Comprehensive Physiology Wiley Online Library

Brain Stem Mechanisms for Generation and Control of Breathing Pattern

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Homeostatic and Behavioral Regulation of Breathing—Aims and Compromises
2 Some General Features of Rhythm‐Generating Mechanisms for Automatic Breathing
2.1 Is There More Than One CPG for Automatic Breathing?
2.2 Spinal Pattern Generator
2.3 Bilaterally Symmetric CPG
3 Localization of Basic Rhythm Generator for Automatic Breathing
3.1 Brain Stem Transections
3.2 Localization by Electrical Stimulation
3.3 Localization by Recording RR Neural Activity
4 Distribution of RR Neurons and Their Functional Properties
4.1 General Outline of Medullary RR Neurons
4.2 Ventral Respiratory Group
4.3 Dorsal Respiratory Group
4.4 Problem of Reciprocal Interaction Between Inspiratory and Expiratory Bulbospinal Neurons
4.5 Why Are There Two Separate Pools of Inspiratory Premotor Neurons?
4.6 Summary
5 Functional Organization of Respiratory CPG—Systems Behavior
5.1 Methods
5.2 General Organizational Features of CPG and Its Main Afferent Feedback Systems
5.3 Mechanisms Controlling Inspiratory Parameters
5.4 Control of Expiratory Parameters
5.5 Concept of Breathing Pattern for Ergometric Minimization
6 Conclusions
Figure 1. Figure 1.

Pulse rate (upper trace) and respiration (lower trace) in human listening to dissonant atonal electronic music by Stockhausen (left) and melodic music by Chopin (right).

From Harrer 540
Figure 2. Figure 2.

Cyclic (A) and tonic (B) neuronal discharge patterns from different sites in medulla oblongata in neurally isolated and completely de‐nervated rhombencephalon in unanesthetized cat (delimited by intracollicular transection and transection at 1st cervical segment). A: 1, ventilation with 6.5% CO2 in O2; 2, ventilation with pure O2. B: 1, ventilation with 6.5% CO2 in O2; 2, ventilation with pure O2; 3, ventilation with 3% CO2 in O2; 4, ventilation with 15% CO2 in O2. Time, 20 cycles/s.

Adapted from Euler and Söderberg 177
Figure 3. Figure 3.

Effects of midsagittal section through rabbit medulla on respiratory motor outputs from left (A, B) and right (C, E) phrenic nerves. “Integrated” (A, C) and direct (B, E) records of efferent phrenic activity. D: reference line for end‐tidal CO2 trace in F; G: blood pressure. Note that different rhythms and patterns are obtained from the 2 sides. Bisection of medulla extended from 4 mm rostral to obex to 1 mm caudal to obex.

From Gromysz and Karczewski 222
Figure 4. Figure 4.

Discharge patterns of various respiration‐related neurons of the ventral respiratory group plotted for a single respiratory cycle. A‐D: late‐peak inspiration‐related neurons; E‐H: expiration‐related neurons; I‐K: early‐burst inspiration‐related cells. Bottom trace: chest circumference, inspiratory deflection upward.

From Merrill 362
Figure 5. Figure 5.

Medulla (and part of spinal cord) with the 2 main aggregates of respiration‐related neurons in medulla: longitudinal column constituting ventral respiratory group (VRG) with its 3 subdivisions (marked on right) and dorsal respiratory group (DRG). Diagram further shows the group of inspiration‐related relay neurons in 1st and 2nd segments of cervical spinal cord (C1‐C2 group of Aoki). Diagram shows locations of main groups of expiratory (circles) and inspiratory (triangles) bulbospinal and relay neurons (open symbols) and their descending axons projecting to spinal motoneurons (filled symbols). In nucleus ambiguus (NA), laryngeal motoneurons are indicated. For simplicity neurons and axons are only represented on 1 side. Böt. C, Bötzinger complex; NPA, nucleus para‐ambigualis; NRA, nucleus retroambigualis; NTS, nucleus tractus solitarius; X, 10th cranial nerve.

Figure 6. Figure 6.

Major aggregates (shaded areas) of respiration‐related neurons and their afferent (left) and efferent (right) connections, as revealed by anatomical and electrophysiological mapping techniques. A, B: medial parabrachial‐Kölliker‐Fuse complex; C, D: dorsal respiratory group; E, F: ventral respiratory group. Filled triangles, cell bodies; solid lines, axons and axon collaterals; Y‐shaped endings, axonal terminations. BC, brachium conjunctivum; Böt. C, Bötzinger complex; NPA, nucleus para‐ambigualis; NPBM, nucleus parabrachialis medialis; NRA, nucleus retroambigualis; NTS, nucleus tractus solitarius.

