Comprehensive Physiology Wiley Online Library

Lung Cell Biology

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Basic Plan of the Cell
1.1 Cell Nucleus
1.2 Cytoplasmic Membrane Systems and Granules
1.3 Mitochondria
1.4 Ground Substance and Cytoskeleton
1.5 Plasma Membrane
2 Organization of Lung Cell Population
2.1 Histogenetic Origin of Lung Cells and Tissues
2.2 Differentiation of Functional Zones
2.3 Morphometry of Lung Cell Population
3 Epithelium
3.1 Epithelium of Conducting Airways
3.2 Alveolar Epithelium
4 Vascular Endothelium
4.1 Structure of Capillary Endothelium
4.2 Structure of Arterial and Venous Endothelium
4.3 Metabolic Functions of Endothelial Cells
5 Interstitial Cells
5.1 Cells Related to Connective Tissue Fibers
5.2 Interstitial Cells With Contractile Properties
5.3 Lymphatics and Free Cells
5.4 Nerves
6 Cells of Pulmonary Defense System
6.1 Alveolar and Interstitial Macrophages
6.2 Cells of Immune Defense System
6.3 Granulocytes
7 Mesothelial Cells of Pleura
Figure 1. Figure 1.

Organization of half a type II epithelial cell from human lung (cf. Fig. 15B). Nucleus is enwrapped by a perinuclear cisterna (PC) made of 2 membranes, which is traversed by nuclear pores (NP), shown (inset, right) at greater magnification; nuclear content is divided into dense heterochromatin (HC) areas and karyoplasm, which contains euchromatin. Cell surface is made of the plasma membrane (PM) with a subjacent ectoplasmic layer of filaments (f) and a fuzzy coat or glycocalyx (arrow) on the outside (inset, left). Cells in epithelia are joined by junctional complexes (J) with terminal bars at the boundary between apical and lateral face; basal face is attached to the basement membrane (BM). Cytoplasm houses a variety of organelles, cf, Collagen fibrils; ER, endoplasmic reticulum; G, Golgi complex; L, lysosomes; LB, lamellar body; M, mitochondrion; mt, microtubule; MV, microvilli. Bars: 1 μm, 0.1 μm (insets).

Figure 2. Figure 2.

Mitochondria (M) and rough endoplasmic reticulum with cisternal space (asterisks) bounded by fine membrane to which ribosomes (arrows) are attached. Some free ribosomes are not attached to membranes. Double membrane of mitochondria with formation of cristae. Plasma cell. Bar, 0.2 μm.

Figure 3. Figure 3.

Golgi‐associated endoplasmic reticulum and lysosomes (GERL) from alveolar type II cell consists of Golgi complex (G) with a stack of cisternae surrounded by vesicles, rough endoplasmic reticulum (ER), and primary lysosomes (L). M, mitochondrion; MV, multivesicular bodies. Bar, 0.2 μm.

Figure 4. Figure 4.

Cytoskeletal 10‐nm filaments (arrows) extend between 2 plasma membranes (PM) in alveolar type I cell. Bar, 0.2 μm.

Figure 5. Figure 5.

A: thin section of cell membrane of erythrocyte with 2 dark staining leaflets (circle). B: freeze‐fracture replica of cleaved membranes of 2 erythrocytes showing that intramembranous particles on inner protoplasmic leaflet (PF) facing the cytoplasm are denser than those on external leaflet (EF). Bars, 0.1 μm.

Figure 6. Figure 6.

Electron micrograph of human ciliated cells. Terminal bar or tight junction (J) appears as lacework of ∼10 rows of densely aligned particles on fracture face of protoplasmic leaflet (PF) and as complementary grooves on external leaflet (EF) of adjacent cell. Tuft of microvilli (V) and base of cilium (C) with ciliary necklace of intramembrane particles (Ne). Bar, 0.2 μm.

Courtesy of E. E. Schneeberger
Figure 7. Figure 7.

Schematic representation of airway wall structure from bronchus to alveolus. EP, epithelial cells; BM, basement membrane; SM, smooth muscle cells; FC, fibrocartilaginous coat.

From Weibel 202
Figure 8. Figure 8.

Mucous membrane of small human bronchus. A: thin section showing ciliated cell (CC) with cilia (C) and microvilli (arrows), goblet cell (GC) with apical mucous plug (MU), and basal cell (BC). Fibers and fibroblasts (FB) in connective tissue. MP, macrophage. B: scanning electron micrograph of epithelial surface showing ciliary tufts (C) and mucous plug (MU) of goblet cell in process of extrusion. Bars, 5 μm.

Figure 9. Figure 9.

Scanning electron micrograph (A) and longitudinal (B) and transverse (C) thin sections of cilia of human bronchial epithelium. Microvilli (arrows) between cilia and axonemal complex (A) with its different structure in the shaft, neck (Ne), and basal body or kinetosome (K). mt, Microtubule; S, satellite of ciliary kinetosome. D: greater magnification of cross‐sectioned shaft of a normal cilium with dynein arms (arrowhead). E: dynein arms are lacking in a cilium from a patient with immotile cilia syndrome. Bars: 0.5 μm (A‐C); 0.1 μm (D, E).

E, courtesy of J. M. Sturgess
Figure 10. Figure 10.

Scanning electron micrograph of brush cell from small bronchiole of rat lung. Compare brush with cilia (C) and ordinary microvilli (arrow). Bar, 1 μm.

Figure 11. Figure 11.

Basal part of neuroendocrine cell of human bronchiolar epithelium showing part of nucleus (N), mitochondria (M), and secretory vesicles (arrows) with dark core, which are seen at greater magnification in inset. Bars, 0.2 μm.

Figure 12. Figure 12.

Scanning electron micrograph of surface of alveolar epithelium of human lung with two type II epithelial cells (EP2). Arrows, boundary (terminal bar) of type I cell. Asterisk, nucleus of type I cell. Bar, 5 μm.

From Weibel 202
Figure 13. Figure 13.

A: squamous type I epithelial cell (EP1). B: capillary endothelial cell (EN) from human lung. Nuclei (N) are surrounded by little cytoplasm, which continues into squamous extensions. Circles, fused basement membranes (BM) in barrier parts. Capillary contains neutrophil granulocyte (GR) with 2 lobes of nucleus sectioned (N′). F, fiber; J, intercellular junction. Bars, 1 μm.

Figure 14. Figure 14.

Squamous extensions of endothelial cell (EN) and type I pneumocyte (EP1). Cytoplasm, bounded by plasma membrane similar to that of erythrocyte (EC), contains microfilaments (f), microtubules (mt), and pinocytotic vesicles (arrows). BM, basement membrane. Bar, 0.1 μm.

Figure 15. Figure 15.

Scanning electron micrograph (A) and thin section (B) of type II pneumocyte with microvilli (V) on peripheral zone of apical cell surface. BM, basement membrane; J, intercellular junction; LB, lamellar body; N, nucleus. Detail of this cell is shown in Fig. 1. Bars, 1 μm.

Figure 16. Figure 16.

Characteristic organelles of type II cell related to surfactant production and storage. Cone‐shaped lamellar bodies from rat lung (A, B) and sequence of multivesicular bodies (C‐E) with stacks of lamellae (arrows) and membrane envelope (arrowheads). A, C, D: thin sections. B, E: freeze‐fracture preparation. Bars, 0.2 μm.

Figure 17. Figure 17.

Release of lamellar body (LB) from type II epithelial cell into surface lining layer, which contains tubular myelin (TM) continuous with the phospholipid surface film (arrows). Bar, 0.2 μn.

Figure 18. Figure 18.

Alveolar brush cells from rat lung. A: scanning electron micrograph showing brush (B) on narrow apical surface bent to the side, whereas cell body is covered by smooth type I cell extension (asterisks). B: thin section shows brush beneath surface film (arrows) and covered by type I cell (asterisks). C: squat brush microvilli contain bundles of filaments (f) that extend deep into cell. Bars: 1 μm (A, B); 0.5 μm (C).

B from Weibel 199
Figure 19. Figure 19.

Kinetics of transformation of type II to type I cells. Rats exposed to NO2 to induce lung damage were injected with [3H]thymidine at time 0 and killed from 1 h to 14 days later.

From Evans et al. 63
Figure 20. Figure 20.

