Comprehensive Physiology Wiley Online Library

Microcirculation of the Ocular Fundus

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 The Vascular Systems of the Eye Fundus
1.1 Retinal vascular system
1.2 Choroidal vascular system
1.3 The optic nerve head
2 Human Ocular Hemodynamics
2.1 Blood velocity in the ophthalmic artery, central retinal artery, and posterior ciliary arteries
2.2 Blood velocity in the retinal vessels
2.3 Velocity profile of red blood cells in retinal arteries
2.4 Blood velocity in the retinal capillaries
2.5 Blood flow rate
2.6 Uveal and optic nerve blood flow rates
2.7 Effect of aging on ocular blood flow
3 Physiology of Blood Flow Regulation
3.1 Systemic determinants
3.2 Neural determinants
3.3 Local determinants
3.4 Endothelial control
3.5 Neural, endocrine, and paracrine control
4 Ocular Blood Flow and its Regulation in Diseases
4.1 Diabetes
4.2 Ischemia‐reperfusion
4.3 Ocular blood flow in glaucoma
4.4 Ocular blood flow in age‐related macular degeneration
5 Abbreviations
Figure 1. Figure 1.

Blood supply to the eye fundus. ON: optic nerve; OA: ophthalmic artery; CRA: central retinal artery; CA: ciliary arteries (posterior and anterior). (See page 20 in colour section at the back of the book)

Figure 2. Figure 2.

Vasculature of the eye fundus. A: retinal arteries; V: retinal veins; ONH: optic neeve head. The net of choroidal vessels (Ch) is visible behind the retina, particularly in the inferior region of the fundus. *: region of the macula. (See page 20 in colour section at the back of the book)

Figure 3. Figure 3.

Diagram of the retinal vasculature around the fovea in the rhesus monkey derived from more than 80 microscope fields. A and V: arteries and veins, respectively.

Reprinted from 7 by permission of the Society for Neuroscience. (See page 20 in colour section at the back of the book)
Figure 4. Figure 4.

Diagram of blood supply of the head and intraorbital part of the optic nerve. C: choroid, R: retina, CRA: central retinal artery. PCA: posterior ciliary arteries, OD: optic disc, S: sclera, SNFL: superficial nerve fiber layer, PR: prelaminar region, LC: lamina cribrosa, CZ: circle of Zinn.

Reproduced with permission from Hayreh SS 17
Figure 5. Figure 5.

Velocity profile of red blood cells vs scanning distance d across a human retinal vein (Di = 152 μm) at three different distances downstream from a junction: (A) about 1 diameter, (B) about 2 diameters, and (C) about 5 diameters. In (C) the profile is already symmetric although still significantly blunted. Error bars are 95% CI of the mean values.

Reprinted from 71 by permission of Laser Physics
Figure 6. Figure 6.

Percentage change in diameter of retinal arteries in retinal quadrants in response to systemic hyperoxia.

Reprinted from Jean‐Louis et al. 147 by permission of the Association of Research in Vision and Ophthalmology
Figure 7. Figure 7.

Effect of increased ocular perfusion pressure (OPP) induced by isometric exercise on percentage changes in retinal and subfoveal choroidal blood flow (bottom) and vascular resistance (top).

Adapted from Robinson et al. 178. Riva et al. 179, Kiss et al. 180 by permission of the Association of Research in Vision and Ophthalmology, and Academic Press, Inc
Figure 8. Figure 8.

Group average ONH blood flow responses of 15 normal volunteers to a diffuse, green flicker stimulation at 15 Hz. Field of stimulation: 25° at posterior pole; modulation depth was 100%. Modified from Riva et al. 261 by permission of Elsevier.

Figure 9. Figure 9.

Percentage change (mean ± SD, n = 12) in choroidal and optic nerve blood flows after administration of L‐NMMA (batched bars: 3 mg/kg over 5 min followed by 30μg/kg per min over 55 min; solid bars: 6 mg/kg over 5 min followed by 60μg/kg per min over 55 min). Hollow bars: placebo. (*): significant effect of L‐NMMA versus baseline.

Adapted Luksch et al. 296 by permission of the Association of Research in Vision and Ophthalmology
Figure 10. Figure 10.

Percentage change in optic nerve and choroidal blood flows during infusion of adenosine. (*): significant effect of adenosine on blood flow.

Adapted from Polska et al. 366 by permission of the Association of Research in Vision and Ophthalmology
Figure 11. Figure 11.

Mean percentage changes of ocular perfusion pressure (PPm), subfoveal choroidal blood flow (ChBF), and choroidal vascular resistance (Rm) at the end of squatting, for young healthy volunteers (Group I), elderly healthy volunteers with mild macular pigment changes (Group II), and patients with subfoveal classic neovascularization (Group III). In the Group III, ChBF increased significantly. Changes in ChBF and Rm were found to be significantly different between Group II and III (ChBF: * stands for p < 0.0001: Rm: ‡ stands for p = 0.002).

Adapted from Pournaras et al. 485 by permission of the Association of Research in Vision and Ophthalmology


Figure 1.

Blood supply to the eye fundus. ON: optic nerve; OA: ophthalmic artery; CRA: central retinal artery; CA: ciliary arteries (posterior and anterior). (See page 20 in colour section at the back of the book)



Figure 2.

Vasculature of the eye fundus. A: retinal arteries; V: retinal veins; ONH: optic neeve head. The net of choroidal vessels (Ch) is visible behind the retina, particularly in the inferior region of the fundus. *: region of the macula. (See page 20 in colour section at the back of the book)



Figure 3.

Diagram of the retinal vasculature around the fovea in the rhesus monkey derived from more than 80 microscope fields. A and V: arteries and veins, respectively.

Reprinted from 7 by permission of the Society for Neuroscience. (See page 20 in colour section at the back of the book)


Figure 4.

Diagram of blood supply of the head and intraorbital part of the optic nerve. C: choroid, R: retina, CRA: central retinal artery. PCA: posterior ciliary arteries, OD: optic disc, S: sclera, SNFL: superficial nerve fiber layer, PR: prelaminar region, LC: lamina cribrosa, CZ: circle of Zinn.

Reproduced with permission from Hayreh SS 17


Figure 5.

Velocity profile of red blood cells vs scanning distance d across a human retinal vein (Di = 152 μm) at three different distances downstream from a junction: (A) about 1 diameter, (B) about 2 diameters, and (C) about 5 diameters. In (C) the profile is already symmetric although still significantly blunted. Error bars are 95% CI of the mean values.

Reprinted from 71 by permission of Laser Physics


Figure 6.

Percentage change in diameter of retinal arteries in retinal quadrants in response to systemic hyperoxia.

Reprinted from Jean‐Louis et al. 147 by permission of the Association of Research in Vision and Ophthalmology


Figure 7.

Effect of increased ocular perfusion pressure (OPP) induced by isometric exercise on percentage changes in retinal and subfoveal choroidal blood flow (bottom) and vascular resistance (top).

Adapted from Robinson et al. 178. Riva et al. 179, Kiss et al. 180 by permission of the Association of Research in Vision and Ophthalmology, and Academic Press, Inc


Figure 8.

Group average ONH blood flow responses of 15 normal volunteers to a diffuse, green flicker stimulation at 15 Hz. Field of stimulation: 25° at posterior pole; modulation depth was 100%. Modified from Riva et al. 261 by permission of Elsevier.



Figure 9.

Percentage change (mean ± SD, n = 12) in choroidal and optic nerve blood flows after administration of L‐NMMA (batched bars: 3 mg/kg over 5 min followed by 30μg/kg per min over 55 min; solid bars: 6 mg/kg over 5 min followed by 60μg/kg per min over 55 min). Hollow bars: placebo. (*): significant effect of L‐NMMA versus baseline.

Adapted Luksch et al. 296 by permission of the Association of Research in Vision and Ophthalmology


Figure 10.

Percentage change in optic nerve and choroidal blood flows during infusion of adenosine. (*): significant effect of adenosine on blood flow.

Adapted from Polska et al. 366 by permission of the Association of Research in Vision and Ophthalmology


Figure 11.

Mean percentage changes of ocular perfusion pressure (PPm), subfoveal choroidal blood flow (ChBF), and choroidal vascular resistance (Rm) at the end of squatting, for young healthy volunteers (Group I), elderly healthy volunteers with mild macular pigment changes (Group II), and patients with subfoveal classic neovascularization (Group III). In the Group III, ChBF increased significantly. Changes in ChBF and Rm were found to be significantly different between Group II and III (ChBF: * stands for p < 0.0001: Rm: ‡ stands for p = 0.002).

