithelium and choroid.
Exp Eye Res
43:
147–151,
1986.
|
353. |
Grajewsky AL,
Ferrari‐Dileo G,
Feuer WJ and
Anderson DR.
Beta‐adrenergic responsiveness of choroidal vasculature.
Ophthalmology
98:
989–995,
1991.
|
354. |
Harris A,
Spaeth GL,
Sergott RC,
Katz LJ,
Cantor LB and
Martin BJ.
Retrobulbar arterial hemodynamic effects of betaxolol and timolol in normal‐tension glaucoma.
Am J Ophthalmol
120:
168–175,
1995.
|
355. |
Schmetterer L,
Strenn K,
Findl O,
Breiteneder H,
Graselli U,
Agneter E,
Eichler HG and
Wolzt M.
Effects of antiglaucoma drugs on ocular hemodynamics in healthy volunteers.
Clin Pharmacol Therapeut
61
(5):
583–595,
1997.
|
356. |
Kiel JW and
Patel P.
Effects of timolol and betaxolol on choroidal blood flow in the rabbit.
Exp Eye Res
67:
501–507,
1998.
|
357. |
Jandrasits K,
Polak K,
Luksch A,
Stark B,
Dorner GT,
Eichler HG and
Schmetterer L.
Effects of atropine and propranolol on retinal vessel diameters during isometric exercise.
Ophthalmic Res
33:
185–190,
2001.
|
358. |
Polska E,
Luksch A,
Schering J,
Frank B,
Imhof A,
Fuchsjäger‐Mayrl G,
Wolzt M and
Schmetterer L.
Propranolol and atropine do not alter choroidal blood flow regulation during isometric exercise in healthy humans.
Microvasc Res
65:
39–44,
2003.
|
359. |
Wikberg‐Matsson A,
Uhlen S and
Wikberg JE.
Characterization of alpha(1)‐adrenoceptor subtypes in the eye.
Exp Eye Res
70:
51–60,
2000.
|
360. |
Wikberg‐Matsson A and
Simonsen U.
Potent alpha(2A)‐adrenoceptor‐mediated vasoconstriction by brimonidine in porcine ciliary arteries.
Invest Ophthalmol Vis Sci
42:
2049–2055,
2001.
|
361. |
Costa VP,
Harris A,
Stefansson E,
Flammer J,
Krieglstein GK,
Orzalesi N,
Heijl A,
Renard J‐P and
Serra LM.
The effects of anti‐glaucoma and systemic medications on ocular blood flow.
Progr Retin Eye Res
22:
769–805,
2003.
|
362. |
Chiou GC and
Chen YJ.
Improvement of ocular blood flow with dopamine antagonists on ocular‐hypertensive rabbit eyes.
Zhongguo Yao Li Xue Bao
13:
481–484,
1992.
|
363. |
Reitsamer HA,
Zawinka C and
Branka M.
Dopaminergic vasodilation in the choroidal circulation by d1/d5 receptor activation.
Invest Ophthalmol Vis Sci
45:
900–905,
2004.
|
364. |
Gidday JM and
Park TS.
Microcirculatory responses to adenosine in the newborn pig retina.
Pediatr Res
33:
620–627,
1993.
|
365. |
Gidday JM and
Park TS.
Adenosine‐mediated autoregulation of retinal arteriolar tone in the piglet.
Invest Ophthalmol Vis Sci
34:
2713–2719,
1993.
|
366. |
Polska E,
Ehrlich P,
Luksch A,
Fuchsjäger‐Mayrl G and
Schmetterer L.
Effects of adenosine on intraocular pressure, optic nerve head blood flow, and choroidal blood flow in healthy humans.
Invest Ophthalmol Vis Sci
44:
3110–3114,
2003.
|
367. |
Portellos M,
Riva CE,
Cranstoun SD,
Petrig BL and
Brucker AJ.
Effects of adenosine on ocular blood flow.
Invest Ophthalmol Vis Sci
36:
1904–1909,
1995.
|
368. |
Kohner EM,
Patel V and
Rassam SM.
Role of blood flow and impaired autoregulation in the pathogenesis of diabetic retinopathy.
Diabetes
44:
603–607,
1995.
|
369. |
Schmetterer L and
Wolzt M.
Ocular blood flow and associated functional deviations in diabetic retinopathy.
Diabetologia
42:
387–405,
1999.
|
370. |
Sullivan PM,
Davies GE,
Caldwell G,
Morris AC and
Kohner EM.
