References |
1. |
Hebbel RP,
Boogaerts MA,
Eaton JW and
Steinberg MH.
Erythrocyte adherence to endothelium in sickle‐cell anemia. A possible determinant of disease severity.
New Eng J Med
302:
992–995,
1980.
|
2. |
Hebbel RP,
Osarogiagbon R and
Kaul D.
The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy.
Microcirculation
11:
129–151,
2004.
|
3. |
Kaul DK and
Fabry ME.
In vivo studies of sickle red blood cells.
Microcirculation
11:
153–165,
2004.
|
4. |
Kaul DK and
Hebbel RP.
Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice [see comments].
J Clin Invest
106:
411–420,
2000.
|
5. |
Nath KA,
Katusic ZS and
Gladwin MT.
The perfusion paradox and vascular instability in sickle cell disease.
Microcirculation
11:
179–193,
2004.
|
6. |
Nagel RL and
Fabry ME.
The many pathophysiologies of sickle cell anemia [Review].
Am J Hematol
20:
195–199,
1985.
|
7. |
Powars DR.
Natural history of sickle cell disease‐the first ten years.
Semin Hematol
12:
267–285,
1975.
|
8. |
Nagel RL.
Pleiotropic and epistatic effects in sickle cell anemia.
Curr Opin Hematol
8:
105–110,
2001.
|
9. |
Nagel RL,
Fabry ME,
Kaul DK,
Billett H,
Croizat H.
Labie D and
Canessa S.
Known and potential sources for epistatic effects in sickle cell anemia [62]
Ann NY Acad Sci
565:
228–238,
1989.
|
10. |
Nagel RL and
Steinberg MH.
Role of epistatic (modifier) genes in the modulation of the phenotypic diversity of sickle cell anemia.
Pediatr Pathol Mol Med
20:
123–136,
2001.
|
11. |
Lu ZH and
Steinberg MH.
Fetal hemoglobin in sickle cell anemia: relation to regulatory sequences cis to the beta‐globin gene. Multicenter Study of Hydroxyurea.
Blood
87:
1604–1611,
1996.
|
12. |
Stuart MJ and
Nagel RL.
Sickle‐cell disease.
Lancet
364:
1343–1360,
2004.
|
13. |
Bunn HF.
Pathogenesis and treatment of sickle cell disease.
N Engl J Med
337:
762–769,
1997.
|
14. |
Pauling L and
Itano HA.
Sickle cell anemia a molecular disease.
Science
110:
543–548,
1949.
|
15. |
Steinberg MH.
Management of sickle cell disease.
N Engl J Med
340:
1021–1030,
1999.
|
16. |
Eaton WA and
Hofrichter J.
Hemoglobin S gelation and sickle cell disease [Review].
Blood
70:
1245–1266,
1987.
|
17. |
Ferrone FA.
Polymerization and sickle cell disease: a molecular view.
Microcirculation
11:
115–128,
2004.
|
18. |
Kaul DK,
Fabry ME and
Nagel RL.
The pathophysiology of vascular obstruction in the sickle syndromes [Review].
Blood Rev
10:
29–44,
1996.
|
19. |
Fabry ME and
Nagel RL.
Heterogeneity of red cells in the sickler: a characteristic with practical clinical and pathophysiological implications.
Blood Cells
8:
9–15,
1982.
|
20. |
Kaul DK,
Fabry ME,
Windisch P,
Baez S and
Nagel RL.
Erythrocytes in sickle cell anemia are heterogeneous in their rheological and hemodynamic characteristics.
J Clin Invest
72:
22–31,
1983.
|
21. |
Bridges KR,
Barabino GD,
Brugnara C,
Cho MR,
Christoph GW,
Dover G,
Ewenstein BM,
Golan DE,
Guttmann CR,
Hofrichter J,
Mulkern RV,
Eaton S and
Zhang WA.
A multiparameter analysis of sickle erythrocytes in patients undergoing hydroxyurea therapy.
Blood
88:
4701–4710,
1996.
|
22. |
Brugnara C,
Bunn HF and
Tosteson DC.
Regulation of erythrocyte cation and water content in sickle cell anemia.
Science
232:
388–390,
1986.
|
23. |
Joiner CH.
Cation transport and volume regulation in sickle red blood cells.
Am J Physiol
264:
C251–C270,
1993.
|
24. |
Lux SE,
John KM and
Karnovsky MJ.
Irreversible deformation of the spectrin‐actin lattice in irreversibly sickled cells.
J Clin Invest
58:
955–963,
1976.
|
25. |
Rodgers GP,
Schechter AN,
Noguchi CT,
Klein HG,
Nienhuis AW and
Bonner RF.
Periodic microcirculatory flow in patients with sickle‐cell disease.
New Engl J Med
311:
1534–1538,
1984.
|
26. |
Ahluwalia A,
Foster P,
Scotland RS,
McLean PG,
Mathur A,
Perretti M,
Moncada S and
Hobbs AJ.
Antiinflammatory activity of soluble guanylate cyclase: cGMP‐dependent down‐regulation of P‐selectin expression and leukocyte recruitment.