Adapted from Pournaras et al. 485 by permission of the Association of Research in Vision and Ophthalmology
References
 1. Alm A and Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 15: 15–29, 1973a.
 2. Tornquist P and Alm A. Retinal and choroidal contribution to retinal metabolism in vivo. A study in pigs. Acta Physiol Scand 106: 351–357, 1979.
 3. Hickam JB, Sieker HO and Frayser R. Studies of retinal circulation and A‐V oxygen difference in man. Tr Am Clin Climatol Assoc 71: 34–44, 1959.
 4. Delori FC. Noninvasive technique for oximetry of blood in retinal vessels. Appl Optics 27: 1113–1125, 1988.
 5. Toussaint D, Kuwabara H and Cogan DG. Retinal vascular patterns. II. Human retinal vessels studied in three dimensions. Arch Ophthalmol 65: 575–581, 1961.
 6. Henkind P. Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative. Br J Ophthalmol 51: 115–123, 1967.
 7. Snodderly DM, Weinhaus RS and Choi JC. Neural‐vascular relationships in central retina of macaque monkeys (Macaco fascicularis). J Neurosci 12 (4): 1169–1193, 1992.
 8. Pournaras CJ. Retinal oxygen distribution. Its role in the physiopathology of vasoproliferative microangiopathies. Retina 15: 332–347, 1995.
 9. Ishikawa T. Fine structure of retinal vessels in man and the macaque monkey. Invest Ophthalmol Vis Sci 2: 1–15, 1963.
 10. Kassab GS and Fung YC. A hemodynamic analysis of coronary capillary blood flow based on anatomic and distensibility data. Am J Physiol 277: H2158–H2166, 1999, (Heart Circ Physiol 46).
 11. Cunha‐Vaz J. Review. The blood‐ocular barriers. Surv Ophthalmol 23 (5): 279–296, 1979.
 12. Hayreh SS. Segmental nature of the choroidal vasculature. Br J Ophthalmol 59: 631–648, 1975.
 13. Fryczkowski AW, Sherman MD and Walker J. Observations on the lobular organization of the human choriocapillaris. Int Ophthalmol 15: 109–120, 1991.
 14. Hayreh SS. The blood supply of the optic nerve head and the evaluation of it‐myth and reality. Prog Retin Eye Res 20: 563–593, 2001.
 15. Tilton RG. Capillary pericytes: perspectives and future trends. J Electron Microsc Tech 19: 327–344, 1991.
 16. Geijer C and Bill A. Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys. Invest Ophthalmol Vis Sci 18 (10): 1030–1042, 1979.
 17. Hayreh SS. Anatomy and physiology of the optic nerve head. Trans Am Acad Ophthalmol Otolaryngol 78: OP240–OP254, 1974.
 18. Harris A, Shoemaker JA and Cioffi GA. Assessment of human ocular hemodynamics. Surv Ophthalmol 42 (6): 509–533, 1998.
 19. Flammer J, Orgül S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard J‐P and Stefansson E. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21: 359–393, 2002.
 20. Rechtman E, Harris A, Kumar R, Cantor LB, Ventrapragada S, Desai M, Friedman S, Kagemann L and Garzozi HJ. An update on retinal circulation assessment technologies. Curr Eye Res 27: 329–343, 2003.
 21. Kaiser HJ, Schötzau A and Flammer J. Blood‐flow velocities in the extraocular vessels in normal volunteers. Am J Ophthalmol 122: 364–370, 1996.
 22. Kouvidis GK, Benos A, Kyriakopoulou G, Anastopoulos G and Triantafyllou D. Color Doppler ultrasonography of the ophthalmic artery: flow parameters in normal subjects. Int Angiol 19: 319–325, 2000.
 23. Gracner T. Ocular blood flow velocity determined by color Doppler imaging in diabetic retinopathy. Ophthalmologica 218: 237–242, 2004.
 24. Hosking SL, Harris A, Chung HS, Jonescu‐Cuypers CP, Kagemann L, Roff Hilton EJ and Garzozi H. Ocular haemodynamic responses to induced hypercapnia and hyperoxia in glaucoma. Br J Ophthalmol 88: 406–411, 2004.
 25. Taner P, Kara SA, Akarsu C and Ergin A. The effects of darkness on retrobulbar hemodynamics in patients with early stages retinitis pigmentosa. Int Ophthalmol 25: 95–99, 2004.
 26. Lieb WE, Cohen SM, Merton DA, Shields JA, Mitchell DJ and Goldberg BB. Color Doppler imaging of the eye and orbit. Arch Ophthalmol 109: 527–531, 1991.
 27. Ho AC, Lieb WE, Flaharty PM, Sergott RC, Brown GC, Bosley TM and Savino PJ. Color Doppler imaging of the ocular ischemic syndrom. Ophthalmology 99: 1453–1462, 1992.
 28. Lieb WE. Color Doppler ultrasonography of the eye and orbit. Curr Opin Ophthal 4: 68–75, 1993.
 29. Steigerwalt RD, Jr., Belcaro G, Cesarone MR, Laurora G, De Sanctis MT and Milazzo M. Doppler ultrasonography of the central retinal artery in normals treated with topical timolol. Eye 7: 403–406, 1993.
 30. Tamaki Y, Nagahara M, Yamashita H and Kikuchi M. Blood velocity in the ophthalmic artery determined by color Doppler imaging in normal subjects and diabetics. Jpn J Ophthalmol 37: 385–392, 1993.
 31. Williamson TH and Harris A. Ocular blood flow measurement. Br J Ophthalmol 78: 939–945, 1994.
 32. Greenfield DS, Heggerick PA and Hedges TR. Color Doppler imaging of normal orbital vasculature. Ophthalmology 102: 1598–1605, 1995.
 33. Baxter GM and Williamson TH. Color Doppler imaging of the eye: normal ranges, reproducibility, and observer variation. J Utrasound Med 14: 91–96, 1995.
 34. Netland PA, Grosskreutz CL, Feke GT and Hart U. Color Doppler ultrasound analysis of ocular circulation after topical calcium channel blocker. Am J Ophthalmol 119: 694–700, 1995.
 35. Mendivil A, Cuartero V and Mendivil MP. Color Doppler imaging of the ocular vessels. Graefe 's Arch Clin Exp Ophthalmol 233: 135–139, 1995.
 36. Rankin SJA, Walman BE, Buckley AR and Drance SM. Color Doppler imaging and spectral analysis of the optic nerve vasculature in glaucoma. Am J Ophthalmol 119: 685–693, 1995.
 37. Butt Z, McKillop G, O'Brien C, Allan P and Aspinall P. Measurement of ocular blood flow velocity using colour Doppler imaging in low tension glaucoma. Eye 9: 29–33, 1995.
 38. Guthoff RF, Berger RW, Winkler P, Helmke K and Chumbley LC. Doppler ultrasonography of the ophthalmic and central‐retinal vessels. Arch Ophthalmol 109: 532–536, 1991.
 39. Hiroki M, Miyashita K, Yoshida H, Hirai S and Fukuyama H. Central retinal artery Doppler flow parameters reflect the severity of cerebral small‐vessel disease. Stroke 34: 92–94, 2003.
 40. Pourcelot L. Diagnostic ultrasound for cerebral vascular diseases. In: Present and Future of Diagnostic Ultrasound, eds Donald I and Levi S. Rotterdam: Kooyker. 1976, pp. 141–147.
 41. Polska E, Kircher K, Ehrlich P, Vecsei PV and Schmetterer L. RI in central retinal artery as assessed by CDI does not correspond to retinal vascular resistance. Am J Physiol Heart Circ Physiol 280: H1442–H1447, 2001.
 42. Wolf S, Jung F, Kiesewetter H, Körber N and Reim M. Video fluorescein angiography: method and clinical application. Graefe's Arch Clin Exp Ophthalmol 227: 145–151, 1989.
 43. Wolf S, Arend O and Reim M. Measurement of retinal hemodynamics with scanning laser ophthalmoscopy: reference values and variation. Surv Ophthalmol 38 (Suppl,): S95–s100, 1994.
 44. Hickam JB and Frayser R. A photographic method for measuring the mean retinal circulation time using fluorescein. Invest Ophthalmol Vis Sci 4 (5): 876–884, 1965.
 45. Ben‐Sira I, Riva CE and Roberts W. Fluorophotometric recording of fluorescein dilution curves in human retinal vessels. Invest Ophthalmol Vis Sci 12: 310–312, 1973.
 46. Riva CE and Ben‐Sira I. Two‐point fluorophotometer for the human ocular fundus. Appl Optics 14: 2691–2693, 1975.
 47. Sperber GO and Aim A. Retinal mean transit time determined with an impulse‐response analysis form video fluorescein angiograms. Acta Ophthalmol Scand 75: 532–536, 1997.
 48. Bulpitt CJ and Dollery CT. Estimation of retinal blood flow by measurement of the mean circulation time. Cardiovasc Res 5: 406–412, 1971.
 49. Soeldner JS, Christacopoulos PD and Gleason RE. Mean retinal circulation time as determined by fluorescein angiography in normal, prediabetic, and chemical‐diabetic subjects. Diabetes 25 (suppl. 2): 903–908, 1976.
 50. van Heuven WAJ, Malik AB, Schaffer CA, Cohen D and Mehu M. Retinal blood flow derived from dye dilution curves. Arch Ophthalmol 95: 297–301, 1977.
 51. Fonda S and Bagolini B. Relative photometric measurements of retinal circulation (dromofluorograms). Arch Ophthalmol 95: 302–307, 1977.
 52. Eberli B, Riva CE and Feke GT. Mean circulation time of fluorescein in retinal vascular segments. Arch Ophthalmol 97: 145–148, 1979.
 53. Blair NP, Feke GT, Morales‐Stoppello J, Riva CE, Goger DG, Collas G and McMeel JW. Prolongation of the retinal mean circulation time in diabetes. Arch Ophthalmol 100: 764–768, 1982.
 54. Yoshida A, Feke GT, Morales‐Stoppello J, Collas GD, Goger DG and McMeel JW. Retinal blood flow alterations during progression of diabetic retinopathy. Arch Ophthalmol 101: 225–227, 1983.
 55. Jung F, Kiesenwetter H, Körber N, Wolf S, Reim M and Müller G. Quantification of characteristic blood‐flow parameters in the vessels of the retina with a picture analysis system for video‐fluorescence angiograms: initial findings. Graefe's Arch Clin Exp Ophthalmol 221: 133–136, 1983.
 56. Koyama T, Matsuo N, Shimizu K, Mihara M, Tsuchida Y, Wolf S and Reim M. Retinal circulation times in quantitative fluorescein angiography. Graefe's Arch Clin Exp Ophthalmol 228: 442–446, 1990.
 57. Bjärnhall G, Mäepea O, Sperber GO and Linden C. Analysis of mean retinal transit time form fluorescein angiography in human eyes: normal values and reproducibility. Acta Ophthalmol Scand 880: 652–655, 2002.
 58. Huber K, Plange N, Remky A and Arend O. Comparison of colour Doppler imaging and retinal scanning laser fluorescein angioraphy in healthy volunteers and normal pressure glaucoma patients. Acta Ophthalmol Scand 82: 426–431, 2004.
 59. Riva CE, Grunwald JE, Sinclair SH and Petrig BL. Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci 26: 1124–1132, 1985.
 60. Feke GT, Tagawa H, Deupree DM, Goger DG, Sebag J and Weiter JJ. Blood flow in the normal human retina. Invest Ophthalmol Vis Sci 30: 58–65, 1989.
 61. Grunwald JE, Riva CE, Baine J and Brucker AJ. Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control. Invest Ophthalmol Vis Sci 33: 356–363, 1992.
 62. Yoshida A, Feke GT, Ogasawara H, Goger DG and McMeel JW. Retinal hemodynamics in middle‐aged normal subjects. Ophthalmic Res 28: 343–350, 1996.
 63. Garcia JPS, Jr., Garcia PT and Rosen RB. Retinal blood flow in the normal human eye using the canon laser blood flowmeter. Ophthalmic Res 34: 295–299, 2002.
 64. Feke GT, Goger DG, Tagawa H and Delori FC. Laser Doppler technique for absolute measurement of blood speed in retinal vessels. IEEE Trans Biomed Eng BME‐34: 673–680, 1987.
 65. Khoobehi B, Peyman GA, Niesman MR and Oncel M. Measurement of retinal blood velocity and flow rate in primates using a liposome dye system. Ophthalmology 96: 905–912, 1989.
 66. Guran T, Zeimer RC, Shahidi M and Mori MT. Quantitative analysis of retinal hemodynamics using targeted dye delivery. Invest Ophthalmol Vis Sci 31: 2300–2306, 1990.
 67. Bulpitt CJ, Kohner EM and Dollery CT. Velocity profiles in the retinal microcirculation. 7th Eur Conf Microcirc 11: 448–452, 1972.
 68. Yazdanfar S, Rollins AM and Izatt JA. Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. Optics Lett 25: 1448–1450, 2000.
 69. Yazdanfar S, Rollins AM and Izatt JA. In vivo imaging of human retinal flow dynamics by color Dopper optical coherence tomography. Arch Ophthalmol 121: 235–239, 2003.
 70. Leitgeb RA, Schmetterer L, Drexler W and Fercher AF. Real‐time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Optics Express 11: 3116–3121, 2003.
 71. Logean E, Schmetterer L and Riva CE. Velocity profile of red blood cells in human retinal vessels using confocal scanning laser Doppler velocimetry. Laser Phys 13: 45–51, 2003.
 72. Lipowsky HH. Shear stress in the circulation. In: Flow‐Dependent Regulation of Vascular Function, eds Bevan JA, Kaley G and Rubanyi GM. New York: Oxford University Press, 1995, pp. 28–45.
 73. Charm SE and Kurlang GS. Blood Flow in the Microcirculation. New York: John Wiley & Sons, 1974.
 74. Nagaoka T and Yoshida A. Noninvasive evaluation of wall shear stress on retinal microcirculation in humans. Invest Ophthalmol Vis Sci 47: 1113–1119, 2006.
 75. Wolf S, Arend O, Toonen H, Bertram B, Jung F and Reim M. Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results. Ophthalmology 98: 996–1000, 1991.
 76. Yang Y, Kim S and Kim J. Fluorescent dots in fluorescein angiograhy and fluorescein leukocyte angiography using a scanning laser ophthalmoscope in humans. Ophthalmology 104: 1670–1676, 1997.
 77. Riva CE and Petrig BL. Blue field entoptic phenomenon and blood velocity in the retinal capillaries. J Opt Soc Am 70: 1234–1238, 1980.
