References |
1. |
Gale EA.
The discovery of type 1 diabetes.
Diabetes
50:
217–226,
2001.
|
2. |
MacCracken J and
Hoel D.
From ants to analogues. Puzzles and promises in diabetes management.
Postgrad Med
101:
135–138,
1997, 149.
|
3. |
Williamson DF,
Vinicor F and
Bowman BA.
Primary prevention of type 2 diabetes mellitus by lifestyle intervention: implications for health policy.
Ann Intern Med
140:
951–957,
2004.
|
4. |
Creager MA,
Luscher TF,
Cosentino F and
Beckman JA.
Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I.
Circulation
108:
1527–1532,
2003.
|
5. |
Dietzel J.
Oxygen transport impairment in diabetes.
Diabetes
25:
832–838,
1976.
|
6. |
Dietzel J and
Saglid U.
Morphological and hemodynamic changes in the smaller blood vessels in diabetes mellitus.
N Engl J Med
250:
587–598,
1954.
|
7. |
Dietzel J and
Sagild U.
Morphologic and hemodynamic changes in the smaller blood vessels in diabetes mellitus.
N Engl J Med
250:
587–594,
1954.
|
8. |
Agardh E,
Agardh C‐D and
Torffvit O.
A 5‐year follow‐up study on the incidence of retinopathy in type 1 diabetes mellitus in relation to medical risk indicators.
J Intern Med
235:
353–358,
1994.
|
9. |
Angervall L and
Save‐Soderbergh J.
Microangiopathy in the digestive tract in subjects with diabetes of early onset and long duration.
Diabetologia
2:
117–122,
1966.
|
10. |
Tsilibary EC.
Microvascular basement membranes in diabetes mellitus.
J Pathol
200:
537–546,
2003.
|
11. |
Frank RN.
Diabetic retinopathy.
N Engl J Med
350:
48–58,
2004.
|
12. |
Unthank JL and
Bohlen HG.
Technique for long term evaluation of microvascular anatomical characteristics.
Fed Proc
45:
1143,
1986.
|
13. |
Unthank JL and
Bohlen HG.
Quantification of intestinal microvascular growth during maturation: Techniques and observations.
Circ Res
61:
616–624,
1987.
|
14. |
Unthank JL,
Lash JM and
Bohlen HG.
Maturation of the rat intestinal microvasculature from juvenile to early adult life.
Am J Physiol
259:
G282–G289,
1990.
|
15. |
Unthank JL and
Bohlen HG.
Intestinal microvascular growth during maturation in diabetic juvenile rats.
Circ Res
63:
429–436,
1988.
|
16. |
Schedl HP and
Wilson HD.
Effects of diabetes on intestinal growth in the rat.
J Exp Zool
176:
487–496,
1971.
|
17. |
Miller BG,
Overhage JM,
Bohlen HG and
Evan AP.
Hypertrophy of arteriolar smooth muscle cells in the rat small intestine during maturation.
Microvasc Res
29:
56–69,
1985.
|
18. |
Miller BG,
Woods RI,
Bohlen HG and
Evan AP.
A new morphological procedure for viewing microvessels: a scaning electron microscopic study of the vasculature of small intestine.
Anat Rec
203:
493–503,
1982.
|
19. |
Bizuneh M.
Bohlen HG.
Connors BA,
Miller BG and
Evan AP.
Vascular smooth muscle structure and juvenile growth in rat intestinal venules.
Microvasc Res
42:
77–90,
1991.
|
20. |
Connors BA,
Bohlen HG and
Evan AP.
Vascular endothelium and smooth muscle remodeling accompanies hypertrophy of intestinal arterioles in streptozotocin diabetic rats.
Microvasc Res
49:
340–349,
1995.
|
21. |
Rubin MJ and
Bohlen HG.
Cerebral vascular autoregulation of blood flow and tissue PO2 in diabetic rats.
Am J Physiol
249:
H540–H546,
1985.
|
22. |
Bohlen HG and
Niggl BA.
Arteriolar anatomical and functional abnormalities in juvenile mice with genetic or streptozotocin‐induced diabetes mellitus.
Circ Res
45:
390–396,
1979.
|
23. |
Bohlen HG and
Niggl BA.
Early arteriolar disturbances following streptozotocin‐induced diabetes mellitus in adult mice.
Microvasc Res
20:
19–29,
1980.
|
24. |
Moore SA,
Miller B,
Bohlen HG and
Evan AP.
Scanning (SEM) and transmission (TEM) electron microscopic study of cerebral vascular smooth muscle (VSM) in normal and diabetic rats.
Fed Proc
42:
485,
1983.
|
25. |
Moore SA,
Bohlen HG,
Miller BG and
Evan AP.
Cellular and vessel wall morphology of cerebral cortical arterioles after short‐term diabetes in adult rats.
Blood Vessels
22:
265–277,
1985.
|
26. |
Abbasi F,
Brown BW, Jr.,
Lamendola C,
McLaughlin T and
Reaven GM.
Relationship between obesity, insulin resistance, and coronary heart disease risk.
J Am Coll Cardiol
40:
937–943,
2002.
|
27. |
Davy KP and
Hall JE.
Obesity and hypertension: two epidemics or one?
Am J Physiol Regul Integr Comp Physiol
286:
R803–R813,
2004.
|
28. |
Hall JE,
Brands MW and
Henegar JR.
Mechanisms of hypertension and kidney disease in obesity.
Ann N Y Acad Sci
892:
91–107,
1999.
|
29. |
Dubbert PM,
Carithers T,
Sumner AE,
Barbour KA,
Clark BL,
Hall JE and
Crook ED.
Obesity, physical inactivity, and risk for cardiovascular disease.
Am J Med Sci
324:
116–126,
2002.
|
30. |
Conrad MC.
Large and small artery occlusion in diabetics and non‐diabetics with severe vascular disease.
Circulation
36:
83–91,
1967.
|
31. |
Baron AD.
Hemodynamic actions of insulin.
Am J Physiol
267:
E187–E202,
1994.
|
32. |
Baron AD,
Steinberg HO,
Chaker H,
Leaming R,
Johnson A and
Brechtel G.
Insulin‐mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans.
J Clin Invest
96:
786–792,
1995.
|
33. |
Steinberg HO,
Brechtel G,
Johnson A,
Fineberg N and
Baron AD.
Insulin‐mediated skeletal muscle vasodilation is nitric oxide dependent: a novel action of insulin to increase nitric oxide release.
J Clin Invest
94:
1172–1179,
1994.
|
34. |
Baron A,
Laakso M,
Brechtel G,
Hoit B and
Watt Edelman SV.
Reduced postprandial skeletal muscle blood flow contributes to glucose intolerance in human obesity.
J Clin Endocrinol Metab
70:
1525–1533,
1990.
|
35. |
Baron AD.
The coupling of glucose metabolism and perfusion in human skeletal muscle: the potential role of endothelium‐derived nitric oxide.
Diabetes
45:
S105–S109,
1996.
|
36. |
Bergman RN,
Yang YJ,
Hope ID and
Ader M.
The role of the transcapillary insulin transport in the efficiency of insulin action: Studies with glucose clamps and the minimal model.
Horm Metab Res Suppl
24:
49–56,
1980.
|
37. |
Yang YJ,
Hope ID,
Ader M and
Bergman RN.
Insulin transport across capillaries is rate limiting for insulin action in dogs.
J Clin Invest
84:
1620–1628,
1989.
|
38. |
Rasio EA and
Morrison AD.
Glucose‐induced alterations of the metabolism of an isolated capillary preparation.
Diabetes
27:
108–113,
1978.
|
39. |
King GL and
Johnson SM.
Receptor‐mediated transport of insulin across endothelial cells.
Science
227:
1583–1585,
1985.
|
40. |
Steil GM,
Ader M,
Moore DM,
Rebrin K and
Bergman RN.
Transendothelial insulin transport is not saturable in vivo: no evidence for a receptor‐mediated process.
J Clin Invest
97:
1497–1503,
1996.
|
41. |
Cohen AW,
Combs TP,
Scherer PE and
Lisanti MP.
Role of caveolin and caveolae in insulin signaling and diabetes.
Am J Physiol Endocrinol Metab
285:
E1151–E1160,
2003.
|
42. |
Simionescu M,
Gafencu A and
Antohe F.
Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey.
Microse Res Tech
57:
269–288,
2002.
|
43. |
Montagnani M,
Chen H,
Barr VA and
Quon MJ.
Insulin‐stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179).
J Biol Chem
276:
30392–30398,
2001.
|
44. |
Zeng G and
Quon MJ.
Insulin‐stimulated production of nitric oxide is inhibited by wortmannin: direct measurement in vascular endothelial cells.
J Clin Invest
98:
894–898,
1996.
|
45. |
Zeng G,
Nystrom FH,
Ravichandran LV,
Cong LN,
Kirby M,
Mostowski H and
Quon MJ.
Roles for insulin receptor, PI3‐kinase, and Akt in insulin‐signaling pathways related to production of nitric oxide in human vascular endothelial cells.
Circulation
101:
1539–1545,
2000.
|
46. |
Montagnani M,
Ravichandran LV,
Chen H,
Esposito DL and
Quon MJ.
Insulin receptor substrate‐1 and phosphoinositide‐dependent kinase‐1 are required for insulin‐stimulated production of nitric oxide in endothelial cells.
Mol Endocrinol
16:
1931–1942,
2002.
|
47. |
Groop PH,
Forsblom C and
Thomas MC.
Mechanisms of disease: Pathway‐selective insulin resistance and microvascular complications of diabetes 9.
Nat Clin Pract Endocrinol Metab
1:
100–110,
2005.
|
48. |
Baron AD,
Laakso M,
Brechtel G and
Edelman SV.
Reduced capacity and affinity of skeletal muscle for insulin‐mediated glucose uptake in noninsulin‐dependent diabetic subjects.
J Clin Invest
87:
1186–1194,
1991.
|
49. |
Steinberg HO and
Baron AD.
Vascular function, insulin resistance and fatty acids.
Diabetologia
45:
623–634,
2002.
|
50. |
Mather KJ,
Mirzamohammadi B,
Lteif A,
Steinberg HO and
Baron AD.
Endothelin contributes to basal vascular tone and endothelial dysfunction in human obesity and type 2 diabetes.
Diabetes
51:
3517–3523,
2002.
|
51. |
Sakamoto A,
Yanagisawa M,
Sawamura T,
Enoki T,
Ohtani T,
Sakurai T,
Nakao K,
Toyo‐oka T and
Masaki T.