Retinal blood flow during hyperglycemia. A laser Doppler velocimetry study.
Invest Ophthalmol Vis Sci
31:
2041–2045,
1990.
|
371. |
Luksch A,
Polak K,
Matulla B,
Dallinger S,
Kapiotis S,
Rainer G,
Wolzt M and
Schmetterer L.
Glucose and insulin exert additive ocular and renal vasodilator effects on healthy humans.
Diabetologia
44:
95–103,
2001.
|
372. |
Bursell SE,
Clermont AC,
Kinsley BT,
Simonson DC,
Aiello LM and
Wolpert HA.
Retinal blood flow changes in patients with insulin‐dependent diabetes mellitus and no diabetic retinopathy.
Invest Ophthalmol Vis Sci
37:
886–897,
1996.
|
373. |
Williamson JR,
Chang K,
Frangos M,
Hasan KS,
Ido Y,
Kawamura T,
Nyengaard JR,
van den Enden M,
Kilo C and
Tilton RG.
Hyperglycemic pseudohypoxia and diabetic complications.
Diabetes
42:
801–813,
1993.
|
374. |
Ido Y,
Chang K,
Woolsey T and
Williamson JR.
NADH: sensor of blood flow need in brain, muscle, and other tissues.
FASEB
15:
1419–1421,
2001.
|
375. |
Garhöfer G,
Zawinka C,
Resch H,
Menke M,
Schmetterer L and
Dorner GT.
Effect of intravenous administration of sodium‐Iactate on retinal blood flow in healthy subjects.
Invest Ophthalmol Vis Sci
44:
3972–3976,
2003.
|
376. |
Garhöfer G,
Kopf A,
Polska E,
Malec M,
Dorner GT,
Wolzt M and
Schmetterer L.
Influence of exercise induced hyperlactatemia on retinal blood flow during normo‐ and hyperglycemia.
Curr Eye Res
28:
351–358,
2004.
|
377. |
Steinberg HO,
Brechtel G,
Johnson A,
Fineberg N and
Baron AD.
Insulin‐mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release.
J Clin Invest
94:
1172–1179,
1994.
|
378. |
Polak K,
Dallinger S,
Polska E,
Findl O,
Eichler HG,
Wolzt M and
Schmetterer L.
Effects of insulin on retinal and pulsatile choroidal blood flow in humans.
Arch Ophthalmol
118:
55–59,
2000.
|
379. |
Kohner EM,
Hamilton AM,
Saunders SJ,
Sutcliffe BA and
Bulpitt CJ.
The retinal blood flow in diabetes.
Diabetologia
11:
27–33,
1975.
|
380. |
Caldwell RB and
Fitzgerald ME.
The choriocapillaris in spontaneously diabetic rats.
Microvasc Res
42:
229–244,
1991.
|
381. |
McLeod DS and
Lutty GA.
High‐resolution histologic analysis of the human choroidal vasculature.
Invest Ophthalmol Vis Sci
35:
3799–3811,
1994.
|
382. |
Grunwald JE and
Bursell SE.
Hemodynamic changes as early markers of diabetic retinopathy.
Curr Opin Endocrinol Diabetes
3:
298–306,
1996.
|
383. |
MacKinnon JR,
McKillop G,
O'Brien C,
Swa K,
Butt Z and
Nelson P.
Colour Doppler imaging of the ocular circulation in diabetic retinopathy.
Acta Ophthalmol Scand
78:
386–389,
2000.
|
384. |
Dimitrova G,
Kato K,
Tamaki Y,
Yamashita H,
Nagahara M,
Sakurai M,
Kitano S and
Fukushima H.
Choroidal circulation in diabetic patients.
Eye
15:
602–607,
2001.
|
385. |
Päivänsalo M,
Pelkonen O,
Rajala U,
Keinanen‐Kiukaanniemi S and
Suramo I.
Diabetic retinopathy: sonographically measured hemodynamic alterations in ocular, carotid, and vertebral arteries.
Acta Radiologics
45:
404–410,
2004.
|
386. |
Goebel W,
Lieb WE,
Ho A,
Sergott RC,
Farhoumand R and
Grehn F.
Color Doppler imaging: a new technique to assess orbital blood flow in patients with diabetic retinopathy.
Invest Ophthalmol Vis Sci
36:
864–870,
1995.
|
387. |
Mendivil A,
Cuartero V and
Mendivil MP.
