References |
1. |
Burt VL,
Whelton P,
Roccella EJ,
Brown C,
Cutler JA,
Higgins M,
Horan MJ and
Labarthe D.
Prevalence of hypertension in the US adult population. Results from the third national health and nutrition examination survey, 1988–1991.
Hypertension
25:
305–313.
1995.
|
2. |
Burt VL,
Cutler JA,
Higgins M,
Horan MJ,
Labarthe D,
Whelton P,
Brown C and
Roccella EJ.
Trends in the prevalence, awareness, treatment, and control of hypertension in the adult US population. Data from the health examination surveys, 1960 to 1991.
Hypertension
26:
60–69,
1995.
|
3. |
Hajjar I and
Kotchen TA.
Trends in prevalence, awareness, treatment. and control of hypertension in the United States. 1988–2000.
JAMA
290:
199–206,
2003.
|
4. |
Fields LE,
Burt VL,
Cutler JA,
Hughes J,
Roccella EJ and
Sorlie P.
The burden of adult hypertension in the United States 1999 to 2000: a rising tide.
Hypertension
44:
398–404,
2004.
|
5. |
World Health Organization.
World Health Report 2002: Reducing risks, promoting healthy life, Geneva, Switzerland,
2002.
|
6. |
Franklin SS,
Gustin Wt,
Wong ND,
Larson MG,
Weber MA,
Kannel WB and
Levy D.
Hemodynamic patterns of age‐related changes in blood pressure. The Framingham heart study.
Circulation
96:
308–315,
1997.
|
7. |
Vasan RS,
Beiser A,
Seshadri S,
Larson MG,
Kannel WB,
D'Agostino RB and
Levy D.
Residual lifetime risk for developing hypertension in middle‐aged women and men: The Framingham heart study.
JAMA
287:
1003–1010,
2002.
|
8. |
Vasan RS,
Larson MG,
Leip EP,
Kannel WB and
Levy D.
Assessment of frequency of progression to hypertension in non‐hypertensive participants in the Framingham heart study: a cohort study.
Lancet
358:
1682–1686,
2001.
|
9. |
Kannel WB,
Vasan RS and
Levy D.
Is the relation of systolic blood pressure to risk of cardiovascular disease continuous and graded, or are there critical values?
Hypertension
42:
453–456,
2003.
|
10. |
Lewington S,
Clarke R,
Qizilbash N,
Peto R and
Collins R.
Age‐specific relevance of usual blood pressure to vascular mortality: a meta‐analysis of individual data for one million adults in 61 prospective studies.
Lancet
360:
1903–1913,
2002.
|
11. |
Neaton JD,
Kuller L,
Stanler J and
Wentworth DN.
Impact of systolic and diastolic blood pressure on cardiovascular mortality. In:
Hypertension: Pathophysiology, Diagnosis and Management,
2nd edn,
eds Laragh JH and
Brenner BM.
New York, NY: Raven Press. Ltd.,
1995,
pp. 127–144.
|
12. |
Vasan RS,
Larson MG,
Leip EP,
Evans JC,
O'Donnell CJ,
Kannel WB and
Levy D.
Impact of high‐normal blood pressure on the risk of cardiovascular disease.
N Engl J Med
345:
1291–1297,
2001.
|
13. |
Miura K,
Daviglus ML,
Dyer AR,
Liu K,
Garside DB,
Stamler J and
Greenland P.
Relationship of blood pressure to 25‐year mortality due to coronary heart disease, cardiovascular diseases, and all causes in young adult men: the Chicago Heart Association Detection Project in Industry.
Arch Intern Med
161:
1501–1508,
2001.
|
14. |
Pickering TG,
Hall JE,
Appel LJ,
Falkner BE,
Graves J,
Hill MN,
Jones DW,
Kurtz T,
Sheps SG and
Roccella EJ.
Recommendations for blood pressure measurement in humans and experimental animals: Part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research.
Hypertension
45:
142–161,
2005.
|
15. |
Ohkubo T,
Imai Y,
Tsuji I,
Nagai K,
Watanabe N,
Minami N,
Kato J,
Kikuchi N,
Nishiyama A,
Aihara A,
Sekino M,
Satoh H and
Hisamichi S.
Relation between nocturnal decline in blood pressure and mortality. The Ohasama Study.
J. Am Hypertens
10:
1201–1207,
1997.
|
16. |
Staessen JA,
Thijs L,
Fagard R,
O'Brien ET,
Clement D,
de Leeuw PW,
Mancia G,
Nachev C,
Palatini P,
Parati G,
Tuomilehto J and
Webster J.
Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension. Systolic Hypertension in Europe Trial Investigators.
JAMA
282:
539–546,
1999.
|
17. |
Franklin SS,
Larson MG,
Khan SA,
Wong ND,
Leip EP,
Kannel WB and
Levy D.
Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham Heart Study.
Circulation
103:
1245–1249,
2001.
|
18. |
SHEP Cooperative Research Group.
Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). SHEP Cooperative Research Group.
JAMA
265:
3255–3264,
1991.
|
19. |
Kostis JB,
Davis BR,
Cutler J,
Grimm RH, Jr.,
Berge KG,
Cohen JD,
Lacy CR,
Perry HM, Jr.,
Blaufox MD,
Wassertheil‐Smoller S,
Black HR,
Schron E,
Berkson DM,
Curb JD,
Smith WM,
McDonald R and
Applegate WB.
Prevention of heart failure by antihypertensive drug treatment in older persons with isolated systolic hypertension. SHEP Cooperative Research Group.
JAMA
278:
212–216,
1997.
|
20. |
Liu L,
Wang JG,
Gong L,
Liu G and
Staessen JA.
Comparison of active treatment and placebo in older Chinese patients with isolated systolic hypertension. Systolic Hypertension in China (Syst‐China) Collaborative Group.
J Hypertens
16:
1823–1829,
1998.
|
21. |
Hyman DJ and
Pavlik VN.
Characteristics of patients with uncontrolled hypertension in the United States.
N Engl J Med
345:
479–486,
2001.
|
22. |
Lloyd‐Jones DM,
Evans JC,
Larson MG,
O'Donnell CJ,
Roccella EJ and
Levy D.
Differential control of systolic and diastolic blood pressure: factors associated with lack of blood pressure control in the community.
Hypertension
36:
594–599,
2000.
|
23. |
Cushman WC,
Ford CE,
Cutler JA,
Margolis KL,
Davis BR,
Grimm RH,
Black HR,
Hamilton BP,
Holland J,
Nwachuku C,
Papademetriou V,
Probstfield J,
Wright JT, Jr.,
Alderman MH,
Weiss RJ,
Piller L,
Bettencourt J and
Walsh SM.
Success and predictors of blood pressure control in diverse North American settings: the antihypertensive and lipid‐lowering treatment to prevent heart attack trial (ALLHAT).
J. Clin Hypertens (Greenwich)
4:
393–404,
2002.
|
24. |
Black HR,
Elliott WJ,
Neaton JD,
Grandits G,
Grambsch P,
Grimm RH, Jr.,
Hansson L,
Lacouciere Y,
Muller J,
Sleight P,
Weber MA,
White WB,
Williams G,
Wittes J,
Zanchetti A,
Fakouhi TD and
Anders RJ.
Baseline haracteristics and early blood pressure control in the CONVINCE trial.
Hypertension
37:
12–18,
2001.
|
25. |
Hyman DJ,
Pavlik VN and
Vallbona C.
Physician role in lack of awareness and control of hypertension.
J Clin Hypertens (Greenwich)
2:
324–330,
2000.
|
26. |
Berlowitz DR,
Ash AS,
Hickey EC,
Friedman RH,
Glickman M,
Kader B and
Moskowitz MA.
Inadequate management of blood pressure in a hypertensive population.
N Engl J Med
339:
1957–1963,
1998.
|
27. |
Staessen JA,
Wang JG and
Thijs L.
Cardiovascular prevention and blood pressure reduction: a quantitative overview updated until 1 March 2003.
J Hypertens
21:
1055–1076,
2003.
|
28. |
Lloyd‐Jones DM,
Leip EP,
Larson MG,
Vasan RS and
Levy D.
Novel approach to examining first cardiovascular events after hypertension onset.
Hypertension
45:
39–45,
2005.
|
29. |
National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report.
Circulation
106:
3143–3421,
2002.
|
30. |
Neal B,
MacMahon S and
Chapman N.
Effects of ACE inhibitors, calcium antagonists, and other blood‐pressure‐lowering drugs: results of prospectively designed overviews of randomised trials. Blood Pressure Lowering Treatment Trialists' Collaboration.
Lancet
356:
1955–1964,
2000.
|
31. |
Prospective Studies Collaboration.
Age‐specific relevance of usual BP to vascular mortality: a meta‐analysis of individual data for 1 million adults in 61 prospective studies.
Lancet
360:
1903–1913,
2002.
|
32. |
Ogden LG,
He J,
Lydick E and
Whelton PK.
Long‐term absolute benefit of lowering blood pressure in hypertensive patients according to the JNC VI risk stratification.
Hypertension
35:
539–543,
2000.
|
33. |
Hansson L,
Zanchetti A,
Carruthers SG,
Dahlof B,
Elmfeldt D,
Julius S,
Menard J,
Rahn KH,
Wedel H and
Westerling S.
Effects of intensive blood‐pressure lowering and low‐dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group.
Lancet
351:
1755–1762,
1998.
|
34. |
Coccheri S.
Approaches to prevention of cardiovascular complications and events in diabetes mellitus.
Drugs
67:
997–1026,
2007.
|
35. |
Kopple JD.
National Kidney Foundation. K/DOQI Work Group. The National Kidney Foundation K/DOQI clinical practice guidelines for dietary protein intake for chronic dialysis patients.
Am J Kidney Dis
38
(4 Suppl 1):
S68–S73,
2001.
|
36. |
Chobanian AV,
Bakris GL,
Blade HR,
Cushman WC,
Green LA,
Jones DW,
Materson BJ,
Oparil S,
Wright JT,
Rocella EJ, and
the National High Blood Pressure Education Program Coordinating Committee.
Seventh report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure.
Hypertension
42:
1206–1252,
2003.
|
37. |
JNC 6.
National High Blood Pressure Education Program. The sixth report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure.
Arch Intern Med
157:
2413–2446,
1997.
|
38. |
Young WF, Jr..
Minireviews: primary aldosteronism — changing concepts in diagnosis and treatment.
Endocrinology
144:
2208–2213,
2003.
|
39. |
Stowasser M and
Gordon RD.
Primary aldosteronism — careful investigation is essential and rewarding.
Mol Cell Endocrinol
217:
33–39,
2004.
|
40. |
Mulatero P,
Stowasser M,
Loh KC,
Fardella CE,
Gordon RD,
Mosso L,
Gomez‐Sanchez CE,
Veglio F and
Young WF, Jr.
Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers form five continents.
J Clin Endocrinol Metab
89:
1045–1050,
2004.
|
41. |
Rebbeck TR,
Turner ST and
Sing CF.
Probability of having hypertension: effects of sex, history of hypertension in parents, and other risk factors.
J Clin Epidemiol
49:
727–734,
1996.
|
42. |
Fuents RM,
Notkola IL,
Shemeikka S,
Tuomilehoto J and
Nissinen A.
Familial aggregation of blood pressure: a population‐based family study in eastern Finland.
J Hum Hypertens
14:
441–445,
2000.
|
43. |
Dominiczak AF,
Negrin DC,
Clark JS,
Brosnan MJ,
McBride MW and
Alexander MY.
Genes and hypertension: from gene mapping in experimental models to vascular gene transfer strategies.
Hypertension
35:
164–172,
2000.
|
44. |
O'Shaughnessy KM.
The genetics of essential hypertension.
J Br Clin Pharmacol
51:
5–11,
2001.
|
45. |
Cui J,
Hopper JL and
Harrap SB.
Genes and family environment explain correlations between blood pressure and body mass index.
Hypertension
40:
7–12,
2002.
|
46. |
Williams RR,
Hunt SC and
Hasstedt SJ.
Are there interactions and relations between genetic and environmental factors predisposing to high blood pressure.
Hypertension
18
(Suppl):
37,
1991.
|
47. |
Hunt SC,
Williams RR and
Barlow GK.
A comparison of positive family history definitions for defining risk of future disease.
J Chronic Dis
39:
809–821,
1986.
|
48. |
Feinleib M,
Garrison RJ,
Fabsitz R,
Christian JC,
Hrubec Z,
Borhani NO,
Kannel WB,
Rosenman R,
Schwartz JT and
Wagner JO.
The NHLBI twin study of cardiovascular disease risk factors: methodology and summary of results.
J Am Epidemiol
106:
284–285,
1977.
|
49. |
Longini IM, Jr.,
Higgins MW,
Hinton PC,
Moll PP and
Keller JB.
Environmental and genetic sources of familial aggregation of blood pressure in Tecumseh, Michigan.
J Am Epidemiol
120:
131–144,
1984.
|
50. |
Biron P,
Mongeau JG and
Bertrand D.
Familial aggregation of blood pressure in 558 adopted children.
Can Med Assoc J
115:
773–774,
1976.
|
51. |
Lifton RP,
Gharavi AG and
Geller DS.
Molecular mechanisms of human hypertension.
Cell
104:
545–556,
2001.
|
52. |
Lifton RP,
Wilson FH,
Choate KA and
Gellar DS.
Salt and blood pressure: new insights from human genetic studies.
Cold Spring Harbor Symp Quant Biol
67:
445–450,
2002.
|
53. |
Kahle KT,
Wilson FH,
Lalioti M,
Toka H,
Qin H and
Lifton RP.
WNK kinases: molecular regulators of integrated epithelial ion transport.
Curr Opin Nephrol Hypertens
13:
557–562,
2004.
|
54. |
Hopkins PN and
Hunt SC.
Genetics of hypertension.
Genet Med
5:
413–429,
2003.
|
55. |
Rapp JP.
Genetic analysis of inherited hypertension in the rat.
Physiol Rev
80:
135–172,
2000.
|
56. |
Kreutz R,
Hubner N,
James MR,
Bihoreau MT,
Gauguier D,
Lathrop GM,
Ganten D and
Lindpaintner K.
Dissection of a quantitative trait locus for genetic hypertension on rat chromosome 10.
Proc Natl Acad Sci USA
92:
8778–8782,
1995.
|
57. |
Julier C,
Delepine M,
Keavney B,
Terwilliger J,
Davis S,
Weeks DE,
Bui T,
Jeunemaitre X,
Velho G,
Froguel P,
Ratcliffe P,
Corvol P,
Soubrier F and
Lathrop GM.
Genetic susceptibility for human familial essential hypertension in a region of homology with blood pressure linkage on rat chromosome 10.
Hum Mol Genet
6:
2077–2085,
1997.
|
58. |
Levy D,
DeStefano AL,
Larson MG,
O'Donnell CJ,
Lifton RP,
Gavras H,
Cupples LA and
Myers RH.
Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham heart study.
Hypertension
36:
477–483,
2000.
|
59. |
Samani NJ.
Genome scans for hypertension and blood pressure regulation.
J Am Hypertens
16:
167–171,
2003.
|
60. |
Caulfield M,
Munroe P,
Pembroke J,
Samani N,
Dominiczak A,
Brown M,
Benjamin N,
Webster J,
Ratcliffe P,
O'Shea S,
Papp J,
Taylor E,
Dobson R,
Knight J,
Newhouse S,
Hooper J,
Lee W,
Brain N,
Clayton D,
Lathrop GM,
Farrall M and
Connell J.
The MRC British Genetics of Hypertension Study. Genome‐wide mapping of human loci for essential hypertension.
Lancet
361:
2118–2123,
2003.
|
61. |
Lalouel JM.
Large‐scale search for genes predisposing to essential hypertension.
J Am Hypertens
16:
163–166,
2003.
|
62. |
Rao DC,
Province MA,
Leppert MF,
Oberman A,
Heiss G,
Ellison RC,
Arnett DK,
Eckfeldt JH,
Schwander K,
Mockrin SC and
Hunt SC.
A genome‐wide affected sibpair linkage analysis of hypertension: the HyperGEN network.
Am J Hypertens
16:
148–150,
2003.
|
63. |
Kardia SLR,
Rozek LS,
Krushkal J,
Ferrell RE,
Turner ST,
Hutchinson R,
Brown A,
Sing CF and
Boerwinkle E.
Genome‐wide linkage analyses for hypertension genes in two ethnically and geographically diverse populations.
Am J Hypertens
16:
154–157,
2003.
|
64. |
Thiel BA,
Chakravarti A,
Cooper RS,
Luke A,
Lewis S,
Lynn A,
Tiwari H,
Schork NJ and
Weder AB.
A genome‐wide linkage analysis investigating the determinants of blood pressure in whites and African Americans.
Am J Hypertens
16:
154–157,
2003.
|
65. |
Ranade K,
Hinds D,
Hsiung CA,
Chuang LM,
Chang MS,
Chen YT,
Pesich R,
Hebert J,
Chen YD,
Dzau V,
Olshen R,
Curb D,
Botstein D,
Cox DR and
Risch N.
A genome scan for hypertension susceptibility loci in populations of Chinese and Japanese origins.
Am J Hypertens
16:
158–162,
2003.
|
66. |
Selby JV,
Newman B,
Quiroga J,
Christian JC,
Austin MA and
Fabsitz RR.
Concordance for dyslipidemic hypertension in male twins.
JAMA
265:
2079–2084,
1991.
|
67. |
Collins R,
Peto R,
MacMahon S,
Godwin J,
Phil D,
Qizilbash N,
Collins R,
MacMahon S,
Hebert P,
Eberlein KA,
Taylor JO,
Hennekens CH,
Fiebach H,
Hennekens CH.
Blood pressure, stroke, and coronary heart disease. Part 2. short‐term reductions in blood pressure: overview of randomised drug trials in their epidemiological context.
Lancet
335:
827–838,
1990.
|
68. |
Samuelson O,
Wilhelmsen L,
Anderson OK,
Pennert K and
Gergland G.
Cardiovascular morbidity in relation to change in blood pressure and serum cholesterol levels in treated hypertension: results from the primary prevention trial in Goteborg, Sweden.
JAMA
258:
1768–1776,
1987.
|
69. |
Hopkins PN,
Hunt SC,
Wu LL,
Williams GH and
Williams RR.
Hypertension, dyslipidemia, and insulin resistance: links in a chain or spokes on a wheel?
Curr Opin Lipidol
7:
241–253,
1996.
|
70. |
Hong Y,
Pedersen NL,
Brismar K and
de Faire U.
Genetic and environmental architecture of the features of the insulin‐resistance syndrome.
J Am Hum Genet
60:
143–152,
1997.
|
71. |
Kronenberg F,
Rich SS,
Sholinsky P,
Arnett DK,
Province ME,
Myers RH,
Eckfeldt JH,
Williams RR and
Hunt SC.
Insulin and hypertension in the NHLBI family heart study: a sibpair approach to a controversial issue.
J Am Hypertens
13:
240–250,
2000.
|
72. |
Pausova Z,
Gossard F,
Gaudet D,
Tremblay J,
Kotchen TA,
Cowley AW and
Hamet P.
Heritability estimates of obesity measures in siblings with and without hypertension.
Hypertension
38:
41–47,
2001.
|
73. |
Egan BM,
Greene EL and
Goodfriend TL.
Insulin resistance and cardiovascular disease.
Am J Hypertens
14
(June suppl):
1165–1255,
2001, (6 Pt. 2).
|
74. |
Haffner SM,
Lehto S,
Ronnemaa T,
Pyorala K and
Laakso M.
Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction.
N Engl J Med
339:
229–234,
1998.
|
75. |
Cheng LS,
Davis RC,
Raffel LJ,
Xiang AH,
Wang N,
Quinones M,
Wen PZ,
Toscano E,
Diaz J,
Pressman S,
Henderson PC,
Azen SP,
Hsueh WA,
Buchanan TA and
Rotter JI.
Coincident linkage of fasting plasma insulin and blood pressure to chromosome 7q in hypertensive Hispanic families.
Circulation
104:
1255–1260,
2001.
|
76. |
Pajukants P,
Terwiliger JD,
Perola M,
Hiekkalinna T,
Nuotio I,
Ellonen P,
Parkkonen M,
Hartiala J,
Ylitalo K,
Pihlajamaki J,
Porkka K,
Laakso M,
Viikari J,
Ehnholm C,
Taskinen MR and
Peltonen L.
Geonomewide scan for familial combined hyperlipidemia genes in Finnish families, suggesting multiple susceptibility loci influencing triglyceride, cholesterol, and apolipoprotein B levels.
Am J Hum Genet
64:
1453–1463,
1999.
|
77. |
Coon H,
Myers RH,
Borecki IB,
Arnett DK,
Hunt SC,
Province MA,
Djousse L and
Leppert MF.
Replication of linkage of familial combined hyperlipidemia to chromosome 1q with additional heterogeneous effect of apolipoprotein A‐I/C‐III/A‐IV locus. The NHLBI family heart study.
Arterioscler Thromb Vasc Biol
20:
2275–2280,
2000.
|
78. |
Pei W,
Baron H,
Muller‐Myhsok B,
Knoblauch H,
Al‐Yahyaee SA,
Hui R,
Wu X,
Liu L,
Busjahn A,
Luft FC and
Schuster H.
Support for linkage of familial combined hyperlipidemia to chromosome 1q21–q23 in Chinese and German families.
Clin Genet
57:
29–34,
2000.
|
79. |
Elbein SC,
Hoffman MD,
Teng K,
Leppert MF and
Hasstedt SJ.
A genome‐wide search for type 2 diabetes susceptibility genes in Utah Caucasians.
Diabetes
48:
1175–1182,
1999.
|
80. |
Krushkal J,
Ferrell R,
Mockrin SC,
Turner ST,
Sing CF and
Boerwinkle E.
Genome‐wide linkage analyses of systolic blood pressure using highly discordant siblings.
Circulation
99:
1407–1410,
1999.
|
81. |
Hunt SC,
Ellison RC,
Atwood LD,
Pankow JS,
Province MA and
Leppert MF.
Genome scans for blood pressure and hypertension: the National Heart, Lung, and Blood Institute Family Heart Study.
Hypertension
40:
1–6,
2002.
|
82. |
Jin JJ,
Nakura J,
Wu Z,
Yamamoto M,
Abe M,
Tabara Y,
Yamamoto Y,
Igase M,
Kohara K and
Miki T.
Association of endothelin‐1 gene variant with hypertension.
Hypertension
41:
163–167,
2003.
|
83. |
Province MA,
Arnett DK,
Hunt SC,
Leiendecker‐Foster C,
Eckfeldt JH,
Oberman A,
Ellison RC,
Heiss G,
Mockrin SC and
Williams RR.
Association between the alpha‐adducin gene and hypertension in the HyperGEN Study.
Am J Hypertens
13:
710–718,
2000.
|
84. |
Iwai N,
Katsuya T,
Mannami T,
Higaki J,
Ogihara T,
Kokame K,
Ogata J and
Baba S.
Association between SAH, an Acyl‐CoA synthetase gene, and hypertriglyceridemia, obesity, and hypertension.
Circulation
105:
41–47,
2002.
|
85. |
Ringel J,
Kreutz R,
Distler A and
Sharma AM.
The Trp64Arg polymorphism of the beta3‐adrenergic receptor gene is associated with hypertension in men with type 2 diabetes mellitus.
Am J Hypertens
13:
1027–1031,
2000.
|
86. |
Rubattu S,
Ridker P,
Stampfer MJ,
Volpe M,
Hennekens CH and
Lindpaintner K.
The gene encoding atrial natriuretic peptide and the risk of human stroke.
Circulation
100:
1722–1726,
1999.
|
87. |
Havas S.
Summary of the NHLBI workshop on the epidemiology of hypertension in Hispanic American, Native American and Asian/Pacific Islander American populations. NHLBI Bulletin
77–79,
2000.
|
88. |
Seedat YK.
Hypertension in developing nations in sub‐Saharan Africa.
J Hum Hypertens
14:
739–747,
2000.
|
89. |
Truswell AS,
Kennelly BM,
Hansen JD and
Lee RB.
Blood pressures of Kung bushmen in Northern Botswana.
Am Heart J
84:
5–12,
1972.
|
90. |
Poulter NR,
Khaw KT,
Hopwood BE,
Mugambi M,
Peart WS,
Rose G and
Sever PS.
The Kenyan Luo migration study: observations on the initiation of a rise in blood pressure.
Br Med J
300:
967–972,
1990.
|
91. |
Kemper W.
Treatment of hypertension vascular disease with rice diet.
Am J Med
4:
541477–541545,
1948.
|
92. |
Intersalt: an international study of electrolyte excretion and blood pressure: results for 24 h urinary sodium and potassium excretion.
Br Med J
297:
319–328,
1988.
|
93. |
Elliott P,
Stamler J,
Nichols R,
Dyer AR,
Stamler R,
Kesteloot H and
Marmot M.
Intersalt revisited: further analyses of 24 hour sodium excretion and blood pressure within and across populations. Intersalt Cooperative Research Group.
Br Med J
312:
1249–1253,
1996.
|
94. |
Sacks FM,
Svetkey LP,
Vollmer WM,
Appel LJ,
Bray GA,
Harsha D,
Obarzanek E,
Conlin PR,
Miller ER, 3rd,
Simons‐Morton DG,
Karanja N and
Lin PH.
Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. DASH‐Sodium Collaborative Research Group.
N Engl J Med
344:
3–10,
2001.
|
95. |
Chobanian AV and
Hill M.
National heart, lung, and blood institute workshop on sodium and blood pressure: a critical review of current scientific evidence.
Hypertension
35:
858–863,
2000.
|
96. |
Brown JJ,
Lever AF,
Robertson JIS,
Semple PF,
Bing RF,
Heagerty AM,
Swales JD,
Thurston H,
Ledingham, JGG,
Laragh JH,
Hansson L,
Nicholls MG and
Espiner AE.
Salt and hypertension.
Lancet:
324–456,
1984.
|
97. |
Alder MH.
Dietary sodium and cardiovascular health in hypertensive patients: the care against universal sodium restriction.
J Am Soc Nephrol
15:
S47–S50,
2004.
|
98. |
Graudal NA,
Galloe AM and
Garred P.
Effects of sodium restriction on blood pressure, renin, aldosterone, catecholamines, cholesterols, and triglyceride: a meta‐analysis.
JAMA
279:
1383–1391,
1998.
|
99. |
Whelton PK,
He J,
Appel LJ,
Cutler JA,
Havas S,
Kotchen TA,
Roccella EJ,
Stout R,
Vallbona C,
Winston MC and
Karimbakas J.
Primary prevention of hypertension: clinical and public health advisory from The National High Blood Pressure Education Program.
JAMA
288:
1882–1888,
2002.
|
100. |
Jones DW.
Dietary sodium and blood pressure.
Hypertension
43:
932–935,
2004.
|
101. |
Kannel WB,
Garrison RJ and
Dannenberg AL.
Secular blood pressure trends in normotensive persons: the Framingham study.
Am Heart J
125:
1154–1158,
1993.
|
102. |
Wilson PW,
D'Agostino RB,
Sullivan L,
Parise H and
Kannel WB.
Overweight and obesity as determinants of cardiovascular risk: the Framingham experience.
Arch Intern Med
162:
1867–1872,
2002.
|
103. |
Huang Z,
Willett WC,
Manson JE,
Rosner B,
Stampfer MJ,
Speizer FE and
Colditz GA.
Body weight, weight change, and risk for hypertension in women.
Ann Intern Med
128:
81–88,
1998.
|
104. |
Timio M,
Lippi G,
Venanzi S,
Gentili S,
Quintaliani G,
Verdura C,
Monarca C,
Saronio P and
Timio F.
Blood pressure trend and cardiovascular events in nuns in a secluded order: a 30‐year follow‐up study.
Blood Press
6:
81–87,
1997.
|
105. |
Stamler J,
Elliott P,
Appel L,
Chan Q,
Buzzard M,
Dennis B,
Dyer AR,
Elmer P,
Greenland P,
Jones D,
Kesteloot H,
Kuller L,
Labarthe D,
Liu K,
Moag‐Stahlberg A,
Nichaman M,
Okayama A,
Okunda N,
Robertson C,
Rodriguez B,
Stevens M,
Ueshima H,
Horn LV and
Zhou B.
Higher blood pressure in middle‐aged American adults with less education‐role of multiple dietary factors: the INTERMAP study.
J Hum Hypertens
17:
655–775,
2003.
|
106. |
Law CM and
Shiell AW.
Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature.
J Hypertens
14:
935–941,
1996.
|
107. |
Barker DJ,
Osmond C,
Golding J,
Kuh D and
Wadsworth ME.
Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease.
Br Med J
298:
564–567,
1989.
|
108. |
Ingelfinger JR.
Pathogenesis of perinatal programming.
Curr Opin Nephrol Hypertens
13:
459–464,
2004.
|
109. |
Langley‐Evans SC.
Fetal programming of cardiovascular function through exposure to maternal undernutrition.
Proc Nutr Soc
60:
505–513,
2001.
|
110. |
Seckl JR,
Cleasby M and
Nyirenda MJ.
Glucocorticoids. 11beta‐hydroxysteroid dehydrogenase, and fetal programming.
Kidney Int
57:
1412–1417,
2000.
|
111. |
Mackenzie HS and
Brenner BM.
Fewer nephrons at birth: a missing link in the etiology of essential hypertension?
Am J Kidney Dis
26:
91–98,
1995.
|
112. |
Brenner BM and
Chertow GM.
Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury.
Am J Kidney Dis
23:
171–175,
1994.
|
113. |
Manalich R,
Reyes L,
Herrera M,
Melendi C and
Fundora I.
Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study.
Kidney Int
58:
770–773,
2000.
|
114. |
Keller G,
Zimmer G,
Mall G,
Ritz E and
Amann K.
Nephron number in patients with primary hypertension.
N Engl J Med
348:
101–108,
2003.
|
115. |
Dodic M,
Hantzis V,
Duncan J,
Rees S,
Koukoulas I,
Johnson K,
Wintour EM and
Moritz K.
Programming effects of short prenatal exposure to cortisol.
Faseb J
16:
1017–1026,
2002.
|
116. |
Ortiz LA,
Quan A,
Zarzar F,
Weinberg A and
Baum M.
Prenatal dexamethasone programs hypertension and renal injury in the rat.
Hypertension
41:
328–334,
2003.
|
117. |
Wintour EM,
Moritz KM,
Johnson K,
Ricardo S,
Samuel CS and
Dodic M.
Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment.
J Physiol
549:
929–935,
2003.
|
118. |
Rasch R,
Skriver E and
Woods LL.
The role of the RAS in programming of adult hypertension.
Acta Physiol Scand
181:
537–542,
2004.
|
119. |
Woods LL,
Weeks DA and
Rasch R.
Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis.
Kidney Int
65:
1339–1348,
2004.
|
120. |
Woods LL,
Ingelfinger JR,
Nyengaard JR and
Rasch R.
Maternal protein restriction suppresses the newborn renin‐angiotensin system and programs adult hypertension in rats.
Pediatr Res
49:
460–467,
2001.
|
121. |
Lander ES and
Schork NJ.
Genetic dissection of complex traits.
Science
265:
2037–2048,
1994.
|
122. |
Tabor HK,
Risch NJ and
Myers RM.
Opinion: candidate‐gene approaches for studying complex genetic traits: practical considerations.
Nat Rev Genet
3:
391–397,
2002.
|
123. |
Pravenec M,
Wallace C,
Aitman TJ and
Kurtz TW.
Gene expression profiling in hypertension research: a critical perspective.
Hypertension
41:
3–8,
2003.
|
124. |
Guyton AC and
Coleman TG.
Quantitative analysis of the pathophysiology of hypertension.
Circ Res
24:
1–19,
1969.
|
125. |
Guyton AC,
Coleman TG,
Cowley AV, Jr.,
Scheel KW,
Manning RD and
Norman RA, Jr..
Arterial pressure regulation. Overriding dominance of the kidneys in long‐term regulation and in hypertension.
Am J Med
52:
584–594,
1972.
|
126. |
Guyton AC,
Coleman TG and
Cowley AW.
A systems analysis approach to understanding long‐range arterial blood pressure control and hypertension.
Circ Res:
159–176,
1974.
|
127. |
Guyton AC.
Arterial pressure and hypertension.
Circulation Physiology II,
1980.
|
128. |
Jeunemaitre X,
Soubrier F,
Kotelevtsev YV,
Lifton RP,
Williams CS,
Charru A,
Hunt SC,
Hopkins PN,
Williams RR,
Lalouel JM,
et al.
Molecular basis of human hypertension: role of angiotensinogen.
Cell
71:
169–180,
1980.
|
129. |
Staessen JA,
Kuznetsova T,
Wang JG,
Emelianov D,
Vlietinck R and
Fagard R.
M235T angiotensinogen gene polymorphism and cardiovascular renal risk.
J Hypertens
17:
9–17,
1999.
|
130. |
Kunz R,
Kreutz R,
Beige J,
Distler A and
Sharma AM.
Association between the angiotensinogen 235T‐variant and essential hypertension in whites: a systematic review and methodological appraisal.
Hypertension
30:
1331–1337,
1997.
|
131. |
Kato N,
Sugiyama T,
Morita H,
Kurihara H,
Yamori Y and
Yazaki Y.
Angiotensinogen gene and essential hypertension in the Japanese: extensive association study and meta‐analysis on six reported studies.
J Hypertens
17:
757–763,
1999.
|
132. |
Inoue I,
Nakajima T,
Williams CS,
Quackenbush J,
Puryear R,
Powers M,
Cheng T,
Ludwig EH,
Sharma AM,
Hata A,
Jeunemaitre X and
Lalouel JM.
A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro.
J Clin Invest
99:
1786–1797,
1997.
|
133. |
Ishikawa K,
Baba S,
Katsuya T,
Iwai N,
Asai T,
Fukuda M,
Takiuchi S,
Fu Y,
Mannami T,
Ogata J,
Higaki J and
Ogihara T.
T+31C polymorphism of angiotensinogen gene and essential hypertension.
Hypertension
37:
281–285,
2001.
|
134. |
Tiago AD,
Samani NJ,
Candy GP,
Brooksbank R,
Libhaber EN,
Sareli P,
Woodiwiss AJ and
Norton GR.
Angiotensinogen gene promoter region variant modifies body size‐ambulatory blood pressure relations in hypertension.
Circulation
106:
1483–1487,
2002.
|
135. |
Pereira AC,
Mota GF,
Cunha RS,
Herbenhoff FL,
Mill JG and
Krieger JE.
Angiotensinogen 235T allele “dosage” is associated with blood pressure phenotypes.
Hypertension
41:
25–30,
2003.
|
136. |
Tsai CT,
Fallin D,
Chiang FT,
Hwang JJ,
Lai LP,
Hsu KL,
Tseng CD,
Liau CS and
Tseng YZ.
Angiotensinogen gene haplotype and hypertension: interaction with ACE gene 1 allele.
Hypertension
41:
9–15,
2003.
|
137. |
Sethi AA,
Nordestgaard BG,
Gronholdt ML,
Steffensen R,
Jensen G and
Tybjaerg‐Hansen A.
Angiotensinogen single nucleotide polymorphisms, elevated blood pressure, and risk of cardiovascular disease.
Hypertension
41:
1202–1211,
2003.
|
138. |
Sethi AA,
Nordestgaard BG and
Tybjaerg‐Hansen A.
Angiotensinogen gene polymorphism, plasma angiotensinogen, and risk of hypertension and ischemic heart disease: a meta‐analysis.
Arterioscler Thromb Vasc Biol
23:
1269–1275,
2003.
|
139. |
Lalouel JM,
Rohrwasser A,
Terreros D,
Morgan T and
Ward K.
Angiotensinogen in essential hypertension: from genetics to nephrology.
J Am Soc Nephrol
12:
606–615,
2001.
|
140. |
Walker WG,
Whelton PK,
Saito H,
Russell RP and
Hermann J.
Relation between blood pressure and renin, renin substrate, angiotensin II, aldosterone and urinary sodium and potassium in 574 ambulatory subjects.
Hypertension
1:
287–291,
1979.
|
141. |
Fardella C,
Zamorano P,
Mosso L,
Gomez L,
Pinto M,
Soto J,
Oestreicher E,
Cortes P,
Claverie X and
Montero J.
A(‐6)G variant of angiotensinogen gene and aldosterone levels in hypertensives.
Hypertension
34:
779–781,
1999.
|
142. |
Kim HS,
Krege JH,
Kluckman KD,
Hagaman JR,
Hodgin JB,
Best CF,
Jennette JC,
Coffman TM,
Maeda N and
Smithies O.
Genetic control of blood pressure and the angiotensinogen locus.
Proc Natl Acad Sci USA
92:
2735–2739,
1995.
|
143. |
Davisson RL,
Ding Y,
Stec DE,
Catterall JF and
Sigmund CD.
Novel mechanism of hypertension revealed by cell‐specific targeting of human angiotensinogen in transgenic mice.
Physiol Genomics
1:
3–9,
1999.
|
144. |
Lavoie JL,
Lake‐Bruse KD and
Sigmund CD.
Increased blood pressure in transgenic mice expressing both human renin and angiotensinogen in the renal proximal tubule.
Am J Physiol Renal Physiol
286:
F965–F971,
2004.
|
145. |
Lavoie JL and
Sigmund CD.
Minireview: overview of the renin‐angiotensin system — an endocrine and paracrine system.
Endocrinology
144:
2179–2183,
2003.
|
146. |
Makino N,
Sugano M,
Ohtsuka S and
Sawada S.