Proc Natl Acad Sci USA
101:
1386–1391,
2004.
|
27. |
Alp NJ and
Channon KM.
Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease.
Arterioscler Thromb Vasc Biol
24:
413–420,
2004.
|
28. |
Aslan M,
Ryan TM,
Adler B,
Townes TM,
Parks DA,
Thompson JA,
Tousson A,
Gladwin MT,
Patel RP,
Tarpey MM.
Batinic‐Haberle I.
White CR and
Freeman BA.
Oxygen radical inhibition of nitric oxide‐dependent vascular function in sickle cell disease.
Proc Natl Acad Sci USA
98:
15215–15220,
2001.
|
29. |
Mohandas N,
Phillips WM and
Bessis M.
Red blood cell deformability and hemolytic anemias.
Semin Hematol
16:
95–114,
1979.
|
30. |
Chien S.
Filterability and other methods of approaching red cell deformability. Determinants of blood viscosity and red cell deformability.
Scand J Clin Lab Invest Suppl
156:
7–12,
1981.
|
31. |
Chien S,
Kaperonis AA,
King RG,
Lipowsky HH,
Schmalzer EA,
Sung LA,
Sung KL and
Usami S.
Rheology of sickle cells and its role in microcirculatory dynamics.
Prog Clin Biol Res
240:
151–165,
1987.
|
32. |
Lipowsky HH,
Sheikh NU and
Katz DM.
Intravital microscopy of capillary hemodynamics in sickle cell disease.
J Clin Invest
80:
117–127,
1987.
|
33. |
Lipowsky HH and
Williams ME.
Shear rate dependency of red cell sequestration in skin capillaries in sickle cell disease and its variation with vasoocclusive crisis.
Microcirculation
4:
289–301,
1997.
|
34. |
Baez S,
Lamport H and
Baez A.
Pressure effects in living microscopic vessels. In:
Flow Properties of Blood and Other Bilogical Systems,
eds Copley AL and
Stainsby G.
Pergamon Press:
London,
1960,
pp. 122–136.
|
35. |
Kaul DK,
Fabry ME and
Nagel RL.
Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: pathophysiological implications.
Proc Natl Acad Sci USA
86:
3356–3360,
1989.
|
36. |
Green HD,
Rapela C and
Conard MD.
Resistance (conductance) and capacitance phenomena in terminal vascular beds. In:
Handbook of Physiology,
eds Hamilton WF and
Dow P.
American Physiological Society:
Washington, DC,
1963,
pp. 122–136.
|
37. |
Whittaker SRF and
Winton FR.
The apparent viscosity of blood flowing in the isolated hind limb of the dog and its variation with corpuscular concentration.
J Physiol (Lond)
78:
339–451,
1933.
|
38. |
Kaul DK,
Nagel RL and
Baez S.
Pressure effects on the flow behavior of sickle (HbSS) red cells in isolated (ex‐vivo) microvascular system.
Microvasc Res
26:
170–181,
1983.
|
39. |
Baez S,
Kaul DK and
Nagel RL.
Microvascular determinants of blood flow behavior and HbSS erythrocyte plugging in microcirculation.
Blood Cell
8:
127–137,
1982.
|
40. |
Nash GB,
Johnson CS and
Meiselman HJ.
Influence of oxygen tension on the viscoelastic behavior of red blood cells in sickle cell disease.
Blood
67:
110–118,
1986.
|
41. |
Fabry ME,
Costantini F,
Pachnis A,
Suzuka SM,
Bank N,
Aynedjian HS,
Factor SM and
Nagel RL.
High expression of human beta S‐ and alpha‐globins in transgenic mice: erythrocyte abnormalities, organ damage, and the effect of hypoxia.
Proc Natl Acad Sci USA
89:
12155–12159,
1992.
|
42. |
Greaves DR,
Fraser P,
Vidal MA,
Hedges MJ,
Ropers D,
Luzzatto L and
Grosveld F.
A transgenic mouse model of sickle cell disorder [see comments].
Nature
343:
183–185,
1990.
|
43. |
Rubin EM,
Witkowska HE,
Spangler E,
Curtin P,
Lubin BH,
Mohandas N and
Clift SM.
Hypoxia‐induced in vivo sickling of transgenic mouse red cells.
J Clin Invest
87:
639–647,
1991.
|
44. |
Ryan TM,
Ciavatta DJ and
Townes TM.
Knockout‐transgenic mouse model of sickle cell disease.
Science
278:
873–876,
1997.
|
45. |
Trudel M,
Saadane N,
Garel MC,
Bardakdjian‐Michau J,
Blouquit Y,
Guerquin‐Kern JL,
Rouyer‐Fessard P,
Vidaud D,
Pachnis A,
Romeo PH, et al.
Towards a transgenic mouse model of sickle cell disease: hemoglobin SAD.
EMBO J
10:
3157–3165,
1991.
|
46. |
Fabry ME,
Sengupta A,
Suzuka SM,
Costantini F,
Rubin EM,
Hofrichter S,
Christoph G,
Manci E,
Culberson D and
Factor SM.