Ocular blood flow velocities in patients with proliferative diabetic retinopathy and healthy volunteers: a prospective study.
Br J Ophthalmol
79:
413–416,
1995.
|
388. |
Kawagishi T,
Nishizawa Y,
Emoto M,
Konishi T,
Maekawa K,
Hagiwara S,
Okuno Y,
Inada H,
Isshiki G and
Morii H.
Impaired retinal artery blood flow in IDDM patients before clinical manifestations of diabetic retinopathy.
Diabetes Care
18
(12):
1544–1549,
1995.
|
389. |
Güven D,
Özdemir H and
Hasanreisoglu B.
Hemodynamic alterations in diabetic retinopathy.
Ophthalmology
103:
1245–1249,
1996.
|
390. |
Feke GT,
Tagawa H,
Yoshida A,
Goger DG,
Weiter JJ,
Buzney SM and
McMeel JW.
Retinal circulatory changes related to retinopathy progression in insulin‐dependent diabetes mellitus.
Ophthalmology
92:
1517–1522,
1985.
|
391. |
Grunwald JE,
Riva CE,
Sinclair SH,
Brucker AJ and
Petrig BL.
Laser Doppler velocimetry study of retinal circulation in diabetes mellitus.
Arch Ophthalmol
104:
991–996,
1986.
|
392. |
Patel V,
Rassam S,
Newsom R,
Wiek J and
Kontier E.
Retinal blood flow in diabetic retinopathy.
BMJ
305:
678–683,
1992.
|
393. |
Fujio N,
Feke GT,
Goger DG and
McMeel JW.
Regional retinal blood flow reduction following half fundus photocoagulation treatment.
Br J Ophthalmol
78:
335–338,
1994.
|
394. |
Falck A and
Laatikainen L.
Retinal vasodilation and hyperglycaemia in diabetic children and adolescents.
Acta Ophthalmol Scand
73:
119–124,
1995.
|
395. |
Kohner EM.
Dynamic changes in the microcirculation of diabetics as related to diabetic microangiopathy.
Acta Med Scand Suppl
578:
41–47,
1975.
|
396. |
Findl O,
Dallinger S,
Rami B,
Polak K,
Schober E,
Wedrich A,
Ries E,
Eichler HG,
Wolzt M and
Schmetterer L.
Ocular haemodynamics and colour contrast sensitivity in patients with type 1 diabetes.
Br J Ophthalmol
84:
493–498,
2000.
|
397. |
Grunwald JE,
Brucker AJ,
Grunwald SE and
Riva CE.
Retinal hemodynamics in proliferative diabetic retinopathy. A laser Doppler velocimetry study.
Invest Ophthalmol Vis Sci
34:
66–71,
1993.
|
398. |
Grunwald JE,
Dupont J and
Riva CE.
Retinal haemodynamics in patients with early diabetes mellitus.
Br J Ophthalmol
80:
327–331,
1996.
|
399. |
Arend O,
Wolf S,
Jung F,
Bertram B,
Pöstgens H,
Toonen H and
Reim M.
Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network.
Br J Ophthalmol
75
(9):
514–518,
1991.
|
400. |
Bertram B,
Wolf S,
Fiehofer S,
Schulte K,
Arend O and
Reim M.
Retinal circulation times in diabetes mellitus type 1.
Br J Ophthalmol
75:
462–465,
1991.
|
401. |
Chung TW,
Liu AG and
Yu JH.
Increased red cell rigidity might affect retinal capillary blood flow velocity and oxygen transport efficiency in type II diabetes.
Diabetes Res
23:
75–82,
1993.
|
402. |
Sinclair SH.
Macular retinal capillary hemodynamics in diabetic patients.
Ophthalmology
98:
1580–1586,
1991.
|
403. |
Langham ME,
Grebe R,
Hopkins S,
Marcus S and
Sebag M.
Choroidal blood flow in diabetic retinopathy.
Exp Eye Res
52:
167–173,
1991.
|
404. |
Perrott RL,
North RV,
Drasdo N,
Ahmed KA and
Owens DR.
The influence of plasma glucose upon pulsatile ocular blood flow in subjects with type II diabetes mellitus.
Diabetologia
44:
700–705,
2001.
|
405. |
Schmidt KG,
von Rückmann A,
Kemkes‐Matthes B and
Hammes H.
Ocular pulse amplitude in diabetes mellitus.