Distinct subdomains of human endothelin receptors determine their selectivity to endothelinA‐selective antagonist and endothelinB‐selective agonists.
J Biol Chem
268:
8547–8553,
1993.
|
52. |
Cardillo C,
Nambi SS,
Kilcoyne CM,
Choucair WK,
Katz A,
Quon MJ and
Panza JA.
Insulin stimulates both endothelin and nitric oxide activity in the human forearm.
Circulation
100:
820–825,
1999.
|
53. |
Kuboki K,
Jiang ZY,
Takahara N,
Ha SW,
Igarashi M,
Yamauchi T,
Feener EP,
Herbert TP,
Rhodes CJ and
King GL.
Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin.
Circulation
101:
676–681,
2000.
|
54. |
Erdos B,
Snipes JA,
Miller AW and
Busija DW.
Cerebrovascular dysfunction in Zucker obese rats is mediated by oxidative stress and protein kinase C.
Diabetes
53:
1352–1359,
2004.
|
55. |
Schwaninger RM,
Sun H and
Mayhan WG.
Impaired nitric oxide synthase‐dependent dilatation of cerebral arterioles in type II diabetic rats.
Life Sci
73:
3415–3425,
2003.
|
56. |
Karagiannis J,
Reid JJ,
Darby I,
Roche P,
Rand MJ and
Li CG.
Impaired nitric oxide function in the basilar artery of the obese Zucker rat.
J Cardiovasc Pharmacol
42:
497–505,
2003.
|
57. |
Mayhan WG,
Sun H,
Mayhan JF and
Patel KP.
Influence of exercise on dilatation of the basilar artery during diabetes mellitus.
J Appl Physiol
96:
1730–1737,
2004.
|
58. |
Fulton D,
Harris MB,
Kemp BE,
Venema RC,
Marrero MB and
Stepp DW.
Insulin Resistance Does Not Diminish eNOS Expression, Phosphorylation or Binding to hsp90.
Am J Physiol Heart Circ Physiol,
2004.
|
59. |
Steinberg HO,
Paradisi G,
Cronin J,
Crowde K,
Hempfling A,
Hook G and
Baron AD.
Type II diabetes abrogates sex differences in endothelial function in premenopausal women.
Circulation
101:
2040–2046,
2000.
|
60. |
Steinberg HO,
Chaker H,
Learning R,
Johnson A,
Brechtel G and
Baron AD.
Obesity/insulin resistance is associated with endothelial dysfunction: implications for the syndrome of insulin resistance.
J Clin Invest
97:
2601–2610,
1996.
|
61. |
Baron AD,
Brechtel G,
Johnson A,
Fineberg N,
Henry DP and
Steinberg HO.
Interactions between insulin and norepinephrine on blood pressure and insulin sensitivity: studies in lean and obese men.
J Clin Invest
93:
2453–2462,
1994.
|
62. |
Laakso M,
Edelman SV,
Brechtel G and
Baron AD.
Impaired insulin‐mediated skeletal muscle blood flow in patients with NIDDM.
Diabetes
41:
1076–1083,
1992.
|
63. |
Bohlen HG.
Mechanisms for Early Microvascular Injury in Obesity and Type 11 Diabetes.
Curr Hypertens Rep
6:
61–66,
2004.
|
64. |
Bohlen HG,
Nase GP and
Jin JS.
Multiple mechanisms of early hyperglycaemic injury of the rat intestinal microcirculation.
Clin Exp Pharmacol Physiol
29:
138–142,
2002.
|
65. |
Brook RD,
Bard RL,
Glazewski L,
Kehrer C,
Bodary PF,
Eitzman DL and
Rajagopalan S.
Effect of short‐term weight loss on the metabolic syndrome and conduit vascular endothelial function in overweight adults.
Am J Cardiol
93:
1012–1016,
2004.
|
66. |
Hamdy O,
Ledbury S,
Mullooly C,
Jarema C,
Porter S,
Ovalle K,
Moussa A,
Caselli A,
Caballero AE,
Economides PA,
Veves A and
Horton ES.
Lifestyle modification improves endothelial function in obese subjects with the insulin resistance syndrome.
Diabetes Care
26:
2119–2125,
2003.
|
67. |
Hashimoto M,
Akishita M,
Eto M,
Kozaki K,
Ako J,
Sugimoto N,
Yoshizumi M,
Toba K and
Ouchi Y.
The impairment of flow‐mediated vasodilatation in obese men with visceral fat accumulation.
Int J Obes Relat Metab Disord
22:
477–484,
1998.
|
68. |
Watts K,
Beye P,
Siafarikas A,
Davis EA and
Jones TW.
O'Driscoll G and
Green DJ.
Exercise training normalizes vascular dysfunction and improves central adiposity in obese adolescents.
J Am Coll Cardiol
43:
1823–1827,
2004.
|
69. |
Beckman JA,
Goldfine AB,
Gordon MB,
Garrett LA and
Creager MA.
Inhibition of protein kinase Cbeta prevents impaired endothelium‐dependent vasodilation caused by hyperglycemia in humans.
Circ Res
90:
107–111,
2002.
|
70. |
Lee IK,
Kim HS and
Bae JH.
Endothelial dysfunction: its relationship with acute hyperglycaemia and hyperlipidemia.
Int J Clin Pract Suppl:
59–64,
2002.
|
71. |
Title LM,
Cummings PM,
Giddens K and
Nassar BA.
Oral glucose loading acutely attenuates endothelium‐dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E.
J Am Coll Cardiol
36:
2185–2191,
2000.
|
72. |
Bohlen HG.
Protein Kinase bII in Zucker Obese Rats Compromises Oxygen and Flow‐Mediated Regulation of Nitric Oxide Formation. Am J Phys,
2003, In press.
|
73. |
Jin J‐S and
Bohlen HG.
Non‐insulin‐dependent diabetes and hyperglycemia impair rat intestinal flow‐mediated regulation.
Am J Physiol
272:
H728–H734,
1997.
|
74. |
Jirousek MR,
Gillig JR,
Gonzalez CM,
Heath WF,
McDonald JH, III,
Neel DA,
Rito CJ,
Singh U,
Stramm LE,
Melikian‐Badalian A,
Baevsdy M,
Ballas LM,
Hall SE,
Winneroski LL and
Faul MM.
(S)‐13‐[Dimethylamino)methyl]‐10,11,14,15‐tetrahydro‐4,9:16,21‐dimetheno‐1H,13H‐dibenzo[e,k]pyrrolo[3,3‐h][1,4,13]oxadiazacycl ohexadecene‐1,3(2H)‐dione (LY333531) and related analogues: isozyme selective inhibitors of protein kinase Cbata.
J Med Chem
39:
2664–2671,
1996.
|
75. |
Bohlen HG and
Nase GP.
Dependence of intestinal arteriolar regulation on flow‐mediated nitric oxide formation.
Am J Physiol Heart Circ Physiol
279:
H2249–H2258,
2000.
|
76. |
Nase GP,
Tuttle J and
Bohlen HG.
Reduced perivascular PO2 increases nitric oxide release from endothelial cells.
Am J Physiol Heart Circ Physiol
285:
H507–H515,
2003.
|
77. |
Sudic D,
Razmara M,
Forslund M,
Ji Q,
Hjemdahl P and
Li N.
High glucose levels enhance platelet activation: involvement of multiple mechanisms 1.
Br J Haematol
133:
315–322,
2006.
|
78. |
Schroder S,
Palinski W and
Schmid‐Schonbein GW.
Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy.
Am J Pathol
139:
81–100,
1991.
|
79. |
Vincent AM,
McLean LL,
Backus C and
Feldman EL.
Short‐term hyperglycemia produces oxidative damage and apoptosis in neurons 3.
FASEB J
19:
638–640,
2005.
|
80. |
Piconi L,
Quagliaro L,
Assaloni R,
Da RR,
Maier A,
Zuodar G and
Ceriello A.
Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction.
Diabetes Metab Res Rev
22:
198–203,
2006.
|
81. |
Sheu ML,
Ho FM,
Yang RS,
Chao KF,
Lin WW,
Lin‐Shiau SY and
Liu SH.
High glucose induces human endothelial cell apoptosis through a phosphoinositide 3‐kinase‐regulated cyclooxygenase‐2 pathway.
Arterioscler Thromb Vasc Biol
25:
539–545,
2005.
|
82. |
Tamareille S,
Mignen O,
Capiod T,
Rucker‐Martin C and
Feuvray D.
High glucose‐induced apoptosis through store‐operated calcium entry and calcineurin in human umbilical vein endothelial cells.
Cell Calcium
39:
47–55,
2006.
|
83. |
Yu T,
Robotham JL and
Yoon Y.
Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology 1.
Proc Natl Acad Sci USA
103:
2653–2658,
2006.
|
84. |
Taubert D,
Rosenkranz A,
Berkels R,
Roesen R and
Schomig E.
Acute effects of glucose and insulin on vascular endothelium.
Diabetologia
47:
2059–2071,
2004.
|
85. |
Phillips SA,
Hatoum OA and
Gutterman DD.
The mechanism of flow‐induced dilation in human adipose arterioles involves hydrogen peroxide during CAD 1.
Am J Physiol Heart Circ Physiol
292:
H93–100,
2007.
|
86. |
Keogh JB,
Brinkworth GD and
Clifton PM.
Effects of weight loss on a low‐carbohydrate diet on flow‐mediated dilatation, adhesion molecules and adiponectin.
Br J Nutr:
1–8,
2007.
|
87. |
Focardi M,
Dick GM,
Picchi A,
Zhang C and
Chilian WM.
Restoration of coronary endothelial function in obese Zucker rats by a low‐carbohydrate diet 1.
Am J Physiol Heart Circ Physiol
292:
H2093–H2099,
2007.
|
88. |
Frisbee JC,
Samora JB,
Peterson J and
Bryner R.
Exercise training blunts microvascular rarefaction in the metabolic syndrome.
Am J Physiol Heart Circ Physiol
291:
H2483–H2492,
2006.
|
89. |
He Z,
Opland DM,
Way KJ,
Ueki K,
Bodyak N,
Kang PM,
Izumo S,
Kulkarni RN,
Wang B,
Liao R,
Kahn CR and
King GL.
Regulation of vascular endothelial growth factor expression and vascularization in the myocardium by insulin receptor and PI3K/Akt pathways in insulin resistance and ischemia.