 78. Robinson F, Petrig BL, Sinclair SH, Riva CE and Grunwald JE. Does topical phenylephrine, tropicamide, or proparacaine affect macular blood flow? Ophthalmology 92: 1130–1132, 1985.
 79. Fallon TJ, Maxwell D and Kohner EM. Retinal vascular autoregulation in conditions of hyperoxia and hypoxia using the blue field entoptic phenomenon. Ophthalmology 92: 701–705, 1985.
 80. Fallon TJ, Chowiencyzk P and Kohner EM. Measurement of retinal blood flow in diabetes by the blue‐light entoptic phenomenon. Br J Ophthalmol 70: 43–46, 1986.
 81. Lotfi K and Grunwald JE. The effect of caffeine on the human macular circulation. Invest Ophthalmol Vis Sci 32: 3028–3032, 1991.
 82. Grunwald JE, Piltz J, Patel N, Bose S and Riva CE. Effect of aging on retinal macular microcirculation: a blue field simulation study. Invest Ophthalmol Vis Sci 34: 3609–3613, 1993.
 83. Scheiner AJ, Riva CE, Kazahaya K and Petrig BL. Effect of flicker on macular blood flow assessed by the blue field simulation technique. Invest Ophthalmol Vis Sci 35: 3436–3441, 1994.
 84. Grunwald JE, Riva CE, Petrig BL, Brucker AJ, Schwartz SS, Braunstein SN, Dupont J and Grunwald S. Strict control of glycaemia: effects on blood flow in the large retinal vessels and in the macular microcirculation. Br J Ophthalmol 79: 735–741, 1995.
 85. Arend O, Harris A, Sponsel WE, Remky A, Reim M and Wolf S. Macular capillary panicle velocities: a blue field and scanning laser comparison. Graefe's Arch Clin Exp Ophthalmol 233: 244–249, 1995.
 86. Harris A, Arend O, Bohnke K, Kroepfi E, Danis R and Martin B. Retinal blood flow during dynamic exercise. Graefe's Arch Clin Exp Ophthalmol 234: 440–444, 1996.
 87. Forcier P, Kergoat H and Lovasik JV. Macular hemodynamic responses to short‐term acute exercise in young healthy adults. Vision Res 38: 181–186, 1998.
 88. Loukovaara S, Kaaja R and Immonen I. Macular capillary blood flow velocity by blue‐field entoptoscopy in diabetic and healthy women during pregnancy and postpartum period. Graefe's Arch Clin Exp Ophthalmol 240: 982, 2002.
 89. Fuchsjager‐Mayrl G, Malec M, Polska E, Jilma B, Wolzt M and Schmetterer L. Effects of granulocyte colony stimulating factor on retinal leukocyte and erythrocyte flux in the human retina. Invest Ophthalmol Vis Sci 43: 1520–1524, 2002.
 90. Murray CD. The physiological principle of minimum work. 1. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12: 207–214, 1926.
 91. Dorner GT, Polska E, Garhöfer G, Zawinka C, Frank B and Schmetterer L. Calculation of the diameter of the central retinal artery from noninvasive measurements in humans. Curr Eye Res 25: 341–345, 2002.
 92. O'Day DM, Fish MB, Aronson SB, Pollycove M and Coon A. Ocular blood flow measurement by nuclide labeled microspheres. Arch Ophthalmol 86: 205–209, 1971.
 93. Aim A, Bill A and Young FA. The effects of pilocarpine and neostigmine on the blood flow through the anterior uvea in monkeys. A study with radioactively labelled microspheres. Exp Eye Res 15: 31–36, 1973.
 94. Rassam SM, Patel V, Chen HC and Kohner EM. Regional retinal blood flow and vascular autoregulation. Eye 10: 331–337, 1996.
 95. Kimura I, Shinoda K, Tanino T, Ohtake Y, Mashima Y and Oguchi Y. Scanning laser Doppler flowmeter study of retinal blood flow in macular area of healthy volunteers. Br J Ophthalmol 87: 1469–1473, 2003.
 96. Langham ME, Farrell RA, O'Brien V, Silver DM and Schilder P. Non‐invasive mesurement of pulsatile blood flow in the human eye. In: Ocular Blood Flow in Glaucoma, eds Lambrou GN and Greve EL. Amsterdam: Kugler & Ghedini Publication, 1989, pp. 93–99.
 97. Trew DR, James CB, Thomas SHL, Sutton R and Smith SE. Factors influencing the ocular pulse‐the heart rate. Graefe's Arch Clin Exp Ophthalmol 229: 553–556, 1991.
 98. Ravalico G, Toffoli G, Pastori G, Crocè M and Carderini S. Age‐related ocular blood flow changes. Invest Ophthalmol Vis Sci 37: 2645–2650, 1996.
 99. MacKinnon JR, O'Brien C, Swa K, Aspinall P, Butt Z and Cameron D. Pulsatile ocular blood flow in untreated diabetic retinopathy. Acta Ophthalmol Scand 75: 661–664, 1997.
 100. Yang YC, Hulbert MF, Batterbury M and Clearkin LG. Pulsatile ocular blood flow measurements in healthy eyes: reproducibility and reference values. J Glaucoma 6: 175–179, 1997.
 101. Fontana L, Poinoosawmy D, Bunce CV, O'Brien C and Hitchings RA. Pulsatile ocular blood flow investigation in asymmetric normal tension glaucoma and normal subjects. Br J Ophthalmol 82: 731–736, 1998.
 102. Mori F, Konno S, Hikichi T, Yamaguchi Y, Ishiko S and Yoshida. Factors affecting pulsatile ocular blood flow in normal subjects. Br J Ophthalmol 85: 529–530, 2001.
 103. Gekkieva M, Orgul S, Ghergel D, Gugleta K, Prunte C and Flammer J. The influence of sex difference in measurements with the Langham ocular blood flow system. Jpn J Ophthalmol 45: 528–532, 2001.
 104. Aydin A, Wollstein G, Price L and Schuman JS. Evaluating pulsatile ocular blood flow analysis in normal and treated glaucomatous eyes. Am J Ophthalmol 136: 448–453, 2003.
 105. Gunvant P, Baskaran M, Vijaya L, Hansen BC, Joseph IS, Watkins RJ, Broadway DC and O'Leary DJ. Comparison of pulsatile ocular blood flow in Indians and Europeans. Eye 19: 1163–1168, 2005.
 106. Zhang MZ, Fu ZF and Zheng C. A comparison study of pulsatile ocular blood flow in normal eyes and primary open angle glaucoma. Zhonghua Yan Ke Za Zhi 40: 250–253, 2004.
 107. Williamson TH, Lowe GDO and Baxter GM. Influence of age, systemic blood pressure, smoking and blood viscosity on orbital blood velocities. Br J Ophthalmol 79: 17–22, 1995.
 108. Lam AK and Chan ST. The effect of age on ocular blood supply determined by pulsatile ocular blood flow and color Doppler ultrasonography. Optom Vis Sci 80: 305–311, 2003.
 109. Haefliger IO and Anderson DR. Blood flow regulation in the optic nerve head. In: Part one. Anatomy and Physiology, ed. Robert Ritch MB. St. Louis: Mosby‐Year Book, 1997, pp. 189–197.
 110. Harris A, Harris M, Biller J, Garzozi H, Zarfty D, Ciulla TA and Martin B. Aging affects the retrobulbar circulation differently in women and men. Arch Ophthalmol 118: 1076–1080, 2000.
 111. Groh M, Michelson G, Langhans MJ and Harazny J. Influence of age on retinal and optic nerve head blood circulation. Ophthalmology 103: 529–534, 1996.
 112. Gillies WE, Brooks AM, Scott M and Ryan L. Comparison of colour Doppler imaging of orbital vessels in elderly compared with young adult patients. Aust New Zeal J Ophthalmol 27: 173–175, 1999.
 113. Embleton SJ, Hosking SL, Roff Hilton EJ and Cunliffe IA. Effect of senescence on ocular blood flow in the retina, neuroretinal rim and lamina cribrosa, using scanning laser Doppler flowmetry. Eye 16: 156–162, 2002.
 114. Boehm AG, Kodier AU and Pillunat LE. The effect of age on optic nerve head blood flow. Invest Ophthalmol Vis Sci 46: 1291–1295, 2005.
 115. Rizzo JF, Feke GT, Goger DG, Ogasawara H and Weiter JJ. Optic nerve head blood speed as a function of age in normal human subjects. Invest Ophthalmol Vis Sci 32: 3263–3272, 1991.
 116. Balazsi AG, Rootman J, Drance SM, Schulzer M and Douglas GR. The effect of age on the nerve fiber population of human optic nerve. Am J Ophthalmol 97: 760–766, 1984.
 117. Lee WR, Blass GE and Shaw DC. Age‐related retinal vasculopathy. Eye 1: 296–303, 1987.
 118. Jonas JB, Nguyen NX and Naumann GO. The retinal nerve fiber layer in normal eye. Ophthalmology 96: 627–632, 1989.
 119. Repka MX and Quigley HA. The effect of age on normal human optic nerve fiber number and diameter. Ophthalmology 96: 26–32, 1989.
 120. Gao H and Hallyfield JG. Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33: 1–21, 1992.
 121. Dallinger S, Findl O, Strenn K, Eichler HG, Wolzt M and Schmetterer L. Age dependence of choroidal blood flow. J Am Geriatr Soc 46: 484–487, 1998.
 122. Grunwald JE, Hariprasad SM and Dupont J. Effect of aging on foveolar choroidal circulation. Arch Ophthalmol 116: 150–154, 1998.
 123. Straubhaar M, Orgül S, Gugleta K, Schötzau A, Erb C and Flammer J. Choroidal laser Doppler flowmetry in healthy subjects. Arch Ophthalmol 118: 211–215, 2000.
 124. Feeney‐Burns L, Hilderbrand ES and Eldridge S. Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci 25: 195–200, 1984.
 125. Feeney‐Burns L, Burns R and Gao C‐L. Age‐related macular changes in humans. Am J Ophthalmol 109: 265–278, 1990.
 126. Dohi Y, Kojima M, Sato K and Luscher TF. Age‐related changes in vascular smooth muscle and endothelium. Drugs Aging 7: 278–291, 1995.
 127. Ramrattan RS, van der Schaft TL, Mooy CM, de Bruijn WC, Mulder PG and de Jong PT. Morphometric analysis of bruch's membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35: 2857–2864, 1994.
 128. Ito YN, Mori K, Young‐Duvall J and Yoneya S. Aging changes of the choroidal dye filling pattern in indocyanine green angiography of normal subjects. Retina 21: 237–242, 2001.
 129. Lemmingson W. Über das Vorkommen von Vasomotion im. Retinakreislauf. Graefe's Arch Clin Exp Ophthalmol 176: 368–377, 1968.
 130. Braun RD, Linsenmeier RA and Yancey CM. Spontaneous fluctuations in oxygen tension in the cat retina. Microvasc Res 44: 73–84, 1992.
 131. Buerk DG and Riva CE. Vasomotion and spontaneous low‐frequency oscillations in blood flow and nitric oxide in cat optic nerve head. Microvasc Res 55: 103–112, 1998.
 132. Riva CE, Pournaras CJ, Poitry Yamate CL and Petrig BL. Rhythmic changes in velocity, volume, and flow of blood in the optic nerve head tissue. Microvasc Res 40: 36–45, 1990.
 133. Osusky R, Schoetzau A and Flammer J. Variations in the blood flow of the human optic nerve head. Eur J Ophthalmol 4: 364–369, 1997.
 134. Riva CE, Maret Y, Polak K and Logean E. Wavelet transform (wt) of temporal fluctuations in optic nerve and choroidal blood flow and retinal vessel diameter. Invest Ophthalmol Vis Sci 41: 516, 2000.
 135. Fuchsjäger‐Mayrl G. Retinal blood flow and systemic blood pressure in healthy young subjects. Graefe's Arch ClinExp Ophthalmol 239: 673–677, 2001.
 136. Polak K, Polska E, Luksch A, Dorner G, Fuchsjager‐Mayrl G, Findl O, Eichler HG, Wolzt M and Schmetterer L. Choroidal blood flow and arterial blood pressure. Eye 17: 84–88, 2003.
 137. Fuchsjäger‐Mayrl G, Kally B, Georgopoulos M, Rainer G, Kircher K, Buehl W, Amoako‐Mensah T, Eichler HG, Vass C and Schmetterer L. Ocular blood flow and systemic blood pressure in patients with primary open‐angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 45: 834–839, 2004.
 138. Niknam RM, Schocket LS, Metelitsina T, DuPont JC and Grunwald JE. Effect of hypertension on foveolar choroidal haemodynamics. Br J Ophthalmol 88: 1263–1265, 2004.
 139. Laties AM. Central retinal artery innervation. Absence of adrenergic innervation to the intraocular branches. Arch Ophthalmol 77: 405–409, 1967.
 140. Sieker HO and Hickam JB. Normal and impaired retinal vascular reactivity. Circ Res 7: 79–83, 1953.
 141. Dollery CT, Hill DW, Mailer CM and Ramalho PS. High oxygen pressure and the retinal blood‐vessels. The Lancet: 291‐292, 1964.
 142. Deutsch TA, Read JS, Ernest JT and Goldstick TK. Effects of oxygen and carbon dioxide on the retinal vasculature in humans. Arch Ophthalmol 101: 1278–1280, 1983.
 143. Riva CE, Grunwald JE and Sinclair SH. Laser doppler velocimetry study of the effect of pure oxygen breathing on retinal blood flow. Invest Ophthalmol Vis Sci 24: 47–51, 1983.
 144. Riva CE, Pournaras CJ and Tsacopoulos M. Regulation of local oxygen tension and blood flow in the inner retinal during hyperoxia. J Appl Physiol 61: 592–598, 1986.
 145. Pakola SJ and Grunwald JE. Effects of oxygen and carbon dioxide on human retinal circulation. Invest Ophthalmol Vis Sci 34: 2866–2870, 1993.
 146. Kiss B, Polska E, Dorner G, Polak K, Findl O, Mayrl GF, Eichler HG, Wolzt M and Schmetterer L. Retinal blood flow during hyperoxia in humans revisited: concerted results using different measurement techniques. Microvasc Res 64: 75–85, 2002.
 147. Jean‐Louis S, Lovasik JV and Kergoat H. Systemic hyperoxia and retinal vasomotor responses. Invest Ophthalmol Vis Sci 46: 1714–1720, 2005.
 148. Wimpissinger B, Resch H, Berisha F, Weigert G, Schmetterer L and Polak K. Response of retinal blood flow to systemic hyperoxia in smokers and nonsmokers. Graefe's Arch Clin Exp Ophthalmol 243: 646–652, 2005.
 149. Hickam JB and Frayser R. Studies of the retinal circulation in man, observations on vessel diameter, arteriovenous oxygen difference, and mean circulation time. Circulation 33: 302–316, 1966.