A second generation transgenic mouse model expressing both hemoglobin S (HbS) and HbS‐Antilles results in increased phenotypic severity.
Blood
86:
2419–2428,
1995.
|
47. |
Rhoda MD,
Domenget C,
Vidaud D,
Bardakdjian‐Michau J,
Rouyer‐Fessard P,
Rosa J and
Beuzard Y.
Mouse alpha chains inhibit polymerization of hemoglobin induced by human beta S and beta S‐Antilles chains.
Biochimica et Biophysica Acta
952:
208,
1992.
|
48. |
Paszty C,
Brion CM,
Manci E,
Witkowska HE,
Stevens ME.
Mohandas N and
Rubin EM.
Transgenic knockout mice with exclusively human sickle hemoglobin and sickle cell disease [see comments].
Science
278:
876–878,
1997.
|
49. |
Fabry ME,
Suzuka SM,
Weinberg RS,
Lawrence C,
Factor SM,
Gilman JG,
Costantini F and
Nagel RL.
Second generation knockout sickle mice: the effect of HbF.
Blood
97:
410–418,
2001.
|
50. |
Fabry M.
Transgenic animal models. In:
Sickle Cell Disease: Basic Principles and Clinical Practice,
eds Embury SH,
Hebbel RP,
Mohandas N and
Steinberg MH.
Raven Press, Ltd.:
New York,
1994,
pp. 105–120.
|
51. |
Nagel RL.
A knockout of a transgenic mouse‐animal models of sickle cell anemia.
New Eng J Med
339:
194–195,
1998.
|
52. |
Baez S.
An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy.
Microvasc Res
5:
384–394,
1973.
|
53. |
Kaul DK,
Fabry ME,
Costantini F,
Rubin EM and
Nagel RL.
In vivo demonstration of red cell‐endothelial interaction, sickling and altered microvascular response to oxygen in the sickle transgenic mouse.
J Clin Invest
96:
2845–2853,
1995.
|
54. |
Kaul DK,
Liu XD,
Chang HY,
Nagel RL and
Fabry ME.
Effect of fetal hemoglobin on microvascular regulation in sickle transgenic‐knockout mice.
J Clin Invest
114:
1136–1145,
2004.
|
55. |
Kaul DK,
Liu XD,
Zhang X,
Ma L,
Hsia CJ and
Nagel RL.
Inhibition of sickle red cell adhesion and vasoocclusion in the microcirculation by antioxidants.
Am J Physiol Heart Circ Physiol
291:
H167–hH175,
2006.
|
56. |
Finnegan EM,
Barabino GA,
Liu XD,
Chang HY,
Jonczyk A and
Kaul DK.
Small‐molecule cyclic alpha V beta 3 antagonists inhibit sickle red cell adhesion to vascular endothelium and vasoocclusion.
Am J Physiol Heart Circ Physiol
293:
H1038–H1045,
2007.
|
57. |
Barabino GA,
McIntire LV,
Eskin SG,
Sears DA and
Udden M.
Endothelial cell interactions with sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow.
Blood
70:
152–157,
1987.
|
58. |
Mohandas N and
Evans E.
Sickle erythrocyte adherence to vascular endothelium. Morphologic correlates and the requirement for divalent cations and collagen‐binding plasma proteins.
J Clin Invest
76:
1605–1612,
1985.
|
59. |
Hebbel RP,
Yamada O,
Moldow CF,
Jacob HS,
White JG and
Eaton JW.
Abnormal adherence of sickle erythrocytes to cultured vascular endothelium: possible mechanism for microvascular occlusion in sickle cell disease.
J Clin Invest
65:
154–160,
1980.
|
60. |
Hoover R,
Rubin R,
Wise G and
Warren R.
Adhesion of normal and sickle erythrocytes to endothelial monolayer cultures.
Blood
54:
872–876,
1979.
|
61. |
Hebbel RP.
Adhesive interactions of sickle erythrocytes with endothelium [Review].
J Clin Invest
100:
S83–S86,
1997.
|
62. |
Hebbel RP,
Berger EM and
Eaton JW.
Effect of increased maternal hemoglobin oxygen affinity on fetal growth in the rat.
Blood
55:
969–974,
1980.
|
63. |
Kaul DK,
Nagel RL,
Chen D and
Tsai HM.
Sickle erythrocyte‐endothelial interactions in microcirculation: the role of von Willebrand factor and implications for vasoocclusion.
Blood
81:
2429–2438,
1993.
|
64. |
Kaul DK,
Tsai HM,
Liu XD,
Nakada MT,
Nagel RL and
Coller BS.
Monoclonal antibodies to alpha Vbeta3 (7E 609) inhibit sickle red blood cell‐endothelium interactions induced by platelet‐activating factor [see comments].
Blood
95:
368–374,
2000.
|
65. |
Kaul DK,
Tsai HM,
Nagel RL and
Chen D.