Br J Ophthalmol
84:
1282–1284,
2000.
|
406. |
Nagaoka T,
Kitaya N,
Sugawara R,
Yokota H,
Mori F,
Hikichi T,
Fujio N and
Yoshida A.
Alteration of choroidal circulation in the foveal region in patients with type 2 diabetes.
Br J Ophthalmol
88:
1060–1063,
2004.
|
407. |
Schocket LS,
Brucker AJ,
Niknam RM,
Grunwald JE,
Dupont J and
Brucker AJ.
Foveolar choroidal hemodynamics in proliferative diabetic retinopathy.
Int Ophthalmol
25:
89–94,
2004.
|
408. |
Schmetterer L,
Salomon A,
Rheinberger A,
Unfried C,
Lexer F and
Wolzt M.
Fundus pulsation measurements in diabetic retinopathy.
Graefe's Arch Clin Exp Ophthalmol
235:
283–287,
1997.
|
409. |
Bertram B,
Wolf S,
Arend O,
Schulte K and
Reim M.
Retinal circulation and current blood glucose value in diabetic retinopathy.
Klinische Monatsblätter für Augenheilkunde
200:
654–657,
1992.
|
410. |
Atherton A,
Hill DW,
Young S and
Edwards EJ.
The effect of acute hyperglycaemia on the retinal circulation of the normal cat.
Diabetologia
18:
233–237,
1980.
|
411. |
Ernest JT,
Goldstick TK and
Engerman RL.
Hyperglycemia impairs retinal oxygen autoregulation in normal and diabetic dogs.
Invest Ophthalmol Vis Sci
24:
985–989,
1983.
|
412. |
Tiedeman JS,
Kirk SE,
Srinivas MS and
Beach JM.
Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy.
Ophthalmology
105:
31–36,
1998.
|
413. |
Fallon TJ,
Sleightholm MA,
Merrick C,
Chahal P and
Kohner EM.
The effect of acute hyperglycemia on flow velocity in the macular capillaries.
Invest Ophthalmol Vis Sci
28:
1027–1030,
1987.
|
414. |
Frank RN.
Diabetic retinopathy.
Progr in Retin Eye Res
14:
361–392,
1995.
|
415. |
DCCTRG. The effect of intensive treatment of diabetes on the development and progression of long‐term complications in insulin‐dependent diabetes mellitus.
New Engl J Med
329:
977–986,
1993.
|
416. |
Waldhäusl W,
Freyler H,
Bratusch‐Marrain P,
Vierhapper H and
Bruneder H.
Continuous subcutaneous insulin infusion: long‐term treatment in an unselected group of insulin‐dependent diabetics.
Dtsch Med Wochenschr
108:
570–577,
1983.
|
417. |
Grunwald JE,
Brucker AJ,
Schwartz SS,
Braunstein SN,
Baker L,
Petrig BL and
Riva CE.
Diabetic glycemic control and retinal blood flow.
Diabetes
39:
602–607,
1990.
|
418. |
Grunwald JE,
Brucker AJ,
Braunstein SN,
Schwartz SS,
Baker L,
Petrig BL and
Riva CE.
Strict metabolic control and retinal blood flow in diabetes.
Clin Sci:
598‐604,
1994.
|
419. |
Evans DW,
Harris A,
Danis RP,
Arend O and
Martin BJ.
Altered retrobulbar vascular reactivity in early diabetic retinopathy.
Br J Ophthalmol
81:
279–282,
1997.
|
420. |
Grunwald JE,
Riva CE,
Brucker AJ,
Sinclair SH and
Petrig BL.
Altered retinal vascular response to 100% oxygen breathing in diabetes mellitus.
Ophthalmology
91:
1447–1452,
1984.
|
421. |
Sinclair SH,
Grunwald JE,
Riva CE,
Braunstein SN,
Nichols CW and
Schwartz SS.
Retinal vascular autoregulation in diabetes mellitus.
Ophthalmology
89:
748–750,
1982.
|
422. |
Rassam SM,
Patel V and
Kohner EM.
The effect of experimental hypertension on retinal vascular autoregulation in humans: a mechanism for the progression of diabetic retinopathy.
Exp Physiol
80:
53–68,
1995.
|
423. |
Dumskyi MJ and
Kohner EM.
Retinal blood flow regulation in diabetes mellitus: impaired autoregulation and no detectable effect of autonomic neuropathy using laser Doppler velocimetry, computer assisted image analysis, and isometric exercice.