Endothelium (EN) and single layer of smooth muscle (SM) from small pulmonary artery of human lung. Thick endothelial cytoplasm and wealth of organelles (inset) comprising mitochondria (M), endoplasmic reticulum (ER), lipid droplet (Li), specific granules (asterisks), microtubules (mt), and many vesicles (arrows). Cross‐sectioned smooth muscle cells show central nucleus, mitochondria, sarcoplasmic reticulum (SR), membrane‐bounded caveolae (arrows), filamentous matter with dense bodies (db), and cell‐to‐cell contacts (circle), cf, Collagen fibrils; el, elastic fibers. Bars, 0.5 μm.

Figure 21. Figure 21.

Fibroblast engaged in fibrogenesis contains much endoplasmic reticulum (ER) with ribosomes and large Golgi complex (G), as well as mitochondria (M). cf, Collagen fibrils. Bar, 0.2 μm.

Figure 22. Figure 22.

Septal fibroblast (FB) ramifies with slim extensions (arrows) into interstitial spaces between capillary endothelium (EN) and alveolar epithelium (EP), following the fiber strands (F). Circles, cytoplasmic areas with condensed filaments spanning the interstitial space crosswise. Bar, 2 μm.

Figure 23. Figure 23.

A: smooth muscle cells from small pulmonary artery of human lung cut longitudinally, db, Dense bodies of filamentous matter; db′, dense bands on plasma membrane; M, mitochondria; N, central elongated nucleus; SR, sarcoplasmic reticulum. Greater magnification shows filaments on longitudinal (B) and transverse (C) sections together with caveolae (arrows) of plasma membrane, which is coated by basement membrane. Bars: 1 μm (A); 0.2 μm (B, C).

Figure 24. Figure 24.

Myofibroblasts from human alveolar septa with bundles of filaments (f) extending obliquely or crosswise between dense insertion spots on plasma membrane, which appears affixed to basement membrane (arrows). Bars, 0.2 μm.

Figure 25. Figure 25.

Capillary pericyte (PC) with extension (arrows) that lies between the endothelial cell (EN) and its basement membrane in its peripheral part. Other processes of same cell make contact with epithelial (EP) basement membrane (arrowheads). Inset, pericyte filaments (f). Bars: 1 μm; 0.1 μm (inset).

Figure 26. Figure 26.

Mast cell from human alveolar septum contains granules (arrows) with scroll‐like substructure. Inset, scroll‐like substructure of mast cell at higher magnification, cf, Collagen fibrils. Bars, 1 μm; 0.1 μm (inset).

Figure 27. Figure 27.

Scanning electron micrograph of human alveolar macrophage on alveolar epithelial surface. Thin advancing cytoplasmic lamella appears partly attached to epithelium. Bar, 5 μm.

From Weibel 202
Figure 28. Figure 28.

Alveolar macrophage of human lung apposed to epithelium in several places (arrows). Advancing lamella (AL) is free of organelles that are rich in perinuclear cytoplasm. Bar, 2 μm.

Figure 29. Figure 29.

Alveolar macrophage lies beneath thin film of surface lining layer (arrows). Exclusion of organelles from short peripheral cytoplasmic flaps (asterisks). Bar, 1 μm.

Figure 30. Figure 30.

Interstitial macrophage (MP) from human lung contains heterogeneous dark material in phagolysosomes or residual bodies (arrows). Macrophage is in group of free cells with lymphocytes (LC) and plasma cell (PC). Bar, 2 μm.

Figure 31. Figure 31.

A: phagocytosis of erythrocyte (EC) by alveolar macrophage. Ectoplasmic “lips” (asterisks) are pinching off fragment. B: phagolysosome may contain tubular myelin (TM) and lamellar (L) osmiophilic material, possibly the result of enzymatic disassembly of surface lining material. Bars: 1 μm (A); 0.2 μm (B).

Figure 32. Figure 32.

Plasma cell from small rat lymph node contains massive rough endoplasmic reticulum (ER). Golgi complexes (G) are in adjacent plasma cell. Bar, 2 μm.



Figure 1.

Organization of half a type II epithelial cell from human lung (cf. Fig. 15B). Nucleus is enwrapped by a perinuclear cisterna (PC) made of 2 membranes, which is traversed by nuclear pores (NP), shown (inset, right) at greater magnification; nuclear content is divided into dense heterochromatin (HC) areas and karyoplasm, which contains euchromatin. Cell surface is made of the plasma membrane (PM) with a subjacent ectoplasmic layer of filaments (f) and a fuzzy coat or glycocalyx (arrow) on the outside (inset, left). Cells in epithelia are joined by junctional complexes (J) with terminal bars at the boundary between apical and lateral face; basal face is attached to the basement membrane (BM). Cytoplasm houses a variety of organelles, cf, Collagen fibrils; ER, endoplasmic reticulum; G, Golgi complex; L, lysosomes; LB, lamellar body; M, mitochondrion; mt, microtubule; MV, microvilli. Bars: 1 μm, 0.1 μm (insets).



Figure 2.

Mitochondria (M) and rough endoplasmic reticulum with cisternal space (asterisks) bounded by fine membrane to which ribosomes (arrows) are attached. Some free ribosomes are not attached to membranes. Double membrane of mitochondria with formation of cristae. Plasma cell. Bar, 0.2 μm.



Figure 3.

Golgi‐associated endoplasmic reticulum and lysosomes (GERL) from alveolar type II cell consists of Golgi complex (G) with a stack of cisternae surrounded by vesicles, rough endoplasmic reticulum (ER), and primary lysosomes (L). M, mitochondrion; MV, multivesicular bodies. Bar, 0.2 μm.



Figure 4.

Cytoskeletal 10‐nm filaments (arrows) extend between 2 plasma membranes (PM) in alveolar type I cell. Bar, 0.2 μm.



Figure 5.

A: thin section of cell membrane of erythrocyte with 2 dark staining leaflets (circle). B: freeze‐fracture replica of cleaved membranes of 2 erythrocytes showing that intramembranous particles on inner protoplasmic leaflet (PF) facing the cytoplasm are denser than those on external leaflet (EF). Bars, 0.1 μm.



Figure 6.

Electron micrograph of human ciliated cells. Terminal bar or tight junction (J) appears as lacework of ∼10 rows of densely aligned particles on fracture face of protoplasmic leaflet (PF) and as complementary grooves on external leaflet (EF) of adjacent cell. Tuft of microvilli (V) and base of cilium (C) with ciliary necklace of intramembrane particles (Ne). Bar, 0.2 μm.

Courtesy of E. E. Schneeberger


Figure 7.

Schematic representation of airway wall structure from bronchus to alveolus. EP, epithelial cells; BM, basement membrane; SM, smooth muscle cells; FC, fibrocartilaginous coat.

From Weibel 202


Figure 8.

Mucous membrane of small human bronchus. A: thin section showing ciliated cell (CC) with cilia (C) and microvilli (arrows), goblet cell (GC) with apical mucous plug (MU), and basal cell (BC). Fibers and fibroblasts (FB) in connective tissue. MP, macrophage. B: scanning electron micrograph of epithelial surface showing ciliary tufts (C) and mucous plug (MU) of goblet cell in process of extrusion. Bars, 5 μm.



Figure 9.

Scanning electron micrograph (A) and longitudinal (B) and transverse (C) thin sections of cilia of human bronchial epithelium. Microvilli (arrows) between cilia and axonemal complex (A) with its different structure in the shaft, neck (Ne), and basal body or kinetosome (K). mt, Microtubule; S, satellite of ciliary kinetosome. D: greater magnification of cross‐sectioned shaft of a normal cilium with dynein arms (arrowhead). E: dynein arms are lacking in a cilium from a patient with immotile cilia syndrome. Bars: 0.5 μm (A‐C); 0.1 μm (D, E).

E, courtesy of J. M. Sturgess


Figure 10.

Scanning electron micrograph of brush cell from small bronchiole of rat lung. Compare brush with cilia (C) and ordinary microvilli (arrow). Bar, 1 μm.



Figure 11.

Basal part of neuroendocrine cell of human bronchiolar epithelium showing part of nucleus (N), mitochondria (M), and secretory vesicles (arrows) with dark core, which are seen at greater magnification in inset. Bars, 0.2 μm.



