Comprehensive Physiology Wiley Online Library

Blood Coagulation and Fibrinolysis

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Congenital Deficiencies in Initiation of Blood Coagulation
1.1 Factor XII
1.2 Plasma Prekallikrein
1.3 Plasma Kininogens
1.4 Interaction of Contact‐System Proteins
1.5 Factor XI
1.6 Factor IX
1.7 Factor VIII
2 Relationship of Intrinsic and Extrinsic Blood Coagulation
2.1 Factor X
2.2 Factor VII
2.3 Thromboplastin
3 Regulation of Prothrombin Activation
3.1 Prothrombin
3.2 Factor V
3.3 Coagulant Phospholipid Surfaces
3.4 Calcium Ions
3.5 Thrombin Formation
3.6 Thrombin Specificity
3.7 Regulation of Thrombin Activity
3.8 Heparin and Antithrombin III
3.9 Interaction of Thrombin With Fibrin
3.10 Nonmammalian Inhibitors of Thrombin
3.11 Thrombinlike Enzymes in Snake Venoms
4 Electron Microscopy of Fibrinogen
5 Fibrinogen Structure
5.1 Model of Fibrinogen Molecule
5.2 Conversion of Fibrinogen to Fibrin Clot
5.3 Polymerization Sites
5.4 Cross‐Linking of Fibrin
6 Interaction of Fibrinogen with Plasma Proteins
7 Interaction of Fibrinogen with Cells
8 Degradation by Proteases other than Plasmin
9 Degradation of Fibrinogen and Fibrin by Plasmin
9.1 Role of Fibrin in Clot Formation and Lysis
10 Plasminogen and Plasmin
10.1 Plasminogen Activators
10.2 Inhibitors of Plasminogen and Plasmin
10.3 Physiological Fibrinolysis
Figure 1. Figure 1.

Stick models of zymogens involved in coagulation, kinin formation, and fibrinolysis. Dark bars, polypeptide chain containing the active‐site serine. Dotted lines, 1 or more disulfide bridges. Numbers, zymogen domains, in most cases defined by sites of proteolytic cleavage. Bar size is roughly proportional to molecular weight. Dark triangles, location of active serine residue. Domain 1 of prothrombin, factor VII, IX, and X contains the Gla residues responsible for Ca2+ binding and thus phospholipid attachment. Domain 1 in factor XI, XII, and prekallikrein represents the heavy chain, probably the site of attachment to negatively charged surfaces. Domain 1 in plasminogen represents the peptide cleaved by plasmin to convert Glu‐plasminogen to Lys‐plasminogen. Domain 3 of prothrombin is the factor V‐binding site and is cleaved from domain 2 by thrombin. In factors IX and X, bonds between domain 2 and 3 are cleaved during zymogen activation. In prothrombin, cleavage between dark and light halves of the molecule by factor Xa is not sufficient to form thrombin but does remove prothrombin from its phospholipid attachment. Cleavage between domain 4 and 5 to form 2‐chain thrombin forms the active enzyme. In all other cases zymogen conversion to enzyme occurs by cleavage between dark and light portions to form 2 polypeptide chains connected by disulfide bridges. Only factor XI exists as a dimer; thus factor XIa has 2 identical active sites.

From Jackson and Nemerson 706. Reproduced with permission from the Annual Review of Biochemistry, vol. 49, © 1980 by Annual Reviews Inc
Figure 2. Figure 2.

Contact activation of factor XII, XI, and prekallikrein (PK). A: factor XII from the blood fluid phase binds directly to a foreign negatively charged surface. Factor XI‐high‐molecular‐weight kininogen (HMWK) complex and prekallikrein‐HMWK complex each bind to the surface via HMWK. B: factor XII is converted to active enzyme factor XIIa by autoactivation and/or a conformational change. Factor XIIa then enzymatically catalyzes conversion of its substrates factor XI and prekallikrein to active enzymes. C: active enzymes XIa and kallikrein (K) remain attached to HMWK and to surface. About half of the kallikrein molecules dissociate and may attack factor XIIa to yield factor XII fragments, which dissociate from the surface. Kallikrein may also attack factor XII zymogen to cleave it to an active enzyme during a positive feedback reaction.

Figure 3. Figure 3.

In the presence of a surface (e.g., kaolin), factor XII and prekallikrein are activated in the presence of contact phase and of cofactor high‐molecular‐weight (HMW) kininogen, respectively. Factor XIIa converts factor XI to factor XIa, a reaction that also requires HMW kininogen. Factor XIa activates factor IX to IXa. Factor IXa cleaves factor X to factor Xa in the presence of cofactors factor VIII, phospholipid, and Ca2+. Similarly, factor Xa hydrolyzes factor II (prothrombin) to thrombin in the presence of cofactors factor V, phospholipid, and Ca2+. Thrombin then attacks fibrinogen to form the fibrin clot.

From Handin and Rosenberg 705, © 1981 by MIT Press
Figure 4. Figure 4.

Extrinsic coagulation. Factor VII is converted to factor VIIa by autoactivation, factor XIIa, or in a feedback reaction by factor Xa. Factor VIIa in presence of tissue factor and Ca2+ can convert factor X to factor Xa. Once factor Xa is formed, pathway is identical to intrinsic coagulation (see Fig. 3).

From Rosenberg 708, © 1981 by MIT Press
Figure 5. Figure 5.

Prothrombin activation. Prothrombin is activated to thrombin initially by right‐hand pathway. The NH2‐terminal (N‐terminal) “pro” piece containing fragment 1 (F1) and fragment 2 (F2) is cleaved by factor Xa. Prothrombin 2 (Pr2 intermediate) results, which in turn is cleaved by factor Xa at an Ile‐Arg bond to yield a serine active center on the larger polypeptide chain (β‐chain) and a small α‐chain still attached by a disulfide bridge. Left‐hand pathway may operate in the test tube once thrombin is formed with cleavage between fragment 1 and fragment 2 preceding final cleavage between fragment 2 and Pr2 intermediate, but only the right‐hand pathway occurs at in vivo Ca2+ concentration.

Figure 6. Figure 6.

Formation of receptor on platelets and phospholipids by attachment of factor Va required to bind factor Xa. Factor V is converted by thrombin (factor Ha) to factor Va. Factor Va in the presence of Ca2+ binds to phospholipid micelle or platelet membrane. Prothrombin (factor II) binds to phospholipid through Ca2+ attached to the fragment 1 domain containing Gla residues. Factor Xa is formed from factor X via either the intrinsic pathway (factor IXa) or the extrinsic pathway (factor VIIa). Factor Xa then binds to factor Va and phospholipid markedly accelerates its ability to cleave factor II to Ha.

Figure 7. Figure 7.

Mechanism of thrombin inhibition by heparin‐antithrombin III. Antithrombin III (antithrombin on figure), the major inhibitor of thrombin in plasma, serves as substrate for thrombin. 1) Active site of thrombin containing reactive serine attacks a peptide bond adjacent to an arginine residue in antithrombin III. Covalent ester bond forms to stabilize the complex. 2) Heparin can markedly accelerate this reaction by combining with antithrombin III at lysine‐binding sites and inducing a conformational change on the inhibitor. 3) Heparin dissociates after combination of thrombin with antithrombin III. 4) Heparin can then accelerate the combination of a 2nd molecule of antithrombin III with thrombin, thus acting in a catalytic fashion.

From Rosenberg 708, © 1981 by MIT Press
Figure 8. Figure 8.

Electron micrographs of fibrinogen and fibrin oligomers. A: shadow‐casting pattern of fibrinogen demonstrating appearance of trinodular molecules. Technique did not permit visualization of connections between central and outer nodules. × 215,000. B: specimen stained negatively with uranyl acetate confirms elongated trinodular shape of fibrinogen molecules. Flexibility of molecules and thickness of connector that links nodules are apparent, × 194,000. C: fibrin oligomer, a protofibril, stained negatively. Interpretive drawing indicates half‐staggered overlap of fibrin monomers, which form 2 parallel strands. Staggered association is basis of a 22.5‐nm periodicity of fibrin fibers. Arrows, end‐to‐end junctions of outer nodules in adjacent fibrin monomers. × 194,000.

A from Hall and Slayter 214; B from Williams 682; C from Hantgan et al. 215
Figure 9. Figure 9.

Model of fibrinogen molecule. Dimeric structure of molecule with probable rotational symmetry. Overall length, ˜45 nm; diameter of outer nodules, 6.5 nm; connector length, 15 nm; Mr = 340,000. Two pairs of 3 polypeptide chains; thrombin cleaves fibrinopeptides A and B (FPA and FPB, thickened segments) from NH2 terminals of Aα‐ and Bβ‐chains, respectively; γ‐chain is not affected by thrombin. Four oligosaccharides (CHO), each Mr ˜ 2,500, are attached to the Bβ‐ and γ‐chains, endowing fibrinogen as a glycoprotein. There are 29 disulfide bonds (SS), 3 of which link 2 halves of the fibrinogen molecule: 1 bond is between Aα‐chains and 2 bonds between γ‐chains. Sites available for factor XIIIa‐catalyzed cross‐linking between lysine donors (XL, arrow pointing upward) and glutamine acceptors (XL, arrow pointing downward) are located in COOH terminals of Aα‐ and γ‐chains. COOH terminals of Bβ‐ and γ‐chains and adjacent part of connector are cleaved by plasmin as fragment D; corresponding portion of fibrinogen molecule is depicted by electron microscopy as outer nodule and defined as the structural D domain. NH2 terminals of all 3 chains and adjacent part of connector are removed by plasmin as fragment E; this region is demonstrated on electron micrographs of fibrinogen as the central nodule and is called E domain. COOH terminals of Aα‐chains (polar appendages) are loosely structured and possibly fill the space around connector.

Figure 10. Figure 10.

Formation of fibrin. Driving force for assembly of fibrin network originates from specific association of complementary binding sites. One polymerization site (a) is present on fibrinogen molecule D domain. Complementary sites (A) are activated by thrombin in fibrin E domain. Due to a probable rotational symmetry, right half of fibrin molecule is a mirror reflection of left half. Binding between a and A sites on 2 fibrin monomer molecules forms 2 links that hold molecules in a half‐staggered orientation. Extension of this process leads to end‐to‐end polymerization and generation of protofibrils. A new polymerization site (bb) appears on fibrin oligomer, probably because of alignment of 2 D domains; this site is apparently absent in fibrin monomer or dimer. A complementary site (B) is present in E domain of fibrin. Binding of a and A sites may propagate formation of linear fibrin protofibrils, whereas binding of bb with 2 B sites may be responsible for side‐to‐side coalescence of protofibrils.

Figure 11. Figure 11.

Degradation of fibrinogen by plasmin. Initial proteolytic attack removes the COOH terminal of Aα‐chain as fragment P45 and its degradation product fragment A. Fragment X is a group of derivatives, the less degraded of which are coagulable by thrombin. Fragments X and Y are cleaved asymmetrically to form terminal degradation products, fragments D and E. From 1 fibrinogen molecule 2 molecules of fragment D and 1 of fragment E are formed.

Figure 12. Figure 12.

Degradation of cross‐linked fibrin by plasmin. Initial enzyme action cleaves cross‐linked α‐chain COOH‐terminal fragments as a mixture of derivatives. Next exposed connectors are disrupted and a (DD)E complex liberated. Components of the complex are derived from 3 different fibrin monomer molecules and 2 fragments D are kept together by covalent cross‐link bonds. Fragment E in the complex still has A and B polymerization sites; however, after long proteolysis with plasmin the sites are damaged and the complex falls apart.

Figure 13. Figure 13.

Plasminogen activation. Human plasminogen, a single polypeptide chain protein, contains 790 amino acid residues, NH2‐terminal glutamic acid, 5 homologous loop structures (“krinkles”), and 24 disulfide bonds. On action of plasmin on Glu‐plasminogen a cleavage at Lys76‐Lys77 occurs, releasing NH2‐terminal peptide and yielding Lys‐plasminogen. Cleavage of the Arg560‐Val561 bond by activators results in formation of Lys‐plasmin, composed of 2 chains (A and B) linked by 2 disulfide bonds. Lys‐plasminogen activation seems approximately 10 times faster than that of Gluplasminogen. In presence of plasmin inhibitors the cleavage of NH2‐terminal peptide is significantly decreased and Glu‐plasmin (potentially convertible into Lys‐plasmin) is formed.

Figure 14. Figure 14.

Physiological fibrinolysis. During physiological dynamic equilibrium, histidine‐rich glycoprotein and other antiactivators regulate interaction of plasminogen in blood with plasminogen activators. Even if minute amounts of plasmin are generated (e.g., after release of vascular plasminogen activator following stress) the enzyme is promptly inactivated by α2‐antiplasmin. On activation of the blood coagulation system, fibrin clot is formed, which not only strongly binds vascular plasminogen activator and plasminogen from blood but also significantly accelerates the activation rate. Resulting plasmin is protected from inhibitors while attached to fibrin. Enzyme is inactivated by α2‐antiplasmin and α2‐macroglobulin after proteolytic dissolution of fibrin and liberation into the liquid phase of blood. Thus the fibrin network catalyzes initiation and regulation of fibrinolysis. Kallikrein and factor XIa can activate plasminogen in the liquid phase, but their role appears less significant and not specifically associated with fibrin clot.



Figure 1.

Stick models of zymogens involved in coagulation, kinin formation, and fibrinolysis. Dark bars, polypeptide chain containing the active‐site serine. Dotted lines, 1 or more disulfide bridges. Numbers, zymogen domains, in most cases defined by sites of proteolytic cleavage. Bar size is roughly proportional to molecular weight. Dark triangles, location of active serine residue. Domain 1 of prothrombin, factor VII, IX, and X contains the Gla residues responsible for Ca2+ binding and thus phospholipid attachment. Domain 1 in factor XI, XII, and prekallikrein represents the heavy chain, probably the site of attachment to negatively charged surfaces. Domain 1 in plasminogen represents the peptide cleaved by plasmin to convert Glu‐plasminogen to Lys‐plasminogen. Domain 3 of prothrombin is the factor V‐binding site and is cleaved from domain 2 by thrombin. In factors IX and X, bonds between domain 2 and 3 are cleaved during zymogen activation. In prothrombin, cleavage between dark and light halves of the molecule by factor Xa is not sufficient to form thrombin but does remove prothrombin from its phospholipid attachment. Cleavage between domain 4 and 5 to form 2‐chain thrombin forms the active enzyme. In all other cases zymogen conversion to enzyme occurs by cleavage between dark and light portions to form 2 polypeptide chains connected by disulfide bridges. Only factor XI exists as a dimer; thus factor XIa has 2 identical active sites.

From Jackson and Nemerson 706. Reproduced with permission from the Annual Review of Biochemistry, vol. 49, © 1980 by Annual Reviews Inc


Figure 2.

Contact activation of factor XII, XI, and prekallikrein (PK). A: factor XII from the blood fluid phase binds directly to a foreign negatively charged surface. Factor XI‐high‐molecular‐weight kininogen (HMWK) complex and prekallikrein‐HMWK complex each bind to the surface via HMWK. B: factor XII is converted to active enzyme factor XIIa by autoactivation and/or a conformational change. Factor XIIa then enzymatically catalyzes conversion of its substrates factor XI and prekallikrein to active enzymes. C: active enzymes XIa and kallikrein (K) remain attached to HMWK and to surface. About half of the kallikrein molecules dissociate and may attack factor XIIa to yield factor XII fragments, which dissociate from the surface. Kallikrein may also attack factor XII zymogen to cleave it to an active enzyme during a positive feedback reaction.



Figure 3.

In the presence of a surface (e.g., kaolin), factor XII and prekallikrein are activated in the presence of contact phase and of cofactor high‐molecular‐weight (HMW) kininogen, respectively. Factor XIIa converts factor XI to factor XIa, a reaction that also requires HMW kininogen. Factor XIa activates factor IX to IXa. Factor IXa cleaves factor X to factor Xa in the presence of cofactors factor VIII, phospholipid, and Ca2+. Similarly, factor Xa hydrolyzes factor II (prothrombin) to thrombin in the presence of cofactors factor V, phospholipid, and Ca2+. Thrombin then attacks fibrinogen to form the fibrin clot.

From Handin and Rosenberg 705, © 1981 by MIT Press


Figure 4.

Extrinsic coagulation. Factor VII is converted to factor VIIa by autoactivation, factor XIIa, or in a feedback reaction by factor Xa. Factor VIIa in presence of tissue factor and Ca2+ can convert factor X to factor Xa. Once factor Xa is formed, pathway is identical to intrinsic coagulation (see Fig. 3).

From Rosenberg 708, © 1981 by MIT Press


Figure 5.

Prothrombin activation. Prothrombin is activated to thrombin initially by right‐hand pathway. The NH2‐terminal (N‐terminal) “pro” piece containing fragment 1 (F1) and fragment 2 (F2) is cleaved by factor Xa. Prothrombin 2 (Pr2 intermediate) results, which in turn is cleaved by factor Xa at an Ile‐Arg bond to yield a serine active center on the larger polypeptide chain (β‐chain) and a small α‐chain still attached by a disulfide bridge. Left‐hand pathway may operate in the test tube once thrombin is formed with cleavage between fragment 1 and fragment 2 preceding final cleavage between fragment 2 and Pr2 intermediate, but only the right‐hand pathway occurs at in vivo Ca2+ concentration.



Figure 6.

Formation of receptor on platelets and phospholipids by attachment of factor Va required to bind factor Xa. Factor V is converted by thrombin (factor Ha) to factor Va. Factor Va in the presence of Ca2+ binds to phospholipid micelle or platelet membrane. Prothrombin (factor II) binds to phospholipid through Ca2+ attached to the fragment 1 domain containing Gla residues. Factor Xa is formed from factor X via either the intrinsic pathway (factor IXa) or the extrinsic pathway (factor VIIa). Factor Xa then binds to factor Va and phospholipid markedly accelerates its ability to cleave factor II to Ha.



Figure 7.

Mechanism of thrombin inhibition by heparin‐antithrombin III. Antithrombin III (antithrombin on figure), the major inhibitor of thrombin in plasma, serves as substrate for thrombin. 1) Active site of thrombin containing reactive serine attacks a peptide bond adjacent to an arginine residue in antithrombin III. Covalent ester bond forms to stabilize the complex. 2) Heparin can markedly accelerate this reaction by combining with antithrombin III at lysine‐binding sites and inducing a conformational change on the inhibitor. 3) Heparin dissociates after combination of thrombin with antithrombin III. 4) Heparin can then accelerate the combination of a 2nd molecule of antithrombin III with thrombin, thus acting in a catalytic fashion.

From Rosenberg 708, © 1981 by MIT Press


Figure 8.

Electron micrographs of fibrinogen and fibrin oligomers. A: shadow‐casting pattern of fibrinogen demonstrating appearance of trinodular molecules. Technique did not permit visualization of connections between central and outer nodules. × 215,000. B: specimen stained negatively with uranyl acetate confirms elongated trinodular shape of fibrinogen molecules. Flexibility of molecules and thickness of connector that links nodules are apparent, × 194,000. C: fibrin oligomer, a protofibril, stained negatively. Interpretive drawing indicates half‐staggered overlap of fibrin monomers, which form 2 parallel strands. Staggered association is basis of a 22.5‐nm periodicity of fibrin fibers. Arrows, end‐to‐end junctions of outer nodules in adjacent fibrin monomers. × 194,000.

A from Hall and Slayter 214; B from Williams 682; C from Hantgan et al. 215


Figure 9.

Model of fibrinogen molecule. Dimeric structure of molecule with probable rotational symmetry. Overall length, ˜45 nm; diameter of outer nodules, 6.5 nm; connector length, 15 nm; Mr = 340,000. Two pairs of 3 polypeptide chains; thrombin cleaves fibrinopeptides A and B (FPA and FPB, thickened segments) from NH2 terminals of Aα‐ and Bβ‐chains, respectively; γ‐chain is not affected by thrombin. Four oligosaccharides (CHO), each Mr ˜ 2,500, are attached to the Bβ‐ and γ‐chains, endowing fibrinogen as a glycoprotein. There are 29 disulfide bonds (SS), 3 of which link 2 halves of the fibrinogen molecule: 1 bond is between Aα‐chains and 2 bonds between γ‐chains. Sites available for factor XIIIa‐catalyzed cross‐linking between lysine donors (XL, arrow pointing upward) and glutamine acceptors (XL, arrow pointing downward) are located in COOH terminals of Aα‐ and γ‐chains. COOH terminals of Bβ‐ and γ‐chains and adjacent part of connector are cleaved by plasmin as fragment D; corresponding portion of fibrinogen molecule is depicted by electron microscopy as outer nodule and defined as the structural D domain. NH2 terminals of all 3 chains and adjacent part of connector are removed by plasmin as fragment E; this region is demonstrated on electron micrographs of fibrinogen as the central nodule and is called E domain. COOH terminals of Aα‐chains (polar appendages) are loosely structured and possibly fill the space around connector.



Figure 10.

Formation of fibrin. Driving force for assembly of fibrin network originates from specific association of complementary binding sites. One polymerization site (a) is present on fibrinogen molecule D domain. Complementary sites (A) are activated by thrombin in fibrin E domain. Due to a probable rotational symmetry, right half of fibrin molecule is a mirror reflection of left half. Binding between a and A sites on 2 fibrin monomer molecules forms 2 links that hold molecules in a half‐staggered orientation. Extension of this process leads to end‐to‐end polymerization and generation of protofibrils. A new polymerization site (bb) appears on fibrin oligomer, probably because of alignment of 2 D domains; this site is apparently absent in fibrin monomer or dimer. A complementary site (B) is present in E domain of fibrin. Binding of a and A sites may propagate formation of linear fibrin protofibrils, whereas binding of bb with 2 B sites may be responsible for side‐to‐side coalescence of protofibrils.



Figure 11.

Degradation of fibrinogen by plasmin. Initial proteolytic attack removes the COOH terminal of Aα‐chain as fragment P45 and its degradation product fragment A. Fragment X is a group of derivatives, the less degraded of which are coagulable by thrombin. Fragments X and Y are cleaved asymmetrically to form terminal degradation products, fragments D and E. From 1 fibrinogen molecule 2 molecules of fragment D and 1 of fragment E are formed.