From Kalia 275. Reproduced with permission from Annu. Rev. Physiol, vol. 43. © 1981 by Annual Reviews, Inc
Figure 7. Figure 7.

Projections of different groups of medullary respiration‐related neurons. A: inspiratory bulbospinal neurons of nucleus para‐ambigualis (NPA) of the ventral respiratory group. B: early‐burst inspiration‐related neurons of NPA. (Main axonal branches probably cross midline at level rostral to obex, not as indicated here.) C: inspiratory bulbospinal neurons of nucleus tractus solitarius (NTS) of dorsal respiratory group. D: expiratory bulbospinal premotor neurons of nucleus retroambigualis (NRA) of ventral respiratory group, insp, Inspiratory; exp, expiratory. Large filled circles, cell bodies; small filled circles, axonal terminations.

Adapted from Merrill 364
Figure 8. Figure 8.

Locations of transverse lesions used to interrupt inputs to nucleus retroambigualis expiration‐related neurons in experiments described in text.

From Merrill 364
Figure 9. Figure 9.

Medullary projections of expiration‐related neurons of the Bötzinger complex (Böt). Projections to contralateral ventrolateral nucleus tractus solitarius (NST) and ipsilateral caudal nucleus retroambigualis (NRA) have been established with electrophysiological techniques. Projections to ipsilateral inspiratory (insp) nucleus para‐ambigualis regions appear likely. Projections to phrenic motoneuron pool have subsequently been established and reported to be inhibitory, exp, Expiratory.

From Merrill 365
Figure 10. Figure 10.

Inspiratory Rα neuron. Traces A and B (top to bottom): neuron discharge, phrenic neurogram, “integrated” phrenic activity, and intratracheal pressure. A: respirator driven by “integrated” phrenic activity and switched off during middle of 3 inspirations with no change in initial rate of increase of activity. Prolongation of inspiration due to lack of volume feedback. B: respirator driven by sine wave generator; no influence by inflations and deflations on discharge rate. Neuron could not be driven by electrical stimulation of vagus nerves. C: driven spike in response to single shocks to contralateral ventrolateral funiculus of cervical cord at the 4th cervical segment. Latency, 1.1‐1.4 ms at conduction distance of 42 mm; time, 2,000 cycles/s.

From Euler et al. 173
Figure 11. Figure 11.

Discharge patterns of 2 Rβ neurons in cat under pentobarbital anesthesia paralyzed and artificially ventilated by respirator governed by efferent phrenic activity. Trace A (top to bottom): instantaneous frequency record, neuron discharge, “integrated” phrenic activity, and intratracheal pressure. During first 2 inspiratory discharges, respirator was inflating lungs (with some time lag). During last inspiration, respirator was switched off so that neuron received central inspiratory activity input, giving a slower rate of increase of inspiratory activity, which reaches roughly the same value as in first 2 breaths, but after a longer time. Inspiration terminates when discharge rate reaches approximately the same level with or without volume feedback. Traces B and C (top to bottom): neuron discharge, efferent phrenic neurogram, intratracheal pressure (with some delay), and “integrated” phrenic activity. This Rβ neuron has somewhat higher threshold than that in A. B: respirator driven by “integrated” phrenic activity (after slight time lag). C: respirator driven by sine wave generator. Neuron discharge modulated by both inspiratory activity (central inspiratory activity input) and lung volume variations. Note that deflation coinciding with peak phrenic activity reduces neuron discharge and prolongs inspiratory phase. Neuron is responsive during postinspiration inspiratory activity.

Adapted from Euler et al. 173
Figure 12. Figure 12.

Representation of Rβ neurons and their function as a summarizer of central inspiratory activity (CIA) corollary activity and pulmonary stretch‐receptor (PSR) afferent activity. The CIA corollary activity is probably not mediated by the Rα inspiratory premotor neurons; Rα and Rβ neurons probably share a common CIA input. IBS, inspiratory bulbospinal neuron.

Figure 13. Figure 13.