Figure 12.

Scanning electron micrograph of surface of alveolar epithelium of human lung with two type II epithelial cells (EP2). Arrows, boundary (terminal bar) of type I cell. Asterisk, nucleus of type I cell. Bar, 5 μm.

From Weibel 202


Figure 13.

A: squamous type I epithelial cell (EP1). B: capillary endothelial cell (EN) from human lung. Nuclei (N) are surrounded by little cytoplasm, which continues into squamous extensions. Circles, fused basement membranes (BM) in barrier parts. Capillary contains neutrophil granulocyte (GR) with 2 lobes of nucleus sectioned (N′). F, fiber; J, intercellular junction. Bars, 1 μm.



Figure 14.

Squamous extensions of endothelial cell (EN) and type I pneumocyte (EP1). Cytoplasm, bounded by plasma membrane similar to that of erythrocyte (EC), contains microfilaments (f), microtubules (mt), and pinocytotic vesicles (arrows). BM, basement membrane. Bar, 0.1 μm.



Figure 15.

Scanning electron micrograph (A) and thin section (B) of type II pneumocyte with microvilli (V) on peripheral zone of apical cell surface. BM, basement membrane; J, intercellular junction; LB, lamellar body; N, nucleus. Detail of this cell is shown in Fig. 1. Bars, 1 μm.



Figure 16.

Characteristic organelles of type II cell related to surfactant production and storage. Cone‐shaped lamellar bodies from rat lung (A, B) and sequence of multivesicular bodies (C‐E) with stacks of lamellae (arrows) and membrane envelope (arrowheads). A, C, D: thin sections. B, E: freeze‐fracture preparation. Bars, 0.2 μm.



Figure 17.

Release of lamellar body (LB) from type II epithelial cell into surface lining layer, which contains tubular myelin (TM) continuous with the phospholipid surface film (arrows). Bar, 0.2 μn.



Figure 18.

Alveolar brush cells from rat lung. A: scanning electron micrograph showing brush (B) on narrow apical surface bent to the side, whereas cell body is covered by smooth type I cell extension (asterisks). B: thin section shows brush beneath surface film (arrows) and covered by type I cell (asterisks). C: squat brush microvilli contain bundles of filaments (f) that extend deep into cell. Bars: 1 μm (A, B); 0.5 μm (C).

B from Weibel 199


Figure 19.

Kinetics of transformation of type II to type I cells. Rats exposed to NO2 to induce lung damage were injected with [3H]thymidine at time 0 and killed from 1 h to 14 days later.

From Evans et al. 63


Figure 20.

Endothelium (EN) and single layer of smooth muscle (SM) from small pulmonary artery of human lung. Thick endothelial cytoplasm and wealth of organelles (inset) comprising mitochondria (M), endoplasmic reticulum (ER), lipid droplet (Li), specific granules (asterisks), microtubules (mt), and many vesicles (arrows). Cross‐sectioned smooth muscle cells show central nucleus, mitochondria, sarcoplasmic reticulum (SR), membrane‐bounded caveolae (arrows), filamentous matter with dense bodies (db), and cell‐to‐cell contacts (circle), cf, Collagen fibrils; el, elastic fibers. Bars, 0.5 μm.



Figure 21.

Fibroblast engaged in fibrogenesis contains much endoplasmic reticulum (ER) with ribosomes and large Golgi complex (G), as well as mitochondria (M). cf, Collagen fibrils. Bar, 0.2 μm.



Figure 22.

Septal fibroblast (FB) ramifies with slim extensions (arrows) into interstitial spaces between capillary endothelium (EN) and alveolar epithelium (EP), following the fiber strands (F). Circles, cytoplasmic areas with condensed filaments spanning the interstitial space crosswise. Bar, 2 μm.



Figure 23.

A: smooth muscle cells from small pulmonary artery of human lung cut longitudinally, db, Dense bodies of filamentous matter; db′, dense bands on plasma membrane; M, mitochondria; N, central elongated nucleus; SR, sarcoplasmic reticulum. Greater magnification shows filaments on longitudinal (B) and transverse (C) sections together with caveolae (arrows) of plasma membrane, which is coated by basement membrane. Bars: 1 μm (A); 0.2 μm (B, C).



Figure 24.

Myofibroblasts from human alveolar septa with bundles of filaments (f) extending obliquely or crosswise between dense insertion spots on plasma membrane, which appears affixed to basement membrane (arrows). Bars, 0.2 μm.



Figure 25.

Capillary pericyte (PC) with extension (arrows) that lies between the endothelial cell (EN) and its basement membrane in its peripheral part. Other processes of same cell make contact with epithelial (EP) basement membrane (arrowheads). Inset, pericyte filaments (f). Bars: 1 μm; 0.1 μm (inset).



Figure 26.

Mast cell from human alveolar septum contains granules (arrows) with scroll‐like substructure. Inset, scroll‐like substructure of mast cell at higher magnification, cf, Collagen fibrils. Bars, 1 μm; 0.1 μm (inset).



Figure 27.

Scanning electron micrograph of human alveolar macrophage on alveolar epithelial surface. Thin advancing cytoplasmic lamella appears partly attached to epithelium. Bar, 5 μm.

From Weibel 202


Figure 28.

Alveolar macrophage of human lung apposed to epithelium in several places (arrows). Advancing lamella (AL) is free of organelles that are rich in perinuclear cytoplasm. Bar, 2 μm.



Figure 29.

Alveolar macrophage lies beneath thin film of surface lining layer (arrows). Exclusion of organelles from short peripheral cytoplasmic flaps (asterisks). Bar, 1 μm.



Figure 30.

Interstitial macrophage (MP) from human lung contains heterogeneous dark material in phagolysosomes or residual bodies (arrows). Macrophage is in group of free cells with lymphocytes (LC) and plasma cell (PC). Bar, 2 μm.



Figure 31.

A: phagocytosis of erythrocyte (EC) by alveolar macrophage. Ectoplasmic “lips” (asterisks) are pinching off fragment. B: phagolysosome may contain tubular myelin (TM) and lamellar (L) osmiophilic material, possibly the result of enzymatic disassembly of surface lining material. Bars: 1 μm (A); 0.2 μm (B).



Figure 32.

Plasma cell from small rat lymph node contains massive rough endoplasmic reticulum (ER). Golgi complexes (G) are in adjacent plasma cell. Bar, 2 μm.