 150. Sponsel WE, DePaul KL and Zetlan SR. Retinal hemodynamic effects of carbon dioxide, hyperoxia, and mild hypoxia. Invest Ophthalmol Vis Sci 33: 1864–1869, 1992.
 151. Langhans MJ, Michelson G and Groh MJM. Effect of breathing 100% oxygen on retinal and optic nerve head capillary blood flow in smokers and non‐smokers. Br J Ophthalmol 81: 365–369, 1997.
 152. Schmetterer L, Findl O, Strenn K, Graselli U, Kastner J, Eichler HG and Wolzt M. Role of NO in the O2 and CO2 responsiveness of cerebral and ocular circulation in humans. Am J Physiol Society 273: R2005–R2012, 1997.
 153. Chung HS, Harris A, Halter PJ, Kagemann L, Roff EJ, Garzozi HJ, Hosking SL and Martin BJ. Regional differences in retinal vascular reactivity. Invest Ophthalmol Vis Sci 40: 2448–2453, 1999.
 154. Harris A, Douglas RA, Pillunat L, Joos K, Knighton RW, Kagemann L and Martin BJ. Laser Doppler flowmetry measurement of changes in human optic nerve head blood flow in response to blood gas perturbations. J Glaucoma 5: 258–265, 1996.
 155. Haefliger IO, Lietz A, Griesser SM, Ulrich A, Schötzau A, Hendrickson P and Flammer J. Modulation of Heidelberg retinal flowmeter parameter flow at the papilla of healthy subjects: effect of carbogen, oxygen, high intraocular pressure, and beta‐blocker. Surv Ophthalmol 43: S59–S65, 1999.
 156. Aim A and Bill A. The oxygen supply to the retina. I. Effects of changes in intraocular and arterial pO2 and pCO2 on the oxygen tension in the vitreous body of the cat. Acta Physiol Scand 84: 261–274, 1972.
 157. Kergoat H and Faucher C. Effects of oxygen and carbogen breathing on choroidal hemodynamics in humans. Invest Ophthalmol Vis Sci 40: 2906–2911, 1999.
 158. Schmetterer L, Dallinger S, Findl O, Graselli U, Eichler HG and Wolzt M. A comparison between laser interferometric measurement of fundus pulsation and pneumotonometric measurement of pulsatile ocular blood flow. 2. Effects of changes in pCO2 and pO2 and of isoproterenol. Eye 1: 46–52, 2000.
 159. Geiser MH, Riva CE, Dorner GT, Diermann U, Luksch A and Schmetterer L. Response of choroidal blood flow in the foveal region to hyperoxia and hyperoxia‐hypercapnia. Curr Eye Res 21 (2): 669–676, 2000.
 160. Dallinger S, Dorner GT, Wenzel R, Graselli U, Findl O, Eichler HG and Schmetterer L. Endothelin‐1 contributes to hyperoxia‐induced vasoconstriction in the human retina. Invest Ophthalmol Vis Sci 41: 864–869, 2000.
 161. Zhu Y, Park TS and Gidday JM. Mechanisms of hyperoxia‐induced reductions in retinal blood flow in newborn pig. Exp Eye Res 67: 357–369, 1998.
 162. Haefliger I, Chen Q and Anderson DR. Effect of oxygen on relaxation of retinal pericytes by sodium nitroprusside. Graefe's Arch Clin Exp Ophthalmol 235: 388–392, 1997.
 163. Cusick PL, Benson OO, Capt MD and Boothby WM. Effect of anoxia and of high concentration of oxygen on the retinal vessels: preliminary report. Proc Staff Meeting Mayo Clinic 15: 500–502, 1940.
 164. Strenn K, Menapace R, Rainer G, Findl O, Wolzt M and Schmetterer L. Reproducibility and sensitivity of scanning laser Doppler flowmetry during graded changes in pO2. Br J Ophthalmol 81: 360–364, 1997.
 165. Delaey C and Van de Voorde J. Retinal arterial tone is controlled by a retinal‐derived relaxing factor. Circ Res 83: 714–720, 1998.
 166. Kaley G. Novel vasodilator released by retinal tissue. Circ Res 83: 772–773, 1998.
 167. Kergoat H, Marinier JA and Lovasik JV. Effects of transient mild systemic hypoxia on the pulsatile choroidal blood flow in healthy young human adults. Curr Eye Res 30: 465–470, 2005.
 168. Dorner GT, Garhöfer G, Zawinka C, Kiss B and Schmetterer L. Response of retinal blood flow to CO2‐breathing in humans. Eur J Ophthalmol 12: 459–466, 2002.
 169. Hickam JB and Frayser R. A photographic method for measuring the mean retinal circulation time using fluorescein. Invest Ophthalmol Vis Sci 4 (5): 876–884, 1963.
 170. Harris A, Arend O, Wolf S, Cantor LB and Martin BJ. CO2 dependence of retinal arterial and capillary blood velocity. Acta Ophthalmol Scand 73: 421–424, 1995.
 171. Roff El, Harris A, Chung HS, Hosking SL, Morrison AM, Halter PJ and Kagemann L. Comprehensive assessment of retinal, choroidal and retrobulbar haemodynamics during blood gas perturbation. Graefe's Arch Clin Exp Ophthalmol 237: 984–990, 1999.
 172. Riva CE, Cranstoun SD, Grunwald JE and Petrig BL. Choroidal blood flow in the foveal region of the human ocular fundus. Invest Ophthalmol Vis Sci 35: 4273–4281, 1994.
 173. Wimpissinger B, Resch H, Berisha F, Weigert G, Schmetterer L and Polak K. Response of choroidal blood flow to carbogen breathing in smokers and non‐smokers. Br J Ophthalmol 6: 776–781, 2004.
 174. Tsacopoulos M and Levy S. Intraretinal acid‐base studies using pH glass microelectrodes: effect of respiratory and metabolic acidosis and alkalosis on inner‐retinal pH. Exp Eye Res 23: 495–504, 1976.
 175. Pournaras CJ, Tsacopoulos M and Chapuis P. Studies on the role of prostaglandins in the regulation of retinal blood flow. Exp Eye Res 26: 687–697, 1978.
 176. Bayerle‐Eder M, Wolzt M, Polska E, Langenberger H, Pleiner J, Teherani D, Rainer G, Polak K, Eichler HG and Schmetterer L. Hypercapnia‐induced cerebral and ocular vasodilation is not altered by glibenclamide in humans. Am J Physiol Regul Integr Comp Physiol 278: R1167–R1673, 2000.
 177. Lind AR, Taylor SH, Humphreys PW, Kennelly BM and Donald KW. The circulatory effects of sustained voluntary muscle contraction. Clin Sci 27: 229–244, 1964.
 178. Robinson F, Riva CE, Grunwald JE, Petrig BL and Sinclair SH. Retinal blood flow autoregulation in response to an acute increase in blood pressure. Invest Ophthalmol Vis Sci 27: 722–726, 1986.
 179. Riva CE, Titzé P, Hero M and Movaffaghy A. Choroidal blood flow during isometric exercises. Invest Ophthalmol Vis Sci 38: 2338–2343, 1997.
 180. Kiss B, Dallinger S, Polak K, Findl O, Eichler HG and Schmetterer L. Ocular hemodynamics during isometric exercise. Microvasc Res 61: 1–13, 2001.
 181. Dumskyj MJ, Eriksen JE, Doré CJ and Kohner EM. Autoregulation in the human retinal circulation: assessment using isometric exercise, laser Doppler velocimetry, and computer‐assisted image analysis. Microvasc Res 51: 378–392, 1996.
 182. Movaffaghy A, Chamot SR, Petrig BL and Riva CE. Blood flow in the human optic nerve head during isometric exercise. Exp Eye Res 67: 561–568, 1998.
 183. Blum M, Bachmann K, Wintzer D, Riemer T, Vilser W and Strobel J. Noninvasive measurement of the Bayliss effect in retinal autoregulation. Graefe's Arch Clin Exp Ophthalmol 237: 296–300, 1999.
 184. Alm A and Bill A. The effect of stimulation of the cervical sympathetic chain on retinal oxygen tension and on uveal, retinal and cerebral blood flow in cats. Acta Physiol Scand 88: 84–94, 1973.
 185. Alm A. The effect of sympathetic stimulation on blood flow through the uvea, retina and optic nerve in monkeys (Macaca irus). Exp Eye Res 25: 19–24, 1977.
 186. Ernest JT. The effect of systolic hypertension on rhesus monkey eyes after ocular sympathectomy. Am J Ophthalmol 84: 341–344, 1977.
 187. Fuchsjäger‐Mayrl G, Luksch A, Malec M, Polska E, Wolzt M and Schmetterer L. Role of endothelin‐1 in choroidal blood flow regulation during isometric exercice in healthy humans. Invest Ophthalmol Vis Sci 44: 728–733, 2003.
 188. Luksch A, Polska E, Imhof A, Schering J, Fuchsjäger‐Mayrl G, Wolzt M and Schmetterer L. Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans. Invest Ophthalmol Vis Sci 44: 734–739, 2003.
 189. Marcus DF, Edelhauser HF, Maksud MG and Wiley RL. Effects of a sustained muscular contraction on human intraocular pressure. Clin Sci Mol Med 47: 249–257, 1974.
 190. McArdle WD, Katch FL and Katch VL. The cardiovascular system. Exercise Physiology. Energy, Nutrition, and Human Performance. Williams & Wilkins, 1996, pp. 267–283.
 191. Schmidt KG, Mittag TW, Pavlovic S and Hessemer V. Influence of physical exercise and nifedipine on ocular pulse amplitude. Graefe's Arch Clin Exp Ophthalmol 234: 527–532, 1996.
 192. Lovasik JV, Kergoat H, Riva CE, Petrig BL and Geiser MH. Choroidal blood flow during exercise‐induced changes in the ocular perfusion pressure. Invest Ophthalmol Vis Sci 44: 2126–2132, 2003.
 193. Yatsuka Y, Matsukubo S, Tsutsumi K, Kotegawa T, Nakamura K and Nakano S. Ophthalmic artery flow velocity after pyhsical exercice in healthy men. Jpn J Ophthalmol 40: 103–110, 1996.
 194. Bill A, Linder M and Linder J. The protective role of ocular sympathetic vasomotor nerves in acute arterial hypertension. Bibl Anat 16: 30–35, 1977.
 195. Michelson G, Groh M and Gründler A. Regulation of ocular blood flow during increases of arterial blood pressure. Br J Ophthalmol 78: 461–465, 1994.
 196. Sayegh FN and Weigelin E. Functional ophthalmodynamometry. Comparison between brachial and ophthalmic blood pressure in sitting and supine position. Angiology 34: 176–182, 1983.
 197. James CB and Smith SE. The effect of posture on the intraocular pressure and pulsatile ocular blood flow in patients with non‐arteritic anterior ischaemic optic neuropathy. Eye 5: 309–314, 1991.
 198. Evans DW, Harris A, Garrett M, Chung HS and Kagemann L. Glaucoma patients demonstrate faulty autoregulation of ocular blood flow during posture change. Br J Ophthalmol 83: 809–813, 1999.
 199. Longo A, Geiser MH and Riva CE. Posture changes and subfoveal choroidal blood flow. Invest Ophthalmol Vis Sci 45: 546–551, 2004.
 200. Kothe AC. The effect of posture on intraocular pressure and pulsatile ocular blood flow in normal and glaucomatous eyes. Surv Ophthalmol 38: S191–S197, 1994.
 201. Baxter GM, Williamson TH, McKillop G and Dutton GN. Color Doppler ultrasound of orbital and optic nerve blood flow: effects of posture and timolol 0.5%. Invest Ophthalmol Vis Sci 33: 604–610, 1992.
 202. Lovasik JV and Kergoat H. Gravity‐induced homeostatic reactions in the macular and choroidal vasculature of the human eye. Aviat Space Environ Med: 1010‐1014, 1994.
 203. Trew DR and Smith SE. Postural studies in pulsatile ocular blood flow: I ocular hypertension and normotension. Br J Ophthalmol 75: 466–470, 1991.
 204. Kaeser P, Orgul S, Zawinka C, Reinhard G and Flammer J. Influence of change in body position on choroidal blood flow in normal subjects. Br J Ophthalmol 89: 1302–1305, 2005.
 205. Rojanapongpun P and Drance SM. The response of blood flow velocity in the ophthalmic artery and blood flow of the finger to warm and cold stimuli in glaucomatous patients. Graefe's Arch Clin Exp Ophthalmol 231: 375–377, 1993.
 206. Nagaoka T, Mori F and Yoshida A. Retinal artery response to acute systemic blood pressure increase during cold pressor test in humans. Invest Ophthalmol Vis Sci 43: 1941–1945, 2002.
 207. Nicolela MT, Ferrier SN, Morrison CA, Archibald ML, LeVatte TL, Wallace K, Chauhan BC and LeBlanc RP. Effects of cold‐induced vasospasm in glaucoma: the role of endothelin‐1. Invest Ophthalmol Vis Sci 44: 2565–2572, 2003.
 208. Bill A. Autonomic nervous control of uveal blood flow. Acta Physiol Scand 56: 70–81, 1962.
 209. Stjernschantz J, Alm A and Bill A. Effects of intracranial oculomotor nerve stimulation on ocular blood flow in rabbits: modification by indomethacin. Exp Eye Res 23: 461–469, 1976.
 210. Stjernschantz J, Geijer C and Bill A. Electrical stimulation of the fifth cranial nerve in rabbits: effects on ocularblood flow, extravascular albumin content and intraocular pressure. Exp Eye Res 28: 229–238, 1979.
 211. Stjernschantz J and Bill A. Vasomotor effects of facial nerve stimulation: noncholinergic vasodilatation in the eye. Acta Physiol Scand 109: 45–50, 1980.
 212. Guyton AC, Jones CJ and Coleman TJ. Circulatory Physiology: Cardiac Output and its Regulation, 2nd ed. Philadelphia: W.B. Saunders Company, 1973.
 213. Riva CE and Loebl M. Autoregulation of blood flow in the capillaries of the human macula. Invest Ophthalmol Vis Sci 16 (6): 568–571, 1977.
 214. Riva CE, Sinclair SH and Grunwald JE. Autoregulation of retinal circulation in response to decrease of perfusion pressure. Invest Ophthalmol Vis Sci 21: 34–38, 1981.
 215. Riva CE, Grunwald JE and Petrig BL. Autoregulation of human retinal blood flow. Invest Ophthalmol Vis Sci 27: 1706–1712, 1986.
 216. Grunwald JE, Sinclair SH and Riva CE. Autoregulation of the retinal circulation in response to decrease of intraocular pressure below normal. Invest Ophthalmol Vis Sci 23: 124–127, 1982.