Intravenous injection with antisense oligodeoxynucleotides against angiotensinogen decreases blood pressure in spontaneously hypertensive rats.
Hypertension
31:
1166–1170,
1998.
|
147. |
Kagiyama S,
Varela A,
Phillips MI and
Galli SM.
Antisense inhibition of brain renin‐angiotensin system decreased blood pressure in chronic 2‐kidney, 1 clip hypertensive rats.
Hypertension
37:
371–375,
2001.
|
148. |
Morimoto S,
Cassell MD,
Beltz TG,
Johnson AK,
Davisson RL and
Sigmund CD.
Elevated blood pressure in transgenic mice with brain‐specific expression of human angiotensinogen driven by the glial fibrillary acidic protein promoter.
Circ Res
89:
365–372,
2001.
|
149. |
Hopkins PN,
Lifton RP,
Hollenberg NK,
Jeunemaitre X,
Hallouin MC,
Skuppin J,
Williams CS,
Dluhy RG,
Lalouel JM,
Williams RR and
Williams GH.
Blunted renal vascular response to angiotensin II is associated with a common variant of the angiotensinogen gene and obesity.
J Hypertens
14:
199–207,
1996.
|
150. |
Hopkins PN,
Hunt SC,
Jeunemaitre X,
Smith B,
Solorio D,
Fisher ND,
Hollenberg NK and
Williams GH.
Angiotensinogen genotype affects renal and adrenal responses to angiotensin II in essential hypertension.
Circulation
105:
1921–1927,
2002.
|
151. |
Williams GH,
Fisher ND,
Hunt SC,
Jeunemaitre X,
Hopkins PN and
Hollenberg NK.
Effects of gender and genotype on the phenotypic expression of nonmodulating essential hypertension.
Kidney Int
57:
1404–1407,
2000.
|
152. |
Jeunemaitre X,
Rigat B,
Charru A,
Houot AM,
Soubrier F and
Corvol P.
Sib pair linkage analysis of renin gene haplotypes in human essential hypertension.
Hum Genet
88:
301–306,
1992.
|
153. |
Berge KE and
Berg K.
No effect of a Bgll polymorphism at the renin (REN) locus on blood pressure level or variability.
Clin Genet
46:
436–438,
1994.
|
154. |
Zaman MM,
Yoshiike N,
Date C,
Yokoyama T,
Matsumura Y,
Ikemoto S and
Tanaka H.
Angiotensin converting enzyme genetic polymorphism is not associated with hypertension in a cross‐sectional sample of a Japanese population: the Shibata Study.
J Hypertens
19:
47–53,
2001.
|
155. |
Clark CJ,
Davies E,
Anderson NH,
Farmer R,
Friel EC,
Fraser R and
Connell JM.
alpha‐adducin and angiotensin I‐converting enzyme polymorphisms in essential hypertension.
Hypertension
36:
990–994,
2000.
|
156. |
Schmidt S,
van Hooft IM,
Grobbee DE,
Ganten D and
Ritz E.
Polymorphism of the angiotensin I converting enzyme gene is apparently not related to high blood pressure: Dutch Hypertension and Offspring Study.
J Hypertens
11:
345–348,
1993.
|
157. |
Staessen JA,
Wang JG,
Ginocchio G,
Petrov V,
Saavedra AP,
Soubrier F,
Vlietinck R and
Fagard R.
The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular‐renal risk.
J Hypertens
15:
1579–1592,
1997.
|
158. |
Henskens LH,
Spiering W,
Stoffers HE,
Soomers FL,
Vlietinck RF,
de Leeuw PW and
Kroon AA.
Effects of ACE I/D and AT1R‐A1166C polymorphisms on blood pressure in a healthy normotensive primary care population: first results of the Hippocates study.
J Hypertens
21:
81–86,
2003.
|
159. |
O'Donnell CJ,
Lindpaintner K,
Larson MG,
Rao VS,
Ordovas JM,
Schaefer EJ,
Myers RH and
Levy D.
Evidence for association and genetic linkage of the angiotensin‐converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham heart study.
Circulation
97:
1766–1772,
1998.
|
160. |
Borecki IB,
Province MA,
Ludwig EH,
Ellison RC,
Folsom AR,
Heiss G,
Lalouel JM,
Higgins M and
Rao DC.
Associations of candidate loci angiotensinogen and angiotensin‐converting enzyme with severe hypertension: The NHLBI family heart study.
Ann Epidemiol
7:
13–21,
1997.
|
161. |
Williams SM,
Addy JH,
Phillips JA, 3rd,
Dai M,
Kpodonu J,
Afful J,
Jackson H,
Joseph K,
Eason F,
Murray MM,
Epperson P,
Aduonum A,
Wong LJ,
Jose PA and
Felder RA.
Combinations of variations in multiple genes are associated with hypertension.
Hypertension
36:
2–6,
2000.
|
162. |
Barlassina C,
Schork NJ,
Manunta P,
Citterio L,
Sciarrone M,
Lanella G,
Bianchi G and
Cusi D.
Synergistic effect of alpha‐adducin and ACE genes causes blood pressure changes with body sodium and volume expansion.
Kidney Int
57:
1083–1090,
2000.
|
163. |
Staessen JA,
Wang JG,
Brand E,
Barlassina C,
Birkenhager WH,
Herrmann SM,
Fagard R,
Tizzoni L and
Bianchi G.
Effects of three candidate genes on prevalence and incidence of hypertension in a Caucasian population.
J Hypertens
19:
1349–1358,
2001.
|
164. |
Hernandez D,
de la Rosa A,
Barragan A,
Barrios Y,
Salido E,
Torres A,
Martin B,
Laynez I,
Duque A,
de Vera A,
Lorenzo V and
Gonzalez A.
The ACE/DD genotype is associated with the extent of exercise‐induced left ventricular growth in endurance athletes.
J Am Coll Cardiol
42:
527–532,
2003.
|
165. |
Castellano M,
Muiesan ML,
Beschi M,
Rizzoni D,
Cinelli A,
Salvetti M,
Pasini G,
Porteri E,
Bettoni G,
Zulli R and
Agabiti‐Rosei E.
Angiotensin II type 1 receptor A/C1166 polymorphism. Relationships with blood pressure and cardiovascular structure.
Hypertension
28:
1076–1080,
1996.
|
166. |
Szombathy T,
Szalai C,
Katalin B,
Palicz T,
Romics L and
Csaszar A.
Association of angiotensin II type 1 receptor polymorphism with resistant essential hypertension.
Clin Chim Acta
269:
91–100,
1998.
|
167. |
Liu Y,
Zhuoma C,
Shan G,
Cui C,
Hou S,
Qin W,
Cai D,
Gesang L,
Xiao Z,
Pingcuo Z,
Zheng H,
Wu Z,
Zhou W and
Qiu C.
A1166C polymorphism of the angiotensin II type 1 receptor gene and essential hypertension in Han, Tibetan and Yi populations.
Hypertens Res
25:
515–521,
2002.
|
168. |
Morisawa T,
Kishimoto Y,
Kitano M,
Kawasaki H and
Hasegawa J.
Influence of angiotensin II type 1 receptor polymorphism on hypertension in patients with hypercholesterolemia.
Clin Chim Acta
304:
91–97,
2001.
|
169. |
Benetos A,
Gautier S,
Ricard S,
Topouchian J,
Asmar R,
Poirier O,
Larosa E,
Guize L,
Safar M,
Soubrier F and
Cambien F.
Influence of angiotensin‐converting enzyme and angiotensin II type 1 receptor gene polymorphisms on aortic stiffness in normotensive and hypertensive patients.
Circulation
94:
698–703,
1996.
|
170. |
Bray MS,
Krushkal J,
Li L,
Ferrell R,
Kardia S,
Sing CF,
Turner ST and
Boerwinkle E.
Positional genomic analysis identifies the beta(2)‐adrenergic receptor gene as a susceptibility locus for human hypertension.
Circulation
101:
2877–2882,
2000.
|
171. |
Busjahn A,
Li GH,
Faulhaber HD,
Rosenthal M,
Becker A,
Jeschke E,
Schuster H,
Timmermann B,
Hoehe MR and
Luft FC.
Beta‐2 adrenergic receptor gene variations, blood pressure, and heart size in normal twins.
Hypertension
35:
555–560,
2000.
|
172. |
Rosmond R,
Ukkola O,
Chagnon M,
Bouchard C and
Bjorntorp P.
Polymorphisms of the beta2‐adrenergic receptor gene (ADRB2) in relation to cardiovascular risk factors in men.
J Intern Med
248:
239–244,
2000.
|
173. |
Jia H,
Sharma P,
Hopper R,
Dickerson C,
Lloyd DD and
Brown MJ.
Beta2‐adrenoceptor gene polymorphisms and blood pressure variations in East Anglian Caucasians.
J Hypertens
18:
687–693,
2000.
|
174. |
Hoit BD,
Suresh DP,
Craft L,
Walsh RA and
Liggett SB.
Beta2‐adrenergic receptor polymorphisms at amino acid 16 differentially influence agonist‐stimulated blood pressure and peripheral blood flow in normal individuals.
Am Heart J
139:
537–542,
2000.
|
175. |
Bengtsson K,
Melander O,
Orho‐Melander M,
Lindblad U,
Ranstam J,
Rastam L and
Groop L.
Polymorphism in the beta(1)‐adrenergic receptor gene and hypertension.
Circulation
104:
187–190,
2001.
|
176. |
Tonolo G,
Melis MG,
Secchi G,
Atzeni MM,
Angius MF,
Carboni A,
Ciccarese M,
Malavasi A and
Maioli M.
Association of Trp64Arg beta 3‐adrenergic‐receptor gene polymorphism with essential hypertension in the Sardinian population.
J Hypertens
17:
33–38,
1999.
|
177. |
Jia H,
Hingorani AD,
Sharma P,
Hopper R,
Dickerson C,
Trutwein D,
Lloyd DD and
Brown MJ.
Association of the G(s)alpha gene with essential hypertension and response to beta‐blockade.
Hypertension
34:
8–14,
1999.
|
178. |
Tripodi G,
Valtorta F,
Torielli L,
Chieregatti E,
Salardi S,
Trusolino L,
Menegon A,
Ferrari P,
Marchisio PC and
Bianchi G.
Hypertension‐associated point mutations in the adducin alpha and beta subunits affect actin cytoskeleton and ion transport.
J Clin Invest
97:
2815–2822,
1996.
|
179. |
Ferrandi M,
Salardi S,
Tripodi G,
Barassi P,
Rivera R,
Manunta P,
Goldshleger R,
Ferrari P,
Bianchi G and
Karlish SJ.
Evidence for an interaction between adducin and Na(+)‐K(+)‐ATPase: relation to genetic hypertension.
Am J Physiol
277:
H1338–H1349,
1999.
|
180. |
Glorioso N,
Filigheddu F,
Cusi D,
Troffa C,
Conti M,
Natalizio M,
Argiolas G,
Barlassina C and
Bianchi G.
Alpha‐adducin 460Trp allele is associated with erythrocyte Na transport rate in North Sardinian primary hypertensives.
Hypertension
39:
357–362,
2002.
|
181. |
Casari G,
Barlassina C,
Cusi D,
Zagato L,
Muirhead R,
Righetti M,
Nembri P,
Amar K,
Gatti M,
Macciardi F,
et al.
Association of the alpha‐adducin locus with essential hypertension.
Hypertension
25:
320–326,
1995.
|
182. |
Cusi D,
Barlassina C,
Azzani T,
Casari G,
Citterio L,
Devoto M,
Glorioso N,
Lanzani C,
Manunta P,
Righetti M,
Rivera R,
Stella P,
Troffa C,
Zagato L and
Bianchi G.
Polymorphisms of alpha‐adducin and salt sensitivity in patients with essential hypertension.
Lancet
349:
1353–1357,
1997.
|
183. |
Bianchi G and
Cusi D.
Association and linkage analysis of alpha‐adducin polymorphism: Is the glass half full or half empty?
Am J Hypertens
13:
739–743,
2000.
|
184. |
Manunta P,
Cusi D,
Barlassina C,
Righetti M,
Lanzani C,
D'Amico M,
Buzzi L,
Citterio L,
Stella P,
Rivera R and
Bianchi G.
Alpha‐adducin polymorphisms and renal sodium handling in essential hypertensive patients.
Kidney Int
53:
1471–1478,
1998.
|
185. |
Grant FD,
Romero JR,
Jeunemaitre X,
Hunt SC,
Hopkins PN,
Hollenberg NH and
Williams GH.
Low‐renin hypertension, altered sodium homeostasis, and an alpha‐adducin polymorphism.
Hypertension
39:
191–196,
2002.
|
186. |
Sugimoto K,
Hozawa A,
Katsuya T,
Matsubara M,
Ohkubo T,
Tsuji I,
Motone M,
Higaki J,
Hisamachi S,
Imai Y and
Ogihara T.
Alpha‐adducin Gly460Trp polymorphism is associated with low renin hypertension in younger subjects in the Ohasama study.
J Hypertens
20:
1779–1784,
2002.
|
187. |
Allayee H,
de Bruin TW,
Michelle Dominguez K,
Cheng LS,
Ipp E,
Cantor RM,
Krass KL,
Keulen ET,
Aouizerat BE,
Lusis AJ and
Rotter JI.
Genome scan for blood pressure in Dutch dyslipidemic families reveals linkage to a locus on chromosome 4p.
Hypertension
38:
773–778,
2001.
|
188. |
Busjahn A,
Aydin A,
von Treuenfels N,
Faulhaber HD,
Gohlke HR,
Knoblauch H,
Schuster H and
Luft FC.
Linkage but lack of association for blood pressure and the alpha‐adducin locus in normotensive twins.
J Hypertens
17:
1437–1441,
1999.
|
189. |
Wang WY,
Adams DJ,
Glenn CL and
Morris BJ.
The Gly460Trp variant of alpha‐adducin is not associated with hypertension in white Anglo‐Australians.
Am J Hypertens
12:
632–636,
1999.
|
190. |
Glorioso N,
Manunta P,
Filigheddu F,
Troffa C,
Stella P,
Barlassina C,
Lombardi C,
Soro A,
Dettori F,
Parpaglia PP.
Alibrandi MT,
Cusi D and
Bianchi G.
The role of alpha‐adducin polymorphism in blood pressure and sodium handling regulation may not be excluded by a negative association study.
Hypertension
34:
649–654,
1999.
|
191. |
Fisher ND,
Hurwitz S,
Jeunemaitre X,
Hopkins PN,
Hollenberg NK and
Williams GH.
Familial aggregation of low‐renin hypertension.
Hypertension
39:
914–918,
2002.
|
192. |
Siffert W,
Rosskopf D,
Siffert G,
Busch S,
Moritz A,
Erbel R,
Sharma AM,
Ritz E,
Wichmann HE,
Jakobs KH and
Horsthemke B.
Association of a human G‐protein beta3 subunit variant with hypertension.
Nat Genet
18:
45–48,
1998.
|
193. |
Siffert W,
Forster P,
Jockel KH,
Mvere DA,
Brinkmann B,
Naber C,
Crookes R,
Du PHA,
Epplen JT,
Fridey J,
Freedman Bl,
Muller N,
Stolke D,
Sharma AM,
Al Moutaery K,
Grosse‐Wilde H,
Buerbaum B,
Ehrlich T,
Ahmad HR,
Horsthemke B,
Du Toit ED,
Tiilikainen A,
Ge J,
Wang Y,
Rosskopf D,
et al.
Worldwide ethnic distribution of the G protein beta3 subunit 825T allele and its association with obesity in Caucasian, Chinese, and Black African individuals.
J Am Soc Nephrol
10:
1921–1930,
1999.
|
194. |
Brown MJ,
Sharma P and
Stevens PA.
Association between diastolic blood pressure and variants of the endothelin‐1 and endothelin‐2 genes.
J Cardiovasc Pharmacol
35:
S41–S43,
2000.
|
195. |
Siffert W.
G protein beta 3 subunit 825T allele, hypertension, obesity, and diabetic nephropathy.
Nephrol Dial Transplant
15:
1298–1306,
2000.
|
196. |
Poch E,
Gonzalez‐Nunez D,
Compte M and
de la Sierra A.
G‐protein beta3‐subunit gene variant, blood pressure and erythrocyte sodium/lithium countertransport in essential hypertension.
Br J Biomed Sci
59:
101–104,
2002.
|
197. |
Dai SP,
Shi JP,
Ding Q,
Wang HL,
Dong LY,
Sun D,
Fang K and
Zhao YY.
[Polymorphism analysis of 825C/T of the G‐protein beta 3 subunit in high risk population of hypertension in the northeast China].
Yi Chuan Xue Bao
29:
294–298,
2002.
|
198. |
Brand E,
Herrmann SM,
Nicaud V,
Ruidavets JB,
Evans A,
Arveiler D,
Luc G,
Plouin PF,
Tiret L and
Cambien F.
The 825C/T polymorphism of the G‐protein subunit beta3 is not related to hypertension.
Hypertension
33:
1175–1178,
1999.
|
199. |
Ishikawa K.
Hypertension
33:
1175–1178,
2000.
|
200. |
Snapir A,
Heinonen P,
Tuomainen TP,
Lakka TA,
Kauhanen J,
Salonen JT and
Scheinin M.
G‐protein beta3 subunit C825T polymorphism: no association with risk for hypertension and obesity.
J Hypertens
19:
2149–2155,
2001.
|
201. |
Hegele RA,
Harris SB,
Hanley AJ,
Cao H and
Zinman B.
G protein beta3 subunit gene variant and blood pressure variation in Canadian Oji‐Cree.
Hypertension
32:
688–692,
1998.
|
202. |
Siffert W,
Naber C,
Walla M and
Ritz E.
G protein beta3 subunit 825T allele and its potential association with obesity in hypertensive individuals.
J Hypertens
17:
1095–1098,
1999.
|
203. |
Poston WS,
Haddock CK,
Spertus J,
Catanese DM,
Pavlik VN,
Hyman DJ,
Hanis CL and
Forevt JP.
Physical activity does not mitigate G‐protein‐related genetic risk for obesity in individuals of African descent.
Eat Weight Disord
7:
68–71,
2002.
|
204. |
Poch E,
Giner V,
Gonzalez‐Nunez D,
Coll E,
Oriola J and
de la Sierra A.
Association of the G protein beta3 subunit T allele with insulin resistance in essential hypertension.
Clin Exp Hypertens
24:
345–353,
2002.
|
205. |
Asai T,
Ohkubo T,
Katsuya T,
Higaki J,
Fu Y,
Fukuda M,
Hozawa A,
Matsubara M,
Kitaoka H,
Tsuji I,
Araki T,
Satoh H,
Hisamichi S,
Imai Y and
Ogihara T.
Endothelin‐1 gene variant associates with blood pressure in obese Japanese subjects: the Ohasama study.
Hypertension
38:
1321–1324,
2001.
|
206. |
Nicaud V,
Poirier O,
Behague I,
Herrmann SM,
Mallet C,
Troesch A,
Bouyer J,
Evans A,
Luc G,
Ruidavets JB,
Arveiler D,
Bingham A,
Tiret L and
Cambien F.
Polymorphisms of the endothelin‐A and ‐B receptor genes in relation to blood pressure and myocardial infarction: the Etude Cas‐Temoins sur l'Infarctus du Myocarde (ECTIM) study.
Am J Hypertens
12:
304–310,
1999.
|
207. |
Miyamoto Y,
Saito Y,
Kajiyama N,
Yoshimura M,
Shimasaki Y,
Nakayama M,
Kamitani S,
Harada M,
Ishikawa M,
Kuwahara K,
Ogawa E,
Hamanaka I,
Takahashi N,
Kaneshige T,
Teraoka H,
Akamizu T,
Azuma N,
Yoshimasa Y,
Yoshimasa T,
Itoh H,
Masuda I,
Yasue H and
Nakao K.
Endothelial nitric oxide synthase gene is positively associated with essential hypertension.
Hypertension
32:
3–8,
1998.
|
208. |
Kato N,
Sugiyama T,
Morita H,
Nabika T,
Kurihara H,
Yamori Y and
Yazaki Y.
Lack of evidence for association between the endothelial nitric oxide synthase gene and hypertension.
Hypertension
33:
933–936,
1999.
|
209. |
Kajiyama N,
Saito Y,
Miyamoto Y,
Yoshimura M,
Nakayama M,
Harada M,
Kuwahara K,
Kishimoto I,
Yasue H and
Nakao K.
Lack of association between T‐786→C mutation in the 5'‐flanking region of the endothelial nitric oxide synthase gene and essential hypertension.
Hypertens Res
23:
561–565,
2000.
|
210. |
Friend LR,
Morris BJ,
Gaffney PT and
Griffiths LR.
Examination of the role of nitric oxide synthase and renal kallikrein as candidate genes for essential hypertension.
Clin Exp Pharmacol Physiol
23:
564–566,
1996.
|
211. |
Hyndman ME,
Parsons HG,
Verma S,
Bridge PJ,
Edworthy S,
Jones C,
Lonn E,
Charbonneau F and
Anderson TJ.
The T‐786→C mutation in endothelial nitric oxide synthase is associated with hypertension.
Hypertension
39:
919–922,
2002.
|
212. |
Hunt SC,
Williams CS,
Sharma AM,
Inoue I,
Williams RR and
Lalouel JM.
Lack of linkage between the endothelial nitric oxide synthase gene and hypertension.
J Hum Hypertens
10:
27–30,
1996.
|
213. |
Bonnardeaux A,
Nadaud S,
Charru A,
Jeunemaitre X,
Corvol P and
Soubrier F.
Lack of evidence for linkage of the endothelial cell nitric oxide synthase gene to essential hypertension.
Circulation
91:
96–102,
1995.
|
214. |
Takami S,
Wong ZY,
Stebbing M and
Harrap SB.
Linkage analysis of endothelial nitric oxide synthase gene with human blood pressure.
J Hypertens
17:
1431–1436,
1999.
|
215. |
Katori M and
Majima M.
The renal kallikrein‐kinin system: its role as a safety valve for excess sodium intake, and its attenuation as a possible etiologic factor in salt‐sensitive hypertension.
Crit Rev Clin Lab Sci
40:
43–115,
2003.
|
216. |
Berge KE,
Bakken A,
Bohn M,
Erikssen J and
Berg K.
Analyses of mutations in the human renal kallikrein (hKLK1) gene and their possible relevance to blood pressure regulation and risk of myocardial infarction.
Clin Genet
52:
86–95,
1997.
|
217. |
Slim R,
Torremocha F,
Moreau T,
Pizard A,
Hunt SC,
Vuagnat A,
Williams GH,
Gauthier F,
Jeunemaitre X and
Alhenc‐Gelas F.
Loss‐of‐function polymorphism of the human kallikrein gene with reduced urinary kallikrein activity.
J Am Soc Nephrol
13:
968–976,
2002.
|
218. |
Rahmutula D,
Nakayama T,
Soma M,
Takahashi Y,
Kunimoto M,
Uwabo J,
Sato M,
Izumi Y,
Kanmatsuse K and
Ozawa Y.
Association study between the variants of the human ANP gene and essential hypertension.
Hypertens Res
24:
291–294,
2001.
|
219. |
Nannipieri M,
Manganiello M,
Pezzatini A,
de Bellis A,
Seghieri G and
Ferrannini E.
Polymorphisms in the hANP (human atrial natriuretic peptide) gene, albuminuria, and hypertension.
Hypertension
37:
1416–1422,
2001.
|
220. |
Nakayama T,
Soma M,
Mizutani Y,
Xinjuan X,
Honye J,
Kaneko Y,
Rahmutula D,
Aoi N,
Kosuge K,
Saito S,
Ozawa Y,
Kanmatsuse K and
Kokubun S.
A novel missense mutation of exon 3 in the type A human natriuretic peptide receptor gene: possible association with essential hypertension.
Hypertens Res
25:
395–401,
2002.
|
221. |
Nakayama T,
Soma M,
Takahashi Y,
Rehemudula D,
Kanmatsuse K and
Furuya K.
Functional deletion mutation of the 5'‐flanking region of type A human natriuretic peptide receptor gene and its association with essential hypertension and left ventricular hypertrophy in the Japanese.
Circ Res
86:
841–845,
2000.
|
222. |
Knowles JW,
Erickson LM,
Guy VK,
Sigel CS,
Wilder JC and
Maeda N.
Common variations in noncoding regions of the human natriuretic peptide receptor A gene have quantitative effects.
Hum Genet
112:
62–70,
2003.
|
223. |
Nakayama T,
Soma M,
Watanabe Y,
Hasimu B,
Sato M,
Aoi N,
Kosuge K,
Kanmatsuse K,
Kokubun S,
Marrow JD and
Oates JA.
Splicing mutation of the prostacyclin synthase gene in a family associated with hypertension.
Biochem Biophys Res Commun
297:
1135–1139,
2002.
|
224. |
McMahon GT and
Dluhy RG.
Glucocorticoid‐remediable aldosteronism.
Cardiol Rev
12:
44–48,
2004.
|
225. |
Tsujita Y,
Iwai N,
Katsuya T,
Higaki J,
Ogihara T,
Tamaki S,
Kinoshita M,
Mannami T,
Ogata J and
Baba S.
Lack of association between genetic polymorphism of CYP11B2 and hypertension in Japanese: the Suita Study.
Hypertens Res
24:
105–109,
2001.
|
226. |
Komiya I,
Yamada T,
Takara M,
Asawa T,
Shimabukuro M,
Nishimori T and
Takasu N.
Lys(173)Arg and ‐344T/C variants of CYP11B2 in Japanese patients with low‐renin hypertension.
Hypertension
35:
699–703,
2000.
|
227. |
Rossi E,
Regolisti G,
Perazzoli F,
Negro A,
Davoli S,
Nicoli D,
Sani C and
Casali B.
‐344C/T polymorphism of CYP11B2 gene in Italian patients with idiopathic low renin hypertension.
Am J Hypertens
14:
934–941,
2001.
|
228. |
Poch E,
Gonzalez D,
Giner V,
Bragulat E,
Coca A and
de la Sierra A.
Molecular basis of salt sensitivity in human hypertension. Evaluation of renin‐angiotensin‐aldosterone system gene polymorphisms.
Hypertension
38:
1204–1209,
2001.
|
229. |
Brand E,
Schorr U,
Ringel J,
Beige J,
Distler A and
Sharma AM.
Aldosterone synthase gene (CYP11B2) C‐344T polymorphism in Caucasians from the Berlin Salt‐Sensitivity Trial (BeSST).
J Hypertens
17:
1563–1567,
1999.
|
230. |
Mulatero P,
Williams TA,
Milan A,
Paglieri C,
Rabbia F,
Fallo F and
Veglio F.
Blood pressure in patients with primary aldosteronism is influenced by bradykinin B(2) receptor and alpha‐adducin gene polymorphisms.
J Clin Endocrinol Metab
87:
3337–3343,
2002.
|
231. |
Funder JW.
Science
237:
268–275,
1988.
|
232. |
Edwards CR,
Stewart PM,
Burt D,
Brett L,
McIntyre MA,
Sutanto WS,
de Kloet ER and
Monder C.
Localisation of 11 beta‐hydroxysteroid dehydrogenase — tissue specific protector of the mineralocorticoid receptor.
Lancet
2:
986–989,
1988.
|
233. |
Funder JW.
Is aldosterone bad for the heart?
Trends Endocrinol Metab
15:
139–142,
2004.
|
234. |
Watson B, Jr.,
Bergman SM,
Myracle A,
Callen DF,
Acton RT and
Warnock DG.
Genetic association of 11 beta‐hydroxysteroid dehydrogenase type 2 (HSD11B2) flanking microsatellites with essential hypertension in blacks.
Hypertension
28:
478–482,
1996.
|
235. |
Melander O,
Orho‐Melander M,
Bengtsson K,
Lindblad U,
Rastam L,
Groop L and
Hulthen UL.
Association between a variant in the 11 beta‐hydroxysteroid dehydrogenase type 2 gene and primary hypertension.
J Hum Hypertens
14:
819–823,
2000.
|
236. |
Smolenicka Z,
Bach E,
Schaer A,
Liechti‐Gallati S,
Frey BM,
Frey FJ and
Ferrari P.
A new polymorphic restriction site in the human 11 beta‐hydroxysteroid dehydrogenase type 2 gene.
J Clin Endocrinol Metab
83:
1814–1817,
1998.
|
237. |
Brand E,
Kato N,
Chatelain N,
Krozowski ZS,
Jeunemaitre X,
Corvol P,
Plouin PF,
Cambien F,
Pascoe L and
Soubrier F.
Structural analysis and evaluation of the 11beta‐hydroxysteroid dehydrogenase type 2 (11beta‐HSD2) gene in human essential hypertension.
J Hypertens
16:
1627–1633,
1998.
|
238. |
Chu SL,
Zhu DL,
Xiong MM,
Wang GL,
Zhang WZ,
Zhou HF,
Shen D,
Gao PJ,
Zhan YM and
Jin L.
Linkage analysis of twelve candidate gene loci regulating water and sodium metabolism and membrane ion transport in essential hypertension.
Hypertens Res
25:
635–639,
2002.
|
239. |
Lovati E,
Ferrari P,
Dick B,
Jostarndt K,
Frey BM,
Frey FJ,
Schorr U and
Sharma AM.
Molecular basis of human salt sensitivity: the role of the 11beta‐hydroxysteroid dehydrogenase type 2.
J Clin Endocrinol Metab
84:
3745–3749,
1999.
|
240. |
Liddle GWBT and
Coppage WS.
A familial renal disorder simulating primary aldosteronism but with negligable aldosterone secretion.
Trans Assoc Am Physicians
76:
199–213,
1963.
|
241. |
Shimkets RA,
Warnock DG,
Bositis CM,
Nelson‐Williams C,
Hansson JH,
Schambelan M,
Gill JR. Jr.,
Ulick S,
Milora RV,
Findling JW,
et al.
Liddle's syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel.
Cell
79:
407–414,
1994.
|
242. |
Pradervand S,
Wang Q,
Burnier M,
Beermann F,
Horisberger JD,
Hummler E and
Rossier BC.
A mouse model for Liddle's syndrome.
J Am Soc Nephrol
10:
2527–2533,
1999.
|
243. |
Iwai N,
Baba S,
Mannami T,
Ogihara T and
Ogata J.
Association of a sodium channel alpha subunit promoter variant with blood pressure.
J Am Soc Nephrol
13:
80–85,
2002.
|
244. |
Iwai N,
Baba S,
Mannami T,
Katsuya T,
Higaki J,
Ogihara T and
Ogata J.
Association of sodium channel gamma‐subunit promoter variant with blood pressure.
Hypertension
38:
86–89,
2001.
|
245. |
Persu A,
Barbry P,
Bassilana F,
Houot AM,
Mengual R,
Lazdunski M,
Corvol P and
Jeunemaitre X.
Genetic analysis of the beta subunit of the epithelial Na+ channel in essential hypertension.
Hypertension
32:
129–137,
1998.
|
246. |
Persu A,
Coscoy S,
Houot AM,
Corvol P,
Barbry P and
Jeunemaitre X.
Polymorphisms of the gamma subunit of the epithelial Na+ channel in essential hypertension.
J Hypertens
17:
639–645,
1999.
|
247. |
Busjahn A,
Aydin A,
Uhlmann R,
Krasko C,
Bahring S,
Szelestei T,
Feng Y,
Dahm S,
Sharma AM,
Luft FC and
Lang F.
Serum‐ and glucocorticoid‐regulated kinase (SGK1) gene and blood pressure.
Hypertension
40:
256–260,
2002.
|
248. |
Song Y,
Herrera VL,
Filigheddu F,
Troffa C,
Lopez LV,
Glorioso N and
Ruiz‐Opazo N.
Non‐association of the thiazide‐sensitive Na, Cl‐cotransporter gene with polygenic hypertension in both rats and humans.
J Hypertens
19:
1547–1551,
2001.
|
249. |
Glorioso N,
Filigheddu F,
Troffa C,
Soro A,
Parpaglia PP,
Tsikoudakis A,
Myers RH,
Herrera VL and
Ruiz‐Opazo N.
Interaction of alpha(I)‐Na,K‐ATPase and Na,K,2Cl‐cotransporter genes in human essential hypertension.
Hypertension
38:
204–209,
2001.
|
250. |
Rankinen T,
Perusse L,
Deriaz O,
Theriault G,
Chagnon M,
Nadeau A and
Bouchard C.
Linkage of the Na,K‐ATPase alpha 2 and beta I genes with resting and exercise heart rate and blood pressure: cross‐sectional and longitudinal observations from the Quebec Family Study.
J Hypertens
17:
339–349,
1999.
|
251. |
Yu H,
Freedman BI,
Rich SS and
Bowden DW.
Human Na+/H+ exchanger genes: identification of polymorphisms by radiation hybrid mapping and analysis of linkage in end‐stage renal disease.
Hypertension
35:
135–143,
2000.
|
252. |
Gordon RD,
Stowasser M,
Tunny TJ,
Klemm SA,
Finn WL and
Krek AL.
Clinical and pathological diversity of primary aldosteronism. including a new familial variety.
Clin Exp Pharmacol Physiol
18:
283–286,
1991.
|
253. |
Wilson FH,
Disse‐Nicodeme S,
Choate KA,
Ishikawa K,
Nelson‐Williams C,
Desitter I,
Gunel M,
Milford DV,
Lipkin GW,
Achard JM,
Feely MP,
Dussol B,
Berland Y,
Unwin RJ,
Mayan H,
Simon DB,
Farfel Z,
Jeunemaitre X and
Lifton RP.
Human hypertension caused by mutations in WNK kinases.
Science
293:
1107–1112,
2001.
|
254. |
Xu B,
English JM,
Wilsbacher JL,
Stippec S,
Goldsmith EJ and
Cobb MH.
WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II.
J Biol Chem
275:
16795–16801,
2000.
|
255. |
Delaloy C,
Lu J,
Houot AM,
Disse‐Nicodeme S,
Gasc JM,
Corvol P and
Jeunemaitre X.
Multiple promoters in the WNK1 gene: one controls expression of a kidney‐specific kinase‐defective isoform.
Mol Cell Biol
23:
9208–9221,
2003.
|
256. |
Zambrowicz BP,
Abuin A,
Ramirez‐Solis R,
Richter LJ,
Piggott J,
BeltrandelRio H,
Buxton EC,
Edwards J,
Finch RA,
Friddle CJ,
Gupta A,
Hansen G,
Hu Y,
Huang W,
Jaing C,
Key BW, Jr.,
Kipp P,
Kohlhauff B,
Ma ZQ,
Markesich D,
Payne R,
Potter DG,
Qian N,
Shaw J,
Schrick J,
Shi ZZ,
Sparks MJ,
Van Sligtenhorst I,
Vogel P,
Walke W,
Xu N,
Zhu Q,
Person C and
Sands AT.
Wnk1 kinase deficiency lowers blood pressure in mice: a gene‐trap screen to identify potential targets for therapeutic intervention.
Proc Natl Acad Sci USA
100:
14109–14114,
2003.
|
257. |
Kahle KT,
Wilson FH,
Leng Q,
Lalioti MD,
O'Connell AD,
Dong K,
Rapson AK,
MacGregor GG,
Giebisch G,
Hebert SC and
Lifton RP.
WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion.
Nat Genet
35:
372–376,
2003.
|
258. |
Yamauchi K,
Rai T,
Kobayashi K,
Sohara E,
Suzuki T,
Itoh T,
Suda S,
Hayama A,
Sasaki S and
Uchida S.
Disease‐causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins.
Proc Natl Acad Sci USA
101:
4690–4694,
2004.
|
259. |
Kahle KT,
Gimenez I,
Hassan H,
Wilson FH,
Wong RD,
Forbush B,
Aronson PS and
Lifton RP.
WNK4 regulates apical and basolateral Cl‐ flux in extrarenal epithelia.
Proc Natl Acad Sci USA
101:
2064–2069,
2004.
|
260. |
Gamba G.
Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension.
Am J Physiol Renal Physiol
288:
F245–F252,
2005.
|
261. |
Naray‐Fejes‐Toth A,
Snyder PM and
Fejes‐Toth G.
The kidney‐specific WNK1 isoform is induced by aldosterone and stimulates epithelial sodium channel‐mediated Na+ transport.
Proc Natl Acad Sci USA
101:
17434–17439,
2004.
|
262. |
Kinoshita S,
Sidhu A and
Felder RA.
Defective dopamine‐1 receptor adenylate cyclase coupling in the proximal convoluted tubule from the spontaneously hypertensive rat.
J Clin Invest
84:
1849–1856,
1989.
|
263. |
Zeng C,
Sanada H,
Watanabe H,
Eisner GM,
Felder RA and
Jose PA.
Functional genomics of the dopaminergic system in hypertension.
Physiol Genomics
19:
233–246,
2004.
|
264. |
Felder RA,
Sanada H,
Xu J,
Yu PY,
Wang Z,
Watanabe H,
Asico LD,
Wang W,
Zheng S,
Yamaguchi I,
Williams SM,
Gainer J,
Brown NJ,
Hazen‐Martin D,
Wong LJ,
Robillard JE,
Carey RM,
Eisner GM and
Jose PA.
G protein‐coupled receptor kinase 4 gene variants in human essential hypertension.
Proc Natl Acad Sci USA
99:
3872–3877,
2002.
|
265. |
Sanada H,
Jose PA,
Hazen‐Martin D,
Yu PY,
Xu J,
Bruns DE,
Phipps J,
Carey RM and
Felder RA.
Dopamine‐1 receptor coupling defect in renal proximal tubule cells in hypertension.