References
 1. Adamson, I. Y. R., and D. H. Bowden. The intracellular site of surfactant synthesis: autoradiographic studies on murine and avian lung explants. Exp. Mol. Pathol. 18: 112–124, 1973.
 2. Adamson, I. Y. R., and D. H. Bowden. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab. Invest. 30: 35–42, 1974.
 3. Adamson, I. Y. R., and D. H. Bowden. Role of monocytes and interstitial cells in the generation of alveolar macrophages. II. Kinetic studies after carbon loading. Lab. Invest. 42: 518–524, 1980.
 4. Afzelius, B. A. The immotile‐cilia syndrome and other ciliary diseases. Int. Rev. Exp. Pathol. 19: 1–43, 1979.
 5. Ashton, F. T., A. V. Somlyo, and A. P. Somlyo. The contractile apparatus of vascular smooth muscle: intermediate high voltage stereo electron microscopy. J. Mol. Biol. 98: 17–29, 1975.
 6. Askin, F. B., and C. Kuhn. The cellular origin of pulmonary surfactant. Lab. Invest 25: 260–268, 1971.
 7. Atwal, O. S., and L. M. Brown. Membrane‐bound glycoprotein in the alveolar cells of the caprine lung. Am. J. Anat. 159: 275–283, 1980.
 8. Bachofen, M., and E. R. Weibel. Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am. Rev. Respir. Dis. 116: 589–615, 1977.
 9. Bakhle, Y. S., and J. R. Vane (editors). Lung Biology in Health and Disease. Metabolic Functions of the Lung. New York: Dekker, 1977, vol. 4.
 10. Bartels, H. The air‐blood barrier in the human lung. A freeze‐fracture study. Cell Tissue Res. 198: 269–285, 1979.
 11. Bartels, H. Freeze‐fracture demonstration of communicating junctions between interstitial cells of the pulmonary interalveolar septa. Am. J. Anat. 155: 125–129, 1979.
 12. Bartels, H., H. J. Oestern, and G. Voss‐Wermbter. Communicating‐occluding junction complexes in the alveolar epithelium. A freeze‐fracture study. Am. Rev. Respir. Dis. 121: 1017–1024, 1980.
 13. Baserga, R. (editor). Multiplication and Division in Mammalian Cells. New York: Dekker, 1976, vol. 6. (Biochem. Dis. Ser.)
 14. Batenburg, J. J. Isolated type II cells from fetal lung as model in studies on the synthesis and secretion of pulmonary surfactant. Lung 158: 177–192, 1980.
 15. Batenburg, J. J., M. Post, V. Oldenborg, and L. M. G. Van Golde. The perfused isolated lung as a possible model for the study of lipid synthesis by type II cells in their natural environment. Exp. Lung Res. 1: 57–65, 1980.
 16. Belton, J. C., D. Branton, H. V. Thomas, and P. K. Mueller. Freeze‐etch observations of rat lung. Anat. Rec. 170: 471–483, 1971.
 17. Bensch, K. G., G. B. Gordon, and L. R. Miller. Studies on the bronchial counterpart of the Kulchitzky (argentaffin) cell and innervation of bronchial glands. J. Ultrastruct. Res. 12: 668–686, 1965.
 18. Bienenstock, J., R. L. Clancy, and D. Y. E. Perey. Bronchus associated lymphoid tissue (BALT): its relation to mucosal immunity. In: Immunologic and Infectious Reactions in the Lung, edited by C. H. Kirkpatrick and H. Y. Reynolds. New York: Dekker, 1976, p. 29–58.
 19. Bienenstock, J., N. Johnston, and D. Y. E. Perey. Bronchial lymphoid tissue. I. Morphometric characteristics. Lab. Invest 28: 686–691, 1973.
 20. Bienenstock, J., M. McDermott, D. Befus, and M. O'Neill. A common mucosal immunologic system involving the bronchus, breast and bowel. Adv. Exp. Med. Biol. 107: 53–59, 1978.
 21. Blobel, G. Synthesis and segregation of secretory proteins: the signal hypothesis. In: International Cell Biology, 1976–1977, edited by B. R. Brinkley and K. R. Porter. New York: Rockefeller Univ. Press, 1977, p. 318–325.
 22. Blobel, G. Intracellular protein topogenesis. Proc. Natl Acad. Sci. USA 77: 1496–1500, 1980.
 23. Bolender, R. P., D. Paumgartner, G. Losa, D. Muellener, and E. R. Weibel. Integrated stereological and biochemical studies on hepatocytic membranes. I. Membrane recoveries in subcellular fractions. J. Cell Biol. 77: 565–583, 1978.
 24. Boorman, G. A., L. W. Schwartz, and D. L. Dungworth. Pulmonary effects of prolonged ozone insult in rats: morphometric evaluation of the central acinus. Lab. Invest. 43: 108–115, 1980.
 25. Boren, H. G., and L. J. Paradise. Cytokinetics of lung. In: Lung Biology in Health and Disease. Pathogenesis and Therapy of Lung Cancer, edited by C. C. Harris. New York: Dekker, 1978, vol. 10, chapt. 7, p. 369–418.
 26. Bouhuys, A. (editor). Lung Cells in Disease. Amsterdam: North‐Holland, 1976.
 27. Bouhuys, A. Action and interaction of pharmacological agents on airway smooth muscle. In: The Biochemistry of Smooth Muscle, edited by N. L. Stephens. Baltimore, MD: University Park, 1977, p. 703–722.
 28. Bowden, D. H., and I. Y. Adamson. Role of monocytes and interstitial cells in the generation of alveolar macrophages. I. Kinetic studies in normal mice. Lab. Invest. 42: 511–517, 1980.
 29. Bradley, K. H., O. Kawanami, V. J. Ferrans, and R. G. Crystal. The fibroblast of human lung alveolar structures: a differentiated cell with a major role in lung structure and function. Methods Cell Biol. 21A: 37–64, 1980.
 30. Brain, J. D., J. J. Godleski, and S. P. Sorokin. Quantification, origin, and fate of pulmonary macrophages. In: Lung Biology in Health and Disease. Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, vol. 5, pt. II, chapt. 20, p. 849–892.
 31. Brinkley, B. R., and K. R. Porter (editors). International Cell Biology, 1976–1977. New York: Rockefeller Univ. Press, 1977.
 32. Bruns, R. R., and G. E. Palade. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J. Cell Biol. 37: 277–299, 1968.
 33. Buckingham, S., H. O. Heinemann, S. C. Sommers, and W. F. Mcnary. Phospholipid synthesis in the large pulmonary alveolar cells. Am. J. Pathol. 48: 1027–1041, 1966.
 34. Bülbring, E., A. F. Brading, A. W. Jones, and T. Tomita (editors). Smooth Muscle: An Assessment of Current Knowledge. Austin: Univ. of Texas Press, 1981.
 35. BURNSTOCK, G. Development of smooth muscle and its innervation. In: Smooth Muscle: An Assessment of Current Knowledge, edited by E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita. Austin: Univ. of Texas Press, 1981, p. 431–457.
 36. Burri, P. H. The postnatal growth of the rat lung. III. Morphology. Anat. Rec. 180: 77–98, 1974.
 37. Burri, P. H., and E. R. Weibel. The ultrastructure and morphometry of the developing lung. In: Lung Biology in Health and Disease. Development of the Lung, edited by W. A. Hodson. New York: Dekker, 1977, vol. 6, chapt. 5, p. 215–268.
 38. Caldwell, P. R. B., B. C. Seegal, K. C. Hsu, M. Das, and R. L. Soffer. Angiotensin converting enzyme: vascular endothelial localization. Science 191: 1050–1051, 1976.
 39. Casteels, R. Membrane potential in smooth muscle cells. In: Smooth Muscle: An Assessment of Current Knowledge, edited by E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita. Austin: Univ. of Texas Press, 1981, p. 105–126.
 40. Castle, J. D., J. D. Jamieson, and G. E. Palade. Radioautographic analysis of the secretory process in the parotid acinar cell of the rabbit. J. Cell Biol. 53: 290–311, 1973.
 41. Chevalier, G., and A. J. Collet. In vivo incorporation of choline‐3H, leucine‐3H, and galactose‐3H in alveolar type II pneumocytes in relation to surfactant synthesis. A quantitative radioautographic study in mouse by electron microscopy. Anat. Rec. 174: 289–310, 1972.
 42. Clements, J. A., and R. King. Composition of surface active material. In: Lung Biology in Health and Disease. The Biochemical Basis of Pulmonary Function, edited by R. G. Crystal. New York: Dekker, 1976, vol 2, chapt. 10, p. 363–387.