Discharge patterns (cycle‐triggered histograms) of early expiration‐related neurons in response to 2 kinds of reflex modulations of expiratory duration (TE). A: withholding inflation in inspiration (I) causes lengthening of inspiratory duration and proportional prolongation of TE. B: inflation during expiratory phase elicits a TE‐prolonging reflex. TE(C), average control TE; TE (T), average test TE. Test inflation (ITP) indicated in inset; duration, 80 ms; averages of 8 cycles.

From Feldman and Cohen 185
Figure 14. Figure 14.

Excitatory and synaptic inhibitory activity patterns of medullary respiration‐related neurons during inspiratory (I) and expiratory (E) phases (E1 and E2 denote subdivisions of expiratory phase). Note that there is some uncertainty about whether early expiration‐related (ER) neurons are different from postinspiration inspiratory activity (PIIA)‐related early expiratory neurons or whether they are the same neurons obtained under different experimental conditions with prolonged and normal PIIA, respectively. Vertical hatching, pattern of excitatory synaptic discharge; horizontal hatching, pattern of active synaptic inhibition. Note that during inspiratory phase the late‐onset inspiration‐related (IR) neurons receive augmenting excitation but are kept silent by dominating inhibition. During the first part of the expiratory phase, inspiratory bulbospinal (BS) neurons receive some synaptic inhibition with the synaptic excitation giving rise to their PIIA. PB, propriobulbar; Böt. C, Bötzinger complex.

Data based on Richter and Ballantyne 427 and K. Budzińska, C. von Euler, T. Pantaleo, and Y. Yamamoto, unpublished observations
Figure 15. Figure 15.

Superimposed records of moving averages of vagal afferent (Vagal aff) activity mainly from pulmonary stretch‐receptor afferents and phrenic efferent (Phr eff) activity during inflation (1) and withholding inflation in inspiration (2). This illustrates the threshold character of the Hering‐Breuer inspiration‐terminating reflex. No sign of inhibition of inspiratory activity before the inspiratory off‐switch effect close to the peak of phrenic activity in the presence of inflation and afferent feedback of pulmonary stretch‐receptor activity. (From C. von Euler and T. Trippenbach, unpublished observations.)

Figure 16. Figure 16.

Moving averages of inspiratory phrenic activity in the absence of cyclic, vagal, volume‐related feedback. A: 6 records of inspiratory trajectories at different alveolar partial pressures of CO2 () show that the rate of rise of inspiratory activity increases with increasing . B: upper trace, computer average of 30 phrenic trajectories at a partial pressure of CO2 () of 46 mmHg; lower trace, corresponding standard deviations magnified 10 times. Note that broad and rounded peak of averaged phrenic trajectories does not correspond to any such shape in any of the individual traces but is due to variations in the inspiratory off‐switch events and thus in durations of the inspiratory ramps. These variations are reflected by high values of the standard deviations.

From Bruce et al. 79
Figure 17. Figure 17.

Initial rate of rise of inspiratory activity, i.e., “integrated” phrenic activity (Int Phr ampl), in cat under light pentobarbital anesthesia made apneustic by bilateral lesions of the inspiratory off‐switch promoting sites in medial parabrachial structures and bilateral vagotomy. Effects of changes in alveolar (A) and body temperature (B). Open circles and dashed lines, half times for “integrated” phrenic activity (in relative units) to reach its apneustic plateaus. Note that the half time stays almost constant in A but is markedly shortened with increased temperature (B). insp, Inspiration.

Adapted from Euler et al. 176
Figure 18. Figure 18.

Effects on respiratory activity of unilateral moderate focal cooling (20°C) in the region of the nucleus paragigantocellularis lateralis. Moving average of phrenic efferent activity contralaterally (Phr contra) and of abdominal muscle activity ipsilaterally (Abd ipsi). (From K. Budzińska, C. von Euler, T. Pantaleo, and Y. Yamamoto, unpublished observations.)

Figure 19. Figure 19.

Lung volume of dog under pentobarbital anesthesia after bilateral vagotomy during resting condition (R), breathing CO2‐enriched gas (C), and exercise while inhaling CO2‐enriched gas (C + X).

Adapted from Kao et al. 279
Figure 20. Figure 20.