 217. Pillunat LE, Anderson DR, Knighton RW, Joos KM and Feuer WJ. Autoregulation of human optic nerve head circulation in response to increased intraocular pressure. Exp Eye Res 64: 737–744, 1997.
 218. Riva CE, Hero M, Titzé P and Petrig BL. Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure. Graefe's Arch Clin Exp Ophthalmol 235: 618–626, 1997.
 219. Aaslid R, Lindegaard K‐F, Sorteberg W and Nornes H. Cerebral autoregulation dynamics in humans. Stroke 20: 45–52, 1989.
 220. Florence G and Seylaz J. Rapid autoregulation of cerebral blood flow: a laser Doppler flowmetry study. J Cerebr Blood Flow Metabol 12: 674–680, 1992.
 221. Delaey C and Van de Voorde J. Pressure‐induced myogenic responses in isolated bovine retinal arteries. Invest Ophthalmol Vis Sci 41: 1871–1875, 2000.
 222. Jeppesen P, Aalkjaer C and Bek T. Bradykinin relaxation in small porcine retinal arterioles. Invest Ophthalmol Vis Sci 43: 1891–1895, 2002.
 223. Pournaras CJ. Autoregulation of ocular blood flow. In: Ocular Blood Flow. New Insights Into the Pathogenesis of Ocular Diseases, eds Kaiser HJ, Flammer J and Hendrickson Ph. Basel: Karger, 1996. pp. 40–50.
 224. Anderson DR. Introductory comments on blood flow autoregulation in the optic nerve head and vascular risk factors in glaucoma. Surv Ophthalmol 43: S5–S9, 1999.
 225. Okuno T, Hiedehiro O, Sugiyama T, Yang Y and Ikeda T. Evidence that nitric oxide is involved in autoregulation in optic nerve head of rabbits. Invest Ophthalmol Vis Sci 43: 784–789, 2002.
 226. Kiel JW and Shepherd AP. Autoregulation of choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 33: 2399–2410, 1992.
 227. Kiel JW and van Heuven WAJ. Ocular perfusion pressure and choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 36: 579–585, 1995.
 228. Kiel JW. The effect of arterial pressure on the ocular pressure‐volume relationship in the rabbit. Exp Eye Res 60: 267–278, 1995.
 229. Bill A. Intraocular pressure and blood flow through the uvea. Acta Ophthalmol 67: 336–348, 1962.
 230. Friedman E. Choroidal blood flow. Pressure‐flow relationships. Arch Ophthalmol 83: 95–99, 1970.
 231. Armaly MF and Araki M. Effect of ocular pressure on choroidal circulation in the cat and rhesus monkey. Invest Ophthalmol Vis Sci 14: 584–591, 1975.
 232. Yu DY, Alder VA, Cringle SJ and Brown MJ. Choroidal blood flow measured in the dog eye in vivo and in vitro by local hydrogen clearance polarography: validation of a technique and response to raised intraocular pressure. Exp Eye Res 46: 289–303, 1988.
 233. Gherezghiher T, Okubo H and Koss MC. Choroidal and ciliary body blood flow analysis: application of laser Doppler flowmetry in experimental animals. Exp Eye Res 53: 151–156, 1991.
 234. Alm A. Ocular circulation. In: Adler's Physiology of the Eye, eds William M and Hart J. St. Louis: Mosby Year Book, 1992, pp. 198–203.
 235. Riva CE, Titzé P and Petrig BL. Effect of acute decrease of perfusion pressure on choroidal blood flow in humans. Invest Ophthalmol Vis Sci 38: 1752–1760, 1997.
 236. Flügel C, Tamm ER, Mayer B and Lütjen‐Drecoll E. Species differences in choroidal vasodilative innervation: evidence for specific intrinsic nitrergic and VIP‐positive neurons in the human eye. Invest Ophthalmol Vis Sci 35: 592–599, 1994.
 237. Chamot SR, Movaffaghy A, Petrig BL and Riva CE. Iris blood flow response to acute decreases in ocular perfusion pressure: a laser Doppler flowmetry study in humans. Exp Eye Res 70: 107–112, 2000.
 238. Havelius U, Hansen F, Hindfelt B and Krakau T. Human ocular vasodynamic changes in light and darkness. Invest Ophthalmol Vis Sci 40: 1850–1855, 1999.
 239. Feke GT, Zuckerman R, Green GJ and Weiter JJ. Responses of human retinal blood flow to light and dark. Invest Ophthalmol Vis Sci 24: 136–141, 1983.
 240. Riva CE, Grunwald JE and Petrig BL. Reactivity of the human retinal circulation to darkness: a laser Doppler velocimetry study. Invest Ophthalmol Vis Sci 24: 737–740, 1983.
 241. Hill DW and Houseman J. Retinal blood flow in the cat following periods of light and darkness. Exp Eye Res 41: 219–225, 1985.
 242. Riva CE, Petrig BL and Grunwald JE. Near infrared retinal laser Doppler velocimetry. Laser Ophthalmol 1: 211–215, 1987.
 243. Barcsay G, Seres A and Németh J. The diameters of the human retinal branch vessels do not change in darkness. Invest Ophthalmol Vis Sci 44: 3115–3118, 2003.
 244. Longo A, Geiser MH and Riva CE. Subfoveal choroidal blood flow in response to light‐dark exposure. Invest Ophthalmol Vis Sci 41: 2678–2683, 2000.
 245. Fuchsjager‐Mayrl G, Polska E, Malec M and Schmetterer L. Unilateral light‐dark transitions affect choroidal blood flow in both eyes. Vision Res 41: 2919–2924, 2001.
 246. Riva CE, Logean E, Petrig BL and Falsini B. Effet de l'adaptation à l'obscurité sur le flux rétinien. Klinische Monatsblätter für Augenheilkunde 216: 309–310, 2000.
 247. Bill A and Nilsson SF. Control of ocular blood flow. J Cardiovasc Pharmacol 7: S96–S102, 1985.
 248. Parver LM. Temperature modulating action of choroidal blood flow. Eye 5: 181–185, 1991.
 249. Bill A and Sperber GO. Control of retinal and choroidal blood flow. Eye 4: 319–325, 1990.
 250. Morimoto N. Study on choroidal blood flow at dark light adaptation. Nippon Ganka Gakkai Zasshi 95: 235–240, 1991.
 251. Wang L, Kondo M and Bill A. Glucose metabolism in cat outer retina. Invest Ophthalmol Vis Sci 38: 48–55, 1997.
 252. Formaz F, Riva CE and Geiser MH. Diffuse luminance flicker increases retinal vessel diameter in humans. Curr Eye Res 16: 1252–1257, 1997.
 253. Polak K, Schmetterer L and Riva CE. Influence of flicker frequency on flicker induced changes of retinal vessel diameter. Invest Ophthalmol Vis Sci 43: 2721–2726, 2002.
 254. Nagel E and Vilser W. Flicker observation light induces diameter response in retinal arterioles: a clinical methodological study. Br J Ophthalmol 88: 54–56, 2004.
 255. Kotliar KE, Vilser W, Nagel E and Lanzl IM. Retinal vessel reaction in response to chromatic flickering light. Graefe's Arch Clin Exp Ophthalmol 242: 377–392, 2004.
 256. Riva CE and Petrig BL. The regulation of retinal and optic nerve blood flow: effect of diffuse luminance flicker determined by the laser Doppler and the blue field simulation techniques. Les Seminaires Ophtalmologiques d'IPSEN. Vision et Adaptation. Paris: Elsevier, 1995, pp. 61–71.
 257. Harrison JM, Elliot WR, III, Kiel JW and Sponsel WE. Effect of 10 Hz flicker on retinal hemodynamics measured by the Heidelberg retina flowmeter. Vision Science and its Applications, OSA Technical Digest series 1: 61–65, 1997.
 258. Michelson G, Patzelt A and Harazny J. Flickering light increases retinal blood flow. Retina 22: 336–343, 2002.
 259. Schmeisser ET, Harrison JM, Sutter EE, Kiel J, Elliott WR and Sponsel WE. Modification of the Heidelberg retinal flowmeter to record pattern and flicker induced blood flow changes. Doc Ophthalmol 106: 257–263, 2003.
 260. Garhöfer G, Zawinka C, Resch H, Huemer KH, Dorner GT and Schmetterer L. Diffuse luminance flicker increase blood flow in major retinal arteries and veins. Vision Res 44: 833–838, 2004.
 261. Riva CE, Logean E and Falsini B. Temporal dynamics and magnitude of the blood flow response at the optic disk in normal subjects during functional retinal flicker‐stimulation. Neurosci Lett 356: 75–78, 2004.
 262. Riva CE, Falsini B and Logean E. Flicker‐evoked response of human optic nerve head blood flow: luminance versus chromatic modulation. Invest Ophthalmol Vis Sci 42: 756–762, 2001.
 263. Riva CE, Logean E and Falsini B. Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina. Prog Retin Eye Res 24: 183–215, 2005.
 264. Falsini B, Riva CE and Logean E. Flicker‐evoked changes in human optic nerve blood flow: relationship with retinal neural activity. Invest Ophthalmol Vis Sci 43: 2721–2726, 2002.
 265. Riva CE and Buerk DG. Dynamic coupling of blood flow to function and metabolism in the optic nerve head. Neuro ophthalmol 20: 45–54, 1998.
 266. Attwell D and Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cerebr Blood Flow Metabol 21: 1133–1145, 2001.
 267. Heeger DJ and Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci 3: 142–151, 2002.
 268. Ido Y, Chang K and Williamson JR. NADH augments blood flow in physiologically activated retina and visual cortex. Proc Natl Acad Sci USA 101: 653–658, 2004.
 269. Buerk DG, Riva CE and Cranstoun SD. Frequency and luminance‐dependent blood flow and K+ ion changes during flicker stimuli in cat optic nerve head. Invest Ophthalmol Vis Sci 36: 2216–2227, 1995.
 270. Donati G, Pournaras CJ, Munoz J‐L, Poitry S, Poitry‐Yamate CL and Tsacopoulos M. Nitric oxide controls arteriolar tone in the retina of the miniature pig. Invest Ophthalmol Vis Sci 36: 2228–2237, 1995.
 271. Buerk DG, Riva CE and Cranstoun SD. Nitric oxide has a vasodilatory role in cat optic nerve head during flicker stimuli. Microvasc Res 52: 13–26, 1996.
 272. Kondo M, Wang L and Bill A. The role of nitric oxide in hyperaemic response to flicker in the retina and optic nerve in cats. Acta Ophthalmol Scand 75: 232–235, 1997.
 273. Buerk DG and Riva CE. Adenosine enhances functional activation of blood flow in cat optic nerve head during photic stimulation independently from nitric oxide. Microvasc Res 24: 254–264, 2002.
 274. Metea MR and Newman EA. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26: 2862–2870, 2006.
 275. Dorner GT, Garhöfer G, Kiss B, Polska E, Polak K, Riva CE and Schmetterer L. Nitric oxide regulates retinal vascular tone in man. Am J Physiol Heart Circ Physiol 10, 2003.
 276. Garhöfer G, Zawinka C, Huemer KH, Schmetterer L and Dorner G. Flicker light‐induced vasodilatation in the human retina: effect of lactate and changes in mean arterial pressure. Invest Ophthalmol Vis Sci 44: 5309–5314, 2003.
 277. Huemer KH, Garhöfer G, Zawinka C, Golestani E, Litschauer B, Schmetterer L and Dorner GT. Effects of dopamine on human retinal vessel diameter and its modulation during flicker stimulation. Am J Physiol Heart Circ Physiol 284: H358–H363, 2003.
 278. Dorner GT, Garhöfer G, Huemer KH, Riva CE, Wolzt M and Schmetterer L. Hyperglycemia affects flicker‐induced vasodilation in the retina of healthy subjects. Vision Res 43: 1495–1500, 2004.
 279. Nagel E, Vilser W and Lanzl I. Age, blood pressure, and vessel diameter as factors influencing the arterial retinal flicker response. Invest Ophthalmol Vis Sci 45: 1486–1492, 2004.
 280. Lovasik JV, Kergoat H and Wajszilber MA. Blue flicker modifies the subfoveal choroidal blood flow in the human eye. Am J Physiol Heart Circ Physiol 289: H683–H691, 2005.
 281. Furchgott RF and Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376, 1980.
 282. Haefliger IO, Meyer P, Flammer J and Luscher TF. The vascular endothelium as a regulator of the ocular circulation: a new concept in ophthalmology. Surv Ophthalmol 39: 123–132, 1994.
 283. Haefliger IO, Flammer J, Bény JL and Lüscher TF. Endothelium‐dependent vasoactive modulation in the ophthalmic circulation. Prog Retin Eye Res 20: 209–225, 2001.
 284. Rees DD, Palmer AM and Moncada S. Role of endothelium‐derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 86: 3375–3378, 1989.
 285. Yao K, Tschudi M, Flammer J and Lüscher TF. Endothelium‐dependent regulation of vascular ton of the porcine ophthalmic artery. Invest Ophthalmol Vis Sci 32 (6): 1791–1798, 1991.
 286. Haefliger IO, Flammer J and Lüscher TF. Nitric oxide and endothelin‐1 are important regulators of human ophthalmic artery. Invest Ophthalmol Vis Sci 33: 2340–2343, 1992.
 287. Haefliger IO, Zschauer A and Anderson DR. Relaxation of retinal pericyte contractile tone through the nitric oxide‐cyclic guanosine monophosphate pathway. Invest Ophthalmol Vis Sci 35: 991–997, 1994.
 288. Kawasaki Y, Fujikado T, Hosohata J, Tano Y and Tanaka Y. The effect of nitric oxide on the contractile tone of Müller cells. Ophthalmic Res 31: 387–391, 1999.
 289. Deussen A, Sonntag M and Vogel R. L‐arginine‐derived nitric oxide: a major determinant of uveal blood flow. Exp Eye Res 57: 129–134, 1993.
 290. Mann RM, Riva CE, Stone RA, Barnes GE and Cranstoun SD. Nitric oxide and choroidal blood flow regulation. Invest Ophthalmol Vis Sci 36: 925–930, 1995.
 291. Granstam E, Granstam SO, Fellstrom B and Lind L. Endothelium‐dependent vasodilation in the uvea of hypertensive and normotensive rats. Curr Eye Res 17: 189–196, 1998.
 292. Koss MC. Effect of nitric oxide synthesis inhibition on post‐occlusive choroidal blood flow in rats. J Ocul Pharmacol Ther 16: 55–64, 2000.