Microvasc Res
57:
353–356,
1999.
|
424. |
Lanigan LP,
Clark CV,
Allawi J,
Hill DW and
Keen H.
Responses of the retinal circulation to systemic autonomic stimulation in diabetes mellitus.
Eye
3:
39–47,
1989.
|
425. |
Movaffaghy A,
Chamot SR,
Dosso A,
Pournaras CJ,
Sommerhalder JR and
Riva CE.
Effect of isometric exercise on choroidal blood flow in type I diabetic patients.
Klinische Monatsblätter für Augenheilkunde
219:
299–301,
2002.
|
426. |
Garhöfer G,
Zawinka C,
Resch H,
Kothy P,
Schmetterer L and
Dorner G.
Reduced response of retinal vessel diameters to flicker stimulation in patients with diabetes.
Br J Ophthalmol
88:
891–897,
2004.
|
427. |
Mizutani M,
Gerhardinger C and
Lorenzi M.
Müller cell changes in human diabetic retinopathy.
Diabetes
47:
445–449,
1998.
|
428. |
Paemeleire K.
The cellular basis of neurovascular metabolic coupling.
Acta Neurol Belg
102:
153–157,
2002.
|
429. |
Schmetterer L,
Findel O,
Fasching P,
Ferber W,
Strenn K,
Breiteneder H,
Adam H,
Eichler HG and
Wolzt M.
Nitric oxide and ocular blood flow in patients with IDDM.
Diabetes
46:
653–658,
1997.
|
430. |
Dorner GT,
Garhöfer G,
Selenko N,
Fasching P,
Bayerle‐Eder M,
Schmetterer L and
Wolzt M.
The ocular hemodynamic response to nitric oxide synthase inhibition is unaltered in patients with early type I diabetes.
Graefe's Arch Clin Exp Ophthalmol
241:
619–624,
2003.
|
431. |
Osborne NN,
Casson RJ,
Wood JPM,
Chidlow G,
Graham M and
Melena J.
Retinal ischemia: mechanisms of damage and potential therapeutic strategies.
Progr Retin Eye Res
23:
91–147,
2004.
|
432. |
Witmer AN,
Vrensen GF,
Van Noorden CJ and
Schlingemann RO.
Vascular endothelial growth factors and angiogenesis in eye disease.
Progr Retin Eye Res
22:
1–29,
2003.
|
433. |
Lutty GA and
McLeod DS.
Retinal vascular development and oxygen‐induced retinopathy: a role for adenosine.
Progr Retin Eye Res
22:
95–111,
2003.
|
434. |
Drejer J,
Benveniste H,
Diemer NH and
Schousboe A.
Cellular origin of ischemia‐induced glutamate release from brain tissue in vivo and in vitro.
J Neurochem
45:
145–151,
1985.
|
435. |
Louzada‐Junior P,
Dias JJ,
Santos WF,
Lachat JJ,
Bradford HF and
Coutinho‐Netto J.
Glutamate release in experimental ischaemia of the retina: an approach using microdialysis.
J Neurochem
59:
358–363,
1992.
|
436. |
Vorwerk CK,
Lipton SA,
Zurakowski D,
Hyman BT,
Sabel BA and
Dreyer EB.
Chronic low‐dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine.
Invest Ophthalmol Vis Sci
37:
1618–1624,
1996.
|
437. |
Osborne NN,
Chidlow G,
Nash MS and
Wood JP.
The potential of neuroprotection in glaucoma treatment.
Curr Opin Ophthalmol
10:
82–92,
1999.
|
438. |
Sucher NJ,
Lipton SA and
Dreyer EB.
Molecular basis of glutamate toxicity in retinal ganglion cells.
Vision Res
37:
3483–3493,
1997.
|
439. |
Duarte CB,
Ferreira IL,
Santos PF,
Carvalho AL,
Agostinho PM and
Carvalho AP.
Glutamate in life and death of retinal amacrine cells.
Gen Pharmacol
30:
289–295,
1998.
|
440. |
Kuriyama H,
Nakagawa M and
Tsuda M.
Intracellular Ca(2+) changes induced by in vitro ischemia in rat retinal slices.
Exp Eye Res
73:
365–374,
2001.
|
441. |
Bonne C,
Mueller A and
Villain M.
Free radicals in retinal ischemia.
Gen Pharmacol
30:
275–280,
1998.
|
442. |
Shibuki H,
Katai N,
Yodoi J,
Uchida K and
Yoshimura N.