 43. Cooke, P. A filamentous cytoskeleton in vertebrate smooth muscle fibers. J. Cell Biol. 68: 539–556, 1976.
 44. Coupland, R. E. The Natural History of the Chromaffin Cell. London: Longman, 1965.
 45. Coupland, R. E., and T. Fujita (editors). Chromaffin, Enterochromaffin and Related Cells. Amsterdam: Elsevier, 1976. (NATO Found. Symp.)
 46. Crapo, J. D., B. E. Barry, H. A. Foscue, and J. Shelburne. Structural and biochemical changes in rat lung occurring during exposure to lethal and adaptive doses of oxygen. Am. Rev. Respir. Dis. 122: 123–143, 1980.
 47. Crapo, J. D., B. E. Barry, P. Gehr, M. Bachofen, and E. R. Weibel. Cell numbers and cell characteristics of the normal human lung. Am. Rev. Respir. Dis. 125: 332–337, 1982.
 48. Crapo, J. D., J. Marsh‐Salin, P. Ingram, and P. C. Pratt. Tolerance and cross‐tolerance using NO2 and O2. II. Pulmonary morphology and morphometry. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 370–379, 1978.
 49. Cutz, E., W. Chan, V. Wong, and P. E. Conen. Endocrine cells in rat fetal lungs. Ultrastructural and histochemical study. Lab. Invest 30: 458–464, 1974.
 50. Darrah, H. K., and J. Hedley‐Whyte. Rapid incorporation of palmitate into lung: site and metabolic fate. J. Appl. Physiol. 34: 205–213, 1973.
 51. Dauber, J. H., and R. P. Daniele. Secretion of chemotaxins by guinea pig lung macrophages. I. The spectrum of inflammatory cell responses. Exp. Lung Res. 1: 23–32, 1980.
 52. Devereux, T. R., and J. R. Fouts. Isolation and identification of Clara cells from rabbit lung. In Vitro 16: 958–968, 1980.
 53. Devereux, T. R., and J. R. Fouts. Xenobiotic metabolism by alveolar type II cells isolated from rabbit lung. Biochem. Pharmacol. 30: 1231–1237, 1981.
 54. Devereux, T. R., G. E. R. Hook, and J. R. Fouts. Foreign compound metabolism by isolated cells from rabbit lung. Drug Metab. Dispos. 7: 70–75, 1979.
 55. Dey, R. D., R. Echt, and R. J. Dinerstein. Morphology, histochemistry and distribution of serotonin‐containing cells in tracheal epithelium of adult rabbit. Anat. Rec. 199: 23–31, 1981.
 56. Diglio, C. A., and Y. Kikkawa. The type II epithelial cells of the lung. IV. Adaptation and behavior of type II cells in culture. Lab. Invest. 37: 622–631, 1977.
 57. Douglas, W. H., J. A. McAteer, J. R. Smith, and W. R. Braunschweiger. Type II alveolar pneumonocytes in vitro. Int. Rev. Cytol. 10: 45–65, 1979.
 58. Douglas, W. H., R. L. Sanders, and K. R. Hitchcock. Maintenance of human and rat pulmonary type II cells in an organotypic culture system. Methods Cell Biol. 21A: 79–94, 1980.
 59. Edmondson, N. A., and D. J. Lewis. Distribution and ultra‐structural characteristics of Feyrter cells in the rat and hamster airway epithelium. Thorax 35: 371–374, 1980.
 60. Etherton, J. E., and D. M. Conning. Enzyme histochemistry of the lung. In: Lung Biology in Health and Disease. Metabolic Functions of the Lung, edited by Y. S. Bakhle and J. R. Vane. New York: Dekker, 1977, vol. 4, chapt. 8, p. 233–258.
 61. Evans, J. N., and K. B. Adler. The lung strip: evaluation of a method to study contractility of pulmonary parenchyma. Exp. Lung Res. 2: 187–195, 1981.
 62. Evans, M. J., L. J. Cabral, R. J. Stephens, and G. Freeman. Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Exp. Mol. Pathol. 22: 142–150, 1975.
 63. Evans, M. J., L. J. Cabral‐Anderson, and G. Freeman. Role of the Clara cell in renewal of the bronchiolar epithelium. Lab. Invest 38: 648–655, 1978.
 64. Fisher, A. B., and G. G. Pietra. Comparison of serotonin uptake from the alveolar and capillary spaces of isolated rat lungs. Am. Rev. Respir. Dis. 123: 74–78, 1981.
 65. Foliquet, B., and L. Romanova. Le pneumocyte de type III de l'alvéole pulmonaire de rat. Biol. Cell. 38: 221–224, 1980.
 66. Fox, B., T. B. Bull, and A. Guz. Innervation of alveolar walls in the human lung: an electron microscopic study. J. Anat. 131: 683–692, 1980.
 67. Gabbiani, G., B. J. Hirschel, G. B. Ryan, P. R. Statkov, and G. Majno. Granulation tissue as a contractile organ. A study of structure and function. J. Exp. Med. 135: 719–734, 1972.
 68. Gabella, G. Structure of smooth muscle cells. In: Smooth Muscle: An Assessment of Current Knowledge, edited by E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita. Austin: Univ. of Texas Press, 1981, p. 1–46.
 69. Gee, J. B. L., and A. S. Khandwala. Motility, transport, and endocytosis in lung defense cells. In: Lung Biology in Health and Disease. Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, vol. 5, pt. II, chapt. 22, p. 927–981.
 70. Gil, J., and J. M. Mcniff. Interstitial cells at the boundary between alveolar and extraalveolar connective tissue in the lung. J. Ultrastruct. Res. 76: 149–157, 1981.
 71. Gil, J., and O. K. Reiss. Isolation and characterization of lamellar bodies and tubular myelin from rat lung homogenates. J. Cell Biol. 58: 152–171, 1973.
 72. Gil, J., D. A. Silage, and J. M. McNiff. Distribution of vesicles in cells of air‐blood barrier in the rabbit. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 334–340, 1981.
 73. Gil, J., and E. R. Weibel. Extracellular lining of bronchioles after perfusion fixation of rat lungs for electron microscopy. Anat. Rec. 169: 185–199, 1971.
 74. Gilula, N. B. Gap junctions and cell communication. In: International Cell Biology, 1976–1977, edited by B. R. Brinkley and K. R. Porter. New York: Rockefeller Univ. Press, 1977, p. 61–69.
 75. Gmelich, J. T., K. G. Bensch, and A. A. Liebow. Cells of Kultschitzky type in bronchioles and their relation to the origin of peripheral carcinoid tumor. Lab. Invest. 17: 88–98, 1967.
 76. Goldfischer, S., Y. Kikkawa, and L. Hoffman. The demonstration of acid hydrolase activities in the inclusion bodies of type II alveolar cells and other lysosomes in the rabbit lung. J. Histochem. Cytochem. 16: 102–109, 1968.
 77. Goodman, M. R., D. W. Link, W. R. Brown, and P. K. Nakane. Ultrastructural evidence of transport of secretory IgA across bronchial epithelium. Am. Rev. Respir. Dis. 123: 115–119, 1981.
 78. Gould, K. G., Dispersal of lung into individual viable cells. In: Lung Biology in Health and Disease. The Biochemical Basis of Pulmonary Function, edited by R. G. Crystal. New York: Dekker, 1976, vol. 2, chapt. 2, p. 49–71.
 79. Green, G. M., G. J. Jakab, R. B. Low, and G. S. Davis. Defense mechanisms of the respiratory membrane. Am. Rev. Respir. Dis. 115: 479–514, 1977.
 80. Hage, E. Light and electron microscopic characteristics of the various lung endocrine cell types. Invest. Cell Pathol. 3: 345–351, 1980.
 81. Haies, D. M., J. Gil, and E. R. Weibel. Morphometric study of rat lung cells. I. Numerical and dimensional characteristics of parenchymal cell population. Am. Rev. Respir. Dis. 123: 533–541, 1981.
 82. Hallman, M., and L. Gluck. Phosphatidylglycerol in lung surfactant. II. Subcellular distribution and mechanism of biosynthesis in vitro. Biochim. Biophys. Acta 409: 172–191, 1975.
 83. Hance, A. J., and R. G. Crystal. Collagen. In: Lung Biology in Health and Disease. The Biochemical Basis of Pulmonary Function, edited by R. G. Crystal. New York: Dekker, 1976, vol. 2, chapt. 7, p. 215–271.
 84. Hassett, R. J., W. Engelman, and C. Kuhn. Extramembranous particles in tubular myelin from rat lung. J. Ultrastruct Res. 71: 60–67, 1980.
 85. Hitchcock, K. R. Lung development and the pulmonary surfactant system: hormonal influences. Anat. Rec. 198: 13–34, 1980.