Hypertension
33:
1036–1042,
1999.
|
266. |
Zeng C,
Villar VA,
Eisner GM,
Williams SM,
Felder RA,
Jose PA.
G protein‐coupled receptor kinase 4: role in blood pressure regulation.
Hypertension.
51(6):
1449–1455,
2008.
|
267. |
Speirs HJ,
Katyk K,
Kumar NN,
Benjafield AV,
Wang WY and
Morris BJ.
Association of G‐protein‐coupled receptor kinase 4 haplotypes, but not HSD3B1 or PTP1B polymorphisms, with essential hypertension.
J Hypertens
22:
931–936,
2004.
|
268. |
Williams SM,
Ritchie MD,
Phillips JA, 3rd,
Dawson E,
Prince M,
Dzhura E,
Willis A,
Semenya A,
Summar M,
White BC,
Addy JH,
Kpodonu J,
Wong LJ,
Felder RA,
Jose PA and
Moore JH.
Multilocus analysis of hypertension: a hierarchical approach.
Hum Hered
57:
28–38,
2004.
|
269. |
Mukae S,
Aoki S,
Itoh S,
Iwata T,
Ueda H and
Katagiri T.
Bradykinin B(2) receptor gene polymorphism is associated with angiotensin‐converting enzyme inhibitor‐related cough.
Hypertension
36:
127–131,
2000.
|
270. |
Sato M,
Soma M,
Nakayama T and
Kanmatsuse K.
Dopamine D1 receptor gene polymorphism is associated with essential hypertension.
Hypertension
36:
183–186,
2000.
|
271. |
Soma M,
Nakayama K,
Rahmutula D,
Uwabo J,
Sato M,
Kunimoto M,
Aoi N,
Kosuge K and
Kanmatsuse K.
Ser9Gly polymorphism in the dopamine D3 receptor gene is not associated with essential hypertension in the Japanese.
Med Sci Monit
8:
CR1–CR4,
2002.
|
272. |
Thomas GN,
Critchley JA,
Tomlinson B,
Cockram CS and
Chan JC.
Relationships between the taql polymorphism of the dopamine D2 receptor and blood pressure in hyperglycaemic and normoglycaemic Chinese subjects.
Clin Endocrinol (Oxf)
55:
605–611,
2001.
|
273. |
Chen W,
Srinivasan SR,
Elkasabany A,
Ellsworth DL,
Boerwinkle E and
Berenson GS.
Combined effects of endothelial nitric oxide synthase gene polymorphism (G894T) and insulin resistance status on blood pressure and familial risk of hypertension in young adults: the Bogalusa Heart Study.
Am J Hypertens
14:
1046–1052,
2001.
|
274. |
Barroso I,
Gurnell M,
Crowley VE,
Agostini M,
Schwabe JW,
Soos MA,
Maslen GL,
Williams TD,
Lewis H,
Schafer AJ,
Chatterjee VK and
O'Rahilly S.
Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension.
Nature
402:
880–883,
1999.
|
275. |
Douglas JA,
Erdos MR,
Watanabe RM,
Braun A,
Johnston CL,
Oeth P,
Mohlke KL,
Valle TT,
Ehnholm C,
Buchanan TA,
Bergman RN,
Collins FS,
Boehnke M and
Tuomilehto J.
The peroxisome proliferator‐activated receptor‐gamma2 Pro12A1a variant: association with type 2 diabetes and trait differences.
Diabetes
50:
886–890,
2001.
|
276. |
Hasstedt SJ,
Ren QF,
Teng K and
Elbein SC.
Effect of the peroxisome proliferator‐activated receptor‐gamma 2 pro(12)ala variant on obesity, glucose homeostasis, and blood pressure in members of familial type 2 diabetic kindreds.
J Clin Endocrinol Metab
86:
536–541,
2001.
|
277. |
Pravenec M.
Transgenic rescue of defective Cd36 amdioraks insulin resistance in spontaneously hypertensive rats.
Nat Genet
27:
156–158,
2001.
|
278. |
Kajihara S,
Hisatomi A,
Ogawa Y,
Yasutake T,
Yoshimura T,
Hara T,
Mizuta T,
Ozaki I,
Iwamoto N and
Yamamoto K.
Association of the Pro90Ser CD36 mutation with elevated free fatty acid concentrations but not with insulin resistance syndrome in Japanese.
Clin Chim Acta
314:
125–130,
2001.
|
279. |
Shintani M,
Ikegami H,
Fujisawa T,
Kawaguchi Y,
Ohishi M,
Katsuya T,
Higaki J,
Shimamoto K,
Ogihara T.
Leptin gene polymorphism is associated with hypertension independent of obesity.
J Clin Endocrinol Metab
87:
2909–2912,
2002.
|
280. |
Rosmond R,
Chagnon YC,
Holm G,
Chagnon M,
Perusse L,
Lindell K,
Carlsson B,
Bouchard C and
Bjorntorp P.
Hypertension in obesity and the leptin receptor gene locus.
J Clin Endocrinol Metab
85:
3126–3131,
2000.
|
281. |
Lin RC,
Wang WY and
Morris BJ.
Association and linkage analyses of glucocorticoid receptor gene markers in essential hypertension.
Hypertension
34:
1186–1192,
1999.
|
282. |
Weinberger MH.
Salt sensitivity of blood pressure in humans.
Hypertension
27:
481–490,
1996.
|
283. |
Weinberger MH.
Salt sensitivity as a predictor of hypertension.
Am J Hypertens
4:
615S–616S,
1991.
|
284. |
Beeks E,
Kessels AG,
Kroon AA,
van der Klauw MM and
de Leeuw PW.
Genetic predisposition to salt‐sensitivity: a systematic review.
J Hypertens
22:
1243–1249,
2004.
|
285. |
Sciarrone MT,
Stella P,
Barlassina C,
Manunta P,
Lanzani C,
Bianchi G and
Cusi D.
ACE and alpha‐adducin polymorphism as markers of individual response to diuretic therapy.
Hypertension
41:
398–403,
2003.
|
286. |
Agarwal AK,
Giacchetti G,
Lavery G,
Nikkila H,
Palermo M,
Ricketts M,
McTernan C,
Bianchi G,
Manunta P,
Strazzullo P,
Mantero F,
White PC and
Stewart PM.
CA‐Repeat polymorphism in intron 1 of HSD11B2: effects on gene expression and salt sensitivity.
Hypertension
36:
187–194,
2000.
|
287. |
Weinberger MH.
More on the sodium saga.
Hypertension
44:
609–611,
2004.
|
288. |
Moore JH and
Williams SM.
New strategies for identifying gene‐gene interactions in hypertension.
Ann Int Med
34:
88–95,
2002.
|
289. |
Meneton P,
Jeunemaitre X,
de Wardener HE and
MacGregor GA.
Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases.
Physiol Rev
85:
679–715,
2005.
|
290. |
Denton DA.
Evolutionary aspects of the emergence of aldosterone secretion and salt appetite.
Physiol Rev.
45:
245–295,
1965
|
291. |
Joossens JV.
Dietary salt restriction: the case in favour.
R Soc Med Ser
26:
243–250,
1980.
|
292. |
Mancilha‐Carvalho JJ,
de Oliveira R and
Esposito RJ.
Blood pressure and electrolyte excretion in the Yanomamo Indians, an isolated population.
J Hum Hypertens
3:
309–314,
1989.
|
293. |
Oliver WJ,
Cohen EL and
Neel JV.
Blood pressure, sodium intake, and sodium related hormones in the Yanomamo Indians, a “no‐salt” culture.
Circulation
52:
146–151,
1975.
|
294. |
Neel JV and
Chagnon NA.
The demography of two tribes of primitive, relatively unacculturated American Indians.
Proc Natl Acad Sci USA.
59:
680–689,
1968.
|
295. |
Page LB,
Vandevert DE,
Nader K,
Lubin NK and
Page JR.
Blood pressure of Qash'qai pastoral nomads in Iran in relation to culture, diet, and body form.
Am J Clin Nutr
34:
527–538,
1981.
|
296. |
Appel LJ,
Moore TJ,
Obarzanek E,
Vollmer WM,
Svetkey LP,
Sacks FM,
Bray GA,
Vogt TM,
Cutler JA,
Windhauser MM,
Lin PH and
Karanja N.
A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group.
N Engl J Med
336:
1117–1124,
1997.
|
297. |
Forte JG,
Miguel JM,
Miguel MJ,
de Padua F and
Rose G.
Salt and blood pressure: a community trial.
J Hum Hypertens
3:
179–184,
1989.
|
298. |
Tian HG,
Guo ZY,
Hu G,
Yu SJ,
Sun W,
Pietinen P and
Nissinen A.
Changes in sodium intake and blood pressure in a community‐based intervention project in China.
J Hum Hypertens
9:
959–968,
1995.
|
299. |
Staessen J,
Bulpitt CJ,
Fagard R,
Joossens JV,
Lijnen P and
Amery A.
Salt intake and blood pressure in the general population: a controlled intervention trial in two towns.
J Hypertens
6:
965–973,
1988.
|
300. |
Sasaki N.
The relationship of salt intake to hypertension in the Japanese.
Geriatrics.
19:
735–744,
1964.
|
301. |
Bianchi G,
Fox U,
Di Francesco GF,
Bardi U and
Radice M.
The hypertensive role of the kidney in spontaneously hypertensive rats.
Issue Series Title: Clin Sci Mol Med
45
(Suppl 1):
135s–139s,
1973.
|
302. |
Dahl LK,
Heine M and
Thompson K.
Genetic influence of renal homografts on the blood pressure of rats from different strains.
Proc Soc Exp Biol Med
140:
852–856,
1972.
|
303. |
Dahl LK,
Heine M and
Thompson K.
Genetic influence of the kidneys on blood pressure. Evidence from chronic renal homografts in rats with opposite predispositions to hypertension.
Circ Res
40:
94–101,
1974.
|
304. |
Greene AS,
Yu ZY,
Roman RJ and
Cowley AW, Jr..
Role of blood volume expansion in Dahl rat model of hypertension.
J Am Physiol
258:
H508–H514,
1990.
|
305. |
Heller J,
Schubert G,
Havlickova J and
Thurau K.
The role of the kidney in the development of hypertension: a transplantation study in the Prague hypertensive rat.
Pflugers Arch
425:
208–212,
1993.
|
306. |
Morgan DA,
DiBona GF and
Mark AL.
Effects of interstrain renal transplantation on NaCl‐induced hypertension in Dahl rats.
Hypertension
15:
436–442,
1990.
|
307. |
Rettig R,
Folberth C,
Stauss H,
Kopf D,
Waldherr R and
Unger T.
Role of the kidney in primary hypertension: a renal transplantation study in rats.
J Am Physiol
258:
F606–F611,
1990.
|
308. |
Curtis JJ,
Luke RG,
Dustan HP,
Kashgarian M,
Whelchel JD,
Jones P and
Diethelm AG.
Remission of essential hypertension after renal transplantation.
N Engl J Med
309:
1009–1015,
1983.
|
309. |
Guyton AC.
Blood pressure control — special role of the kidneys and body fluids.
Science
252:
1813–1816,
1991.
|
310. |
Guyton AC,
Coleman TG,
Young DB,
Lohmeier TE and
DeClue JW.
Salt balance and long‐term blood pressure control.
Annu Rev Med
31:
15–27,
1980.
|
311. |
Grim CE,
Luft FC,
Miller JZ,
Brown PL,
Gannon MA and
Weinberger MH.
Effects of sodium loading and depletion in normotensive first‐degree relatives of essential hypertensives.
J Lab Clin Med
94:
764–771,
1979.
|
312. |
Grim CE,
Miller JZ,
Luft FC,
Christian JC and
Weinberger MH.
Genetic influences on renin, aldosterone, and the renal excretion of sodium and potassium following volume expansion and contraction in normal man.
Hypertension
1:
583–590,
1979.
|
313. |
Grim C,
Luft FC,
Miller JZ,
Rose RJ,
Christian JC and
Weinberger MH.
An approach to the evaluation of genetic influences on factors that regulate arterial blood pressure in man.
Hypertension
2:
134–142,
1980.
|
314. |
Widgren BR,
Herlitz H,
Hedner T,
Berglund G,
Wikstrand J,
Jonsson O and
Andersson OK.
Blunted renal sodium excretion during acute saline loading in normotensive men with positive family histories of hypertension.
Am J Hypertens
4:
570–578,
1991.
|
315. |
van Hooft IM,
Grobbee DE,
Waal‐Manning HJ,
Hofman A.
Hemodynamic characteristics of the early phase of primary hypertension. The Dutch Hypertension and Offspring Study.
Circulation.
87 (4):
1100–1106,
1993.
|
316. |
Mullins MM.
Body fluid volumes in prehypertensive spontaneously hypertensive rats.
Am J Physiol
244:
H652–H655,
1983.
|
317. |
Toal CB and
Leenen FH.
Body fluid volumes during development of hypertension in the spontaneously hypertensive rat.
J Hypertens
1:
345–350,
1983.
|
318. |
Bianchi G,
Baer PG,
Fox U,
Duzzi L,
Pagetti D and
Giovannetti AM.
Changes in renin, water balance, and sodium balance during development of high blood pressure in genetically hypertensive rats.
Circ Res
36:
153–161,
1975.
|
319. |
Harrap SB.
Genetic analysis of blood pressure and sodium balance in spontaneously hypertensive rats.
Hypertension
8:
572–582,
1986.
|
320. |
Boer WH,
Koomans HA,
Beutler JJ,
Gaillard CA,
Rabelink AJ and
Dorhout Mees EJ.
Small intra‐ and large inter‐individual variability in lithium clearance in humans.
Kidney Int
35:
1183–1188,
1989.
|
321. |
Boer WH,
Fransen R,
Shirley DG,
Walter SJ,
Boer P and
Koomans HA.
Evaluation of the lithium clearance method: direct analysis of tubular lithium handling by micropuncture.
Kidney Int
47:
1023–1030,
1995.
|
322. |
Thomsen K and
Shirley DG.
The validity of lithium clearance as an index of sodium and water delivery from the proximal tubules.
Nephron
77:
125–138,
1997.
|
323. |
Thomsen K,
Jonassen TE,
Christensen S and
Shirley DG.
Amiloride inhibits proximal tubular reabsorption in conscious euvolemic rats.
Eur J Pharmacol
437:
85–90,
2002.
|
324. |
Strazzullo P,
Iacoviello L,
Iacone R and
Giorgione N.
Use of fractional lithium clearance in clinical and epidemiological investigation: a methodological assessment.
Clin Sci (Lond)
74:
651–657,
1988.
|
325. |
Weder AB.
Red‐cell lithium‐sodium countertransport and renal lithium clearance in hypertension.
N Engl J Med
314:
198–201,
1986.
|
326. |
Burnier M,
Biollaz J,
Magnin JL,
Bidlingmeyer M and
Brunner HR.
Renal sodium handling in patients with untreated hypertension and white coat hypertension.
Hypertension
23:
496–502,
1994.
|
327. |
Cappuccio FP,
Strazzullo P,
Siani A and
Trevisan M.
Increased proximal sodium reabsorption is associated with increased cardiovascular risk in men.
J Hypertens
14:
909–914,
1996.
|
328. |
Manunta P,
Burnier M,
D'Amico M,
Buzzi L,
Maillard M,
Barlassina C,
Lanella G,
Cusi D and
Bianchi G.
Adducin polymorphism affects renal proximal tubule reabsorption in hypertension.
Hypertension
33:
694–697,
1999.
|
329. |
Skrabal F,
Herholz H,
Neumayr M,
Hamberger L,
Ledochowski M,
Sporer H,
Hortnagl H,
Schwarz S and
Schonitzer D.
Salt sensitivity in humans is linked to enhanced sympathetic responsiveness and to enhanced proximal tubular reabsorption.
Hypertension
6:
152–158,
1984.
|
330. |
Barba G,
Cappuccio FP,
Russo L,
Stinga F,
Iacone R and
Strazzullo P.
Renal function and blood pressure response to dietary salt restriction in normotensive men.
Hypertension
27:
1160–1164,
1996.
|
331. |
Chiolero A,
Maillard M,
Nussberger J,
Brunner HR and
Burnier M.
Proximal sodium reabsorption: an independent determinant of blood pressure response to salt.
Hypertension
36:
631–637,
2000.
|
332. |
Thomas D,
Harris PJ and
Morgan TO.
Age‐related changes in angiotensin II‐stimulated proximal tubule fluid reabsorption in the spontaneously hypertensive rat.
J Hypertens(Suppl 6):
S449–S451,
1988.
|
333. |
Thomas D,
Harris PJ and
Morgan TO.
Altered responsiveness of proximal tubule fluid reabsorption of peritubular angiotensin II in spontaneously hypertensive rats.
J Hypertens
8:
407–410,
1990.
|
334. |
Aldred KL,
Harris PJ and
Eitle E.
Increased proximal tubule NHE‐3 and H+‐ ATPase activities in spontaneously hypertensive rats.
J Hypertens
18:
623–628,
2000.
|
335. |
Chou CL and
Marsh DJ.
Time course of proximal tubule response to acute arterial hypertension in the rat.
Am J Physiol
254:
F601–F607,
1988.
|
336. |
Magyar CE,
Zhang Y,
Holstein‐Rathlou NH and
McDonough AA.
Proximal tubule Na transporter responses are the same during acute and chronic hypertension.
Am J Physiol Renal Physiol
279:
F358–F369,
2000.
|
337. |
Hayashi M,
Yoshida T,
Monkawa T,
Yamaji Y,
Sato S and
Saruta T.
Na+/H+‐exchanger 3 activity and its gene in the spontaneously hypertensive rat kidney.
J Hypertens
15:
43–48,
1997.
|
338. |
Cheng HF,
Wang JL,
Vinson GP and
Harris RC.
Young SHR express increased type 1 angiotensin II receptors in renal proximal tubule.
Am J Physiol
274:
F10–F17,
1998.
|
339. |
Gesek FA and
Schoolwerth AC.
Hormone responses of proximal Na(+)‐H+ exchanger in spontaneously hypertensive rats.
Am J Physiol
261:
F526–F536,
1991.
|
340. |
Garg LC,
Narang N and
McArdle S.
Na‐K‐ATPase in nephron segments of rats developing spontaneous hypertension.
Am J Physiol
249:
F863–F869,
1985.
|
341. |
Ortiz PA and
Garvin JL.
Intrarenal transport and vasoactive substances in hypertension.
Hypertension
38:
621–624,
2001.
|
342. |
Garcia NH,
Plato CF,
Stoos BA and
Garvin JL.
Nitric oxide‐induced inhibition of transport by thick ascending limbs from Dahl salt‐sensitive rats.
Hypertension
34:
508–513,
1999.
|
343. |
Ito O and
Roman RJ.
Role of 20‐HETE in elevating chloride transport in the thick ascending limb of Dahl SS/Jr rats.
Hypertension
33:
419–423,
1999.
|
344. |
Hollenberg NK,
Williams GH and
Adams DF.
Essential hypertension: abnormal renal vascular and endocrine responses to a mild psychological stimulus.
Hypertension
3:
11–17,
1981.
|
345. |
Uneda S,
Fujishima S,
Fujiki Y,
Tochikubo O,
Oda H,
Asahina S and
Kaneko Y.
Renal haemodynamics and the renin‐angiotensin system in adolescents genetically predisposed to essential hypertension.
J Hypertens Suppl
2:
S437–S439,
1984.
|
346. |
Dilley JR,
Stier CT, Jr. and
Arendshorst WJ.
Abnormalities in glomerular function in rats developing spontaneous hypertension.
Am J Physiol
246:
F12–F20,
1984.
|
347. |
Cowley AW, Jr.,
Mattson DL,
Lu S and
Roman RJ.
The renal medulla and hypertension.
Hypertension
25:
663–673,
1995.
|
348. |
Roman RJ and
Kaldunski ML.
Renal cortical and papillary blood flow in spontaneously hypertensive rats.
Hypertension
11:
657–663,
1988.
|
349. |
Sacerdoti D,
Abraham NG,
McGiff JC and
Schwartzman ML.
Renal cytochrome P‐450‐dependent metabolism of arachidonic acid in spontaneously hypertensive rats.
Biochem Pharmacol
37:
521–527,
1988.
|
350. |
Escalante B,
Sacerdoti D,
Davidian MM,
Laniado‐Schwartzman M and
McGiff JC.
Chronic treatment with tin normalizes blood pressure in spontaneously hypertensive rats.
Hypertension
17:
776–779,
1991.
|
351. |
Roman RJ.
Abnormal renal hemodynamics and pressure‐natriuresis relationship in Dahl salt‐sensitive rats.
Am J Physiol
251:
F57–F65,
1986.
|
352. |
Roman RJ.
Alterations in renal medullary hemodynamics and the pressure‐natriuretic response in genetic hypertension.
Am J Hypertens
3:
893–900,
1990.
|
353. |
Chen PY and
Sanders PW.
l‐arginine abrogates salt‐sensitive hypertension in Dahl/Rapp rats.
J Clin Invest
88:
1559–1567,
1991.
|
354. |
Simchon S,
Manger WM,
Shi GS and
Brensilver J.
Impaired renal vascular reactivity in prehypertensive Dahl salt‐sensitive rats.
Hypertension
20:
524–532,
1992.
|
355. |
Haberle DA and
von Baeyer H.
Characteristics of glomerulotubular balance.
Am J Physiol
244:
F355–F366,
1983.
|
356. |
Kaufman JS,
Hamburger RJ and
Flamenbaum W.
Tubuloglomerular feedback response after hypotensive hemorrhage.
Ren Physiol
5:
173–181,
1982.
|
357. |
Persson AE,
Boberg U,
Hahne B,
Muller‐Suur R,
Norlen BJ and
Selen G.
Interstitial pressure as a modulator of tubuloglomerular feedback control.
Kidney Int(Suppl 12):
S122–S128,
1982.
|
358. |
Haberle DA and
Davis JM.
Resetting of tubuloglomerular feedback: evidence for a humoral factor in tubular fluid.
Am J Physiol
246:
F495–F500,
1984.
|
359. |
Schnermann J,
Schubert G and
Briggs J.
Tubuloglomerular feedback responses with native and artificial tubular fluid.
Am J Physiol
250:
F16–F21,
1986.
|
360. |
Moore LC and
Mason J.
Tubuloglomerular feedback control of distal fluid delivery: effect of extracellular volume.
Am J Physiol
250:
F1024–F1032,
1986.
|
361. |
Schnermann J,
Hermle M,
Schmidmeier E and
Dahlheim H.
Impaired potency for feedback regulation of glomerular filtration rate in DOCA escaped rats.
Pflugers Arch
358:
325–338,
1975.
|
362. |
Dilley JR and
Arendshorst WJ.
Enhanced tubuloglomerular feedback activity in rats developing spontaneous hypertension.
Am J Physiol
247:
F672–F679,
1984.
|
363. |
Ploth DW,
Dahlheim H,
Schmidmeier E,
Hermle M and
Schnermann J.
Tubuloglomerular feedback and autoregulation of glomerular filtration rate in Wistar‐Kyoto spontaneously hypertensive rats.
Pflugers Arch
375:
261–267,
1978.
|
364. |
Ushiogi Y,
Takabatake T and
Haberle DA.
Blood pressure and tubuloglomerular feedback mechanism in chronically salt‐loaded spontaneously hypertensive rats.
Kidney Int
39:
1184–1192,
1991.
|
365. |
McDonald SJ and
de Wardener HE.
The Relationship between the renal arterial perfusion pressure and the increase in sodium excretion which occurs during an infusion of saline.
Nephron
10:
1–14,
1965.
|
366. |
Brannstrom K,
Morsing P and
Arendshorst WJ.
Exaggerated tubuloglomerular feedback activity in genetic hypertension is mediated by ANG II and AT1 receptors.
Am J Physiol
270:
F749–F755,
1996.
|
367. |
Brannstrom K,
Morsing P and
Arendshorst WJ.
Candesartan normalizes exaggerated tubuloglomerular feedback activity in young spontaneously hypertensive rats.
Am J Soc Nephrol
10
(Suppl 11):
S213–S219,
1998.
|
368. |
Chen YM,
Yip KP,
Marsh DJ and
Holstein‐Rathlou NH.
Magnitude of TGF‐initiated nephron‐nephron interactions is increased in SHR.
Am J Physiol
269:
F198–F204,
1995.
|
369. |
Arendshorst WJ and
Beierwaltes WH.
Renal and nephron hemodynamics in spontaneously hypertensive rats.
Am J Physiol
236:
F246–F251,
1979.
|
370. |
Welch WJ and
Wilcox CS.
Potentiation of tubuloglomerular feedback in the rat by thromboxane mimetic: role of macula densa.
Clin J Invest
89:
1857–1865,
1992.
|
371. |
Welch WJ,
Tojo A,
Lee JU,
Kang DG,
Schnackenberg CG and
Wilcox CS.
Nitric oxide synthase in the JGA of the SHR: expression and role in tubuloglomerular feedback.
Am J Physiol
277:
F130–F138,
1999.
|
372. |
Welch WJ,
Tojo A and
Wilcox CS.
Roles of NO and oxygen radicals in tubuloglomerular feedback in young SHR.
Am J Physiol Renal Physiol
278:
F769–F776,
2000.
|
373. |
Brannstrom K and
Arendshorst WJ.
Thromboxane A2 contributes to the enhanced tubuloglomerular feedback activity in young SHR.
Am J Physiol
276:
F758–F766,
1999.
|
374. |
Braam B,
Navar LG and
Mitchell KD.
Modulation of tubuloglomerular feedback by angiotensin II type 1 receptors during the development of Goldblatt hypertension.
Hypertension
25:
1232–1237,
1995.
|
375. |
Mitchell KD and
Mullins JJ.
ANG II dependence of tubuloglomerular feedback responsiveness in hypertensive ren‐2 transgenic rats.
Am J Physiol
268:
F821–F828,
1995.
|
376. |
Karlsen FM,
Andersen CB,
Leyssac PP and
Holstein‐Rathlou NH.
Dynamic autoregulation and renal injury in Dahl rats.
Hypertension
30:
975–983,
1997.
|
377. |
Karlsen FM,
Leyssac PP and
Holstein‐Rathlou NH.
Tubuloglomerular feedback in Dahl rats.
Am J Physiol
274:
R1561–R1569,
1998.
|
378. |
Pires SL,
Barres C,
Sassard J and
Julien C.
Renal blood flow dynamics and arterial pressure liability in the conscious rat.
Hypertension
38:
147–152,
2001.
|
379. |
Granger JP,
Alexander BT and
Llinas M.
Mechanisms of pressure natriuresis.
Curr Hypertens Rep
4:
152–159,
2002.
|
380. |
Roman RJ and
Cowley AW, Jr..
Abnormal pressure‐diuresis‐natriuresis response in spontaneously hypertensive rats.
Am J Physiol
248:
F199–F205,
1985.
|
381. |
Gross V,
Lippoldt A,
Schneider W and
Luft FC.
Effect of captopril and angiotensin II receptor blockade on pressure natriuresis in transgenic TGR(mRen‐2)27 rats.
Hypertension
26:
471–479,
1999.
|
382. |
Gross JM,
Dwyer JE and
Knox FG.
Natriuretic response to increased pressure is preserved with COX‐2 inhibitors.
Hypertension
34:
1163–1167,
1999.
|
383. |
Gross V,
Schunck WH,
Honeck H,
Milia AF,
Kargel E,
Walther T,
Bader M,
Inagami T,
Schneider W and
Luft FC.
Inhibition of pressure natriuresis in mice lacking the AT2 receptor.
Kidney Int
57:
191–202,
2000.
|
384. |
Obst M,
Gross V,
Janke J,
Wellner M,
Schneider W and
Luft FC.
Pressure natriuresis in AT(2) receptor‐deficient mice with L‐NAME hypertension.
Am J Soc Nephrol
14:
303–310,
2003.
|
385. |
Selkurt EE,
Hall PW and
Spencer MP.
Influence of graded arterial pressure decrement on renal clearance of creatinine, p‐aminohippurate and sodium.
Am J Physiol
159:
369–378,
1949.
|
386. |
Shipley RE and
Study RS.
Changes in renal blood flow, extraction of inulin, glomerular filtration rate, tissue pressure and urine flow with acute alterations of renal artery blood pressure.
Am J Physiol
167:
676–688,
1951.
|
387. |
McDonough AA,
Leong PK and
Yang LE.
Mechanisms of pressure natriuresis: how blood pressure regulates renal sodium transport.
Ann NY Acad Sci
986:
669–677,
2003.
|
388. |
Cowley AW, Jr.
Role of the renal medulla in volume and arterial pressure regulation.
Am J Physiol
273:
R1–R15,
1997.
|
389. |
Hall JE,
Granger JP,
Hester RL and
Montani JP.
Mechanisms of sodium balance in hypertension: role of pressure natriuresis.
J Hypertens
45
(Suppl 4):
S57–S65,
1997.
|
390. |
Hall JE,
Granger JP,
Smith MJ, Jr. and
Premen AJ.
Role of renal hemodynamics and arterial pressure in aldosterone “escape”.
Hypertension
6:
1183–1192,
1984.
|
391. |
Hall JE,
Granger JP,
Hester RL,
Coleman TG,
Smith MJ, Jr. and
Cross RB.
Mechanisms of escape from sodium retention during angiotensin II hypertension.
Am J Physiol
246:
F627–F634,
1984.
|
392. |
Hall JE,
Mizelle HL,
Woods LL and
Montani JP.
Pressure natriuresis and control of arterial pressure during chronic norepinephrine infusion.
J Hypertens
6:
723–731,
1988.
|
393. |
Hall JE,
Brands MW,
Henegar JR and
Shek EW.
Abnormal kidney function as a cause and a consequence of obesity hypertension.
Clin Exp Pharmacol Physiol
25:
58–64,
1998.
|
394. |
Granger JP.
Pressure natriuresis: role of renal interstitial hydrostatic pressure.
Hypertension
19:
19–117,
1992.
|
395. |
Majid DS,
Said KE,
Omoro SA and
Navar LG.
Nitric oxide dependency of arterial pressure‐induced changes in renal interstitial hydrostatic pressure in dogs.
Circ Res
88:
347–351,
2001.
|
396. |
Wilcox CS,
Sterzel RB,
Dunckel PT,
Mohrmann M and
Perfetto M.
Renal interstitial pressure and sodium excretion during hilar lymphatic ligation.
Am J Physiol
247:
F344–F351,
1984.
|
397. |
Garcia‐Estan J and
Roman RJ.
Role of renal interstitial hydrostatic pressure in the pressure diuresis response.
Am J Physiol
256:
F63–F70,
1989.
|
398. |
Granger JP.
Regulation of sodium excretion by renal interstitial hydrostatic pressure.
Fed Proc
45:
2892–2896,
1986.
|
399. |
Khraibi AA and
Knox FG.
Renal interstitial hydrostatic pressure during pressure natriuresis in hypertension.
Am J Physiol
255:
R756–R759,
1988.
|
400. |
Manning RD, Jr.,
Hu L,
Tan DY and
Meng S.
Role of abnormal nitric oxide systems in salt‐sensitive hypertension.
Am J Hypertens
14:
68S–73S,
2001.
|
401. |
Mattson DL.
Importance of the renal medullary circulation in the control of sodium excretion and blood pressure.
Am J Physiol Regul Integr Comp Physiol
284:
R13–R27,
2001.
|
402. |
Chibalin AV,
Ogimoto G,
Pedemonte CH,
Pressley TA,
Katz AI,
Feraille E,
Berggren PO and
Bertorello AM.
Dopamine‐induced endocytosis of Na+, K+‐ATPase is initiated by phosphorylation of Ser‐18 in the rat alpha subunit and is responsible for the decreased activity in epithelial cells.
J Biol Chem
274:
1920–1927,
1999.
|
403. |
Ribeiro CM,
Dubay GR,
Falck JR and
Mandel LJ.
Parathyroid hormone inhibits Na(+)‐K(+)‐ATPase through a cytochrome P‐450 pathway.
Am J Physiol
266:
F497–F505,
1994.
|
404. |
Zhang Y,
Mircheff AK,
Hensley CB,
Magyar CE,
Warnock DG,
Chambrey R,
Yip KP,
Marsh DJ,
Holstein‐Rathlou NH and
McDonough AA.
Rapid redistribution and inhibition of renal sodium transporters during acute pressure natriuresis.
Am J Physiol
270:
F1004–F1014,
1996.
|
405. |
Yip KP,
Tse CM,
McDonough AA and
Marsh DJ.
Redistribution of Na+/H+ exchanger isoform NHE3 in proximal tubules induced by acute and chronic hypertension.
Am J Physiol
275:
F565–F575,
1998.
|
406. |
Yang LE,
Maunsbach AB,
Leong PK and
McDonough AA.
Differential traffic of proximal tubule Na+ transporters during hypertension or PTH: NHE3 to base of microvilli vs. NaPi2 to endosomes.
Am J Physiol Renal Physiol
287:
F896–F906,
2004.
|
407. |
Yang L,
Leong PK,
Chen JO,
Patel N,
Hamm‐Alvarez SF and
McDonough AA.
Acute hypertension provokes internalization of proximal tubule NHE3 without inhibition of transport activity.
Am J Physiol Renal Physiol
282:
F730–F740,
2002.
|
408. |
Yang LE,
Leong PK,
Ye S,
Campese VM and
McDonough AA.
Responses of proximal tubule sodium transporters to acute injury‐induced hypertension.
Am J Physiol Renal Physiol
284:
F313–F322,
2003.
|
409. |
Yang LE,
Zhong H,
Leong PK,
Perianayagam A,
Campese VM and
McDonough AA.
Chronic renal injury‐induced hypertension alters renal NHE3 distribution and abundance.
Am J Physiol Renal Physiol
284:
F1056–F1065,
2003.
|
410. |
Leong PK,
Yang LE,
Holstein‐Rathlou NH and
McDonough AA.
Angiotensin II clamp prevents the second step in renal apical NHE3 internalization during acute hypertension.
Am J Physiol Renal Physiol
283:
F1142–F1150,
2002.
|
411. |
Zhang Y,
Magyar CE,
Norian JM,
Holstein‐Rathlou NH,
Mircheff AK and
McDonough AA.
Reversible effects of acute hypertension on proximal tubule sodium transporters.
Am J Physiol
274:
C1090–C1100,
1998.
|
412. |
Jin XH,
McGrath HE,
Gildea JJ,
Siragy HM,
Felder RA and
Carey RM.
Renal interstitial guanosine cyclic 3',5'‐monophosphate mediates pressure‐natriuresis via protein kinase G.
Hypertension
43:
1133–1139,
2004.
|
413. |
Sasaki S,
Siragy HM,
Gildea JJ,
Felder RA and
Carey RM.
Production and role of extracellular guanosine cyclic 3',5' monophosphate in sodium uptake in human proximal tubule cells.
Hypertension
43:
286–291,
2004.
|
414. |
Ahmed F,
Howell NL,
Kemp BA,
Siragy HM and
Carey RM.
Extracellular renal guanosine cyclic 3',5'‐monophosphate modulates nitric oxide and pressure natriuresis.
Hypertension,
50:
958–963,
2007.
|
415. |
Navar LG,
Paul RV,
Carmines PK,
Chou CL and
Marsh DJ.
Intrarenal mechanisms mediating pressure natriuresis: role of angiotensin and prostaglandins.
Fed Proc
45:
2885–2891,
1986.
|
416. |
Romero JC and
Knox FG.
Mechanisms underlying pressure‐related natriuresis: the role of the renin‐angiotensin and prostaglandin systems. State of the art lecture.
Hypertension
11:
724–738,
1988.
|
417. |
Haas JA,
Granger JP and
Knox FG.
Effect of meclofenamate on lithium excretion in response to changes in renal perfusion pressure.
J Lab Clin Med
111:
543–547,
1988.
|
418. |
Dos Santos EA,
Dahly‐Vernon AJ,
Hoagland KM and
Roman RJ.
Inhibition of the formation of EETs and 20‐HETE with 1‐aminobenzotriazole attenuates pressure natriuresis.
Am J Physiol Regul Integr Comp Physiol
287:
R58–R68,
2004.
|
419. |
Carmines PK,
Bell PD,
Roman RJ,
Work J and
Navar LG.
Prostaglandins in the sodium excretory response to altered renal arterial pressure in dogs.
Am J Physiol
248:
F8–F14,
1985.
|
420. |
Roman RJ and
Lianos E.
Influence of prostaglandins on papillary blood flow and pressure‐natriuretic response.
Hypertension
15:
29–35,
1990.
|
421. |
Gonzalez‐Campoy JM,
Long C,
Roberts D,
Berndt TJ,
Romero JC and
Knox FG.
Renal interstitial hydrostatic pressure and PGE2 in pressure natriuresis.
Am J Physiol
260:
F643–F649,
1990.
|
422. |
Pawlowska D,
Haas JA,
Granger JP,
Romero JC and
Knox FG.
Prostaglandin blockade blunts the natriuresis of elevated renal interstitial hydrostatic pressure.
Am J Physiol
254:
F507–F511,
1988.
|
423. |
Kinoshita Y and
Knox FG.
Role of prostaglandins in proximal tubule sodium reabsorption: response to elevated renal interstitial hydrostatic pressure.
Circ Res
64:
1013–1018,
1989.
|
424. |
Williams JM,
Sarkis A,
Lopez B,
Ryan RP,
Flasch AK and
Roman RJ.
Elevations in renal interstitial hydrostatic pressure and 20‐hydroxyeicosatetraenoic acid contribute to pressure natriuresis.