Lipid peroxidation and peroxynitrite in retinal ischemia‐reperfusion injury.
Invest Ophthalmol Vis Sci
41:
3607–3614,
2000.
|
443. |
Neufeld AH,
Kawai S,
Das S,
Vora S,
Gachie E,
Connor JR and
Manning PT.
Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase.
Exp Eye Res
75:
521–528,
2004.
|
444. |
Goldstein GM,
Ostwald P and
Roth S.
Nitric oxide: a review of its role in retinal function and disease.
Vision Res
36:
2979–2994,
1996.
|
445. |
Ju WK,
Kim KY and
Neufeld AH.
Increased activity of cyclo‐oxygenase‐2 signals early neurodegenerative events in the rat retina following transient ischemia.
Exp Eye Res
77:
137–145,
2003.
|
446. |
Fontaine V,
Mohand‐Said S,
Hanoteau N,
Fuchs C,
Pfizenmaier K and
Eisel U.
Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2.
Neurosci
22:
RC212,
2002.
|
447. |
Yoneda S,
Tanihara H,
Kido N,
Honda Y,
Goto W,
Hara H and
Miyawaki N.
Interleukin‐lbeta mediates ischemic injury in the rat retina.
Exp Eye Res
73:
661–667,
2001.
|
448. |
Roth S.
Endogenous neuroprotection in the retina.
Brain Res Bull
62:
461–466,
2004.
|
449. |
Ghiardi GJ,
Gidday JM and
Roth S.
The purine nucleoside adenosine in retinal ischemia‐reperfusion injury.
Vision Res
39:
2519–2535,
1999.
|
450. |
Weinreb RN and
Khaw PT.
Primary open‐angle glaucoma.
Lancet
363:
1711–1720,
2004.
|
451. |
Flammer J,
Pache M and
Resink T,
Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye.
Progr Retin Eye Res
20:
319–349,
2001.
|
452. |
Emre M,
Orgül S,
Gugleta K and
Flammer J.
Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation.
Br J Ophthalmol
88:
662–666,
2004.
|
453. |
Gherghel D,
Hosking SL and
Cunliffe IA.
Abnormal systemic and ocular vasclar response to temperature provocation in primary open‐angle glaucoma patients: a case for autonomic failure?
Invest Ophthalmol Vis Sci
45:
3546–3554,
2004.
|
454. |
Sehi M,
Flanagan JG,
Zeng L,
Cook RJ and
Trope GE.
Anterior optic nerve capillary blood flow response to diurnal variation of mean ocular perfusion pressure in early untreated primary open‐angle glaucoma.
Invest Ophthalmol Vis Sci
46:
4581–4587,
2005.
|
455. |
Nicolela MT,
Hnik P and
Drance SM.
Scanning laser Doppler flowmeter study of retinal and optic disk blood flow in glaucomatous patients.
Am J Ophthalmol
122:
775–783,
1996.
|
456. |
Michelson G,
Langhans MJ and
Groh MJM.
Perfusion of the juxta‐papillary retina and the neuroretinal rim area in primary open angle glaucoma.
J Glaucoma
5:
91–98,
1996.
|
457. |
Kerr J,
Nelson P and
O'Brien C.
A comparison of ocular blood flow in untreated primary open‐angle glaucoma and ocular hypertension.
Am J Ophthalmol
126:
42–51,
1998.
|
458. |
Findl O,
Rainer G,
Dallinger S,
Dorner G,
Polak K,
Kiss B,
Georgopoulos M,
Vass C and
Schmetterer L.
Assessment of optic disk blood flow in patients with open‐angle glaucoma.
Am J Ophthalmol
130:
589–596.
2000.
|
459. |
Logan JF,
Rankin SJ and
Jackson AJ.
Retinal blood flow measurements and neuroretinal rim damage in glaucoma.
Br J Ophthalmol
88:
1049–1054,
2004.
|
460. |
Yamazaki Y and
Drance SM.
The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma.
Am J Ophthalmol
124:
287–295.
1997.
|
461. |
Satilmis M,
Orgul S,
Doubler B and
Flammer J.
Rate of progression of glaucoma correlates with retrobulbar circulation and intraocular pressure.
Am J Ophthalmol
135:
664–669,
2003.
|
462. |
Zink JM,
Grunwald JE,
Piltz‐Seymour JR,
Staii A and
Dupont J.