 86. Hitchcock‐O'Hare, K. R., E. Meymaris, J. Bonaccorso, and S. B. Vanburen. Separation and partial characterization of surface‐active fractions from mouse and rat lung homogenates. Identification of a possible marker system for pulmonary surfactant. J. Histochem. Cytochem. 24: 487–507, 1976.
 87. Hogg, J. C., P. D. Paré, and R. C. Boucher. Bronchial mucosal permeability. Federation Proc. 38: 197–201, 1979.
 88. Hood, L. E., J. H. Wilson, and W. B. Wood. The Molecular Biology of Eukaryotic Cells. Menlo Park, CA: Benjamin, 1975.
 89. Horwitz, A. L., N. A. Elson, and R. G. Crystal. Proteoglycans and elastic fibers. In: Lung Biology in Health and Disease. The Biochemical Basis of Pulmonary Function, edited by R. G. Crystal. New York: Dekker, 1976, vol. 2, chapt. 8., p. 273–311.
 90. Hung, K. S. Innervation of rabbit fetal lungs. Am. J. Anat. 159: 73–83, 1980.
 91. Hung, K. S., A. L. Chapman, and M. A. Mestemacher. Scanning electron microscopy of bronchiolar neuroepithelial bodies in neonatal mouse lungs. Anat. Rec. 193: 913–926, 1979.
 92. Inoué, S., R. P. Michel, and J. Hogg. Zonulae occludentes in alveolar epithelium of dog lungs studied with the freeze‐fracture technique. J. Ultrastruct. Res. 56: 215–225, 1976.
 93. Jamieson, J. D., and G. E. Palade. Production of secretory proteins in animal cells. In: International Cell Biology, 1976–1977, edited by B. R. Brinkley and K. R. Porter. New York: Rockefeller Univ. Press, 1977, p. 308–317.
 94. Jaurand, M. C., H. Kaplan, J. Thiollet, M. C. Pinchon, J. F. Bernaudin, and J. Bignon. Phagocytosis of chrysotile fibers by pleural mesothelial cells in culture. Am. J. Pathol. 94: 529–538, 1979.
 95. Jeffery, P. K., and L. M. Reid. The respiratory mucous membrane. In: Lung Biology in Health and Disease. Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, vol. 5, pt. I, chapt. 7, p. 193–245.
 96. Jobe, A., E. Kirkpatrick, and L. Gluck. Labeling of phospholipids in the surfactant and subcellular fractions of rabbit lung. J. Biol. Chem. 253: 3810–3816, 1978.
 97. Johansson, A., and P. Camner. Are alveolar macrophages translocated to the lymph nodes? Toxicology 15: 157–162, 1980.
 98. Kaltreider, H. B., and S. E. Salmon. Immunology of the lower respiratory tract. Functional properties of bronchioalveolar lymphocytes obtained from the normal canine lung. J. Clin. Invest. 52: 2211–2217, 1973.
 99. Kapanci, Y., A. Assimacopoulos, C. Irle, A. Zwahlen, and G. Gabbiani. “Contractile interstitial cells” in pulmonary alveolar septa. A possible regulator of ventilation/perfusion ratio? Ultrastructural immunofluorescence and in vitro studies. J. Cell Biol. 60: 375–392, 1974.
 100. Kapanci, Y., P. M. Costabella, P. Cerutti, and A. Assimacopoulos. Distribution and function of cytoskeletal proteins in lung cells with particular reference to “contractile interstitial cells.” Methods Achiev. Exp. Pathol. 9: 147–168, 1979.
 101. Kapanci, Y., P. M. Costabella, and G. Gabbiani. Location and function of contractile interstitial cells of the lungs. In: Lung Cells in Disease, edited by A. Bouhuys. Amsterdam: North‐Holland, 1976, p. 69–82.
 102. Kauffman, S. L. Cell proliferation in the mammalian lung. Int. Rev. Exp. Pathol. 22: 131–191, 1980.
 103. Kauffman, S. L., P. H. Burri, and E. R. Weibel. The postnatal growth of the rat lung. II. Autoradiography. Anat. Rec. 180: 63–76, 1974.
 104. Kawanami, O., V. J. Ferrans, J. D. Fulmer, and R. G. Crystal. Ultrastructure of pulmonary mast cells in patients with fibrotic lung disorders. Lab. Invest 40: 717–734, 1979.
 105. Kikkawa, Y., and K. Yoneda. The type II epithelial cells of the lung. I. Method of isolation. Lab. Invest. 30: 76–84, 1974.
 106. Kikkawa, Y., K. Yoneda, F. Smith, B. Packard, and K. Suzuki. The type II epithelial cells of the lung. II. Chemical composition and phospholipid synthesis. Lab. Invest. 32: 295–302, 1975.
 107. King, R. J. Utilization of alveolar epithelial type II cells for the study of pulmonary surfactant. Federation Proc. 38: 2637–2643, 1979.
 108. King, R. J., H. Martin, D. Mitts, and F. M. Holmstrom. Metabolism of the apoproteins in pulmonary surfactant. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 483–491, 1977,
 109. Köhler, G., and C. Milstein. Continuous culture of fused cells secreting antibody of predefined specificity. Nature London 256: 495–497, 1975.
 110. Kuhn, C. The cells of the lung and their organelles. In: Lung Biology in Health and Disease. The Biochemical Basis of Pulmonary Function, edited by R. G. Crystal. New York: Dekker, 1976, vol. 2, chapt. 1, p. 3–48.
 111. Lauweryns, J. M. The juxta‐alveolar lymphatics in the human adult lung. Am. Rev. Respir. Dis. 102: 877–885, 1970.
 112. Lauweryns, J. M., and J. H. Baert. Alveolar clearance and the role of pulmonary lymphatics. Am. Rev. Respir. Dis. 115: 625–683, 1977.
 113. Lauweryns, J. M., M. Cokelaere, and P. Theunynck. Neuro‐epithelial bodies in the respiratory mucosa of various mammals. A light optical, histochemical and ultrastructure investigation. Z. Zellforsch. Mikrosk. Anat. 135: 569–592, 1972.
 114. Lauweryns, J. M., M. Cokelaere, and P. Theunynck. Serotonin producing neuroepithelial bodies in rabbit respiratory mucosa. Science 180: 410–413, 1973.
 115. Leak, L. V. Pulmonary lymphatics and their role in the removal of interstitial fluids and particulate matter. In: Lung Biology in Health and Disease. Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, vol. 5, pt. II, chapt. 17, p. 631–685.
 116. Leblond, C. P., and A. Bennett. Role of the Golgi apparatus in terminal glycosylation. In: International Cell Biology, 1976–1977, edited by B. R. Brinkley and K. R. Porter. New York: Rockefeller Univ. Press, 1977, p. 326–340.
 117. Leeson, T. S. Visceral pleura of the adult rat lung. Folia Morphol. Prague 25: 25–33, 1977.
 118. Lieber, M., B. Smith, A. Szakal, W. Nelson‐Rees, and G. Todaro. A continuous tumor‐cell line from a human lung carcinoma with properties of type II epithelial cells. Int. J. Cancer 17: 62–70, 1976.
 119. Loewenstein, W. R. Junctional intercellular communication: the cell‐to‐cell membrane channel. Physiol. Rev. 61: 829–913, 1981.
 120. Low, F. N. The pulmonary alveolar epithelium of laboratory animals. Anat. Rec. 117: 241–263, 1953.
 121. Luciano, L., E. Reale, and H. Ruska. Ueber eine “chemorezeptive” Zelle in der Trachea der Ratte. Z. Zellforsch. Mikrosk. Anat. 85: 350–375, 1968.
 122. Mason, R. J. Metabolism of alveolar macrophages. In: Lung Biology in Health and Disease. Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, vol. 5, pt. II, chapt. 21, p. 893–926.
 123. Massaro, D., and G. D. Massaro. Synthesis, intracellular transport and secretion of macromolecules by the lung. In: Lung Biology in Health and Disease. The Biochemical Basis of Pulmonary Function, edited by R. G. Crystal. New York: Dekker, 1976; vol. 2, chapt. 11, p. 389–416.
 124. Massaro, G. D., and D. Massaro. Granular pneumocytes: electron microscopic radioautographic evidence of intracellular protein transport. Am. Rev. Respir. Dis. 105: 927–931, 1972.
 125. Mavis, R. D., J. N. Finkelstein, and B. P. Hall. Pulmonary surfactant synthesis. A highly active microsomal phosphatidate phosphohydrolase in the lung. J. Lipid Res. 19: 467–477, 1978.
 126. McGhee, J. R., J. Mestecky, and J. L. Babb (editors). Secretory Immunity and Infection. New York: Plenum, 1978. (Adv. Exp. Med. Biol. Ser., vol. 107.)