Hypertension
49:
687–694,
1989.
|
425. |
Hirata Y,
Hayakawa H,
Suzuki E and
Omata M.
Does endothelin work as an intrarenal mechanism to alter pressure natriuresis in spontaneously hypertensive rats?
J Hypertens
12:
251–257,
1989.
|
426. |
Paul RV,
Kirk KA and
Navar LG.
Renal autoregulation and pressure natriuresis during ANF‐induced diuresis.
Am J Physiol
253:
F424–F431,
1989.
|
427. |
Strick DM,
Fiksen‐Olsen MJ,
Carretero OA and
Romero JC.
Renal kinin antagonism does not impair pressure‐induced natriuresis.
Am J Physiol
263:
F77–F82,
1992.
|
428. |
Majid DS,
Williams A and
Navar LG.
Inhibition of nitric oxide synthesis attenuates pressure‐induced natriuretic responses in anesthetized dogs.
Am J Physiol
264:
F79–F87,
1993.
|
429. |
Walstead C and
Yip KP.
Acute arterial hypertension inhibits proximal tubular fluid reabsorption in normotensive rat but not in SHR.
Am J Physiol Regul Integr Comp Physiol
286:
R726–R733,
2004.
|
430. |
Evans RG,
Majid DS and
Eppel GA.
Mechanisms mediating pressure natriuresis: what we know and what we need to find out.
Clin Exp Pharmacol Physiol
32:
400–409,
2005.
|
431. |
Strazzullo P,
Galletti F and
Barba G.
Altered renal handling of sodium in human hypertension: short review of the evidence.
Hypertension
41:
1000–1005,
2003.
|
432. |
Luft FC,
Grim CE,
Higgins JT, Jr. and
Weinberger MH.
Differences in response to sodium administration in normotensive white and black subjects.
J Lab Clin Med
90:
555–562,
1977.
|
433. |
Kawasaki T,
Delea CS,
Bartter FC and
Smith H.
The effect of high‐sodium and low‐sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension.
Am J Med
64:
193–198,
1978.
|
434. |
Gerdes E.
Jouranl Hum Hypertension
13:
375–384,
1999.
|
435. |
Weinberger MH,
Miller JZ,
Luft FC,
Grim CE and
Fineberg NS.
Definitions and characteristics of sodium sensitivity and blood pressure resistance.
Hypertension
8:
II127–III134,
1986.
|
436. |
O'Connell DP,
Ragsdale NV,
Boyd DG,
Felder RA and
Carey RM.
Differential human renal tubular responses to dopamine type 1 receptor stimulation are determined by blood pressure status.
Hypertension
29:
115–122,
1997.
|
437. |
Weinberger MH and
Fineberg NS.
Sodium and volume sensitivity of blood pressure. Age and pressure change over time.
Hypertension
18:
67–71,
1991.
|
438. |
Koolen MI,
Bussemaker‐Verduyn den Boer E and
van Brummelen P.
Clinical biochemical and haemodynamic correlates of sodium sensitivity in essential hypertension.
J Hypertens(Suppl 1):
21–23,
1983.
|
439. |
Overlack A,
Ruppert M,
Kolloch R,
Gobel B,
Kraft K,
Diehl J,
Schmitt W and
Stumpe KO.
Divergent hemodynamic and hormonal responses to varying salt intake in normotensive subjects.
Hypertension
22:
331–338,
1993.
|
440. |
Sullivan JM.
Salt sensitivity: definition, conception, methodology, and long‐term issues.
Hypertension
17:
161–168,
1991.
|
441. |
Osanai T,
Kanazawa T,
Yokono Y,
Uemura T,
Okuguchi T and
Onodera K.
[Effect of aging on sensitivity of blood pressure to salt].
Nippon Ronen Igakkai Zasshi
30:
30–34,
1993.
|
442. |
Ishibashi K,
Oshima T,
Matsuura H,
Watanabe M,
Ishida M,
Ishida T,
Ozono R,
Kajiyama G and
Kanbe M.
Effects of age and sex on sodium chloride sensitivity: association with plasma renin activity.
Clin Nephrol
42:
376–380,
1994.
|
443. |
Campese VM,
Karubian F,
Chervu I,
Parise M,
Sarkies N and
Bigazzi R.
Pressor reactivity to norepinephrine and angiotensin in salt‐sensitive hypertensive patients.
Hypertension
21:
301–307,
1993.
|
444. |
Madeddu P,
Varoni MV,
Demontis MP,
Pinna‐Parpaglia P,
Glorioso N and
Anania V.
Urinary kallikrein: a marker of blood pressure sensitivity to salt.
Kidney Int
49:
1422–1427,
1996.
|
445. |
Miyajima E and
Yamada Y.
Reduced sympathetic inhibition in salt‐sensitive Japanese young adults.
Am J Hypertens
12:
1195–1200,
1999.
|
446. |
Okuguchi T,
Osanai T,
Kamada T,
Kimura M,
Takahashi K and
Okumura K.
Significance of sympathetic nervous system in sodium‐induced nocturnal hypertension.
J Hypertens
17:
947–957,
1999.
|
447. |
Siffert W and
Dusing R.
Sodium‐proton exchange and primary hypertension: an update.
Hypertension
26:
649–655,
1995.
|
448. |
Bragulat E,
de la Sierra A,
Antonio MT and
Coca A.
Endothelial dysfunction in salt‐sensitive essential hypertension.
Hypertension
37:
444–448,
2001.
|
449. |
Cubeddu LX,
Alfieri AB,
Hoffmann IS,
Jimenez E,
Roa CM,
Cubeddu R,
Palermo C and
Baldonedo RM.
Nitric oxide and salt sensitivity.
Am J Hypertens
13:
973–979,
2000.
|
450. |
Weinberger MH,
Fineberg NS,
Fineberg SE and
Weinberger M.
Salt sensitivity, pulse pressure, and death in normal and hypertensive humans.
Hypertension
37:
429–432,
2001.
|
451. |
Weinberger MH.
Sodium and blood pressure 2003.
Curr Opin Cardiol
19:
353–356,
2004.
|
452. |
Bihorac A,
Tezcan H,
Ozener C,
Oktay A and
Akoglu E.
Association between salt sensitivity and target organ damage in essential hypertension.
Am J Hypertens
13:
864–872,
2000.
|
453. |
Suzuki M,
Kimura Y,
Tsushima M and
Harano Y.
Association of insulin resistance with salt sensitivity and nocturnal fall of blood pressure.
Hypertension
35:
864–868,
2000.
|
454. |
Uzu T,
Kazembe FS,
Ishikawa K,
Nakamura S,
Inenaga T and
Kimura G.
High sodium sensitivity implicates nocturnal hypertension in essential hypertension.
Hypertension
28:
139–142,
1996.
|
455. |
Musiari L,
Ceriati R,
Taliani U,
Montesi M and
Novarini A.
Early abnormalities in left ventricular diastolic function of sodium‐sensitive hypertensive patients.
J Hum Hypertens
13:
711–716,
1999.
|
456. |
Laffer CL,
Laniado‐Schwartzman M,
Wang MH,
Nasjletti A and
Elijovich F.
Differential regulation of natriuresis by 20‐hydroxyeicosatetraenoic acid in human salt‐sensitive versus salt‐resistant hypertension.
Circulation
107:
574–578,
2003.
|
457. |
Hollenberg NK,
Chenitz WR,
Adams DF and
Williams GH.
Reciprocal influence of salt intake on adrenal glomerulosa and renal vascular responses to angiotensin II in normal man.
J Clin Invest
54:
34–42,
1974.
|
458. |
Shoback DM,
Williams GH,
Moore TJ,
Dluhy RG,
Podolsky S and
Hollenberg NK.
Defect in the sodium‐modulated tissue responsiveness to angiotensin II in essential hypertension.
J Clin Invest
72:
2115–2124,
1983.
|
459. |
Williams GH,
Dluhy RG,
Lifton RP,
Moore TJ,
Gleason R,
Williams R,
Hunt SC,
Hopkins PN and
Hollenberg NK.
Non‐modulation as an intermediate phenotype in essential hypertension.
Hypertension
20:
788–796,
1992.
|
460. |
Dluhy RG,
Smith K,
Taylor T,
Hollenberg NK and
Williams GH.
Prolonged converting enzyme inhibition in non‐modulating hypertension.
Hypertension
13:
371–377,
1989.
|
461. |
Kosachunhanun N,
Hunt SC,
Hopkins PN,
Williams RR,
Jeunemaitre X,
Corvol P,
Ferri C,
Mortensen RM,
Hollenberg NK and
Williams GH.
Genetic determinants of nonmodulating hypertension.
Hypertension
42:
901–908,
2003.
|
462. |
Raji A,
Williams GH,
Jeunemaitre X,
Hopkins PN,
Hunt SC,
Hollenberg NK and
Seely EW.
Insulin resistance in hypertensives: effect of salt sensitivity, renin status and sodium intake.
J Hypertens
19:
99–105,
2001.
|
463. |
Fisher ND,
Ferri C,
Bellini C,
Santucci A,
Gleason R,
Williams GH,
Hollenberg NK and
Seely EW.
Age, gender, and non‐modulation: a sexual dimorphism in essential hypertension.
Hypertension
29:
980–985,
1997.
|
464. |
McConnaughey MM,
McConnaughey JS and
Ingenito AJ.
Practical considerations of the pharmacology of angiotensin receptor blockers.
J Clin Pharmacol
39:
547–559,
1999.
|
465. |
Rocha R,
Rudolph AE,
Frierdich GE,
Nachowiak DA,
Kekec BK,
Blomme EA,
McMahon EG and
Delyani JA.
Aldosterone induces a vascular inflammatory phenotype in the rat heart.
Am J Physiol Heart Circ Physiol
283:
H1802–H1810,
2002.
|
466. |
Rocha R,
Martin‐Berger CL,
Yang P,
Scherrer R,
Delyani J and
McMahon E.
Selective aldosterone blockade prevents angiotensin II/salt‐induced vascular inflammation in the rat heart.
Endocrinology
143:
4828–4836,
2002.
|
467. |
Chander PN,
Rocha R,
Ranaudo J,
Singh G,
Zuckerman A and
Stier CT, Jr.
Aldosterone plays a pivotal role in the pathogenesis of thrombotic microangiopathy in SHRSP.
Am J Soc Nephrol
14:
1990–1997,
2003.
|
468. |
Brilla CG and
Weber KT.
Mineralocorticoid excess, dietary sodium, and myocardial fibrosis.
J Lab Clin Med
120:
893–901,
1992.
|
469. |
Julius S.
Borderline hypertension.
Clin Exp Hypertens
21:
741–747,
1999.
|
470. |
Palatini P and
Julius S.
Relevance of heart rate as a risk factor in hypertension.
Curr Hypertens Rep
1:
219–224,
1999.
|
471. |
Kuchel O,
Buu NT,
Hamet P,
Larochelle P,
Bourque M and
Genest J.
Dopamine surges in hyperadrenergic essential hypertension.
Hypertension
4:
845–852,
1982.
|
472. |
Kuchel O.
Pseudopheochromocytoma.
Hypertension
7:
151–158,
1985.
|
473. |
Shigetomi S,
Buu NT and
Kuchel O.
Dopaminergic abnormalities in borderline essential hypertensive patients.
Hypertension
17:
997–1002,
1991.
|
474. |
Kikuya M,
Hozawa A,
Ohokubo T,
Tsuji I,
Michimata M,
Matsubara M,
Ota M,
Nagai K,
Araki T,
Satoh H,
Ito S,
Hisamichi S and
Imai Y.
Prognostic significance of blood pressure and heart rate variabilities: the Ohasama study.
Hypertension
36:
901–906,
2000.
|
475. |
Palatini P and
Julius S.
Elevated heart rate: a major risk factor for cardiovascular disease.
Clin Exp Hypertens
26:
637–644,
2004.
|
476. |
Finkielman S,
Worcel M and
Agrest A.
Hemodynamic patterns in essential hypertension.
Circulation
31:
356–368,
1965.
|
477. |
Jiang X,
Srinivasan SR,
Urbina E and
Berenson GS.
Hyperdynamic circulation and cardiovascular risk in children and adolescents: the Bogalusa heart study.
Circulation
91:
1101–1106,
1995.
|
478. |
Julius S,
Krause L,
Schork NJ,
Mejia AD,
Jones KA,
van de Ven C,
Johnson EH,
Sekkarie MA,
Kjeldsen SE,
Petrin J,
et al.
Hyperkinetic borderline hypertension in Tecumseh, Michigan.
J Hype rtens
9:
77–84,
1991.
|
479. |
van Hooft IM,
Grobbee DE,
Waal‐Manning HJ and
Hofman A.
Hemodynamic characteristics of the early phase of primary hypertension. The Dutch hypertension and offspring study.
Circulation
87:
1100–1106,
1993.
|
480. |
Post WS,
Larson MG and
Levy D.
Hemodynamic predictors of incident hypertension. The Framingham heart study.
Hypertension
24:
585–590,
1994.
|
481. |
Koren MJ and
Devereux RB.
Mechanism, effects, and reversal of left ventricular hypertrophy in hypertension.
Curr Opin Nephrol Hypertens
2:
87–95,
1993.
|
482. |
Harrap SB,
Cumming AD,
Davies DL,
Foy CJ,
Fraser R,
Kamitani A,
Connor JM,
Lever AF and
Watt GC.
Glomerular hyperfiltration, high renin, and low‐extracellular volume in high blood pressure.
Hypertension
35:
952–957,
2000.
|
483. |
London GM,
Safar ME,
Weiss YA,
Corvol PL,
Lehner JP,
Menard JM,
Simon AC and
Milliez PL.
Volume‐dependent parameters in essential hypertension.
Kidney Int
11:
204–208,
1977.
|
484. |
Borst JG and
Borst‐De Geus A.
Hypertension explained by Starling's theory of circulatory homoeostasis.
Lancet
1:
677–682,
1963.
|
485. |
Ledingham JM and
Cohen RD.
The role of the heart in the pathogenesis of renal hypertension.
Lancet
186:
979–981,
1963.
|
486. |
Guyton AC,
Granger HJ and
Coleman TG.
Autoregulation of the total systemic circulation and its relation to control of cardiac output and arterial pressure.
Circ Res
28
(Suppl 1):
93–97,
1971.
|
487. |
Guyton AC.
Dominant role of the kidneys and accessory role of whole‐body autoregulation in the pathogenesis of hypertension.
Am J Hypertens
2:
575–585,
1989.
|
488. |
Guyton AC.
Kidneys and fluids in pressure regulation. Small volume but large pressure changes.
Hypertension
19:
12–18,
1992.
|
489. |
Coleman TG and
Guyton AC.
Hypertension caused by salt loading in the dog. 3. Onset transients of cardiac output and other circulatory variables.
Circ Res
25:
153–160,
1969.
|
490. |
Krieger JE,
Roman RJ and
Cowley AW, Jr..
Hemodynamics and blood volume in angiotensin II salt‐dependent hypertension in dogs.
Am J Physiol
257:
H1402–H1412,
1989.
|
491. |
Krieger JE,
Liard JF and
Cowley AW, Jr.
Hemodynamics, fluid volume, and hormonal responses to chronic high‐salt intake in dogs.
Am J Physiol
259:
H1629–H1636,
1990.
|
492. |
Krieger JE and
Cowley AW, Jr.
Prevention of salt angiotensin II hypertension by servo control of body water.
Am J Physiol
258:
H994–H1003,
1990.
|
493. |
Qi N,
Rapp JP,
Brand PH,
Metting PJ and
Britton SL.
Body fluid expansion is not essential for salt‐induced hypertension in SS/Jr rats.
Am J Physiol
277:
R1392–R1400,
1999.
|
494. |
Fine DM,
Ariza‐Nieto P and
Osborn JW.
Does whole body autoregulation mediate the hemodynamic responses to increased dietary salt in rats with clamped ANG II?
Am J Physiol Heart Circ Physiol
285:
H2670–H2678,
2003.
|
495. |
Sullivan JM,
Prewitt RL,
Ratts TE,
Josephs JA and
Connor MJ.
Hemodynamic characteristics of sodium‐sensitive human subjects.
Hypertension
9:
398–406,
1987.
|
496. |
Sullivan JM and
Ratts TE.
Hemodynamic mechanisms of adaptation to chronic high sodium intake in normal humans.
Hypertension
5:
814–820,
1983.
|
497. |
Millgard J and
Lind L.
Acute hypertension impairs endothelium‐dependent vasodilation.
Clin Sci (Lond)
94:
601–607,
1998.
|
498. |
Mulvany MJ and
Aalkjaer C.
Structure and function of small arteries.
Physiol Rev
70:
921–961,
1990.
|
499. |
Gibbons GH and
Dzau VJ.
The emerging concept of vascular remodeling.
N Engl J Med
330:
1431–1438,
1994.
|
500. |
Pries AR,
Secomb TW and
Gaehtgens P.
Structural autoregulation of terminal vascular beds: vascular adaptation and development of hypertension.
Hypertension
33:
153–161,
1999.
|
501. |
Schiffrin EL and
Touyz RM.
From bedside to bench to bedside: role of renin‐angiotensin‐aldosterone system in remodeling of resistance arteries in hypertension.
Am J Physiol Heart Circ Physiol
287:
H435–H446,
2004.
|
502. |
McVeigh GE,
Plumb R and
Hughes S.
Vascular abnormalities in hypertension: cause, effect, or therapeutic target?
Curr Hypertens Rep
6:
171–176,
2004.
|
503. |
Levy BI,
Ambrosio G,
Pries AR and
Struijker‐Boudier HA.
Microcirculation in hypertension: a new target for treatment?
Circulation
104:
735–740,
2001.
|
504. |
Luscher TF and
Vanhoutte PM.
Endothelium‐dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat.
Hypertension
8:
344–348,
1986.
|
505. |
Touyz RM.
Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: role of angiotensin II.
Exp Physiol
90:
449–455,
2005.
|
506. |
Mulvany MJ,
Baumbach GL,
Aalkjaer C,
Heagerty AM,
Korsgaard N,
Schiffrin EL and
Heistad DD.
Vascular remodeling.
Hypertension
28:
505–506,
1996.
|
507. |
Mulvany MJ.
Vascular remodelling of resistance vessels: Can we define this?
Cardiovasc Res
41:
9–13,
1999.
|
508. |
Park JB and
Schiffrin EL.
Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension.
J Hypertens
19:
921–930,
2001.
|
509. |
Heagerty AM,
Aalkjaer C,
Bund SJ,
Korsgaard N and
Mulvany MJ.
Small artery structure in hypertension: dual processes of remodeling and growth.
Hypertension
21:
391–397,
1993.
|
510. |
Rizzoni D,
Porteri E,
Boari GE,
de Ciuceis C,
Sleiman I,
Muiesan ML,
Castellano M,
Miclini M and
Agabiti‐Rosei E.
Prognostic significance of small‐artery structure in hypertension.
Circulation
108:
2230–2235,
2003.
|
511. |
Schiffrin EL.
Effect of antihypertensive therapy on small artery structure in hypertensive patients.
Hypertension
26:
716–718,
1995.
|
512. |
Korsgaard N,
Aalkjaer C,
Heagerty AM,
Izzard AS and
Mulvany MJ.
Histology of subcutaneous small arteries from patients with essential hypertension.
Hypertension
22:
523–526,
1993.
|
513. |
Rizzoni D,
Porteri E,
Castellano M,
Bettoni G,
Muiesan ML,
Muiesan P,
Giulini SM and
Agabiti‐Rosei E.
Vascular hypertrophy and remodeling in secondary hypertension.
Hypertension
28:
785–790,
1996.
|
514. |
Rizzoni D,
Porteri E,
Giustina A,
de Ciuceis C,
Sleiman I,
Boari GE,
Castellano M,
Muiesan ML,
Bonadonna S,
Burattin A,
Cerudelli B and
Agabiti‐Rosei E.
Acromegalic patients show the presence of hypertrophic remodeling of subcutaneous small resistance arteries.
Hypertension
43:
561–565,
2004.
|
515. |
Rizzoni D,
Porteri E,
Guefi D,
Piccoli A,
Castellano M,
Pasini G,
Muiesan ML,
Mulvany MJ and
Rosei EA.
Cellular hypertrophy in subcutaneous small arteries of patients with renovascular hypertension.
Hypertension
35:
931–935,
2000.
|
516. |
Intengan HD,
Deng LY,
Li JS and
Schiffrin EL.
Mechanics and composition of human subcutaneous resistance arteries in essential hypertension.
Hypertension
33:
569–574,
1999.
|
517. |
Intengan HD and
Schiffrin EL.
Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants.
Hypertension
36:
312–318,
2000.
|
518. |
Intengan HD,
Thibault G,
Li JS and
Schiffrin EL.
Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats: effects of angiotensin receptor antagonism and converting enzyme inhibition.
Circulation
100:
2267–2275,
1999.
|
519. |
Bakker EN,
van der Meulen ET,
van den Berg BM,
Everts V,
Spaan JA and
VanBavel E.
Inward remodeling follows chronic vasoconstriction in isolated resistance arteries.
J Vasc Res
39:
12–20,
2002.
|
520. |
Intengan HD and
Schiffrin EL.
Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis.
Hypertension
38:
581–587,
2001.
|
521. |
Virdis A,
Neves MF,
Amiri F,
Touyz RM and
Schiffrin EL.
Role of NAD(P)H oxidase on vascular alterations in angiotensin II‐infused mice.
J Hypertens
22:
535–542,
2004.
|
522. |
Muiesan ML,
Rizzoni D,
Salvetti M,
Porteri E,
Monteduro C,
Guelfi D,
Castellano M,
Garavelli G and
Agabiti‐Rosei E.
Structural changes in small resistance arteries and left ventricular geometry in patients with primary and secondary hypertension.
J Hypertens
20:
1439–1444,
2002.
|
523. |
Rizzoni D,
Muiesan ML,
Porteri E,
Salvetti M,
Castellano M,
Bettoni G,
Tiberio G,
Giulini SM,
Monteduro C,
Garavelli G and
Agabiti‐Rosei E.
Relations between cardiac and vascular structure in patients with primary and secondary hypertension.
J Am Coll Cardiol
32:
985–992,
1998.
|
524. |
Mulvany MJ,
Baandrup U and
Gundersen HJ.
Evidence for hyperplasia in mesenteric resistance vessels of spontaneously hypertensive rats using a three‐dimensional dissector.
Circ Res
57:
794–800,
1985.
|
525. |
Amann K,
Gharehbaghi H,
Stephen S and
Mall G.
Hypertrophy and hyperplasia of smooth muscle cells of small intramyocardial arteries in spontaneously hypertensive rats.
Hypertension
25:
124–131,
1995.
|
526. |
Simon G,
Illyes G and
Csiky B.
Structural vascular changes in hypertension: role of angiotensin II. Dietary sodium supplementation, blood pressure, and time.
Hypertension
32:
654–660,
1998.
|
527. |
Dickhout JG and
Lee RM.
Structural and functional analysis of small arteries from young spontaneously hypertensive rats.
Hypertension
29:
781–789,
1997.
|
528. |
Diep QN,
Li JS and
Schiffrin EL.
In vivo study of AT(1) and AT(2) angiotensin receptors in apoptosis in rat blood vessels.
Hypertension
34:
617–624,
1999.
|
529. |
Sharifi AM and
Schiffrin EL.
Apoptosis in vasculature of spontaneously hypertensive rats: effect of an angiotensin converting enzyme inhibitor and a calcium channel antagonist.
Am J Hypertens
11:
1108–1116,
1998.
|
530. |
Tayebjee MH,
MacFadyen RJ and
Lip GY.
Extracellular matrix biology: a new frontier in linking the pathology and therapy of hypertension?
J Hypertens
21:
2211–2218,
2003.
|
531. |
Izzard AS and
Heagerty AM.
Impaired flow‐dependent dilatation in distal mesenteric arteries from the spontaneously hypertensive rat.
J Physiol
518
(Pt 1):
239–245,
1999.
|
532. |
Schiffrin EL,
Deng LY and
Larochelle P.
Blunted effects of endothelin upon small subcutaneous resistance arteries of mild essential hypertensive patients.
J Hypertens
10:
437–444,
1992.
|
533. |
Schiffrin EL,
Deng LY and
Larochelle P.
Morphology of resistance arteries and comparison of effects of vasoconstrictors in mild essential hypertensive patients.
Clin Invest Med
16:
177–186,
1993.
|
534. |
Dendorfer A,
Thornagel A,
Raasch W,
Grisk O,
Tempel K and
Dominiak P.
Angiotensin II induces catecholamine release by direct ganglionic excitation.
Hypertension
40:
348–354,
2002.
|
535. |
Porteri E,
Rizzoni D,
Mulvany MJ,
de Ciuceis C,
Sleiman I,
Boari GE,
Castellano M,
Muiesan ML,
Zani F and
Rosei EA.
Adrenergic mechanisms and remodeling of subcutaneous small resistance arteries in humans.
J Hypertens
21:
2345–2352,
2003.
|
536. |
Touyz RM and
Schiffrin EL.
Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D‐dependent NAD(P)H oxidase‐sensitive pathways.
J Hypertens
19:
1245–1254,
2001.
|
537. |
Touyz RM and
Schiffrin EL.
Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells.
Pharmacol Rev
52:
639–672,
2000.
|
538. |
Loirand G,
Rolli‐Derkinderen M and
Pacaud P.
RhoA and resistance artery remodeling.
J Am Physiol Heart Circ Physiol
288:
H1051–H1056,
2005.
|
539. |
Seko T,
Ito M,
Kureishi Y,
Okamoto R,
Moriki N,
Onishi K,
Isaka N,
Hartshorne DJ and
Nakano T.
Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle.
Circ Res
92:
411–418,
2003.
|
540. |
Uehata M,
Ishizaki T,
Satoh H,
Ono T,
Kawahara T,
Morishita T,
Tamakawa H,
Yamagami K,
Inui J,
Maekawa M and
Narumiya S.
Calcium sensitization of smooth muscle mediated by a Rho‐associated protein kinase in hypertension.
Nature
389:
990–994,
1997.
|
541. |
Higashi M,
Shimokawa H,
Hattori T,
Hiroki J,
Mukai Y,
Morikawa K,
Ichiki T,
Takahashi S and
Takeshita A.
Long‐term inhibition of Rho‐kinase suppresses angiotensin II‐induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system.
Circ Res
93:
767–775,
2003.
|
542. |
Kataoka C,
Egashira K,
Inoue S,
Takemoto M,
Ni W,
Koyanagi M,
Kitamoto S,
Usui M,
Kaibuchi K,
Shimokawa H and
Takeshita A.
Important role of Rho‐kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long‐term blockade of nitric oxide synthesis in rats.
Hypertension
39:
245–250,
2002.
|
543. |
Feldman RD and
Gros R.
Impaired vasodilator function in hypertension: the role of alterations in receptor‐G protein coupling.
Trends Cardiovasc Med
8:
297–305,
1998.
|
544. |
Park JB,
Charbonneau F and
Schiffrin EL.
Correlation of endothelial function in large and small arteries in human essential hypertension.
J Hypertens
19:
415–420,
2001.
|
545. |
Endemann DH and
Schiffrin EL.
Endothelial dysfunction.
J Am Soc Nephrol
15:
1983–1992,
2004.
|
546. |
Taddei S,
Virdis A,
Mattei P,
Ghiadoni L,
Sudano I and
Salvetti A.
Defective l‐arginine‐nitric oxide pathway in offspring of essential hypertensive patients.
Circulation
94:
1298–1303,
1996.
|
547. |
Koppenol WH,
Moreno JJ,
Pryor WA,
Ischiropoulos H and
Beckman JS.
Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide.
Chem Res Toxicol
5:
834–842,
1992.
|
548. |
Boger RH,
Bode‐Boger SM,
Szuba A,
Tsao PS,
Chan JR,
Tangphao O,
Blaschke TF and
Cooke JP.
Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia.
Circulation
98:
1842–1847,
1998.
|
549. |
Dayoub H,
Achan V,
Adimoolam S,
Jacobi J,
Stuehlinger MC,
Wang BY,
Tsao PS,
Kimoto M,
Vallance P,
Patterson AJ and
Cooke JP.
Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: genetic and physiological evidence.
Circulation
108:
3042–3047,
2003.
|
550. |
Landmesser U,
Dikalov S,
Price SR,
McCann L,
Fukai T,
Holland SM,
Mitch WE and
Harrison DG.
Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension.
J Clin Invest
111:
1201–1209,
2003.
|
551. |
Deng LY,
Li JS and
Schiffrin EL.
Endothelium‐dependent relaxation of small arteries from essential hypertensive patients: mechanisms and comparison with normotensive subjects and with responses of vessels from spontaneously hypertensive rats.
Clin Sci (Lond)
88:
611–622,
1995.
|
552. |
Diederich D,
Yang ZH,
Buhler FR and
Luscher TF.
Impaired endothelium‐dependent relaxations in hypertensive resistance arteries involve cyclooxygenase pathway.
J Am Physiol
258:
H445–H451,
1990.
|
553. |
Panza JA,
Quyyumi AA,
Brush JE, Jr. and
Epstein SE.
Abnormal endothelium‐dependent vascular relaxation in patients with essential hypertension.
N Engl J Med
323:
22–27,
1990.
|
554. |
Battegay EJ,
de Miguel LS,
Petrimpol M and
Humar R.
Effects of anti‐hypertensive drugs on vessel rarefaction.
Curr Opin Pharmacol
7:
151–157,
2007.
|
555. |
Serne EH,
Gans RO,
ter Maaten JC,
Tangelder GJ,
Donker AJ and
Stehouwer CD.
Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction.
Hypertension
38:
238–242,
2001.
|
556. |
Antonios TF,
Singer DR,
Markandu ND,
Mortimer PS and
MacGregor GA.
Structural skin capillary rarefaction in essential hypertension.
Hypertension
33:
998–1001,
1999.
|
557. |
Antonios TF,
Rattray FE,
Singer DR,
Markandu ND,
Mortimer PS and
MacGregor GA.
Maximization of skin capillaries during intravital video‐microscopy in essential hypertension: comparison between venous congestion, reactive hyperaemia and core heat load tests.
Clin Sci (Lond)
97:
523–528,
1999.
|
558. |
Noon JP,
Walker BR,
Webb DJ,
Shore AC,
Holton DW,
Edwards HV and
Watt GC.
Impaired microvascular dilatation and capillary rarefaction in young adults with a predisposition to high blood pressure.
J Clin Invest
99:
1873–1879,
1997.
|
559. |
Antonios TF,
Rattray FM,
Singer DR,
Markandu ND,
Mortimer PS and
MacGregor GA.
Rarefaction of skin capillaries in normotensive offspring of individuals with essential hypertension.
Heart
89:
175–178,
2003.
|
560. |
Pladys P,
Sennlaub F,
Brault S,
Checchin D,
Lahaie I,
Le NL,
Bibeau K,
Cambonie G,
Abran D,
Brochu M,
Thibault G,
Hardy P,
Chemtob S and
Nuyt AM.
Microvascular rarefaction and decreased angiogenesis in rats with fetal programming of hypertension associated with exposure to a low‐protein diet in utero.
J Am Physiol Regul Integr Comp Physiol
289:
R1580–R1588,
2005.
|
561. |
Li W,
Petrimpol M,
Molle KD,
Hall MN,
Battegay EJ and
Humar R.
Hypoxia‐induced endothelial proliferation requires both mTORC1 and mTORC2.
Circ Res
100:
79–87,
2007.
|
562. |
Tang K,
Breen EC,
Gerber HP,
Ferrara NM and
Wagner PD.
Capillary regression in vascular endothelial growth factor‐deficient skeletal muscle.
Physiol Genomics
18:
63–69,
2004.
|
563. |
Carey RM and
Siragy HM.
Newly recognized components of the renin‐angiotensin system: potential roles in cardiovascular and renal regulation.
Endocr Rev
24:
261–271,
2003.
|
564. |
Peach MJ.
Renin‐angiotensin system: biochemistry and mechanisms of action.
Physiol Rev
57:
313–370,
1977.
|
565. |
Griendling KK,
Murphy TJ and
Alexander RW.
Molecular biology of the renin‐angiotensin system.
Circulation
87:
1816–1828,
1993.
|
566. |
Hsueh WA and
Baxter JD.
Human prorenin.
Hypertension
17:
469–477,
1991.
|
567. |
Soubrier F,
Wei L,
Hubert C,
Clauser E,
Alhenc‐Gelas F and
Corvol P.
Molecular biology of the angiotensin I converting enzyme: II. Structure‐function. Gene polymorphism and clinical implications.
J Hypertens
11:
599–604,
1993.
|
568. |
Erdös EG.
Kinins, the long march — a personal view.
Cardiovasc Res.
54:
485–91.
|
569. |
de Gasparo M,
Catt KJ,
Inagami T,
Wright JW and
Unger T.
International union of pharmacology. XXIII. The angiotensin II receptors.
Pharmacol Rev
52:
415–472,
2000.
|
570. |
Sealey JE,
White RP,
Laragh JH and
Rubin AL.
Plasma prorenin and renin in anephric patients.
Circ Res
41:
17–21,
1977.
|
571. |
Prescott G,
Silversides DW,
Chiu SM and
Reudelhuber TL.
Contribution of circulating renin to local synthesis of angiotensin peptides in the heart.
Physiol Genomics
4:
67–73,
2000.
|
572. |
Prescott G,
Silversides DW and
Reudelhuber TL.
Tissue activity of circulating prorenin.
Am J Hypertens
15:
280–285,
2002.
|
573. |
Siragy HM,
Xue C,
Abadir P and
Carey RM.
Angiotensin subtype‐2 receptors inhibit renin biosynthesis and angiotensin II formation.
Hypertension
45:
133–137,
2005.
|
574. |
Gomez RA,
Lynch KR,
Chevalier RL,
Everett AD,
Johns DW,
Wilfong N,
Peach MJ and
Carey RM.
Renin and angiotensinogen gene expression and intrarenal renin distribution during ACE inhibition.
Am J Physiol
254:
F900–F906,
1988.
|
575. |
Nguyen G,
Delarue F,
Berrou J,
Rondeau E and
Sraer JD.
Specific receptor binding of renin on human mesangial cells in culture increases plasminogen activator inhibitor‐1 antigen.
Kidney Int
50:
1897–1903,
1996.
|
576. |
Nguyen G,
Bouzhir L,
Delarue F,
Rondeau E and
Sraer JD.
[Evidence of a renin receptor on human mesangial cells: effects on PA11 and cGMP].
Nephrologie
19:
411–416,
1998.
|
577. |
Nguyen G,
Delarue F,
Burckle C,
Bouzhir L,
Giller T and
Sraer JD.
Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to rennin.
J Clin Invest
109:
1417–1427,
2002.
|
578. |
Linz W,
Wiemer G,
Gohlke P,
Unger T and
Scholkens BA.
Contribution of kinins to the cardiovascular actions of angiotensin‐converting enzyme inhibitors.
Pharmacol Rev
47:
25–49,
1995.
|
579. |
Erdos EG and
Marcic BM.
Kinins, receptors, kininases and inhibitors — where did they lead us?
Biol Chem
382:
43–47,
2001.
|
580. |
Tschope C,
Schultheiss HP and
Walther T.
Multiple interactions between the renin‐angiotensin and the kallikrein‐kinin systems: role of ACE inhibition and AT1 receptor blockade.
J Cardiovasc Pharmacol
39:
478–487,
2002.
|
581. |
Tipnis SR,
Hooper NM,
Hyde R,
Karran E,
Christie G and
Turner AJ.
A human homolog of angiotensin‐converting enzyme. Cloning and functional expression as a captopril‐insensitive carboxypeptidase.
J Biol Chem
275:
33238–33243,
2000.
|
582. |
Donoghue M,
Hsieh F,
Baronas E,
Godbout K,
Gosselin M,
Stagliano N,
Donovan M,
Woolf B,
Robinson K,
Jeyaseelan R,
Breitbart RE,
Acton S.
A novel angiotensin‐converting enzyme‐related carboxypeptidase (ACE2) converts angiotensin I to angiotensin.
Circ Res
87:
e1–e9,
2000.
|
583. |
Crackower MA,
Sarao R,
Oudit GY,
Yagil C,
Kozieradzki I,
Scanga SE,
Oliveira‐dos‐Santos AJ,
da Costa J,
Zhang L,
Pei Y,
Scholey J,
Ferrario CM,
Manoukian AS,
Chappell MC,
Backx PH,
Yagil Y and
Penninger JM.
Angiotensin‐converting enzyme 2 is an essential regulator of heart function.
Nature
417:
822–828,
2002.
|
584. |
Schiavone MT,
Santos RA,
Brosnihan KB,
Khosla MC and
Ferrario CM.
Release of vasopressin from the rat hypothalamo‐neurohypophysial system by angiotensin‐(1–7) heptapeptide.
Proc Natl Acad Sci USA
85:
4095–4098,
1988.
|
585. |
Chappell MC,
Allred AJ and
Ferrario CM.
Pathways of angiotensin‐(1–7) metabolism in the kidney.
Nephrol Dial Transplant
16
(Suppl 1):
22–26,
2001.
|
586. |
Diz DI,
Chappell MC,
Tallant EA and
Ferrario CM.
Angiotensin (1–7).
Hypertension
45:
100–110,
2005.
|
587. |
Santos RA,
Simoes e Silva AC,
Maric C,
Silva DM,
Machado RP,
de Buhr I,
Heringer‐Walther S,
Pinheiro SV,
Lopes MT,
Bader M,
Mendes EP,
Lemos VS,
Campagnole‐Santos MJ,
Schultheiss HP,
Speth R and
Walther T.