Figure 12.

Degradation of cross‐linked fibrin by plasmin. Initial enzyme action cleaves cross‐linked α‐chain COOH‐terminal fragments as a mixture of derivatives. Next exposed connectors are disrupted and a (DD)E complex liberated. Components of the complex are derived from 3 different fibrin monomer molecules and 2 fragments D are kept together by covalent cross‐link bonds. Fragment E in the complex still has A and B polymerization sites; however, after long proteolysis with plasmin the sites are damaged and the complex falls apart.



Figure 13.

Plasminogen activation. Human plasminogen, a single polypeptide chain protein, contains 790 amino acid residues, NH2‐terminal glutamic acid, 5 homologous loop structures (“krinkles”), and 24 disulfide bonds. On action of plasmin on Glu‐plasminogen a cleavage at Lys76‐Lys77 occurs, releasing NH2‐terminal peptide and yielding Lys‐plasminogen. Cleavage of the Arg560‐Val561 bond by activators results in formation of Lys‐plasmin, composed of 2 chains (A and B) linked by 2 disulfide bonds. Lys‐plasminogen activation seems approximately 10 times faster than that of Gluplasminogen. In presence of plasmin inhibitors the cleavage of NH2‐terminal peptide is significantly decreased and Glu‐plasmin (potentially convertible into Lys‐plasmin) is formed.



Figure 14.

Physiological fibrinolysis. During physiological dynamic equilibrium, histidine‐rich glycoprotein and other antiactivators regulate interaction of plasminogen in blood with plasminogen activators. Even if minute amounts of plasmin are generated (e.g., after release of vascular plasminogen activator following stress) the enzyme is promptly inactivated by α2‐antiplasmin. On activation of the blood coagulation system, fibrin clot is formed, which not only strongly binds vascular plasminogen activator and plasminogen from blood but also significantly accelerates the activation rate. Resulting plasmin is protected from inhibitors while attached to fibrin. Enzyme is inactivated by α2‐antiplasmin and α2‐macroglobulin after proteolytic dissolution of fibrin and liberation into the liquid phase of blood. Thus the fibrin network catalyzes initiation and regulation of fibrinolysis. Kallikrein and factor XIa can activate plasminogen in the liquid phase, but their role appears less significant and not specifically associated with fibrin clot.