Arterioscler Thromb Vasc Biol
26:
787–793,
2006.
|
90. |
Arcaro G,
Cretti A,
Balzano S,
Lechi A,
Muggeo M,
Bonora E and
Bonadonna RC.
Insulin causes endothelial dysfunction in humans: sites and mechanisms.
Circulation
105:
576–582,
2002.
|
91. |
Campia U,
Sullivan G,
Bryant MB,
Waclawiw MA,
Quon MJ and
Panza JA.
Insulin impairs endothelium‐dependent vasodilation independent of insulin sensitivity or lipid profile.
Am J Physiol Heart Circ Physiol
286:
H76–H82,
2004.
|
92. |
Bohlen HG and
Nase GP.
Obesity lowers hyperglycemic threshold for impaired in vivo endothelial nitric oxide function.
Am J Physiol Heart Circ Physiol
283:
H391–H397,
2002.
|
93. |
Yuhanna IS,
Zhu Y,
Cox BE,
Hahner LD,
Osborne‐Lawrence S,
Lu P,
Marcel YL,
Anderson RG,
Mendelsohn ME,
Hobbs HH and
Shaul PW.
High‐density lipoprotein binding to scavenger receptor‐BI activates endothelial nitric oxide synthase.
Nat Med
7:
853–857,
2001.
|
94. |
Mineo C,
Yuhanna IS,
Quon MJ and
Shaul PW.
High density lipo‐protein‐induced endothelial nitric‐oxide synthase activation is mediated by Akt and MAP kinases.
J Biol Chem
278:
9142–9149,
2003.
|
95. |
Steinberg HO,
Chaker H,
Leaming R,
Johnson A,
Brechtel G and
Baron AD.
Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance.
J Clin Invest
97:
2601–2610,
1996.
|
96. |
Witczak CA and
Sturek M.
Exercise prevents diabetes‐induced impairment in superficial buffer barrier in porcine coronary smooth muscle.
J Appl Physiol
96:
1069–1079,
2004.
|
97. |
Witczak CA,
Wamhoff BR and
Sturek M.
Exercise training prevents Ca2+ dysregulation in coronary smooth muscle from diabetic dyslipidemic yucatan swine 1.
J Appl Physiol
101:
752–762,
2006.
|
98. |
Green DJ,
Walsh JH,
Maiorana A,
Best MJ,
Taylor RR and
O'Driscoll JG.
Exercise‐induced improvement in endothelial dysfunction is not mediated by changes in CV risk factors: pooled analysis of diverse patient populations.
Am J Physiol Heart Circ Physiol
285:
H2679–H2687,
2003.
|
99. |
Henderson KK,
Turk JR,
Rush JW and
Laughlin MH.
Endothelial function in coronary arterioles from pigs with early stage coronary disease induced by high fat/cholesterol diet: effect of exercise. J Appl Physiol,
2004.
|
100. |
Laughlin MH,
Welshons WV,
Sturek M,
Rush JW,
Turk JR,
Taylor JA,
Judy BM,
Henderson KK and
Ganjam VK.
Gender, exercise training, and eNOS expression in porcine skeletal muscle arteries.
J Appl Physiol
95:
250–264,
2003.
|
101. |
Frisbee JC.
Vascular adrenergic tone and structural narrowing constrain reactive hyperemia in skeletal muscle of obese Zucker rats 2.
Am J Physiol Heart Circ Physiol
290:
H2066–H2074,
2006.
|
102. |
Phillips SA,
Sylvester FA and
Frisbee JC.
OXIDANT STRESS AND CONSTRICTOR REACTIVITY IMPAIR CEREBRAL ARTERY DILATION IN OBESE ZUCKER RATS.
Am J Physiol Regul Integr Comp Physiol,
2004.
|
103. |
Bohlen HG and
Lash JM.
Endothelial‐dependent vasodilation is preserved in non‐insulin dependent Zucker fatty diabetic rats. Am J Physiol,
1995, In press.
|
104. |
Lash JM and
Bohlen HG.
Structural and functional origins of suppressed acetylcholine vasodilation in diabetic rat intestinal arterioles.
Circ Res
69:
1259–1268,
1991.
|
105. |
Liu Y and
Gutterman DD.
Oxidative stress and potassium channel function.
Clin Exp Pharmacol Physiol
29:
305–311,
2002.
|
106. |
Sobey CG.
Potassium channel function in vascular disease.
Arterioscler Thromb Vasc Biol
21:
28–38,
2001.
|
107. |
Li H,
Chai Q,
Gutterman DD and
Liu Y.
Elevated glucose impairs cAMP‐mediated dilation by reducing Kv channel activity in rat small coronary smooth muscle cells.
Am J Physiol Heart Circ Physiol
285:
H1213–H1219,
2003.
|
108. |
Li H,
Gutterman DD,
Rusch NJ,
Bubolz A and
Liu Y.
Nitration and functional loss of voltage‐gated K+ channels in rat coronary microvessels exposed to high glucose.
Diabetes
53:
2436–2442,
2004.
|
109. |
Bubolz AH,
Li H,
Wu Q and
Liu Y.
Enhanced oxidative stress impairs cAMP‐mediated dilation by reducing Kv channel function in small coronary arteries of diabetic rats 1.
Am J Physiol Heart Circ Physiol
289:
H1873–H1880,
2005.
|
110. |
Lu T,
He T,
Katusic ZS and
Lee HC.
Molecular mechanisms mediating inhibition of human large conductance Ca2+‐activated K+ channels by high glucose 1.
Circ Res
99:
607–616,
2006.
|
111. |
Miura H,
Wachtel RE,
Loberiza FR, Jr.,
Saito T,
Miura M,
Nicolosi AC and
Gutterman DD.
Diabetes mellitus impairs vasodilation to hypoxia in human coronary arterioles: reduced activity of ATP‐sensitive potassium channels.
Circ Res
92:
151–158,
2003.
|
112. |
Mokelke EA,
Hu Q,
Song M,
Toro L,
Reddy HK and
Sturek M.
Altered functional coupling of coronary K+ channels in diabetic dyslipidemic pigs is prevented by exercise.
J Appl Physiol
95:
1179–1193,
2003.
|
113. |
Liu Y,
Terata K,
Rusch NJ and
Gutterman DD.
High glucose impairs voltage‐gated K(+) channel current in rat small coronary arteries.
Circ Res
89:
146–152,
2001.
|
114. |
Mokelke EA,
Dietz NJ,
Eckman DM,
Nelson MT and
Sturek M.
Diabetic dyslipidemia and exercise affect coronary tone and differential regulation of conduit and microvessel K+ current.
Am J Physiol Heart Circ Physiol
288:
H1233–H1241,
2005.
|
115. |
Hohman TC,
Cotter MA and
Cameron NE.
ATP‐sensitive K(+) channel effects on nerve function, Na(+), K(+) ATPase, and glutathione in diabetic rats.
Eur J Pharmacol
397:
335–341,
2000.
|
116. |
Meier U and
Gressner AM.
Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin.
Clin Chem
50:
1511–1525,
2004.
|
117. |
Rahmouni K and
Haynes WG.
Leptin and the cardiovascular system.
Recent Prog Horm Res
59:
225–244,
2004.
|
118. |
Haynes WG,
Morgan DA,
Walsh SA,
Mark AL and
Sivitz WI.
Receptor‐mediated regional sympathetic nerve activation by leptin.
J Clin Invest
100:
270–278,
1997.
|
119. |
Kuo JJ,
Jones OB and
Hall JE.
Chronic cardiovascular and renal actions of leptin during hyperinsulinemia.
Am J Physiol Regul Integr Comp Physiol
284:
R1037–R1042,
2003.
|
120. |
Kuo JJ,
Silva AA and
Hall JE.
Hypothalamic melanocortin receptors and chronic regulation of arterial pressure and renal function 12.
Hypertension
41:
768–774,
2003.
|
121. |
Silva AA,
Kuo JJ,
Tallam LS,
Liu J and
Hall JE.
Does obesity induce resistance to the long‐term cardiovascular and metabolic actions of melanocortin 3/4 receptor activation?
Hypertension
47:
259–264,
2006.
|
122. |
Tallam LS,
da Silva AA and
Hall JE.
Melanocortin‐4 receptor mediates chronic cardiovascular and metabolic actions of leptin 3.
Hypertension
48:
58–64,
2006.
|
123. |
Knudson JD,
Dick GM and
Tune JD.
Adipokines and coronary vasomotor dysfunction.
Exp Biol Med
232:
727–736,
2007.
|
124. |
Singhal A,
Farooqi IS,
Cole TJ,
O'Rahilly S,
Fewtrell M,
Kattenhorn M,
Lucas A and
Deanfield J.
Influence of leptin on arterial distensibility: a novel link between obesity and cardiovascular disease?
Circulation
106:
1919–1924,
2002.
|
125. |
Beltowski J,
Jochem J,
Wojcicka G and
Zwirska‐Korczala K.
Influence of intravenously administered leptin on nitric oxide production, renal hemodynamics and renal function in the rat.
Regul Pept
120:
59–67,
2004.
|
126. |
Beltowski J,
Wojcicka G,
Marciniak A and
Jamroz A.
Oxidative stress, nitric oxide production, and renal sodium handling in leptin‐induced hypertension.
Life Sci
74:
2987–3000,
2004.
|
127. |
Vecchione C,
Aretini A,
Maffei A,
Marino G,
Selvetella G,
Poulet R,
Trimarco V,
Frati G and
Lembo G.
Cooperation between insulin and leptin in the modulation of vascular tone.
Hypertension
42:
166–170,
2003.
|
128. |
Knudson JD,
Dincer UD,
Dick GM,
Shibata H,
Akahane R,
Saito M and
Tune JD.
Leptin resistance extends to the coronary vasculature in prediabetic dogs and provides a protective adaptation against endothelial dysfunction 8.
Am J Physiol Heart Circ Physiol
289:
H1038–H1046,
2005.
|
129. |
Knudson JD,
Dincer UD,
Zhang C,
SwaffordJr AN,
Koshida R,
Picchi A,
Focardi M,
Dick GM and
Tune JD.
Leptin receptors are expressed in coronary arteries, and hyperleptinemia causes significant coronary endothelial dysfunction 9.
Am J Physiol Heart Circ Physiol
289:
H48–H56,
2005.
|
130. |
Johansson J,
Ekberg K,
Shafqat J,
Henriksson M,
Chibalin A,
Wahren J and
Jornvall H.
Molecular effects of proinsulin C‐peptide.