 127. Meban, C. The inclusion bodies in granular pneumonocytes of hamster lung: a combined cytochemical and ultrastructural study. J. Anat. 112: 195–206, 1972.
 128. Meban, C. Localization of phosphatidic acid phosphatase activity in granular pneumonocytes. J. Cell Biol. 53: 249–252, 1972.
 129. Meyrick, B., and L. Reid. The alveolar brush cell in rat lung—a third pneumocyte. J. Ultrastruct. Res. 23: 71–80, 1968.
 130. Meyrick, B., and L. Reid. Nerves in rat intra‐acinar alveoli: an electron microscopic study. Respir. Physiol. 11: 367–377, 1971.
 131. Montgomery, P. C., K. M. Connelly, J. Cohn, and C. A. Skandera. Remote‐site stimulation of secretory IgA antibodies following bronchial and gastric stimulation. Adv. Exp. Med. Biol. 107: 113–122, 1978.
 132. Nardone, L. L., and S. B. Andrews. Cell line A549 as a model of the type II penumocyte: phospholipid synthesis from native and organometallic precursors. Biochim. Biophys. Acta 573: 276–295, 1979.
 133. Neutra, M., and C. P. Leblond. Synthesis of the carbohydrate of mucus in the Golgi complex as shown by electron microscope autoradiography of goblet cells from rats injected with glucose‐H3. J. Cell Biol. 30: 119–136, 1966.
 134. Novikoff, A. B. The endoplasmic reticulum: a cytochemist's view (a review). Proc. Natl. Acad. Sci. USA 73: 2781–2787, 1976.
 135. O'Brien, T. W. Transcription and translation in mitochondria. In: International Cell Biology, 1976–1977, edited by B. R. Brinkley and K. R. Porter. New York: Rockefeller Univ. Press, 1977, p. 245–255.
 136. Ody, C., and A. F. Junod. Converting enzyme in endothelial cells isolated from pig pulmonary artery and aorta. Am. J. Physiol. 232 (Cell Physiol. 1): C95–C98, 1977.
 137. O'Hare, K. H., O. K. Reiss, and A. E. Vatter. Esterases in developing and adult rat lung. I. Biochemical and electron microscopic observations. J. Histochem. Cytochem. 19: 97–115, 1971.
 138. O'Hare, K. H., and P. L. Townes. Morphogenesis of albino rat lung: an autoradiographic analysis of the embryological origin of the type I and II pulmonary epithelial cells. J. Morphol. 132: 69–88, 1970.
 139. Pack, R. J., L. H. Al‐Ugaily, G. Morris, and J. G. Widdicombe. The distribution and structure of cells in the tracheal epithelium of the mouse. Cell Tissue Res. 208: 65–84, 1980.
 140. Palade, G. E. Intracellular aspect of the process of protein synthesis. Science 189: 347–358, 1975.
 141. Palade, G. E., M. Simionescu, and N. Simionescu. Structural aspects of the permeability of the microvascular endothelium. Acta Physiol. Scand. Suppl. 463: 11–32, 1979.
 142. Palisano, J. R., and J. Kleinerman. APUD cells and neuroepithelial bodies in hamster lung: methods, quantitation, and response to injury. Thorax 35: 363–370, 1980.
 143. Palmer, K. C., G. L. Snider, and J. A. Hayes. Cellular proliferation induced in lung by cadmium aerosol. Am. Rev. Respir. Dis. 112: 173–179, 1975.
 144. Pearse, A. G. E. The cytochemistry and ultrastructure of polypeptide hormone‐producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J. Histochem. Cytochem. 17: 303–313, 1969.
 145. Pinkstaff, C. A. The cytology of salivary glands. Int. Rev. Cytol. 63: 141–263, 1980.
 146. Plopper, C. G., L. H. Hill, and A. T. Mariassy. Ultrastructure of the nonciliated bronchiolar epithelial (Clara) cell of mammalian lung. I‐II Exp. Lung Res. 1: 139–180, 1980.
 147. Porter, K. R., and J. B. Turner. The ground substance of the living cell. Sci. Am. 244: 56–67, 1981.
 148. Prockop, D. J. Collagen, elastin, and proteoglycans: matrix for fluid accumulation in the lung. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin. Bethesda, MD: Am. Physiol Soc., 1979, chapt. 9, p. 125–135.
 149. Racker, E. A New Look at Mechanisms in Bioenergetics. New York: Academic, 1976.
 150. Rambourg, A., and C. P. Leblond. Electron microscope observations on the carbohydrate‐rich cell coat present at the surface of cells in the rat. J. Cell Biol. 32: 27–53, 1967.
 151. Reaven, E. P., and S. G. Axline. Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages. J. Cell Biol. 59: 12–27, 1973.
 152. Rooney, S. A., B. A. Page‐Roberts, and E. K. Motoyama. Role of lamellar inclusions in surfactant production: studies on phospholipid composition and biosynthesis in rat and rabbit lung, subcellular fractions. J. Lipid Res. 16: 418–425, 1975.
 153. Ross, R. R., and E. P. Benditt. Wound healing and collagen formation. V. Quantitative electron microscope radioautographic observations of proline‐H3 utilization by fibroblasts. J. Cell Biol. 27: 83–106, 1965.
 154. Rossman, C. M., J. B. Forrest, R. E. Ruffin, and M. T. Newhouse. Immotile cilia syndrome in persons with and without Kartageners syndrome. Am. Rev. Respir. Dis. 121: 1011–1016, 1980.
 155. Roth, J., M. Bendayan, and L. Orci. Ultrastructural localization of intracellular antigens by the use of protein‐A‐gold complex. J. Histochem. Cytochem. 26: 1074–1081, 1978.
 156. Roth, J., H. Winkelmann, and H. W. Meyer. Electron microscopic studies in mammalian lungs by freeze‐etching. IV. Formation of the superficial layer of the surfactant system by lamellar bodies. Exp. Pathol. 8: 354–362, 1973.
 157. Ryan, U. S., and J. W. Ryan. Correlations between the fine structure of the alveolar‐capillary unit and its metabolic activities. In: Lung Biology in Health and Disease. Metabolic Functions of the Lung, edited by Y. S. Bakhle and J. R. Vane. New York: Dekker, 1977, vol. 4, chapt. 7, p. 197–232.
 158. Ryan, U. S., J. W. Ryan, C. Whitaker, and A. Chiu. Localization of angiotensin converting enzyme (kininase II). II. Immunocytochemistry and immunofluorescence. Tissue Cell 8: 125–145, 1976.
 159. Schneeberger, E. E. Barrier function of intercellular junctions in adult and fetal lungs. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin. Bethesda MD: Am. Physiol. Soc., 1979, chapt. 2, p. 21–37.
 160. Schneeberger, E. E. Heterogeneity of tight junction morphology in extrapulmonary and intrapulmonary airways of the rat. Anat. Rec. 198: 193–208, 1980.
 161. Schneeberger, E. E., and M. J. Karnovsky. The ultra‐structural basis of alveolar‐capillary membrane permeability to peroxidase used as a tracer. J. Cell Biol. 37: 781–793, 1968.
 162. Schneeberger, E. E., and M. J. Karnovsky. Substructure of intercellular junctions in freeze‐fractured alveolar‐capillary membranes of mouse lung. Circ. Res. 38: 404–411, 1976.
 163. Schwartz, S. L., and J. A. Bellanti. The relationship of the alveolar macrophage to the immunologic responses of the lung. In: Lung Biology in Health and Disease. Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, vol. 5, pt. II, chapt. 25, p. 1053–1074.
 164. Simionescu, N., M. Simionescu, and G. E. Palade. Permeability of muscle capillaries to small heme‐peptides. Evidence for the existence of patent transendothelial channels. J. Cell Biol. 64: 586–607, 1975.
 165. Sleigh, M. A. The nature and action of respiratory tract cilia. In: Lung Biology in Health and Disease. Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, vol. 5, pt. I, chapt. 8, p. 247–288.
 166. Small, J. V. The contractile apparatus of the smooth muscle cell: structure and composition. In: The Biochemistry of Smooth Muscle, edited by N. L. Stephens. Baltimore, MD: University Park, 1977, p. 379–411.
 167. Small, J. V. Studies on isolated smooth muscle. J. Cell Sci. 24: 327–349, 1977.
 168. Smith, D. S., U. Smith, and J. W. Ryan. Freeze‐fractured lamellar body membranes of the rat lung great alveolar cell. Tissue Cell 4: 457–468, 1972.