References
 1. Abildgaard, U. Highly purified antithrombin 3 with heparin cofactor activity prepared by disc electrophoresis. Scand. J. Clin. Lab. Invest. 21: 89–91, 1968.
 2. Addis, T. The pathogenesis of hereditary haemophilia. J. Pathol. Bacterial. 15: 427–452, 1911.
 3. Aggeler, P. M., S. G. White, M. B. Glendening, E. W. Page, T. B. Leake, and G. Bates. Plasma thromboplastin component (PTC) deficiency: a new disease resembling hemophilia. Proc. Soc. Exp. Biol. Med. 79: 692–694, 1952.
 4. Alexander, B., A. Rimon, and E. Katchalski. Action of water‐insoluble trypsin derivatives on fibrinogen clottability. Thromb. Diath. Haemorrh. 16: 507–525, 1966.
 5. Alkjaersig, N., A. Davies, and A. Fletcher. Fibrin and fibrinogen proteolysis products: comparison between gel filtration and SDS Polyacrylamide electrophoresis analysis. Thromb. Haemost. 38: 524–535, 1977.
 6. Amir, J., J. Pensky, and O. D. Ratnoff. Plasma inhibition of activated plasma thromboplastin antecedent (factor XIa) in pregnancy. J. Lab. Clin. Med. 79: 106–112, 1972.
 7. Aoki, N., M. Moroi, Y. Sakata, N. Yoshida, and M. Matsuda. Abnormal plasminogen. A hereditary molecular abnormality found in a patient with recurrent thrombosis. J. Clin. Invest. 61: 1186–1195, 1978.
 8. Armstrong, S. H., M. J. E. Budka, K. C. Morrison, and M. Hasson. Preparation and properties of serum and plasma proteins. XII. The refractive properties of human plasma and certain purified fractions. J. Am. Chem. Soc. 69: 1747–1753, 1947.
 9. Aronson, D. L. N‐terminal amino acid changes during the conversion of human prothrombin to thrombin. Proc. Congr. Int. Soc. Hematol. 2: 309–314, 1962.
 10. Aronson, D. L. N‐terminal amino acid formed during the activation of prothrombin. Nature London 194: 475–478, 1962.
 11. Aronson, D. L., A. P. Ball, R. B. Franza, T. E. Hugli, and J. W. Fenton II. Human prothrombin fragments F1 (αã) and F2: preparation and characterization of structural and biological properties. Thromb. Res. 20: 239–253, 1980.
 12. Aronson, D. L., L. Stevon, A. P. Ball, B. R. Franza, Jr., and J. S. Finlayson. Generation of the combined prothrombin activation peptide (F1–2) during the clotting of blood and plasma. J. Clin. Invest. 60: 1410–1418, 1977.
 13. Astedt, B., B. Bladh, L. Holmberg, and P. Liedholm. Purification of plasminogen activator(s) from human seminal plasma. Experientia 32: 148–149, 1976.
 14. Astrup, T. Tissue activators of plasminogen. Federation Proc. 25: 42–51, 1966.
 15. Astrup, T. Fibrinolysis—an overview. In: Progress in Chemical Fibrinolysis and Thrombolysis, edited by J. F. Davidson, R. M. Rowan, M. M. Samama, and P. C. Desnoyers. New York: Raven, 1978, vol. 3, p. 1–57.
 16. Atichartakarn, V., V. J. Marder, E. P. Kirby, and A. Z. Budzynski. Effects of enzymatic degradation on the subunit composition and biologic properties of human factor VIII. Blood 51: 281–297, 1978.
 17. Austen, D. E. G. Thiol groups in the blood clotting action of factor VIII. Br. J. Haematol. 19: 477–484, 1970.
 18. Austen, D. E. G. and E. Bidwell. Carbohydrate structure in factor VIII. Thromb. Diath. Haemorrh. 28: 464–472, 1972.
 19. Bachmann, L., W. W. Schmitt‐Fumian, R. Hammel, and K. Lederer. Size and shape of fibrinogen. I. Electron microscopy of the hydrated molecule. Makromol. Chem. 176: 2603–2618, 1975.
 20. Bagdasarian, A., B. Lahiri, and R. W. Colman. Origin of the high molecular weight activator of prekallikrein. J. Biol. Chem. 248: 7742–7747, 1973.
 21. Bagdasarian, A., B. Lahiri, R. C. Talamo, P. Y. Wong, and R. C. Colman. Immunochemical studies of plasma kallikrein. J. Clin. Invest. 54: 1444–1454, 1974.
 22. Bagdy, D., E. Barabas, L. Graf, T. E. Petersen, and S. Magnusson. Hirudin. Methods Enzymol. 45: 669–678, 1976.
 23. Bailey, K. The proteins of skeletal muscle. Adv. Protein Chem. 1: 289–317, 1944.
 24. Baillie, A. J., and A. K. Sim. Activation of the fibrinolytic enzyme system in laboratory animals and in man. A comparative study. Thromb. Diath. Haemorrh. 25: 499–506, 1971.
 25. Bang, N. U. A molecular structural model of fibrin based on electron microscopy of fibrin polymerization. Thromb. Diath. Haemorrh. Suppl. 13: 73–80, 1964.
 26. Bang, N. U., and L. E. Mattler. Thrombin sensitivity and specificity of three chromogenic peptide substrates. In: The Chemistry and Biology of Thrombin, edited by R. L. Lundblad, J. W. Fenton II, and K. G. Mann. Ann Arbor, MI: Ann Arbor Science, 1977, p. 305–310.
 27. Bangham, A. D. A correlation between surface charge and coagulant action of phospholipid. Nature London 192: 1197–1198, 1961.
 28. Barton, P. G., and D. J. Hanahan. Some lipid‐protein interactions involved in prothrombin activation. Biochim. Biophys. Acta 187: 319–327, 1969.
 29. Belitser, V. A., T. V. Varetska, and V. P. Manjakov. On the model for the fibrinogen molecule. Consecutive stages of fibrin polymerization. Thromb. Res. 2: 567–578, 1973.
 30. Bell, W. R., W. R. Pitney, and J. F. Goodwin. Therapeutic defibrination in the treatment of thrombotic disease. Lancet 1: 490–493, 1968.
 31. Benabid, Y., E. Concord, and M. Suscillon. Soluble fibrin complexes: separation as a function of pH and characterization. Thromb. Haemost. 37: 144–153, 1977.
 32. Bennett, B., and O. D. Ratnoff. Studies on the response of patients with classic hemophilia to transfusion with concentrates of antihemophilic factor. A difference in the half‐life of an antihemophilic factor as measured by procoagulant and immunologic techniques. J. Clin. Invest. 51: 2593–2596, 1972.
 33. Bennett, J. S., and G. J. Vilaire. Exposure of platelet fibrinogen receptors by ADP and epinephrine. J. Clin. Invest. 64: 1393–1401, 1979.
 34. Bettelheim, F. R. The clotting of fibrinogen. II. Fractionation of peptide material liberated. Biochim. Biophys. Acta 19: 121–130, 1956.
 35. Bigbee, W. L., and R. H. Jensen. Characterization of plasminogen activator in human cervical cells. Biochim. Biophys. Acta 540: 285–294, 1978.
 36. Biggs, R., A. S. Douglas, R. G. Macfarlane, J. V. Dacie, W. R. Pitney, C. Merskey, and J. R. O'Brien. Christmas disease: a condition previously mistaken for haemophilia. Br. Med. J. 2: 1378–1381, 1952.
 37. Biggs, R., and R. G. Macfarlane. The reaction of haemophilic plasma to thromboplastin. J. Clin. Pathol. 4: 455–459, 1951.
 38. Bilezikian, S. B., and H. L. Nossel. Unique pattern of fibrinogen cleavage by human leukocyte proteases. Blood 50: 21–28, 1977.
 39. Bilezikian, S. B., H. L. Nossel, V. P. Butler, Jr., and R. E. Canfield. Radioimmunoassay of human fibrinopeptide B and kinetics of fibrinopeptide cleavage by different enzymes. J. Clin. Invest. 56: 438–445, 1975.
 40. Bird, P., and C. R. Rizza. A method for detecting factor VIII clotting activity associated with factor VIII‐related antigen in agarose gels. Br. J. Haematol. 31: 5–12, 1975.
 41. Björk, I. and B. Nordenman. Acceleration of the reaction between thrombin and antithrombin III by non‐stoichiometric amounts of heparin. Eur. J. Biochem. 68: 507–511, 1976.
 42. Bjorklid, E., E. Storm. B. østerud, and H. Prydz. The interaction of the protein and phospholipid components of tissue thromboplastin (factor III) with the factors VII and X. Scand. J. Haematol. 14: 65–70, 1975.
 43. Bjorklid, E., E. Storm, and H. Prydz. The protein component of human brain thromboplastin. Biochem. Biophys. Res. Commun. 55: 969–976, 1973.
 44. Blombäck, B., M. Blombäck, W. Finkbeiner, A. Holmgren, B. Kowalska‐Loth, and G. Olovson. Enzymatic reduction of disulfide bonds in fibrinogen by the thioredoxin system. I. Identification of reduced bonds and studies on reoxidation process. Thromb. Res. 4: 55–75, 1974.
 45. Blombäck, B., M. Blombäck, and N. J. Grondahl. Studies on fibrinopeptides from mammals. Acta Chem. Scand. 19: 1789–1791, 1965.
 46. Blombäck, B., M. Blombäck, A. Henschen, B. Hessel, S. Iwanaga, and K. R. Woods. N‐terminal disulfide knot of human fibrinogen. Nature London 218: 130–134, 1968.
 47. Blombäck, B., M. Blombäck, B. Hessel, and S. Iwanaga. Structure of N‐terminal fragments of fibrinogen and specificity of thrombin. Nature London 215: 1445–1448, 1967.
 48. Blombäck, B., M. Blombäck, and I. M. Nilsson. Coagulation studies on “Reptilase” an extract of the venom from. Bothrops jararaca. Thromb. Diath. Haemorrh. 1: 76–86, 1957.
 49. Blombäck, B., B. Hessel, D. Hogg, and G. Claeson. Substrate specificity of thrombin on proteins and synthetic substrates. In: The Chemistry and Biology of Thrombin, edited by R. L. Lundblad, J. W. Fenton II, and K. G. Mann. Ann Arbor, MI: Ann Arbor Science, 1977, p. 275–290.
 50. Blombäck, B., B. Hessel, D. Hogg, and L. Therkildsen. A two‐step fibrinogen‐fibrin transition in blood coagulation. Nature London 275: 501–505, 1978.
 51. Blombäck, B., B. Hessel, S. Iwanaga, J. Reuterby, and M. Blombäck. Primary structure of human fibrinogen and fibrin. I. Cleavage of fibrinogen with cyanogen bromide. Isolation and characterization of NH2‐terminal fragments of the alpha (A) chain. J. Biol. Chem. 247: 1496–1512, 1972.
 52. Blombäck, B., B. Hessel, G. Savidge, L. Wikström, and M. Blombäck. The effect of reducing agents on factor VIII and other coagulation factors. Thromb. Res. 12: 1177–1194, 1978.
 53. Blombäck, B. and I. Yamashina. On the N‐terminal amino acids in fibrinogen and fibrin. Ark. Kemi 12: 299–319, 1958.
 54. Blow, D. M., J. J. Birktoft, and B. S. Hartley. Role of a buried acid group in the mechanism of action of chymotrypsin. Nature London 221: 337–341, 1969.
 55. Bohmfalk, J. F., and G. M. Fuller. Plasminogen is synthesized by primary cultures of rat hepatocytes. Science 209: 408–410, 1980.
 56. Bordet, J. and O. Genou. Recherches sur la coagulation du sang et les serums anticoagulant. Ann. Inst. Pasteur Paris 15: 129–144, 1901.
 57. Bouma, B. N., and J. H. Griffin. Human blood coagulation factor XI: purification properties and mechanism of activation by activated XII. J. Biol. Chem. 252: 6432–6437, 1977.
 58. Brakman, P., O. K. Albrechtsen, and T. Astrup. A comparative study of coagulation and fibrinolysis in blood from normal men and women. Br. J. Haematol. 12: 74–85, 1966.
 59. Brinkhous, K. M., H. P. Smith, E. D. Warner, and W. H. Seegers. The inhibition of blood clotting: an unidentified substance which acts in conjunction with heparin to prevent the conversion of prothrombin into thrombin. Am. J. Physiol. 125: 683–687, 1939.
 60. Broekman, M. J., R. I. Handin, and P. Cohen. Distribution of fibrinogen, and platelet factors 4 and XIII in subcellular fractions of human platelets. Br. J. Haematol. 31: 51–55, 1975.
 61. Buchanan, J. M., L. B. Chen, and B. R. Zetter. Reaction of thrombin with fibroblasts and mouse splenocytes. In: The Chemistry and Biology of Thrombin, edited by R. L. Lundblad, J. W. Fenton II, and K. G. Mann. Ann Arbor, MI: Ann Arbor Science, 1977, p. 519–530.
 62. Bucher, D., E. Nebelin, J. Thomsen, and J. Stenflo. Identification of γ‐carboxyglutamic acid residues in bovine factors IX and X, and in a new vitamin K‐dependent protein. FEBS Lett. 68: 293–297, 1976.
 63. Budzynski, A. Z. Structure of fibrinogen in relation to its proteolytic degradation products. Postepy Hig. Med. Dosw. 23: 293–369, 1969.
 64. Budzynski, A. Z. Difference in conformation of fibrinogen degradation products as revealed by hydrogen exchange and spectropolarimetry. Biochim. Biophys. Acta 229: 663–671, 1971.
 65. Budzynski, A. Z., R. T. Joseph, S. A. Olexa, and S. Niewiarowski. Binding functions of the fibrinogen molecule (Abstract). Federation Proc. 38: 996, 1979.
 66. Budzynski, A. Z., V. J. Marder, and J. R. Shainoff. Structure of plasmic degradation products of human fibrinogen. Fibrinopeptide and polypeptide chain analysis. J. Biol. Chem. 249: 2294–2302, 1974.
 67. Budzynski, A. Z., S. A. Olexa, B. S. Brizuela, R. T. Sawyer, and G. S. Stent. Anticoagulant and fibrinolytic properties of salivary proteins from the leech. Haementeria ghilianii. Proc. Soc. Exp. Biol. Med. 168: 266–275, 1981.
 68. Budzynski, A. Z., S. A. Olexa, and R. T. Sawyer. Composition of salivary gland extracts from the leech. Haementeria ghilianii. Proc. Soc. Exp. Biol. Med. 168: 259–265, 1981.
 69. Budzynski, A. Z. and M. Stahl. Partial reduction of bovine fibrinogen by some sulfhydryl compounds. Biochim. Biophys. Acta 175: 282–289, 1969.
 70. Budzynski, A. Z., M. Stahl, M. Kopec, Z. S. Latallo, Z. Wegrzynowicz, and E. Kowalski. High molecular weight products of the late stage of fibrinogen proteolysis by plasmin and their structural relation to the fibrinogen molecule. Biochim. Biophys. Acta 147: 313–323, 1967.
 71. Burges, R. A., K. W. Brammer, and J. D. Coombes. Molecular weight of urokinase. Nature London 208: 894–896, 1965.
 72. Butkowski, R. J., J. Elion, M. R. Downing, and K. G. Mann. The primary structure of human prothrombin 2 and α‐thrombin. J. Biol. Chem. 252: 4942–4957, 1977.
 73. Butkowski, R. J., J. Elion, M. R. Downing, and K. G. Mann. Primary structure of human thrombin (Abstract). Federation Proc. 35: 1765, 1976.
 74. Camiolo, S. M., S. Thorsen, and T. Astrup. Fibrinogenolysis and fibrinolysis with tissue plasminogen activator, urokinase, streptokinase‐activated human globulin, and plasmin. Proc. Soc. Exp. Biol. Med. 138: 277–280, 1971.
 75. Carney, D. H., and D. D. Cunningham. Cell surface action of thrombin is sufficient to initiate division of chick cells. Cell 14: 811–823, 1978.
 76. Carney, D. H., K. C. Glenn, and D. D. Cunningham. Conditions which affect initiation of animal cell division by trypsin and thrombin. J. Cell. Physiol. 95: 13–22, 1978.
 77. Carter, J. R., and E. D. Warner. Evaluation of disulfide bonds and sulfhydryl groups in the blood clotting mechanism. Am. J. Physiol. 179: 549–556, 1954.
 78. Cash, J. D. A new approach to studies of the fibrinolytic enzyme system in man. Am. Heart J. 75: 424–428, 1968.
 79. Cash, J. D. Control mechanism of activator release. In: Progress in Chemical Fibrinolysis and Thrombolysis, edited by J. F. Davidson, R. M. Rowan, M. M. Samama, and P. D. Desnoyers. New York: Raven, 1978, vol. 3, p. 65–75.
 80. Caspary, E. A. Studies on the acetylation of human fibrinogen. Biochem. J. 62: 507–512, 1956.
 81. Caspary, E. A., and R. A. Kekwick. Some physicochemical properties of human fibrinogen. Biochem. J. 67: 41–48, 1957.
 82. Chakrabarti, R., G. R. Fearnley, E. D. Hocking, A. Delitheos, and G. M. Clarke. Fibrinolytic activity related to age in survivors of myocardial infarction. Lancet 1: 573–574, 1966.
 83. Chang, T.‐L., R. D. Feinman, B. H. Landis, and J. W. Fenton II. Antithrombin reactions with α‐ and γ‐thrombins. Biochemistry 18: 113–119, 1979.
 84. Chen, L. B., and J. B. Buchanan. Mitogenic activity of blood components. I. Thrombin and prothrombin. Proc. Natl. Acad. Sci. USA 72: 131–135, 1975.
 85. Chen, R., and R. F. Doolittle. γ‐γ cross‐linking sites in human and bovine fibrin. Biochemistry 10: 4487–4491, 1971.
 86. Chesterman, C. N., M. J. Allington, and A. A. Sharp. Relation of plasminogen activator to fibrin. Nature London 238: 15–16, 1972.
 87. Christensen, U. Kinetic studies of the urokinase‐catalysed conversion of NH2‐terminal glutamic acid plasminogen to plasmin. Biochim. Biophys. Acta 481: 638–647, 1977.
 88. Chung, D. W., M. W. Rixon, R. T. A. MacGillivray, and E. W. Davie. Characterization of a cDNA clone coding for the ã‐chain of bovine fibrinogen. Proc. Natl. Acad. Sci. USA 78: 1466–1470, 1981.
 89. Chung, S. I., M. C. Lewis, and J. E. Folk. Relationships of the catalytic properties of human plasma and platelet transglutaminases (activated blood coagulation factor XIII) to their subunit structures. J. Biol. Chem. 249: 940–950, 1974.
 90. Cifonelli, J. A. Heparin: structure, function and clinical implications. Relation of chemical structure of heparin to its anticoagulant activity. In: The Chemistry of Heparin, edited by R. A. Bradshaw and S. Wessler. New York: Plenum, 1975, p. 95–103.
 91. Cifonelli, J. A. and J. King. Structural studies on heparins with unusually high N‐acetylglucosamine contents. Biochim. Biophys. Acta 320: 331–340, 1973.
 92. Claeson, G., L. Aurell, G. Karlson, and P. Friberger. Substrate structure and activity relationship. In: New Methods for the Analysis of Coagulation Using Chromogenic Substrates, edited by I. Witt. Berlin: de Gruyter, 1977, p. 39–54.
 93. Claeys, G. and J. Vermylen. Physicochemical and proenzyme properties of NH2‐terminal glutamic acid and NH2‐terminal lysine plasminogen. Influence of 6‐aminohexanoic acid. Biochim. Biophys. Acta 342: 351–359, 1974.
 94. Clayton, J. K., J. A. Anderson, and G. P. McNicol. Preoperative prediction of postoperative deep vein thrombosis. Br. Med. J. 2: 910–912, 1976.
 95. Clemmensen, I. Inhibition of urokinase by complex formation with human antithrombin III in absence and presence of heparin. Thromb. Haemost. 39: 616–623, 1978.
 96. Clemmensen, I. and F. Christensen. Inhibition of urokinase by complex formation with human alpha 1‐antitrypsin. Biochim. Biophys. Acta 249: 591–599, 1976.
 97. Cochrane, C. G., S. D. Revak, and K. D. Wuepper. Activation of Hageman factor in solid and fluid phases. J. Exp. Med. 138: 1564–1569, 1973.
 98. Cochrane, C. G., K. D. Wuepper, B. S. Aiken, S. D. Revak, and H. L. Spiegelberg. The interaction of Hageman factor and immune complexes. J. Clin. Invest. 51: 2736–2745, 1972.
 99. Cohen, C., and N. M. Tooney. Crystallization of modified fibrinogen. Nature London 251: 659–660, 1974.
 100. Cole, E. R., and F. W. Bachman. Purification and properties of a plasminogen activator from pig heart. J. Biol. Chem. 252: 3729–3737, 1977.
 101. Collen, D. Identification and some properties of a new fast‐reacting plasmin inhibitor in human plasma. Eur. J. Biochem. 69: 209–216, 1976.
 102. Collen, D. On the regulation and control of fibrinolysis. Thromb. Haemost. 43: 77–89, 1980.
 103. Colman, R. W. Activation of plasminogen by human plasma kallikrein. Biochem. Biophys. Res. Commun. 35: 273–279, 1969.
 104. Colman, R. W. The effect of proteolytic enzymes on bovine factor V. I. Kinetics of activation and inactivation by bovine thrombin. Biochemistry 8: 1438–1444, 1969.
 105. Colman, R. W. The effect of proteolytic enzymes on factor V. II. Kinetics of activation and inactivation by papain, plasmin, and other proteolytic enzymes. Biochemistry 8: 1445–1450, 1969.
 106. Colman, R. W. Factor V: an activator of factor Xa in the absence of prothrombin. Br. J. Haematol. 19: 675–684, 1970.
 107. Colman, R. W. Formation of human plasma kinin. N. Engl. J. Med. 291: 509–515, 1974.
 108. Colman, R. W. Deficiencies of factor XII, prekallikrein and high molecular weight kininogen. In: Hemostasis and Thrombosis: Basic Concepts and Clinical Practice, edited by R. W. Colman, J. Hirsch, V. Marder, and E. Salvman. Philadelphia, PA: Lippincott, 1982, p. 1–17.
 109. Colman, R. W., A. Bagdasarian, R. C. Talama, C. F. Scott, M. Seavey, J. A. Guimaraes, J. V. Pierce, and A. P. Kaplan. Williams trait. Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman factor‐dependent pathways. J. Clin. Invest. 56: 1650–1662, 1975.
 110. Colman, R. W., R. Edelman, C. F. Scott, and R. H. Gilman. Plasma kallikrein activation and inhibition during typhoid fever. J. Clin. Invest. 61: 287–296, 1978.
 111. Colman, R. W., J. Moran, and G. Philip. Kinetic properties and molecular size of thrombin‐activated factor V. J. Biol. Chem. 245: 5941–5946, 1970.
 112. Colman, R. W., M. Schapira, and C. F. Scott. Regulation of the formation and inhibition of human plasma kallikrein. Ann. NY Acad. Sci. 370: 261–270, 1981.
 113. Contejean, C. Recherches sur les injections intraveineuses de peptone et leur influence sur la coagulabilité du sang chez le chien. Arch. Physiol. Norm. Pathol. 7: 45–48, 1895.
 114. Cooper, H. A., and R. H. Wagner. The defect in hemophilic and von Willebrand's disease plasmas studied by a recombination technique. J. Clin. Invest. 54: 1098–1099, 1974.
 115. Corcoran, D. H., E. W. Ferguson, L. J. Fretto, and P. A. McKee. Localization of a cross‐link donor site in the alpha‐chain of human fibrin. Thromb. Res. 19: 883–888, 1980.
 116. Counts, R. B., S. L. Paskell, and S. K. Elgee. Disulfide bonds and the quaternary structure of factor VIII/von Wille‐brand factor. J. Clin. Invest. 62: 702–708, 1978.
 117. Crabtree, G. R., and J. A. Kant. Molecular cloning of cDNA for the α, ã and 7 chains of rat fibrinogen. J. Biol. Chem. 256: 9718–9723, 1981.
 118. Credo, R. B., C. G. Curtis, and L. Lorand. Ca2+‐related regulatory function of fibrinogen. Proc. Natl. Acad. Sci. USA 75: 4234–4237, 1978.
 119. Cross, M. J. Effect of fibrinogen on the aggregation of platelets by adenosine diphosphate. Thromb. Diath. Haemorrh. 12: 524–527, 1964.
 120. Curtis, C. G., K. L. Brown, R. B. Credo, R. A. Domanik, A. Gray, P. Stenberg, and L. Lorand. Calcium dependent unmasking of active center cysteine during activation of fibrin stabilizing factor. Biochemistry 13: 3774–3780, 1974.
 121. Damus, P. S., M. Hicks, and R. D. Rosenberg. Anticoagulant activity of heparin. Nature London 246: 355–359, 1973.
 122. Danishefsky, I., H. Steiner, A. Bella, and A. Friedlan‐Der. Investigations on the chemistry of heparin. J. Biol. Chem. 244: 1741–1745, 1969.
 123. Den Ottolander, G. J. H., B. Leijnse, and M. M. J. Cremer‐Elfrink. Plasmatic and platelet anti‐plasmins and anti‐activators. Thromb. Diath. Haemorrh. 18: 404–415, 1967.
 124. Derenzo, E. C., P. K. Siiteri, B. L. Hutching, and P. H. Bell. Preparation and certain properties of highly purified streptokinase. J. Biol. Chem. 242: 533–542, 1967.