Association between lower optic nerve laser Doppler blood volume measurements and glaucomatous visual field progression.
Br J Ophthalmol
87:
1487–1491,
2003.
|
463. |
Grunwald JE,
Riva CE,
Stone RA,
Keates EU and
Petrig BL.
Retinal autoregulation in open‐angle glaucoma.
Ophthalmology
91:
1690–1694,
1984.
|
464. |
Nagel E,
Vilser W and
Lanzl IM.
Retinal vessel reaction to short‐term IOP elevation in ocular hypertensive and glaucoma patients.
Eur J Ophthalmol
11:
338–344,
2001.
|
465. |
Grunwald JE,
Piltz J,
Hariprasad SM,
Dupont J and
Maguire MG.
Optic nerve blood flow in glaucoma: effect of systemic hypertension.
Am J Ophthalmol
127:
516–522,
1999.
|
466. |
Garhöfer G,
Zawinka C,
Resch H,
Huemer KH,
Schmetterer L and
Dorner GT.
Response of retinal vessel diameters to flicker stimulation in patients with early open angle glaucoma.
J Glaucoma
13:
340–344,
2004.
|
467. |
Riva CE,
Salgarello T,
Logean E,
Colotto A,
Galan E and
Falsini B.
Flicker‐evoked response measured at the optic disk rim is reduced in ocular hypertension and early glaucoma.
Invest Ophthalmol Vis Sci
45:
3662–3668,
2004.
|
468. |
Orgul S,
Cioffi GA,
Wilson DJ,
Bacon DR and
Van Buskirk EM.
An endothelin‐1 induced model of optic nerve ischemia in the rabbit.
Invest Ophthalmol Vis Sci
37:
1860–1869,
1996.
|
469. |
Orgul S,
Cioffi GA,
Bacon DR and
Van Buskirk EM.
An endothelin‐1‐induced model of chronic optic nerve ischemia in rhesus monkeys.
J Glaucoma
5:
135–138,
1996.
|
470. |
Oku H,
Sugiyama T,
Kojima S,
Watanabe T and
Azuma I.
Experimental optic cup enlargement caused by endothelin‐1‐induced chronic optic nerve head ischemia.
Surv Ophthalmol
44:
S74–S84,
1999.
|
471. |
Chauhan BC,
LeVatte TL,
Jollimore CA,
Yu PK,
Reitsamer HA,
Kelly ME,
Yu DY,
Tremblay F and
Archibald ML.
Model of endothelin‐1‐induced chronic optic neuropathy in rat.
Invest Ophthalmol Vis Sci
45:
144–152,
2004.
|
472. |
Cioffi GA and
Sullivan P.
The effect of chronic ischemia on the primate optic nerve.
Eur J Ophthalmol
9:
S34–S36,
1999.
|
473. |
Bonomi L,
Marchini G,
Marraffa M,
Bernardi P,
Morbio R and
Varotto A.
Vascular risk factors for primary open angle glaucoma: the Egna‐Neumarkt Study.
Ophthalmology
107:
1287–1293,
2000.
|
474. |
Leske MC,
Wu SY,
Nemesure B and
Hennis A.
Incident open‐angle glaucoma and blood pressure.
Arch Ophthalmol
120:
954–959,
2002.
|
475. |
la Cour M,
Kiilgaard J and
Nissen MH.
Age‐related macular degeneration: epidemiology and optimal treatment.
Drugs Agin
19:
101–133,
2002.
|
476. |
Friedman E.
A hemodynamic model of the pathogenesis of age‐related macular degeneration.
Am J Ophthalmol
124
(5):
677–682,
1997.
|
477. |
Friedman E.
The role of the atherosclerotic process in the pathogenesis of age‐related macular degeneration.
Am J Ophthalmol
130:
658–663,
2000.
|
478. |
Friedman E.
Update of the vascular model of AMD.
Br J Ophthalmol
88:
161–163,
2004.
|
479. |
Grunwald JE,
Hariprasad SM,
Dupont J,
Maguire MG,
Fine SL,
Brucker AJ,
Maguire AM and
Ho AC.
Foveolar choroidal blood flow in age‐related macular degeneration.
Invest Ophthalmol Vis Sci
39:
385–390,
1998.
|
480. |
Grunwald JE,
Metelitsina TI,
DuPont JC,
Ying GS and
Maguire MG.
Reduced foveolar choroidal blood flow in eyes with increasing AMD severity.