 293. Kiel JW. Modulation of choroidal autoregulation in the rabbit. Exp Eye Res 69: 413–429, 1999.
 294. Harino S, Nishimura K, Kitanishi K, Suzuki M and Reinach P. Role of nitric oxide in mediating retinal blood flow regulation in cats. J Ocul Pharmacol Ther 15: 295–303, 1999.
 295. Schmetterer L, Krejcy K, Kastner J, Wolzt M, Gouya G, Findel O, Lexer F, Breiteneder H, Fercher AF and Eichler HG. The effect of systemic nitric oxide‐synthase inhibition on ocular fundus pulsations in man. Exp Eye Res 64: 305–312, 1997.
 296. Luksch A, Polak K, Beier C, Polska E, Wolzt M, Dorner GT, Eichler HG and Schmetterer L. Effects of systemic NO synthase inhibition on choroidal and optic nerve head blood flow in healthy subjects. Invest Ophthalmol Vis Sci 41: 3080–3084, 2000.
 297. Delles C, Michelson G, Harazny J, Oehmer S, Hilgers KF and Schmieder RE. Impaired endothelial function of the retinal vasculature in hypertensive patients. Stroke 35: 1289–1293, 2004.
 298. Schmetterer L, Wolzt M, Graselli U, Findel O, Strenn K, Simak S, Kastner J, Eichler HG and Singer EA. Nitric oxide synthase inhibition in the histamine headache model. Cephalalgia 17: 175–182, 1997.
 299. Schmetterer L, Muller M, Fasching P, Diepolder C, Gallenkamp A, Zanaschka G, Findl O, Strenn K, Mensik C, Tschernko E, Eichler HG and Wolzt M. Renal and ocular hemodynamic effects of insulin. Diabetes 46: 1868–1874, 1997.
 300. Dorner GT, Garhöfer G, Huemer KH, Golestani E, Zawinka C, Schmetterer L and Wolzt M. Effects of adrenomedullin on ocular hemodynamic parameters in the choroid and the ophthalmic artery. Invest Ophthalmol Vis Sci 44: 3947–3951, 2003.
 301. Polak K, Dorner G, Kiss B, Polska E, Findl O, Rainer G, Eichler HG and Schmetterer L. Evaluation of the Zeiss retinal vessel analyser. Br J Ophthalmol 84: 1285–1290, 2000.
 302. Grunwald JE, Iannaccone A and Dupont J. Effect of isosorbide mononitrate on the human optic nerve and choroidal circulations. Br J Ophthalmol 83: 162–167, 1999.
 303. Iannaccone AE, Dupont J and Grunwald JE. Human retinal hemodynamics following administration of 5‐isosorbide mononitrate. Curr Eye Res 20: 205–210, 2000.
 304. Dallinger S, Sieder A, Strametz J, Bayerle‐Eder M, Wolzt M and Schmetterer L. Vasodilator effects of L‐arginine are stereospecific and augmented by insulin in humans. Am J Physiol Endocrinol Metab 284: E1106–E1111, 2003.
 305. Schmetterer L and Polak K. Role of nitric oxide in the control of ocular blood flow. Progr Retin Eye Res 20: 823–847, 2001.
 306. Kass MA and Holmberg NJ. Prostaglandin and thromboxane synthesis by microsomes of rabbit ocular tissues. Invest Ophthalmol Vis Sci 18: 166–171, 1979.
 307. Hardy RJ, Dumont I, Bhattacharya M, Hou X, Lachapelle P, Varma DR and Chemtob S. Oxidants, nitric oxide and prostanoids in the developing ocular vasculature: a basis for ischemic retinopathy. Cardiovasc Res 47: 489–509, 2000.
 308. Chemtob S, Beharry K, Rex J, Chatterjee T, Varma DR and Aranda JV. Ibuprofen enhances retinal and choroidal blood flow autoregulation in newborn piglets. Invest Ophthalmol Vis Sci 32: 1799–1807, 1991.
 309. Hardy P, Abran D, Li DY, Fernandez H, Varma DR and Chemtob S. Free radicals in retinal and choroidal blood flow autoregulation in the piglet: interaction with prostaglandins. Invest Ophthalmol Vis Sci 35: 580–591, 1994.
 310. Stjernschantz J, Selen G, Astin M and Resul B. Microvascular effects of selective prostaglandin analogues in the eye with special reference to latanoprost and glaucoma treatment. Progr Retin Eye Res 19: 459–496, 2000.
 311. Sponsel WE, Paris G, Trigo Y and Pena M. Comparative effects of latanoprost (Xalatan) and unoprostone (Rescula) in patients with open‐angle glaucoma and suspected glaucoma. Am J Ophthalmol 134: 552–559, 2002.
 312. Georgopoulos GT, Diestelhorst M, Fisher R, Ruokonen P and Krieglstein GK. The short‐term effect of latanoprost on intraocular pressure and pulsatile ocular blood flow. Acta Ophthalmol Scand 80: 54–58, 2002.
 313. Liu CJ, Ko YC, Cheng CY, Chiu AW, Chou JC, Huang A and Liu JH. Changes in intraocular pressure and ocular perfusion pressure after latanoprost 0.005% or brimonidine tartrate 0.2% in normal‐tension glaucoma patients. Ophthalmology 109: 2241–2247, 2002.
 314. Moncada S and Vane JR. Prostacyclin: homeostatic regulator or biological curiosity? Clin Sci (Lond) 61: 369–372, 1981.
 315. Hardy P, Abran D, Hou X, Lahaie I, Peri KJ, Asselin P, Varma DR and Chemtob S. A major role for prostacyclin in nitric oxide‐induced ocular vasorelaxation in the piglet. Circ Res 83: 721–729, 1998.
 316. Meyer P, Flammer J and Lüscher TF. Endothelium‐dependent regulation of the ophthalmic microcirculation in the perfused porcine eye: role of nitric oxide and endothelins. Invest Ophthalmol Vis Sci 34: 3614–3621, 1993.
 317. Hata Y, Clermont AC, Yamauchi T, Pierce EA, Suzuma I, Kagokawa H, Yoshikawa H, Robinson GS, Ishibashi T, Hashimoto T, Umeda F, Bursell SE and Aiello LP. Retinal expression, regulation, and functional bioactivity of prostacyclin‐stimulating factor. J Clin Invest 106: 541–550, 2000.
 318. Sandow SL. Factors, fiction and endothelium‐derived hyperpolarizing factor. Clin Exp Pharmacol Physiol 31: 563–570, 2004.
 319. McNeish AJ, Wilson WS and Martin W. Dominant role of an endothelium‐derived hyperpolarizing factor (EDHF)‐like vasodilator in the ciliary vascular bed of the bovine isolated perfused eye. Br J Pharmacol 134: 912–920, 2001.
 320. Rubanyi GM and Polokoff MA. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46: 325–415, 1994.
 321. Nyborg NC, Prieto D, Benedito S and Nielsen PJ. Endothelin‐1‐induced contraction of bovine retinal small arteries is reversible and abolished by nitrendipine. Invest Ophthalmol Vis Sci 32: 27–31, 1991.
 322. Haefliger IO, Flammer J and Lüscher TF. Heterogeneity of endothelium‐dependent regulation in ophthalmic and ciliary arteries. Invest Ophthalmol Vis Sci 34: 1722–1730, 1993.
 323. White LR, Bakken IJ, Sjaavaag I, Elsas T, Vincent MB and Edvinsson L. Vasoactivity mediated by endothelin ETA and ETB receptors in isolated porcine ophthalmic artery. Acta Physiol Seand 157: 245–252, 1996.
 324. Granstam E, Wang and Bill A. Ocular effects of endothelin‐1 in the cat. Curr Eye Res 11: 325–332, 1992.
 325. Nishimura K, Riva CE, Harino S, Reinach P, Cranstoun SD and Mita S. Effects of endothelin‐1 on optic nerve head blood flow in cats. J Ocul Pharmacol Ther 12: 75–83, 1996.
 326. Takagi C, King GL, Takagi H, Lin HW, Clermont AC and Bursell SE. Endothelin‐1 action via endothelial receptors is a primary mechanism modulating retinal circulatory response to hyperoxia. Invest Ophthalmol Vis Sci 37: 2099–2109, 1996.
 327. Kiel JW. Endothelin modulation of choroidal blood flow in the rabbit. Exp Eye Res 71: 543–550, 2000.
 328. Schmetterer L, Findl O, Strenn K, Jilma B, Graselli U, Eichler HG and Wolzt M. Effects of endothelin‐1 (ET‐1) on ocular hemodynamics. Curr Eye Res 16: 687–692, 1997.
 329. Polak K, Petternel V, Luksch A, Krohn J, Findel O, Polska E and Schmetterer L. Effect of endothelin and BQ123 on ocular blood flow parameters in healthy subjects. Invest Ophthalmol Vis Sci 42: 2949–2956, 2001.
 330. Polak K, Luksch A, Frank B, Jandrasits K, Polska E and Schmetterer L. Regulation of human retinal blood flow by endothelin‐1. Exp Eye Res 76: 633–640, 2003.
 331. Strenn K, Matulla B, Wolzt M, Findl O, Bekes MC, Lamsfuss U, Graselli U, Rainer G, Menapace R, Eichler HG and Schmetterer L. Reversal of endothelin‐1‐induced ocular hemodynamic effects by low‐dose nifedipine in humans. Clin Pharmacol Ther 63: 54–63, 1998.
 332. Polska E, Doelemeyer A, Luksch A, Ehrlich P, Kaehler N, Percicot C and Lambrou GN. Partial antagonism of endothelin 1‐induced vasoconstriction in the human choroid by topical unoprostone isopropyl. Arch Ophthalmol 120: 348–352, 2002.
 333. Igic R and Kojovic V. Angiotensin I converting enzyme (kininase II) in ocular tissues. Exp Eye Res 30: 299–303, 1980.
 334. Ferrari‐Dileo G, Davis EB and Anderson DR. Angiotensin II binding receptors in retinal and optic nerve head blood vessels. An autoradiographic approach. Invest Ophthalmol Vis Sci 32: 21–26, 1991.
 335. Nyborg NC, Nielsen PJ, Prieto D and Benedito S. Angiotensin II does not contract bovine retinal resistance arteries in vitro. Exp Eye Res 50: 469–474, 1990.
 336. Nyborg NC and Nielsen PJ. Angiotensin‐II contracts isolated human posterior ciliary arteries. Invest Ophthalmol Vis Sci 31: 2471–2473, 1990.
 337. Spicher T, Orgul S, Gugleta K, Teuchner B and Flammer J. The effect of losartan potassium on choroidal hemodynamics in healthy subjects. J Glaucoma 11: 177–182, 2002.
 338. Matulla B, Streit G, Pieh S, Findel O, Entlicher J, Graselli U, Eichler HG, Wolzt M and Schmetterer L. Effect of losartan on cerebral and ocular circulation in healthy subjects. Br J Clin Pharmacol 44: 369–375, 1997.
 339. Krejcy K, Wolzt M, Kreuzer C, Breiteneder H, Schütz W, Eichler HG and Schmetterer L. Characterization of angiotensin‐II effects on cerebral and ocular circulation by noninvasive methods. Br J Clin Pharmacol 43: 501–508, 1997.
 340. Granstam E and Nilsson SF. Non‐adrenergic sympathetic vasoconstriction in the eye and some other facial tissues in the rabbit. Eur J Pharmacol 175: 175–186, 1990.
 341. Kawarai M and Koss MC. Sympathetic vasodilation in the rat anterior choroid mediated by beta(1)‐adrenoceptors. Eur J Pharmacol 386: 227–233, 1999.
 342. Nilsson SF, Linder J and Bill A. Characteristics of uveal vasodilation produced by facial nerve stimulation in monkeys, cats and rabbits. Exp Eye Res 40: 841–852, 1985.
 343. Linder J. Effects of facial nerve section and stimulation on cerebral and ocular blood flow in hemorrhagic hypotension. Acta Physiol Seand 112: 193, 1981.
 344. Steinle JJ, Krizsan‐Agbas D and Smith PG. Regional regulation of choroidal blood flow by autonomic innervation in the rat. Am J Physiol Regul Integr Comp Physiol 279: R202–R209, 2000.
 345. Stone RA and Kuwayama Y. The nervous system and intraocular pressure. In: The Glaucomas, eds Ritch E, Shields MB and Ku DN. St. Louis: Mosby, 1989, pp. 257–279.
 346. Elsas T, Uddman R and Sundler F. Pituitary adenylate cyclase‐activating peptide‐immunoreactive nerve fibers in the cat eye. Graefe's Arch Clin Exp Ophthalmol 234: 573–580, 1996.
 347. Yamamoto R, Bredt DS, Snyder SH and Stone RA. The localization of nitric oxide synthase in the rat eye and related cranial ganglia. Neuroscience 54: 189–200, 1993.
 348. Nilsson SF. The significance of nitric oxide for parasympathetic vasodilation in the eye and other tissues in the cat. Exp Eye Res 70: 61–72, 2000.
 349. Alm A. Effects of norepinephrine, angiotensin, dihydroergotamine, papaverine, isoproterenol, histamine, nicotinic acid, and xanthinol nicotinate on retinal oxygen tension in cats. Acta Ophthalmol 50: 707–719, 1972.
 350. Jandrasits K, Luksch A, Soregi G, Dorner GT, Polak K and Schmetterer L. Effect of noradrenaline on retinal blood flow in healthy subjects. Ophthalmology 109: 291–295, 2002.
 351. Kitanishi K, Harino S, Okamoto N, Tani Y and Nishimura K. Optic nerve head and choroidal circulation measured by laser Doppler flowmetry in response to intravenous administration of noradrenaline. Nippon Ganka Gakkai Zasshi 101: 215–219, 1997.
 352. Bruinink A, Dawis S, Niemeyer G and Lichtensteiger W. Catecholaminergic binding sites in cat retina, pigment epithelium and choroid. Exp Eye Res 43: 147–151, 1986.
 353. Grajewsky AL, Ferrari‐Dileo G, Feuer WJ and Anderson DR. Beta‐adrenergic responsiveness of choroidal vasculature. Ophthalmology 98: 989–995, 1991.
 354. Harris A, Spaeth GL, Sergott RC, Katz LJ, Cantor LB and Martin BJ. Retrobulbar arterial hemodynamic effects of betaxolol and timolol in normal‐tension glaucoma. Am J Ophthalmol 120: 168–175, 1995.
 355. Schmetterer L, Strenn K, Findl O, Breiteneder H, Graselli U, Agneter E, Eichler HG and Wolzt M. Effects of antiglaucoma drugs on ocular hemodynamics in healthy volunteers. Clin Pharmacol Therapeut 61 (5): 583–595, 1997.
 356. Kiel JW and Patel P. Effects of timolol and betaxolol on choroidal blood flow in the rabbit. Exp Eye Res 67: 501–507, 1998.
 357. Jandrasits K, Polak K, Luksch A, Stark B, Dorner GT, Eichler HG and Schmetterer L. Effects of atropine and propranolol on retinal vessel diameters during isometric exercise. Ophthalmic Res 33: 185–190, 2001.