 125. Deutsch, D. G. and E. Mertz. Plasminogen: purification from human plasma by affinity chromatography. Science 170: 1095–1096, 1970.
 126. Didisheim, P., and R. S. Mibasha. Activation of Hageman factor (factor XII) by long chain saturated fatty acids. Thromb. Diath. Haemorrh. 9: 346–353, 1963.
 127. DiScipio, R. G., and E. W. Davie. Characterization of protein S, a γ‐carboxyglutamic acid containing protein from bovine and human plasma. Biochemistry 18: 899–904, 1979.
 128. Dombrose, F. A., S. N. Gitel, K. Zawalich, and C. M. Jackson. The association of bovine prothrombin fragment 1 with phospholipid: quantitative characterization of the Ca2+ ion‐mediated binding of prothrombin fragment 1 to phospholipid vesicles and a molecular model for its association with phospholipid. J. Biol. Chem. 254: 5027–5040, 1979.
 129. Dombrose, F. A., T. Yasui, Z. Roubal, and W. H. Seegers. Ac‐globulin (factor V): preparation of a practical product. Prep. Biochem. 2: 381–396, 1972.
 130. Donaldson, V. H. Effect of plasmin in vitro on clotting factors in plasma. J. Lab. Clin. Med. 56: 644–651, 1960.
 131. Donaldson, V. H., H. I. Glueck, M. A. Miller, H. Z. Movat, and F. Habel. Kininogen deficiency in Fitzgerald trait: role of high molecular weight kininogen in clotting and fibrinolysis. J. Lab. Clin. Med. 89: 327–337, 1976.
 132. Doolittle, R. F. Structural aspects of the fibrinogen to fibrin conversion. Adv. Protein Chem. 27: 1–109, 1973.
 133. Doolittle, R. F., K. G. Cassman, R. Chen, J. J. Sharp, and G. L. Wooding. Correlation of the mode of fibrin polymerization with the pattern of cross‐linking. Ann. NY Acad. Sci. 202: 114–126, 1972.
 134. Doolittle, R. F., K. G. Cassman, B. A. Cottrell, and S. J. Friezner. Amino acid sequence studies on the α chain of human fibrinogen. Isolation and characterization of two linked α‐chain cyanogen bromide fragments from fully cross‐linked fibrin. Biochemistry 16: 1715–1719, 1977.
 135. Doolittle, R. F., R. Chen, and F. Lau. Hybrid fibrin proof of the intermolecular nature of crosslinking units. Biochem. Biophys. Res. Commun. 44: 94–100, 1971.
 136. Doolittle, R. F., D. M. Goldbaum, and L. R. Doolittle. Designation of sequences involved in the “coiled‐coil” inter‐domainal connections in fibrinogen: construction of an atomic scale model. J. Mol. Biol. 120: 311–325, 1978.
 137. Doolittle, R. F., K. W. K. Watt, B. A. Cottrell, D. D. Strong, and M. Riley. The amino acid sequence of the α‐chain of human fibrinogen. Nature London 280: 464–468, 1979.
 138. Downing, M. R., J. W. Bloom, and K. G. Mann. Comparison of the inhibition of thrombin by three plasma protease inhibitors. Biocliemistry 17: 2649–2653, 1978.
 139. Downing, M. R., R. J. Butkowski, M. M. Clark, and K. G. Mann. Human prothrombin activation. J. Biol. Chem. 250: 8897–8906, 1975.
 140. Dudek, G. A., M. Kloczewiak, A. Z. Budzynski, Z. S. Latallo, and M. Kopec. Characterization and comparison of macromolecular end products of fibrinogen and fibrin proteolysis by plasmin. Biochim. Biophys. Acta 214: 44–51, 1970.
 141. Eagle, H. Studies on blood coagulation. II. The formation of fibrin from thrombin and fibrinogen. J. Gen. Physiol. 18: 547–555, 1935.
 142. Ehrlich, J., and S. S. Stivala. Chemistry and pharmacology of heparin. J. Pharm. Sci. 62: 517–521, 1969.
 143. Ekert, H., I. Friedlander, and R. M. Hardisty. The role of platelets in fibrinolysis. Studies on the plasminogen activator and antiplasmin activity of platelets. Br. J. Haematol. 18: 575–584, 1970.
 144. Elion, J., M. R. Downing, R. J. Butkowski, and K. G. Mann. Structure of human thrombins: comparison with other serine preteases. In: The Chemistry and Biology of Thrombin, edited by R. L. Lundblad, J. W. Fenton II, and K. G. Mann. Ann Arbor, MI: Ann Arbor Science, 1977, p. 97–111.
 145. Elmore, D. T. The enzymic properties of thrombin and factor Xa. Biochem. Soc. Trans. 1: 1191–1194, 1973.
 146. Endres, G. F., and H. A. Scheraga. Molecular weight of bovine fibrinogen by sedimentation equilibrium. Arch. Biochem. Biophys. 144: 519–528, 1971.
 147. Enfield, D. L., K. H. Ericsson, K. A. Walsh, H. Neurath, and K. Titani. Bovine factor Xi (Stuart factor). Primary structure of the light chain. Proc. Natl. Acad. Sci. USA 72: 16–19, 1975.
 148. Engelberg, H. Heparin: Metabolism, Physiology and Clinical Application. Springfield, IL: Thomas, 1963.
 149. Esmon, C. T. The subunit structure of thrombin‐activated factor V. Isolation of activated factor V, separation of subunits and reconstitution of biological activity. J. Biol. Chem. 254: 964–973, 1979.
 150. Esmon, C. T., and C. M. Jackson. The conversion of prothrombin to thrombin. III. The factor Xa‐catalyzed activation of prothrombin. J. Biol. Chem. 249: 7782–7790, 1974.
 151. Esmon, C. T., and C. M. Jackson. The conversion of prothrombin to thrombin. IV. The function of the fragment 2 region during activation in the presence of factor V. J. Biol. Chem. 249: 7791–7797, 1974.
 152. Esmon, C. T., W. G. Owen, D. L. Duiguid, and C. M. Jackson. The action of thrombin on blood clotting factor V: conversion of factor V to a prothrombin‐binding protein. Biochim. Biophys. Acta 310: 289–294, 1973.
 153. Esmon, C. T., W. G. Owen, and C. M. Jackson. The conversion of prothrombin to thrombin. II. Differentiation between thrombin‐ and factor Xa‐catalyzed proteolyses. J. Biol. Chem. 249: 606–611, 1974.
 154. Esmon, C. T., W. G. Owen, and C. M. Jackson. The conversion of prothrombin to thrombin. V. The activation of prothrombin by factor Xa in the presence of phospholipid. J. Biol. Chem. 249: 7798–7807, 1974.
 155. Esmon, C. T., W. G. Owen, and C. M. Jackson. A plausible mechanism for prothrombin activation by factor Xa, factor Va, phospholipid, and calcium ions. J. Biol. Chem. 249: 8045–8047, 1974.
 156. Esmon, C. T., J. A. Sadowski, and J. W. Suttie. A new carboxylation reaction. The vitamin K‐dependent incorporation of H14CO3 into prothrombin. J. Biol. Chem. 250: 4744–4748, 1975.
 157. Esmon, C. T., J. W. Suttie, and C. M. Jackson. The functional significance of vitamin K action, difference in phospholipid binding between normal and abnormal prothrombin. J. Biol. Chem. 250: 4095–4099, 1975.
 158. ESNOUF, M. P. and F. Jobin. Lipids in prothrombin conversion. Thromb. Diath. Haemmorrh. Suppl. 17: 103–110, 1965.
 159. Ewart, M. R., M. W. C. Hatton, J. M. Basford, and K. S. Dodgson. The proteolytic action of arvin on human fibrinogen. Biochem. J. 118: 603–609, 1970.
 160. Fair, B. D., H. Saito, O. D. Ratnoff, and W. B. Rippon. Detection by fluorescence of structural changes accompanying the activation of Hageman factor (factor XII). Proc. Soc. Exp. Biol. Med. 155: 199–202, 1977.
 161. Fenton, J. W., II, B. H. Landis, D. A. Walz, D. H. Bing, R. D. Feinman, M. P. Zabinski, S. A. Sonder, L. J. Berliner, and J. S. Finlayson. Human thrombin: preparative evaluation, structural properties and enzymic specificity. In: The Chemistry and Physiology of the Human Plasma Proteins, edited by D. H. Bing. New York: Pergamon, 1979, p. 151–183.
 162. Ferry, J. D. The mechanism of polymerization of fibrinogen. Proc. Natl. Acad. Sci. USA 38: 566–569, 1952.
 163. Filip, D. J., J. D. Eckstein, and J. J. Veltkamp. Hereditary antithrombin III deficiency and thromboembolic disease. Am. J. Hematol. 1: 343–349, 1976.
 164. Fletcher, A. P., N. Alkjaersig, S. Fisher, and S. Sherry. The proteolysis of fibrinogen by plasmin: the identification of thrombin‐clottable fibrinogen derivatives which polymerize abnormally. J. Lab. Clin. Med. 68: 780–802, 1966.
 165. Fletcher, A. P., N. Alkjaersig, J. O'Brien, and V. G. Tulevski. Blood hypercoagulability and thrombosis. Trans. Assoc. Am. Physicians 83: 159–167, 1970.
 166. Fletcher, A. P., N. Alkjaersig, S. Sherry, E. Genton, J. Hirsh, and F. Bachmann. The development of urokinase as a thrombolytic agent. Maintenance of a sustained thrombolytic state in man by its intravenous infusion. J. Lab. Clin. Med. 65: 713–731, 1965.
 167. Folk, J. E., and S. I. Chung. Molecular and catalytic properties of transglutaminases. Adv. Enzymol. Relat. Areas Mol. Biol. 38: 109–191, 1973.
 168. Forbes, C. D., J. Pensky, and O. D. Ratnoff. Inhibition of activated Hageman factor and activated plasma thromboplastin antecedent by purified serum C1 inactivator. J. Lab. Clin. Med. 76: 809–815, 1970.
 169. Fowler, W. E., and H. P. Erickson. Trinodular structure of fibrinogen. Confirmation by both shadowing and negative stain electron microscopy. J. Mol. Biol. 134: 241–249, 1979.
 170. Fowler, W. E., H. P. Erickson, R. R. Hantgan, J. McDonagh, and J. Hermans. Cross‐linked fibrinogen dimers demonstrate a feature of the molecular packing in fibrin fibers. Science 211: 287–289, 1981.
 171. Fowler, W. E., L. J. Fretto, H. P. Erickson, and P. A. McKee. Electron microscopy of plasmic fragments of human fibrinogen as related to trinodular structure of the intact molecule. J. Clin. Invest. 66: 50–56, 1980.
 172. Francis, C. W., V. J. Marder, and G. H. Barlow. Plasmic degradation of crosslinked fibrin. Characterization of new macromolecular soluble complexes and a model for their structure. J. Clin. Invest. 66: 1033–1043, 1980.
 173. Francis, C. W., V. J. Marder, and S. E. Martin. Demonstration of a large molecular weight variant of they chain of normal human plasma fibrinogen. J. Biol. Chem. 255: 5599–5604, 1980.
 174. Francis, C. W., V. J. Marder, and S. E. Martin. Plasmic degradation of crosslinked fibrin. I. Structural analysis of the particulate clot and identification of new macromolecular soluble complexes. Blood 56: 456–464, 1980.
 175. Freeman, J. P., M. C. Guillin, A. Bezeaud, and C. M. Jackson. Activation of bovine blood coagulation factor V. A prerequisite for it to bind both prothrombin and factor Xa (Abstract). Federation Proc. 36: 675, 1977.
 176. Fretto, L. J., E. W. Ferguson, H. M. Steinman, and P. A. McKee. Localization of the α‐chain cross‐link acceptor sites of human fibrin. J. Biol. Chem. 253: 2184–2195, 1978.
 177. Fritz, H., G. Wunderer, K. Kummer, N. Heimburger, and E. Werle. α1‐Antitrypsin und C 1‐Inaktivator: Progressiv‐Inhibitoren für Serumkallikreine von Mensch und Schwein. Hoppe‐Seykr's Z. Physiol. Chem 353: 906–910, 1972.
 178. Fryklund, L., H. Borg, and L.‐O. Andersson. Amino‐terminal sequence of human factor IX: presence of ‐γ‐carboxyl glutamic acid residues. FEBS Lett. 65: 187–189, 1976.
 179. Fujikawa, K., M. H. Coan, D. L. Enfield, I. K. Titan, L. H. Ericsson, and E. W. Davie. A comparison of bovine prothrombin, factor IX (Christmas factor), and factor X (Stuart factor). Proc. Natl. Acad. Sci. USA 71: 427–430, 1974.
 180. Fujikawa, K., M. E. Legaz, and E. W. Davie. Bovine factors X1 and X2 (Stuart factor): isolation and characterization. Biochemistry 11: 4882–4891, 1972.
 181. Fukui, H., S. Mikami, T. Okuda, N. Murashima, T. Takase, and A. Yoshioka. Studies of von Willebrand factor: effects of different kinds of carbohydrate oxidases, SH‐inhibitors and some other chemical reagents. Br. J. Haematol. 36: 259–270, 1977.
 182. Furlan, M., and E. A. Beck. Plasmic degradation of human fibrinogen. I. Structural characterization of degradation products. Biochim. Biophys. Acta 263: 631–644, 1972.
 183. Furlan, M., T. Seelich, and E. A. Beck. Clottability and cross‐linking reactivity of fibrin(ogen) following differential release of fibrinopeptides A and B. Thromb. Haemost. 36: 582–592, 1976.
 184. Gaffney, P. J. and M. Brasher. Subunit structure of the plasmin‐induced degradation products of crosslinked fibrin. Biochim. Biophys. Acta 295: 308–313, 1973.
 185. Gaffney, P. J. and M. Brasher. Mode of action of ancrod as a defibrinating agent. Nature London 251: 53–54, 1974.
 186. Gaffney, P. J., M. Brasher, and F. Joe. Further physicochemical and immunological data concerning the D‐dimer complex. Thromb. Haemost. 38: 226–227, 1977.
 187. Gaffney, P. J., M. Brasher, K. Lord, C. J. L. Strachan, A. R. Wilkinson, V. V. Kakkar, and M. F. Scully. Fibrin subunits in venous and arterial thromboembolism. Cardiovasc. Res. 10: 421–426, 1976.
 188. Gaffney, P. J. and P. Dobos. A structural aspect of human fibrinogen suggested by its plasmin degradation. FEBS Lett. 15: 13–16, 1971.
 189. Galanakis, D. K., and M. W. Mosesson. Correction of the delayed fibrin aggregation of fetal fibrinogen by partial removal of sialic acid (Abstract). Thromb. Haemost. 42: 79, 1979.
 190. Ganguly, P. A low molecular weight antiplasmin of human blood platelets. Clin. Chim. Acta 39: 466–468, 1972.
 191. Ganguly, P., and W. J. Sonnichsen. Binding of thrombin to human platelets and its possible significance. Br. J. Haematol. 34: 291–301, 1976.
 192. Gati, W. P., and P. W. Straub. Separation of both the Bsβ‐ and the γ‐polypeptide chains of human fibrinogen into two main types which differ in sialic acid content. J. Biol. Chem. 253: 1315–1321, 1978.
 193. Gigli, I., J. W. Mason, R. W. Colman, and K. F. Austen. Interaction of plasma kallikrein with CT inactivator. J. Immunol. 104: 574–581, 1970.
 194. Gitel, S. N., R. C. Stephenson, and S. Wessler. In vitro and in vivo correlation of clotting protease activity. Effect of heparin. Proc. Natl. Acad. Sci. USA 74: 3028–3032, 1977.
 195. Gladner, J. A. and K. Laki. The inhibition of thrombin by diisopropylphosphofluoridate. Arch. Biochem. Biophys. 62: 501–506, 1956.
 196. Glover, G. and E. Shaw. The purification of thrombin and isolation of a peptide containing the active‐center histidine. J. Biol. Chem. 246: 4594–4601, 1971.
 197. Godal, H. C., M. Rygh, and K. Laake. Progressive inactivation of purified factor VII by heparin and antithrombin III. Thromb. Res. 5: 773–775, 1974.
 198. Goldsmith, G. H., H. Saito, and O. D. Ratnoff. The activation of plasminogen by Hageman factor (factor XII) and Hageman factor fragments. J. Clin. Invest. 62: 54–60, 1978.
 199. Gorman, J. J. Inhibition of human thrombin assessed with different substrates and inhibitors. Characterization of fibrinopeptide binding interaction. Biochim. Biophys. Acta 412: 273–282, 1975.
 200. Gormsen, J. and C. Feddersen. Demonstration of different D and E antigenic intermediates during plasmin degradation of non‐stabilized and stabilized fibrin clots. Scand. J. Haematol. 10: 337–348, 1973.
 201. Gospodarowicz, D., K. D. Brown, C. R. Birdwell, and B. R. Zetter. Control of proliferation of human vascular endothelial cells. Characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin. J. Cell Biol. 77: 774–788, 1978.
 202. Graf, L., E. Barat, J. Borvendeg, I. Hermann, and A. Pattley. Action of thrombin on ovine, bovine and human pituitary growth hormones. Eur. J. Biochem. 64: 333–340, 1976.
 203. Gralnick, H. R., H. Givelber, and E. Abrams. Dysfibrinogenemia associated with hepatoma. N. Engl. J. Med. 299: 221–226, 1978.
 204. Gramse, M., C. Bingenheimer, W. Schmidt, R. Egbring, and K. Havemann. Degradation products of fibrinogen by elastase‐like neutral protease from human granulocytes. J. Clin. Invest. 61: 1027–1033, 1978.
 205. Greenberg, J. P., M. A. Packham, M. A. Guccione, J. Harfenist, J. L. Orr, R. L. Kinlough‐Rathbone, D. W. Perry, and J. F. Mustard. The effect of pretreatment of human and rabbit platelets with chymotrypsin on their responses to human fibrinogen and aggregating agents. Blood 54: 754–765, 1979.
 206. Greenquist, A. C., and R. W. Colman. Factor V, a calcium containing protein. Blood 46: 769–782, 1975.
 207. Griffin, J. H. The role of surface in the surface‐dependent activation of Hageman factor (blood coagulation factor XII). Proc. Natl. Acad. Sci. USA 75: 1998–2002, 1978.
 208. Griffin, J. H., and C. G. Cochrane. Mechanisms for the involvement of high molecular weight kininogen in surface dependent reactions of Hageman factor. Proc. Natl. Acad. Sci. USA 73: 2554–2558, 1976.
 209. Griffith, J. J. Kinetic analysis of the heparin‐enhanced antithrombin IH/thrombin reaction. Reaction rate enhanced by heparin‐thrombin association. J. Biol. Chem. 254: 12044–12049, 1979.
 210. Grinnell, F., M. Feld, and D. Minter. Fibroblast adhesion to fibrinogen and fibrin substrata: requirement for cold‐insoluble globulin (plasma fibronectin). Cell 19: 517–525, 1980.
 211. Groskopf, W. R., B. Hsieh, L. Summaria, and K. C. Robbins. Studies on the active center of human plasmin. The serine and histidine residues. J. Biol. Chem. 244: 359–365, 1969.
 212. Gumprecht, J. G., and R. W. Colman. Role of sialic acid in the function of bovine factor V. Arch. Biochem. Biophys. 169: 278–286, 1975.
 213. Habal, F. M., B. J. Underdown, and H. Z. Movat. Further characterization of human plasma kininogens. Biochem. Pharmacol. 24: 1241–1243, 1975.
 214. Hafter, R., R. von Hugo, and H. Graef. Origin of soluble crosslinked fibrin oligomers: an in vitro study. Thromb. Haemost. 42: 275–276, 1979.
 215. Hall, C. E., and H. S. Slayter. The fibrinogen molecule: its size, shape and mode of polymerization. J. Biophys. Biochem. Cytol 5: 11–15, 1959.
 216. Handin, R. I., and R. D. Rosenberg. Hemorrhagic disorders. III. Disorders of primary and secondary hemostasis. In: Hematology, edited by W. S. Beck. Cambridge, MA: MIT Press, 1981, chapt. 28, p. 425–439.
 217. Hantgan, R. R., W. Fowler, H. Erickson, and J. Hermanns. Fibrin assembly: a comparison of electron microscopic and light‐scattering results. Thromb. Haemost. 44: 119–124, 1980.
 218. Hantgan, R. R. and J. Hermans. Assembly of fibrin. A light scattering study. J. Biol. Chem. 254: 11272–11281, 1979.
 219. Harfenist, E. J., and R. E. Canfield. Degradation of fibrinogen by plasmin. Isolation of an early cleavage product. Biochemistry 14: 4110–4117, 1975.
 220. Harpel, P. C. Studies on the interaction between collagen and a plasma kallikrein‐like activity. Evidence for a surface‐active enzyme system. J. Clin. Invest. 51: 1813–1822, 1972.
 221. Harpel, P. C. Human α2‐macroglobulin. Methods Enzymol. 45: 639–652, 1976.
 222. Harpel, P. C. Circulating inhibitors of human plasma, kallikrein. In: Chemistry and Biology of the Kallikrein‐Kinin System in Health and Disease, edited by J. J. Pisano and K. F. Austen. Washington, DC: US Govt. Printing Office, 1977, p. 169–177. (Fogarty Int. Ctr. Proc. 27.)
 223. Harpel, P. C., and M. W. Mosesson. Degradation of human fibrinogen by plasmin α2‐macroglobulin‐enzyme complexes. J. Clin. Invest. 52: 2175–2184, 1973.
 224. Harpel, P. C., and R. D. Rosenberg. α2‐Macroglobulin and antithrombin‐heparin cofactor: modulators of hemostatic and inflammatory reactions. Prog. Hemostasis Thromb. 3: 145–189, 1976.
 225. Hathaway, W. E., L. P. Belhansen, and H. S. Hathaway. Evidence for a new plasma thromboplastin factor. I. Case report. coagulation studies and physicochemical properties. Blood 26: 521–532, 1965.
 226. Hattersley, P. G. and D. Hayse. Fletcher factor deficiency. A report of three unrelated cases. Br. J. Haematol. 18: 411–416, 1970.
 227. Haupt, H. and N. Heimburger. Humanserumproteine mit hoher Affinität zu Carboxymethylcellulose. I. Isolierung von Lysozym, C1q und zwei bisher unbekannten α‐Globulinen. Hoppe‐Seyler's Z. Physiol. Chem. 353: 1125–1132, 1972.
 228. Hawiger, J., D. K. Hammond, S. Timmons, and A. Z. Budzynski. Interaction of human fibrinogen with staphylococci: presence of a binding region on normal and abnormal fibrinogen variants and fibrinogen derivatives. Blood 51: 799–812, 1978.
 229. Hawiger, J., S. Niewiarowski, V. Gurewich, and D. P. Thomas. Measurement of fibrinogen and fibrin degradation products in serum by staphylococcal clumping test. J. Lab. Clin. Med. 75: 93–108, 1970.
 230. Heck, L. W., and A. P. Kaplan. Substrates of Hageman factor. I. Isolation and characterization of human factor XI (PTA) and inhibition of the activated enzyme by alpha 1‐antitrypsin. J. Exp. Med. 140: 1615–1621, 1974.
 231. Hedner, U. and G. Martinsson. Inhibition of activated Hageman factor (factor XIIa) by an inhibitor of plasminogen activation (PA‐inhibitor). Thromb. Res. 12: 1015–1023, 1978.
 232. Heimburger, N., H. Haupt, T. Kranz, and S. Baudner. Humanserumproteine mit hoher Affinität zu Carboxymethylcellulose II. Physikalisch‐chemische und immunologische Charakterisierung eines histidinreichen 3,8S‐α2‐Glykoproteins (CM‐Protein I). Hoppe‐Seyler's Z. Physiol. Chem. 353: 1133–1140, 1972.
 233. Hemker, H. C., M. J. P. Kahn, and P. P. Devilee. The adsorption of coagulation factors onto phospholipid. Its role in the reaction mechanism of blood coagulation. Thromb. Diath. Haemorrh. 24: 214–223, 1970.
 234. Henschen, A. Number and reactivity of disulfide bonds in fibrinogen and fibrin. Ark. Kemi 22: 355–374, 1964.
 235. Henschen, A. Disulfide bridges and molecular symmetry in fibrinogen (Abstract). Thromb. Haemost. 42: 14, 1979.
 236. Henschen, A. and F. Lottspeich. Sequence homology between γ‐chain and ã‐chain in human fibrin. Thromb. Res. 11: 869–880, 1977.
 237. Hessel, B. On the structure of the COOH‐terminal part of the Aα chain of human fibrinogen. Thromb. Res. 7: 75–87, 1975.
 238. Highsmith, R. F., and R. D. Rosenberg. The inhibition of human plasmin by human antithrombin‐heparin cofactor. J. Biol. Chem. 249: 4335–4338, 1974.
 239. Hisano, S. Immunofluorescence study on thrombolysis with special reference to the patterns of distribution and the contents of fibrin, plasminogen, α2‐macroglobulin and urokinase in artificial thrombi. Thromb. Haemost. 39: 53–60, 1978.
 240. Hogg, D. H., and B. Blombäck. The mechanism of the fibrinogen‐thrombin reaction. Thromb. Res. 12: 953–964, 1978.