Biochem Biophys Res Commun
295:
1035–1040,
2002.
|
131. |
Rigler R,
Pramanik A,
Jonasson P,
Kratz G,
Jansson OT,
Nygren P,
Stahl S,
Ekberg K,
Johansson B,
Uhlen S,
Uhlen M,
Jornvall H and
Wahren J.
Specific binding of proinsulin C‐peptide to human cell membranes.
Proc Natl Acad Sci USA
96:
13318–13323,
1999.
|
132. |
Sima AA,
Kamiya H and
Li ZG.
Insulin, C‐peptide, hyperglycemia, and central nervous system complications in diabetes.
Eur J Pharmacol
490:
187–197,
2004.
|
133. |
Sima AA.
C‐peptide and diabetic neuropathy.
Expert Opin Investig Drugs
12:
1471–1488,
2003.
|
134. |
Sima AA.
Diabetic neuropathy in type 1 and type 2 diabetes and the effects of C‐peptide.
J Neurol Sci
220:
133–136,
2004.
|
135. |
Barrett‐Connor E,
Giardina EG,
Gitt AK,
Gudat U,
Steinberg HO and
Tschoepe D.
Women and heart disease: the role of diabetes and hyperglycemia.
Arch Intern Med
164:
934–942,
2004.
|
136. |
Laakso M.
Hyperglycemia as a risk factor for cardiovascular disease in type 2 diabetes.
Prim Care
26:
829–839,
1999.
|
137. |
Zhang L,
Krzentowski G,
Albert A and
Lefebvre PJ.
Risk of developing retinopathy in Diabetes Control and Complications Trial type 1 diabetic patients with good or poor metabolic control.
Diabetes Care
24:
1275–1279,
2001.
|
138. |
Beckman JA,
Creager MA and
Libby P.
Diabetes and atherosclerosis: epidemiology, pathophysiology, and management.
JAMA
287:
2570–2581,
2002.
|
139. |
de Vriese AS,
Verbeuren TJ,
Van d V. Lameire NH and
Vanhoutte PM.
Endothelial dysfunction in diabetes.
Br J Pharmacol
130:
963–974,
2000.
|
140. |
Ikeda T,
Gomi T,
Hirawa N,
Sakurai J and
Yoshikawa N.
Improvement of insulin sensitivity contributes to blood pressure reduction after weight loss in hypertensive subjects with obesity.
Hypertension
27:
1180–1186,
1996.
|
141. |
Loimaala A,
Huikuri HV,
Koobi T,
Rinne M,
Nenonen A and
Vuori I.
Exercise training improves baroreflex sensitivity in type 2 diabetes.
Diabetes
52:
1837–1842,
2003.
|
142. |
Stewart KJ.
Exercise training and the cardiovascular consequences of type 2 diabetes and hypertension: plausible mechanisms for improving cardiovascular health.
JAMA
288:
1622–1631,
2002.
|
143. |
Rask‐Madsen C and
King GL.
Mechanisms of Disease: endothelial dysfunction in insulin resistance and diabetes.
Nat Clin Pract Endocrinol Metab
3:
46–56,
2007.
|
144. |
Bursell S‐E,
Takagi C,
Clermont A,
Takagi CH,
Mori F,
Ishii H and
King GL.
Specific retinal diacylglycerol and protein kinase C Beta isoform modulation mines abnormal retinal hemodynamics in diabetic rats.
Ophthalmol Vis Sci
38:
2711–2720,
1997, Ref Type: Journal (Full).
|
145. |
Ishii H,
Jirousek MR,
Koya D,
Takagi C,
Xia P.
Clermont A,
Bursell S‐E,
Kern TS,
Ballas LM,
Heath WF,
Stramm LE,
Feener EP and
King GL.
Amelioration of vascular dysfunctions in diabetic rats by an oral PKC B inhibitor.
Science
272:
728–731,
1996.
|
146. |
King GL,
Kunisaki M,
Nishio Y,
Inoguchi T,
Shiba T and
Xia P.
Vitamin E normalizes diacylglycerol‐protein kinase C activation induced by hyperglycemia in rat vascular tissues.
Diabetes
45S:
S117–S119,
1996.
|
147. |
Koya D,
Haneda M,
Nakagawa H,
Isshiki K,
Sato H,
Maeda S,
Sugimoto T,
Yasuda H,
Kashiwagi A,
Ways DK,
King GL and
Kikkawa R.
Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes.
FASEB J
14:
439–447,
2000.
|
148. |
Lee T‐S,
MacGregor LC,
Fluharty SJ and
King GL.
Differential regulation of protein kinase C and (Na,K)‐adenosine triphosphatase activities by elevated glucose levels in retinal capillary endothelial cells.
J Clin Invest
83:
90–94,
1989.
|
149. |
Park JY,
Takahara N,
Gabriele A,
Chou E,
Naruse K,
Suzuma K,
Yamauchi T,
Ha SW,
Meier M,
Rhodes CJ and
King GL.
Induction of endothelin‐1 expression by glucose: an effect of protein kinase C activation.
Diabetes
49:
1239–1248,
2000.
|
150. |
Shiba T,
Inoguchi T,
Sportsman JR,
Heath WF,
Bursell S and
King GL.
Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation.
Am J Physiol
265:
E783–E793,
1993.
|
151. |
Xia P,
Aiello LP,
Ishii H,
Jiang ZY,
Park DJ,
Robinson GS,
Takagi H,
Newsome WP,
Jirousek MR and
King GL.
Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth.
J Clin Invest
98:
2018–2026,
1996.
|
152. |
Ishii H,
Koya D and
King GL.
Protein kinase C activation and its role in the development of vascular complications in diabetes mellitus.
J Mol Med
76:
21–31,
1998.
|
153. |
Fleming I,
Fisslthaler B,
Dimmeler S,
Kemp BE and
Busse R.
Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin‐dependent endothelial nitric oxide synthase activity.
Circ Res
88:
E68–E75,
2001.
|
154. |
Lenasi H,
Kohlstedt K,
Fichtlscherer B,
Mulsch A,
Busse R and
Fleming I.
Amlodipine activates the endothelial nitric oxide synthase by altering phosphorylation on Ser1177 and Thr495.
Cardiovasc Res
59:
844–853,
2003.
|
155. |
Li Z,
Carter JD,
Dailey LA and
Huang YC.
Vanadyl sulfate inhibits NO production via threonine phosphorylation of eNOS.
Environ Health Perspect
112:
201–206,
2004.
|
156. |
Williams SB,
Goldfine AB,
Timimi FK,
Ting HH,
Roddy MA,
Simonson DC and
Creager MA.
Acute hyperglycemia attenuates endothelium‐dependent vasodilation in humans in vivo.
Circulation
97:
1695–1701,
1998.
|
157. |
McDonald KK,
Zharikov S,
Block ER and
Kilberg MS.
A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric‐oxide synthase may explain the “arginine paradox”.
J Biol Chem
272:
31213–31216,
1997.
|
158. |
Zharikov SI,
Herrera H and
Block ER.
Role of membrane potential in hypoxic inhibition of L‐arginine uptake by lung endothelial cells.
Am J Physiol
272:
L78–L84,
1997.
|
159. |
Bohlen HG and
Lash JM.
Topical hyperglycemia rapidly suppresses EDRF‐mediated vasodilation of normal rat arterioles.
Am J Physiol
265:
H219–H225,
1993.
|
160. |
Jin JS and
Bohlen HG.
Acute hyperglycemia impairs in vivo myogenic and norepinephrine vasoconstriction. Am J Physiol,
1996, in press.
|
161. |
Lash JM,
Nase GP and
Bohlen HG.
Acute hyperglycemia depresses arteriolar NO formation in skeletal muscle.
Am J Physiol
277:
H1513–H1520,
1999.
|
162. |
Mayhan WG and
Patel KP.
Acute effects of glucose on reactivity of cerebral microcirculation: role of activation of protein kinase C.
Am J Physiol
269:
H1297–H1302,
1995.
|
163. |
Beckman JA,
Goldfine AB,
Gordon MB and
Creager MA.
Ascorbate restores endothelium‐dependent vasodilation impaired by acute hyperglycemia in humans.
Circulation
103:
1618–1623,
2001.
|
164. |
Chu S and
Bohlen HG.
High concentration of glucose inhibits glomerular endothelial eNOS through a PKC mechanism.
Am J Physiol Renal Physiol
287:
F384–F392,
2004.
|
165. |
Bohlen HG and
Nase GP.
Arteriolar nitric oxide concentration is decreased during hyperglycemia‐induced betall PKC activation.
Am J Physiol Heart Circ Physiol
280:
H621–H627,
2001.
|
166. |
Mayhan WG,
Didion SP and
Patel KP.
L‐Arginine does not restore dilatation of the basilar artery during diabetes mellitus.
J Cereb Blood Flow Metab
16:
500–506,
1996.
|
167. |
Cooke JP,
Andon NA,
Girerd XJ,
Hirsch AT and
Creager MA.
Arginine restores cholinergic relaxation of hypercholesterolemic rabbit thoracic aorta.
Circulation
83:
1057–1062,
1991.
|
168. |
Wu G and
Meininger CJ.
Impaired arginine metabolism and NO synthesis in coronary endothelial cells of the spontaneously diabetic BB rat.
Am J Physiol
269:
H1312–1318,
1995.
|
169. |
Giugliano D,
Marfella R,
Coppola L,
Verrazzo G,
Acampora R,
Giunta R,
Nappo F,
Lucrelli C and
D'Onofrio F.
Vascular effects of acute hyperglycemia in humans are reversed by L‐Arginine: evidence for reduced availability of nitric oxide during hyperglycemia.
Circulation
95:
1783–1790,
1997.
|
170. |
Lerman A,
Burnett JC, Jr.,
Higano ST,
McKinley LJ and
Holmes DR, Jr.
Long‐term L‐Arginine supplementation improves small‐vessel coronary endothelial function in humans.
Circulation
97:
2123–2128,
1998.
|
171. |
Khaidar A,
Marx M,
Lubec B and
Lubec G.
L‐Arginine reduces heart collagen accumulation in the diabetic db/db mouse.
Circulation
90:
479–483,
1994.
|
172. |
Mann GE,
Yudilevich DL and
Sobrevia L.
Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells.
Physiol Rev
83:
183–252,
2003.
|
173. |
Omawari N,
Dewhurst M,
Vo P,
Mahmood S,
Stevens E and
Tomlinson DR.