 358. Polska E, Luksch A, Schering J, Frank B, Imhof A, Fuchsjäger‐Mayrl G, Wolzt M and Schmetterer L. Propranolol and atropine do not alter choroidal blood flow regulation during isometric exercise in healthy humans. Microvasc Res 65: 39–44, 2003.
 359. Wikberg‐Matsson A, Uhlen S and Wikberg JE. Characterization of alpha(1)‐adrenoceptor subtypes in the eye. Exp Eye Res 70: 51–60, 2000.
 360. Wikberg‐Matsson A and Simonsen U. Potent alpha(2A)‐adrenoceptor‐mediated vasoconstriction by brimonidine in porcine ciliary arteries. Invest Ophthalmol Vis Sci 42: 2049–2055, 2001.
 361. Costa VP, Harris A, Stefansson E, Flammer J, Krieglstein GK, Orzalesi N, Heijl A, Renard J‐P and Serra LM. The effects of anti‐glaucoma and systemic medications on ocular blood flow. Progr Retin Eye Res 22: 769–805, 2003.
 362. Chiou GC and Chen YJ. Improvement of ocular blood flow with dopamine antagonists on ocular‐hypertensive rabbit eyes. Zhongguo Yao Li Xue Bao 13: 481–484, 1992.
 363. Reitsamer HA, Zawinka C and Branka M. Dopaminergic vasodilation in the choroidal circulation by d1/d5 receptor activation. Invest Ophthalmol Vis Sci 45: 900–905, 2004.
 364. Gidday JM and Park TS. Microcirculatory responses to adenosine in the newborn pig retina. Pediatr Res 33: 620–627, 1993.
 365. Gidday JM and Park TS. Adenosine‐mediated autoregulation of retinal arteriolar tone in the piglet. Invest Ophthalmol Vis Sci 34: 2713–2719, 1993.
 366. Polska E, Ehrlich P, Luksch A, Fuchsjäger‐Mayrl G and Schmetterer L. Effects of adenosine on intraocular pressure, optic nerve head blood flow, and choroidal blood flow in healthy humans. Invest Ophthalmol Vis Sci 44: 3110–3114, 2003.
 367. Portellos M, Riva CE, Cranstoun SD, Petrig BL and Brucker AJ. Effects of adenosine on ocular blood flow. Invest Ophthalmol Vis Sci 36: 1904–1909, 1995.
 368. Kohner EM, Patel V and Rassam SM. Role of blood flow and impaired autoregulation in the pathogenesis of diabetic retinopathy. Diabetes 44: 603–607, 1995.
 369. Schmetterer L and Wolzt M. Ocular blood flow and associated functional deviations in diabetic retinopathy. Diabetologia 42: 387–405, 1999.
 370. Sullivan PM, Davies GE, Caldwell G, Morris AC and Kohner EM. Retinal blood flow during hyperglycemia. A laser Doppler velocimetry study. Invest Ophthalmol Vis Sci 31: 2041–2045, 1990.
 371. Luksch A, Polak K, Matulla B, Dallinger S, Kapiotis S, Rainer G, Wolzt M and Schmetterer L. Glucose and insulin exert additive ocular and renal vasodilator effects on healthy humans. Diabetologia 44: 95–103, 2001.
 372. Bursell SE, Clermont AC, Kinsley BT, Simonson DC, Aiello LM and Wolpert HA. Retinal blood flow changes in patients with insulin‐dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci 37: 886–897, 1996.
 373. Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, van den Enden M, Kilo C and Tilton RG. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42: 801–813, 1993.
 374. Ido Y, Chang K, Woolsey T and Williamson JR. NADH: sensor of blood flow need in brain, muscle, and other tissues. FASEB 15: 1419–1421, 2001.
 375. Garhöfer G, Zawinka C, Resch H, Menke M, Schmetterer L and Dorner GT. Effect of intravenous administration of sodium‐Iactate on retinal blood flow in healthy subjects. Invest Ophthalmol Vis Sci 44: 3972–3976, 2003.
 376. Garhöfer G, Kopf A, Polska E, Malec M, Dorner GT, Wolzt M and Schmetterer L. Influence of exercise induced hyperlactatemia on retinal blood flow during normo‐ and hyperglycemia. Curr Eye Res 28: 351–358, 2004.
 377. Steinberg HO, Brechtel G, Johnson A, Fineberg N and Baron AD. Insulin‐mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 94: 1172–1179, 1994.
 378. Polak K, Dallinger S, Polska E, Findl O, Eichler HG, Wolzt M and Schmetterer L. Effects of insulin on retinal and pulsatile choroidal blood flow in humans. Arch Ophthalmol 118: 55–59, 2000.
 379. Kohner EM, Hamilton AM, Saunders SJ, Sutcliffe BA and Bulpitt CJ. The retinal blood flow in diabetes. Diabetologia 11: 27–33, 1975.
 380. Caldwell RB and Fitzgerald ME. The choriocapillaris in spontaneously diabetic rats. Microvasc Res 42: 229–244, 1991.
 381. McLeod DS and Lutty GA. High‐resolution histologic analysis of the human choroidal vasculature. Invest Ophthalmol Vis Sci 35: 3799–3811, 1994.
 382. Grunwald JE and Bursell SE. Hemodynamic changes as early markers of diabetic retinopathy. Curr Opin Endocrinol Diabetes 3: 298–306, 1996.
 383. MacKinnon JR, McKillop G, O'Brien C, Swa K, Butt Z and Nelson P. Colour Doppler imaging of the ocular circulation in diabetic retinopathy. Acta Ophthalmol Scand 78: 386–389, 2000.
 384. Dimitrova G, Kato K, Tamaki Y, Yamashita H, Nagahara M, Sakurai M, Kitano S and Fukushima H. Choroidal circulation in diabetic patients. Eye 15: 602–607, 2001.
 385. Päivänsalo M, Pelkonen O, Rajala U, Keinanen‐Kiukaanniemi S and Suramo I. Diabetic retinopathy: sonographically measured hemodynamic alterations in ocular, carotid, and vertebral arteries. Acta Radiologics 45: 404–410, 2004.
 386. Goebel W, Lieb WE, Ho A, Sergott RC, Farhoumand R and Grehn F. Color Doppler imaging: a new technique to assess orbital blood flow in patients with diabetic retinopathy. Invest Ophthalmol Vis Sci 36: 864–870, 1995.
 387. Mendivil A, Cuartero V and Mendivil MP. Ocular blood flow velocities in patients with proliferative diabetic retinopathy and healthy volunteers: a prospective study. Br J Ophthalmol 79: 413–416, 1995.
 388. Kawagishi T, Nishizawa Y, Emoto M, Konishi T, Maekawa K, Hagiwara S, Okuno Y, Inada H, Isshiki G and Morii H. Impaired retinal artery blood flow in IDDM patients before clinical manifestations of diabetic retinopathy. Diabetes Care 18 (12): 1544–1549, 1995.
 389. Güven D, Özdemir H and Hasanreisoglu B. Hemodynamic alterations in diabetic retinopathy. Ophthalmology 103: 1245–1249, 1996.
 390. Feke GT, Tagawa H, Yoshida A, Goger DG, Weiter JJ, Buzney SM and McMeel JW. Retinal circulatory changes related to retinopathy progression in insulin‐dependent diabetes mellitus. Ophthalmology 92: 1517–1522, 1985.
 391. Grunwald JE, Riva CE, Sinclair SH, Brucker AJ and Petrig BL. Laser Doppler velocimetry study of retinal circulation in diabetes mellitus. Arch Ophthalmol 104: 991–996, 1986.
 392. Patel V, Rassam S, Newsom R, Wiek J and Kontier E. Retinal blood flow in diabetic retinopathy. BMJ 305: 678–683, 1992.
 393. Fujio N, Feke GT, Goger DG and McMeel JW. Regional retinal blood flow reduction following half fundus photocoagulation treatment. Br J Ophthalmol 78: 335–338, 1994.
 394. Falck A and Laatikainen L. Retinal vasodilation and hyperglycaemia in diabetic children and adolescents. Acta Ophthalmol Scand 73: 119–124, 1995.
 395. Kohner EM. Dynamic changes in the microcirculation of diabetics as related to diabetic microangiopathy. Acta Med Scand Suppl 578: 41–47, 1975.
 396. Findl O, Dallinger S, Rami B, Polak K, Schober E, Wedrich A, Ries E, Eichler HG, Wolzt M and Schmetterer L. Ocular haemodynamics and colour contrast sensitivity in patients with type 1 diabetes. Br J Ophthalmol 84: 493–498, 2000.
 397. Grunwald JE, Brucker AJ, Grunwald SE and Riva CE. Retinal hemodynamics in proliferative diabetic retinopathy. A laser Doppler velocimetry study. Invest Ophthalmol Vis Sci 34: 66–71, 1993.
 398. Grunwald JE, Dupont J and Riva CE. Retinal haemodynamics in patients with early diabetes mellitus. Br J Ophthalmol 80: 327–331, 1996.
 399. Arend O, Wolf S, Jung F, Bertram B, Pöstgens H, Toonen H and Reim M. Retinal microcirculation in patients with diabetes mellitus: dynamic and morphological analysis of perifoveal capillary network. Br J Ophthalmol 75 (9): 514–518, 1991.
 400. Bertram B, Wolf S, Fiehofer S, Schulte K, Arend O and Reim M. Retinal circulation times in diabetes mellitus type 1. Br J Ophthalmol 75: 462–465, 1991.
 401. Chung TW, Liu AG and Yu JH. Increased red cell rigidity might affect retinal capillary blood flow velocity and oxygen transport efficiency in type II diabetes. Diabetes Res 23: 75–82, 1993.
 402. Sinclair SH. Macular retinal capillary hemodynamics in diabetic patients. Ophthalmology 98: 1580–1586, 1991.
 403. Langham ME, Grebe R, Hopkins S, Marcus S and Sebag M. Choroidal blood flow in diabetic retinopathy. Exp Eye Res 52: 167–173, 1991.
 404. Perrott RL, North RV, Drasdo N, Ahmed KA and Owens DR. The influence of plasma glucose upon pulsatile ocular blood flow in subjects with type II diabetes mellitus. Diabetologia 44: 700–705, 2001.
 405. Schmidt KG, von Rückmann A, Kemkes‐Matthes B and Hammes H. Ocular pulse amplitude in diabetes mellitus. Br J Ophthalmol 84: 1282–1284, 2000.
 406. Nagaoka T, Kitaya N, Sugawara R, Yokota H, Mori F, Hikichi T, Fujio N and Yoshida A. Alteration of choroidal circulation in the foveal region in patients with type 2 diabetes. Br J Ophthalmol 88: 1060–1063, 2004.
 407. Schocket LS, Brucker AJ, Niknam RM, Grunwald JE, Dupont J and Brucker AJ. Foveolar choroidal hemodynamics in proliferative diabetic retinopathy. Int Ophthalmol 25: 89–94, 2004.
 408. Schmetterer L, Salomon A, Rheinberger A, Unfried C, Lexer F and Wolzt M. Fundus pulsation measurements in diabetic retinopathy. Graefe's Arch Clin Exp Ophthalmol 235: 283–287, 1997.
 409. Bertram B, Wolf S, Arend O, Schulte K and Reim M. Retinal circulation and current blood glucose value in diabetic retinopathy. Klinische Monatsblätter für Augenheilkunde 200: 654–657, 1992.
 410. Atherton A, Hill DW, Young S and Edwards EJ. The effect of acute hyperglycaemia on the retinal circulation of the normal cat. Diabetologia 18: 233–237, 1980.
 411. Ernest JT, Goldstick TK and Engerman RL. Hyperglycemia impairs retinal oxygen autoregulation in normal and diabetic dogs. Invest Ophthalmol Vis Sci 24: 985–989, 1983.
 412. Tiedeman JS, Kirk SE, Srinivas MS and Beach JM. Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy. Ophthalmology 105: 31–36, 1998.
 413. Fallon TJ, Sleightholm MA, Merrick C, Chahal P and Kohner EM. The effect of acute hyperglycemia on flow velocity in the macular capillaries. Invest Ophthalmol Vis Sci 28: 1027–1030, 1987.
 414. Frank RN. Diabetic retinopathy. Progr in Retin Eye Res 14: 361–392, 1995.
 415. DCCTRG. The effect of intensive treatment of diabetes on the development and progression of long‐term complications in insulin‐dependent diabetes mellitus. New Engl J Med 329: 977–986, 1993.
 416. Waldhäusl W, Freyler H, Bratusch‐Marrain P, Vierhapper H and Bruneder H. Continuous subcutaneous insulin infusion: long‐term treatment in an unselected group of insulin‐dependent diabetics. Dtsch Med Wochenschr 108: 570–577, 1983.
 417. Grunwald JE, Brucker AJ, Schwartz SS, Braunstein SN, Baker L, Petrig BL and Riva CE. Diabetic glycemic control and retinal blood flow. Diabetes 39: 602–607, 1990.
 418. Grunwald JE, Brucker AJ, Braunstein SN, Schwartz SS, Baker L, Petrig BL and Riva CE. Strict metabolic control and retinal blood flow in diabetes. Clin Sci: 598‐604, 1994.
 419. Evans DW, Harris A, Danis RP, Arend O and Martin BJ. Altered retrobulbar vascular reactivity in early diabetic retinopathy. Br J Ophthalmol 81: 279–282, 1997.
 420. Grunwald JE, Riva CE, Brucker AJ, Sinclair SH and Petrig BL. Altered retinal vascular response to 100% oxygen breathing in diabetes mellitus. Ophthalmology 91: 1447–1452, 1984.
 421. Sinclair SH, Grunwald JE, Riva CE, Braunstein SN, Nichols CW and Schwartz SS. Retinal vascular autoregulation in diabetes mellitus. Ophthalmology 89: 748–750, 1982.
 422. Rassam SM, Patel V and Kohner EM. The effect of experimental hypertension on retinal vascular autoregulation in humans: a mechanism for the progression of diabetic retinopathy. Exp Physiol 80: 53–68, 1995.
 423. Dumskyi MJ and Kohner EM. Retinal blood flow regulation in diabetes mellitus: impaired autoregulation and no detectable effect of autonomic neuropathy using laser Doppler velocimetry, computer assisted image analysis, and isometric exercice. Microvasc Res 57: 353–356, 1999.
 424. Lanigan LP, Clark CV, Allawi J, Hill DW and Keen H. Responses of the retinal circulation to systemic autonomic stimulation in diabetes mellitus. Eye 3: 39–47, 1989.
 425. Movaffaghy A, Chamot SR, Dosso A, Pournaras CJ, Sommerhalder JR and Riva CE. Effect of isometric exercise on choroidal blood flow in type I diabetic patients. Klinische Monatsblätter für Augenheilkunde 219: 299–301, 2002.
 426. Garhöfer G, Zawinka C, Resch H, Kothy P, Schmetterer L and Dorner G. Reduced response of retinal vessel diameters to flicker stimulation in patients with diabetes. Br J Ophthalmol 88: 891–897, 2004.