 241. Holmberg, L., L. Borge, R. Ljung, and I. M. Nilsson. Measurement of antihaemophilic factor A antigen (VIII:CAg) with a solid phase immunoradiometric method base on homologous non‐haemophilic antibodies. Scand. J. Haematol. 23: 17–24, 1979.
 242. Holmberg, L. and R. Ljung. Purification of factor VIII:C by antigen‐antibody chromatography. Thromb. Res. 12: 667–675, 1978.
 243. Holmberg, L., and I. M. Nilsson. AHF‐related protein in clinical praxis. Scand. J. Haematol. 12: 221–231, 1974.
 244. Horner, A. A. Enzymic depolymerization of macromolecular heparin as a factor in control of lipoprotein lipase activity. Proc. Natl. Acad. Sci. USA 69: 3469–3473, 1972.
 245. Horowitz, B., A. Lippin, and K. R. Woods. Purification of low molecular weight factor VIII by affinity chromatography using factor VIII‐sepharose. Thromb. Res. 14: 463–475, 1979.
 246. Hougie, C., K. W. E. Denson, and R. Biggs. A study of the reaction product of factor VIII and factor IX by gel filtration. Thromb. Diath. Haemorrh. 18: 211–222, 1967.
 247. Hovingh, P. and A. Linker. Enzymatic degradation of heparin and heparitin sulfate. J. Biol. Chem. 245: 6170–6175, 1980.
 248. Howell, W. H. The preparation and properties of thrombin, together with observations on antithrombin and prothrombin. Am. J. Physiol. 26: 453–473, 1910.
 249. Hoyer, L. W. Specificity of precipitating antibodies in immunologic identification of antihaemophilic factor. Nature London New Biol. 245: 49–51, 1973.
 250. Hoyer, L. W. Von Willebrand's disease. In: Progress in Hemostasia and Thrombosis, edited by T. H. Spaet. New York: Grune & Stratton, 1976, vol. III, p. 231–287.
 251. Hsieh, K., M. S. Mudd, and G. D. Wilner. Fibrin polymerization. I. Alkylating peptide inhibitors of fibrin polymerization. J. Med. Chem. 24: 322–327, 1981.
 252. Hubbard, D., and G. L. Lucas. Ionic charges of glass surfaces and other materials, and their possible role in the coagulation of blood. J. Appl. Physiol. 15: 265–270, 1960.
 253. Hudry‐Clergeon, G., L. Paturel, and M. Suscillion. Identification d'un compléxe (D‐D) . E dans les produits de dégradation de la fibrine bovine stabilisée par la facteur XIII. Pathol. Biol. 22: 47–52, 1974.
 254. Hultin, M. B., and Y. Nemerson. Activation of factor X by factors IXa and VIII; a specific assay for factor IXa in the presence of thrombin‐activated factor VIII. Blood 52: 928–940, 1978.
 255. Huseby, R. M, and M. Murray. Molecular structure of fibrinogen. I. Helical content and the role of the tyrosine moiety in the fibrinogen molecule. Biochim. Biophys. Acta 133: 243–250, 1967.
 256. Hvatum, M. and H. Prydz. Studies on tissue thromboplastin—its splitting into two separable parts. Thromb. Diath. Haemorrh. 21: 217–222, 1969.
 257. Iatridis, S. G., and J. H. Ferguson. Active Hageman factor. A plasma lysokinase of the human fibrinolytic system. J. Clin. Invest. 41: 1277–1287, 1962.
 258. Ittyerah, R., R. Rawala, and R. W. Colman. Immunochemical studies of factor V of bovine platelets. Eur. J. Biochem. 120: 235–241, 1981.
 259. Iwanaga, S., B. Blombäck, N. Grondahl, B. Hessel, and P. Wallen. Amino acid sequence of the N‐terminal part of the γ‐chain in human fibrinogen. Biochim. Biophys. Acta 160: 280–283, 1968.
 260. Iwanaga, S., G. Oshima, and T. Suzuki. Proteinases from the venom of Agkistrodon halys blomhoffi. Methods Enzymol. 45: 459–468, 1976.
 261. Iwanaga, S., K. Suzuki, and S. Hashimoto. Bovine plasma cold‐insoluble globulin: gross structure and function. Ann. NY Acad. Sci. 312: 56–72, 1978.
 262. Jackson, C. M. Characterization of two glycoprotein variants of bovine factor X and demonstration that the factor X zymogen contains two polypeptide chains. Biochemistry 11: 4873–4882, 1972.
 263. Jackson, C. M., C. T. Esmon, S. N. Gitel, W. G. Owen, and R. A. Henriksen. The conversion of prothrombin to thrombin: the function of the propiece of prothrombin in prothrombin and related coagulation factors. Boerhaave Ser. 10: 59–88, 1975.
 264. Jackson, C. M., C. T. Esmon, and W. G. Owen. The activation of bovine prothrombin. In: Proteases and Biological Control, edited by E. Reich, D. B. Rifkin, and E. Shaw. New York: Cold Spring Harbor, 1975, vol. 2, p. 95–109. (Cold Spring Harbor Conf. Cell Proliferation.)
 265. Jackson, C. M. and Y. Nemerson. Blood coagulation. Annu. Rev. Biochem. 49: 765–811, 1980.
 266. Jackson, C. M., W. G. Owen, S. N. Gitel, and C. T. Esmon. The chemical role of lipids in prothrombin activation. Thromb. Diath. Haemorrh. Suppl. 57: 273–293, 1974.
 267. Jackson, C. M., and J. W. Suttie. Recent developments in understanding the mechanism of vitamin K antagonist drug action and the consequences of vitamin K action in blood coagulation. In: Progress in Hematology, edited by E. B. Brown. New York: Grune & Stratton, 1977, vol. X, p. 233–259.
 268. Jacobsen, S. Substrates from plasma kinin‐forming enzymes in human, dog, and rabbit plasmas. Br. J. Pharmacol. 26: 403–411, 1966.
 269. Jacobsen, S. and M. Kriz. Some data on two purified kininogens from human plasma. Br. J. Pharmacol. 29: 25–36, 1967.
 270. Jeanloz, R. W. Heparin: structure, function and clinical implications. In: The Chemistry of Heparin, edited by R. A. Bradshaw and S. Wessler. New York: Plenum, 1975, p. 3–17.
 271. Jesty, J., and S. A. Silverberg. Kinetics of the tissue factor‐dependent activation of coagulation factors IX and X in a bovine plasma system. J. Biol. Chem. 254: 12337–12345, 1979.
 272. Jesty, J., A. K. Spencer, and Y. Nemerson. The mechanism of action of factor X. Kinetic control of alternative pathways leading to the formation of activated factor X. J. Biol. Chem. 249: 5614–5622, 1974.
 273. Jilek, F. and H. Hormann. Cold‐insoluble globulin: cyanogen bromide and plasminolysis fragments containing a label introduced by transamidation. Hoppe‐Seyler's Z. Physiol. Chem. 358: 1165–1168, 1977.
 274. Johnson, A. J., V. E. Macdonald, M. Semar, J. E. Field, J. Shuck, C. Lewis, and J. Brind. Preparation of the major plasma fractions by solid‐phase polyelectrolytes. J. Lab. Clin. Med. 92: 194–210, 1978.
 275. Johnson, P. and E. Mihalyi. Physicochemical studies of bovine fibrinogen. I. Molecular weight and hydrodynamic properties of fibrinogen and fibrinogen cleaved by sulfite in 5M guanidine HCl solution. Biochim. Biophys. Acta 102: 467–475, 1965.
 276. Jones, J. M., J. M. Creeth, and R. A. Kekwick. Thiol reduction of human α2‐macroglobulin. The subunit structure. Biochem. J. 127: 187–197, 1972.
 277. Jörnval, H., W. W. Fish, and I. Björk. The thrombin cleavage site in bovine antithrombin. FEBS Lett. 106: 358–362, 1979.
 278. Kakkar, V. V., and M. F. Scully. Thrombolytic therapy. Br. Med. Bull. 34: 191–199, 1978.
 279. Kanaide, H., and J. R. Shainoff. Cross‐linking of fibrinogen and fibrin by fibrin‐stabilizing factor (factor XIIIa). J. Lab. Clin. Med. 85: 574–597, 1975.
 280. Kandall, C. L., S. B. Shohet, T. K. Akinbami, and R. W. Colman. Determinants of the formation and activity of factor V‐phospholipid complexes. I. Influence of phospholipid structure. Thromb. Diath. Haemorrh. 34: 256–270, 1975.
 281. Kandall, C. L., S. B. Shohet, T. K. Akinbami, and R. W. Colman. Determinants of the formation and activity of factor V‐phospholipid complexes. II. Molecular properties of the complexes. Thromb. Diath. Haemorrh. 34: 271–284, 1975.
 282. Kaplan, A. P. Initiation of the intrinsic coagulation and fibrinolytic pathways of man: the role of surfaces, Hageman factor, prekallikrein, high molecular weight kininogen, and factor XI. In: Progress in Hemostasis and Thrombosis, edited by T. H. Spaet. New York: Grune & Stratton, 1978, vol. IV, p. 127–175.
 283. Kaplan, A. P., and K. F. Austen. The fibrinolytic pathway of human plasma. Isolation and characterization of the plasminogen proactivator. J. Exp. Med. 136: 1378–1393, 1972.
 284. Karapally, J. C., and C. P. Dietrich. A uronic acid isomerase in Flavobacterium heparinum. Can. J. Biochem. 48: 164–177, 1970.
 285. Katayama, K., L. H. Ericsson, D. L. Enfield, K. A. Walsh, H. Neurath, E. W. Davie, and K. Titani. Comparison of amino acid sequence of bovine coagulation factor IX (Christmas factor) with that of other vitamin K‐dependent plasma proteins. Proc. Natl. Acad. Sci. USA 76: 4990–4993, 1979.
 286. Kellermeyer, R. W., and R. T. Breckenridge. The inflammatory process in acute gouty arthritis. I. Activation of Hageman factor by sodium urate crystals. J. Lab. Clin. Med. 65: 307–315, 1965.
 287. Kerbiriou, D. M., B. N. Bouma, and J. H. Griffin. Immunochemical studies of human high molecular weight kininogen and of its complexes with plasma prekallikrein or kallikrein. J. Biol. Chem. 255: 3952–3958, 1980.
 288. Kerbiriou, D. M., and J. H. Griffin. Human high molecular weight kininogen. Studies on structure‐function relationships and of proteolysis of the molecule occurring during contact activation of plasma. J. Biol. Chem. 254: 12020–12027, 1979.
 289. Kernoff, P. B. A., and C. R. Rizza. The specificity of antibodies to factor VIII produced in the rabbit after immunization with human cryoprecipitate. Thromb. Diath. Haemorrh. 29: 652–660, 1973.
 290. Kisiel, W., W. M. Canfield, L. H. Ericsson, and E. W. Davie. Anticoagulant properties of bovine plasma protein C following activation by thrombin. Biochemistry 16: 5824–5831, 1977.
 291. Kisiel, W., K. Fujikawa, and E. W. Davie. Activation of bovine factor VII (Proconvertin) by factor XII (activated Hageman Factor). Biochemistry 16: 4189–4194, 1977.
 292. Kjeldgaard, N. O. and J. Ploug. Urokinase an activator of plasminogen activation. Biochim. Biophys. Acta 24: 283–289, 1957.
 293. Kluft, C. Elimination of inhibition in euglobulin fibrinolysis by use of flufenamate: involvement of C1‐inactivator. Haemostasis 6: 351–369, 1977.
 294. Koenig, V. L. Partial specific volume for some porcine and bovine plasma protein fractions. Arch. Biochem. Biophys. 25: 241–245, 1950.
 295. Koie, K., T. Kamiya, K. Ogata, and J. Takamatsu. α2‐Plasmin‐inhibitor deficiency (Miyasato disease). Lancet 2: 1334–1336, 1978.
 296. Komiya, M., H. Kato, and T. Suzuki. Homology between bovine high molecular weight and low molecular weight kininogen. Biochem. Biophys. Res. Commun. 49: 1438–1443, 1972.
 297. Kopeć, M., E. Teisseyre, G. Dudek‐Wojciechowska, M. Kloczewiak, A. Pankiewicz, and Z. S. Latallo. Studies on the “Double D” fragment from stabilizing bovine fibrin. Thromb. Res. 2: 283–291, 1973.
 298. Köppel, G. Electron microscopic investigation of the shape of fibrinogen nodules: a model for certain proteins. Nature London 212: 1608–1609, 1966.
 299. Kornecki, E., S. Niewiarowski, T. A. Morinelli, and M. Kloczewiak. Effects of chymotrypsin and adenosine diphosphate on the exposure of fibrinogen receptors on normal human and Glanzmann's thrombasthenia. J. Biol. Chem. 256: 5695–5701, 1981.
 300. Koutts, J., N. Gude, and B. G. Firkin. The dynamic interrelationship between factor VIII and von Willebrand factor. Thromb. Res. 8: 533–541, 1976.
 301. Koutts, J., J. M. Lavergne, and D. Meyer. Immunological evidence that human factor VIII is composed of two linked moieties. Br. J. Haematol. 37: 415–428, 1977.
 302. Krakow, W., G. F. Endres, B. M. Siegel, and H. A. Scheraga. An electron microscopic investigation of the polymerization of bovine fibrin monomer. J. Mol. Biol. 71: 95–103, 1972.
 303. Kudryk, B., B. Blombäck, and M. Blombäck. Fibrinogen Detroit: an abnormal fibrinogen with non‐functional NH2‐terminal polymerization domain. Thromb. Res. 9: 25–36, 1976.
 304. Kudryk, B. J., D. Collen, K. R. Woods, and B. Blombäck. Evidence for localization of polymerization sites in fibrinogen. J. Biol. Chem. 249: 3322–3325, 1974.
 305. Kudryk, B., J. Reuterby, and B. Blombäck. Adsorption of plasmic Fragment D to thrombin modified fibrinogen‐sepharose. Thromb. Res. 2: 297–304, 1973.
 306. Kurachi, K., and E. W. Davie. Activation of human factor XI (plasma thromboplastin antecedent) by factor XIIa (activated Hageman factor). Biochemistry 16: 5831–5837, 1977.
 307. Kurachi, K., K. Fujikawa, G. Schmer, and E. W. Davie. Inhibition of bovine factor IXa and factor Xaã by antithrombin III. Biochemistry 15: 373–377, 1976.
 308. Kwaan, H. C., G. H. Barlow, and N. Suwanwela. Fibrinogen and its derivatives in relationship to ancrod and reptilase. Thromb. Res. 2: 123–136, 1973.
 309. Lacombe, N. J. Deficit constitutional en un nouveau facteur de la coagulation intervenant au niveau de contact: le facteur “Flaujeac.” C. R. Acad. Sci. Ser. D 280: 1039–1041, 1975.
 310. Lahiri, B., A. B. Bagdasarian, B. Mitchell, R. C. Talamo, R. W. Colman, and R. D. Rosenberg. Antithrombin‐heparin cofactor: an inhibitor of plasma kallikrein. Arch. Biochem. Biophys. 175: 737–747, 1976.
 311. Lahiri, B., and J. R. Shainoff. Fate of fibrinopeptides in the reaction between human plasmin and fibrinogen. Biochim. Biophys. Acta 303: 161–170, 1972.
 312. Laki, K. and L. Lorand. On the solubility of fibrin clots. Science 108: 280, 1948.
 313. Laki, K., and W. F. H. M. Mommaerts. Transition of fibrinogen to fibrin as a two‐step reaction. Nature London 156: 664, 1945.
 314. Lam, L. H., J. E. Silbert, and R. D. Rosenberg. The separation of active and inactive forms of heparin. Biochem. Biophys. Res. Commun. 69: 570–577, 1976.
 315. Lanchantin, G. F., M. L. Plesset, J. A. Friedmann, and D. W. Hart. Dissociation of esterolytic and clotting activities of thrombin by trypsin‐binding macroglobulin. Proc. Soc. Exp. Biol. Med. 121: 444–449, 1966.
 316. Laskowski, M., S. Ehrenpreis, T. H. Donnelly, and H. A. Scheraga. Equilibria in the fibrinogen‐fibrin conversion. V. Reversibility and thermodynamics of the proteolytic action of thrombin on fibrinogen. J. Am. Chem. Soc. 82: 1340–1348, 1960.
 317. Latallo, Z. S. Formation and detection of fibrinogen derived complexes. Thromb. Diath. Haemorrh. 34: 677–685, 1975.
 318. Latallo, Z. S., A. Z. Budzynski, B. Lipinski, and E. Kowalski. Inhibition of thrombin and of fibrin polymerization, two activities derived from plasmin‐digested fibrinogen. Nature London 203: 1184–1185, 1964.
 319. Latallo, Z. S., A. P. Fletcher, N. Alkjaersig, and S. Sherry. Influence of pH, ionic strength, neutral ions, and thrombin on fibrin polymerization. Am. J. Physiol. 202: 675–680, 1962.
 320. Latallo, Z. S. and S. Lopaciuk. New approach to thrombolytic therapy. The use of defibrase in connection with streptokinase. Thromb. Diath. Haemorrh. Suppl. 56: 253–255, 1973.
 321. Latallo, Z. S., L. E. Mattler, N. U. Bang, M. S. Hansen, and M. L. Chang. Analysis of soluble fibrin complexes by agarose gel chromatography and protamine sulfate gelation. Biochim. Biophys. Acta 420: 69–80, 1976.
 322. Laudano, A. P., and R. F. Doolittle. Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers. Proc. Natl. Acad. Sci. USA 75: 3085–3089, 1978.
 323. Laudano, A. P., and R. F. Doolittle. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Structural requirements, number of binding sites and species differences. Biochemistry 19: 1013–1019, 1980.
 324. Laudano, A. P., and R. F. Doolittle. Influence of calcium ion on the binding of fibrin amino terminal peptides to fibrinogen. Science 212: 457–459, 1981.
 325. Laurent, T. C. Studies on fractioned heparin. Arch. Biochem. Biophys. 92: 224–231, 1961.
 326. Laurent, T. C., and B. Blombäck. On the significance of the release of two different peptides from fibrinogen during clotting. Acta Chem. Scand. 12: 1875–1877, 1958.
 327. Lavergne, J. M., D. Meyer, and H. Reisner. Characterization of human anti‐factor VIII antibodies purified by immune complex formation. Blood 48: 931–939, 1976.
 328. Lazarchick, J., and L. W. Hoyer. The properties of immune complexes formed by human antibodies to factor VIII. J. Clin. Invest. 60: 1070–1079, 1977.
 329. Lazarchick, J., and L. W. Hoyer. Immunoradiometric measurement of the factor VIII procoagulant antigen. J. Clin. Invest. 62: 1048–1052, 1978.
 330. Lederer, K. Grösse und Gestalt des Fibrinogenmoleküls. 3. Hydrodynamische Studien. Makromol. Chem. 176: 2641–2653, 1975.
 331. Lederer, K. and R. Hammel. Grösse und Gestalt des Fibrinogenmoleküls. 2. Röntgenkleinwinkelstreuung an verdünnten Losungen. Makromol. Chem. 176: 2619–2639, 1975.
 332. Legrand, Y. J., A. Rodriguez‐Zeballos, G. Kartalis, F. Fauvel, and J. P. Caen. Adsorption of factor VIII antigen‐activity complex by collagen. Thromb. Res. 13: 909–911, 1978.
 333. Lesuk, A., L. Terminiello, and J. H. Traver. Crystalline human urokinase: some properties. Science 147: 880–881, 1965.
 334. Lesuk, A., L. Terminiello, J. H. Traver, and J. L. Groff. Biochemical and biophysical studies of human urokinase. Thromb. Diath. Haemorrh. 18: 293–294, 1967.
 335. Lesuk, A., L. Terminiello, J. H. Traver, and J. L. Groff. Proteolytic degradation of human urokinase to active fragments (Abstract). Federation Proc. 26: 647, 1967.
 336. Li, E. H. H., J. W. Fenton II, and R. D. Feinman. The role of heparin in the thrombin‐antithrombin III reaction. Arch. Biochem. Biophys. 175: 153–159, 1976.
 337. Liem, R. K. H., R. H. Andreatta, and H. A. Scheraga. Mechanism of action of thrombin on fibrinogen. II. Kinetics of hydrolysis of fibrinogen‐like peptides by thrombin and trypsin. Arch. Biochem. Biophys. 147: 201–213, 1971.
 338. Liem, R. K. H., and H. A. Scheraga. Mechanism of action of thrombin on fibrinogen. III. Partial mapping of the active sites of thrombin and trypsin. Arch. Biochem. Biophys. 158: 387–395, 1973.
 339. Liem, R. K. H., and H. A. Scheraga. Mechanism of action of thrombin on fibrinogen. IV. Further mapping of the active sites of thrombin and trypsin. Arch. Biochem. Biophys. 160: 333–339, 1974.
 340. Lijnen, H. R., M. Hoylaerts, and D. Collen. Isolation and characterization of a human plasma protein with affinity for the lysine binding sites in plasminogen. J. Biol. Chem. 255: 10214–10222, 1980.
 341. Lipinski, B., A. Wegrzynowicz, A. Z. Budzynski, M. Kopeć, Z. S. Latallo, and E. Kowalski. Soluble unclottable complexes formed in the presence of fibrinogen degradation products (FDP) during the fibrinogen‐fibrin conversion and their potential significance in pathology. Thromb. Diath. Haemorrh. 17: 65–77, 1967.
 342. Liu, C. Y., H. L. Nossel, and K. L. Kaplan. The binding of thrombin by fibrin. J. Biol. Chem. 254: 10421–10425, 1979.
 343. Liu, C. Y., C. F. Scott, A. Bagdasarian, J. V. Pierce, A. P. Kaplan, and R. W. Colman. Potentiation of the function of Hageman factor fragments by high molecular weight kininogen. J. Clin. Invest. 60: 7–17, 1977.
 344. Lockhart, M. S., P. C. Comp, and F. B. Taylor Jr.. Role of platelets in lysis of dilute plasma clots: requirement for metabolically active platelets. J. Lab. Clin. Med. 94: 285–294, 1979.
 345. Loewy, A. G., K. Dunathan, R. Kriel, and H. L. Wolfinger Jr.. Fibrinase. I. Purification of substrate and enzyme. J. Biol. Chem. 236: 2625–2633, 1961.
 346. Loewy, A. G., J. A. Gallant, and K. Dunathan. Fibrinase. IV. Effect on fibrin solubility. J. Biol. Chem. 236: 2648–2655, 1961.
 347. Lorand, L. and K. Konishi. Activation of the fibrin‐stabilizing factor of plasma by thrombin. Arch. Biochem. 105: 58–67, 1964.
 348. Loskutoff, D. J. Effect of thrombin on the fibrinolytic activity of cultured bovine endothelial cells. J. Clin. Invest. 61: 329–332, 1979.
 349. Loskutoff, D. J., and T. S. Edgington. Synthesis of a fibrinolytic activator and inhibitor by endothelial cells. Proc. Natl. Acad. Sci. USA 74: 3903–3907, 1977.
 350. Loskutoff, D. J., and T. S. Edgington. An inhibitor of plasminogen activator in rabbit endothelial cells. J. Biol. Chem. 256: 4142–4145, 1981.
 351. Lottspeich, F. and A. Henschen. Completion of amino acid sequences in fibrinogen (Abstract). Thromb. Haemost. 42: 13, 1979.
 352. Lund, P. K., F. Brosstad, and P. Kierulf. Detection of soluble fibrin in plasma using fibrinogen Sepharose columns. Thromb. Res. 11: 907–912, 1977.
 353. Magnusson, S., T. E. Petersen, L. Sottrup‐Jensen, and H. Claeys. Complete primary structure of prothrombin: isolation, structure and reactivity of ten carboxylated glutamic acid residues and regulation of prothrombin activation by thrombin. In: Proteases and Biological Control, edited by E. Reich, D. B. Rifkin, and E. Shaw. New York: Cold Spring Harbor, 1975, p. 123–149. (Cold Spring Harbor Conf. Cell Proliferation.)
 354. Magnusson, S., L. Sottrup‐Jensen, T. E. Petersen, G. Dudek‐Wojciechowska, and H. Claeys. Homologous “krinkle” structures common to plasminogen and prothrombin. Substrate specificity of enzymes activating prothrombin and plasminogen. In: Proteolysis and Physiological Regulation, edited by D. W. Ribbons and K. Brew. New York: Academic, 1976, vol. 11, p. 203–238.
 355. Magnusson, S., L. Sottrup‐Jensen, T. E. Petersen, H. R. Morris, and A. Dell. Primary structure of the vitamin K‐dependent part of prothrombin. FEBS Lett. 44: 189–193, 1974.
 356. Mammen, E. F., A. S. Prasad, M. I. Barnhart, and C. C. Au. Congenital dysfibrinogenemia: fibrinogen Detroit. J. Clin. Invest. 48: 235–249, 1969.
 357. Mandle, R. J., Jr., R. W. Colman, and A. P. Kaplan. Identification of prekallikrein and high molecular weight kininogen as a complex in human plasma. Proc. Natl. Acad. Sci. USA 73: 4179–4183, 1976.
 358. Mandle, R. J., Jr., and A. P. Kaplan. Hageman factor substrates. Human plasma prekallikrein: mechanism of activation by Hageman factor and participation in Hageman factor‐dependent fibrinolysis. J. Biol. Chem. 252: 6097–7001, 1977.
 359. Mandle, R. J., Jr., and A. P. Kaplan. Hageman‐factor‐dependent fibrinolysis: generation of fibrinolytic activity by the interaction of human activated factor XI and plasminogen. Blood 54: 850–862, 1979.