Deficient nitric oxide responsible for reduced nerve blood flow in diabetic rats: effects of L‐NAME, L‐arginine, sodium nitroprusside and evening primrose oil.
Br J Pharmacol
118:
186–190,
1996.
|
174. |
Wu G and
Meininger CJ.
Arginine nutrition and cardiovascular function.
J Nutr
130:
2626–2629,
2000.
|
175. |
Koya D,
Haneda M,
Nakagawa H,
Isshiki K,
Sato H,
Maeda S,
Sugimoto T,
Yasuda H,
Kashiwagi A,
Ways DK,
King GL and
Kikkawa R.
Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes.
FASEB J
14:
439–447,
2000.
|
176. |
Kunisaki M,
Fumio U,
Nawata H and
King GL.
Vitamin E normalizes diacylglycerol‐protein kinase C activation induced by hyperglycemia in rat vascular tissues.
Diabetes
45:
S117–S119,
1996.
|
177. |
Lee I‐K,
Koya D,
Ishi H,
Kanoh H and
King GL.
d‐alfa‐Tocopherol prevents the hyperglycemia induce activation of diacylglycerol (DAG)‐protein kinase C (PKC) pathway in vascular smooth muscle cell by an increase of DAG kinase activity.
Diabetes Res Clin Pract
45:
183–190,
1999.
|
178. |
Ohshiro Y,
Ma RC,
Yasuda Y,
Hiraoka‐Yamamoto J,
Clermont AC,
Isshiki K,
Yagi K,
Arikawa E,
Kern TS and
King GL.
Reduction of diabetes‐induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase C beta‐null mice.
Diabetes
55:
3112–3120,
2006.
|
179. |
Way KJ,
Katai N and
King GL.
Protein kinase C and the development of diabetic vascular complications.
Diabet Med
18:
945–959,
2001.
|
180. |
Beckman JA,
Goldfine AB,
Gordon MB,
Garrett LA,
Keaney JF and
Creager MA.
Oral Antioxidant Therapy Improves Endothelial Function in Type 1 but not Type 2 Diabetes Mellitus.
Am J Physiol Heart Circ Physiol,
2003.
|
181. |
Bursell SE,
Clermont AC,
Aiello LP,
Aiello LM,
Schlossman DK,
Feener EP,
Laffel L and
King GL.
High‐dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with type 1 diabetes 26.
Diabetes Care
22:
1245–1251,
1999.
|
182. |
Economides PA,
Khaodhiar L,
Caselli A,
Caballero AE,
Keenan H,
Bursell SE,
King GL,
Johnstone MT,
Horton ES and
Veves A.
The effect of vitamin E on endothelial function of micro‐ and macrocirculation and left ventricular function in type 1 and type 2 diabetic patients.
Diabetes
54:
204–211,
2005.
|
183. |
Ceriello A,
Mercuri F,
Quagliaro L,
Assaloni R,
Motz E,
Tonutti L and
Taboga C.
Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress.
Diabetologia
44:
834–838,
2001.
|
184. |
Ceriello A,
Quagliaro L,
Catone B,
Pascon R,
Piazzola M,
Bais B,
Marra G,
Tonutti L,
Taboga C and
Motz E.
Role of hyperglycemia in nitrotyrosine postprandial generation.
Diabetes Care
25:
439–1443,
2002.
|
185. |
Hoeldtke RD,
Bryner KD,
McNeill DR,
Hobbs GR and
Baylis C.
Peroxynitrite versus nitric oxide in early diabetes.
Am J Hypertens
16:
761–766,
2003.
|
186. |
Wang XL,
Rainwater DL,
Leone A and
Mahaney MC.
Effects of diabetes on plasma nitrotyrosine levels.
Diabet Med
21:
577–580,
2004.
|
187. |
El Remessy AB,
Behzadian MA,
Abou‐Mohamed G,
Franklin T,
Caldwell RW and
Caldwell RB.
Experimental diabetes causes breakdown of the blood‐retina barrier by a mechanism involving tyrosine nitration and increases in expression of vascular endothelial growth factor and urokinase plasminogen activator receptor.
Am J Pathol
162:
1995–2004,
2003.
|
188. |
Zou MH,
Shi C and
Cohen RA.
High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H(2) receptor‐mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells.
Diabetes
51:
198–203,
2002.
|
189. |
Nishikawa T,
Edelstein D,
Du XL,
Yamagishi S,
Matsumura T,
Kaneda Y,
Yorek MA,
Beebe D,
Oates PJ,
Hammes HP,
Giardino I and
Brownlee M.
Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage.
Nature
404:
787–790,
2000.
|
190. |
Hunt JV,
Dean RT and
Wolff SP.
Hydroxyl radical production and autoxidative glycosylation: Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing.
Biochem J
256:
205–212,
1988.
|
191. |
Pieper GM and
Gross GJ.
Oxygen free radicals abolish endothelium‐dependent relaxation in diabetic rat aorta.
Am J Physiol
255:
H825–H833,
1988.
|
192. |
Pieper GM,
Siebeneich W,
Roza AM,
Jordan M and
Adams MB.
Chronic treatment in vivo with dimethythiourea, a hydroxyl radical scavenger, prevents diabetes‐induced endothelial dysfunction.
J Cardiovasc Pharm
28:
741–745,
1996.
|
193. |
Tesfamariam B and
Cohen RA.
Free radicals mediate endothelial cell dysfunction caused by elevated glucose.
Am J Physiol
263:
H321–H326,
1992.
|
194. |
Bohlen HG.
Protein kinase beta II in Zucker obese rats compromises oxygen and flow‐mediated regulation of nitric oxide formation.
Am J Physiol
286:
H492–H497,
2003.
|
195. |
Langenstroer P and
Pieper GM.
Regulation of spontaneous EDRF release in diabetic rat aorta by oxygen free radicals.
Am J Physiol
263:
H257–H265,
1992.
|
196. |
Pieper GM,
Langenstroer P and
Gross GJ.
Hydroxyl radicals mediate injury to endothelium‐dependent relaxation in diabetic rat.
Mol Cell Biochem
122:
139–145,
1993.
|
197. |
Pieper GM,
Jordan M,
Dondlinger LA,
Adams MB and
Roza AM.
Peroxidative stress in diabetic blood vessels. Reversal by pancreatic islet transplantation.
Diabetes
44:
884–889,
1995.
|
198. |
Mullarkey CJ,
Edelstein D and
Brownlee M.
Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes.
BBRC
173:
932–939,
1990.
|
199. |
Wolff SP,
Bascal ZA and
Hunt JV.
“Autoxidative glycosylation”: free radicals and glycation theory.
Prog Clin Biol Res
304:
259–275,
1989.
|
200. |
Soriano FG,
Virag L and
Szabo C.
Diabetic endothelial dysfunction: role of reactive oxygen and nitrogen species production and poly(ADP‐ribose) polymerase activation.
J Mol Med
79:
437–448,
2001.
|
201. |
Tilton RG.
Diabetic vascular dysfunction: links to glucose‐induced reductive stress and VEGF.
Microsc Res Tech
57:
390–407,
2002.
|
202. |
Masson EA and
Boulton AJM.
Aldose reductase inhibitors in the treatment of diabetic neuropathy: a review of the rationale and clinical evidence.
Drugs
39:
190–202,
1990.
|
203. |
Cunningham JJ,
Mearkle PL and
Brown RG.
Vitamin C: an aldose reductase inhibitor that normalizes erythrocyte sorbitol in insulin‐dependent diabetes mellitus.
J Am Coll Nutr
13:
344–350,
1994.
|
204. |
Hamada Y,
Kitoh R and
Raskin P.
Crucial role of aldose reductase activity and plasma glucose level in sorbitol accumulation in erythrocytes from diabetic patients.
Diabetes
40:
1233–1240,
1991.
|
205. |
Cameron NE,
Cotter MA,
Dines KC,
Maxfield EK,
Carey F and
Mirrlees DJ.
Aldose reductase inhibition, nerve perfusion, oxygenation and function in streptozotocin‐diabetic rats: does‐response considerations and independence from a myo‐inositol mechanism.
Diabetologia
37:
651–663,
1994.
|
206. |
Tilton RG,
Chang K,
Nyengaard JR,
Van den EM,
Ido Y and
Williamson JR.
Inhibition of sorbitol dehydrogenase. Effects on vascular and neural dysfunction in streptozocin‐induced diabetic rats.
Diabetes
44:
234–242,
1995.
|
207. |
Yoshida T,
Nishioka H,
Yoshioka K,
Nakano K,
Kondo M and
Terashima H.
Effect of aldose reductase inhibitor ONO 2235 on reduced sympathetic nervous system activity and peripheral nerve disorders in STZ‐induced diabetic rats.
Diabetes
36:
6–13,
1987.
|
208. |
Bakillah A,
Grigorova‐Borsos AM,
Guillot R,
Urios P and
Sternberg M.
Effect of an aldose reductase inhibitor on type IV collagen production by human endothelial cells cultured in high glucose.
Diabetologia
39:
641–648,
1996.
|
209. |
Kador PF,
Akagi Y,
Takahashi Y,
Ikebe H,
Wyman M and
Kinoshita JH.
Prevention of retinal vessel changes associated with diabetic retinopathy in galactose‐fed dogs by aldose reductase inhibitors.
Arch Ophthalmol
108:
1301–1309,
1990.
|
210. |
Lightman S,
Pinter G,
Yuen L and
Bradbury M.
Permeability changes at blood‐retinal barrier in diabetes and effect of aldose reductase inhibition.
Am J Physiol
259:
R601–R605,
1990.
|
211. |
Lightman S,
Rechthand E,
Terubayashi H,
Palestine A,
Rapoport S and
Kador P.
Permeability changes in blood‐retinal barrier of galactosemic rats are prevented by aldose reductase inhibitors.
Diabetes
36:
1271–1275,
1987.
|
212. |
Robison WG, Jr.,
Kador PF,
Akagi Y,
Kinoshita JH,
Gonzalez R and
Dvornik D.
Prevention of basement membrane thickening in retinal capillaries by a novel inhibitor of aldose reductase, tolrestat.
Diabetes
35:
295–299,
1986.
|
213. |
Sima AAF,
Nathaniel V,
Prashar A,
Bril V and
Greene DA.
Endoneurial microvessels in human diabetic neuropathy: endothelial cell dysjunction and lack of treatment effect by aldose reductase inhibitor.
Diabetes
40:
1090–1099,
1991.
|
214. |
Taylor PD,
Wickenden AD,
Mirrlees DJ and
Poston L.