Platelet‐activating factor enhances adhesion of sickle erythrocytes to vascular endothelium. In:
Sickle Cell Disease and Thalassemias: New Trends in Therapy (INSERM Symposium),
eds Beuzard Y,
Lubin BH and
Rosa J.
INSERM/John Libbey Eurotext:
Montrouge, France,
1995,
pp. 497–500.
|
66. |
Hatch FE,
Crowe LR,
Miles DE,
Young JP and
Portner ME.
Altered vascular reactivity in sickle hemoglobinopathy. A possible protective factor from hypertension.
Am J Hyperten
2:
2–8,
1989.
|
67. |
Hebbel RP,
Ney PA and
Foker W.
Autoxidation, dehydration, and adhesivity may be related abnormalities of sickle erythrocytes.
Am J Physiol
256:
C579–C583,
1989.
|
68. |
Kaul DK,
Chen D and
Zhan J.
Adhesion of sickle cells to vascular endothelium is critically dependent on changes in density and shape of the cells.
Blood
83:
3006–3017,
1994.
|
69. |
Zennadi R,
Hines PC,
De Castro LM,
Cartron JP,
Parise LV and
Telen MJ.
Epinephrine acts through erythroid signaling pathways to activate sickle cell adhesion to endothelium via LW‐alphavbeta3 interactions.
Blood
104:
3774–3781,
2004.
|
70. |
Hillery CA,
Du MC,
Montgomery RR and
Scott JP.
Increased adhesion of erythrocytes to components of the extracellular matrix: Isolation and characterization of a red blood cell lipid that binds thrombospondin and laminin.
Blood
87:
4879–4886,
1996.
|
71. |
Aslan M,
Thornley‐Brown D and
Freeman BA.
Reactive species in sickle cell disease.
Ann NY Acad Sci
899:
375–391,
2000.
|
72. |
Brittain HA,
Eckman JR,
Swerlick RA,
Howard RJ and
Wick TM.
Thrombospondin from activated platelets promotes sickle erythrocyte adherence to human microvascular endothelium under physiologic flow: a potential role for platelet activation in sickle cell vaso‐occlusion.
Blood
81:
2137–2143,
1993.
|
73. |
Sugihara K,
Sugihara T,
Mohandas N and
Hebbel RP.
Thrombospondin mediates adherence of CD36+ sickle reticulocytes to endothelial cells.
Blood
80:
2634–2642,
1992.
|
74. |
Swerlick RA,
Eckman JR,
Kumar A,
Jeitler M and
Wick TM.
Alpha 4 beta 1‐integrin expression on sickle reticulocytes: vascular cell adhesion molecule‐1‐dependent binding to endothelium.
Blood
82:
1891–1899,
1993.
|
75. |
Kumar A,
Eckmam JR,
Swerlick RA and
Wick TM.
Phorbol ester stimulation increases sickle erythrocyte adherence to endothelium: a novel pathway involving alpha 4 beta 1 integrin receptors on sickle reticulocytes and fibronectin.
Blood
88:
4348–4358,
1996.
|
76. |
Setty BN and
Stuart MJ.
Vascular cell adhesion molecule‐1 is involved in mediating hypoxia‐induced sickle red blood cell adherence to endothelium: Potential role in sickle cell disease.
Blood
88:
2311–2320,
1996.
|
77. |
Stuart MJ and
Setty BN.
Acute chest syndrome of sickle cell disease: New light on an old problem.
Curr Opin Hematol
8:
111–122,
2001.
|
78. |
Vichinsky EP,
Styles LA,
Colangelo LH,
Wright EC,
Castro O and
Nickerson B.
Acute chest syndrome in sickle cell disease: clinical presentation and course. Cooperative Study of Sickle Cell Disease.
Blood
89:
1787–1792,
1997.
|
79. |
Barabino GA,
Liu XD,
Ewenstein BM and
Kaul DK.
Anionic polysaccharides inhibit adhesion of sickle erythrocytes to the vascular endothelium and result in improved hemodynamic behavior.
Blood
93:
1422–1429,
1999.
|
80. |
Brittain JE,
Mlinar KJ,
Anderson CS,
Orringer EP and
Parise LV.
Activation of sickle red blood cell adhesion via integrin‐associated protein/CD47‐induced signal transduction.
J Clin Invest
107:
1555–1562,
2001.
|
81. |
Hines PC,
Zen Q,
Burney SN,
Shea DA,
Ataga KI,
Orringer EP,
Telen MJ and
Parise LV.
Novel epinephrine and cyclic AMP‐mediated activation of BCAM/Lu‐dependent sickle (SS) RBC adhesion.
Blood
101:
3281–3287,
2003.
|
82. |
Mankelow TJ,
Spring FA,
Parsons SF,
Brady RL,
Mohandas N,
Chasis JA and
Anstee DJ.
Identification of critical amino‐acid residues on the erythroid intercellular adhesion molecule‐4 (ICAM‐4) mediating adhesion to alpha V integrins.
Blood,
2003.
|
83. |
Kaul DK,
Liu XD,
Zhang Z,
Mankelow T,
Parsons S,
Spring F,
An X,
Narla M,
Anstee D and
Chassis JA.