 360. Mann, K. G., and C. W. Batt. The molecular weights of bovine thrombin and its primary autolysis products. J. Biol. Chem. 244: 6555–6557, 1969.
 361. Marciniak, E., C. H. Farley, and P. A. DeSimone. Familial thrombosis due to antithrombin III deficiency. Blood 43: 219–231, 1974.
 362. Marciniak, E., and J. P. Gockerman. Heparin‐induced decrease in circulating antithrombin III. Lancet 2: 581–584, 1977.
 363. Marder, V. J. Immunologic structure of fibrinogen and its plasmin degradation products. Theoretical and clinical considerations. In: Fibrinogen, edited by K. Laki. New York: Dekker, 1968, p. 339–358.
 364. Marder, V. J. Identification and purification of fibrinogen degradation products produced by plasmin. Considerations on the structure of fibrinogen. Scand. J. Haematol. Suppl. 13: 21–36, 1971.
 365. Marder, V. J. The use of fibrinolytic agents: choice of patient, drug administration, laboratory monitoring. Ann. Intern. Med. 90: 802–808, 1979.
 366. Marder, V. J., and A. Z. Budzynski. The structure of the fibrinogen degradation products. In: Progress in Hemostasis and Thrombosis, edited by T. H. Spaet. New York: Grune & Stratton, 1974, vol. 2, p. 141–174.
 367. Marder, V. J., A. Z. Budzynski, and G. H. Barlow. Comparison of the physicochemical properties of fragment D derivatives of fibrinogen and fragment D‐D of cross‐linked fibrin. Biochim. Biophys. Acta 427: 1–14, 1976.
 368. Marder, V. J., A. Z. Budzynski, and H. L. James. High molecular weight derivatives of human fibrinogen produced by plasmin. III. Their NH2‐terminal amino acids and comparison with the “NH2‐terminal disulfide knot.” J. Biol. Chem. 247: 4775–4781, 1972.
 369. Marder, V. J., and N. R. Shulman. High molecular weight derivatives of human fibrinogen produced by plasmin. II. Mechanism of their anticoagulant activity. J. Biol. Chem. 244: 2120–2124, 1969.
 370. Marder, V. J., N. R. Shulman, and W. R. Carroll. The importance of intermediate degradation products of fibrinogen in fibrinolytic hemorrhage. Trans. Assoc. Am. Physicians 53: 156–167, 1967.
 371. Marder, V. J., N. R. Shulman, and W. R. Carroll. High molecular weight derivatives of human fibrinogen produced by plasmin. I. Physicochemical and immunological characterization. J. Biol. Chem. 244: 2111–2119, 1969.
 372. Margolis, J. Glass surface and blood coagulation. Nature London 178: 805–806, 1956.
 373. Margolis, J. Plasma pain‐producing substance and blood clotting. Nature London. 180: 1464–1465, 1957.
 374. Margolis, J. Activation of permeability factor in plasma by contact with glass. Nature London 180: 635–636, 1958.
 375. Margolis, J. Activation of plasma by contact with glass. Evidence for a common reaction which releases plasma kinin and initiates coagulation. J. Physiol. London 144: 1–22, 1958.
 376. Margolis, J. Activation of Hageman factor by saturated fatty acids. Aust. J. Exp. Biol. Med. Sci. 40: 505–513, 1962.
 377. Margolis, J. The interrelationship of coagulation of plasma and release of peptides. Ann. NY Acad. Sci. 104: 133–145, 1963.
 378. Marguerie, G., G. Chagniel, and M. Suscillon. The binding of calcium to bovine fibrinogen. Biochim. Biophys. Acta 490: 94–103, 1977.
 379. Marguerie, G. A., E. F. Plow, and T. S. Edgington. Human platelets possess an inducible and saturable receptor specific for fibrinogen. J. Biol. Chem. 254: 5357–5363, 1979.
 380. Marguerie, G., and H. B. Stuhrmann. A neutron small‐angle scattering study of bovine fibrinogen. J. Mol. Biol. 102: 143–156, 1976.
 381. Markland, F. S., and P. S. Damus. Purification and properties of a thrombin‐like enzyme from the venom of Crotalus adamanteus (Eastern diamondback rattlesnake). J. Biol. Chem. 246: 6460–6473, 1971.
 382. Markus, G., J. L. DePasquale, and F. C. Wissler. Quantitative determination of the binding of epsilon‐aminocaproic acid to native plasminogen. J. Biol. Chem. 253: 727–732, 1978.
 383. Markwardt, F. Hirudin as an inhibitor of thrombin. Methods Enzymol. 19: 924–932, 1970.
 384. Markwardt, F. and P. Walsmann. Die Reaktion zwischen Hirudin and Thrombin. Z. Physiol. Chem. 312: 85–98, 1958.
 385. Martin, B. M., and J. P. Quigley. Binding and uptake of thrombin: possible role in the thrombin‐induced mitogenesis of chick embryo fibroblasts. In: The Chemistry and Biology of Thrombin, edited by R. L. Lundblad, J. W. Fenton II, and K. G. Mann. Ann Arbor, MI: Ann Arbor Science, 1977, p. 531–544.
 386. Martinez, J., J. E. Palascak, and D. Kwasniak. Abnormal sialic acid content of the dysfibrinogenemia associated with liver disease. J. Clin. Invest. 61: 535–538, 1978.
 387. Matheson, N. R. and J. Travis. Inactivation of human thrombin in the presence of human α1‐proteinase inhibitor. Biochem. J. 159: 495–502, 1976.
 388. Matheson, R. T., D. R. Miller, M. J. Lacombe, Y. Han, S. Iwanga, H. Kato, and K. Wuepper. Flaujeac factor deficiency reconstruction with highly purified bovine high molecular weight kininogen and delineation of a new permeability enhancing peptide released by plasma kallikrein from bovine high molecular weight kininogen. J. Clin. Invest. 58: 1395–1406, 1976.
 389. Matsuo, T., Y. Ohki, S. Kondo, and O. Matuso. Familial antithrombin III deficiency in a Japanese family. Thromb. Res. 16: 815–823, 1979.
 390. Matthews, B. W., P. G. Sigler, R. Henderson, and D. M. Blow. Three‐dimensional structure of tosyl‐α‐chymotrypsin. Nature London 214: 652–654, 1967.
 391. Matthias, F. R., and D. L. Heene. Comparative adsorption studies between fibrinogen and its degradation products and fibrinmonomer produced by reptilase and thrombin. Thromb. Res. 3: 745–749, 1973.
 392. Matthias, F. R., D. L. Heene, and E. Konradi. Behavior of fibrinogen and fibrinogen degradation products (FDP) towards insolubilized fibrinogen and fibrinmonomer. Thromb. Res. 3: 657–664, 1973.
 393. Matthias, F. R., D. L. Heene, and Z. Wegrzynowicz. Reduction of insolubilized fibrinogen. Thromb. Res. 4: SOS–SOS, 1974.
 394. Mattock, P., and M. P. Esnouf. Differences in the subunit structure of human fibrin formed by the action of arvin, reptilase and thrombin. Nature London New Biol. 233: 277–279, 1971.
 395. McClintock, D. K., and P. H. Bell. The mechanism of activation of human plasminogen by streptokinase. Biochem. Biophys. Res. Commun. 43: 694–702, 1971.
 396. McClintock, D. K., M. E. Englert, C. Dziobkowski, E. H. Snedeker, and P. H. Bell. Two distinct pathways of the streptokinase‐mediated activation of highly purified human plasminogen. Biochemistry 13: 5334–5344, 1974.
 397. McConnell, D. J. Inhibitors of kallikrein in human plasma. J. Clin. Invest. 51: 1611–1623, 1972.
 398. McDonagh, J., T. H. Kiesselbach, and R. H. Wagner. Factor XIII and antiplasmin activity in human platelets. Am. J. Physiol. 216: 508–513, 1969.
 399. McDonagh, J., H. Messel, R. P. McDonagh, Jr., G. Murano, and B. Blombäck. Molecular weight analysis of fibrinogen and fibrin chains by an improved sodium dodecyl sulfate gel electrophoresis method. Biochim. Biophys. Acta 257: 135–142, 1972.
 400. McDonagh, R. P., Jr., J. McDonagh, M. Blombäck, and B. Blombäck. Crosslinking of human fibrin: evidence for intermolecular crosslinking involving a‐chains. FEBS Lett. 14: 33–36, 1971.
 401. McKee, P. A., J. C. Andersen, and M. E. Switzer. Molecular structural studies of human factor VIII. Ann. NY Acad. Sci. 240: 8–33, 1975.
 402. McKee, P. A., P. Mattock, and R. L. Hill. Subunit structure of human fibrinogen, soluble fibrin, and cross‐linked insoluble fibrin. Proc. Natl. Acad. Sci. USA 66: 738–744, 1970.
 403. McMillan, C. R., H. Saito, O. D. Ratnoff, and A. G. Waltan. The secondary structure of human Hageman factor (factor XII) and its alteration by activating agents. J. Clin. Invest. 54: 1326–1335, 1974.
 404. Meier, H. L., J. V. Pierce, R. W. Colman, and A. P. Kaplan. Activation and function of human Hageman factor. The role of high molecular weight kininogen and prekallikrein. J. Clin. Invest. 60: 18–31, 1977.
 405. Meier, H. L., C. F. Scott, R. Mandel, Jr., M. E. Webster, J. V. Pierce, R. W. Colman, and A. P. Kaplan. Requirements for contact activation of human Hageman factor. Ann. NY Acad. Sci. 283: 93–103, 1977.
 406. Metcalf, D. D., R. A. Lewis, J. F. Silbert, R. D. Rosenberg, S. I. Wasserman, and K. R. Austen. Isolation and characterization of heparin from the human lung. J. Clin. Invest. 64: 1537–1543, 1979.
 407. Mihalyi, E. Physicochemical studies of bovine fibrinogen. III. Optical rotation of the native and denatured molecule. Biochim. Biophys. Acta 102: 487–499, 1965.
 408. Mihalyi, E., and J. E. Godfrey. Digestion of fibrinogen by trypsin. II. Characterization of the large fragment obtained. Biochim. Biophys. Acta 67: 90–103, 1963.
 409. Mihalyi, E., and J. E. Godfrey. Kinetic studies of the digestion of fibrinogen by a‐chymotrypsin. Biochim. Biophys. Acta 132: 94–103, 1967.
 410. Mihalyi, E., R. M. Weinberg, D. W. Towne, and M. E. Friedman. Proteolytic fragmentation of fibrinogen. I. Comparison of the fragmentation of human and bovine fibrinogen by trypsin or plasmin. Biochemistry 15: 5372–5381, 1976.
 411. Miletich, J. P., C. M. Jackson, and P. W. Majerus. Interaction of coagulation factor Xa with human platelets. Proc. Natl. Acad. Sci. USA 74: 4033–4036, 1977.
 412. Miletich, J. P., C. M. Jackson, and P. W. Majerus. Properties of the factor X binding site on human platelets. J. Biol. Chem. 253: 6908–6916, 1978.
 413. Miller, K. D., and H. Van Vunakis. The effects of diisopropylfluorophosphate on the proteinase and esterase activities of thrombin and on prothrombin and its activators. J. Biol. Chem. 223: 227–237, 1956.
 414. Mills, D. A. Molecular model for the proteolysis of human fibrinogen by plasmin. Biochim. Biophys. Acta 263: 619–630, 1972.
 415. Mills, D. A. and S. Karpatkin. Heterogeneity of human fibrinogen: possible relation to proteolysis by thrombin and plasmin as studied by SDS‐polyacrylamide gel electrophoresis. Biochem. Biophys. Res. Commun. 40: 206–211, 1970.
 416. Mills, D. A. and S. Karpatkin. The initial macromolecular derivatives of human fibrinogen produced by plasmin. Biochim. Biophys. Acta 271: 163–173, 1972.
 417. Mills, D. A., and I. E. Liener. Partial chemical characterization of the isolated γ‐chain of human fibrinogen. Arch. Biochem. Biophys. 130: 629–635, 1969.
 418. Mirsky, I. A., G. Perisutti, and N. C. Davis. Destruction of glucagon, adrenocorticotropin and somatotropin by human blood plasma. J. Clin. Invest. 38: 14–20, 1959.
 419. Monkhouse, F. C., E. S. France, and W. H. Seegers. Studies on the antithrombin and heparin cofactor activities of a fraction adsorbed from plasma by aluminum hydroxide. Circ. Res. 3: 337–341, 1955.
 420. Moran, J. B., and C. R. Geren. Characterization of a fibrinogenase from northern copperhead (Agkistrodon contortrix mokasen) venom. Biochim. Biophys. Acta 659: 161–168, 1981.
 421. Morawitz, P. The Chemistry of Blood Coagulation. Springfield, IL: Thomas, 1968.
 422. Morita, T., H. Kato, S. Iwanaga, K. Takada, T. Kimura, and S. Sakakibara. New fluorogenic substrates for α‐thrombin, factor Xa, kallikreins and urokinase. J. Biochem. Tokyo 82: 1495–1498, 1977.
 423. Moroi, M. and N. Aoki. Isolation and characterization of alpha2‐plasmin inhibitor from human plasma. A novel proteinase inhibitor which inhibits activator‐induced clot lysis. J. Biol. Chem. 251: 5956–5965, 1976.
 424. Morrison, P. R., J. T. Edsall, and S. G. Miller. Cold‐insoluble globulin. J. Am. Chem. Soc. 70: 3103–3108, 1948.
 425. Mosesson, M. W., N. Alkjaersig, B. Sweet, and S. Sherry. Human fibrinogen of relatively high solubility. Comparative biophysical, biochemical and biological studies with fibrinogen of lower solubility. Biochemistry 6: 3279–3287, 1967.
 426. Mosesson, M. W., A. B. Chen, and R. M. Huseby. The cold‐insoluble globulin of human plasma: studies of its essential structural features. Biochim. Biophys. Acta 386: 509–524, 1975.
 427. Mosesson, M. W., R. W. Colman, and S. Sherry. Chronic intravascular coagulation syndrome. N. Engl. J. Med. 278: 815–821, 1968.
 428. Mosesson, M. W., J. Escaig, and G. Feldmann. Electron microscopy of metal‐shadowed fibrinogen molecules deposited at different concentrations. Br. J. Haematol. 43: 469–477, 1979.
 429. Mosesson, M. W., J. S. Finlayson, and R. A. Umfleet. Human fibrinogen heterogeneities. III. Identification of γ‐chain variants. J. Biol. Chem. 247: 5223–5227, 1972.
 430. Mosesson, M. W., D. K. Galanakis, and J. S. Finlayson. Comparison of human plasma fibrinogen subfractions and early plasmic fibrinogen derivatives. J. Biol. Chem. 249: 4656–4664, 1974.
 431. Mosher, D. F. Cross‐linking of cold‐insoluble globulin by fibrin‐stabilizing factor. J. Biol. Chem. 250: 6614–6621, 1975.
 432. Mosher, D. F. Action of fibrin‐stabilizing factor on cold‐insoluble globulin and α2‐macroglobulin in clotting plasma. J. Biol. Chem. 251: 1639–1645, 1976.
 433. Mosher, D. F., P. E. Schad, and J. M. Vann. Cross‐linking of collagen and fibronectin by factor XIIIa. Localization of participating glutaminyl residues to a tryptic fragment of fibronectin. J. Biol. Chem. 255: 1181–1188, 1980.
 434. Movat, H. Z., and A. H. Ozge‐Anwar. The contact phase of blood coagulation: clotting factors XI and XII, their isolation and interaction. J. Lab. Clin. Med. 84: 861–867, 1974.
 435. Mui, P. T. K., H. L. James, and P. Ganguly. Isolation and properties of a low molecular weight antiplasmin of human blood platelets and serum. Br. J. Haematol. 29: 627–637, 1975.
 436. Muller‐Berghaus, G., I. Mahn, and W. Krell. Formation and dissociation of soluble fibrin complexes in plasma at 20°C and at 37°C. Thromb. Res. 14: 561–572, 1979.
 437. Müllertz, S. and I. Clemmensen. The primary inhibitor of plasmin in human plasma. Biochem. J. 159: 545–553, 1976.
 438. Mustard, J. F., M. A. Packham, R. L. Kinlough‐Rathbone, D. W. Perry, and E. Regoeczi. Fibrinogen and ADP induced platelet aggregation. Blood 52: 452–466, 1978.
 439. Mustard, J. F., D. W. Perry, N. G. Ardlie, and M. A. Packham. Preparations of suspensions of washed platelets from humans. Br. J. Haematol. 22: 193–204, 1972.
 440. Musumeci, V., D. Culasso, and P. Boni. A rapid chromatographic method for quantitation of high molecular weight fibrinogen derivatives in plasma. Thromb. Haemost. 39: 555–563, 1978.
 441. Mutt, V., S. Magnusson, J. E. Jorpes, and E. Dahl. Structure of porcine secretin. I. Degradation with trypsin and thrombin. Sequence of the tryptic peptides. The C‐terminal residue. Biochemistry 4: 2358–2362, 1965.
 442. Natelson, E. A., E. C. Lynch, R. A. Hettig, and C. P. Alfrey. Acquired factor IX deficiency in the nephrotic syndrome. Ann. Intern. Med. 73: 373–379, 1970.
 443. Nelsestuen, G. L. and M. Broderius. Interaction of prothrombin and blood‐clotting factor X with membranes of varying composition. Biochemistry 16: 4172–4177, 1977.
 444. Nelsestuen, G. L., M. Broderius, and G. Martin. Role of ã‐carboxyglutamic acid. An unusual protein transition required for the calcium‐dependent binding of prothrombin to phospholipid. J. Biol. Chem. 251: 5648–5656, 1976.
 445. Nelsestuen, G. L., and T. K. Lim. Equilibria involved in prothrombin‐ and blood‐clotting factor X‐membrane binding. Biochemistry 16: 4164–4171, 1977.
 446. Nelsestuen, G. L., T. H. Zytkovicz, and J. B. Howard. The mode of action of vitamin K. Identification of γ‐carboxyglutamic acid as a component of prothrombin. J. Biol. Chem. 249: 6347–6350, 1974.
 447. Nemerson, Y. Characteristics and lipid requirements of coagulant proteins extracted from brain and lung: the specificity of the protein component of tissue factor. J. Clin. Invest. 48: 322–331, 1969.
 448. Nemerson, Y., and F. A. Pitlick. Purification and characterization of the protein component of tissue factor. Biochemistry 9: 5100–5105, 1970.
 449. Nesheim, M. E., and K. G. Mann. Thrombin‐catalyzed activation of single chain bovine factor V. J. Biol. Chem. 254: 1326–1334, 1979.
 450. Nesheim, M. E., K. H. Mymel, L. Hibbard, and K. G. Mann. Isolation and characterization of single chain bovine factor V. J. Biol. Chem. 254: 508–517, 1979.
 451. Nesheim, M. E., J. B. Taswell, and K. G. Mann. The contribution of bovine factor V and factor Va to the activity of prothrombinase. J. Biol. Chem. 254: 10952–10962, 1979.
 452. Neufeld, E. F., T. W. Lim, and L. J. Shapiro. Inherited disorders of lysosomal metabolism. Annu. Rev. Biochem. 44: 357–376, 1975.
 453. Niewiarowski, S., A. Z. Budzynski, and B. Lipinski. Significance of the intact polypeptide chains of human fibrinogen in ADP‐induced platelet aggregation. Blood 49: 635–644, 1977.
 454. Niewiarowski, S., A. Z. Budzynski, T. A. Morinelli, T. M. Brudzynski, and G. J. Stewart. Exposure of fibrinogen receptor on human platelets by proteolytic enzymes. J. Biol. Chem. 256: 917–925, 1981.
 455. Niewiarowski, S., A. Z. Budzynski, T. A. Morinelli, and M. Johnson. Deficient platelet‐fibrinogen interaction in Glanzmann's thrombasthenia (Abstract). Blood 52, Suppl. 1: 285, 1978.
 456. Niewiarowski, S. and S. Goldstein. Interaction of cultured human fibroblasts with fibrin: modification by drugs and aging in vitro. J. Lab. Clin. Med. 82: 605–610, 1973.
 457. Niewiarowski, S. and E. Kowalski. Un novel anticoagulant dérivé du fibrinogène. Rev. Hèmatol. 13: 320–328, 1958.
 458. Niewiarowski, S., E. Regoeczi, and J. F. Mustard. Platelet interaction with fibrinogen and fibrin: comparison of the interaction of platelets with that of fibroblasts, leukocytes and erythrocytes. Ann. NY Acad. Sci. 201: 72–83, 1972.
 459. Nilsson, I. M. Report of the working party on factor VIII‐related antigens. Thromb. Haemost. 39: 511–520, 1978.
 460. Nilsson, I. M., H. Krook, N. H. Sternby, E. Soderberg, and N. Soderstrom. Severe thrombotic disease in a young man with bone marrow and skeletal changes and with a high content of an inhibitor of the fibrinolytic system. Acta Med. Scand. 169: 323–337, 1961.
 461. Nishibe, H. and N. Takahashi. The release of carbohydrate moieties from human fibrinogen by almond glycopeptidase without alteration in fibrinogen clottability. Biochim. Biophys. Acta 661: 274–279, 1981.
 462. Nordenman, B., and I. Björk. Studies on the binding of heparin to prothrombin and thrombin and the effect of heparin‐binding on thrombin activity. Thromb. Res. 12: 755–765, 1978.
 463. Nossel, H. L. The Contact Phase of Blood Coagulation. Oxford, UK: Blackwell, 1964.
 464. Nossel, H. L. Activation of factors XII (Hageman) and XI (PTA) by skin contact. Proc. Soc. Exp. Biol. Med. 122: 16–17, 1966.
 465. Nossel, H. L. Relative proteolysis of the fibrinogen Bβ chain by thrombin and plasmin as a determinant of thrombosis. Nature London 291: 165–167, 1981.
 466. Nussenzweig, V., M. Seligmann, and P. Grabar. Les produits de dégradation du fibrinogène humain par la plasmine. II. Étude immunologique: mise en évidence d'anticorps anti‐fibrinogène natif possédant des spécificités différentes. Ann. Inst. Pasteur Paris 100: 490–508, 1961.
 467. Nussenzweig, V., M. Seligmann, J. Pelmont, and P. Grabar. Le produits de dégradation du fibrinogène humain par la plasmine. I. Séparation et propriétés physico‐chimiques. Ann. Inst. Pasteur. Paris 100: 377–389, 1961.
 468. Nyman, D. Interaction of collagen with the factor VIII antigen‐activity‐von Willebrand factor complex. Thromb. Res. 11: 433–438, 1977.
 469. Ofosu, F., A. Giles, J. Hirsh, and M. Blajcham. Requirement of factor VIII for the generation of Xa in a purified system and in plasma. Thromb. Haemost. 42: 167–171, 1979.
 470. Ogren, S. and U. Lindahl. Cleavage of macromolecular heparin by an enzyme from mouse mastocytoma. J. Biol. Chem. 250: 2690–2697, 1975.
 471. Ogston, D., B. Bennett, R. J. Herbert, and A. S. Douglas. The inhibition of urokinase by α2‐macroglobulin. Clin. Sci. 44: 73–79, 1973.
 472. Olexa, S. A., and A. Z. Budzynski. Binding phenomena of isolated unique plasmic degradation products of human cross‐linked fibrin. J. Biol. Chem. 254: 4925–4932, 1979.
 473. Olexa, S. A., and A. Z. Budzynski. Primary soluble plasmic degradation product of human cross linked fibrin. Isolation and stoichiometry of the (DD)E complex. Biochemistry 18: 991–995, 1979.
 474. Olexa, S. A., and A. Z. Budzynski. The effects of fibrinopeptide cleavage on the plasmic degradation pathways of human crosslinked fibrin. Biochemistry 19: 647–651, 1980.
 475. Olexa, S. A., and A. Z. Budzynski. Evidence for four different polymerization sites involved in human fibrin formation. Proc. Natl. Acad. Sci. USA 77: 1374–1378, 1980.
 476. Olexa, S. A., and A. Z. Budzynski. Localization of a fibrin polymerization site. J. Biol. Chem. 256: 3544–3549, 1981.
 477. Orstavik, K. H. and K. Laake. Factor IX in warfarin treated patients. Thromb. Res. 13: 207–218, 1978.
 478. Oshima, G., T. Sato‐Ohmori, and T. Suzuki. Proteinase, argininester hydrolase and kinin releasing enzyme in snake venoms. Toxicon 7: 229–233, 1969.
 479. Osmond, D. H., K. Loe, A. Y. Loh, E. A. Zinggi, and A. H. Hedlin. Kallikrein and plasmin as activators of inactive renin. Lancet 2: 1375–1376, 1978.
 480. østerud, B., B. N. Bouma, and J. H. Griffin. Human blood coagulation factor IX. Purification. properties, and mechanism of activation by activated factor XI. J. Biol. Chem. 253: 5946–5954, 1978.
 481. østerud, B., and S. I. Rapaport. Synthesis of intrinsic factor X activator. Inhibition of the function of formed activator by antibodies to factor VIII and to factor IX. Biochemistry 9: 1854–1861, 1970.