Endothelial function in the isolated perfused mesentery and aortae of rats with streptozotocin‐induced diabetes: effect of treatment with the aldose reductase inhibitor, ponalrestatm.
Br J Pharmacol
111:
42–46,
1994.
|
215. |
Lo AC,
Cheung AK,
Hung VK,
Yeung CM,
He QY,
Chiu JF,
Chung SS and
Chung SK.
Deletion of aldose reductase leads to protection against cerebral ischemic injury.
J Cereb Blood Flow Metab,
2007.
|
216. |
Sun W,
Oates PJ,
Coutcher JB,
Gerhardinger C and
Lorenzi M.
A selective aldose reductase inhibitor of a new structural class prevents or reverses early retinal abnormalities in experimental diabetic retinopathyl.
Diabetes
55:
2757–2762,
2006.
|
217. |
Engerman RL and
Kern TS.
Aldose reductase inhibition fails to prevent retinopathy in diabetic and galactosemic dogs.
Diabetes
42:
820–825,
1993.
|
218. |
Engerman RL,
Kern TS and
Garment MB.
Capillary basement membrane in retina, kidney, and muscle of diabetic dogs and galactosemic dogs and its response to 5 years aldose reductase inhibition.
J Diab Comp
7:
241–245,
1993.
|
219. |
Frank RN.
Perspectives in diabetes: the aldose reductase controversy.
Diabetes
43:
169–172,
1994.
|
220. |
Davis M.
A randomized trial of sorbinil, and aldose reductase inhibitor, in diabetic retinopathy.
Arch Ophthalmol
108:
1234–1244,
1990.
|
221. |
Oates PJ and
Mylari BL.
Aldose reductase inhibitors: therapeutic implications for diabetic complications.
Expert Opin Investig Drugs
8:
2095–2119,
1999.
|
222. |
Hotta N,
Akanuma Y,
Kawamori R,
Matsuoka K,
Oka Y,
Shichiri M,
Toyota T,
Nakashima M,
Yoshimura I,
Sakamoto N and
Shigeta Y.
Long‐term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: the 3‐year, multicenter, comparative Aldose Reductase Inhibitor‐Diabetes Complications Trial.
Diabetes Care
29:
1538–1544,
2006.
|
223. |
Matsuoka K,
Sakamoto N,
Akanuma Y,
Hotta N,
Shichiri M,
Toyota T,
Oka Y,
Kawamori R and
Shigeta Y.
A long‐term effect of epalrestat on motor conduction velocity of diabetic patients: ARI‐Diabetes Complications Trial (ADCT).
Diabetes Res Clin Pract
43:
56–63,
2007.
|
224. |
Bril V and
Buchanan RA.
Long‐term effects of ranirestat (AS‐3201) on peripheral nerve function in patients with diabetic sensorimotor polyneuropathy 1.
Diabetes Care
29:
68–72,
2006.
|
225. |
Wolin MS.
Reactive oxygen Species and vascular signal transduction mechanisms.
Microcirc
3:
1–17,
1996.
|
226. |
Ellis EA,
Grant MB,
Murray FT,
Wachowski MB,
Guberski DL,
Kubilis PS and
Lutty GA.
Increased NADH oxidase activity in the retina of the BBZ/Wor diabetic rat.
Free Radic Biol Med
24:
111–120,
1998.
|
227. |
Hink U,
Li H,
Mollnau H,
Oelze M,
Matheis E,
Hartmann M,
Skatchkov M,
Thaiss F,
Stahl RA,
Warnholtz A,
Meinertz T,
Griendling K,
Harrison DG,
Forstermann U and
Munzel T.
Mechanisms underlying endothelial dysfunction in diabetes mellitus.
Circ Res
88:
E14–E22,
2001.
|
228. |
Verhaar MC,
Westerweel PE,
van Zonneveld AJ and
Rabelink TJ.
Free radical production by dysfunctional eNOS 8.
Heart
90:
494–495,
2004.
|
229. |
Kowluru RA.
Diabetes‐induced elevations in retinal oxidative stress, protein kinase C and nitric oxide are interrelated.
Acta Diabetol
38:
179–185,
2001.
|
230. |
Vasquez‐Vivar J,
Kalyanaraman B,
Martasek P,
Hogg N,
Masters BS,
Karoui H,
Tordo P and
Pritchard KA, Jr.
Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors.
Proc Natl Acad Sci USA
95:
9220–9225,
1998.
|
231. |
Abiko T,
Abiko A,
Clermont AC,
Shoelson B,
Horio N,
Takahashi J,
Adamis AP,
King GL and
Bursell SE.
Characterization of retinal leukostasis, hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase‐C activation.
Diabetes
52:
829–837,
2003.
|
232. |
Katusic ZS.
Vascular endothelial dysfunction: does tetrahydrobiopterin play a role?
Am J Physiol Heart Circ Physiol
281:
H981–H986,
2001.
|
233. |
Werner ER,
Gorren AC,
Heller R,
Werner‐Felmayer G and
Mayer B.
Tetrahydrobiopterin and nitric oxide: mechanistic and pharmacological aspects.
Exp Biol Med (Maywood)
228:
1291–1302,
2003.
|
234. |
Prabhakar SS.
Tetrahydrobiopterin reverses the inhibition of nitric oxide by high glucose in cultured murine mesangial cells.
Am J Physiol Renal Physiol
281:
F179–F188,
2001.
|
235. |
Pieper GM.
Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor, tetrahydrobiopterin.
J Cardiovasc Pharmacol
29:
8–15,
1997.
|
236. |
Bagi Z and
Koller A.
Lack of nitric oxide mediation of flow‐dependent arteriolar dilation in type I diabetes is restored by sepiapterin.
J Vasc Res
40:
47–57,
2003.
|
237. |
Baker TA,
Milstien S and
Katusic ZS.
Effect of vitamin C on the availability of tetrahydrobiopterin in human endothelial cells.
J Cardiovasc Pharmacol
37:
333–338,
2001.
|
238. |
Huang A,
Vita JA,
Venema RC and
Keaney JF, Jr.
Ascorbic acid enhances endothelial nitric‐oxide synthase activity by increasing intracellular tetrahydrobiopterin.
J Biol Chem
275:
17399–17406,
2000.
|
239. |
Timimi FK,
Ting HH,
Haley EA,
Roddy MA,
Ganz P and
Creager MA.
Vitamin C improves endothelium‐dependent vasodilation in patients with insulin‐dependent diabetes mellitus.
J Am Coll Cardiol
31:
552–557,
1998.
|
240. |
Ting HH,
Timimi FK,
Boles KS,
Creager SJ,
Ganz P and
Creager MA.
Vitamin C improves endothelium‐dependent vasodilation in patients with non‐insulin‐dependent diabetes mellitus.
J Clin Invest
97:
22–28,
1996.
|
241. |
Liu Y and
Gutterman DD.
The coronary circulation in diabetes: influence of reactive oxygen species on K+ channel‐mediated vasodilation.
Vascul Pharmacol
38:
43–49,
2002.
|
242. |
Heitzer T,
Krohn K,
Albers S and
Meinertz T.
Tetrahydrobiopterin improves endothelium‐dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus.
Diabetologia
43:
1435–1438,
2000.
|
243. |
Kinoshita H,
Tsutsui M,
Milstien S and
Katusic ZS.
Tetrahydrobiopterin, nitric oxide and regulation of cerebral arterial tone.
Prog Neurobiol
52:
295–302,
1997.
|
244. |
Nystrom T,
Nygren A and
Sjoholm A.
Tetrahydrobiopterin increases insulin sensitivity in patients with type 2 diabetes and coronary heart disease.
Am J Physiol Endocrinol Metab
287:
E919–E925,
2004.
|
245. |
Frisbee JC and
Stepp DW.
Impaired NO‐dependent dilation of skeletal muscle arterioles in hypertensive diabetic obese Zucker rats.
Am J Physiol Heart Circ Physiol
281:
H1304–H1311,
2001.
|
246. |
Frisbee JC.
Impaired skeletal muscle perfusion in obese Zucker rats.
Am J Physiol Regul Integr Comp Physiol
285:
R1124–R1134,
2003.
|
247. |
Bohlen HG.
Protein kinase betall in Zucker obese rats compromises oxygen and flow‐mediated regulation of nitric oxide formation.
Am J Physiol Heart Circ Physiol
286:
H492–H497,
2004.
|
248. |
Cotter MA,
Jack AM and
Cameron NE.
Effects of the protein C kinase beta inhibitor LY333531 on neural and vascular function in rats with streptozotocin‐induced diabetes.
Clin Sci (Lond)
103:
311–321,
2002.
|
249. |
Booth G,
Stalker TJ,
Lefer AM and
Scalia R.
Mechanisms of amelioration of glucose‐induced endothelial dysfunction following inhibition of protein kinase C in vivo.
Diabetes
51:
1556–1564,
2002.
|
250. |
Ammar RF, Jr.,
Gutterman DD,
Brooks LA and
Dellsperger KC.
Impaired dilation of coronary arterioles during increases in myocardial O(2) consumption with hyperglycemia.
Am J Physiol Endocrinol Metab
279:
E868–E874,
2000.
|
251. |
Mokelke EA,
Wang M and
Sturek M.
Exercise training enhances coronary smooth muscle cell sodium‐calcium exchange activity in diabetic dyslipidemic Yucatan swine.
Ann N Y Acad Sci
976:
335–337,
2002.
|
252. |
Gupta S,
Chough E,
Daley J,
Oates P,
Tornheim K,
Ruderman NB and
Keaney JF, Jr.
Hyperglycemia increases endothelial superoxide that impairs smooth muscle cell Na+‐K+‐ATPase activity.
Am J Physiol Cell Physiol
282:
C560–C566,
2002.
|
253. |
Intensive blood‐glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group.
Lancet
352:
837–853,
1998.
|
254. |
Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group.
N Engl J Med
342:
381–389,
2000.
|
255. |
Marshall SM.
Recent advances in diabetic nephropathy.
Clin Med
4:
277–282,
2004.
|
256. |
Carey RM and
Siragy HM.
The intrarenal renin‐angiotensin system and diabetic nephropathy.
Trends Endocrinol Metab
14:
274–281,
2003.
|
257. |
Makino H,
Nakamura Y and
Wada J.
Remission and regression of diabetic nephropathy.
Hypertens Res
26:
515–519,
2003.
|
258. |
Cooper ME.
Pathogenesis, prevention, and treatment of diabetic nephropathy.