Angiotensin‐(1–7) is an endogenous ligand for the G protein‐coupled receptor Mas.
Proc Natl Acad Sci USA
100:
8258–8263,
2003.
|
588. |
Miyata N,
Park F,
Li XF and
Cowley AW, Jr.
Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney.
Am J Physiol
277:
F437–F446,
1999.
|
589. |
Pounarat JS,
Houillier P,
Rismondo C,
Roques B,
Lazar G,
Paillard M and
Blanchard A.
The luminal membrane of rat thick limb expresses AT1 receptor and aminopeptidase activities.
Kidney Int
62:
434–445,
2002.
|
590. |
Allen A.
Am J Hypertens
13:
31S–38S,
2000.
|
591. |
Matsubara H,
Sugaya T,
Murasawa S,
Nozawa Y,
Mori Y,
Masaki H,
Maruyama K,
Tsutumi Y,
Shibasaki Y,
Moriguchi Y,
Tanaka Y,
Iwasaka T and
Inada M.
Tissue‐specific expression of human angiotensin II AT1 and AT2 receptors and cellular localization of subtype mRNAs in adult human renal cortex using in situ hybridization.
Nephron
80:
25–34,
1998.
|
592. |
Harrison‐Bernard LM,
Navar LG,
Ho MM,
Vinson GP and
el‐Dahr SS.
Immunohistochemical localization of ANG II AT1 receptor in adult rat kidney using a monoclonal antibody.
Am J Physiol
273:
F170–F177,
1997.
|
593. |
Murphy TJ,
Alexander RW,
Griendling KK,
Runge MS and
Bernstein KE.
Isolation of a cDNA encoding the vascular type‐1 angiotensin II receptor.
Nature
351:
233–236,
1991.
|
594. |
Sasaki K,
Yamano Y,
Bardhan S,
Iwai N,
Murray JJ,
Hasegawa M,
Matsuda Y and
Inagami T.
Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type‐1 receptor.
Nature
351:
230–233,
1991.
|
595. |
Schmitz U and
Berk BC.
Angiotensin II signal transduction: Stimulation of multiple mitogen‐activated protein kinase pathways.
Trends Endocrinol Metab
8:
261–266,
1997.
|
596. |
Schmitz U,
Thommes K,
Beier I,
Wagner W,
Sachinidis A,
Dusing R and
Vetter H.
Angiotensin II‐induced stimulation of p21‐activated kinase and c‐Jun NH2‐terminal kinase is mediated by Racl and Nck.
J Biol Chem
276:
22003–22010,
2001.
|
597. |
Ishida M,
Ishida T,
Thomas SM and
Berk BC.
Activation of extracellular signal‐regulated kinases (E.R.K1/2) by angiotensin II is dependent on c‐Src in vascular smooth muscle cells.
Circ Res
82:
7–12,
1998.
|
598. |
Lijnen P and
Petrov V.
Renin‐angiotensin system, hypertrophy and gene expression in cardiac myocytes.
J Mol Cell Cardiol
31:
949–970,
1999.
|
599. |
Giasson E,
Servant MJ and
Meloche S.
A.M.P. Cyclic‐mediated inhibition of angiotensin II‐induced protein synthesis is associated with suppression of tyrosine phosphorylation signaling in vascular smooth muscle cells.
J Biol Chem
272:
26879–26886,
1997.
|
600. |
Ozono R,
Wang ZQ,
Moore AF,
Inagami T,
Siragy HM and
Carey RM.
Expression of the subtype 2 angiotensin (AT2) receptor protein in rat kidney.
Hypertension
30:
1238–1246,
1997.
|
601. |
Kakuchi J,
Ichiki T,
Kiyama S,
Hogan BL,
Fogo A,
Inagami T and
Ichikawa I.
Developmental expression of renal angiotensin II receptor genes in the mouse.
Kidney Int
47:
140–147,
1995.
|
602. |
Carey RM,
Wang ZQ and
Siragy HM.
Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function.
Hypertension
35:
155–163,
2000.
|
603. |
Berry C,
Touyz R,
Dominiczak AF,
Webb RC and
Johns DG.
Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide.
Am J Physiol Heart Circ Physiol
281:
H2337–H2365,
2001.
|
604. |
Siragy HM and
Carey RM.
The subtype‐2 (AT2) angiotensin receptor regulates renal cyclic guanosine 3',5'‐monophosphate and AT1 receptor‐mediated prostaglandin E2 production in conscious rats.
J Clin Invest
97:
1978–1982,
1996.
|
605. |
Siragy HM and
Carey RM.
The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats.
J Clin Invest
100:
264–269,
1997.
|
606. |
Widdop RE,
Jones ES,
Hannan RE and
Gaspari TA.
Angiotensin AT2 receptors: cardiovascular hope or hype?
Br J Pharmacol
140:
809–824,
2003.
|
607. |
Carey RM.
Cardiovascular and renal regulation by the angiotensin type 2 receptor: the AT2 receptor comes of age.
Hypertension
45:
840–844,
2005.
|
608. |
Padia SH,
Howell NL,
Siragy HM and
Carey RM.
Renal angiotensin type 2 receptors mediate natriuresis via angiotensin III in the angiotensin II type 1 receptor‐blocked rat.
Hypertension
47:
537–544,
2006.
|
609. |
Padia SH,
Kemp BA,
Howell NL,
Siragy HM,
Fournie‐Zaluski MC,
Roques BP and
Carey RM.
Intrarenal aminopeptidase N inhibition augments natriuretic responses to angiotensin III in angiotensin type 1 receptor‐blocked rats.
Hypertension
49:
625–630,
2007.
|
610. |
AbdAlla S,
Lother H and
Quitterer U.
AT1‐receptor heterodimers show enhanced G‐protein activation and altered receptor sequestration.
Nature
407:
94–98,
2000.
|
611. |
AbdAlla S,
Lother H,
el Massiery A and
Quitterer U.
Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness.
Nat Med
7:
1003–1009,
2001.
|
612. |
AbdAlla S,
Lother H,
Abdel‐tawab AM and
Quitterer U.
The angiotensin II AT2 receptor is an AT1 receptor antagonist.
J Biol Chem
276:
39721–39726,
2001.
|
613. |
Brunner HR,
Laragh JH,
Baer L,
Newton MA,
Goodwin FT,
Krakoff LR,
Bard RH and
Buhler FR.
Essential hypertension: renin and aldosterone, heart attack and stroke.
N Engl J Med
286:
441–449,
1972.
|
614. |
Laragh JH,
Letcher RL and
Pickering TG.
Renin profiling for diagnosis and treatment of hypertension.
JAMA
241:
151–156,
1979.
|
615. |
Sennett JA,
Brown RD,
Island DP,
Yarbro LR,
Watson JT,
Slaton PE,
Hollifield JW and
Liddle GW.
Evidence for a new mineralocorticoid in patients with low‐renin essential hypertension.
Circ Res
36:
2–9,
1975.
|
616. |
Brunner HR,
Sealey JE and
Laragh JH.
Renin subgroups in essential hypertension. Further analysis of their pathophysiological and epidemiological characteristics.
Circ Res
32
(Suppl 1):
99–105,
1973.
|
617. |
Tan SY and
Mulrow PJ.
Low renin essential hypertension: failure to demonstrate excess 11‐deoxycorticosterone production.
J Clin Endocrinol Metab
49:
790–793,
1979.
|
618. |
Sealey JE,
Gordon RD and
Mantero F.
Plasma renin and aldosterone measurements in low renin hypertensive states.
Trends Endocrinol Metab
16:
86–91,
2005.
|
619. |
Moneva MH and
Gomez‐Sanchez CE.
Pathophysiology of adrenal hypertension.
Semin Nephrol
22:
44–53,
2002.
|
620. |
Alderman MH,
Madhavan S,
Ooi WL,
Cohen H,
Sealey JE and
Laragh JH.
Association of the renin‐sodium profile with the risk of myocardial infarction in patients with hypertension.
N Engl J Med
324:
1098–1104,
1991.
|
621. |
Meade TW,
Cooper JA and
Peart WS.
Plasma renin activity and ischemic heart disease.
N Engl J Med
329:
616–619,
1993.
|
622. |
Hollenberg NH and
Williams GH.
Abnormal renal function, sodium‐volume homeostasis and renin system behavior in normal‐renin essential hypertension: the evalution of the non‐modulator concept. In:
Hypertension: Pathophysiology, Diagnosis and Management,
2nd edition,
eds Laragh JH and
Brenner BM.
New York: Ravan press,
1995,
pp. 1837–1856.
|
623. |
Beretta‐Piccoli C,
Pusterla C,
Stadler P and
Weidmann P.
Blunted aldosterone responsiveness to angiotensin II in normotensive subjects with familial predisposition to essential hypertension.
J Hypertens
6:
57–61,
1988.
|
624. |
van Hooft IM,
Grobbee DE,
Derkx FH,
de Leeuw PW,
Schalekamp MA and
Hofman A.
Renal hemodynamics and the renin‐angiotensin‐aldosterone system in normotensive subjects with hypertensive and normotensive parents.
N Engl J Med
324:
1305–1311,
1991.
|
625. |
Luparini RL,
Ferri C,
Santucci A and
Balsano F.
Atrial natriuretic peptide in non‐modulating essential hypertension.
Hypertension
21:
803–809,
1993.
|
626. |
Ferri C,
Bellini C,
Coassin S,
Baldoncini R,
Luparini RL,
Perrone A and
Santucci A.
Abnormal atrial natriuretic peptide and renal responses to saline infusion in nonmodulating essential hypertensive patients.
Circulation
90:
2859–2869,
1994.
|
627. |
Sanchez RA,
Ramos F,
Giannone C,
Fischer P,
Masnatta L,
Baglivo HP,
Ramirez AJ and
Hollenberg NK.
Parallel renal and extremity blood supply abnormalities in nonmodulation: responses to ACE inhibition.
Hypertension
41:
919–924,
2003.
|
628. |
Sanchez RA,
Giannone C,
Masnatta LD,
Baglivo HP and
Ramirez AJ.
Higher urinary albumin excretion is associated with abnormal erythrocyte Na(+)/Li(+) countertransport (SLC) in non‐modulating essential hypertensives and offspring of hypertensive parents.
J Hum Hypertens
16
(Suppl I):
S128–S132,
2002.
|
629. |
Sanchez R,
Gimenez MI,
Ramos F,
Baglivo H and
Ramirez AJ.
Non‐modulating hypertension: evidence for the involvement of kallikrein/kinin activity associated with overactivity of the renin‐angiotensin system. Successful blood pressure control during long‐term Na+ restriction.
J Hypertens
14:
1287–1291,
1996.
|
630. |
Widgren BR,
Herlitz H,
Aurell M,
Berglund G,
Wikstrand J and
Andersson OK.
Increased systemic and renal vascular sensitivity to angiotensin II in normotensive men with positive family histories of hypertension.
Am J Hypertens
5:
167–174,
1992.
|
631. |
Palmgren E,
Widgren B,
Aurell M and
Herlitz H.
Increased renal vascular sensitivity to angiotensin II in hypertension is due to decreased response to prostaglandins.
J Hypertens
21:
969–976,
2003.
|
632. |
Schachinger H,
Dieterle T,
Martina B,
Haberthur C,
Huber PR,
Bock A,
Drewe J and
Gyr K.
Increased renovascular response to angiotensin II in persons genetically predisposed to arterial hypertension disappears after chronic angiotensin‐converting enzyme inhibition.
J Hypertens
22:
175–180,
2004.
|
633. |
Unger T.
The role of the renin‐angiotensin system in the development of cardiovascular disease.
Am J Cardiol
89:
3A–9A,
2002, discussion 10A.
|
634. |
Dzau V.
The cardiovascular continuum and renin‐angiotensin‐aldosterone system blockade.
J Hypertens(Suppl 23):
S9–S17,
2005.
|
635. |
Sica DA.
Combination angiotensin‐converting enzyme inhibitor and angiotensin receptor blocker therapy: its role in clinical practice.
J Clin Hypertens (Greenwich)
5:
414–420,
2003.
|
636. |
Julius S,
Kjeldsen SE,
Weber M,
Brunner HR,
Ekman S,
Hansson L,
Hua T,
Laragh J,
McInnes GT,
Mitchell L,
Plat F,
Schork A,
Smith B and
Zanchetti A.
Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial.
Lancet
363:
2022–2031,
2004.
|
637. |
Dahlof B,
Devereux RB,
Kjeldsen SE,
Julius S,
Beevers G,
de Faire U,
Fyhrquist F,
Ibsen H,
Kristiansson K,
Lederballe‐Pedersen O,
Lindholm LH,
Nieminen MS,
Omvik P,
Oparil S and
Wedel H.
Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol.
Lancet
359:
995–1003,
2002.
|
638. |
Ontarget Investigators,
Yusuf S,
Teo KK,
Pogue J,
Dyal L,
Copland I,
Schumacher H,
Dagenais G,
Sleight P,
Anderson C.
Telmisartan, ramipril, or both in patients at high risk for vascular events.
N Engl J Med
358(15):
1547–1549,
2001.
|
639. |
ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group.
The Antihypertensive and Lipid‐Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high‐risk hypertensive patients randomized to angiotensin‐converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid‐Lowering Treatment to Prevent Heart Attack Trial (ALLHAT).
JAMA
288:
2981–2997,
2002.
|
640. |
Hansson L,
Lindholm LH,
Niskanen L,
Lanke J,
Hedner T,
Niklason A,
Luomanmaki K,
Dahlof B,
de Faire U,
Morlin C,
Karlberg BE,
Wester PO and
Bjorck JE.
Effect of angiotensin‐converting‐enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial.
Lancet
353:
611–616,
1999.
|
641. |
Weber M.
The telmisartan Programme of Research tO show Telmisartan End‐organ proteCTION (PROTECTION) programme.
J Hypertens(Suppl 21):
S37–S46,
2003.
|
642. |
Clement DL,
de Buyzere ML,
de Bacquer DA,
de Leeuw PW,
Duprez DA,
Fagard RH,
Gheeraert PJ,
Missault LH,
Braun JJ,
Six RO,
Van der Niepen P and
O'Brien E.
Prognostic value of ambulatory blood‐pressure recordings in patients with treated hypertension.
N Engl J Med
348:
2407–2415,
2003.
|
643. |
Muller JE,
Tofler GH and
Stone PH.
Circadian variation and triggers of onset of acute cardiovascular disease.
Circulation
79:
733–743,
1989.
|
644. |
Kario K,
Pickering TG,
Umeda Y,
Hoshide S,
Hoshide Y,
Morinari M,
Murata M,
Kuroda T,
Schwartz JE and
Shimada K.
Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study.
Circulation
107:
1401–1406,
2003.
|
645. |
White WB,
Lacourciere Y and
Davidai G.
Effects of the angiotensin II receptor blockers telmisartan versus valsartan on the circadian variation of blood pressure: impact on the early morning period.
Am J Hypertens
17:
347–353,
2004.
|
646. |
Haefliger JA,
Krattinger N,
Martin D,
Pedrazzini T,
Capponi A,
Doring B,
Plum A,
Charollais A,
Willecke K and
Meda P.
Connexin43‐dependent mechanism modulates renin secretion and hypertension.
J Clin Invest
116:
405–413,
2006.
|
647. |
Touyz RM.
The role of angiotensin II in regulating vascular structural and functional changes in hypertension.
Curr Hypertens Rep
5:
155–164,
2003.
|
648. |
Touyz RM.
Molecular and cellular mechanisms in vascular injury in hypertension: role of angiotensin II.
Curr Opin Nephrol Hypertens
14:
125–131,
2005.
|
649. |
Berk BC.
Vascular smooth muscle growth: autocrine growth mechanisms.
Physiol Rev
81:
999–1030,
2001.
|
650. |
Fukuda N.
Molecular mechanisms of the exaggerated growth of vascular smooth muscle cells in hypertension.
J Atheroscler Thromb
4:
65–72,
1997.
|
651. |
Gibbons GH,
Pratt RE and
Dzau VJ.
Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor‐beta I expression determines growth response to angiotensin II.
J Clin Invest
90:
456–461,
1992.
|
652. |
Rossi GP,
Cavallin M,
Belloni AS,
Mazzocchi G,
Nussdorfer GG,
Pessina AC and
Sartore S.
Aortic smooth muscle cell phenotypic modulation and fibrillar collagen deposition in angiotensin II‐dependent hypertension.
Cardiovasc Res
55:
178–189,
2002.
|
653. |
Touyz RM,
Deng LY,
He G,
Wu XH and
Schiffrin EL.
Angiotensin II stimulates DNA and protein synthesis in vascular smooth muscle cells from human arteries: role of extracellular signal‐regulated kinases.
J Hypertens
17:
907–916,
1999.
|
654. |
Touyz RM,
He G,
Deng LY and
Schiffrin EL.
Role of extracellular signal‐regulated kinases in angiotensin II‐stimulated contraction of smooth muscle cells from human resistance arteries.
Circulation
99:
392–399,
1999.
|
655. |
Tea BS,
Der Sarkissian S,
Touyz RM,
Hamet P and
de Blois D.
Proapoptotic and growth‐inhibitory role of angiotensin II type 2 receptor in vascular smooth muscle cells of spontaneously hypertensive rats in vivo.
Hypertension
35:
1069–1073,
2000.
|
656. |
Tham DM,
Martin‐McNulty B,
Wang YX,
Wilson DW,
Vergona R,
Sullivan ME,
Dole W and
Rutledge JC.
Angiotensin II is associated with activation of NF‐kappaB‐mediated genes and downregulation of PPARs.
Physiol Genomics
11:
21–30,
2002.
|
657. |
Koh KK,
Ahn JY,
Han SH,
Kim DS,
Jin DK,
Kim HS,
Shin MS,
Ahn TH,
Choi IS and
Shin EK.
Pleiotropic effects of angiotensin II receptor blocker in hypertensive patients.
J Am Coll Cardiol
42:
905–910,
2003.
|
658. |
Nathan C.
Points of control in inflammation.
Nature
420:
846–852,
2002.
|
659. |
Tracey KJ.
The inflammatory reflex.
Nature
420:
853–859,
2002.
|
660. |
Suzuki Y,
Ruiz‐Ortega M,
Lorenzo O,
Ruperez M,
Esteban V and
Egido J.
Inflammation and angiotensin II.
Int J Biochem Cell Biol
35:
881–900,
2003.
|
661. |
Dandona P,
Kumar V,
Aljada A,
Ghanim H,
Syed T,
Hofmayer D,
Mohanty P,
Tripathy D and
Garg R.
Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor‐kappa B, in mononuclear cells of normal subjects: evidence of an antiinflammatory action.
J Clin Endocrinol Metab
88:
4496–4501,
2003.
|
662. |
Touyz RM,
Tabet F and
Schiffrin EL.
Redox‐dependent signalling by angiotensin II and vascular remodelling in hypertension.
Clin Exp Pharmacol Physiol
30:
860–866,
2003.
|
663. |
Williams B,
Baker AQ,
Gallacher B and
Lodwick D.
Angiotensin II increases vascular permeability factor gene expression by human vascular smooth muscle cells.
Hypertension
25:
913–917,
1995.
|
664. |
Chua CC,
Hamdy RC and
Chua BH.
Upregulation of vascular endothelial growth factor by angiotensin II in rat heart endothelial cells.
Biochim Biophys Acta
1401:
187–194,
1998.
|
665. |
Yamagishi S,
Amano S,
Inagaki Y,
Okamoto T,
Inoue H,
Takeuchi M,
Choei H,
Sasaki N and
Kikuchi S.
Angiotensin II‐type I receptor interaction upregulates vascular endothelial growth factor messenger RNA levels in retinal pericytes through intracellular reactive oxygen species generation.
Drugs Exp Clin Res
29:
75–80,
2003.
|
666. |
Harris RC,
Zhang MZ and
Cheng HF.
Cyclooxygenase‐2 and the renal renin‐angiotensin system.
Acta Physiol Scand
181:
543–547,
2004.
|
667. |
Ruiz‐Ortega M,
Lorenzo O,
Suzuki Y,
Ruperez M and
Egido J.
Proinflammatory actions of angiotensins.
Curr Opin Nephrol Hypertens
10:
321–329,
2001.
|
668. |
Piqueras L,
Kubes P,
Alvarez A,
O'Connor E,
Issekutz AC,
Esplugues JV and
Sanz MJ.
Angiotensin II induces leukocyte‐endothelial cell interactions in vivo via AT(1) and AT(2) receptor‐mediated P‐selectin upregulation.
Circulation
102:
2118–2123,
2000.
|
669. |
Costanzo A,
Moretti F,
Burgio VL,
Bravi C,
Guido F,
Levrero M and
Puri PL.
Endothelial activation by angiotensin II through NFkappaB and p38 pathways: Involvement of NFkappaB‐inducible kinase (NIK), free oxygen radicals, and selective inhibition by aspirin.
J Cell Physiol
195:
402–410,
2003.
|
670. |
Ley K.
The role of selectins in inflammation and disease.
Trends Mol Med
9:
263–268,
2003.
|
671. |
Ito T,
Ikeda U,
Yamamoto K and
Shimada K.
Regulation of interleukin‐8 expression by HMG‐CoA reductase inhibitors in human vascular smooth muscle cells.
Atherosclerosis
165:
51–55,
2002.
|
672. |
Funakoshi Y,
Ichiki T,
Shimokawa H,
Egashira K,
Takeda K,
Kaibuchi K,
Takeya M,
Yoshimura T and
Takeshita A.
Rho‐kinase mediates angiotensin II‐induced monocyte chemoattractant protein‐1 expression in rat vascular smooth muscle cells.
Hypertension
38:
100–104,
2001.
|
673. |
Lassegue B and
Clempus RE.
Vascular NAD(P)H oxidases: specific features, expression, and regulation.
Am J Physiol Regul Integr Comp Physiol
285:
R277–R297,
2003.
|
674. |
Touyz RM,
Chen X,
Tabet F,
Yao G,
He G,
Quinn MT,
Pagano PJ and
Schiffrin EL.
Expression of a functionally active gp91phox‐containing neutrophil‐type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II.
Circ Res
90:
1205–1213,
2003.
|
675. |
Rizzoni D,
Porteri E,
de Ciuceis C,
Sleiman I,
Rodella L,
Rezzani R,
Paiardi S,
Bianchi R,
Ruggeri G,
Boari GE,
Muiesan ML,
Salvetti M,
Zani F,
Miclini M and
Rosei EA.
Effect of treatment with candesartan or enalapril on subcutaneous small artery structure in hypertensive patients with noninsulin‐dependent diabetes mellitus.
Hypertension
45:
659–665,
2005.
|
676. |
Ruperez M,
Lorenzo O,
Blanco‐Colio LM,
Esteban V,
Egido J and
Ruiz‐Ortega M.
Connective tissue growth factor is a mediator of angiotensin II‐induced fibrosis.
Circulation
108:
1499–1505,
2003.
|
677. |
Zhao Q,
Ishibashi M,
Hiasa K,
Tan C,
Takeshita A and
Egashira K.
Essential role of vascular endothelial growth factor in angiotensin II‐induced vascular inflammation and remodeling.
Hypertension
44:
264–270,
2004.
|
678. |
Sarkar S,
Vellaichamy E,
Young D and
Sen S.
Influence of cytokines and growth factors in ANG II‐mediated collagen upregulation by fibroblasts in rats: role of myocytes.
Am J Physiol Heart Circ Physiol
287:
H107–H117,
2004.
|
679. |
Castoldi G,
Di Gioia CR,
Pieruzzi F,
D'Orlando C,
Van De Greef WM,
Busca G,
Sperti G and
Stella A.
ANG II increases TIMP‐1 expression in rat aortic smooth muscle cells in vivo.
Am J Physiol Heart Circ Physiol
284:
H635–H643,
2003.
|
680. |
Taniyama Y and
Griendling KK.
Reactive oxygen species in the vasculature: molecular and cellular mechanisms.
Hypertension
42:
1075–1081,
2003.
|
681. |
Griendling KK,
Minieri CA,
Ollerenshaw JD and
Alexander RW.
Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells.
Circ Res
74:
1141–1148,
1994.
|
682. |
Suematsu M,
Suzuki H,
Delano FA and
Schmid‐Schonbein GW.
The inflammatory aspect of the microcirculation in hypertension: oxidative stress, leukocytes/endothelial interaction, apoptosis.
Microcirculation
9:
259–276,
2002.
|
683. |
Viedt C,
Fei J,
Krieger‐Brauer HI,
Brandes RP,
Teupser D,
Kamimura M,
Katus HA and
Kreuzer J.
Role of p22phox in angiotensin II and platelet‐derived growth factor AA induced activator protein 1 activation in vascular smooth muscle cells.
J Mol Med
82:
31–38,
2004.
|
684. |
Yoon SO,
Park SJ,
Yoon SY,
Yun CH and
Chung AS.
Sustained production of H(2)O(2) activates pro‐matrix metalloproteinase‐2 through receptor tyrosine kinases/phosphatidylinositol 3‐kinase/NF‐kappa B pathway.
J Biol Chem
277:
30271–30282,
2002.
|
685. |
Dohi Y,
Ohashi M,
Sugiyama M,
Takase H,
Sato K and
Ueda R.
Candesartan reduces oxidative stress and inflammation in patients with essential hypertension.
Hypertens Res
26:
691–697,
2003.
|
686. |
Touyz RM and
Schiffrin EL.
Role of calcium influx and intracellular calcium stores in angiotensin II‐mediated calcium hyper‐responsiveness in smooth muscle from spontaneously hypertensive rats.
J Hypertens
15:
1431–1439,
1997.
|
687. |
Chitaley K,
Weber D and
Webb RC.
RhoA/Rho‐kinase, vascular changes, and hypertension.
Curr Hypertens Rep
3:
139–144,
2001.
|
688. |
Touyz RM,
Wu XH,
He G,
Salomon S and
Schiffrin EL.
Increased angiotensin II‐mediated Src signaling via epidermal growth factor receptor transactivation is associated with decreased C‐terminal Src kinase activity in vascular smooth muscle cells from spontaneously hypertensive rats.
Hypertension
39:
479–485,
2002.
|
689. |
Touyz RM,
He G,
Wu XH,
Park JB.
Mabrouk ME and
Schiffrin EL.
Src is an important mediator of extracellular signal‐regulated kinase 1/2‐dependent growth signaling by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients.
Hypertension
38:
56–64,
2001.
|
690. |
Frame MC,
Fincham VJ,
Carragher NO and
Wyke JA.
v‐Src's hold over actin and cell adhesions.
Nat Rev Mol Cell Biol
3:
233–245,
2002.
|
691. |
Haendeler J,
Yin G,
Hojo Y,
Saito Y,
Melaragno M,
Yan C,
Sharma VK,
Heller M,
Aebersold R and
Berk BC.
G1T1 mediates Src‐dependent activation of phospholipase Cgamma by angiotensin II and epidermal growth factor.
J Biol Chem
278:
49936–49944,
2003.
|
692. |
Saito Y and
Berk BC.
Angiotensin II‐mediated signal transduction pathways.
Curr Hypertens Rep
4:
167–171,
2002.
|
693. |
Xi XP,
Graf K,
Goetze S,
Fleck E,
Hsueh WA and
Law RE.
Central role of the MAPK pathway in ang II‐mediated DNA synthesis and migration in rat vascular smooth muscle cells.
Arterioscler Thromb Vasc Biol
19:
73–82,
1999.
|
694. |
Kubo T,
Ibusuki T,
Chiba S,
Kambe T and
Fukumori R.
Altered mitogen‐activated protein kinase activation in vascular smooth muscle cells from spontaneously hypertensive rats.
Clin Exp Pharmacol Physiol
29:
537–543,
2002.
|
695. |
Meloche S,
Landry J,
Huot J,
Houle F,
Marceau F and
Giasson E.
p38 MAP kinase pathway regulates angiotensin II‐induced contraction of rat vascular smooth muscle.
Am J Physiol Heart Circ Physiol
279:
H741–H751,
2000.
|
696. |
Frank GD,
Eguchi S,
Yamakawa T.
Tanaka S,
Inagami T and
Motley ED.
Involvement of reactive oxygen species in the activation of tyrosine kinase and extracellular signal‐regulated kinase by angiotensin II.
Endocrinology
141:
3120–3126,
2000.
|
697. |
Wilkie N,
Ng LL and
Boarder MR.
Angiotensin II responses of vascular smooth muscle cells from hypertensive rats: enhancement at the level of p42 and p44 mitogen activated protein kinase.
J Br Pharmacol
122:
209–216,
1997.
|
698. |
Saito Y and
Berk BC.
Transactivation: a novel signaling pathway from angiotensin II to tyrosine kinase receptors.
J Mol Cell Cardiol
33:
3–7,
2001.
|
699. |
Touyz RM,
Cruzado M,
Tabet F,
Yao G,
Salomon S and
Schiffrin EL.
Redox‐dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation.
Can J Physiol Pharmacol
81:
159–167,
2003.
|
700. |
Ushio‐Fukai M,
Alexander RW,
Akers M and
Griendling KK.
p38 Mitogen‐activated protein kinase is a critical component of the redox‐sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy.
J Biol Chem
273:
15022–15029,
1998.
|
701. |
Schiffrin EL,
Park JB,
Intengan HD and
Touyz RM.
Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan.
Circulation
101:
1653–1659,
2000.
|
702. |
Rizzoni D,
Porteri E,
Piccoli A,
Castellano M,
Bettoni G,
Muiesan ML,
Pasini G,
Guelfi D,
Mulvany MJ and
Agabiti Rosei E.
Effects of losartan and enalapril on small artery structure in hypertensive rats.
Hypertension
32:
305–310,
1998.
|
703. |
Hall JE,
Brands MW and
Henegar JR.
Angiotensin and long‐term arterial pressure regulation: the overriding dominance of the kidney.
J Am Soc Nephrol
10
(Suppl 12):
S258–S265,
1999.
|
704. |
Crowley SD,
Gurley SB,
Oliverio MI,
Pazmino AK,
Griffiths R,
Flannery PJ,
Spurney RF,
Kim HS,
Smithies O,
Le TH and
Coffman TM.
Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin‐angiotensin system.
J Clin Invest
115:
1092–1099,
2005.
|
705. |
van Kats JP,
Danser AH,
van Meegen JR,
Sassen LM,
Verdouw PD and
Schalekamp MA.
Angiotensin production by the heart: a quantitative study in pigs with the use of radiolabeled angiotensin infusions.
Circulation
98:
73–81,
1998.
|
706. |
van Kats JP,
Schalekamp MA,
Verdouw PD,
Duncker DJ and
Danser AH.
Intrarenal angiotensin II: interstitial and cellular levels and site of production.
Kidney Int
60:
2311–2317,
2001.
|
707. |
van Kats JP,
Duncker DJ,
Haitsma DB,
Schuijt MP,
Niebuur R,
Stubenitsky R,
Boomsma F,
Schalekamp MA,
Verdouw PD and
Danser AH.
Angiotensin‐converting enzyme inhibition and angiotensin II type 1 receptor blockade prevent cardiac remodeling in pigs after myocardial infarction: role of tissue angiotensin II.
Circulation
102:
1556–1563,
2000.
|
708. |
Danser AH,
van Kats JP,
Admiraal PJ,
Derkx FH,
Lamers JM,
Verdouw PD,
Saxena PR and
Schalekamp MA.
Cardiac renin and angiotensins. Uptake from plasma versus in situ synthesis.
Hypertension
24:
37–48,
1994.
|
709. |
Campbell DJ,
Kladis A and
Duncan AM.
Nephrectomy, converting enzyme inhibition, and angiotensin peptides.
Hypertension
22:
513–522,
1993.
|
710. |
Nussberger J.
Circulating versus tissue angiotensin II, In:
Angiotensin II Receptor Antagonists,
2000.
|
711. |
Hilgers KF,
Veelken R,
Muller DN,
Kohler H,
Hartner A,
Botkin SR,
Stumpf C,
Schmieder RE and
Gomez RA.
Renin uptake by the endothelium mediates vascular angiotensin formation.
Hypertension
38:
243–248,
2001.
|
712. |
Chai W and
Danser AH.
Is angiotensin made inside or outside of the cell?
Curr Hypertens Rep
7:
124–127,
2005.
|
713. |
Re RN.
Tissue renin angiotensin systems.
Med Clin North Am
88:
19–38,
2004.
|
714. |
van den Eijnden MM,
Saris JJ,
de Bruin RJ,
de Wit E,
Sluiter W,
Reudelhuber TL,
Schalekamp MA,
Derkx FH and
Danser AH.
Prorenin accumulation and activation in human endothelial cells: importance of mannose 6‐phosphate receptors.
Arterioscler Thromb Vasc Biol
21:
911–916,
2001.
|
715. |
Saris JJ,
Derkx FH,
Lamers JM,
Saxena PR,
Schalekamp MA and
Danser AH.
Cardiomyocytes bind and activate native human prorenin: role of soluble mannose 6‐phosphate receptors.
Hypertension
37:
710–715,
2001.
|
716. |
Kimbrough HM, Jr.,
Vaughan ED, Jr.,
Carey RM and
Ayers CR.
Effect of intrarenal angiotensin II blockade on renal function in conscious dogs.
Circ Res
40:
174–178,
1977.
|
717. |
Levens NR,
Freedlender AE,
Peach MJ and
Carey RM.
Control of renal function by intrarenal angiotensin II.
Endocrinology
112:
43–49,
1983.
|
718. |
Navar LG,
Harrison‐Bernard LM,
Nishiyama A and
Kobori H.
Regulation of intrarenal angiotensin II in hypertension.
Hypertension
39:
316–322,
2002.
|
719. |
Navar LG,
Kobori H and
Prieto‐Carrasquero M.
Intrarenal angiotensin II and hypertension.
Curr Hypertens Rep
5:
135–143,
2003.
|
720. |
Adamczak M.
Zeier M,
Dikow R and
Ritz E.
Kidney and hypertension.
Kidney Int(Suppl):
62–67,
2002.
|
721. |
Wang CT,
Chin SY and
Navar LG.
Impairment of pressure‐natriuresis and renal autoregulation in ANG II‐infused hypertensive rats.
Am J Physiol Renal Physiol
279:
F319–F325,
2000.
|
722. |
Frohlich ED,
Arthus C.
Corcoran Memorial Lecture. Influence of nitric oxide and angiotensin II on renal involvement in hypertension.
Hypertension
29:
188–193,
1997.
|
723. |
Mitchell KD and
Navar LG.
Intrarenal actions of angiotensin II in the pathogenesis of experimental hypertension. In
Hypertension: Pathophysiology, Diagnosis and Management,
eds Laragh JH and
Brenner BM,
New York: Raven Press,
1995,
pp. 1437–1450.
|
724. |
Ploth DW.
Angiotensin‐dependent renal mechanisms in two‐kidney, one‐clip renal vascular hypertension.
Am J Physiol
245:
F131–F141,
1983.
|
725. |
Inada Y,
Wada T,
Ojima M,
Sanada T,
Shibouta Y,
Kanagawa R,
Ishimura Y,
Fujisawa Y and
Nishikawa K.
Protective effects of candesartan cilexetil (TCV‐116) against stroke, kidney dysfunction and cardiac hypertrophy in stroke‐prone spontaneously hypertensive rats.
Clin Exp Hypertens
19:
1079–1099,
1997.
|
726. |
Navar LG.
The kidney in blood pressure regulation and development of hypertension.
Med Clin North Am
81:
1165–1198,
1997.
|
727. |
Navar L and
Ham LL.
The kidney in blood pressure regulation. In
Atlas of Diseases of the Kidney, ed. Wilcox CS,
1999,
pp. 1.1‐1.2. (electronic pub).
|
728. |
Rüster C and
Wolf G.
The Renin‐Angiotensin System and Progression of Renal Disease.
J Am Soc Nephrol
17(11):
2985–2991,
2002.
|
729. |
Wolf G,
Wenzel U,
Burns KD,
Harris RC,
Stahl RA and
Thaiss F.
Angiotensin II activates nuclear transcription factor‐kappaB through AT1 and AT2 receptors.
Kidney Int
61:
1986–1995,
2002.
|
730. |
Ingert C,
Grima M,
Coquard C,
Barthelmebs M and
Imbs JL.
Contribution of angiotensin II internalization to intrarenal angiotensin II levels in rats.
Am J Physiol Renal Physiol
283:
F1003–F1010,
2002.
|
731. |
Zhuo JL,
Imig JD,
Hammond TG,
Orengo S,
Benes E and
Navar LG.
Ang II accumulation in rat renal endosomes during Ang II‐induced hypertension: role of AT(1) receptor.
Hypertension
39:
116–121,
2002.
|
732. |
Tokuyama H,
Hayashi K,
Matsuda H,
Kubota E,
Honda M,
Okubo K,
Takamatsu I,
Tatematsu S,
Ozawa Y,
Wakino S and
Saruta T.
Differential regulation of elevated renal angiotensin II in chronic renal ischemia.
Hypertension
40:
34–40,
2002.
|
733. |
Sadjadi J,
Puttaparthi K,
Welborn MB, III,
Rogers TE,
Moe O,
Clagett GP,
Turnage RH,
Levi M and
Modrall JG.
Upregulation of autocrine‐paracrine renin‐angiotensin systems in chronic renovascular hypertension.
J Vasc Surg
36:
386–392,
2002.
|
734. |
Siragy HM and
Carey RM.
Protective role of the angiotensin AT2 receptor in a renal wrap hypertension model.
Hypertension
33:
1237–1242,
1999.
|
735. |
Nishiyama A,
Seth DM and
Navar LG.
Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats.
Hypertension
39:
129–134,
2002.
|
736. |
Cervenka L,
Wang CT,
Mitchell KD and
Navar LG.
Proximal tubular angiotensin II levels and renal functional responses to AT1 receptor blockade in nonclipped kidneys of Goldblatt hypertensive rats.
Hypertension
33:
102–107,
1999.
|
737. |
Siragy HM,
Howell NL,
Ragsdale NV and
Carey RM.
Renal interstitial fluid angiotensin. Modulation by anesthesia, epinephrine, sodium depletion, and renin inhibition.
Hypertension
25:
1021–1024,
1995.
|
738. |
Chen R,
Mukhin YV,
Garnovskaya MN,
Thielen TE,
Iijima Y,
Huang C,
Raymond JR,
Ullian ME and
Paul RV.
A functional angiotensin II receptor‐GFP fusion protein: evidence for agonist‐dependent nuclear translocation.
Am J Physiol Renal Physiol
279:
F440–F448,
2000.
|
739. |
Haller H,
Lindschau C,
Erdmann B,
Quass P and
Luft FC.
Effects of intracellular angiotensin II in vascular smooth muscle cells.
Circ Res
79:
765–772,
2000.
|
740. |
Re RN and
Cook JL.
The basis of an intracrine pharmacology.
J Clin Pharmacol
48(3):
344–350,
2008.
|
741. |
Re RN.
Intracellular renin and the nature of intracrine enzymes.
Hypertension
42:
117–122,
2003.
|
742. |
Re RN.
Mechanisms of disease: local renin‐angiotensin‐aldosterone systems and the pathogenesis and treatment of cardiovascular disease.
Nat Clin Pract Cardiovasc Med
1:
42–47,
2004.
|
743. |
Kobori H,
Prieto‐Carrasquero MC,
Ozawa Y and
Navar LG.
AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin II‐dependent hypertension.
Hypertension
43:
1126–1132,
2004.
|
744. |
Kobori H,
Harrison‐Bernard LM and
Navar LG.
Enhancement of angiotensinogen expression in angiotensin II‐dependent hypertension.
Hypertension
37:
1329–1335,
2001.
|
745. |
Kobori H,
Harrison‐Bernard LM and
Navar LG.
Expression of angiotensinogen mRNA and protein in angiotensin II‐dependent hypertension.
J Am Soc Nephrol
12:
431–439,
2001.
|
746. |
Rohrwasser A,
Morgan T,
Dillon HF,
Zhao L,
Callaway CW,
Hillas E,
Zhang S,
Cheng T,
Inagami T,
Ward K,
Terreros DA and
Lalouel JM.
Elements of a paracrine tubular renin‐angiotensin system along the entire nephron.
Hypertension
34:
1265–1274,
1999.
|
747. |
Kobori H,
Nishiyama A,
Harrison‐Bernard LM and
Navar LG.
Urinary angiotensinogen as an indicator of intrarenal angiotensin status in hypertension.
Hypertension
41:
42–49,
2003.
|
748. |
Prieto‐Carrasquero MC,
Kobori H,
Ozawa Y,
Gutierrez A,
Seth D and
Navar LG.
AT1 receptor‐mediated enhancement of collecting duct renin in angiotensin II‐dependent hypertensive rats.
Am J Physiol Renal Physiol
289:
F632–F637,
2005.
|
749. |
Prieto‐Carrasquero MC,
Harrison‐Bernard LM,
Kobori H,
Ozawa Y,
Hering‐Smith KS,
Hamm LL and
Navar LG.
Enhancement of collecting duct renin in angiotensin II‐dependent hypertensive rats.
Hypertension
44:
223–229,
2004.
|
750. |
Komlosi P,
Fuson AL,
Fintha A,
Peti‐Peterdi J,
Rosivall L,
Warnock DG and
Bell PD.
Angiotensin I conversion to angiotensin II stimulates cortical collecting duct sodium transport.
Hypertension
42:
195–199,
2003.
|
751. |
Peti‐Peterdi J,
Warnock DG and
Bell PD.
Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT(1) receptors.
J Am Soc Nephrol
13:
1131–1135,
2002.
|
752. |
Saccomani G.
Angiotensin II stimulation of Na(+)‐H+ exchange in proximal tubule cells.
Am J Phynol Renal Physiol
258:
F1188–F1193,
1990.
|
753. |
Crowley SD,
Gurley SB,
Herrera MJ,
Ruiz P,
Griffiths R,
Kumar AP,
Kim HS,
Smithies O,
Le TH and
Coffman TM.
Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney.
Proc Natl Acad Sci USA
103:
17985–17990,
2006.
|
754. |
Printz MPGD,
Unger T and
Phillips MI.
The brain renin‐angiotensin system. The Renin‐Angiotensin System in the Brain: A Model for Synthesis of Peptides in the Brain,
2003.
|
755. |
Moulik S,
Speth RC,
Turner BB and
Rowe BP.
Angiotensin II receptor subtype distribution in the rabbit brain.
Exp Brain Res
142:
275–283,
2002.
|
756. |
Lavoie JL,
Cassell MD,
Gross KW and
Sigmund CD.
Localization of renin expressing cells in the brain, by use of a REN‐eGFP transgenic model.
Physiol Genom
16:
240–246,
2004.
|
757. |
Lavoie JL,
Cassell MD,
Gross KW and
Sigmund CD.
Adjacent expression of renin and angiotensinogen in the rostral ventrolateral medulla using a dual‐reporter transgenic model.
Hypertension
43:
1116–1119,
2004.
|
758. |
Sakai K and
Sigmund CD.
Molecular evidence of tissue renin‐angiotensin systems: a focus on the brain.
Curr Hypertens Rep
7:
135–140,
2005.
|
759. |
Ferrario CM and
Chappell MC.
Novel angiotensin peptides.
Cell Mol Life Sci
61:
2720–2727,
2004.
|
760. |
Reaux‐Le Goazigo A,
Iturrioz X,
Fassot C,
Claperon C,
Roques BP and
Llorens‐Cortes C.
Role of angiotensin III in hypertension.
Curr Hypertens Rep
7:
128–134,
2005.
|
761. |
Wright JW,
Tamura‐Myers E,
Wilson WL,
Roques BP,
Llorens‐Cortes C,
Speth RC and
Harding JW.
Conversion of brain angiotensin II to angiotensin III is critical for pressor response in rats.
Am J Physiol Regul Integr Comp Physiol
284:
R725–R733,
2003.
|
762. |
Reaux A,
Fournie‐Zaluski MC,
David C,
Zini S,
Roques BP,
Corvol P and
Llorens‐Cortes C.
Aminopeptidase A inhibitors as potential central antihypertensive agents.
Proc Natl Acad Sci USA
96:
13415–13420,
1999.
|
763. |
Fournie‐Zaluski MC,
Fassot C,
Valentin B,
Djordjijevic D,
Reaux‐Le Goazigo A,
Corvol P,
Roques BP and
Llorens‐Cortes C.
Brain renin‐angiotensin system blockade by systemically active aminopeptidase inhibitors: a potential treatment of salt‐dependent hypertension.
Proc Natl Acad Sci USA
101:
7775–7780,
2004.
|
764. |
Lochard N,
Thibault G,
Silversides DW,
Touyz RM and
Reudelhuber TL.
Chronic production of angiotensin IV in the brain leads to hypertension that is reversible with an angiotensin II AT1 receptor antagonist.
Circ Res
94:
1451–1457,
2004.
|
765. |
Danser AH.
Local renin‐angiotensin systems.
Mol Cell Biochem
157:
211–216,
1996.
|
766. |
Dostal DE and
Baker KM.
The cardiac renin‐angiotensin system: conceptual, or a regulator of cardiac function?
Circ Res
85:
643–650,
1999.
|
767. |
Paul M,
Wagner J and
Dzau VJ.
Gene expression of the renin‐angiotensin system in human tissues, quantitative analysis by the polymerase chain reaction.
J Clin Invest
91:
2058–2064,
1993.
|
768. |
Samani NJ,
Swales JD and
Brammar WJ.
Expression of the renin gene in extra‐renal tissues of the rat.
Biochem J
253:
907–910,
1988.
|
769. |
Agoudemos MM and
Greene AS.
Localization of the renin‐angiotensin system components to the skeletal muscle microcirculation.
Microcirculation
12:
627–636,
2005.
|
770. |
Linderman JR and
Greene AS.
Distribution of angiotensin II receptor expression in the microcirculation of striated muscle.
Microcirculation
8:
275–281,
2001.
|
771. |
Oliver JA and
Sciacca RR.
Local generation of angiotensin II as a mechanism of regulation of peripheral vascular tone in the rat.
J Clin Invest
74:
1247–1251,
1984.
|
772. |
Vicaut E and
Hou X.
Local renin‐angiotensin system in the microcirculation of spontaneously hypertensive rats.
Hypertension
24:
70–76,
1994.
|
773. |
Boddi M,
Poggesi L,
Coppo M,
Zarone N,
Sacchi S,
Tania C and
Neri Serneri GG.
Human vascular renin‐angiotensin system and its functional changes in relation to different sodium intakes.
Hypertension
31:
836–842,
1998.
|
774. |
Gomez RA,
Lynch KR,
Sturgill BC,
Elwood JP,
Chevalier RL,
Carey RM and
Peach MJ.
Distribution of renin mRNA and its protein in the developing kidney.
Am J Physiol
257:
F850–F858,
1989.
|
775. |
Gomez RA,
Chevalier RL,
Everett AD,
Elwood JP,
Peach MJ,
Lynch KR and
Carey RM.
Recruitment of renin gene‐expressing cells in adult rat kidneys.
Am J Physiol
259:
F660–F665,
1990.
|
776. |
Everett AD,
Carey RM,
Chevalier RL,
Peach MJ and
Gomez RA.
Renin release and gene expression in intact rat kidney microvessels and single cells.
J Clin Invest
86:
169–175,
1990.
|
777. |
von Lutterotti N,
Catanzaro DF,
Sealey JE and
Laragh JH.
Renin is not synthesized by cardiac and extrarenal vascular tissues. A review of experimental evidence.
Circulation
89:
458–470,
1994.
|
778. |
Berman LB,
Vertes V,
Mitra S and
Gould AB.
Renin‐angiotensin system in anephric patients.
N Engl J Med
286:
58–61,
1972.
|
779. |
Thurston H and
Swales JD.
Blood pressure response of nephrectomized hypertensive rats to converting enzyme inhibition: evidence for persistent vascular renin activity.
Clin Sci Mol Med
52:
299–304,
1977.
|
780. |
Dzau VJ and
Re RN.
Evidence for the existence of renin in the heart.
Circulation
75:
I134–I136,
1987.
|
781. |
Dostal DE.
The cardiac renin‐angiotensin system: novel signaling mechanisms related to cardiac growth and function.
Regul Pept
91:
1–11,
2000.
|
782. |
Dell'Italia LJ,
Meng QC,
Balcells E,
Wei CC,
Palmer R,
Hageman GR,
Durand J,
Hankes GH and
Oparil S.
Compartmentalization of angiotensin II generation in the dog heart. Evidence for independent mechanisms in intravascular and interstitial spaces.
J Clin Invest
100:
253–258,
1997.
|
783. |
Neri Serneri GG,
Boddi M,
Coppo M,
Chechi T,
Zarone N,
Moira M,
Poggesi L,
Margheri M and
Simonetti I.
Evidence for the existence of a functional cardiac renin‐angiotensin system in humans.
Circulation
94:
1886–1893,
1996.
|
784. |
Danser AH,
van Kesteren CA,
Bax WA,
Tavenier M,
Derkx FH,
Saxena PR and
Schalekamp MA.
Prorenin, renin, angiotensinogen, and angiotensin‐converting enzyme in normal and failing human hearts. Evidence for renin binding.
Circulation
96:
220–226,
1997.
|
785. |
Urata H,
Boehm KD,
Philip A,
Kinoshita A,
Gabrovsek J,
Bumpus FM and
Husain A.
Cellular localization and regional distribution of an angiotensin II‐forming chymase in the heart.
J Clin Invest
91:
1269–1281,
1993.
|
786. |
Balcells E,
Meng QC,
Johnson WH, Jr.,
Oparil S and
Dell'Italia LJ.
Angiotensin II formation from ACE and chymase in human and animal hearts: methods and species considerations.
Am J Physiol
273:
H1769–H1774,
1997.
|
787. |
Peters J,
Farrenkopf R,
Clausmeyer S,
Zimmer J,
Kantachuvesiri S,
Sharp MG and
Mullins JJ.
Functional significance of prorenin internalization in the rat heart.
Circ Res
90:
1135–1141,
2002.
|
788. |
Sinn PL and
Sigmund CD.
Identification of three human renin mRNA isoforms from alternative tissue‐specific transcriptional initiation.
Physiol Genom
3:
25–31,
2000.
|
789. |
Baker KM,
Chernin MI,
Schreiber T,
Sanghi S,
Haiderzaidi S,
Booz GW,
Dostal DE and
Kumar R.
Evidence of a novel intracrine mechanism in angiotensin II‐induced cardiac hypertrophy.
Regul Pept
120:
5–13,
2004.
|
790. |
Mazzolai L,
Nussberger J,
Aubert JF,
Brunner DB,
Gabbiani G,
Brunner HR and
Pedrazzini T.
Blood pressure‐independent cardiac hypertrophy induced by locally activated renin‐angiotensin system.
Hypertension
31:
1324–1330,
1998.
|
791. |
Rossi G,
Boscaro M,
Ronconi V and
Funder JW.
Aldosterone as a cardiovascular risk factor.
Trends Endocrinol Metab
16:
104–107,
2005.
|
792. |
Lim PO,
Struthers AD and
MacDonald TM.
The neurohormonal natural history of essential hypertension: towards primary or tertiary aldosteronism?
J Hypertens
20:
11–15,
2002.
|
793. |
Bravo EL.
Aldosterone and specific aldosterone receptor antagonists in hypertension and cardiovascular disease.
Curr Hypertens Rep
5:
122–125,
2003.
|
794. |
Laragh J.
Laragh's lessons in pathophysiology and clinical pearls for treating hypertension.
Am J Hypertens
14:
837–854,
2001.
|
795. |
Nishizaka MK,
Zaman MA and
Calhoun DA.
Efficacy of low‐dose spironolactone in subjects with resistant hypertension.
Am J Hypertens
16:
925–930,
2003.
|
796. |
Watt GC,
Harrap SB,
Foy CJ,
Holton DW,
Edwards HV,
Davidson HR,
Connor JM,
Lever AF and
Fraser R.
Abnormalities of glucocorticoid metabolism and the renin‐angiotensin system: a four‐corners approach to the identification of genetic determinants of blood pressure.
J Hypertens
10:
473–482,
1992.
|
797. |
Virdis A,
Neves MF,
Amiri F,
Viel E,
Touyz RM and
Schiffrin EL.
Spironolactone improves angiotensin‐induced vascular changes and oxidative stress.
Hypertension
40:
504–510,
2002.
|
798. |
Funder JW.
Minireview: aldosterone and the cardiovascular system: genomic and nongenomic effects.
Endocrinology
147:
5564–5567,
2006.
|
799. |
Takeda Y,
Miyamori I,
Inaba S,
Furukawa K,
Hatakeyama H,
Yoneda T,
Mabuchi H and
Takeda R.
Vascular aldosterone in genetically hypertensive rats.
Hypertension
29:
45–48,
1997.
|
800. |
Gomez‐Sanchez CE,
Zhou MY,
Cozza EN,
Morita H,
Foecking MF and
Gomez‐Sanchez EP.
Aldosterone biosynthesis in the rat brain.
Endocrinology
138:
3369–3373,
1997.
|
801. |
Silvestre JS,
Robert V,
Heymes C,
Aupetit‐Faisant B,
Mouas C,
Moalic JM,
Swynghedauw B and
Delcayre C.
Myocardial production of aldosterone and corticosterone in the rat. Physiological regulation.
J Biol Chem
273:
4883–4891,
1998.
|
802. |
Xue C and
Siragy HM.
Local renal aldosterone system and its regulation by salt, diabetes, and angiotensin II type I receptor.
Hypertension
46:
584–590,
2005.
|
803. |
Gomez‐Sanchez EP,
Ahmad N,
Romero DG and
Gomez‐Sanchez CE.
Origin of aldosterone in the rat heart.
Endocrinology
145:
4796–4802,
2004.
|
804. |
Ye P,
Kenyon CJ,
MacKenzie SM,
Jong AS,
Miller C,
Gray GA,
Wallace A,
Ryding AS,
Mullins JJ,
McBride MW,
Graham D,
Fraser R,
Connell JM and
Davies E.
The aldosterone synthase (CYP11B2) and 11beta‐hydroxylase (CYP11B1) genes are not expressed in the rat heart.
Endocrinology
146:
5287–5293,
2005.
|
805. |
Funder JW.
Cardiac synthesis of aldosterone: going, going, gone?
Endocrinology
145:
4793–4795,
2004.
|
806. |
Takeda Y.
Vascular synthesis of aldosterone: role in hypertension.
Mol Cell Endocrinol
217:
75–79,
2004.
|
807. |
Brilla CG and
Weber KT.
Reactive and reparative myocardial fibrosis in arterial hypertension in the rat.
Cardiovasc Res
26:
671–677,
1992.
|
808. |
Brilla CG,
Matsubara LS and
Weber KT.
Anti‐aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism.
J Mol Cell Cardiol
25:
563–575,
1993.
|
809. |
Rocha R,
Stier CT, Jr.,
Kifor I,
Ochoa‐Maya MR,
Rennke HG,
Williams GH and
Adler GK.
Aldosterone: a mediator of myocardial necrosis and renal arteriopathy.
Endocrinology
141:
3871–3878,
2000.
|
810. |
Dluhy RG and
Williams GH.
Aldosterone ‐ villain or bystander?
N Engl J Med
351:
8–10,
2004.
|
811. |
Rocha R,
Chander PN,
Zuckerman A and
Stier CT, Jr.
Role of aldosterone in renal vascular injury in stroke‐prone hypertensive rats.
Hypertension
33:
232–237,
1999.
|
812. |
Rocha R,
Chander PN,
Khanna K,
Zuckerman A and
Stier CT, Jr.
Mineralocorticoid blockade reduces vascular injury in stroke‐prone hypertensive rats.
Hypertension
31:
451–458,
1998.
|
813. |
Joffe HV and
Adler GK.
Effect of aldosterone and mineralocorticoid receptor blockade on vascular inflammation.
Heart Fail Rev
10:
31–37,
2005.
|
814. |
Rousseau G,
Baxter JD,
Funder JW,
Edelman IS and
Tomkins GM.
Glucocorticoid and mineralocorticoid receptors for aldosterone.
J Steroid Biochem
3:
219–227,
1972.
|
815. |
Funder JW,
Feldman D and
Edelman IS.
The roles of plasma binding and receptor specificity in the mineralocorticoid action of aldosterone.
Endocrinology
92:
994–1004,
1973.
|
816. |
Pearce P and
Funder JW.
High affinity aldosterone binding sites (type I receptors) in rat heart.
Clin Exp Pharmacol Physiol
14:
859–866,
1987.
|
817. |
Funder JW,
Pearce PT,
Smith R and
Campbell J.
Vascular type I aldosterone binding sites are physiological mineralocorticoid receptors.
Endocrinology
125:
2224–2226,
1989.
|
818. |
Funder JW,
Pearce PT,
Smith R and
Smith AI.
Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated.
Science
242:
583–585,
1988.
|
819. |
Gordon RD,
Laragh JH and
Funder JW.
Low renin hypertensive states: perspectives unsolved problems, future research.
Trends Endocrinol Metabol
16:
108–113,
2005.
|
820. |
Funder J and
Myles K.
Exclusion of corticosterone from epithelial mineralocorticoid receptors is insufficient for selectivity of aldosterone action: in vivo binding studies.
Endocrinology
137:
5264–5268,
1996.
|
821. |
Sato A and
Funder JW.
High glucose stimulates aldosterone‐induced hypertrophy via type I mineralocorticoid receptors in neonatal rat cardiomyocytes.
Endocrinology
137:
4145–4153,
1996.
|
822. |
Vasan RS,
Evans JC,
Larson MG,
Wilson PW,
Meigs JB,
Rifai N,
Benjamin EJ and
Levy D.
Serum aldosterone and the incidence of hypertension in nonhypertensive persons.
N Engl J Med
351:
33–41,
2004.
|
823. |
Esler M,
Jennings G,
Lambert G,
Meredith I,
Horne M and
Eisenhofer G.
Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions.
Physiol Rev
70:
963–985,
1990.
|
824. |
Julius S and
Majahalme S.
The changing face of sympathetic overactivity in hypertension.
Ann Med
32:
365–370,
2000.
|
825. |
Goldstein DS.
Plasma catecholamines and essential hypertension. An analytical review.
Hypertension
5:
86–99,
1983.
|
826. |
Esler M,
Jackman G,
Bobik A,
Leonard P,
Kelleher D,
Skews H,
Jennings G and
Korner P.
Norepinephrine kinetics in essential hypertension. Defective neuronal uptake of norepinephrine in some patients.
Hypertension
3:
149–156,
1981.
|
827. |
Esler M,
Lambert G and
Jennings G.
Regional norepinephrine turnover in human hypertension.
Clin Exp Hypertens A
11
(Suppl 1):
75–89,
1989.
|
828. |
Sakata K,
Shirotani M,
Yoshida H and
Kurata C.
Comparison of effects of enalapril and nitrendipine on cardiac sympathetic nervous system in essential hypertension.
J Am Coll Cardiol
32:
438–443,
1998.
|
829. |
Anderson EA,
Sinkey CA,
Lawton WJ and
Mark AL.
Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings.
Hypertension
14:
177–183,
1989.
|
830. |
Grassi G,
Cattaneo BM,
Seravalle G,
Lanfranchi A and
Mancia G.
Baroreflex control of sympathetic nerve activity in essential and secondary hypertension.
Hypertension
31:
68–72,
1998.
|
831. |
Grassi G,
Seravalle G,
Bertinieri G,
Turri C,
Dell'Oro R,
Stella ML and
Mancia G.
Sympathetic and reflex alterations in systo‐diastolic and systolic hypertension of the elderly.
J Hypertens
18:
587–593,
2000.
|
832. |
Grassi G,
Seravalle G,
Dell'Oro R,
Turri C,
Bolla GB and
Mancia G.
Adrenergic and reflex abnormalities in obesity‐related hypertension.
Hypertension
36:
538–542,
2000.
|
833. |
Grassi G,
Seravalle G,
Quarti‐Trevano F,
Dell'Oro R,
Bolla G and
Mancia G.
Effects of hypertension and obesity on the sympathetic activation of heart failure patients.
Hypertension
42:
873–877,
2003.
|
834. |
Schlaich MP,
Lambert E,
Kaye DM,
Krozowski Z,
Campbell DJ,
Lambert G,
Hastings J,
Aggarwal A and
Esler MD.
Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation.
Hypertension
43:
169–175,
2004.
|
835. |
Grassi G and
Mancia G.
Neurogenic hypertension: is the enigma of its origin near the solution?
Hypertension
43:
154–155,
2004.
|
836. |
Osborn JW,
Jacob F and
Guzman P.
A neural set point for the long‐term control of arterial pressure: beyond the arterial baroreceptor reflex.
Am J Physiol Regul Integr Comp Physiol
288:
R846–R855,
2005.
|
837. |
Cowley AW,
Liard JF and
Guyton AC.
Role of baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs.
Circ Res
32:
564–576,
1973.
|
838. |
Norman RA,
Coleman TG and
Dent AC.
Continuous monitoring of arterial pressure indicates sinoaortic denervated rats are not hypertensive.
Hypertension
3:
119–125,
1981.
|
839. |
Saito M,
Terui N,
Numao Y and
Kumada M.
Absence of sustained hypertension in sinoaortic‐denervated rabbits.
Am J Physiol
251:
H742–H747,
1986.
|
840. |
Osborn JW.
Pathogenesis of hypertension in the sinoaortic‐denervated spontaneously hypertensive rat.
Hypertension
18:
475–482,
1991.
|
841. |
Cowley AW, Jr.
Long‐term control of arterial blood pressure.
Physiol Rev
72:
231–300,
1992.
|
842. |
Thrasher TN.
Unloading arterial baroreceptors causes neurogenic hypertension.
Am J Physiol Regul Integr Comp Physiol
282:
R1044–R1053,
2002.
|
843. |
Barrett CJ,
Ramchandra R,
Guild SJ,
Lala A,
Budgett DM and
Malpas SC.
What sets the long‐term level of renal sympathetic nerve activity: a role for angiotensin II and baroreflexes?
Circ Res
92:
1330–1336,
2003.
|
844. |
Lohmeier TE,
Irwin ED,
Rossing MA,
Serdar DJ and
Kieval RS.
Prolonged activation of the baroreflex produces sustained hypotension.
Hypertension
43:
306–311,
2004.
|
845. |
Seals DR and
Dinenno FA.
Collateral damage: cardiovascular consequences of chronic sympathetic activation with human aging.
Am J Physiol Heart Circ Physiol
287:
H1895–H1905,
2004.
|
846. |
Hoeldtke RD and
Cilmi KM.
Effects of aging on catecholamine metabolism.
J Clin Endocrinol Metab
60:
479–484,
1985.
|
847. |
MacGilchrist AJ,
Hawksby C,
Howes LG and
Reid JL.
Rise in plasma noradrenaline with age results from an increase in spillover rate.
Gerontology
35:
7–13,
1989.
|
848. |
Jones PP,
Davy KP,
Alexander S and
Seals DR.
Age‐related increase in muscle sympathetic nerve activity is associated with abdominal adiposity.
Am J Physiol
272:
E976–E980,
1997.
|
849. |
Jones PP,
Davy KP and
Seals DR.
Relation of total and abdominal adiposity to muscle sympathetic nerve activity in healthy older males.
Int J Obes Relat Metab Disord
21:
1053–1057,
1997.
|
850. |
Monroe MB,
Van Pelt RE,
Schiller BC,
Seals DR and
Jones PP.
Relation of leptin and insulin to adiposity‐associated elevations in sympathetic activity with age in humans.
Int J Obes Relat Metab Disord
24:
1183–1187,
2000.
|
851. |
Esler M,
Hastings J,
Lambert G,
Kaye D,
Jennings G and
Seals DR.
The influence of aging on the human sympathetic nervous system and brain norepinephrine turnover.
Am J Physiol Regul Integr Comp Physiol
282:
R909–R916,
2002.
|
852. |
Seals DR and
Bell C.
Chronic sympathetic activation: consequence and cause of age‐associated obesity?
Diabetes
53:
276–284,
2004.
|
853. |
Bell C,
Seals DR,
Monroe MB,
Day DS,
Shapiro LF,
Johnson DG and
Jones PP.
Tonic sympathetic support of metabolic rate is attenuated with age, sedentary lifestyle, and female sex in healthy adults.
J Clin Endocrinol Metab
86:
4440–4444,
2001.
|
854. |
Landsberg L.
Insulin‐mediated sympathetic stimulation: role in the pathogenesis of obesity‐related hypertension (or, how insulin affects blood pressure, and why).
J Hypertens
19:
523–528,
2001.
|
855. |
Jones PP,
Shapiro LF,
Keisling GA,
Jordan J,
Shannon JR,
Quaife RA and
Seals DR.
Altered autonomic support of arterial blood pressure with age in healthy men.
Circulation
104:
2424–2429,
2001.
|
856. |
DiBona GF and
Kopp UC.
Neural control of renal function.
Physiol Rev
77:
75–197,
1997.
|
857. |
Gattone VH,
Evan AP,
Overhage JM and
Severs WB.
Developing renal innervation in the spontaneously hypertensive rat: evidence for a role of the sympathetic nervous system in renal damage.
J Hypertens
8:
423–428,
1990.
|
858. |
Caplea A,
Seachrist D,
Daneshvar H,
Dunphy G and
Ely D.
Noradrenergic content and turnover rate in kidney and heart shows gender and strain differences.
J Appl Physiol
92:
567–571,
2002.
|
859. |
Grisk O,
Rose HJ,
Lorenz G and
Rettig R.
Sympathetic‐renal interaction in chronic arterial pressure control.
Am J Physiol Regul Integr Comp Physiol
283:
R441–R450,
2002.
|
860. |
Grisk O and
Rettig R.
Interactions between the sympathetic nervous system and the kidneys in arterial hypertension.
Cardiovasc Res
61:
238–246,
2004.
|
861. |
Cabassi A,
Vinci S,
Cantoni AM,
Quartieri F,
Moschini L,
Cavazzini S,
Cavatorta A and
Borghetti A.
Sympathetic activation in adipose tissue and skeletal muscle of hypertensive rats.
Hypertension
39:
656–661,
2002.
|
862. |
Robertson WP and
Schofield GG.
Primary and adaptive changes of A‐type K+ currents in sympathetic neurons from hypertensive rats.
Am J Physiol
276:
R1758–R1765,
1999.
|
863. |
Carlson SH,
Shelton J,
White CR and
Wyss JM.
Elevated sympathetic activity contributes to hypertension and salt sensitivity in diabetic obese Zucker rats.
Hypertension
35:
403–408,
2000.
|
864. |
Rumantir MS,
Kaye DM,
Jennings GL,
Vaz M,
Hastings JA and
Esler MD.
Phenotypic evidence of faulty neuronal norepinephrine reuptake in essential hypertension.
Hypertension
36:
824–829,
2000.
|
865. |
Greenwood JP,
Stoker JB and
Mary DA.
Single‐unit sympathetic discharge: quantitative assessment in human hypertensive disease.
Circulation
100:
1305–1310,
1999.
|
866. |
Cabassi A,
Vinci S.
Quartieri F,
Moschini L and
Borghetti A.
Norepinephrine reuptake is impaired in skeletal muscle of hypertensive rats in vivo.
Hypertension
37:
698–702,
2001.
|
867. |
Shokoji T,
Nishiyama A,
Fujisawa Y,
Hitomi H,
Kiyomoto H,
Takahashi N,
Kimura S,
Kohno M and
Abe Y.
Renal sympathetic nerve responses to tempol in spontaneously hypertensive rats.
Hypertension
41:
266–273,
2003.
|
868. |
Morgan DA,
Anderson EA and
Mark AL.
Renal sympathetic nerve activity is increased in obese Zucker rats.
Hypertension
25:
834–838,
1995.
|
869. |
Suzuki H,
Nishizawa M,
Ichikawa M,
Kumagai K,
Ryuzaki M,
Kumagai H,
Saruta T and
Ikeda H.
Basal sympathetic nerve activity is enhanced with augmentation of baroreceptor reflex in Wistar fatty rats: a model of obesity‐induced NIDDM.
J Hypertens
17:
959–964,
1999.
|
870. |
Rumantir MS,
Vaz M,
Jennings GL,
Collier G,
Kaye DM,
Seals DR,
Wiesner GH,
Brunner‐La Rocca HP and
Esler MD.
Neural mechanisms in human obesity‐related hypertension.
J Hypertens
17:
1125–1133,
1999.
|
871. |
Esler M.
Jennings G,
Korner P,
Willett I,
Dudley F,
Hasking G,
Anderson W and
Lambert G.
Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover.
Hypertension
11:
3–20,
1988.
|
872. |
DiBona GF.
Sympathetic nervous system and the kidney in hypertension.
Curr Opin Nephrol Hypertens
11:
197–200,
2002.
|
873. |
DiBona GF and
Jones SY.
Sodium intake influences hemodynamic and neural responses to angiotensin receptor blockade in rostral ventrolateral medulla.
Hypertension
37:
1114–1123,
2001.
|
874. |
Wofford MR and
Hall JE.
Pathophysiology and treatment of obesity hypertension.
Curr Pharm Des
10:
3621–3637,
2004.
|
875. |
Esler M.
The sympathetic system and hypertension.
Am J Hypertens
13:
99S–105S,
2000.
|
876. |
Rocchini AP,
Mao HZ,
Babu K,
Marker P and
Rocchini AJ.
Clonidine prevents insulin resistance and hypertension in obese dogs.
Hypertension
33:
548–553,
1999.
|
877. |
Antic V,
Kiener‐Belforti F,
Tempini A,
Van Vliet BN and
Montani JP.
Role of the sympathetic nervous system during the development of obesity‐induced hypertension in rabbits.
Am J Hypertens
13:
556–559,
2000.
|
878. |
Kassab S,
Kato T,
Wilkins FC,
Chen R,
Hall JE and
Granger JP.
Renal denervation attenuates the sodium retention and hypertension associated with obesity.
Hypertension
25:
893–897,
1995.
|
879. |
Hall JE,
Hildebrandt DA and
Kuo J.
Obesity hypertension: role of leptin and sympathetic nervous system.
Am J Hypertens
14:
103S–115S,
2001.
|
880. |
Jequier E.
Leptin signaling, adiposity, and energy balance.
Ann NY Acad Sci
967:
379–388,
2002.
|
881. |
Correia ML,
Morgan DA,
Sivitz WI,
Mark AL and
Haynes WG.
Leptin acts in the central nervous system to produce dose‐dependent changes in arterial pressure.
Hypertension
37:
936–942,
2001.
|
882. |
Shek EW,
Brands MW and
Hall JE.
Chronic leptin infusion increases arterial pressure.
Hypertension
31:
409–414,
1998.
|
883. |
Carlyle M,
Jones OB,
Kuo JJ and
Hall JE.
Chronic cardiovascular and renal actions of leptin: role of adrenergic activity.
Hypertension
39:
496–501,
2002.
|
884. |
Mark AL,
Shaffer RA,
Correia ML,
Morgan DA,
Sigmund CD and
Haynes WG.
Contrasting blood pressure effects of obesity in leptin‐deficient ob/ob mice and agouti yellow obese mice.
J Hypertens
17:
1949–1953,
1999.
|
885. |
Hall JE,
Jones DW,
Kuo JJ,
da Silva A,
Tallam LS and
Liu J.
Impact of the obesity epidemic on hypertension and renal disease.
Curr Hypertens Rep
5:
386–392,
2003.
|
886. |
da Silva AA,
Kuo JJ and
Hall JE.
Role of hypothalamic melanocortin 3/4‐receptors in mediating chronic cardiovascular, renal, and metabolic actions of leptin.
Hypertension
43:
1312–1317,
2004.
|
887. |
Kuo JJ,
Silva AA and
Hall JE.
Hypothalamic melanocortin receptors and chronic regulation of arterial pressure and renal function.
Hypertension
41:
768–774,
2003.
|
888. |
Tallam LS,
Stec DE,
Willis MA,
da Silva AA and
Hall JE.
Melanocortin‐4 receptor‐deficient mice are not hypertensive or salt‐sensitive despite obesity, hyperinsulinemia, and hyperleptinemia.
Hypertension
46:
326–332,
2005.
|
889. |
Zhou MS,
Schulman IH and
Raij L.
Nitric oxide, angiotensin II. and hypertension.
Semin Nephrol
24:
366–378,
2004.
|
890. |
Yan C,
Kim D,
Aizawa T and
Berk BC.
Functional interplay between angiotensin II and nitric oxide: cyclic GMP as a key mediator.
Arterioscler Thromb Vasc Biol
23:
26–36,
2003.
|
891. |
Endemann DH,
Pu Q,
de Ciuceis C,
Savoia C,
Virdis A,
Neves MF,
Touyz RM and
Schiffrin EL.
Persistent remodeling of resistance arteries in type 2 diabetic patients on antihypertensive treatment.
Hypertension
43:
399–404,
2004.
|
892. |
Griendling KK and
FitzGerald GA.
Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS.
Circulation
108:
1912–1916,
2003.
|
893. |
Milstien S and
Katusic Z.
Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function.
Biochem Biophys Res Commun
263:
681–684,
1999.
|
894. |
Venugopal SK,
Devaraj S,
Yuhanna I,
Shaul P and
Jialal I.
Demonstration that C‐reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells.
Circulation
106:
1439–1441,
2002.
|
895. |
Verma S,
Wang CH,
Li SH,
Dumont AS,
Fedak PW,
Badiwala MV,
Dhillon B,
Weisel RD,
Li RK,
Mickle DA and
Stewart DJ.
A self‐fulfilling prophecy: C‐reactive protein attenuates nitric oxide production and inhibits angiogenesis.
Circulation
106:
913–919,
2002.
|
896. |
Hamilton CA,
Brosnan MJ,
Al‐Benna S,
Berg G and
Dominiczak AF.
NAD(P)H oxidase inhibition improves endothelial function in rat and human blood vessels.
Hypertension
40:
755–762,
2002.
|
897. |
Landmesser U,
Spiekermann S,
Dikalov S,
Tatge H,
Wilke R,
Kohler C,
Harrison DG,
Hornig B and
Drexler H.
Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine‐oxidase and extracellular superoxide dismutase.
Circulation
106:
3073–3078,
2002.
|
898. |
Du X,
Matsumura T,
Edelstein D,
Rossetti L,
Zsengeller Z,
Szabo C and
Brownlee M.
Inhibition of GAPDH activity by poly(ADP‐ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells.
J Clin Invest
112:
1049–1057,
2003.
|
899. |
Xiao S,
Wagner L,
Schmidt RJ and
Baylis C.
Circulating endothelial nitric oxide synthase inhibitory factor in some patients with chronic renal disease.
Kidney Int
59:
1466–1472,
2001.
|
900. |
Kielstein JT,
Bode‐Boger SM,
Frolich JC,
Ritz E,
Haller H and
Fliser D.
Asymmetric dimethylarginine, blood pressure, and renal perfusion in elderly subjects.