 482. østerud, B., and S. I. Rapaport. Activation of factor IX by the reaction product of tissue factor and factor VII: additional pathway for initiating blood coagulation. Proc. Natl. Acad. Sci. USA 74: 5260–5263, 1977.
 483. østerud, B., S. I. Rapaport, S. Schiffman, and M. M. Y. Chong. Formation of intrinsic factor‐X‐activator activity, with special reference to the role of thrombin. Br. J. Haematol. 21: 643–660, 1971.
 484. Otto, J. C. An account of an haemorrhagic disposition existing in certain families. Med. Repository 6: 1–4, 1803.
 485. Ouyang, C., and T. F. Huang. Purification and characterization of the fibrinolytic principle of Agkistrodon acutus venom. Biochim. Biophys. Acta 439: 146–153, 1976.
 486. Ouyang, C., and T. F. Huang. The properties of the purified fibrinolytic principle from Agkistrodon acutus snake venom. Toxicon 15: 161–167, 1977.
 487. Ouyang, C., and T. F. Huang. α‐ and ã‐Fibrinogenases from Trimeresurus gramineus snake venom. Biochim. Biophys. Acta 571: 270–283, 1979.
 488. Ouyang, C. and C. Teng. Fibrinogenolytic enzymes of Trimeresurus mucrosquamatus venom. Biochim. Biophys. Acta 420: 298–308, 1976.
 489. Ouyang, C., C. Teng, and Y. Chen. Physicochemical properties of α‐ and ã‐fibrinogenases of Trimeresurus mucrosquamatus venom. Biochim. Biophys. Acta 481: 622–630, 1977.
 490. Owen, C. A., Jr., E. J. W. Bowie, and D. N. Fass. Generation of factor VIII coagulant activity by isolated, perfused neonatal pig livers and rat livers. Br. J. Haematol. 43: 307–315, 1979.
 491. Owen, W. G. Evidence for the formation of an ester between thrombin and heparin cofactor. Biochim. Biophys. Acta 405: 380–387, 1975.
 492. Owen, W. G., C. T. Esmon, and C. M. Jackson. The conversion of prothrombin to thrombin. I. Characterization of the reaction products formed during the activation of bovine prothrombin. J. Biol. Chem. 249: 594–605, 1974.
 493. Palascak, J. E. and J. Martinez. Dysfibrinogenemia associated with liver disease. J. Clin. Invest. 60: 89–95, 1977.
 494. Pandolfi, M., S. Isacson, and I. M. Nilsson. Low fibrinolytic activity in the walls of veins of patients with thrombosis. Acta Med. Scand. 186: 1–5, 1969.
 495. Pandolfi, M., I. M. Nilsson, B. Robertson, and S. Isacson. Fibrinolytic activity of human veins. Lancet 2: 127–128, 1967.
 496. Pandya, B. V., A. Z. Budzynski, R. N. Rubin, and S. A. Olexa. Anticoagulant proteases from western diamondback rattlesnake venom (Abstract). Federation Proc. 40: 1790, 1981.
 497. Paoletti, R., and S. Sherry (editors). Thrombosis and Urokinase. London: Academic, 1977.
 498. Papahadjopoulos, D. P., and D. J. Hanahan. Observations on the interaction of phospholipids and certain clotting factors in prothrombin activator formation. Biochim. Biophys. Acta 90: 436–439, 1964.
 499. Papahadjopoulos, D. P., C. Hougie, and D. J. Hanahan. Influence of surface charge of phospholipids on their clot‐promoting activity. Proc. Soc. Exp. Biol. Med. 111: 412–416, 1962.
 500. Parker, K. R., and M. J. Mant. Effects of tsetse (Glossina morsitans morsitans Westw.) (Diptera: Glossinidae) salivary gland homogenate on coagulation and fibrinolysis. Thromb. Haemost. 42: 743–751, 1979.
 501. Pasquini, R., and E. J. Hershgold. Effects of plasmin on human factor VIII(AHF). Blood 41: 105–111, 1973.
 502. Patek, A. J., and F. H. L. Taylor. Hemophilia II. Some properties of a substance obtained from normal plasma effective in accelerating the clotting of hemophilic blood. J. Clin. Invest. 16: 113–124, 1937.
 503. Pavlovsky, A. Contribution to the pathogenesis of hemophilia. Blood 2: 185–189, 1947.
 504. Peabody, R. A., M. J. Tsapogas, and K. T. Wu. Altered endogenous fibrinolysis and biochemical factors in atherosclerosis. Arch. Surg. Chicago 109: 309–313, 1974.
 505. Peake, I. R., and A. L. Bloom. The dissociation of factor VIII by reducing agents, high salt concentration and affinity chromatography. Thromb. Haemost. 35: 191–201, 1976.
 506. Peake, I. R., A. L. Bloom, J. C. Giddings, and C. A. Ludlam. An immunoradiometric assay for procoagulant factor VIII antigen: results in haemophilia, von Willebrand's disease and fetal plasma and serum. Br. J. Haematol. 42: 269–281, 1979.
 507. Peerschke, E. I., R. A. Grant, and M. B. Zucker. Relationship between aggregation and binding of 125I‐fibrinogen and 45‐calcium to human platelets (Abstract). Thromb. Haemost. 42: 358, 1979.
 508. Peerschke, E. I., M. B. Zucker, R. Grant, J. J. Egan, and M. M. Johnson. Correlation between fibrinogen binding to human platelets and platelet aggregability. Blood 55: 841–847, 1980.
 509. Perlin, A. S., D. M. Mackie, and C. P. Dietrich. Evidence for a (1→4)‐linked 4‐O‐(α‐l‐idopyranosyluronic acid 2‐sulfate)‐(2‐deoxy‐2‐sulfamino‐d‐glucopyranosyl‐6‐sulfate) sequence in heparin. Carbohydr. Res. 18: 185–194, 1971.
 510. Peterson, C., R. Kelly, B. Minard, and L. P. Cawley. Antithrombin III. Comparison of functional and immunologic assays. Am. J. Clin. Pathol. 69: 500–504, 1978.
 511. Pfleiderer, G. and G. Sumyk. Investigation of snake venom proteinases by cellulose ion‐exchange chromatography. Biochim. Biophys. Acta 51: 482–493, 1961.
 512. Phillips, H. M., and J. L. York. Bovine fibrinogen. I. Effects of amidination on fibrin‐monomer aggregation. Biochemistry 12: 3637–3642, 1973.
 513. Phillips, H. M., and J. L. York. Bovine fibrinogen. II. Effects of tyrosine modification on fibrin monomer aggregation. Biochemistry 12: 3642–3647, 1973.
 514. Pierce, J. V., and J. A. Guimaraes. Further characterization of highly purified human plasma kininogens. In: Chemistry and Biology of the Kallikrein‐Kinin System in Health and Disease, edited by J. J. Pisano and K. F. Austen. Washington, DC: US Govt. Printing Office, 1974, p. 121–128. (Fogarty Int. Ctr. Proc. 27.)
 515. Pilgeram, L. O. Abnormalities in clotting and thrombolysis as a risk factor for stroke. Thromb. Diath. Haemorrh. 31: 245–264, 1974.
 516. Pillemer, L., O. D. Ratnoff, L. Blum, and I. H. Lepow. The inactivation of complement and its components by plasmin. J. Exp. Med. 97: 573–589, 1953.
 517. Pisano, J. J., J. S. Finlayson, and M. P. Peyton. Crosslink in fibrin polymerized by factor XIII: ɛ‐(γ‐glutamyl)lysine. Science 160: 892–893, 1968.
 518. Pisano, J. J., J. S. Finlayson, and M. P. Peyton. Chemical and enzymic detection of protein cross‐links. Measurement of ɛ‐(γ‐glutamyl)lysine in fibrin polymerized by factor XIII. Biochemistry 8: 871–876, 1969.
 519. Pitlick, F. A. and Y. Nemerson. Binding of the protein component of tissue factor to phospholipids. Biochemistry 9: 5105–5112, 1970.
 520. Pizzo, S. V., M. L. Schwartz, R. L. Hill, and P. A. McKee. The effect of plasmin on the subunit structure of human fibrinogen. J. Biol. Chem. 247: 636–645, 1972.
 521. Pizzo, S. V., M. L. Schwartz, R. L. Hill, and P. A. McKee. Mechanism of ancrod anticoagulation. A direct proteolytic effect on fibrin. J. Clin. Invest. 51: 2841–2850, 1972.
 522. Pizzo, S. V., M. L. Schwartz, R. L. Hill, and P. A. McKee. The effect of plasmin on the subunit structure of human fibrin. J. Biol. Chem. 248: 4574–4583, 1973.
 523. Pizzo, S. V., L. M. Taylor, Jr., M. L. Schwartz, R. L. Hill, and P. A. McKee. Subunit structure of Fragment D from fibrinogen and cross‐linked fibrin. J. Biol. Chem. 248: 4584–4590, 1973.
 524. Plow, E. F., C. Birdwell, and M. H. Ginsberg. Identification and quantitation of platelet‐associated fibronectin antigen. J. Clin. Invest. 63: 540–543, 1979.
 525. Plow, E. F., and T. S. Edgington. An alternative pathway for fibrinolysis. I. The cleavage of fibrinogen by leukocyte proteases at physiologic pH. J. Clin. Invest. 56: 30–38, 1975.
 526. Plow, E. F., and G. A. Marguerie. Induction of the fibrinogen receptor on human platelets by epinephrine and the combination of epinephrine and ADP. J. Biol. Chem. 255: 10971–10977, 1980.
 527. Polley, M. J., L. K. L. Leung, F. Y. Clark, and R. L. Nachman. Thrombin‐induced platelet membrane glycoprotein IIb and IIIa complex formation. J. Exp. Med. 154: 1059–1068, 1981.
 528. Pouit, L., G. Marcille, M. Suscillon, and D. Hollard. Etude en microscopie électronique de différentes etapes de la fibrinoformation. Thromb. Diath. Haemorrh. 27: 559–572, 1972.
 529. Proctor, R. R., and S. I. Rapaport. The partial thromboplastin time with kaolin: a simple screening test for first stage plasma clotting deficiencies. Am. J. Clin. Pathol. 35: 212–219, 1961.
 530. Purves, L. R., G. G. Lindsey, G. Brown, and J. Franks. Stabilization of the plasmin digestion products of fibrinogen and fibrin by calcium ions. Thromb. Res. 12: 473–484, 1978.
 531. Rabiner, S. F., I. D. Goldfine, A. Hart, L. Summaria, and K. C. Robbins. Radioimmunoassay of human plasminogen and plasmin. J. Lab. Clin. Med. 74: 265–273, 1969.
 532. Radcliffe, R., A. Bagdasarian, R. Colman, and Y. Nemerson. Activation of bovine factor VII by Hageman factor fragments. Blood 50: 611–617, 1977.
 533. Radcliffe, R. and Y. Nemerson. Activation and control of factor X and thrombin. Isolation and characterization of a single chain form of factor VII. J. Biol. Chem. 250: 388–395, 1974.
 534. Radcliffe, R. and Y. Nemerson. Mechanism of action of bovine factor VII: products of cleavage by factor X. J. Biol. Chem. 251: 4797–4802, 1976.
 535. Rakoczi, I., B. Wiman, and D. Collen. On the biological significance of the specific interaction between fibrin, plasminogen and antiplasmin. Biochim. Biophys. Acta 540: 295–300, 1978.
 536. Rapaport, S. I., S. Schiffman, M. J. Patch, and B. S. Ames. The importance of activation of antihemophilic globulin and proaccelerin by traces of thrombin in the generation of intrinsic prothrombinase activity. Blood 21: 221–235, 1963.
 537. Ratnoff, O. D. The biology and pathology of the initial coagulation. In: Progress in Hematology, edited by E. B. Brown and C. V. Moore. New York: Grune & Stratton, 1966, vol. V, p. 204–245.
 538. Ratnoff, O. D. Activation of Hageman factor by l‐homocysteine. Science 162: 1007–1009, 1968.
 539. Ratnoff, O. D. The molecular basis of hereditary clotting disorders. In: Progress in Hemostasia and Thrombosis, edited by T. H. Spaet. New York: Grune & Stratton, 1972, vol. I, p. 39–74.
 540. Ratnoff, O. D., and J. E. Colopy. A familial hemorrhagic trait associated with deficiency of clot‐promoting fraction of plasma. J. Clin. Invest. 34: 601–613, 1955.
 541. Ratnoff, O. D., E. W. Davie, and D. L. Mallett. Studies on the action of Hageman factor. Evidence that activated Hageman factor in turn activates plasma thromboplastin antecedant. J. Clin. Invest. 40: 803–819, 1961.
 542. Ratnoff, O. D., and J. M. Rosenblum. Role of Hageman factor in the initiation of clotting by glass: evidence that glass frees Hageman factor from inhibition. Am. J. Med. 25: 160–168, 1958.
 543. Ratnoff, O. D. and H. Saito. Amidolytic properties of single‐chain activated Hageman factor. Proc. Natl. Acad. Sci. USA 76: 1461–1463, 1979.
 544. Ratnoff, O. D., C. C. Slover, and M. C. Poon. Immunologic evidence that the properties of human antihemophilic factor (factor VIII) are attributes of a single molecular species. Blood 47: 657–667, 1976.
 545. Rawala, R., S. Saraswathi, S. Niewiarowski, and R. W. Colman. Molecular changes during the activation of bovine factor V by snake venom proteases. Circulation 58: 11–209, 1978.
 546. Regañón, E., V. Vila, and J. Aznar. Identification of high‐molecular weight derivatives of plasmic digests of cross‐linked human fibrin. Thromb. Haemost. 40: 368–376, 1978.
 547. Reich, E. Plasminogen activator: secretion by neoplastic cells and macrophages. In: Proteases and Biological Control, edited by E. Reich, D. B. Rifkin, and E. Shaw. New York: Cold Spring Harbor, 1975, vol. 2, p. 333–341. (Cold Spring Harbor Conf. Cell Proliferation.)
 548. Reid, H. A., K. E. Chan, and P. C. Thean. Prolonged coagulation defect (defibrination syndrome) in Malayan viper bite. Lancet 1: 621–626, 1963.
 549. Reisner, H. M., E. S. Barrow, and J. B. Graham. Radioimmunoassay for coagulant factor VIII‐related antigen (VIII:CAg). Thromb. Res. 14: 235–239, 1979.
 550. Revak, S. D., C. G. Cochrane, B. N. Bouma, and J. H. Griffin. Surface and fluid phase activities of two forms of activated Hageman factor produced during contact activation of plasma. J. Exp. Med. 147: 719–729, 1978.
 551. Revak, S. D., C. G. Cochrane, and J. H. Griffin. The binding and cleavage characteristics of human Hageman factor during contact activation. A comparison of normal plasma with plasma deficient in factor XI, prekallikrein, or high molecular weight kininogen. J. Clin. Invest. 58: 1167–1173, 1977.
 552. Revak, S. D., C. G. Cochrane, A. Johnston, and T. Higli. Structural changes accompanying enzymatic activation of Hageman factor. J. Clin. Invest. 54: 619–627, 1974.
 553. Rick, M. E., and L. W. Hoyer. Immunologic studies of antihemophilic factor (AHF, factor VIII). V. Immunologic properties of AHF subunits produced by salt dissociation. Blood 42: 737–747, 1973.
 554. Rick, M. E., and L. W. Hoyer. Activation of low molecular weight fragment of antihaemophilic factor (factor VIII) by thrombin. Nature London 252: 404–405, 1974.
 555. Rickli, E. E., and W. I. Otavsky. A new method of isolation and some properties of the heavy chain of human plasmin. Eur. J. Biochem. 59: 441–447, 1975.
 556. Risberg, B., H. I. Peterson, and L. Zettergren. Localization of plasminogen activator in the human lung. Bibl. Anat. 13: 279–280, 1975.
 557. Robbins, K. C., P. Bernabe, L. Arzadon, and L. Summaria. NH2‐terminal sequences of mammalian plasminogens and plasmin S‐carboxymethyl heavy (A) and light (B) chain derivatives. A reevaluation of the mechanism of activation of plasminogen. J. Biol. Chem. 248: 7242–7246, 1973.
 558. Robbins, K. C., I. G. Boreisha, L. Arzadon, and L. Summaria. Physical and chemical properties of the NH2‐terminal glutamic acid and lysine forms of human plasminogen and their derived plasmins with an NH2‐terminal lysine heavy (A) chain. J. Biol. Chem 250: 4044–4047, 1975.
 559. Robbins, K. C., L. Summaria, B. Hsieh, and R. J. Shah. The peptide chains of human plasmin. Mechanism of activation of human plasminogen to plasmin. J. Biol. Chem. 242: 2333–2342, 1967.
 560. Roberts, R. C., W. A. Riesen, and P. K. Hall. Studies on the quaternary structure of human serum α2‐macroglobulin. In: Proteinase Inhibitors. Proc. Proteinase Conf., 2nd, Cologne, Germany, 1973, edited by H. Fritz, H. Tschesche, L. J. Greene, and E. Truscheit. Berlin: Springer‐Verlag, 1973, p. 63–71. (Bayer Symp. 5th.)
 561. Roden, L., and M. I. Horowitz. Structure and biosynthesis of connective tissue proteoglycans. In: The Glycoconjugates, edited by M. D. Horowitz and W. Pigman. New York: Academic, 1977, vol. II, p. 3–15.
 562. Rosenberg, R. D. Mechanism of antithrombin action and the structural basis of heparin's anticoagulant function. In: The Chemistry and Physiology of the Human Plasma Proteins, edited by D. H. Bing. New York: Pergamon, 1979, p. 353–368.
 563. Rosenberg, R. D. Hemorrhagic disorders. I. Protein interactions in the clotting mechanism. In: Hematology, edited by W. S. Beck. Cambridge, MA: MIT Press, 1981, chapt. 26, p. 373–400.
 564. Rosenberg, R. D., G. Armand, and L. H. Lam. Structure‐function relationships of heparin species. Proc. Natl. Acad. Sci. USA 75: 3065–3069, 1978.
 565. Rosenberg, R. D., and P. S. Damus. The purification and mechanism of action of human antithrombin‐heparin cofactor. J. Biol. Chem. 248: 6490–6505, 1973.
 566. Rosenberg, R. D., R. E. Jordan, L. V. Favreau, and L. H. Tam. Highly active heparin species with multiple binding sites for antithrombin. Biochem. Biophys. Res. Commun. 86: 1319–1324, 1979.
 567. Rosenthal, R. H., O. H. Dreskin, and N. Rosenthal. New hemophilia‐like disease caused by deficiency of a third plasma thromboplastin factor. Proc. Soc. Exp. Biol. Med. 82: 171–174, 1953.
 568. Rosing, D. R., D. R. Redwood, P. Brakman, and T. Astrup. Impairment of the diurnal fibrinolytic response in man. Effects of aging, type IV hyperlipoproteinemia, and coronary artery disease. Circ. Res. 32: 752–758, 1973.
 569. Rothman, J. E. and J. Leonard. Membrane asymmetry. Science 195: 743–753, 1977.
 570. Saito, H., G. H. Goldsmith, M. Moroi, and N. Aolei. Inhibitory spectrum of α2‐plasmin inhibitor. Proc. Natl. Acad. Sci. USA 76: 2013–2017, 1979.
 571. Saito, H., and O. D. Ratnoff. Inhibition of normal clotting and Fletcher factor activity by rabbit antikallikrein antiserum. Nature London New Biol. 248: 597–599, 1974.
 572. Saito, H., O. D. Ratnoff, and V. H. Donaldson. Defective activation of clotting, fibrinolytic and permeability‐enhancing systems in human Fletcher trait plasma. Circ. Res. 34: 641–651, 1974.
 573. Saito, H., O. D. Ratnoff, and J. Pensky. Radioimmunoassay of human Hageman factor (factor XII). J. Lab. Clin. Med. 88: 506–514, 1976.
 574. Saito, H., O. D. Ratnoff, R. Waldmann, and J. P. Abraham. Fitzgerald trait. Deficiency of a hitherto unrecognized agent, Fitzgerald factor, participating in surface‐mediated reactions of clotting, fibrinolysis, generation of kinins, and the property of dilated plasma enhancing vascular permeability (PF/DIL). J. Clin. Invest. 55: 1082–1089, 1975.
 575. Sakata, Y. and N. Aoki. Cross‐linking of α2‐plasmin inhibitor to fibrin by fibrin‐stabilizing factor. J. Clin. Invest. 65: 290–297, 1980.
 576. Saraswathi, S., and R. W. Colman. Role of galactose in bovine factor V. J. Biol. Chem. 250: 8111–8118, 1975.
 577. Saraswathi, S., R. Rawala, and R. W. Colman. Subunit structure of bovine factor V. Influence of proteolysis during blood collection. J. Biol. Chem. 253: 1024–1029, 1978.
 578. Schapira, M., C. F. Scott, and R. W. Colman. High molecular weight kininogen protects human plasma kallikrein and factor XIa against inactivation by plasma protease inhibitors. Trans. Assoc. Am. Physicians 94: 190–197, 1981.
 579. Schapira, M., C. F. Scott, and R. W. Colman. Protection of human plasma kallikrein from inactivation by Cl inhibitor and other protease inhibitors. The role of high molecular weight kininogen. Biochemistry 20: 2738–2743, 1981.
 580. Schapira, M., C. F. Scott, A. James, L. D. Silver, F. Kueppers, H. L. James, and R. W. Colman. High molecular weight kininogen or its light chain protects human plasma kallikrein from inactivation by plasma protease inhibitor. Biochemistry 21: 567–572, 1982.
 581. Scheraga, H. A. Active site mapping of thrombin. In: The Chemistry and Biology of Thrombin, edited by R. L. Lundblad, J. W. Fenton II, and K. G. Mann. Ann Arbor, MI: Ann Arbor Science, 1977, p. 145–158.
 582. Schick, L. A., and F. J. Castellino. Direct evidence for the generation of an active site in the plasminogen moiety of the streptokinase‐human plasminogen activator complex. Biochem. Biophys. Res. Commun. 57: 47–54, 1974.
 583. Schiffman, S. and P. Lee. Preparation, characterization, and activation of a highly purified factor XI: evidence that a hitherto unrecognized plasma activity participates in the interaction of factors XI and XII. Br. J. Haematol. 27: 101–114, 1974.
 584. Schiffman, S. and P. Lee. Partial purification and characterization of control activation cofactor. J. Clin. Invest. 56: 1082–1092, 1975.
 585. Schiffman, S., S. I. Rapaport, and M. M. Y. Chong. The mandatory role of lipid in the interaction of factors VIII and IX. Proc. Soc. Exp. Biol. Med. 123: 736–740, 1966.
 586. Schreiber, A. D., and K. F. Austen. Hageman factor‐independent fibrinolytic pathway. Clin. Exp. Immunol. 17: 587–600, 1974.
 587. Schreiber, A. D., A. P. Kaplan, and K. F. Austen. Inhibition by C1̅INH of Hageman factor fragment activation of coagulation, fibrinolysis, and kinin generation. J. Clin. Invest. 52: 1402–1409, 1973.
 588. Schwartz, M. L., S. V. Pizzo, R. L. Hill, and P. A. McKee. Human factor XIII from plasma and platelets. Molecular weights, subunit structures, proteolytic activation, and cross‐linking of fibrinogen and fibrin. J. Biol. Chem. 248: 1395–1407, 1973.
 589. Scott, C. F., and R. W. Colman. Function and immunochemistry of prekallikrein‐high molecular weight kininogen complex in plasma. J. Clin. Invest. 65: 413–421, 1980.
 590. Scott, C. F., E. Kirby, P. Schick, and R. W. Colman. Effect of surfaces on fluid‐phase prekallikrein activation. Blood 57: 553–560, 1981.
 591. Scott, C. F., C. Y. Liu, and R. W. Colman. Human plasma prekallikrein: a rapid high‐yield method for purification. Eur. J. Biochem. 100: 77–83, 1979.
 592. Scott, C. F., M. Schapira, and R. W. Colman. Effect of heparin on the inactivation rate of human factor XIa by antithrombin III. Blood 60: 940–947, 1982.
 593. Scott, C. F., M. Schapira, H. L. James, A. B. Cohen, and R. W. Colman. Inactivation of factor XIa by plasma protease inhibitors: predominant role of α1‐protease inhibitor and protective effect of high molecular weight kininogen. J. Clin. Invest. 69: 844–852, 1982.
 594. Scott, C. F., L. D. Silver, M. Schapira, and R. W. Colman. Cleavage of human high molecular weight kininogen markedly enhances its coagulant activity: evidence that this molecule exists as a procofactor. J. Clin. Invest. 73: 954–962, 1984.
 595. Scott, C. F., D. Sinha, F. S. Seaman, P. N. Walsh, and R. W. Colman. Amidolytic assay of factor XI in plasma: comparison with a coagulant assay and a new rapid radioimmunoassay. Blood 63: 42–50, 1984.
 596. Sealey, J. E., S. A. Atlas, J. H. Laragh, M. Silverberg, and A. P. Kaplan. Initiation of plasma prorenin activation by Hageman factor‐dependent conversion of plasma prekallikrein to kallikrein. Proc. Natl. Acad. Sci. USA 76: 5914–5918, 1979.