Lancet
352:
213–219,
1998.
|
259. |
Thomson SC,
Vallon V and
Blantz RC.
Kidney function in early diabetes: the tubular hypothesis of glomerular filtration.
Am J Physiol Renal Physiol
286:
F8–15,
2004.
|
260. |
Jandeleit‐Dahm K and
Cooper ME.
Hypertension and diabetes.
Curr Opin Nephrol Hypertens
11:
221–228,
2002.
|
261. |
Abbott K,
Basta E and
Bakris GL.
Blood pressure control nephro‐protection in diabetes.
J Clin Pharmacol
44:
431–438,
2004.
|
262. |
Bakris GL,
Williams M,
Dworkin L,
Elliott WJ,
Epstein M,
Toto R,
Tuttle K,
Douglas J,
Hsueh W and
Sowers J.
Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group.
Am J Kidney Dis
36:
646–661,
2000.
|
263. |
Sharma K,
Eltayeb BO,
McGowan TA,
Dunn SR,
Alzahabi B,
Rohde R,
Ziyadeh FN and
Lewis EJ.
Captopril‐induced reduction of serum levels of transforming growth factor‐beta1 correlates with long‐term renoprotection in insulin‐dependent diabetic patients.
Am J Kidney Dis
34:
818–823,
1999.
|
264. |
Mogensen CE and
Cooper ME.
Diabetic renal disease: from recent studies to improved clinical practice.
Diabet Med
21:
4–17,
2004.
|
265. |
Folli F,
Kahn CR,
Hansen H,
Bouchie JL and
Feener EP.
Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk.
J Clin Invest
100:
2158–2169,
1997.
|
266. |
Velloso LA,
Folli F,
Sun XJ,
White MF,
Saad MJ and
Kahn CR.
Cross‐talk between the insulin and angiotensin signaling systems.
Proc Natl Acad Sci USA
93:
12490–12495,
1996.
|
267. |
Heise TMKHLSPT.
Insulin resistance and the effect of insulin on blood pressure in essential hypertension.
Hypertension
32:
243–248,
1998.
|
268. |
Lender D,
Arauz‐Pacheco C,
Adams‐Huet B and
Raskin P.
Essential hypertension is associated with decreased insulin clearance and insulin resistance.
Hypertension
29:
111–114,
1997.
|
269. |
Oak JH and
Cai H.
Attenuation of angiotensin II signaling recouples eNOS and inhibits nonendothelial NOX activity in diabetic mice.
Diabetes
56:
118–126,
2007.
|
270. |
Bakris GL.
Hypertension and nephropathy.
Am J Med
115
(Suppl 8A):
49S–54S,
2003.
|
271. |
Reynolds LR,
Konz EC,
Frederich RC and
Anderson JW.
Rosiglitazone amplifies the benefits of lifestyle intervention measures in long‐standing type 2 diabetes mellitus.
Diabetes Obes Metab
4:
270–275,
2002.
|
272. |
Rippin JD,
Barnett AH and
Bain SC.
Cost‐effective strategies in the prevention of diabetic nephropathy.
Pharmacoeconomics
22:
9–28,
2004.
|
273. |
Di Landro D,
Catalano C,
Lambertini D,
Bordin V,
Fabbian F,
Naso A and
Romagnoli GF.
The effect of metabolic control on development and progression of diabetic nephropathy.
Nephrol Dial Transplant
13
(Suppl 8):
35–43,
1998.
|
274. |
Kernan WN,
Inzucchi SE,
Viscoli CM,
Brass LM,
Bravata DM,
Shulman GI,
McVeety JC and
Horwitz RI.
Impaired insulin sensitivity among nondiabetic patients with a recent TIA or ischemic stroke.
Neurology
60:
1447–1451,
2003.
|
275. |
Biessels GJ.
Cerebral complications of diabetes: clinical findings and pathogenetic mechanisms.
Neth J Med
54:
35–45,
1999.
|
276. |
Hewer W,
Mussell M,
Rist F,
Kulzer B and
Bergis K.
Short‐term effects of improved glycemic control on cognitive function in patients with type 2 diabetes.
Gerontology
49:
86–92,
2003.
|
277. |
Croughwell N,
Lyth M,
Quill TJ,
Newman M,
Greeley WJ,
Smith LR and
Reves JG.
Diabetic patients have abnormal cerebral autoregulation during cardiopulmonary bypass.
Circulation
82s:
IV‐407‐IV‐412,
1990.
|
278. |
Mankovsky BN,
Piolot R,
Mankovsky OL and
Ziegler D.
Impairment of cerebral autoregulation in diabetic patients with cardiovascular autonomic neuropathy and orthostatic hypotension.
Diabet Med
20:
119–126,
2003.
|
279. |
Sabri O,
Hellwig D,
Schreckenberger M,
Schneider R,
Kaiser HJ,
Wagenknecht G,
Mull M and
Buell U.
Influence of diabetes mellitus on regional cerebral glucose metabolism and regional cerebral blood flow.
Nucl Med Commun
21:
19–29,
2000.
|
280. |
Harper SL,
Bohlen HG and
Rubin MJ.
Arterial and microvascular contributions to cerebral cortical autoregulation in rats.
Am J Physiol
246:
H17–H24,
1984.
|
281. |
Faraci FM and
Heistad DD.
Regulation of large cerebral arteries and cerebral microvascular pressure.
Circ Res
66:
8–17,
1990.
|
282. |
Faraci FM and
Heistad DD.
Regulation of the cerebral circulation: role of endothelium and potassium channels.
Physiol Rev
78:
53–97,
1998.
|
283. |
Fernandez N,
Martinez MA,
Monge L,
Garcia‐Villalon AL and
Dieguez G.
Adrenergic vasoconstrictor activity in the cerebral circulation after inhibition of nitric oxide synthesis in conscious goats.
Auton Neurosci
89:
16–23,
2001.
|
284. |
Fouyas IP,
Kelly PA,
Ritchie IM and
Whittle IR.
Cerebrovascular effects of nitric oxide manipulation in spontaneously hypertensive rats.
Br J Pharmacol
121:
49–56,
1997.
|
285. |
Pelligrino DA,
Koenig HM and
Albrecht RF.
Nitric oxide synthesis and regional cerebral blood flow responses to hypercapnia and hypoxia in the rat.
J Cereb Blood Flow Metab
13:
80–87,
1993.
|
286. |
Prado R,
Watson BD,
Kuluz J and
Dietrich WD.
Endothelium‐derived nitric oxide synthase inhibition: effects of cerebral blood flow, pial artery diameter, and vascular morphology in rats.
Stroke
23:
1118–1124,
1992.
|
287. |
Jones SC,
Radinsky CR,
Furlan AJ,
Chyatte D and
Perez‐Trepichio AD.
Cortical NOS inhibition raises the lower limit of cerebral blood flow‐arterial pressure autoregulation.
Am J Physiol
276:
H1253–H1262,
1999.
|
288. |
Fujii K,
Heistad DD and
Faraci FM.
Flow‐mediated dilatation of the basilar artery in vivo.
Circ Res
69:
679–697,
1991.
|
289. |
Garcia‐Roldan J‐L and
Bevan JA.
Flow‐induced constriction and dilation of cerebral resistance arteries.
Circ Res
66:
1445–1448,
1990.
|
290. |
Gaw AJ and
Bevan JA.
Flow‐induced relaxation of the rabbit middle cerebral artery is composed of both endothelium‐dependent and ‐independent components.
Stroke
24:
105–110,
1993.
|
291. |
Ngai AC and
Winn HR.
Modulation of cerebral arteriolar diameter by intraluminal flow and pressure.
Circ Res
77:
832–840,
1995.
|
292. |
Bentsen L,
Larsen B and
Lassen NA.
Chronically impaired autoregulation of cerebral blood flow in long‐term diabetics.
Stroke
6:
497–502,
1975.
|
293. |
Kastrup J,
Norgaard T,
Parving H‐H,
Henriksen O and
Lassen NA.
Impaired autoregulation of blood flow in subcutaneous tissue of long‐term type 1 (insulin‐dependent) diabetic patients with microangiopathy: an index of arteriolar dysfunction.
Diabetologia
28:
711–717,
1985.
|
294. |
Beckman JA,
Goldfine AB,
Gordon MB,
Garrett LA and
Creager MA.
Inhibition of protein kinase Cbeta prevents impaired endothelium‐dependent vasodilation caused by hyperglycemia in humans.
Circ Res
90:
107–111,
2002.
|
295. |
Dorner GT,
Garhofer G,
Huemer KH,
Riva CE,
Wolzt M and
Schmetterer L.
Hyperglycemia affects flicker‐induced vasodilation in the retina of healthy subjects.
Vision Res
43:
1495–1500,
2003.
|
296. |
Ihlemann N,
Rask‐Madsen C,
Perner A,
Dominguez H,
Hermann T and
Kober L.
Torp‐Pedersen C.
Tetrahydrobiopterin restores endothelial dysfunction induced by an oral glucose challenge in healthy subjects.
Am J Physiol Heart Circ Physiol
285:
H875–H882,
2003.
|
297. |
Mayhan WG.
Impairment of endothelium‐dependent dilatation of cerebral arterioles during diabetes mellitus.
Am J Physiol
256:
H621–H625,
1989.
|
298. |
Mayhan WG,
Simmons LK and
Sharpe GM.
Mechanism of impaired responses of cerebral arterioles during diabetes mellitus.
Am J Physiol
260:
H319–H326,
1991.
|
299. |
Arvanitakis Z,
Wilson RS,
Bienias JL,
Evans DA and
Bennett DA.
Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function.
Arch Neurol
61:
661–666,
2004.
|
300. |
Kim SY,
Johnson MA,
McLeod DS,
Alexander T,
Otsuji T,
Steidl SM,
Hansen BC and
Lutty GA.
Retinopathy in monkeys with spontaneous type 2 diabetes.
Invest Ophthalmol Vis Sci
45:
4543–4553,
2004.
|
301. |
Frisbee JC.
Remodeling of the skeletal muscle microcirculation increases resistance to perfusion in obese Zucker rats.
Am J Physiol Heart Circ Physiol
285:
H104–H111,
2003.
|
302. |
Tranos PG,
Wickremasinghe SS,
Stangos NT,
Topouzis F,
Tsinopoulos I and
Pavesio CE.
Macular edema.
Surv Ophthalmol
49:
470–490,
2004.
|
303. |
Kylstra JA,
Brown JC,
Jaffe GJ,
Cox TA,
Gallemore R,
Greven CM,
Hall JG and
Eifrig DE.