Inhibiting binding of sickle red cell ICAM‐4 to endothelial cell alpha V beta 3 integrin decreases red cell adhesion and vaso‐occlusion.
Blood
104
(11 Suppl.):
106a,
2004.
|
84. |
Wick TM,
Moake JL,
Udden MM and
McIntire LV.
Unusually large von Willebrand factor multimers preferentially promote young sickle and nonsickle erythrocyte adhesion to endothelial cells.
Am J Hematol
42:
284–292,
1993.
|
85. |
Felding‐Habermann B and
Cheresh DA.
Vitronectin and its receptors [Review] [51 refs].
Curr Opin Cell Biol
5:
864–868,
1993.
|
86. |
Mackie I,
Bull H and
Brozovic M.
Altered factor VIII complexes in sickle cell disease.
Br J Haematol
46:
499–502,
1980.
|
87. |
Richardson SG,
Matthews KB,
Stuart J,
Geddes AM and
Wilcox RM.
Serial changes in coagulation and viscosity during sickle‐cell crisis.
Brit J Haematol
41:
95–103,
1979.
|
88. |
Cheresh DA.
Human endothelial cells synthesize and express an Arg‐Gly‐Asp‐directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor.
Proc Natl Acad Scie USA
84:
6471–6475,
1987.
|
89. |
Kramer RH,
Cheng YF and
Clyman R.
Human microvascular endothelial cells use beta 1 and beta 3 integrin receptor complexes to attach to laminin.
J Cell Biol
111:
1233–1243,
1990.
|
90. |
Hebbel RP.
Blockade of adhesion of sickle cells to endothelium by monoclonal antibodies.
N Engl J Med
342:
1910–1912,
2000.
|
91. |
Solovey A,
Lin Y,
Browne P,
Choong S,
Wayner E and
Hebbel RP.
Circulating activated endothelial cells in sickle cell anemia [see comments].
New Engl J Med
337:
1584–1590,
1997.
|
92. |
Sowemimo‐Coker SO,
Meiselman HJ and
Francis RB, Jr.
Increased circulating endothelial cells in sickle cell crisis.
Am J Hematol
31:
263–265,
1989.
|
93. |
Boggs DR,
Hyde F and
Srodes C.
An unusual pattern of neutrophil kinetics in sickle cell anemia.
Blood
41:
59–65,
1973.
|
94. |
Platt OS.
Sickle cell anemia as an inflammatory disease.
J Clin Invest
106:
337–338,
2000.
|
95. |
Osarogiagbon UR,
Choong S,
Belcher JD,
Vercellotti GM,
Paller MS and
Hebbel RP.
Reperfusion injury pathophysiology in sickle transgenic mice.
Blood
96:
314–320,
2000.
|
96. |
Griendling KK,
Sorescu D and
Ushio‐Fukai M.
NAD(P)H oxidase: role in cardiovascular biology and disease.
Circ Res
86:
494–501,
2000.
|
97. |
Wood KC,
Hebbel RP and
Granger DN.
Endothelial cell NADPH oxidase mediates the cerebral microvascular dysfunction in sickle cell transgenic mice.
FASEB J
19:
989–991,
2005.
|
98. |
Vasquez‐Vivar J,
Kalyanaraman B,
Martasek P,
Hogg N,
Masters BS,
Karoui H,
Tordo P and
Pritchard KA, Jr.
Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors.
Proc Natl Acad Sci USA
95:
9220–9225,
1998.
|
99. |
Kalambur VS,
Mahaseth H,
Bischof JC,
Kielbik MC,
Welch TE,
Vilback A,
Swanlund DJ,
Hebbel RP,
Belcher JD and
Vercellotti GM.
Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy.
Am J Hematol
77:
117–125,
2004.
|
100. |
Kaul DK,
Liu XD,
Choong S,
Belcher JD,
Vercellotti GM and
Hebbel RP.
Anti‐inflammatory therapy ameliorates leukocyte adhesion and microvascular flow abnormalities in transgenic sickle mice.
Am J Physiol Heart Circ Physiol
287:
H293–hH301,
2004.
|
101. |
Wood KC,
Hebbel RP and
Granger DN.
Endothelial cell P‐selectin mediates a proinflammatory and prothrombogenic phenotype in cerebral venules of sickle cell transgenic mice.
Am J Physiol Heart Circ Physiol
286:
H1608–hH1614,
2004.
|
102. |
Turhan A,
Weiss LA,
Mohandas N,
Coller BS and
Frenette PS.
Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm.
Proc Natl Acad Sci USA
99:
3047–3051,
2002.
|
103. |
Embury SH,
Matsui NM,
Ramanujam S,
Mayadas TN,
Noguchi CT,
Diwan BA,
Mohandas N and
Cheung AT.
The contribution of endothelial cell P‐selectin to the microvascular flow of mouse sickle erythrocytes in vivo.
Blood
104:
3374–3385,
2004.
|
104. |
Graido‐Gonzalez E,
Doherty JC,
Bergreen EW,
Organ G,
Telfer M and
McMillen MA.