 597. Seegers, W. H. Multiple protein interactions as exhibited by the blood clotting mechanism. J. Phys. Colloid Chem. 51: 198–206, 1947.
 598. Seegers, W. H. Inactivation of thrombin. In: Prothrombin. Cambridge, MA: Harvard Univ. Press, 1962, p. 285–319.
 599. Seegers, W. H. and C. Ouyang. Snake venoms and blood coagulation. In: Handbook of Experimental Pharmacology. Snake Venoms, edited by C. Y. Lee. Berlin: Springer‐Verlag, 1979, vol. 52, p. 684–750.
 600. Shafrir, E., and A. De Vries. Studies on the clot‐promoting activity of glass. J. Clin. Invest. 35: 1183–1190, 1956.
 601. Shainoff, J. R., and B. N. Dardik. Fibrinopeptide B and aggregation of fibrinogen. Science 204: 200–202, 1979.
 602. Shainoff, J. R., B. Lahiri, and F. M. Bumpus. Ultracentrifuge studies on the reaction between thrombin and plasminized fibrinogen. Thromb. Diath. Haemorrh. 39: 302–317, 1970.
 603. Shainoff, J. R., and I. H. Page. Cofibrins and fibrin‐intermediates as indicators of thrombin activity, in vivo. Circ. Res. 8: 1013–1022, 1960.
 604. Shapiro, S. S., and D. B. Anderson. Thrombin inhibition in normal plasma. In: The Chemistry and Biology of Thrombin, edited by R. L. Lundblad, J. W. Fenton II, and K. G. Mann. Ann Arbor, MI: Ann Arbor Science, 1977, p. 361–365.
 605. Sherman, L. A., M. W. Mosesson, and S. Sherry. Isolation and characterization of the clottable low molecular weight fibrinogen derived by limited plasmin hydrolysis of human fraction I‐4. Biochemistry 8: 1515–1523, 1969.
 606. Sherry, S. and W. Troll. The action of thrombin on synthetic substrates. J. Biol. Chem. 208: 95–105, 1954.
 607. Shively, J. E., and H. E. Conard. Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry 15: 3932–3942, 1976.
 608. Shotton, D. M., and H. C. Watson. Three‐dimensional structure of tosyl‐elastase. Nature London 225: 811–816, 1970.
 609. Shulman, S. The size and shape of bovine fibrinogen. Studies of sedimentation, diffusion and viscosity. J. Am. Chem. Soc. 75: 5846–5852, 1953.
 610. Shuman, M. A., and P. W. Majerus. The measurement of thrombin in clotting blood by radioimmunoassay. J. Clin. Invest. 58: 1249–1258, 1976.
 611. Sigler, P. B., D. M. Blow, B. W. Matthews, and R. Henderson. Structure of crystalline α‐chymotrypsin. II. A preliminary report including a hypothesis for the activation mechanism. J. Mol. Biol. 35: 143–164, 1968.
 612. Silverton, E. W., M. A. Navia, and D. R. Davies. Three‐dimensional structure of an intact human immunoglobulin. Proc. Natl. Acad. Sci. USA 74: 5140–5144, 1977.
 613. Sizer, I. W., and P. F. Wagley. The action of tyrosinase on thrombin, fibrinogen and fibrin. J. Biol. Chem. 192: 213–222, 1951.
 614. Smith, C. M., and D. J. Hanahan. The activation of factor V by factor Xa or alpha‐chymotrypsin and comparison with thrombin and RVV‐V action. An improved factor V isolation procedure. Biochemistry 15: 1830–1838, 1976.
 615. Smith, G. F., and N. U. Bang. Formation of soluble fibrin polymers. Fibrinogen degradation fragments D and E fail to form soluble complexes with fibrin monomer. Biochemistry 11: 2958–2966, 1972.
 616. Sobel, G. W., S. R. Mohler, N. W. Jones, A. B. C. Dowdy, and M. M. Guest. Urokinase: an activator of plasma profibrinolysin extracted from urine (Abstract). Am. J. Physiol. 171: 768–769, 1952.
 617. Solum, N. O. and H. Stormorken. Influence of fibrinogen on the aggregation of washed human platelets induced by adenosine diphosphate, thrombin, collagen, and adrenaline. Scand. J. Clin. Lab. Invest. Suppl. 84: 170–182, 1965.
 618. Sottrup‐Jensen, L., H. Claeys, M. Zajdel, T. E. Petersen, and S. Magnusson. The primary structure of human plasminogen: isolation of two lysine‐binding fragments and one “mini”‐plasminogen (M. W. 38,000) by elastase‐catalyzed‐specific limited proteolysis. In: Progress in Chemical Fibrinolysis and Thrombolysis, edited by J. F. Davidson, R. M. Rowan, M. M. Samama, and P. D. Desnoyers. New York: Raven, 1978, vol. 3, p. 191–209.
 619. Sparrow, J. T., H. J. Pownall, F.‐J. Hsu, L. D. Blumenthal, A. R. Culwell, and A. M. Gotto. Lipid binding by fragments of apolipoprotein C‐III‐1 obtained by thrombin cleavage. Biochemistry 16: 5427–5431, 1977.
 620. Stathakis, N. E., and M. W. Mosesson. Interactions among heparin, cold‐insoluble globulin and fibrinogen in formation of the heparin‐precipitable fraction of plasma. J. Clin. Invest. 60: 855–865, 1977.
 621. Stead, N. W., A. P. Kaplan, and R. D. Rosenberg. The inhibition of human activated Hageman factor (HF) by human antithrombin‐heparin cofactor (AT). J. Biol. Chem. 251: 6481–6488, 1976.
 622. Stenflo, J. Vitamin K and the biosynthesis of prothrombin. IV. Isolation of peptides containing prosthetic groups from normal prothrombin and the corresponding peptides from dicoumarol‐induced prothrombin. J. Biol. Chem. 249: 5527–5535, 1974.
 623. Stenflo, J. Structural comparison of normal and dicoumarol‐induced prothrombin in prothrombin and related coagulation factors. Boerhaave Ser. 10: 152–158, 1975.
 624. Stenflo, J., and P. O. Ganrot. Vitamin K and the biosynthesis of prothrombin. I. Identification and purification of a dicoumarol‐induced abnormal prothrombin from bovine plasma. J. Biol. Chem. 247: 8160–8166, 1972.
 625. Stenn, K. S., and E. R. Blout. Mechanism of bovine prothrombin activation by an insoluble preparation of bovine factor Sa (thrombokinase). Biochemistry 11: 4502–4515, 1972.
 626. Stewart, G. J. and S. Niewiarowski. Nonenzymatic polymerization of fibrinogen by protamine sulfate: an electron microscope study. Biochim. Biophys. Acta 194: 462–469, 1969.
 627. Stewart, G. J. and S. Niewiarowski. Polymerization of fibrinogen and its derivatives by basic proteins: an electron microscope study. Thromb. Diath. Haemorrh. 25: 566–579, 1971.
 628. Stivala, S. S., L. Yuan, J. Ehrlich, and P. A. Liberti. Physiochemical studies of fractionated bovine heparin. III. Some physical parameters in relation to biological activity. Arch. Biochem. Biophys. 122: 32–39, 1967.
 629. Stocker, K. Defibrinogenation with thrombin‐like snake venom enzymes. In: Handbook of Experimental Pharmacology. Snake Venoms, edited by C. Y. Lee. Berlin: Springer‐Verlag, 1979, vol. 52, p. 452–484.
 630. Strickland, S. Studies on the role of plasminogen activator in ovulation and early embryogenesis. In: Regulatory Proteolytic Enzymes and Their Inhibitors, edited by S. Magnusson, M. Ottesen, B. Foltman, K. Dano, and H. Neurath. Oxford, UK: Pergamon, 1978, p. 181–185.
 631. Stroud, R. M., M. Krieger, R. E. Koeppe, A. A. Kossiakoff, and J. L. Chambers. Structure‐function relationships in the serine proteases. In: Proteases and Biological Control, edited by E. Reich, D. B. Rifkin, and E. Shaw. New York: Cold Spring Harbor, 1975, vol. 2, p. 13–32. (Cold Spring Harbor Conf. Cell Proliferation.)
 632. Studer, A. Contribution a l'etude de la thrombokinase. In: Jubilee Volume Dedicated to Emile Chrystophe Barell. Basel: Roche, 1946, p. 229–237.
 633. Sturtevant, J. M., M. Laskowski, T. H. Donnelly, and H. A. Scheraga. Equilibria in the fibrinogen‐fibrin conversion. III. Heats of polymerization and clotting of fibrin monomer. J. Am. Chem. Soc. 77: 6168–6172, 1955.
 634. Summaria, L., L. Arzadon, P. Bernabe, and K. C. Robbins. The activation of plasminogen to plasmin by urokinase in the presence of plasmin inhibitor Trasylol. The preparation of plasmin with the same NH2‐terminal heavy (A) chain sequence as the parent zymogen. J. Biol. Chem. 250: 3988–3995, 1975.
 635. Summaria, L., I. G. Boreisha, L. Arzadon, and K. C. Robbins. Activation of human Glu‐plasminogen to Glu‐plasmin by urokinase in the presence of plasmin inhibitors. Streptomyces leupeptin and human plasma α1‐antitrypsin and antithrombin III (plus heparin). J. Biol. Chem. 252: 3945–3951, 1977.
 636. Summaria, L., B. Hsieh, W. R. Groskopf, W. R. Robbins, and G. H. Barlow. The isolation and characterization of the S‐carboxymethyl ã (light) chain derivative of human plasmin. The localization of the active site on the ã (light) chain. J. Biol. Chem. 242: 5046–5052, 1967.
 637. Sussman, I. I., and H. J. Weiss. Spontaneous aggregation of low molecular weight factor VIII and its prevention by 2 mM CaCl2. Thromb. Res. 9: 267–276, 1976.
 638. Svendsen, L., B. Blombäck, M. Blombäck, and P. I. Olsson. Synthetic chromogenic substrates for determination of trypsin, thrombin and thrombin‐like enzymes. Thromb. Res. 1: 267–278, 1972.
 639. Takagi, T., and R. F. Doolittle. Amino acid sequence studies on factor XIII and the peptide released during its activation by thrombin. Biochemistry 13: 750–756, 1974.
 640. Takagi, T., and R. F. Doolittle. Amino acid sequence studies on the α chain of human fibrinogen. Location of four plasmin attack points and a covalent cross‐linking site. Biochemistry 14: 5149–5156, 1975.
 641. Takagi, T. and T. Kawai. A simple and practical method for isolation of an early plasmin degradation product of human fibrinogen. Thromb. Haemost. 37: 464–470, 1977.
 642. Tangen, O., H. J. Berman, and P. Murphy. Gel filtration. A new technique for separation of blood platelets from plasma. Thromb. Diath. Haemorrh. 25: 268–287, 1971.
 643. Taylor, F. B., Jr., and J. Botts. Purification and characterization of streptokinase with studies of streptokinase activation of plasminogen. Biochemistry 7: 237–242, 1968.
 644. Taylor, F. B., Jr., R. C. Carroll, J. Gerrard, C. T. Esmon, and R. D. Radcliffe. Lysis of clots prepared from whole blood and plasma. Federation Proc. 40: 2092–2098, 1981.
 645. Taylor, R. L., J. E. Shively, H. E. Conrad, and J. A. Cifonelli. Uronic acid composition of heparins and heparan sulfates. Biochemistry 12: 3633–3636, 1973.
 646. Thompson, A. R., D. L. Enfield, L. H. Ericsson, M. E. Legaz, and J. W. Fenton II. Human thrombin partial primary structure. Arch. Biochem. Biophys. 178: 356–367, 1977.
 647. Thompson, R. E., R. Mandle, Jr., and A. P. Kaplan. Association of factor XI and high‐molecular‐weight kininogen in human plasma. J. Clin. Invest. 60: 1376–1380, 1977.
 648. Thompson, R. E., R. Mandle, Jr., and A. P. Kaplan. Characterization of human high molecular weight kininogen. Procoagulant activity associated with the light chain of kinin‐free high molecular weight kininogen. J. Exp. Med. 147: 488–499, 1978.
 649. Thorsen, S. Differences in the binding to fibrin of native plasminogen and plasminogen modified by proteolytic degradation. Influence of omega‐amino‐carboxylic acids. Biochim. Biophys. Acta 393: 55–65, 1975.
 650. Thorsen, S. and S. Mullertz. Rate of activation and electrophoretic mobility of unmodified and partially degraded plasminogen. Effects of 6‐aminohexanoic acid and related compounds. Scand. J. Clin. Lab. Invest. 34: 167–176, 1974.
 651. Titani, K., K. Fukikawa, D. L. Enfield, L. H. Ericsson, K. A. Walsh, and H. Neurath. Bovine factor X1 (Stuart Factor): amino‐acid sequence of heavy chain. Proc. Natl. Acad. Sci. USA 72: 3082–3086, 1975.
 652. Tollefsen, D. M., J. R. Feagler, and P. W. Majerus. The binding of thrombin to the surface of human platelets. J. Biol. Chem. 249: 2646–2651, 1974.
 653. Tollefsen, D. M., and P. W. Majerus. Inhibition of human platelet aggregation by monovalent antibody fragment. J. Clin. Invest. 55: 1259–1268, 1975.
 654. Tooney, N. M. and C. Cohen. Crystalline states of a modified fibrinogen. J. Mol. Biol. 110: 363–385, 1977.
 655. Triantaphyllopoulos, D. C. Anticoagulant effect of incubated fibrinogen. Can. J. Biochem. Physiol. 36: 249–259, 1958.
 656. Tuddenham, E. G. D., N. C. Trabold, J. A. Collins, and L. W. Hoyer. The properties of factor VIII coagulant activity prepared by immunoadsorbent chromatography. J. Lab. Clin. Med. 93: 40–53, 1979.
 657. Vaheri, A., and D. F. Mosher. High molecular weight, cell surface‐associated glycoprotein (fibronectin) lost in malignant transformation. Biochim. Biophys. Acta 516: 1–25, 1978.
 658. Vehar, G. A., and E. W. Davie. Bovine factor VIII: purification of the procoagulant protein. Thromb. Haemost. 42: 342–347, 1979.
 659. Vermeer, C., J. W. P. Govers‐Riemslag, B. A. M. Soute, M. J. Lindhout, J. Kop, and H. C. Hemker. The role of blood clotting factor V in the conversion of prothrombin and a decarboxy prothrombin into thrombin. Biochim. Biophys. Acta 538: 521–533, 1978.
 660. Verstraete, M. A far stretched program: rapid, safe and predictable thrombolysis in man. In: Fibrinolysis, edited by D. L. Kline and N. N. Reddy. Cleveland, OH: CRC, 1980, p. 185–200.
 661. Verstraete, M., J. Vermylen, A. Amery, and C. Vermylen. Thrombolytic therapy with streptokinase using a standard dosage scheme. Br. Med. J. 5485: 454–456 1966.
 662. Voke, J. Location of factor VIII coagulant activity in relation to factor VIII related antigen after rapid two‐dimensional immunoelectrophoresis. Thromb. Res. 13: 53–60, 1978.
 663. Waldman, R. and J. Abraham. Fitzgerald factor: a heretofore unrecognized coagulation factor. Blood 46: 761–768, 1975.
 664. Wallén, P. Activation of plasminogen with urokinase and tissue activator. In: Thrombosis and Urokinase, edited by R. Paoletti and S. Sherry. London: Academic, 1977, p. 91–102.
 665. Wallén, P., P. Kok, and M. Ranby. The tissue activator of plasminogen. FEBS Proc. Meet., 11th, Copenhagen 47: 127–135, 1977.
 666. Walther, P. J., R. L. Hill, and P. A. McKee. The importance of the preactivation peptide in the two‐stage mechanism of human plasminogen activation. J. Biol. Chem. 250: 5926–5933, 1975.
 667. Walther, P. J., H. M. Steinman, R. L. Hill, and P. A. McKee. Activation of human plasminogen by urokinase. Partial characterization of a preactivation peptide. J. Biol. Chem. 249: 1173–1181, 1974.
 668. Walz, D. A., D. Hewett‐Emmitt, and W. H. Seegers. Amino acid sequence of human prothrombin fragments 1 and 2. Proc. Natl. Acad. Sci. USA 74: 1969–1972, 1977.
 669. Walz, D. A., and W. H. Seegers. Amino acid sequence of human thrombin A chain. Biochem. Biophys. Res. Commun. 60: 717–721, 1974.
 670. Walz, D. A., W. H. Seegers, J. Reuterby, and L. E. McCoy. Proteolytic specificity of thrombin. Thromb. Res. 4: 713–717, 1974.
 671. Watt, K. W. K., T. Takagi, and R. F. Doolittle. Amino acid sequence of the ã chain of human fibrinogen. Biochemistry 18: 68–76, 1979.
 672. Waugh, D. F., and M. A. Fitzgerald. Quantitative aspects of antithrombin and heparin in plasma. Am. J. Physiol. 184: 627–639, 1956.
 673. Webster, M. E. Human plasma kallikrein, its activation and pathological role. Federation Proc. 27: 84–89, 1968.
 674. Webster, M. E., J. A. Guimaraes, A. P. Kaplan, R. W. Colman, and J. V. Pierce. Activation of surface bound Hageman factor: pre‐eminent role of high molecular weight kininogen and evidence for a new factor. In: Kinins: Pharmacodynamics and Biological Roles, edited by F. Sicuteri, N. Black, and G. L. Haberland. New York: Plenum, 1976, p. 285–299.
 675. Webster, M. E., and J. V. Pierce. Activators of Hageman factor (factor XII): identification and relationship to kallikrein‐kinin system (Abstract). Federation Proc. 32: 845, 1973.
 676. Weintroub, B. U., J. S. Coblyn, C. E. Kaempfer, and K. F. Austen. Cleavage of fibrinogen by the human neutrophil neutral peptide‐generating protease. Proc. Natl. Acad. Sci. USA 77: 5448–5452, 1980.
 677. Weisel, J. W., S. G. Warren, and C. Cohen. Crystals of modified fibrinogen: size, shape, and packing of molecules. J. Mol. Biol. 126: 159–183, 1978.
 678. Weiss, A. S., J. I. Gallin, and A. P. Kaplan. Fletcher factor deficiency: a diminished rate of Hageman factor activation caused by absence of prekallikrein with abnormalities of coagulation, fibrinolysis, chemotactic activity and kinin generation. J. Clin. Invest. 53: 622–633, 1974.
 679. Weiss, H. J. A study of the cation‐ and pH‐dependent stability of factors V and VIII in plasma. Thromb. Diath. Haemorrh. 14: 32–51, 1965.
 680. Weiss, H. J., and L. W. Hoyer. Von Willebrand factor: dissociation from antihemophilic factor procoagulant activity. Science 182: 1149–1151, 1973.
 681. Weiss, H. J., L. L. Phillips, and W. Rosner. Separation of sub‐units of antihemophilic factor (AHF) by agarose gel chromatography. Thromb. Diath. Haemorrh. 27: 212–219, 1972.
 682. Weiss, H. J. and J. Rogers. Fibrinogen and platelets in primary arrest of bleeding. Studies in two patients with congenital afibrinogenemia. N. Engl. J. Med. 285: 369–374, 1971.
 683. Weiss, H. J., I. I. Sussman, and L. W. Hoyer. Stabilization of factor VIII in plasma by the von Willebrand factor. J. Clin. Invest. 60: 390–404, 1977.
 684. White, G. C., E. F. Workman, and R. L. Lundblad. Plate‐let‐thrombin interactions: the platelet as a substrate for thrombin. In: The Chemistry and Biology of Thrombin, edited by R. L. Lundblad, J. W. Fenton II, and K. G. Mann. Ann Arbor, MI: Ann Arbor Science, 1977, p. 479–498.
 685. White, W. F., G. H. Barlow, and M. M. Mozen. The isolation and characterization of plasminogen activators (urokinase) from human urine. Biochemistry 5: 2160–2169, 1966.
 686. Wiggins, R. C., B. N. Bouma, C. G. Cochrane, and J. H. Griffin. Role of high‐molecular‐weight kininogen in surface binding and activation of coagulation factor XI and prekallikrein. Proc. Natl. Acad. Sci. USA 74: 4636–4640, 1977.
 687. Wiggins, R. C., and C. C. Cochrane. The autoactivation of rabbit Hageman factor. J. Exp. Med. 150: 1122–1132, 1979.
 688. Williams, R. C. Morphology of bovine fibrinogen monomers and fibrin oligomers. J. Mol. Biol. 150: 399–408, 1981.
 689. Wilson, S. J. Quantitative studies on antithrombin. Arch. Intern. Med. 69: 647–661, 1942.
 690. Wiman, B. and D. Collen. Purification and characterization of human antiplasmin, the fast‐acting plasmin inhibitor in plasma. Eur. J. Biochem. 78: 19–26, 1977.
 691. Wiman, B. and D. Collen. Molecular mechanism of physiological fibrinolysis. Nature London 272: 549–550, 1978.
 692. Wiman, B. and P. Wallen. Activation of human plasminogen by an insoluble derivative of urokinase. Structural changes of plasminogen in the course of activation to plasmin and demonstration of a possible intermediate compound. Eur. J. Biochem. 36: 25–31, 1973.
 693. Wohl, R. C., L. Summaria, L. Arzadon, and K. C. Robbins. Steady state kinetics of activation of human and bovine plasminogens by streptokinase and its equimolar complexes with various activated forms of human plasminogen. J. Biol. Chem. 253: 1402–1407, 1978.
 694. Wohl, R. C., L. Summaria, and K. C. Robbins. Physiological activation of the human fibrinolytic system. Isolation and characterization of human plasminogen variants, Chicago I and Chicago II. J. Biol. Chem. 254: 9063–9069, 1979.
 695. Wolf, P. Studies of temperature and pH stability of human antihaemophilic factor (AHF) in plasma and in a concentrate. Br. J. Haematol. 5: 169–176, 1959.
 696. Wolfenstein‐Todel, C., and M. W. Mosesson. Human plasma fibrinogen heterogeneity: evidence for an extended carboxyl‐terminal sequence in a normal γ chain variant (γ'). Proc. Natl. Acad. Sci. USA 77: 5069–5073, 1980.
 697. Workman, E. F., Jr., G. C. White II, and R. L. Lundblad. Structure‐function relationships in the interaction of α‐thrombin with blood platelets. J. Biol. Chem. 252: 7118–7123, 1977.
 698. Wright, I. S. Nomenclature of blood clotting factors. J. Am. Med. Assoc. 170: 325–328, 1959.
 699. Wuepper, K. D. Biochemistry and biology of components of plasma kinin‐forming system. In: Inflammation: Mechanism and Control, edited by I. H. Lepow and P. W. Ward. New York: Academic, 1972, p. 93–117.
 700. Wuepper, K. D. Precursor plasma thromboplastin antecedent (PTA, clotting factor XI) (Abstract). Federation Proc. 31: 624, 1972.
 701. Wuepper, K. D. Prekallikrein deficiency in man. J. Exp. Med. 138: 1345–1355, 1973.
 702. Yurt, R. W., R. W. Leid, K. F. Austen, and J. E. Silbert. Native heparin from rat peritoneal mast cells. J. Biol. Chem. 252: 518–521, 1977.
 703. Zimmerman, T. S., and T. S. Edgington. Factor VIII coagulant activity and factor VIII‐like antigen: independent molecular entities. J. Exp. Med. 138: 1015–1020, 1973.
 704. Zimmerman, T. S., O. D. Ratnoff, and A. E. Powell. Immunologic differentiation of classic hemophilia (factor VIII deficiency) and von Willebrand's disease, with observations on combined deficiencies of antihemophilic factor and proaccelerin (factor V) and on an acquired circulating anticoagulant against antihemophilic factor. J. Clin. Invest. 50: 244–254, 1971.
 705. Zolton, R. P., E. T. Mertz, and H. T. Russell. Assay of human plasminogen in plasma by affinity chromatography. Clin. Chem. Winston‐Salem, NC 18: 654–657, 1972.
 706. Zucker, M. B., M. W. Mosesson, M. J. Broekman, and K. L. Kaplan. Release of platelet fibronectin (cold‐insoluble globulin) from alpha granules induced by thrombin or collagen: lack of requirement for plasma fibronectin in ADP‐induced platelet aggregation. Blood 54: 8–12, 1979.
 707. Zur, M. and Y. Nemerson. The esterase activity of coagulation factor VII. Evidence for intrinsic activity of the zymogen. J. Biol. Chem. 253: 2203–2209, 1977.
 708. Zwaal, R. F. A. Membrane and lipid involvement in blood coagulation. Biochim. Biophys. Acta 515: 163–205, 1978.
 709. Zwaal, R. F. A., P. Comfurius, and L. L. van Deenen. Membrane asymmetry and blood coagulation. Nature London 268: 358–360, 1977.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Robert W. Colman, Andrei Z. Budzynski. Blood Coagulation and Fibrinolysis. Compr Physiol 2011, Supplement 10: Handbook of Physiology, The Respiratory System, Circulation and Nonrespiratory Functions: 495-544. First published in print 1985. doi: 10.1002/cphy.cp030116