Circulation
107:
1891–1895,
2003.
|
901. |
Kielstein JT,
Boger RH,
Bode‐Boger SM,
Frolich JC,
Haller H,
Ritz E and
Fliser D.
Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease.
J Am Soc Nephrol
13:
170–176,
2002.
|
902. |
Vallance P,
Leone A,
Calver A,
Collier J and
Moncada S.
Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure.
Lancet
339:
572–575,
1992.
|
903. |
Nijveldt RJ,
Teerlink T,
Van der Hoven B,
Siroen MP,
Kuik DJ,
Rauwerda JA and
van Leeuwen PA.
Asymmetrical dimethylarginine (ADMA) in critically ill patients: high plasma ADMA concentration is an independent risk factor of ICU mortality.
Clin Nutr
22:
23–30,
2003.
|
904. |
Osanai T,
Saitoh M,
Sasaki S,
Tomita H,
Matsunaga T and
Okumura K.
Effect of shear stress on asymmetric dimethylarginine release from vascular endothelial cells.
Hypertension
42:
985–990,
2003.
|
905. |
Miyazaki H,
Matsuoka H,
Cooke JP,
Usui M,
Ueda S,
Okuda S and
Imaizumi T.
Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis.
Circulation
99:
1141–1146,
1999.
|
906. |
Valkonen VP,
Paiva H,
Salonen JT,
Lakka TA,
Lehtimaki T,
Laakso J and
Laaksonen R.
Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine.
Lancet
358:
2127–2128,
2001.
|
907. |
Zoccali C,
Bode‐Boger S,
Mallamaci F,
Benedetto F,
Tripepi G,
Malatino L,
Cataliotti A,
Bellanuova I,
Fermo I,
Frolich J and
Boger R.
Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end‐stage renal disease: a prospective study.
Lancet
358:
2113–2117,
2001.
|
908. |
Schulman IH,
Zhou MS and
Raij L.
Nitric oxide, angiotensin II, and reactive oxygen species in hypertension and atherogenesis.
Curr Hypertens Rep
7:
61–67,
2005.
|
909. |
Coats P,
Johnston F,
MacDonald J,
McMurray JJ and
Hillier C.
Endothelium‐derived hyperpolarizing factor: identification and mechanisms of action in human subcutaneous resistance arteries.
Circulation
103:
1702–1708,
2001.
|
910. |
Zhou MS and
Raij L.
Cross‐talk between nitric oxide and endothelium‐derived hyperpolarizing factor: synergistic interaction?
J Hypertens
21:
1449–1451,
2003.
|
911. |
Huang PL,
Huang Z,
Mashimo H,
Bloch KD,
Moskowitz MA,
Bevan JA and
Fishman MC.
Hypertension in mice lacking the gene for endothelial nitric oxide synthase.
Nature
377:
239–242,
1995.
|
912. |
Cosentino F,
Barker JE,
Brand MP,
Heales SJ,
Werner ER,
Tippins JR,
West N,
Channon KM,
Volpe M and
Luscher TF.
Reactive oxygen species mediate endothelium‐dependent relaxations in tetrahydrobiopterin‐deficient mice.
Arterioscler Thromb Vasc Biol
21:
496–502,
2001.
|
913. |
Mitchell BM,
Dorrance AM and
Webb RC.
GTP cyclohydrolase 1 inhibition attenuates vasodilation and increases blood pressure in rats.
Am J Physiol Heart Circ Physiol
285:
H2165–H2170,
2003.
|
914. |
Vaziri ND,
Ni Z and
Oveisi F.
Upregulation of renal and vascular nitric oxide synthase in young spontaneously hypertensive rats.
Hypertension
31:
1248–1254,
1998.
|
915. |
Hayakawa H,
Coffee K and
Raij L.
Endothelial dysfunction and cardiorenal injury in experimental salt‐sensitive hypertension: effects of antihypertensive therapy.
Circulation
96:
2407–2413,
1997.
|
916. |
Hayakawa H and
Raij L.
The link among nitric oxide synthase activity, endothelial function, and aortic and ventricular hypertrophy in hypertension.
Hypertension
29:
235–241,
1997.
|
917. |
Zhou MS,
Jaimes EA and
Raij L.
Atorvastatin prevents end‐organ injury in salt‐sensitive hypertension: role of eNOS and oxidant stress.
Hypertension
44:
186–190,
2004.
|
918. |
Landmesser U,
Hornig B and
Drexler H.
Endothelial function: a critical determinant in atherosclerosis?
Circulation
109:
II27–II33,
2004.
|
919. |
Lefer DJ,
Jones SP,
Girod WG,
Baines A,
Grisham MB,
Cockrell AS,
Huang PL and
Scalia R.
Leukocyte‐endothelial cell interactions in nitric oxide synthase‐deficient mice.
Am J Physiol
276:
H1943–H1950,
1999.
|
920. |
Tomita H,
Egashira K,
Kubo‐Inoue M,
Usui M,
Koyanagi M,
Shimokawa H,
Takeya M,
Yoshimura T and
Takeshita A.
Inhibition of NO synthesis induces inflammatory changes and monocyte chemoattractant protein‐1 expression in rat hearts and vessels.
Arterioscler Thromb Vasc Biol
18:
1456–1464,
1998.
|
921. |
Numaguchi K,
Egashira K,
Takemoto M,
Kadokami T,
Shimokawa H,
Sueishi K and
Takeshita A.
Chronic inhibition of nitric oxide synthesis causes coronary microvascular remodeling in rats.
Hypertension
26:
957–962,
1995.
|
922. |
Usui M,
Ichiki T,
Katoh M,
Egashira K and
Takeshita A.
Regulation of angiotensin II receptor expression by nitric oxide in rat adrenal gland.
Hypertension
32:
527–533,
1998.
|
923. |
Ichiki T,
Usui M,
Kato M,
Funakoshi Y,
Ito K,
Egashira K and
Takeshita A.
Downregulation of angiotensin II type 1 receptor gene transcription by nitric oxide.
Hypertension
31:
342–348,
1998.
|
924. |
Craven PA,
Studer RK,
Felder J,
Phillips S and
DeRubertis FR.
Nitric oxide inhibition of transforming growth factor‐beta and collagen synthesis in mesangial cells.
Diabetes
46:
671–681,
1997.
|
925. |
Mollnau H,
Wendt M,
Szocs K,
Lassegue B,
Schulz E,
Oelze M,
Li H,
Bodenschatz M,
August M,
Kleschyov AL,
Tsilimingas N,
Walter U,
Forstermann U,
Meinertz T,
Griendling K and
Munzel T.
Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling.
Circ Res
90:
E58–E65,
2002.
|
926. |
Marques M,
Millas I,
Jimenez A,
Garcia‐Colis E,
Rodriguez‐Feo JA,
Velasco S,
Barrientos A,
Casado S and
Lopez‐Farre A.
Alteration of the soluble guanylate cyclase system in the vascular wall of lead‐induced hypertension in rats.
J Am Soc Nephrol
12:
2594–2600,
2001.
|
927. |
Rajagopalan S,
Kurz S,
Munzel T,
Tarpey M,
Freeman BA,
Griendling KK and
Harrison DG.
Angiotensin II‐mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone.
J Clin Invest
97:
1916–1923,
1996.
|
928. |
Ruetten H,
Zabel U,
Linz W and
Schmidt HH.
Downregulation of soluble guanylyl cyclase in young and aging spontaneously hypertensive rats.
Circ Res
85:
534–541,
1999.
|
929. |
Bauersachs J,
Bouloumie A,
Fraccarollo D,
Hu K,
Busse R and
Ertl G.
Hydralazine prevents endothelial dysfunction, but not the increase in superoxide production in nitric oxide‐deficient hypertension.
Eur J Pharmacol
362:
77–81,
1998.
|
930. |
Bauersachs J,
Bouloumie A,
Mulsch A,
Wiemer G,
Fleming I and
Busse R.
Vasodilator dysfunction in aged spontaneously hypertensive rats: changes in NO synthase III and soluble guanylyl cyclase expression, and in superoxide anion production.
Cardiovasc Res
37:
772–779,
1998.
|
931. |
Kim D,
Rybalkin SD,
Pi X,
Wang Y,
Zhang C,
Munzel T,
Beavo JA,
Berk BC and
Yan C.
Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance.
Circulation
104:
2338–2343,
2001.
|
932. |
Taddei S,
Virdis A,
Mattei P,
Ghiadoni L,
Fasolo CB,
Sudano I and
Salvetti A.
Hypertension causes premature aging of endothelial function in humans.
Hypertension
29:
736–743,
1997.
|
933. |
Tomiyama H,
Kimura Y.
Mitsuhashi H,
Kinouchi T,
Yoshida H,
Kushiro T and
Doba N.
Relationship between endothelial function and fibrinolysis in early hypertension.
Hypertension
31:
321–327,
1998.
|
934. |
Panza JA,
Casino PR,
Kilcoyne CM and
Quyyumi AA.
Role of endothelium‐derived nitric oxide in the abnormal endothelium‐dependent vascular relaxation of patients with essential hypertension.
Circulation
87:
1468–1474,
1993.
|
935. |
Egashira K,
Suzuki S,
Hirooka Y,
Kai H,
Sugimachi M,
Imaizumi T and
Takeshita A.
Impaired endothelium‐dependent vasodilation of large epicardial and resistance coronary arteries in patients with essential hypertension. Different responses to acetylcholine and substance P.
Hypertension
25:
201–206,
1995.
|
936. |
Ghiadoni L,
Taddei S,
Virdis A,
Sudano I,
Di Legge V,
Meola M,
Di Venanzio L and
Salvetti A.
Endothelial function and common carotid artery wall thickening in patients with essential hypertension.
Hypertension
32:
25–32,
1998.
|
937. |
de Caterina R,
Libby P,
Peng HB,
Thannickal VJ,
Rajavashisth TB,
Gimbrone MA, Jr.,
Shin WS and
Liao JK.
Nitric oxide decreases cytokine‐induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines.
J Clin Invest
96:
60–68,
1995.
|
938. |
Luscher TF.
The endothelium in hypertension: bystander, target or mediator?
J Hypertens(Suppl 12):
S105–S116,
1994.
|
939. |
Touyz RM and
Schiffrin EL.
Reactive oxygen species in vascular biology: implications in hypertension.
Histochem Cell Biol
122:
339–352,
2004.
|
940. |
Lassegue B and
Griendling KK.
Reactive oxygen species in hypertension: an update.
Am J Hypertens
17:
852–860,
2004.
|
941. |
Wilcox CS.
Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension?
Am J Physiol Regul Integr Comp Physiol
289:
R913–R935,
2005.
|
942. |
Chen X,
Touyz RM,
Park JB and
Schiffrin EL.
Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke‐prone SHR.
Hypertension
38:
606–611,
2001.
|
943. |
Zalba G,
San Jose G,
Beaumont FJ,
Fortuno MA,
Fortuno A and
Diez J.
Polymorphisms and promoter overactivity of the p22(phox) gene in vascular smooth muscle cells from spontaneously hypertensive rats.
Circ Res
88:
217–222,
2001.
|
944. |
Tanito M,
Nakamura H,
Kwon YW,
Teratani A,
Masutani H,
Shioji K,
Kishimoto C,
Ohira A,
Horie R and
Yodoi J.
Enhanced oxidative stress and impaired thioredoxin expression in spontaneously hypertensive rats.
Antioxid Redox Signal
6:
89–97,
2004.
|
945. |
Dantas AP,
Franco Mdo C,
Silva‐Antonialli MM,
Tostes RC,
Fortes ZB,
Nigro D and
Carvalho MH.
Gender differences in superoxide generation in microvessels of hypertensive rats: role of NAD(P)H‐oxidase.
Cardiovasc Res
61:
22–29,
2004.
|
946. |
Diez J,
Laviades C,
Orbe J,
Zalba G,
Lopez B,
Gonzalez A,
Mayor G,
Paramo JA and
Beloqui O.
The A1166C polymorphism of the AT1 receptor gene is associated with collagen type I synthesis and myocardial stiffness in hypertensives.
J Hypertens
21:
2085–2092,
2003.
|
947. |
Moreno MU,
San Jose G,
Orbe J,
Paramo JA,
Beloqui O,
Diez J and
Zalba G.
Preliminary characterisation of the promoter of the human p22(phox) gene: identification of a new polymorphism associated with hypertension.
FEBS Lett
542:
27–31,
2003.
|
948. |
Chabrashvili T,
Tojo A,
Onozato ML,
Kitiyakara C,
Quinn MT,
Fujita T,
Welch WJ and
Wilcox CS.
NADPH Expression and cellular localization of classic oxidase subunits in the spontaneously hypertensive rat kidney.
Hypertension
39:
269–274,
2002.
|
949. |
Landmesser U,
Cai H,
Dikalov S,
McCann L,
Hwang J,
Jo H,
Holland SM and
Harrison DG.
Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II.
Hypertension
40:
511–515,
2002.
|
950. |
Sharma RC,
Hodis HN,
Mack WJ,
Sevanian A and
Kramsch DM.
Probucol suppresses oxidant stress in hypertensive arteries. Immunohistochemical evidence.
Am J Hypertens
9:
577–590,
1996.
|
951. |
Schnackenberg CG,
Welch WJ and
Wilcox CS.
Normalization of blood pressure and renal vascular resistance in SHR with a membrane‐permeable superoxide dismutase mimetic: role of nitric oxide.
Hypertension
32:
59–64,
1998.
|
952. |
Hong HJ,
Hsiao G,
Cheng TH and
Yen MH.
Supplemention with tetrahydrobiopterin suppresses the development of hypertension in spontaneously hypertensive rats.
Hypertension
38:
1044–1048,
2001.
|
953. |
Zhan CD,
Sindhu RK and
Vaziri ND.
Up‐regulation of kidney NAD(P)H oxidase and calcineurin in SHR: reversal by lifelong antioxidant supplementation.
Kidney Int
65:
219–227,
2004.
|
954. |
Laursen JB,
Rajagopalan S,
Galis Z,
Tarpey M,
Freeman BA and
Harrison DG.
Role of superoxide in angiotensin II‐induced but not catecholamine‐induced hypertension.
Circulation
95:
588–593,
1997.
|
955. |
Tojo A,
Onozato ML,
Kobayashi N,
Goto A,
Matsuoka H and
Fujita T.
Angiotensin II and oxidative stress in Dahl Salt‐sensitive rat with heart failure.
Hypertension
40:
834–839,
2002.
|
956. |
Ding Y,
Gonick HC,
Vaziri ND,
Liang K and
Wei L.
Lead‐induced hypertension. III. Increased hydroxyl radical production.
Am J Hypertens
14:
169–173,
2001.
|
957. |
Dobrian AD,
Davies MJ,
Schriver SD,
Lauterio TJ and
Prewitt RL.
Oxidative stress in a rat model of obesity‐induced hypertension.
Hypertension
37:
554–560,
2001.
|
958. |
Wu R,
Millette E,
Wu L and
de Champlain J.
Enhanced superoxide anion formation in vascular tissues from spontaneously hypertensive and desoxycorticosterone acetate‐salt hypertensive rats.
J Hypertens
19:
741–748,
2001.
|
959. |
Welch WJ,
Mendonca M,
Aslam S and
Wilcox CS.
Roles of oxidative stress and AT1 receptors in renal hemodynamics and oxygenation in the postclipped 2K. 1C kidney.
Hypertension
41:
692–696,
2003.
|
960. |
Fortepiani LA,
Zhang H,
Racusen L,
Roberts LJ, II and
Reckelhoff JF.
Characterization of an animal model of postmenopausal hypertension in spontaneously hypertensive rats.
Hypertension
41:
640–645,
2003.
|
961. |
Vasquez‐Vivar J,
Duquaine D,
Whitsett J,
Kalyanaraman B and
Rajagopalan S.
Altered tetrahydrobiopterin metabolism in atherosclerosis: implications for use of oxidized tetrahydrobiopterin analogues and thiol antioxidants.
Arterioscler Thromb Vasc Biol
22:
1655–1661,
2002.
|
962. |
Frenoux JM,
Noirot B,
Prost ED,
Madani S,
Blond JP,
Belleville JL and
Prost JL.
Very high alpha‐tocopherol diet diminishes oxidative stress and hypercoagulation in hypertensive rats but not in normotensive rats.
Med Sci Monit
8:
BR401–BR407,
2002.
|
963. |
Park JB,
Touyz RM,
Chen X and
Schiffrin EL.
Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt‐loaded stroke‐prone spontaneously hypertensive rats.
Am J Hypertens
15:
78–84,
2002.
|
964. |
Touyz RM.
Oxidative stress and vascular damage in hypertension.
Curr Hypertens Rep
2:
98–105,
2000.
|
965. |
Wilcox CS.
Reactive oxygen species: roles in blood pressure and kidney function.
Curr Hypertens Rep
4:
160–166,
2002.
|
966. |
Prabha PS,
Das UN,
Koratkar R,
Sagar PS and
Ramesh G.
Free radical generation, lipid peroxidation and essential fatty acids in uncontrolled essential hypertension.
Prostaglandins Leukot Essent Fatty Acids
41:
27–33,
1990.
|
967. |
Sagar S,
Kallo IJ,
Kaul N,
Ganguly NK and
Sharma BK.
Oxygen free radicals in essential hypertension.
Mol Cell Biochem
111:
103–108,
1992.
|
968. |
Lacy F,
Kailasam MT,
O'Connor DT,
Schmid‐Schonbein GW and
Parmer RJ.
Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity.
Hypertension
36:
878–884,
2000.
|
969. |
Minuz P,
Patrignani P,
Gaino S,
Degan M,
Menapace L,
Tommasoli R,
Seta F,
Capone ML,
Tacconelli S,
Palatresi S,
Bencini C,
Del Vecchio C,
Mansueto G,
Arosio E,
Santonastaso CL,
Lechi A,
Morganti A and
Patrono C.
Increased oxidative stress and platelet activation in patients with hypertension and renovascular disease.
Circulation
106:
2800–2805,
2002.
|
970. |
Stojiljkovic MP,
Lopes HF,
Zhang D,
Morrow JD,
Goodfriend TL and
Egan BM.
Increasing plasma fatty acids elevates F2‐isoprostanes in humans: implications for the cardiovascular risk factor cluster.
J Hypertens
20:
1215–1221,
2002.
|
971. |
Russo C,
Olivieri O,
Girelli D,
Faccini G,
Zenari ML,
Lombardi S and
Corrocher R.
Anti‐oxidant status and lipid peroxidation in patients with essential hypertension.
J Hypertens
16:
1267–1271,
1998.
|
972. |
Manning RD, Jr.,
Meng S and
Tian N.
Renal and vascular oxidative stress and salt‐sensitivity of arterial pressure.
Acta Physiol Scand
179:
243–250,
2003.
|
973. |
Higashi Y,
Sasaki S,
Nakagawa K,
Matsuura H,
Oshima T and
Chayama K.
Endothelial function and oxidative stress in renovascular hypertension.
N Engl J Med
346:
1954–1962,
2002.
|
974. |
Lip GY,
Edmunds E,
Nuttall SL,
Landray MJ,
Blann AD and
Beevers DG.
Oxidative stress in malignant and non‐malignant phase hypertension.
J Hum Hypertens
16:
333–336,
2002.
|
975. |
Lee VM,
Quinn PA,
Jennings SC and
Ng LL.
Neutrophil activation and production of reactive oxygen species in pre‐eclampsia.
J Hypertens
21:
395–402,
2003.
|
976. |
Cracowski JL,
Baguet JP,
Ormezzano O,
Bessard J,
Stanke‐Labesque F,
Bessard G and
Mallion JM.
Lipid peroxidation is not increased in patients with untreated mild‐to‐moderate hypertension.
Hypertension
41:
286–288,
2003.
|
977. |
Berry C,
Hamilton CA,
Brosnan MJ,
Magill FG,
Berg GA,
McMurray JJ and
Dominiczak AF.
Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries.
Circulation
101:
2206–2212,
2000.
|
978. |
Bengtsson SH,
Gulluyan LM,
Dusting GJ and
Drummond GR.
Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology.
Clin Exp Pharmacol Physiol
30:
849–854,
2003.
|
979. |
Touyz RM,
Yao G and
Schiffrin EL.
c‐Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells.
Arterioscler Thromb Vasc Biol
23:
981–987,
2003.
|
980. |
Ghiadoni L,
Magagna A,
Versari D,
Kardasz I,
Huang Y,
Taddei S and
Salvetti A.
Different effect of antihypertensive drugs on conduit artery endothelial function.
Hypertension
41:
1281–1286,
2003.
|
981. |
Schachinger V,
Britten MB,
Dimmeler S and
Zeiher AM.
NADH/NADPH oxidase p22phox gene polymorphism is associated with improved coronary endothelial vasodilator function.
Eur Heart J
22:
96–101,
2001.
|
982. |
Brown AA and
Hu FB.
Dietary modulation of endothelial function: implications for cardiovascular disease.
Am J Clin Nutr
73:
673–686,
2001.
|
983. |
Cai H,
Griendling KK and
Harrison DG.
The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases.
Trends Pharmacol Sci
24:
471–478,
2003.
|
984. |
Kawada N,
Imai E,
Karber A,
Welch WJ and
Wilcox CS.
A mouse model of angiotensin II slow pressor response: role of oxidative stress.
J Am Soc Nephrol
13:
2860–2868,
2002.
|
985. |
Welch WJ and
Wilcox CS.
AT1 receptor antagonist combats oxidative stress and restores nitric oxide signaling in the SHR.
Kidney Int
59:
1257–1263,
2001.
|
986. |
Vaziri ND,
Dicus M,
Ho ND,
Boroujerdi‐Rad L and
Sindhu RK.
Oxidative stress and dysregulation of superoxide dismutase and NADPH oxidase in renal insufficiency.
Kidney Int
63:
179–185,
2003.
|
987. |
Sedeek MH,
Llinas MT,
Drummond H,
Fortepiani L,
Abram SR,
Alexander BT,
Reckelhoff JF and
Granger JP.
Role of reactive oxygen species in endothelin‐induced hypertension.
Hypertension
42:
806–810,
2003.
|
988. |
Zheng JS,
Yang XQ,
Lookingland KJ,
Fink GD,
Hesslinger C,
Kapatos G,
Kovesdi I and
Chen AF.
Gene transfer of human guanosine 5'‐triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension.
Circulation
108:
1238–1245,
2003.
|
989. |
Hoagland KM,
Maier KG and
Roman RJ.
Contributions of 20‐HETE to the antihypertensive effects of Tempol in Dahl salt‐sensitive rats.
Hypertension
41:
697–702,
2003.
|
990. |
Maffei A,
Poulet R,
Vecchione C,
Colella S,
Fratta L,
Frati G,
Trimarco V,
Trimarco B and
Lembo G.
Increased basal nitric oxide release despite enhanced free radical production in hypertension.
J Hypertens
20:
1135–1142,
2002.
|
991. |
Chu Y,
Iida S,
Lund DD,
Weiss RM,
DiBona GF,
Watanabe Y,
Faraci FM and
Heistad DD.
Gene transfer of extracellular superoxide dismutase reduces arterial pressure in spontaneously hypertensive rats: role of heparin‐binding domain.
Circ Res
92:
461–468,
2003.
|
992. |
Mervaala EM,
Cheng ZJ,
Tikkanen I,
Lapatto R,
Nurminen K,
Vapaatalo H,
Muller DN,
Fiebeler A,
Ganten U,
Ganten D and
Luft FC.
Endothelial dysfunction and xanthine oxidoreductase activity in rats with human renin and angiotensinogen genes.
Hypertension
37:
414–418,
2001.
|
993. |
Yang H,
Shi M,
VanRemmen H,
Chen X,
Vijg J,
Richardson A and
Guo Z.
Reduction of pressor response to vasoconstrictor agents by overexpression of catalase in mice.
Am J Hypertens
16:
1–5,
2003.
|
994. |
Barton CH,
Ni Z and
Vaziri ND.
Enhanced nitric oxide inactivation in aortic coarctation‐induced hypertension.
Kidney Int
60:
1083–1087,
2001.
|
995. |
Gonzalez‐Pacheco FR,
Caramelo C,
Castilla MA,
Deudero JJ,
Arias J,
Yague S,
Jimenez S,
Bragado R and
Alvarez‐Arroyo MV.
Mechanism of vascular smooth muscle cells activation by hydrogen peroxide: role of phospholipase C gamma.
Nephrol Dial Transplant
17:
392–398,
2002.
|
996. |
Grover AK,
Samson SE,
Robinson S and
Kwan CY.
Effects of peroxynitrite on sarcoplasmic reticulum Ca2+ pump in pig coronary artery smooth muscle.
Am J Physiol Cell Physiol
284:
C294–C301,
2003.
|
997. |
Awe SO,
Tsakadze NL,
D'Souza SE and
Adeagbo AS.
Tert‐butyl hydroperoxide‐mediated vascular responses in DOCA‐salt hypertensive rats.
Vascul Pharmacol
40:
51–57,
2003.
|
998. |
Ulker S,
McMaster D,
McKeown PP and
Bayraktutan U.
Impaired activities of antioxidant enzymes elicit endothelial dysfunction in spontaneous hypertensive rats despite enhanced vascular nitric oxide generation.
Cardiovasc Res
59:
488–500,
2003.
|
999. |
Chabrashvili T,
Kitiyakara C,
Blau J,
Karber A,
Aslam S,
Welch WJ and
Wilcox CS.
Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression.
Am J Physiol Regul Integr Comp Physiol
285:
R117–R124,
2003.
|
1000. |
Ortiz PA and
Garvin JL.
Superoxide stimulates NaCl absorption by the thick ascending limb.
Am J Physiol Renal Physiol
283:
F957–F962,
2002.
|
1001. |
Makino A,
Skelton MM,
Zou AP and
Cowley AW, Jr.
Increased renal medullary H2O2 leads to hypertension.
Hypertension
42:
25–30,
2003.
|
1002. |
Wagner OF,
Christ G,
Wojta J,
Vierhapper H,
Parzer S.
Nowotny PJ,
Schneider B,
Waldhausl W and
Binder BR.
Polar secretion of endothelin‐1 by cultured endothelial cells.
J Biol Chem
267:
16066–16068,
1992.
|
1003. |
Hickey KA,
Rubanyi G,
Paul RJ and
Highsmith RF.
Characterization of a coronary vasoconstrictor produced by cultured endothelial cells.
Am J Physiol
248:
C550–C556,
1985.
|
1004. |
Yanagisawa M,
Kurihara H,
Kimura S,
Tomobe Y,
Kobayashi M,
Mitsui Y,
Yazaki Y,
Goto K and
Masaki T.
A novel potent vasoconstrictor peptide produced by vascular endothelial cells.
Nature
332:
411–415,
1988.
|
1005. |
Kurihara Y,
Kurihara H,
Suzuki H,
Kodama T,
Maemura K,
Nagai R,
Oda H,
Kuwaki T,
Cao WH,
Kamada N,
et al.
Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin‐1.
Nature
368:
703–710,
1994.
|
1006. |
Clouthier DE,
Hosoda K,
Richardson JA,
Williams SC,
Yanagisawa H,
Kuwaki T,
Kumada M,
Hammer RE and
Yanagisawa M.
Cranial and cardiac neural crest defects in endothelin‐A receptor‐deficient mice.
Development
125:
813–824,
1998.
|
1007. |
Schiffrin EL,
Deng LY,
Sventek P and
Day R.
Enhanced expression of endothelin‐1 gene in resistance arteries in severe human essential hypertension.
J Hypertens
15:
57–63,
1997.
|
1008. |
Cardillo C,
Campia U,
Kilcoyne CM,
Bryant MB and
Panza JA.
Improved endothelium‐dependent vasodilation after blockade of endothelin receptors in patients with essential hypertension.
Circulation
105:
452–456,
2002.
|
1009. |
Cardillo C,
Kilcoyne CM,
Waclawiw M,
Cannon RO, III and
Panza JA.
Role of endothelin in the increased vascular tone of patients with essential hypertension.
Hypertension
33:
753–758,
1999.
|
1010. |
Verhaar MC,
Strachan FE,
Newby DE,
Cruden NL,
Koomans HA,
Rabelink TJ and
Webb DJ.
Endothelin‐A receptor antagonist‐mediated vasodilatation is attenuated by inhibition of nitric oxide synthesis and by endothelin‐B receptor blockade.
Circulation
97:
752–756,
1998.
|
1011. |
Malek A and
Izumo S.
Physiological fluid shear stress causes downregulation of endothelin‐1 mRNA in bovine aortic endothelium.
Am J Physiol
263:
C389–C396,
1992.
|
1012. |
Boulanger C and
Luscher TF.
Release of endothelin from the porcine aorta. Inhibition by endothelium‐derived nitric oxide.
J Clin Invest
85:
587–590,
1990.
|
1013. |
Iglarz M,
Touyz RM,
Amiri F,
Lavoie MF,
Diep QN and
Schiffrin EL.
Effect of peroxisome proliferator‐activated receptor‐alpha and ‐gamma activators on vascular remodeling in endothelin‐dependent hypertension.
Arterioscler Thromb Vasc Biol
23:
45–51,
2003.
|
1014. |
Yang ZH,
Richard V,
von Segesser L,
Bauer E,
Stulz P,
Turina M and
Luscher TF.
Threshold concentrations of endothelin‐1 potentiate contractions to norepinephrine and serotonin in human arteries. A new mechanism of vasospasm?
Circulation
82:
188–195,
1990.
|
1015. |
Haynes WG,
Hand MF,
Johnstone HA,
Padfield PL and
Webb DJ.
Direct and sympathetically mediated venoconstriction in essential hypertension. Enhanced responses to endothelin‐1.
J Clin Invest
94:
1359–1364,
1994.
|
1016. |
Quehenberger P,
Exner M,
Sunder‐Plassmann R,
Ruzicka K,
Bieglmayer C,
Endler G,
Muellner C,
Speiser W and
Wagner O.
Leptin induces endothelin‐1 in endothelial cells in vitro.
Circ Res
90:
711–718,
2002.
|
1017. |
Delerive P,
Martin‐Nizard F,
Chinetti G,
Trottein F,
Fruchart JC,
Najib J,
Duriez P and
Staels B.
Peroxisome proliferator‐activated receptor activators inhibit thrombin‐induced endothelin‐1 production in human vascular endothelial cells by inhibiting the activator protein‐1 signaling pathway.
Circ Res
85:
394–402,
1999.
|
1018. |
Kahler J,
Mendel S,
Weckmuller J,
Orzechowski HD,
Mittmann C,
Koster R,
Paul M,
Meinertz T and
Munzel T.
Oxidative stress increases synthesis of big endothelin‐1 by activation of the endothelin‐1 promoter.
J Mol Cell Cardiol
32:
1429–1437,
2000.
|
1019. |
Wedgwood S,
Dettman RW and
Black SM.
ET‐1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species.
Am J Physiol Lung Cell Mol Physiol
281:
L1058–L1067,
2001.
|
1020. |
Iglarz M and
Schiffrin EL.
Role of endothelin‐1 in hypertension.
Curr Hypertens Rep
5:
144–148,
2003.
|
1021. |
Park JB and
Schiffrin EL.
Cardiac and vascular fibrosis and hypertrophy in aldosterone‐infused rats: role of endothelin‐1.
Am J Hypertens
15:
164–169,
2002.
|
1022. |
Park JB and
Schiffrin EL.
ET(A) receptor antagonist prevents blood pressure elevation and vascular remodeling in aldosterone‐infused rats.
Hypertension
37:
1444–1449,
2001.
|
1023. |
Tostes RC,
Touyz RM,
He G,
Ammarguellat F and
Schiffrin EL.
Endothelin A receptor blockade decreases expression of growth factors and collagen and improves matrix metalloproteinase‐2 activity in kidneys from stroke‐prone spontaneously hypertensive rats.
J Cardiovasc Pharmacol
39:
892–900,
2002.
|
1024. |
Ammarguellat F,
Larouche I and
Schiffrin EL.
Myocardial fibrosis in DOCA‐salt hypertensive rats: effect of endothelin ET(A) receptor antagonism.
Circulation
103:
319–324,
2001.
|
1025. |
Hirotani S,
Otsu K,
Nishida K,
Higuchi Y,
Morita T,
Nakayama H,
Yamaguchi O,
Mano T,
Matsumura Y,
Ueno H,
Tada M and
Hori M.
Involvement of nuclear factor‐kappaB and apoptosis signal‐regulating kinase 1 G in‐protein‐coupled receptor agonist‐induced cardiomyocyte hypertrophy.
Circulation
105:
509–515,
2002.
|
1026. |
Cheng HF and
Harris RC.
Cyclooxygenases, the kidney, and hypertension.
Hypertension
43:
525–530,
2004.
|
1027. |
Oates JA,
FitzGerald GA,
Branch RA,
Jackson EK,
Knapp HR and
Roberts LJ, II.
Clinical implications of prostaglandin and thromboxane A2 formation (1).
N Engl J Med
319:
689–698,
1988.
|
1028. |
Oates JA,
FitzGerald GA,
Branch RA,
Jackson EK,
Knapp HR and
Roberts LJ, II.
Clinical implications of prostaglandin and thromboxane A2 formation (2).
N Engl J Med
319:
761–767,
1988.
|
1029. |
Dunn M.
The role of arachidonic acid metabolites in renal homeostasis. Non‐steroidal anti‐inflammatory drugs renal function and biochemical, histological and clinical effects and drug interactions.
Drugs
33
(Suppl 1):
56–66,
1987.
|
1030. |
Gurwitz JH,
Avorn J,
Bohn RL,
Glynn RJ,
Monane M and
Mogun H.
Initiation of antihypertensive treatment during nonsteroidal anti‐inflammatory drug therapy.
JAMA
272:
781–786,
1994.
|
1031. |
Johnson AG,
Nguyen TV and
Day RO.
Do nonsteroidal antiinflammatory drugs affect blood pressure? A meta‐analysis.
Ann Intern Med
121:
289–300,
1994.
|
1032. |
Whelton A.
COX‐2‐specific inhibitors and the kidney: effect on hypertension and oedema.
J Hypertens(Suppl 20):
S31–S35,
2002.
|
1033. |
Frishman WH.
Effects of nonsteroidal anti‐inflammatory drug therapy on blood pressure and peripheral edema.
Am J Cardiol
89:
18D–25D,
2002.
|
1034. |
de Leeuw PW.
Nonsteroidal anti‐inflammatory drugs and hypertension. The risks in perspective.
Drugs
51:
179–187,
1996.
|
1035. |
Qi Z,
Hao CM,
Langenbach RI,
Breyer RM,
Redha R,
Morrow JD and
Breyer MD.
Opposite effects of cyclooxygenase‐1 and ‐2 activity on the pressor response to angiotensin II.
J Clin Invest
110:
61–69,
2002.
|
1036. |
McAdam BF,
Catella‐Lawson F,
Mardini IA,
Kapoor S,
Lawson JA and
FitzGerald GA.
Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)‐2: the human pharmacology of a selective inhibitor of COX‐2.
Proc Natl Acad Sci USA
96:
272–277,
1999.
|
1037. |
Mukherjee D,
Nissen SE and
Topol EJ.
Risk of cardiovascular events associated with selective COX‐2 inhibitors.
JAMA
286:
954–959,
2001.
|
1038. |
FitzGerald GA and
Patrono C.
The coxibs, selective inhibitors of cyclooxygenase‐2.
N Engl J Med
345:
433–442,
2001.
|
1039. |
Cheng HF and
Harris RC.
Does cyclooxygenase‐2 affect blood pressure?
Curr Hypertens Rep
5:
87–92,
2003.
|
1040. |
Fujino T,
Nakagawa N,
Yuhki K,
Hara A,
Yamada T,
Takayama K,
Kuriyama S,
Hosoki Y,
Takahata O,
Taniguchi T,
Fukuzawa J,
Hasebe N,
Kikuchi K,
Narumiya S and
Ushikubi F.
Decreased susceptibility to renovascular hypertension in mice lacking the prostaglandin 12 receptor IP.
J Clin Invest
114:
805–812,
2004.
|
1041. |
Francois H and
Coffman TM.
Prostanoids and blood pressure: Which way is up?
J Clin Invest
114:
757–759,
2004.
|
1042. |
Capdevila J,
Chacos N,
Werringloer J,
Prough RA and
Estabrook RW.
Liver microsomal cytochrome P‐450 and the oxidative metabolism of arachidonic acid.
Proc Natl Acad Sci USA
78:
5362–5366,
1981.
|
1043. |
Needleman P,
Turk J,
Jakschik BA,
Morrison AR and
Lefkowith JB.
Arachidonic acid metabolism.
Annu Rev Biochem
55:
69–102,
1986.
|
1044. |
McGiff JC and
Quilley J.
20‐HETE and the kidney: resolution of old problems and new beginnings.
Am J Physiol
277:
R607–R623,
1999.
|
1045. |
Fleming I,
Michaelis UR,
Bredenkotter D,
Fisslthaler B,
Dehghani F,
Brandes RP and
Busse R.
Endothelium‐derived hyperpolarizing factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries.
Circ Res
88:
44–51,
2001.
|
1046. |
Roman RJ.
P‐450 metabolites of arachidonic acid in the control of cardiovascular function.
Physiol Rev
82:
131–185,
2002.
|
1047. |
Miyata N and
Roman RJ.
Role of 20‐hydroxyeicosatetraenoic acid (20‐HETE) in vascular system.
J Smooth Muscle Res
41:
175–193,
2005.
|
1048. |
Maier KG and
Roman RJ.
Cytochrome P450 metabolites of arachidonic acid in the control of renal function.