Plasma endothelin‐1. cytokine, and prostaglandin E2 levels in sickle cell disease and acute vaso‐occlusive sickle crisis.
Blood
92:
2551–2555,
1998.
|
105. |
Kaul DK,
Fabry ME and
Nagel RL.
Erythrocytic and vascular factors influencing the microcirculatory behavior of blood in sickle cell anemia. [35]
Ann NY Acad Sci
565:
316–326,
1989.
|
106. |
Kaul DK.
Flow properties and endothelial adhesion of sickle erythrocytes in an ex vivo microvascular preparation. In:
Membrane Abnormalities in Sickle Cell Disease and in Other Red Blood Cell Disorders,
eds Ohnishi ST and
Ohnishi T.
CRC Press:
Boca Raton, FL,
1994,
pp. 217–241.
|
107. |
Embury SH.
The not‐so‐simple process of sickle cell vasoocclusion.
Microcirculation
11:
101–113,
2004.
|
108. |
Belhassen L,
Pelle G,
Sediame S,
Bachir D,
Carville C,
Bucherer C,
Lacombe C,
Galacteros F and
Adnot S.
Endothelial dysfunction in patients with sickle cell disease is related to selective impairment of shear stress‐mediated vasodilation.
Blood
97:
1584–1589,
2001.
|
109. |
Lonsdorfer J,
Bogui P,
Otayeck A,
Bursaux E,
Poyart C and
Cabannes R.
Cardiorespiratory adjustments in chronic sickle cell anemia.
Bulletin Europeen de Physiopathologie Respiratoire
19:
339–344,
1983.
|
110. |
Johnson CS and
Giorgio AJ.
Arterial blood pressure in adults with sickle cell disease.
Arch Int Med
141:
891–893,
1981.
|
111. |
Kubes P,
Suzuki M and
Granger DN.
Nitric oxide: an endogenous modulator of leukocyte adhesion.
Proc Natl Acad Sci USA
88:
4651–4655,
1991.
|
112. |
Moncada S,
Palmer RM and
Higgs EA.
Nitric oxide: physiology, pathophysiology, and pharmacology [404].
Pharmacol Rev
43:
109–142,
1991.
|
113. |
Ohashi Y,
Kawashima S,
Hirata K,
Yamashita T,
Ishida T,
Inoue N,
Sakoda T,
Kurihara H,
Yazaki Y and
Yokoyama M.
Hypotension and reduced nitric oxide‐elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase [see comments].
J Clin Invest
102:
2061–2071,
1998.
|
114. |
Harrison DG.
Cellular and molecular mechanisms of endothelial cell dysfunction [Review].
J Clin Invest
100:
2153–2157,
1997.
|
115. |
Morris CR,
Kuypers FA,
Larkin S,
Vichinsky EP and
Styles LA.
Patterns of arginine and nitric oxide in patients with sickle cell disease with vaso‐occlusive crisis and acute chest syndrome.
J Pediatr Hematol Oncol
22:
515–520,
2000.
|
116. |
Rees DC,
Cervi P,
Grimwade D,
O'Driscoll A,
Hamilton M,
Parker NE and
Porter JB.
The metabolites of nitric oxide in sickle‐cell disease.
Br J Haematol
91:
834–837,
1995.
|
117. |
Hsu LL,
Champion HC,
Campbell‐Lee SA,
Bivalacqua TJ,
Manci EA,
Diwan BA,
Schimel DM,
Cochard AE,
Wang X,
Schechter AN,
Noguchi CT and
Gladwin MT.
Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability.
Blood
109:
3088–3098,
2007.
|
118. |
Morris CR,
Kato GJ,
Poljakovic M,
Wang X,
Blackwelder WC,
Sachdev V,
Hazen SL,
Vichinsky EP,
Morris SM, Jr and
Gladwin MT.
Dysregulated arginine metabolism, hemolysis‐associated pulmonary hypertension, and mortality in sickle cell disease.
JAMA
294:
81–90,
2005.
|
119. |
Gladwin MT,
Lancaster JR, Jr.,
Freeman BA and
Schechter AN.
Nitric oxide's reactions with hemoglobin: a view through the SNO‐storm.
Nat Med
9:
496–500,
2003.
|
120. |
Reiter CD,
Wang X,
Tanus‐Santos JE,
Hogg N,
Cannon RO, III,
Schechter AN and
Gladwin MT.
Cell‐free hemoglobin limits nitric oxide bioavailability in sickle‐cell disease.
Nat Med
8:
1383–1389,
2002.
|
121. |
Gladwin MT,
Schechter AN,
Ognibene FP,
Coles WA,
Reiter CD,
Schenke WH,
Csako G,
Waclawiw MA,
Panza JA and
Cannon RO, III.
Divergent nitric oxide bioavailability in men and women with sickle cell disease.
Circulation
107:
271–278,
2003.
|
122. |
Kaul DK,
Liu XD,
Fabry ME and
Nagel RL.
Impaired nitric oxide‐mediated vasodilation in transgenic sickle mouse.