Invest Ophthalmol Vis Sci
46:
1033–1038,
2005.
|
481. |
Chen SJ,
Cheng CY,
Lee FL,
Chou JC,
Hsu WM and
Lu JH.
Pulsatile ocular blood flow in asymmetric exudative age related macular degeneration.
Br J Ophthalmol
85:
1411–1415,
2001.
|
482. |
Uretmen O,
Akkin C,
Erakgun T and
Killi R.
Color Doppler imaging of choroidal circulation in patients with asymmetric age‐related macular degeneration.
Ophthalmologica
217:
137–142,
2003.
|
483. |
Pauleikhoff D,
Spital G,
Radermacher M,
Brumm GA,
Lommatzsch A and
Bird AC.
A fluorescein and indocyanine green angiographic study of choriocapillaris in age‐related macular disease.
Arch Ophthalmol
117:
1353–1358,
1999.
|
484. |
Ciulla TA,
Harris A,
Kagemann L,
Danis RP,
Pratt LM,
Chung HS,
Weinberger D and
Garzozi HJ.
Choroidal perfusion perturbations in non‐neovascular age related macular degeneration.
Br J Ophthalmol
86:
209–213.
2002.
|
485. |
Pournaras CJ,
Logean E
Riva CE
Petrig BL,
Chamot SR,
Coscas G and
Soubrane G.
Regulation of subfoveal choroidal blood flow in age‐related macular degeneration.
Invest Ophthalmol Vis Sci
47:
1581–1586,
2006.
|
486. |
Lutty G,
Grunwald J,
Majji AB,
Uyama M and
Yoneya S.
Changes in choriocapillaris and retinal pigment epithelium in age‐related macular degeneration.
Mol Vis
03:
5–35,
1999.
|
487. |
Stjernschantz J and
Resul B.
Phenyl‐substituted prostaglandin analogs for glaucoma treatment.
Drugs Future
17:
691–704,
1992.
|
488. |
Stjernschantz J,
Seten G,
Sjöquist B and
Resul B.
Preclinical pharmacology of latanoprost, a phenyl‐substituted PGF2 alpha analogue.
Adv Prostaglandin Thromboxane Leukot Res
23:
513–518,
1995.
|
489. |
Ota T,
Aihara M,
Narumiya S,
Araie M.
The effects of prostaglandin analogues on IOP in prostanoid FP‐receptor‐deficient mice.
Invest Ophthalmol Vis Sci
46:
4159–4163,
2005.
|
490. |
Ota T,
Aihara M,
Saeki T,
Narumiya S and
Araie M.
The effects of prostaglandin analogues on prostanoid EP1, EP2, and EP3 receptor‐deficient mice.
Invest Ophthalmol Vis Sci
47:
3395–3399,
2006.
|
491. |
Ihara M,
Noguchi K,
Saeki T,
Fukuroda T,
Tsuchida S,
Kimura S,
Fukami T,
Ishikawa K,
Nishikibe M and
Yano M.
Biological profiles of highly potent novel endothelin antagonists selective for the ETA receptor.
Life Sci
50:
247–255,
1992.
|
492. |
Reuter H and
Scholz H.
A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle.
J Physiol
264
(1):
17–47,
1977.
|
493. |
Kashiwagi K,
Kanai N,
Tsuchida T,
Suzuki M,
Iizuka Y,
Tanaka Y and
Tsukahara S.
Comparison between isopropyl unoprostone and latanoprost by prostaglandin E(2)induction, affinity to prostaglandin transporter, and intraocular metabolism.
Exp Eye Res
74:
41–49,
2002.
|
494. |
Cuppoletti J,
Malinowska DH,
Tewari KP,
Chakrabarti J and
Ueno R.
Cellular and molecular effects of unoprostone as a BK channel activator.
Biochim Biophys Acta
1768:
1083–1092,
2007.
|
495. |
Goh Y and
Kihino J.
Pharmacological characterization of prostaglandin‐related ocular hypotensive agents.
Jpn J Ophthalmol
38:
236–245,
1994.
|
496. |
Burke J and
Schwartz M.
Preclinical evaluation of brimonidine.
Surv Ophthalmol
41
Suppl 1:
S9–18,
1996.
|
497. |
Gyoergyi L,
Molnar J and
Doda M.
Some pharmacological properties of M‐(2‐aminopropyl)‐phenol (alpha‐methyl‐m‐tyramine).
Arzneimittelforschung
15:
219–220,
1965.
|