 169. Smith, F. B., and Y. Kikkawa. The type II epithelial cells of the lung. III. Lecithin synthesis: a comparison with pulmonary macrophages. Lab. Invest, 38: 45–51, 1978.
 170. Smith, F. B., Y. Kikkawa, C. A. Diglio, and R. C. Dalen. The type II epithelial cells of the lung. VI. Incorporation of 3H‐choline and 3H‐palmitate into lipids of cultured cells. Lab. Invest. 42: 296–301, 1980.
 171. Smith, M. N., S. D. Greenberg, and H. J. Spjut. The Clara cell: a comparative ultrastructural study in mammals. Am. J. Anat. 155: 15–30, 1979.
 172. Somlyo, A. P., J. Valliéres, R. E. Garfield, H. Shuman, A. Scarpa, and A. V. Somlyo. Calcium compartmentalization in vascular smooth muscle: electron probe analysis and studies on isolated mitochondria. In: The Biochemistry of Smooth Muscle, edited by N. L. Stephens. Baltimore, MD: University Park, 1977, p. 563–583.
 173. Somlyo, A. V., F. T. Ashton, L. F. Lemanski, J. Valliéres, and A. P. Somlyo. Filament organization and dense bodies in vertebrate smooth muscle. In: The Biochemistry of Smooth Muscle, edited by N. L. Stephens. Baltimore, MD: University Park, 1977, p. 445–471.
 174. Sorokin, S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15: 363–377, 1962.
 175. Sorokin, S. P. A morphological and cytochemical study on the great alveolar cell. J. Histochem. Cytochem. 14: 884–897, 1966.
 176. Sorokin, S. P. Phagocytes in the lung. In: Lung Biology in Health and Disease. Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, vol. 5, pt. II, chapt. 19, p. 711–848.
 177. Spicer, S. S., I. Mochizuki, M. E. Setser, and J. R. Martinez. Complex carbohydrates of rat tracheobronchial surface epithelium visualized ultratructurally. Am. J. Anat. 158: 93–109, 1980.
 178. Spitzer, H. L., J. M. Rice, P. C. MacDonald, and J. M. Johnston. Phospholipid biosynthesis in lung lamellar bodies. Biochem. Biophys. Res. Commun. 66: 17–23, 1975.
 179. Staubli, W., R. Hess, and E. R. Weibel. Correlated morphometric and biochemical studies on the liver cell. II. Effects of phenobarbital on rat hepatocytes. J. Cell Biol. 42: 92–112, 1969.
 180. Stephens, N. L. (editor). The Biochemistry of Smooth Muscle. Baltimore, MD: University Park, 1977.
 181. Stoner, G. D. Explant culture of human peripheral lung. Methods Cell Biol. 21A: 65–77, 1980.
 182. Stoner, G. D., Y. Kikkawa, A. J. Kniazeff, K. Miyai, and R. M. Wagner. Clonal isolation of epithelial cells from mouse lung adenoma. Cancer Res. 35: 2177–2185, 1975.
 183. Stossel, T. P. The mechanism of phagocytosis. J. Reticuloendothel. Soc. 19: 237–245, 1976.
 184. Stossel, T. P. The mechanism of leucocyte locomotion. In: Leukocyte Chemotaxis: Methods, Physiology, and Clinical Implications, edited by J. I. Gallin and P. G. Quie. New York: Raven, 1978, p. 143–157.
 185. Sturgess, J. M. Mucous secretions in the respiratory tract. Pediatr. Clin. North Am. 26: 481–501, 1979.
 186. Sturgess, J. M., J. Chao, J. Wong, N. Aspin, and J. A. Turner. Cilia with defective radial spokes: a cause of human respiratory disease. N. Engl. J. Med. 300: 53–56, 1979.
 187. Sturgess, J. M., M. Moscarello, and H. Schachter. The structure and biosynthesis of membrane glycoproteins. Curr. Top. Membr. Transp. 11: 15–105, 1978.
 188. Sueishi, K., K. Tanaka, and T. Oda. Immunoultrastructural study of surfactant systems. Distribution of specific protein of surface active material in rabbit lung. Lab. Invest. 37: 136–142, 1977.
 189. Suzuki, Y. Fenestration of alveolar capillary endothelium in experimental pulmonary fibrosis. Lab. Invest. 21: 304–308, 1969.
 190. Tartakoff, A. M. The Golgi complex: crossroads for vesicular traffic. Int. Rev. Exp. Pathol. 22: 227–251, 1980.
 191. Tomita, T. Electrical activity (spikes and slow waves) in gastrointestinal smooth muscles. In: Smooth Muscle: An Assessment of Current Knowledge, edited by E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita. Austin: Univ. of Texas Press, 1981, p. 127–156.
 192. Unanue, E. R. The regulation of lymphocyte function by the macrophage. Immunol. Rev. 40: 227–255, 1978.
 193. Waldman, R. H., and C. S. Henney. Cell‐mediated immunity and antibody responses in the respiratory tract after local and systemic immunization. J. Exp. Med. 134: 482–494, 1971.
 194. Wangensteen, D., H. Bachofen, and E. R. Weibel. Lung tissue volume changes induced by hypertonic NaCl: morphometric evaluation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1443–1450, 1981.
 195. Weibel, E. R. Morphometry of the Human Lung. Heidelberg: Springer‐Verlag, 1963.
 196. Weibel, E. R. The mystery of “non‐nucleated plates” in the alveolar epithelium of the lung explained. Acta Anat. 78: 425–443, 1971.
 197. Weibel, E. R. Morphological basis of alveolar‐capillary gas exchange. Physiol. Rev. 53: 419–495, 1973.
 198. Weibel, E. R. On pericytes, particularly their existence on lung capillaries. Microvasc. Res. 8: 218–235, 1974.
 199. Weibel, E. R. Oxygen demand and the size of respiratory structures in mammals. In: Lung Biology in Health and Disease. Evolution of Respiratory Processes. A Comparative Approach, edited by S. C. Wood and C. Lenfant. New York: Dekker, 1979, vol. 13, chapt. 7, p. 289–346.
 200. Weibel, E. R. Design and structure of the human lung. In: Pulmonary Diseases and Disorders, edited by A. P. Fishman. New York: McGraw‐Hill, 1980, p. 224–271.
 201. Weibel, E. R. Functional morphology of lung parenchyma. In: Handbook of Physiology. The Respiratory System. Mechanics of Breathing, edited by P. T. Macklem and J. Mead. Bethesda, MD: Am. Physiol. Soc., in press.
 202. Weibel, E. R., and H. Bachofen. Structural design of the alveolar septum and fluid exchange. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin. Bethesda, MD: Am. Physiol. Soc., 1979, chapt. 1, p. 1–20.
 203. Weibel, E. R., G. S. Kistler, and G. Töndury. A stereologic electron microscope study of “tubular myelin figures” in alveolar fluids of rat lungs. Z. Zellforsch. Mikrosk. Anat. 69: 418–427, 1966.
 204. Weibel, E. R., and G. E. Palade. New cytoplasmic components in arterial endothelia. J. Cell Biol. 23: 101–112, 1964.
 205. Weibull, C., E. Carlemalm, W. Villiger, E. Kellenberger, J. Fakan, A. Gautier, and C. Larsson. Low‐temperature embedding procedures applied to chloroplasts. J. Ultrastruct Res. 73: 233–244, 1980.
 206. Weissmann, G., and R. Claiborne (editors). Cell Membranes: Biochemistry, Cell Biology and Pathology. New York: Hospital Practice, 1975.
 207. Wells, A. B. The kinetics of cell proliferation in the tracheobronchial epithelia of rats with and without chronic respiratory disease. Cell Tissue Kinet. 3: 185–206, 1970.
 208. Williams, M. C. Freeze‐fracture studies of tubular myelin and lamellar bodies in fetal and adult rat lungs. J. Ultrastruct. Res. 64: 352–361, 1978.
 209. Wilson, M., K. R. Hitchcock, W. H. J. Douglas, and R. A. DelEllis. Hormones and the lung. II. Immunohistochemical localization of thryoid hormone binding in type II pulmonary epithelial cells clonally‐derived from adult rat lung. Anat. Rec. 195: 611–619, 1979.
 210. Zigmond, S. H. Chemotaxis by polymorphonuclear leucocytes. J. Cell Biol. 77: 269–287, 1978.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Ewald R. Weibel. Lung Cell Biology. Compr Physiol 2011, Supplement 10: Handbook of Physiology, The Respiratory System, Circulation and Nonrespiratory Functions: 47-91. First published in print 1985. doi: 10.1002/cphy.cp030102