Am J Physiol Heart Circ Physiol
278:
H1799–H1806,
2000.
|
123. |
Nath KA,
Shah V,
Haggard JJ,
Croatt AJ,
Smith LA,
Hebbel RP and
Katusic ZS.
Mechanisms of vascular instability in a transgenic mouse model of sickle cell disease.
Am J Physiol Regul Integr Comp Physiol
279:
R1949–R1955,
2000.
|
124. |
Gladwin MT and
Kato GJ.
Cardiopulmonary complications of sickle cell disease: role of nitric oxide and hemolytic anemia.
Hematol Am Soc Hematol Educ Program:
51‐57,
2005.
|
125. |
Eberhardt RT,
McMahon L,
Duffy SJ,
Steinberg MH,
Perrine SP,
Loscalzo J,
Coffman JD and
Vita JA.
Sickle cell anemia is associated with reduced nitric oxide bioactivity in peripheral conduit and resistance vessels.
Am J Hematol
74:
104–111,
2003.
|
126. |
Conger JD and
Weil JV.
Abnormal vascular function following ischemia‐reperfusion injury [Review].
J Invest Med
43:
431–442,
1995.
|
127. |
Katusic ZS and
d'Uscio LV.
Tetrahydrobiopterin: mediator of endothelial protection.
Arterioscler Thromb Vasc Biol
24:
397–398,
2004.
|
128. |
Landmesser U,
Dikalov S,
Price SR,
McCann L,
Fukai T,
Holland SM,
Mitch WE and
Harrison DG.
Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension.
J Clin Invest
111:
1201–1209,
2003.
|
129. |
Wood KC,
Hebbel RP,
Lefer DJ and
Granger DN.
Critical role of endothelial cell‐derived nitric oxide synthase in sickle cell disease‐induced microvascular dysfunction.
Free Radic Biol Med
40:
1443–1453,
2006.
|
130. |
Dejam A,
Hunter CJ,
Pelletier MM,
Hsu LL,
Machado RF,
Shiva S,
Power GG,
Kelm M,
Gladwin MT and
Schechter AN.
Erythrocytes are the major intravascular storage sites of nitrite in human blood.
Blood
106:
734–739,
2005.
|
131. |
Gladwin MT,
Crawford JH and
Patel RP.
The biochemistry of nitric oxide, nitrite, and hemoglobin: role in blood flow regulation.
Free Radic Biol Med
36:
707–717,
2004.
|
132. |
Cosby K,
Partovi KS,
Crawford JH,
Patel RP,
Reiter CD,
Martyr S,
Yang BK,
Waclawiw MA,
Zalos G,
Xu X,
Huang KT,
Shields H,
Kim‐Shapiro DB,
Schechter AN,
Cannon RO and
Gladwin MT.
Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation.
Nat Med
9:
1498–1505,
2003.
|
133. |
Huang KT,
Keszler A,
Patel N,
Patel RP,
Gladwin MT,
Kim‐Shapiro DB and
Hogg N.
The reaction between nitrite and deoxyhemoglobin. Reassessment of reaction kinetics and stoichiometry.
J Biol Chem
280:
31126–31131,
2005.
|
134. |
Tsai AG,
Johnson PC and
Intaglietta M.
Oxygen gradients in the microcirculation.
Physiol Rev
83:
933–963,
2003.
|
135. |
Jison ML,
Munson PJ,
Barb JJ,
Suffredini AF,
Talwar S,
Logun C,
Raghavachari N,
Beigel JH,
Shelhamer JH,
Danner RL and
Gladwin MT.
Blood mononuclear cell gene expression profiles characterize the oxidant, hemolytic, and inflammatory stress of sickle cell disease.
Blood
104:
270–280,
2004.
|
136. |
Belcher JD,
Mahaseth H,
Welch TE,
Otterbein LE,
Hebbel RP and
Vercellotti GM.
Heme oxygenase‐1 is a modulator of inflammation and vaso‐occlusion in transgenic sickle mice.
J Clin Invest
116:
808–816,
2006.
|
137. |
Ergul S,
Brunson CY,
Hutchinson J,
Tawfik A,
Kutlar A,
Webb RC and
Ergul A.
Vasoactive factors in sickle cell disease: in vitro evidence for endothelin‐1‐mediated vasoconstriction.
Am J Hematol
76:
245–251,
2004.
|
138. |
Oltman CL,
Kane NL,
Miller FJ, Jr.,
Spector AA,
Weintraub NL and
Dellsperger KC.
Reactive oxygen species mediate arachidonic acid‐induced dilation in porcine coronary microvessels.
Am J Physiol Heart Circ Physiol
285:
H2309–H2315,
2003.
|
139. |
Wu G,
Mannam AP,
Wu J,
Kirbis S,
Shie JL,
Chen C,
Laham RJ,
Sellke FW and
Li J.
Hypoxia induces myocyte‐dependent COX‐2 regulation in endothelial cells: Role of VEGF.