Curr Opin Nephrol Hypertens
10:
81–87,
2001.
|
1049. |
Sarkis A and
Roman RJ.
Role of cytochrome P450 metabolites of arachidonic acid in hypertension.
Curr Drug Metab
5:
245–256,
2004.
|
1050. |
Iwai N and
Inagami T.
Isolation of preferentially expressed genes in the kidneys of hypertensive rats.
Hypertension
17:
161–169,
1991.
|
1051. |
Omata K,
Abraham NG,
Escalante B and
Schwartzman ML.
Age‐related changes in renal cytochrome P‐450 arachidonic acid metabolism in spontaneously hypertensive rats.
Am J Physiol
262:
F8–F16,
1992.
|
1052. |
Ma YH,
Schwartzman ML and
Roman RJ.
Altered renal P‐450 metabolism of arachidonic acid in Dahl salt‐sensitive rats.
Am J Physiol
267:
R579–R589,
1994.
|
1053. |
Stec DE,
Deng AY,
Rapp JP and
Roman RJ.
Cytochrome P4504A genotype cosegregates with hypertension in Dahl S rats.
Hypertension
27:
564–568,
1996.
|
1054. |
Stec DE,
Mattson DL and
Roman RJ.
Inhibition of renal outer medullary 20‐HETE production produces hypertension in Lewis rats.
Hypertension
29:
315–319,
1997.
|
1055. |
Holla VR,
Adas F,
Imig JD,
Zhao X,
Price E, Jr.,
Olsen N,
Kovacs WJ,
Magnuson MA,
Keeney DS,
Breyer MD,
Falck JR,
Waterman MR and
Capdevila JH.
Alterations in the regulation of androgen‐sensitive Cyp 4a monooxygenases cause hypertension.
Proc Natl Acad Sci USA
98:
5211–5216,
2001.
|
1056. |
Honeck H,
Gross V,
Erdmann B,
Kargel E,
Neunaber R,
Milia AF,
Schneider W,
Luft FC and
Schunck WH.
Cytochrome P450‐dependent renal arachidonic acid metabolism in desoxy‐corticosterone acetate‐salt hypertensive mice.
Hypertension
36:
610–616,
2000.
|
1057. |
Gross V,
Schneider W,
Schunck WH,
Mervaala E and
Luft FC.
Chronic effects of lovastatin and bezafibrate on cortical and medullary hemodynamics in deoxycorticosterone acetate‐salt hypertensive mice.
J Am Soc Nephrol
10:
1430–1439,
1999.
|
1058. |
Sinal CJ,
Miyata M,
Tohkin M,
Nagata K,
Bend JR and
Gonzalez FJ.
Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation.
J Biol Chem
275:
40504–40510,
2000.
|
1059. |
Laffer CL,
Laniado‐Schwartzman M,
Wang MH,
Nasjletti A and
Elijovich F.
20‐HETE and furosemide‐induced natriuresis in salt‐sensitive essential hypertension.
Hypertension
41:
703–708,
2003.
|
1060. |
Wu S,
Moomaw CR,
Tomer KB,
Falck JR and
Zeldin DC.
Molecular cloning and expression of CYP212, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart.
J Biol Chem
271:
3460–3468,
1996.
|
1061. |
Catella F,
Lawson JA,
Fitzgerald DJ and
FitzGerald GA.
Endogenous biosynthesis of arachidonic acid epoxides in humans: increased formation in pregnancy‐induced hypertension.
Proc Natl Acad Sci USA
87:
5893–5897,
1990.
|
1062. |
Begum N,
Duddy N,
Sandu O,
Reinzie J and
Ragolia L.
Regulation of myosin‐bound protein phosphatase by insulin in vascular smooth muscle cells: evaluation of the role of Rho kinase and phosphatidylinositol‐3‐kinase‐dependent signaling pathways.
Mol Endocrinol
14:
1365–1376,
2000.
|
1063. |
Gupta S,
Phipps K and
Ruderman NB.
Differential stimulation of Na+ pump activity by insulin and nitric oxide in rabbit aorta.
Am J Physiol
270:
H1287–H1293,
1996.
|
1064. |
Hayashi K,
Saga H,
Chimori Y,
Kimura K,
Yamanaka Y and
Sobue K.
Differentiated phenotype of smooth muscle cells depends on signaling pathways through insulin‐like growth factors and phosphatidylinositol 3‐kinase.
J Biol Chem
273:
28860–28867,
1998.
|
1065. |
Isenovic ER,
Meng Y,
Divald A,
Milivojevic N and
Sowers JR.
Role of phosphatidylinositol 3‐kinase/Akt pathway in angiotensin II and insulin‐like growth factor‐1 modulation of nitric oxide synthase in vascular smooth muscle cells.
Endocrine
19:
287–292,
2002.
|
1066. |
Li D,
Sweeney G,
Wang Q and
Klip A.
Participation of PI3K and atypical PKC in Na+‐K+‐pump stimulation by IGF‐I in VSMC I.
Am J Physiol
276:
H2109–H2116,
1999.
|
1067. |
Montagnani M,
Chen H,
Barr VA and
Quon MJ.
Insulin‐stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179).
J Biol Chem
276:
30392–30398,
2001.
|
1068. |
Montagnani M,
Ravichandran LV,
Chen H,
Esposito DL and
Quon MJ.
Insulin receptor substrate‐1 and phosphoinositide‐dependent kinase‐1 are required for insulin‐stimulated production of nitric oxide in endothelial cells.
Mol Endocrinol
16:
1931–1942,
2002.
|
1069. |
Sandu OA,
Ito M and
Begum N.
Selected contribution: NO insulin utilizes/cGMP pathway to activate myosin phosphatase via Rho inhibition in vascular smooth muscle.
J Appl Physiol
91:
1475–1482,
2001.
|
1070. |
Standley PR,
Zhang F,
Ram JL,
Zemel MB and
Sowers JR.
Insulin attenuates vasopressin‐induced calcium transients and a voltage‐dependent calcium response in rat vascular smooth muscle cells.
J Clin Invest
88:
1230–1236,
1991.
|
1071. |
Walsh MF,
Barazi M,
Pete G,
Muniyappa R,
Dunbar JC and
Sowers JR.
Insulin‐like growth factor I diminishes in vivo and in vitro vascular contractility: role of vascular nitric oxide.
Endocrinology
137:
1798–1803,
1996.
|
1072. |
Zeng G and
Quon MJ.
Insulin‐stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells.
J Clin Invest
98:
894–898,
1996.
|
1073. |
Zeng G,
Nystrom FH,
Ravichandran LV,
Cong LN,
Kirby M,
Mostowski H and
Quon MJ.
Roles for insulin receptor. PI3‐kinase, and Akt in insulin‐signaling pathways related to production of nitric oxide in human vascular endothelial cells.
Circulation
101:
1539–1545,
2000.
|
1074. |
Standley PR,
Zhang F,
Zayas RM,
Muniyappa R,
Walsh MF,
Cragoe E and
Sowers JR.
IGF‐I regulation of Na(+)‐K(+)‐ATPase in rat arterial smooth muscle.
Am J Physiol
273:
E113–E121,
1997.
|
1075. |
Isenovic E,
Muniyappa R,
Milivojevic N,
Rao Y and
Sowers JR.
Role of PI3 kinase in isoproterenol and IGF‐1 induced ecNOS activity.
Biochem Biophys Res Commun
285:
954–958,
2001.
|
1076. |
Kim YB,
Nikoulina SE,
Ciaraldi TP,
Henry RR and
Kahn BB.
Normal insulin‐dependent activation of Akt/B, protein kinase, with diminished activation of phosphoinositide 3‐kinase, in muscle in type 2 diabetes.
J Clin Invest
104:
733–741,
1999.
|
1077. |
Isenovic ER,
Divald A,
Milivojevic N,
Grgurevic T,
Fisher SE and
Sowers JR.
Interactive effects of insulin‐like growth factor‐1 and beta‐estradiol on endothelial nitric oxide synthase activity in rat aortic endothelial cells.
Metabolism
52:
482–487,
2003.
|
1078. |
Ferri C,
Bellini C,
Desideri G,
Giuliani E,
de Siati L,
Cicogna S and
Santucci A.
Clustering of endothelial markers of vascular damage in human salt‐sensitive hypertension: influence of dietary sodium load and depletion.
Hypertension
32:
862–868,
1998.
|
1079. |
McFarlane SI,
Banerji M and
Sowers JR.
Insulin resistance and cardiovascular disease.
J Clin Endocrinol Metab
86:
713–718,
2001.
|
1080. |
Sechi LA,
Melis A and
Tedde R.
Insulin hypersecretion: a distinctive feature between essential and secondary hypertension.
Metabolism
41:
1261–1266,
1992.
|
1081. |
Sowers JR,
Epstein M and
Frohlich ED.
Diabetes, hypertension, and cardiovascular disease: an update.
Hypertension
37:
1053–1059,
2001.
|
1082. |
Sowers JR.
Insulin resistance and hypertension.
Am J Physiol Heart Circ Physiol
286:
H1597–H1602,
2004.
|
1083. |
Steinberg HO,
Chaker H,
Leaming R,
Johnson A,
Brechtel G and
Baron AD.
Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance.
J Clin Invest
97:
2601–2610,
1996.
|
1084. |
Vecchione C,
Colella S,
Fratta L,
Gentile MT,
Selvetella G,
Frati G,
Trimarco B and
Lembo G.
Impaired insulin‐like growth factor I vasorelaxant effects in hypertension.
Hypertension
37:
1480–1485,
2001.
|
1085. |
Cheng ZJ,
Vaskonen T,
Tikkanen I,
Nurminen K,
Ruskoaho H,
Vapaatalo H,
Muller D,
Park JK,
Luft FC and
Mervaala EM.
Endothelial dysfunction and salt‐sensitive hypertension in spontaneously diabetic Goto‐Kakizaki rats.
Hypertension
37:
433–439,
2001.
|
1086. |
Ouchi Y,
Han SZ,
Kim S,
Akishita M,
Kozaki K,
Toba K and
Orimo H.
Augmented contractile function and abnormal Ca2+ handling in the aorta of Zucker obese rats with insulin resistance.
Diabetes
45
(Suppl 3):
S55–S58,
1996.
|
1087. |
Standley PR,
Rose KA and
Sowers JR.
Increased basal arterial smooth muscle glucose transport in the Zucker rat.
Am J Hypertens
8:
48–52,
1995.
|
1088. |
Standley PR,
Ram JL and
Sowers JR.
Insulin attenuation of vasopressin‐induced calcium responses in arterial smooth muscle from Zucker rats.
Endocrinology
133:
1693–1699,
1993.
|
1089. |
Sowers JR and
Haffner S.
Treatment of cardiovascular and renal risk factors in the diabetic hypertensive.
Hypertension
40:
781–788,
2002.
|
1090. |
Fukuda N,
Satoh C,
Hu WY,
Nakayama M,
Kishioka H and
Kanmatsuse K.
Endogenous angiotensin II suppresses insulin signaling in vascular smooth muscle cells from spontaneously hypertensive rats.
J Hypertens
19:
1651–1658,
2001.
|
1091. |
Cifuentes ME,
Rey FE,
Carretero OA and
Pagano PJ.
Upregulation of p67(phox) and gp91(phox) in aortas from angiotensin II‐infused mice.
Am J Physiol Heart Circ Physiol
279:
H2234–H2240,
2000.
|
1092. |
Fukui T,
Ishizaka N,
Rajagopalan S,
Laursen JB,
Capers QT,
Taylor WR,
Harrison DG,
de Leon H,
Wilcox JN and
Griendling KK.
p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats.
Circ Res
80:
45–51,
1997.
|
1093. |
Gorlach A,
Brandes RP,
Nguyen K,
Amidi M,
Dehghani F and
Busse R.
A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall.
Circ Res
87:
26–32,
2000.
|
1094. |
Julin CM,
Zimmerman JJ,
Sundaram V and
Chobanian MC.
Activated neutrophils inhibit Na(+)‐K(+)‐A. T. Pase in canine renal basolateral membrane.
Am J Physiol
262:
C1364–C1370,
1992.
|
1095. |
Kitazawa T,
Eto M,
Woodsome TP and
Brautigan DL.
Agonists trigger protein G mediated activation of the CPI‐17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility.
J Biol Chem
275:
9897–9900,
1992.
|
1096. |
Lassegue B,
Sorescu D,
Szocs K,
Yin Q,
Akers M,
Zhang Y,
Grant SL,
Lambeth JD and
Griendling KK.
Novel gp91(phox) homologues in vascular smooth muscle cells: noxl mediates angiotensin II‐induced superoxide formation and redox‐sensitive signaling pathways.
Circ Res
88:
888–894,
2001.
|
1097. |
Laufs U and
Liao JK.
Post‐transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase.
J Biol Chem
273:
24266–24271,
1998.
|
1098. |
Lum H and
Roebuck KA.
Oxidant stress and endothelial cell dysfunction.
Am J Physiol Cell Physiol
280:
C719–C741,
2001.
|
1099. |
Ming XF,
Viswambharan H,
Barandier C,
Ruffieux J,
Kaibuchi K,
Rusconi S and
Yang Z.
Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells.
Mol Cell Biol
22:
8467–8477,
2001.
|
1100. |
Kee Y,
Yoo JS,
Hazuka CD,
Peterson KE,
Hsu SC and
Scheller RH.
Subunit structure of the mammalian exocyst complex.
Proc Natl Acad Sci USA
94:
14438–14443,
1997.
|
1101. |
Pueyo ME,
Arnal JF,
Rami J and
Michel JB.
Angiotensin II stimulates the production of NO and peroxynitrite in endothelial cells.
Am J Physiol
274:
C214–C220,
1998.
|
1102. |
Sawada N,
Itoh H,
Yamashita J,
Doi K,
Inoue M,
Masatsugu K,
Fukunaga Y,
Sakaguchi S,
Sone M,
Yamahara K,
Yurugi T and
Nakao K.
cGMP‐dependent protein kinase phosphorylates and inactivates RhoA.
Biochem Biophys Res Commun
280:
798–805,
2001.
|
1103. |
Shao Q,
Matsubara T,
Bhatt SK and
Dhalla NS.
Inhibition of cardiac sarcolemma Na(+)‐K+ ATPase by oxyradical generating systems.
Mol Cell Biochem
147:
139–144,
1995.
|
1104. |
Sowers JR.
Hypertension, angiotensin II, and oxidative stress.
N Engl J Med
346:
1999–2001,
2002.
|
1105. |
Takemoto M,
Sun J,
Hiroki J,
Shimokawa H and
Liao JK.
Rhokinase mediates hypoxia‐induced downregulation of endothelial nitric oxide synthase.
Circulation
106:
57–62,
2002.
|
1106. |
Wang HD,
Xu S,
Johns DG,
Du Y,
Quinn MT,
Cayatte AJ and
Cohen RA.
Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice.
Circ Res
88:
947–953,
2001.
|
1107. |
Lincoln TM,
Dey N and
Sellak H.
Invited review: cGMP‐dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression.
J Appl Physiol
91:
1421–1430,
2001.
|
1108. |
Surks HK,
Mochizuki N,
Kasai Y,
Georgescu SP,
Tang KM,
Ito M,
Lincoln TM and
Mendelsohn ME.
Regulation of myosin phosphatase by a specific interaction with cGMP‐dependent protein kinase Ialpha.
Science
286:
1583–1587,
1999.
|
1109. |
Begum N and
Ragolia L.
Altered regulation of insulin signaling components in adipocytes of insulin‐resistant type II diabetic Goto‐Kakizaki rats.
Metabolism
47:
54–62,
1998.
|
1110. |
Sandu OA,
Ragolia L and
Begum N.
Diabetes in the Goto‐Kakizaki rat is accompanied by impaired insulin‐mediated myosin‐bound phosphatase activation and vascular smooth muscle cell relaxation.
Diabetes
49:
2178–2189,
2000.
|
1111. |
Henriksen EJ,
Jacob S,
Kinnick TR,
Teachey MK and
Krekler M.
Selective angiotensin II receptor receptor antagonism reduces insulin resistance in obese Zucker rats.
Hypertension
38:
884–890,
2001.
|
1112. |
Rajakrishnan V,
Viswanathan P,
Rajasekharan KN and
Menon VP.
Neuroprotective role of curcumin from curcuma longa on ethanol‐induced brain damage.
Phytother Res
13:
571–574,
1999.
|
1113. |
Navarro‐Cid J,
Maeso R,
Perez‐Vizcaino F,
Cachofeiro V,
Ruilope LM,
Tamargo J and
Lahera V.
Effects of losartan on blood pressure, metabolic alterations, and vascular reactivity in the fructose‐induced hypertensive rat.
Hypertension
26:
1074–1078,
1995.
|
1114. |
Blair AS,
Hajduch E,
Litherland GJ and
Hundal HS.
Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress. Evidence for cross‐talk between the insulin and SAPK2/p38 mitogen‐activated protein kinase signaling pathways.
J Biol Chem
274:
36293–36299,
1999.
|
1115. |
Hansen LL,
Ikeda Y,
Olsen GS,
Busch AK and
Mosthaf L.
Insulin signaling is inhibited by micromolar concentrations of H(2)O(2). Evidence for a role of H(2)O(2) in tumor necrosis factor alpha‐mediated insulin resistance.
J Biol Chem
274:
25078–25084,
1999.
|
1116. |
Katovich MJ,
Reaves PY,
Francis SC,
Pachori AS,
Wang HW and
Raizada MK.
Gene therapy attenuates the elevated blood pressure and glucose intolerance in an insulin‐resistant model of hypertension.
J Hypertens
19:
1553–1558,
2001.
|
1117. |
Ogihara T,
Asano T,
Ando K,
Chiba Y,
Sakoda H,
Anai M,
Shojima N,
Ono H,
Onishi Y,
Fujishiro M,
Katagiri H,
Fukushima Y,
Kikuchi M,
Noguchi N,
Aburatani H,
Komuro I and
Fujita T.
Angiotensin II‐induced insulin resistance is associated with enhanced insulin signaling.
Hypertension
40:
872–879,
2002.
|
1118. |
Gerstein HC.
Reduction of cardiovascular events and microvascular complications in diabetes with ACE inhibitor treatment: HOPE and MICRO‐HOPE.
Diabetes Metab Res Rev
18
(Suppl 3):
S82–S85,
2002.
|
1119. |
Lindholm LH,
Ibsen H,
Dahlof B,
Devereux RB,
Beevers G,
de Faire U,
Fyhrquist F,
Julius S,
Kjeldsen SE,
Kristiansson K,
Lederballe‐Pedersen O,
Nieminen MS,
Omvik P,
Oparil S,
Wedel H,
Aurup P,
Edelman J and
Snapinn S.
Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention for Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol.
Lancet
359:
1004–1010,
2002.
|
1120. |
Privratsky JR,
Wold LE,
Sowers JR,
Quinn MT and
Ren J.
AT1 blockade prevents glucose‐induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase.
Hypertension
42:
206–212,
2003.
|
1121. |
Sharma JN.
Does the kinin system mediate in cardiovascular abnormalities? An overview.
J Clin Pharmacol
43:
1187–1195,
2003.
|
1122. |
Moreau ME,
Garbacki N,
Molinaro G,
Brown NJ,
Marceau F and
Adam A.
The kallikrein‐kinin system: current and future pharmacological targets.
J Pharmacol Sci
99:
6–38,
2005.
|
1123. |
Ignarro LJ,
Byrns RE,
Buga GM and
Wood KS.
Mechanisms of endothelium‐dependent vascular smooth muscle relaxation elicited by bradykinin and VIP.
Am J Physiol
253:
H1074–H1082,
1987.
|
1124. |
Sharma JN.
Interrelationship between the kallikrein‐kinin system and hypertension: a review.
Gen Pharmacol
19:
177–187,
1988.
|
1125. |
Adetuyibi A and
Mills IH.
Relation between urinary kallikrein and renal function, hypertension, and excretion of sodium and water in man.
Lancet
2:
203–207,
1972.
|
1126. |
de Freitas FM,
Faraco EZ and
de Azevedo DF.
General circulatory alterations induced by intravenous infusions of synthetic bradykinin in man.
Circulation
29:
66–70,
1964.
|
1127. |
Webster ME and
Gilmore JP.
Influence of Kallidin‐L0 on renal function.
Am J Physiol
206:
714–718,
1964.
|
1128. |
McGiff JC,
Itskovitz HD and
Terragno NA.
The actions of bradykinin and eledoisin in the canine isolated kidney: relationships to prostaglandins.
Clin Sci Mol Med
49:
125–131,
1975.
|
1129. |
Margolis HS,
Geller R,
Pisano JJ and
Sjoerdsma A.
Altered urinary kallikrein excretion in human hypertension.
Lancet
2:
1063–1065,
1971.
|
1130. |
Margolius HS,
Geller R,
de Jong W,
Pisano JJ and
Sjoerdsma A.
Altered urinary kallikrein excretion in rats with hypertension.
Circ Res
30:
358–362,
1972.
|
1131. |
Sharma JN and
Zeitlin IJ.
Altered plasma kininogen in clinical hypertension.
Lancet
1:
1259–1260,
1981.
|
1132. |
Almeida F.
Malignant hypertension: a syndrome associated with low plasma kininogen and kinin potentiating factor.
Hypertension
3
(6P+2):
46–49,
1981.
|
1133. |
Sharma JN,
Amrah SS and
Noor AR.
Suppression of hypotensive responses of captopril and enalapril by the kallikrein inhibitor aprotinin in spontaneously hypertensive rats.
Pharmacology
50:
363–369,
1995.
|
1134. |
Chao J and
Chao L.
Kallikrein‐kinin in stroke, cardiovascular and renal disease.
Exp Physiol
90:
291–298,
2005.
|
1135. |
Yu H,
Song Q,
Freedman BI,
Chao J,
Chao L,
Rich SS and
Bowden DW.
Association of the tissue kallikrein gene promoter with ESRD and hypertension.
Kidney Int
61:
1030–1039,
2002.
|
1136. |
Favaro S,
Baggio B,
Antonello A,
Zen A,
Cannella G,
Todesco S and
Borsatti A.
Renal kallikrein content of spontaneously hypertensive rats.
Clin Sci Mol Med
49:
69–71,
1975.
|
1137. |
Powers CA,
Baer PG and
Nasjletti A.
Reduced glandular kallikrein‐like activity in the anterior pituitary of the New Zealand genetically hypertensive rat.
Biochem Biophys Res Commun
119:
689–693,
1984.
|
1138. |
Gilboa N,
Rudofsky UH,
Phillips MI and
Magro AM.
Modulation of urinary kallikrein and plasma renin activities does not affect established hypertension in the fawn‐hooded rat.
Nephron
51:
61–66,
1989.
|
1139. |
Bouhnik J,
Richoux JP,
Huang H,
Savoie F,
Baussant T,
Alhenc‐Gelas F and
Corvol P.
Hypertension in Dahl salt‐sensitive rats: biochemical and immunohistochemical studies.
Clin Sci (Lond)
83:
13–22,
1992.
|
1140. |
Madeddu P,
Varoni MV,
Demontis MP,
Chao J,
Simson JA,
Glorioso N and
Anania V.
Kallikrein‐kinin system and blood pressure sensitivity to salt.
Hypertension
29:
471–477,
1997.
|
1141. |
Gavras I and
Gavras H.
Anti‐hormones and blood pressure: bradykinin antagonists in blood pressure regulation.
Kidney Int(Suppl 26):
S60–S62,
1988.
|
1142. |
Majima M.
Mizogami S.
Kuribayashi Y,
Katori M and
Oh‐ishi S.
Hypertension induced by a nonpressor dose of angiotensin II in kininogen‐deficient rats.
Hypertension
24:
111–119,
1994.
|
1143. |
Regoli DC,
Marceau F and
Lavigne J.
Induction of beta 1‐receptors for kinins in the rabbit by a bacterial lipopolysaccharide.
Eur J Pharmacol
71:
105–115,
1981.
|
1144. |
de Blois D and
Horlick RA.
Endotoxin sensitization to kinin B(1) receptor agonist in a non‐human primate model: haemodynamic and pro‐inflammatory effects.
Br J Pharmacol
132:
327–335,
2001.
|
1145. |
Share L.
Role of vasopressin in cardiovascular regulation.
Physiol Rev
68:
1248–1284,
1988.
|
1146. |
Verbalis J.
The syndrome of inappropriate antidimetic hormone secretion and other hyposmolar disorders. In:
Diseases of the Kidney,
pp. 2393–2427,
1997.
|
1147. |
de Wardener HE.
The hypothalamus and hypertension.
Physiol Rev
81:
1599–1658,
2001.
|
1148. |
Cowley AJ and
Liard JF.
Cardiovascular actions of vasopression. In:
Vasopression: Principles and Properties,
pp. 389–433,
1987.
|
1149. |
Bakris G,
Bursztyn M,
Gavras I,
Bresnahan M and
Gavras H.
Role of vasopressin in essential hypertension: racial differences.
J Hypertens
15:
545–550,
1997.
|
1150. |
Crofton JT,
Share L,
Shade RE,
Allen C and
Tarnowski D.
Vasopressin in the rat with spontaneous hypertension.
Am J Physiol
235:
H361–H366,
1978.
|
1151. |
Mohring J,
Kintz J and
Schoun J,
Studies on the role of vasopressin in blood pressure control of spontaneously hypertensive rats with established hypertension (SHR, stroke‐prone strain).
J Cardiovasc Pharmacol
1:
593–608,
1979.
|
1152. |
Matsuguchi H,
Schmid PG,
Van Orden D and
Mark AL.
Does vasopressin contribute to salt‐induced hypertension in the Dahl strain?
Hypertension
3:
174–181,
1981.
|
1153. |
Morris M,
Wren JA and
Sundberg DK.
Central neural peptides and catecholamines in spontaneous and DOCA/salt hypertension.
Peptides
2:
207–211,
1981.
|
1154. |
Os I,
Kjeldsen SE,
Skjoto J,
Westheim A,
Lande K,
Aakesson I,
Frederichsen P,
Leren P,
Hjermann I and
Eide IK.
Increased plasma vasopressin in low renin essential hypertension.
Hypertension
8:
506–513,
1986.
|
1155. |
Khokhar AM and
Slater JD.
Increased renal excretion of arginine‐vasopressin during mild hydropenia in young men with mild essential benign hypertension.
Clin Sci Mol Med(Suppl 3):
691S–694S,
1976.
|
1156. |
Bennett BA,
Clodfelter J,
Sundberg DK and
Morris M.
Cultured hypothalamic explants from spontaneously hypertensive rats have decreased vasopressin and oxytocin content and release.
Am J Hypertens
2:
46–51,
1989.
|
1157. |
Sladek CD and
Blair ML.
Cholinergic stimulation of vasopressin release in spontaneously hypertensive rats.
Hypertension
6:
855–860,
1984.
|
1158. |
DeVito WJ,
Miller M and
Sutterer JR.
Increased secretion of vasopressin and adenosine 3',5'‐monophosphate from hypothalamic‐posterior pituitary units of spontaneously hypertensive rats.
Endocrinology
111:
1958–1963,
1982.
|
1159. |
Sladek CD,
Blair ML,
Chen YH and
Rockhold RW.
Vasopressin and renin response to plasma volume loss in spontaneously hypertensive rats.
Am J Physiol
250:
H443–H452,
1986.
|
1160. |
Blaustein MP.
Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness.
Am J Physiol
264:
C1367–C1387,
1993.
|
1161. |
Hamlyn JM,
Ringel R,
Schaeffer J,
Levinson PD,
Hamilton BP,
Kowarski AA and
Blaustein MP.
A circulating inhibitor of (Na+ + K+)ATPase associated with essential hypertension.
Nature
300:
650–652,
1982.
|
1162. |
Schoner W.
Endogenous cardiac glycosides, a new class of steroid hormones.
Eur J Biochem
269:
2440–2448,
2002.
|
1163. |
Hamlyn JM,
Lu ZR,
Manunta P,
Ludens JH,
Kimura K,
Shah JR,
Laredo J,
Hamilton JP,
Hamilton MJ and
Hamilton BP.
Observations on the nature, biosynthesis, secretion and significance of endogenous ouabain.
Clin Exp Hypertens
20:
523–533,
1998.
|
1164. |
Laredo J,
Hamilton BP and
Hamlyn JM.
Secretion of endogenous ouabain from bovine adrenocortical cells: role of the Zona glomerulosa and Zona fasciculate.
Biochem Biophys Res Commun
212:
487–493,
1995.
|
1165. |
Laredo J,
Shah JR,
Lu ZR,
Hamilton BP and
Hamlyn JM.
Angiotensin II stimulates secretion of endogenous ouabain from bovine adrenocortical cells via angiotensin type 2 receptors.
Hypertension
29:
401–407,
1997.
|
1166. |
Blaustein MP.
Endogenous ouabain: role in the pathogenesis of hypertension.
Kidney Int
49:
1748–1753,
1996.
|
1167. |
Ward SC.
Hamilton BP and
Hamlyn JM.
Novel receptors for ouabain: studies in adrenocortical cells and membranes.
Hypertension
39:
536–542,
2002.
|
1168. |
Marin J and
Redondo J.
Vascular sodium pump: endothelial modulation and alterations in some pathological processes and aging.
Pharmacol Ther
84:
249–271,
1999.
|
1169. |
Arnon A,
Hamlyn JM and
Blaustein MP.
Ouabain augments Ca(2+) transients in arterial smooth muscle without raising cytosolic Na(+).
Am J Physiol Heart Circ Physiol
279:
H679–H691,
2000.
|
1170. |
Hamlyn JM,
Hamilton BP and
Manunta P.
Endogenous ouabain, sodium balance and blood pressure: a review and a hypothesis.
J Hypertens
14:
151–167,
1996.
|
1171. |
Rossi G,
Manunta P,
Hamlyn JM,
Pavan E,
de Toni R,
Semplicini A and
Pessina AC.
Immunoreactive endogenous ouabain in primary aldosteronism and essential hypertension: relationship with plasma renin, aldosterone and blood pressure levels.
J Hypertens
13:
1181–1191,
1995.
|
1172. |
Manunta P,
Stella P,
Rivera R,
Ciurlino D,
Cusi D,
Ferrandi M,
Hamlyn JM and
Bianchi G.
Left ventricular mass, stroke volume, and ouabain‐like factor in essential hypertension.
Hypertension
34:
450–456,
1999.
|
1173. |
Pierdomenico SD,
Bucci A,
Manunta P,
Rivera R,
Ferrandi M,
Hamlyn JM,
Lapenna D,
Cuccurullo F and
Mezzetti A.
Endogenous ouabain and hemodynamic and left ventricular geometric patterns in essential hypertension.
Am J Hypertens
14:
44–50,
2001.
|
1174. |
Manunta P,
Iacoviello M,
Forleo C,
Messaggio E,
Hamlyn JM,
Lucarelli K,
Guida P,
Romito R,
de Tommasi E,
Bianchi G,
Rizzon P and
Pitzalis MV.
High circulating levels of endogenous ouabain in the offspring of hypertensive and normotensive individuals.
J Hypenens
23:
1677–1681,
2005.
|
1175. |
Carey RM.
Theodore Cooper Lecture: renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure.
Hypertension
38:
297–302,
2001.
|
1176. |
Wang ZQ,
Siragy HM,
Felder RA and
Carey RM.
Intrarenal dopamine production and distribution in the rat. Physiological control of sodium excretion.
Hypertension
29:
228–234,
1997.
|
1177. |
Wang ZQ,
Felder RA and
Carey RM.
Selective inhibition of the renal dopamine subtype D1A receptor induces antinatriuresis in conscious rats.
Hypertension
33:
504–510,
1999.
|
1178. |
Siragy HM,
Felder RA,
Howell NL,
Chevalier RL,
Peach MJ and
Carey RM.
Evidence that intrarenal dopamine acts as a paracrine substance at the renal tubule.
Am J Physiol
257:
F469–F477,
1989.
|
1179. |
Jose PA,
Asico LD,
Eisner GM,
Pocchiari F,
Semeraro C and
Felder RA.
Effects of costimulation of dopamine D1‐ and D2‐like receptors on renal function.
Am J Physiol
275:
R986–R994,
1998.
|
1180. |
Gill JR, Jr.,
Gullner G,
Lake CR,
Lakatua DJ and
Lan G.
Plasma and urinary catecholamines in salt‐sensitive idiopathic hypertension.
Hypertension
11:
312–319,
1988.
|
1181. |
Gill JR, Jr.,
Grossman E and
Goldstein DS.
High urinary dopa and low urinary dopamine‐to‐dopa ratio in salt‐sensitive hypertension.
Hypertension
18:
614–621,
1991.
|
1182. |
Clark BA,
Rosa RM,
Epstein FH,
Young JB and
Landsberg L.
Altered dopaminergic responses in hypertension.
Hypertension
19:
589–594,
1992.
|
1183. |
Sowers JR,
Zemel MB,
Zemel P,
Beck FW,
Walsh MF and
Zawada ET.
Salt sensitivity in blacks. Salt intake and natriuretic substances.
Hypertension
12:
485–490,
1988.
|
1184. |
Damasceno A,
Santos A,
Serrao P,
Caupers P,
Soares‐da‐Silva P and
Polonia J.
Deficiency of renal dopaminergic‐dependent natriuretic response to acute sodium load in black salt‐sensitive subjects in contrast to salt‐resistant subjects.
J Hypertens
17:
1995–2001,
1999.
|
1185. |
Saito I,
Itsuji S,
Takeshita E,
Kawabe H,
Nishino M,
Wainai H,
Hasegawa C,
Saruta T,
Nagano S and
Sekihara T.
Increased urinary dopamine excretion in young patients with essential hypertension.
Clin Exp Hypertens
16:
29–39,
1994.
|
1186. |
Saito I,
Takeshita E,
Saruta T,
Nagano S and
Sekihara T.
Urinary dopamine excretion in normotensive subjects with or without family history of hypertension.
J Hypertens
4:
57–60,
1986.
|
1187. |
Grossman E,
Hoffman A,
Tamrat M,
Armando I,
Keiser HR and
Goldstein DS.
Endogenous dopa and dopamine responses to dietary salt loading in salt‐sensitive rats.
J Hypertens
9:
259–263,
1991.
|
1188. |
Racz K,
Kuchel O,
Buu NT and
Tenneson S.
Peripheral dopamine synthesis and metabolism in spontaneously hypertensive rats.
Circ Res
57:
889–897,
1985.
|
1189. |
Albrecht FE,
Drago J,
Felder RA,
Printz MP,
Eisner GM,
Robillard JE,
Sibley DR,
Westphal HJ and
Jose PA.
Role of the D1A dopamine receptor in the pathogenesis of genetic hypertension.
J Clin Invest
97:
2283–2288,
1996.
|
1190. |
Chen C,
Beach RE and
Lokhandwala MF.
Dopamine fails to inhibit renal tubular sodium pump in hypertensive rats.
Hypertension
21:
364–372,
1993.
|
1191. |
Hussain T and
Lokhandwala MF.
Renal dopamine DA1 receptor coupling with G(S) and G(q/11) proteins in spontaneously hypertensive rats.
Am J Physiol
272:
F339–F346,
1997.
|
1192. |
Li XX,
Xu J,
Zheng S,
Albrecht FE,
Robillard JE,
Eisner GM and
Jose PA.
D(1) dopamine receptor regulation of NHE3 during development in spontaneously hypertensive rats.
Am J Physiol Regul Integr Comp Physiol
280:
R1650–R1656,
2001.
|
1193. |
Nishi A,
Eklof AC,
Bertorello AM and
Aperia A.
Dopamine regulation of renal Na+, K(+)‐ATPase activity is lacking in Dahl salt‐sensitive rats.
Hypertension
21:
767–771,
1993.
|
1194. |
Pedrosa R,
Jose PA and
Soares‐da‐Silva P.
Defective D1‐like receptor‐mediated inhibition of the Cl‐/HCO3‐ exchanger in immortalized SHR proximal tubular epithelial cells.
Am J Physiol Renal Physiol
286:
F1120–F1126,
2004.
|
1195. |
Murphy MB,
Murray C and
Shorten GD.
Fenoldopam: a selective peripheral dopamine‐receptor agonist for the treatment of severe hypertension.
N Engl J Med
345:
1548–1557,
2001.
|
1196. |
Felder RA,
Kinoshita S,
Ohbu K,
Mouradian MM,
Sibley DR,
Monsma FJ,
Minowa T,
Minowa MT,
Canessa LM and
Jose PA.
Organ specificity of the dopaminel receptor/adenylyl cyclase coupling defect in spontaneously hypertensive rats.
Am J Physiol
264:
R726–R732,
1993.
|
1197. |
Ohbu K,
Kaskel FJ,
Kinoshita S and
Felder RA.
Dopamine‐1 receptors in the proximal convoluted tubule of Dahl rats: defective coupling to adenylate cyclase.
Am J Physiol
268:
R231–R235,
1995.
|
1198. |
Ohbu K,
Hendley ED,
Yamaguchi I and
Felder RA.
Renal dopamine‐1 receptors in hypertensive inbred rat strains with and without hyperactivity.
Hypertension
21:
485–490,
1993.
|
1199. |
Hollon TR,
Bek MJ,
Lachowicz JE,
Ariano MA,
Mezey E,
Ramachandran R,
Wersinger SR,
Soares‐da‐Silva P,
Liu ZF,
Grinberg A,
Drago J,
Young WS, III
Westphal H,
Jose PA and
Sibley DR.
Mice lacking D5 dopamine receptors have increased sympathetic tone and are hypertensive.
J Neurosci
22:
10801–10810,
2002.
|