 427. Mizutani M, Gerhardinger C and Lorenzi M. Müller cell changes in human diabetic retinopathy. Diabetes 47: 445–449, 1998.
 428. Paemeleire K. The cellular basis of neurovascular metabolic coupling. Acta Neurol Belg 102: 153–157, 2002.
 429. Schmetterer L, Findel O, Fasching P, Ferber W, Strenn K, Breiteneder H, Adam H, Eichler HG and Wolzt M. Nitric oxide and ocular blood flow in patients with IDDM. Diabetes 46: 653–658, 1997.
 430. Dorner GT, Garhöfer G, Selenko N, Fasching P, Bayerle‐Eder M, Schmetterer L and Wolzt M. The ocular hemodynamic response to nitric oxide synthase inhibition is unaltered in patients with early type I diabetes. Graefe's Arch Clin Exp Ophthalmol 241: 619–624, 2003.
 431. Osborne NN, Casson RJ, Wood JPM, Chidlow G, Graham M and Melena J. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Progr Retin Eye Res 23: 91–147, 2004.
 432. Witmer AN, Vrensen GF, Van Noorden CJ and Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Progr Retin Eye Res 22: 1–29, 2003.
 433. Lutty GA and McLeod DS. Retinal vascular development and oxygen‐induced retinopathy: a role for adenosine. Progr Retin Eye Res 22: 95–111, 2003.
 434. Drejer J, Benveniste H, Diemer NH and Schousboe A. Cellular origin of ischemia‐induced glutamate release from brain tissue in vivo and in vitro. J Neurochem 45: 145–151, 1985.
 435. Louzada‐Junior P, Dias JJ, Santos WF, Lachat JJ, Bradford HF and Coutinho‐Netto J. Glutamate release in experimental ischaemia of the retina: an approach using microdialysis. J Neurochem 59: 358–363, 1992.
 436. Vorwerk CK, Lipton SA, Zurakowski D, Hyman BT, Sabel BA and Dreyer EB. Chronic low‐dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Invest Ophthalmol Vis Sci 37: 1618–1624, 1996.
 437. Osborne NN, Chidlow G, Nash MS and Wood JP. The potential of neuroprotection in glaucoma treatment. Curr Opin Ophthalmol 10: 82–92, 1999.
 438. Sucher NJ, Lipton SA and Dreyer EB. Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res 37: 3483–3493, 1997.
 439. Duarte CB, Ferreira IL, Santos PF, Carvalho AL, Agostinho PM and Carvalho AP. Glutamate in life and death of retinal amacrine cells. Gen Pharmacol 30: 289–295, 1998.
 440. Kuriyama H, Nakagawa M and Tsuda M. Intracellular Ca(2+) changes induced by in vitro ischemia in rat retinal slices. Exp Eye Res 73: 365–374, 2001.
 441. Bonne C, Mueller A and Villain M. Free radicals in retinal ischemia. Gen Pharmacol 30: 275–280, 1998.
 442. Shibuki H, Katai N, Yodoi J, Uchida K and Yoshimura N. Lipid peroxidation and peroxynitrite in retinal ischemia‐reperfusion injury. Invest Ophthalmol Vis Sci 41: 3607–3614, 2000.
 443. Neufeld AH, Kawai S, Das S, Vora S, Gachie E, Connor JR and Manning PT. Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase. Exp Eye Res 75: 521–528, 2004.
 444. Goldstein GM, Ostwald P and Roth S. Nitric oxide: a review of its role in retinal function and disease. Vision Res 36: 2979–2994, 1996.
 445. Ju WK, Kim KY and Neufeld AH. Increased activity of cyclo‐oxygenase‐2 signals early neurodegenerative events in the rat retina following transient ischemia. Exp Eye Res 77: 137–145, 2003.
 446. Fontaine V, Mohand‐Said S, Hanoteau N, Fuchs C, Pfizenmaier K and Eisel U. Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. Neurosci 22: RC212, 2002.
 447. Yoneda S, Tanihara H, Kido N, Honda Y, Goto W, Hara H and Miyawaki N. Interleukin‐lbeta mediates ischemic injury in the rat retina. Exp Eye Res 73: 661–667, 2001.
 448. Roth S. Endogenous neuroprotection in the retina. Brain Res Bull 62: 461–466, 2004.
 449. Ghiardi GJ, Gidday JM and Roth S. The purine nucleoside adenosine in retinal ischemia‐reperfusion injury. Vision Res 39: 2519–2535, 1999.
 450. Weinreb RN and Khaw PT. Primary open‐angle glaucoma. Lancet 363: 1711–1720, 2004.
 451. Flammer J, Pache M and Resink T, Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Progr Retin Eye Res 20: 319–349, 2001.
 452. Emre M, Orgül S, Gugleta K and Flammer J. Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Br J Ophthalmol 88: 662–666, 2004.
 453. Gherghel D, Hosking SL and Cunliffe IA. Abnormal systemic and ocular vasclar response to temperature provocation in primary open‐angle glaucoma patients: a case for autonomic failure? Invest Ophthalmol Vis Sci 45: 3546–3554, 2004.
 454. Sehi M, Flanagan JG, Zeng L, Cook RJ and Trope GE. Anterior optic nerve capillary blood flow response to diurnal variation of mean ocular perfusion pressure in early untreated primary open‐angle glaucoma. Invest Ophthalmol Vis Sci 46: 4581–4587, 2005.
 455. Nicolela MT, Hnik P and Drance SM. Scanning laser Doppler flowmeter study of retinal and optic disk blood flow in glaucomatous patients. Am J Ophthalmol 122: 775–783, 1996.
 456. Michelson G, Langhans MJ and Groh MJM. Perfusion of the juxta‐papillary retina and the neuroretinal rim area in primary open angle glaucoma. J Glaucoma 5: 91–98, 1996.
 457. Kerr J, Nelson P and O'Brien C. A comparison of ocular blood flow in untreated primary open‐angle glaucoma and ocular hypertension. Am J Ophthalmol 126: 42–51, 1998.
 458. Findl O, Rainer G, Dallinger S, Dorner G, Polak K, Kiss B, Georgopoulos M, Vass C and Schmetterer L. Assessment of optic disk blood flow in patients with open‐angle glaucoma. Am J Ophthalmol 130: 589–596. 2000.
 459. Logan JF, Rankin SJ and Jackson AJ. Retinal blood flow measurements and neuroretinal rim damage in glaucoma. Br J Ophthalmol 88: 1049–1054, 2004.
 460. Yamazaki Y and Drance SM. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am J Ophthalmol 124: 287–295. 1997.
 461. Satilmis M, Orgul S, Doubler B and Flammer J. Rate of progression of glaucoma correlates with retrobulbar circulation and intraocular pressure. Am J Ophthalmol 135: 664–669, 2003.
 462. Zink JM, Grunwald JE, Piltz‐Seymour JR, Staii A and Dupont J. Association between lower optic nerve laser Doppler blood volume measurements and glaucomatous visual field progression. Br J Ophthalmol 87: 1487–1491, 2003.
 463. Grunwald JE, Riva CE, Stone RA, Keates EU and Petrig BL. Retinal autoregulation in open‐angle glaucoma. Ophthalmology 91: 1690–1694, 1984.
 464. Nagel E, Vilser W and Lanzl IM. Retinal vessel reaction to short‐term IOP elevation in ocular hypertensive and glaucoma patients. Eur J Ophthalmol 11: 338–344, 2001.
 465. Grunwald JE, Piltz J, Hariprasad SM, Dupont J and Maguire MG. Optic nerve blood flow in glaucoma: effect of systemic hypertension. Am J Ophthalmol 127: 516–522, 1999.
 466. Garhöfer G, Zawinka C, Resch H, Huemer KH, Schmetterer L and Dorner GT. Response of retinal vessel diameters to flicker stimulation in patients with early open angle glaucoma. J Glaucoma 13: 340–344, 2004.
 467. Riva CE, Salgarello T, Logean E, Colotto A, Galan E and Falsini B. Flicker‐evoked response measured at the optic disk rim is reduced in ocular hypertension and early glaucoma. Invest Ophthalmol Vis Sci 45: 3662–3668, 2004.
 468. Orgul S, Cioffi GA, Wilson DJ, Bacon DR and Van Buskirk EM. An endothelin‐1 induced model of optic nerve ischemia in the rabbit. Invest Ophthalmol Vis Sci 37: 1860–1869, 1996.
 469. Orgul S, Cioffi GA, Bacon DR and Van Buskirk EM. An endothelin‐1‐induced model of chronic optic nerve ischemia in rhesus monkeys. J Glaucoma 5: 135–138, 1996.
 470. Oku H, Sugiyama T, Kojima S, Watanabe T and Azuma I. Experimental optic cup enlargement caused by endothelin‐1‐induced chronic optic nerve head ischemia. Surv Ophthalmol 44: S74–S84, 1999.
 471. Chauhan BC, LeVatte TL, Jollimore CA, Yu PK, Reitsamer HA, Kelly ME, Yu DY, Tremblay F and Archibald ML. Model of endothelin‐1‐induced chronic optic neuropathy in rat. Invest Ophthalmol Vis Sci 45: 144–152, 2004.
 472. Cioffi GA and Sullivan P. The effect of chronic ischemia on the primate optic nerve. Eur J Ophthalmol 9: S34–S36, 1999.
 473. Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R and Varotto A. Vascular risk factors for primary open angle glaucoma: the Egna‐Neumarkt Study. Ophthalmology 107: 1287–1293, 2000.
 474. Leske MC, Wu SY, Nemesure B and Hennis A. Incident open‐angle glaucoma and blood pressure. Arch Ophthalmol 120: 954–959, 2002.
 475. la Cour M, Kiilgaard J and Nissen MH. Age‐related macular degeneration: epidemiology and optimal treatment. Drugs Agin 19: 101–133, 2002.
 476. Friedman E. A hemodynamic model of the pathogenesis of age‐related macular degeneration. Am J Ophthalmol 124 (5): 677–682, 1997.
 477. Friedman E. The role of the atherosclerotic process in the pathogenesis of age‐related macular degeneration. Am J Ophthalmol 130: 658–663, 2000.
 478. Friedman E. Update of the vascular model of AMD. Br J Ophthalmol 88: 161–163, 2004.
 479. Grunwald JE, Hariprasad SM, Dupont J, Maguire MG, Fine SL, Brucker AJ, Maguire AM and Ho AC. Foveolar choroidal blood flow in age‐related macular degeneration. Invest Ophthalmol Vis Sci 39: 385–390, 1998.
 480. Grunwald JE, Metelitsina TI, DuPont JC, Ying GS and Maguire MG. Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. Invest Ophthalmol Vis Sci 46: 1033–1038, 2005.
 481. Chen SJ, Cheng CY, Lee FL, Chou JC, Hsu WM and Lu JH. Pulsatile ocular blood flow in asymmetric exudative age related macular degeneration. Br J Ophthalmol 85: 1411–1415, 2001.
 482. Uretmen O, Akkin C, Erakgun T and Killi R. Color Doppler imaging of choroidal circulation in patients with asymmetric age‐related macular degeneration. Ophthalmologica 217: 137–142, 2003.
 483. Pauleikhoff D, Spital G, Radermacher M, Brumm GA, Lommatzsch A and Bird AC. A fluorescein and indocyanine green angiographic study of choriocapillaris in age‐related macular disease. Arch Ophthalmol 117: 1353–1358, 1999.
 484. Ciulla TA, Harris A, Kagemann L, Danis RP, Pratt LM, Chung HS, Weinberger D and Garzozi HJ. Choroidal perfusion perturbations in non‐neovascular age related macular degeneration. Br J Ophthalmol 86: 209–213. 2002.
 485. Pournaras CJ, Logean E Riva CE Petrig BL, Chamot SR, Coscas G and Soubrane G. Regulation of subfoveal choroidal blood flow in age‐related macular degeneration. Invest Ophthalmol Vis Sci 47: 1581–1586, 2006.
 486. Lutty G, Grunwald J, Majji AB, Uyama M and Yoneya S. Changes in choriocapillaris and retinal pigment epithelium in age‐related macular degeneration. Mol Vis 03: 5–35, 1999.
 487. Stjernschantz J and Resul B. Phenyl‐substituted prostaglandin analogs for glaucoma treatment. Drugs Future 17: 691–704, 1992.
 488. Stjernschantz J, Seten G, Sjöquist B and Resul B. Preclinical pharmacology of latanoprost, a phenyl‐substituted PGF2 alpha analogue. Adv Prostaglandin Thromboxane Leukot Res 23: 513–518, 1995.
 489. Ota T, Aihara M, Narumiya S, Araie M. The effects of prostaglandin analogues on IOP in prostanoid FP‐receptor‐deficient mice. Invest Ophthalmol Vis Sci 46: 4159–4163, 2005.
 490. Ota T, Aihara M, Saeki T, Narumiya S and Araie M. The effects of prostaglandin analogues on prostanoid EP1, EP2, and EP3 receptor‐deficient mice. Invest Ophthalmol Vis Sci 47: 3395–3399, 2006.
 491. Ihara M, Noguchi K, Saeki T, Fukuroda T, Tsuchida S, Kimura S, Fukami T, Ishikawa K, Nishikibe M and Yano M. Biological profiles of highly potent novel endothelin antagonists selective for the ETA receptor. Life Sci 50: 247–255, 1992.
 492. Reuter H and Scholz H. A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle. J Physiol 264 (1): 17–47, 1977.
 493. Kashiwagi K, Kanai N, Tsuchida T, Suzuki M, Iizuka Y, Tanaka Y and Tsukahara S. Comparison between isopropyl unoprostone and latanoprost by prostaglandin E(2)induction, affinity to prostaglandin transporter, and intraocular metabolism. Exp Eye Res 74: 41–49, 2002.
 494. Cuppoletti J, Malinowska DH, Tewari KP, Chakrabarti J and Ueno R. Cellular and molecular effects of unoprostone as a BK channel activator. Biochim Biophys Acta 1768: 1083–1092, 2007.
 495. Goh Y and Kihino J. Pharmacological characterization of prostaglandin‐related ocular hypotensive agents. Jpn J Ophthalmol 38: 236–245, 1994.
 496. Burke J and Schwartz M. Preclinical evaluation of brimonidine. Surv Ophthalmol 41 Suppl 1: S9–18, 1996.
 497. Gyoergyi L, Molnar J and Doda M. Some pharmacological properties of M‐(2‐aminopropyl)‐phenol (alpha‐methyl‐m‐tyramine). Arzneimittelforschung 15: 219–220, 1965.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Charles E Riva, Leopold Schmetterer. Microcirculation of the Ocular Fundus. Compr Physiol 2011, Supplement 9: Handbook of Physiology, The Cardiovascular System, Microcirculation: 735-765. First published in print 2008. doi: 10.1002/cphy.cp020416