Am J Physiol Heart Circ Physiol
285:
H2420–H2429,
2003.
|
140. |
Nath KA,
Grande JP,
Haggard JJ,
Croatt AJ,
Katusic ZS,
Solovey A and
Hebbel RP.
Oxidative stress and induction of heme oxygenase‐1 in the kidney in sickle cell disease.
Am J Pathol
158:
893–903,
2001.
|
141. |
Thengchaisri N and
Kuo L.
Hydrogen peroxide induces endothelium‐dependent and ‐independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels.
Am J Physiol Heart Circ Physiol
285:
H2255–H2263,
2003.
|
142. |
Kooy NW and
Lewis SJ.
Nitrotyrosine attenuates the hemodynamic effects of adrenoceptor agonists in vivo: relevance to the pathophysiology of peroxynitrite.
Eur J Pharmacol
310:
155–161,
1996.
|
143. |
Kooy NW and
Lewis SJ.
The peroxynitrite product 3‐nitro‐L‐tyrosine attenuates the hemodynamic responses to angiotensin II in vivo.
Eur J Pharmacol
315:
165–170,
1996.
|
144. |
Charache S,
Barton FB,
Moore RD,
Terrin ML,
Steinberg MH,
Dover GJ,
Ballas SK,
McMahon RP,
Castro O and
Orringer EP.
Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive “switching” agent. The multicenter study of hydroxyurea in sickle cell anemia.
Medicine
75:
300–326,
1996.
|
145. |
Steinberg MH,
Lu ZH,
Barton FB,
Terrin ML,
Charache S and
Dover GJ.
Fetal hemoglobin in sickle cell anemia: determinants of response to hydroxyurea. Multicenter study of hydroxyurea.
Blood
89:
1078–1088,
1997.
|
146. |
Cokic VP,
Smith RD,
Beleslin‐Cokic BB,
Njoroge JM,
Miller JL,
Gladwin MT and
Schechter AN.
Hydroxyurea induces fetal hemoglobin by the nitric oxide‐dependent activation of soluble guanylyl cyclase.
J Clin Invest
111:
231–239,
2003.
|
147. |
Dasgupta T,
Hebbel RP and
Kaul DK.
Protective effect of arginine on oxidative stress in transgenic sickle mouse models.
Free Radic Biol Med
41:
1771–1780,
2006.
|
148. |
Ogawa T,
Nussler AK,
Tuzuner E,
Neuhaus P,
Kaminishi M,
Mimura Y and
Beger HG.
Contribution of nitric oxide to the protective effects of ischemic preconditioning in ischemia‐reperfused rat kidneys.
J Lab Clin Med
138:
50–58,
2001.
|
149. |
Brugnara C,
De Franceschi L and
Alper SL.
Inhibition of Ca(2+)‐dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives [see comments].
J Clin Invest
92:
520–526,
1993.
|
150. |
De Franceschi L,
Saadane N,
Trudel M,
Alper SL,
Brugnara C and
Beuzard S.
Treatment with oral clotrimazole blocks Ca(2+)‐activated K+ transport and reverses erythrocyte dehydration in transgenic SAD mice. A model for therapy of sickle cell disease.
J Clin Invest
93:
1670–1676,
1994.
|
151. |
Romero JR,
Fabry ME,
Suzuka SM,
Costantini F,
Nagel RL and
Canessa M.
K:Cl cotransport in red cells of transgenic mice expressing high levels of human hemoglobin S.
Am J Hematol
55:
112–114,
1997.
|
152. |
Brugnara C.
Sickle cell disease: from membrane pathophysiology to novel therapies for prevention of erythrocyte dehydration.
J Pediatr Hematol Oncol
25:
927–933,
2003.
|
153. |
Pawliuk R,
Westerman KA,
Fabry ME,
Payen E,
Tighe R,
Bouhassira EE,
Acharya SA,
Ellis J,
London IM,
Eaves CJ,
Humphries RK,
Beuzard Y,
Nagel RL and
Leboulch P.
Correction of sickle cell disease in transgenic mouse models by gene therapy.
Science
294:
2368–2371,
2001.
|
154. |
Levasseur DN,
Ryan TM,
Pawlik KM and
Townes TM.
Correction of a mouse model of sickle cell disease: Lentiviral/antisickling beta‐globin gene transduction of unmobilized, purified hematopoietic stem cells.
Blood
102:
4312–4319,
2003.
|
155. |
Fabry ME,
Nagel RL,
Pachnis A,
Suzuka SM and
Costantini F.
High expression of human beta S‐ and alpha‐globins in transgenic mice: Hemoglobin composition and hematological consequences.
Proc Natl Acad Sci USA
89:
12150–12154,
1992.
|
156. |
Noguchi CT,
Gladwin M,
Diwan B,
Merciris P,
Smith R,
Yu X,
Buzard G,
Fitzhugh A,
Keefer LK,
Schechter AN and
Mohandas N.
Pathophysiology of a sickle cell trait mouse model: human alpha(beta)(S) transgenes with one mouse beta‐globin allele.
Blood Cells Mol Dis
27:
971–977,
2001.
|