The importance of fluorescein angiography in planning laser treatment of diabetic macular edema.
Ophthalmol
106:
2068–2073,
1999.
|
304. |
Li W,
Yanoff M,
Liu X and
Ye X.
Retinal capillary pericyte apoptosis in early human diabetic retinopathy.
Chin Med J (Engl)
110:
659–663,
1997.
|
305. |
Yanoff M.
Diabetic retinopathy.
N Engl J Med
274:
1344–1349,
1966.
|
306. |
Kim J.
Pericytes and the prevention of diabetic retinopathy.
Diabetes Res Clin Pract
66
(Suppl 1):
S49–S51,
2004.
|
307. |
Yokota T,
Ma RC,
Park JY,
Isshiki K,
Sotiropoulos KB,
Rauniyar RK,
Bornfeldt KE and
King GL.
Role of protein kinase C on the expression of platelet‐derived growth factor and endothelin‐1 in the retina of diabetic rats and cultured retinal capillary pericytes.
Diabetes
52:
838–845,
2003.
|
308. |
Bates DOCFE.
Vascular endothelial growth factor increases microvascular permeability via a Ca2+‐dependent pathway.
Am J Physiol
273:
H687–H694,
1997.
|
309. |
Benjamin LE.
Glucose, VEGF‐A, and diabetic complications.
Am J Pathol
158:
1181–1184,
2001.
|
310. |
Xu X,
Zhu Q,
Xia X,
Zhang S,
Gu Q and
Luo D.
Blood‐retinal barrier breakdown induced by activation of protein kinase C via vascular endothelial growth factor in streptozotocin‐induced diabetic rats.
Curr Eye Res
28:
251–256,
2004.
|
311. |
Grunwald JE,
Riva CE,
Petrig BL,
Brucker AJ,
Schwartz SS,
Braunstein SN,
DuPont J and
Grunwald S.
Strict control of glycaemia: effects on blood flow in the large retinal vessels and in the macular microcirculation.
Br J Ophthalmol
79:
735–741,
1995.
|
312. |
Dyck PJ,
Kratz KM,
Karnes JL,
Litchy WJ,
Klein R,
Pach JM,
Wilson DM,
O'Brien PC,
Melton LJ, III and
Service FJ.
The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population‐based cohort: the Rochester Diabetic Neuropathy Study.
Neurology
43:
817–824,
1993.
|
313. |
Vincent AM,
Russell JW,
Low P and
Feldman EL.
Oxidative stress in the pathogenesis of diabetic neuropathy.
Endocr Rev
25:
612–628,
2004.
|
314. |
Perkins BA and
Bril V.
Diabetic neuropathy: a review emphasizing diagnostic methods.
Clin Neurophysiol
114:
1167–1175,
2003.
|
315. |
Service FJ,
Rizza RA,
Daube JR,
O'Brien PC and
Dyck PJ.
Near normoglycaemia improved nerve conduction and vibration sensation in diabetic neuropathy.
Diabetologia
28:
722–727,
1985.
|
316. |
Nasseri K,
Strijers RL,
Dekhuijzen LS,
Buster M and
Bertelsmann FW.
Reproducibility of different methods for diagnosing and monitoring diabetic neuropathy.
Electromyogr Clin Neurophysiol
38:
295–299,
1998.
|
317. |
Burke D,
Skuse NF and
Lethlean AK.
Sensory conduction of the sural nerve in polyneuropathy.
J Neurol Neurosurg Psychiatry
37:
647–652,
1974.
|
318. |
Ponsford SN.
Sensory conduction in medial and lateral plantar nerves.
J Neurol Neurosurg Psychiatry
51:
188–191,
1988.
|
319. |
Bondy C,
Cowley BD,
Lightman SL and
Kador PF.
Feedback inhibition of aldose reductase gene expression in rat renal medulla.
J Clin Invest
86:
1103–1108,
1990.
|
320. |
Davis M.
The sorbinil retinopathy trial: Neuropathy results.
Neurology
43:
1141–1149,
1993.
|
321. |
Duby JJ,
Campbell RK,
Setter SM,
White JR and
Rasmussen KA.
Diabetic neuropathy: an intensive review.
Am J Health Syst Pharm
61:
160–173,
2004.
|
322. |
Stevens EJ,
Lodkett MJ,
Carrington AL and
Tomlinson DR.
Essential fatty acid treatment prevents nerve ischaemia and associated conduction in rats with experimental diabetes mellitus.
Diabetologia
36:
397–401,
1993.
|
323. |
Karasu C,
Dewhurst M,
Stevens EJ and
Tomlinson DR.
Effects of anti‐oxidant treatment on sciatic nerve dysfunction in streptozotocin‐diabetic rats: comparison with essential fatty acids.
Diabetologia
38:
129–134,
1995.
|
324. |
Koya D,
Haneda M,
Kikkawa R and
King GL.
d‐alpha‐tocopherol treatment prevents glomerular dysfunctions in diabetic rats through inhibition of protein kinase C‐diacylglycerol pathway.
Biofactors
7:
69–76,
1998.
|
325. |
Kunisaki M,
Fumio U,
Nawata H and
King GL.
Vitamin E normalizes diacylglycerol‐protein kinase C activation induced by hyperglycemia in rat vascular tissues.
Diabetes
45
(Suppl 3):
S117–S119,
1996.
|
326. |
Taddei S,
Virdis A,
Ghiadoni L,
Magagna A and
Salvetti A.
Vitamin C improves endothelium‐dependent vasodilation by restoring nitric oxide activity in essential hypertension.
Circulation
97:
2222–2229,
1998.
|
327. |
Bell MA and
Weddell AGM.
A descriptive study of the blood vessels of the sciatic nerve in the rat, man and other mammals.
Brain
107:
871–898,
1984.
|
328. |
Lundborg G and
Branemark P‐I.
Microvascular structure and function of peripheral nerves: Vital microscopic studies of the tibial nerve in the rabbit.
Adv Microcirc
1:
66–88,
1968.
|
329. |
Lundborg G and
Sweden G.
Structure and function of the intraneural microvessels as related to trauma, edema formation, and nerve function.
J Bone Joint Surg
57‐A:
938–948,
1975.
|
330. |
Stevens EJ,
Carrington AL and
Tomlinson DR.
Nerve ischaemia in diabetic rats: time‐course of development, effect of insulin treatment plus comparison of streptozotocin and BB models.
Diabetologia
37:
43–48,
1994.
|
331. |
Tuck RR,
Schmelzer JD and
Low PA.
Endoneurial blood flow and oxygen tension in the sciatic nerves of rats with experimental diabetic neuropathy.
Brain
107:
935–950,
1984.
|
332. |
Tesfaye S,
Malik R and
Ward JD.
Vascular factors in diabetic neuropathy: Review.
Diabetologia
37:
847–854,
1994.
|
333. |
Malik RA,
Tesfaye S,
Thompson SD,
Veves A,
Hunter A,
Sharma AK,
Ward JD and
Boulton AJM.
Transperineurial capillary abnormalities in the sural nerve of patients with diabetic neuropathy.
Microvasc Res
48:
236–245,
1994.
|
334. |
Sugimoto K and
Yagihashi S.
Effects of aminoguanidine on structural alterations of microvessels in peripheral nerve of streptozotocin diabetic rats.
Microvasc Res
53:
105–112,
1997.
|
335. |
Myers RR,
Murakami H and
Powell HC.
Reduced nerve blood flow in edematous neuropathies: A biomechanical mechanism.
Microvasc Res
32:
145–151,
1986.
|
336. |
Powell HC,
Costello ML and
Myers RR.
Endoneurial fluid pressure in experimental models of diabetic neuropathy.
J Neuropathol Exp Neurol
40:
613–624,
1981.
|
337. |
Cameron NE,
Cotter MA,
Dines KC and
Maxfield EK.
Pharmacological manipulation of vascular endothelium function in non‐diabetic and streptozotocin‐diabetic rats: effects on nerve conduction, hypoxic resistance and endoneurial capillarization.
Diabetologia
36:
516–522,
1993.
|
338. |
Thomsen K,
Rubin I and
Lauritzen M.
NO‐ and non‐NO‐, non‐prostanoid‐dependent vasodilatation in rat sciatic nerve during maturation and developing experimental diabetic neuropathy.
J Physiol
543:
977–993,
2002.
|
339. |
Kihara M and
Low PA.
Impaired vasoreactivity to nitric oxide in experimental diabetic neuropathy.
Exp Neurol
132:
180–185,
1995.
|
340. |
Maxfield EK,
Cameron NE and
Cotter MA.
Effects of diabetes on reactivity of sciatic vasa nervorum in rats.
J Diab Comp
11:
45–47,
1997.
|
341. |
Dewhurst M,
Omawari N and
Tomlinson DR.
Aminoguanidine‐effects on endoneurial vasoactive nitric oxide and on motor nerve conduction velocity in control and streptozotocin‐diabetic rats.
Br J Pharmacol
120:
593–598,
1997.
|
342. |
Cameron NE and
Cotter MA.
Effects of protein kinase Cbeta inhibition on neurovascular dysfunction in diabetic rats: interaction with oxidative stress and essential fatty acid dysmetabolism.
Diabetes Metab Res Rev
18:
315–323,
2002.
|
343. |
Cameron NE,
Cotter MA,
Jack AM,
Basso MD and
Hohman TC.
Protein kinase C effects on nerve function, perfusion, Na(+), K(+)‐ATPase activity and glutathione content in diabetic rats.
Diabetologia
42:
1120–1130,
1999.
|
344. |
Fabricatore AN and
Wadden TA.
Psychological aspects of obesity.
Clin Dermatol
22:
332–337,
2004.
|
345. |
Lin EH,
Katon W,
Von Korff M,
Rutter C,
Simon GE,
Oliver M,
Ciechanowski P,
Ludman EJ,
Bush T and
Young B.
Relationship of depression and diabetes self‐care, medication adherence, and preventive care.
Diabetes Care
27:
2154–2160,
2004.
|
346. |
McElroy SL,
Kotwal R,
Malhotra S,
Nelson EB,
Keck PE and
Nemeroff CB.
Are mood disorders and obesity related? A review for the mental health professional.
J Clin Psychiatry
65:
634–651,
2004.
|
347. | Effect of intensive diabetes treatment on nerve conduction in the Diabetes Control and Complications Trial.
Ann Neurol
38:
869–880,
1995.
|