Inspiratory trajectories of moving average of efferent phrenic activity with and without brief tetanic stimulation of the right vagus nerve. A: stimulus intensity 2 dB higher than threshold for the coarsest vagal afferents (coarsest pulmonary stretch‐receptor afferents) causes transient graded stage 1 inhibition of inspiratory activity, resulting in resetting of the trajectory. Note that peak amplitude of reset trajectory reaches roughly the same height as that of unstimulated one. B: stimulus intensity 6 dB higher than threshold for the coarsest pulmonary stretch‐receptor afferents elicits inspiration‐facilitating response that in turn causes complete inspiratory off‐switching. This is probably the result of combined action of transient coactivation of pulmonary stretch‐receptor afferents and reflex increase of central inspiratory activity input. Solid bar, time and duration of stimulus (St). (From E. N. Bruce, C. von Euler, and J. R. Romaniuk, unpublished observations.)

Figure 21. Figure 21.

Moving average of phrenic (Phr) and inspiration‐related inferior laryngeal nerve (Lar inf) activity in presence (1) and absence (2) of cyclic volume feedback from lungs.

Figure 22. Figure 22.

Curvilinear (approximately hyperbolic) time dependence of Hering‐Breuer inspiration‐inhibiting reflex in cat (A) and human (B). Volume levels (a‐d) at which off‐switch threshold is attained versus corresponding inspiratory durations (TI). A: in absence of vagal feedback (broken lines), e.g., after vagotomy, TI may be relatively constant (TI,vgt). If tidal volume (VT) is altered by changing chemical drive, TI,vgt may exhibit drive dependence, an index of some mismatch between drive influence on the rate of rise of inspiratory activity and on inspiratory off‐switch threshold (see Match or mismatch between drive dependence of inspiratory off‐switch threshold and rate of CIA augmentation, p. 35). With higher volumes, inspiration‐facilitating reflexes may be elicited, providing range 3 VT‐inspiration duration relationship. B: Hering‐Breuer reflex in humans not apparent at low and moderate VT levels (range 1) but at higher volumes (range 2) is similar to that in cat. C: scatter of TI and VT in cats under light pentobarbital anesthesia at 2 different steady states of alveolar CO2 concentrations (). Volume‐time courses were not recorded, only the break points at inspiratory off‐switch. Triangles: 43 breaths, = 5.4%, TI = 1.48 s ± 0.08 (SD), VT = 31.7 ml ± 1.3 (SD). Squares: 37 breaths, = 6.5%, TI = 1.13 s ± 0.04 (SD), VT = 46.4 ml ± 1.7 (SD). Note that scatter of TI is considerably greater in states of low than with higher chemical drive. This may be because inspiratory off‐switching is more susceptible to noise variations in conditions when its threshold is approached and attained at a relatively slow rate compared to higher rate of rise of excitatory input to off‐switch mechanisms at higher . This results from both increased augmentation rate of postulated central inspiratory activity input and increased contribution from pulmonary stretch receptors. [From Bradley et al. 66.]

Data from Clark and Euler 105
Figure 23. Figure 23.

Tidal volume (VT)‐inspiration duration (TI) and TI‐expiration duration (TE) relationships in adult male without (open circles, solid line) and with (filled circles, dashed line) vibration stimulus. Note that with vibration stimulus, Hering‐Breuer threshold curve is shifted downward and range 1 of VT‐TI relationship (left) is almost abolished. Expiration duration is almost unaffected by vibration. Change in the TI‐TE relationship (right) is almost solely due to change in TI.

Adapted from Homma 252
Figure 24. Figure 24.

A: time course of fall in thresholds of inspiratory off‐switch mechanism to stimulation at optimal site in medial parabrachial nucleus (ordinate) at different times during inspiratory phase (TI, abscissa) with (filled circles) and without (open circles) phasic vagal feedback. Difference between the 2 threshold curves (hatched area) is vagal contribution to excitability of inspiratory off‐switch mechanism; its time course is represented by thick line. Stimulus strength (Stim strength) in volts above lowest threshold obtained that was equal with and without vagal feedback (0.22 V). B: corresponding curves for “integrated” phrenic activity (thick lines) with (I) and without (II) phasic vagal feedback with amplitude scale (Phr ampl) in relative units at right. Superimposed is mirror image of all threshold points from A (increasing stimulus strength downward) showing similarity in time courses between “integrated” phrenic activity and off‐switch excitability in absence of phasic vagal feedback (open circles).

From Euler and Trippenbach 179
Figure 25. Figure 25.

“Integrated” phrenic activity (Phr ampl) in cat without phasic vagal feedback. Circles, excitability (thresholds) for inspiratory off‐switch mechanism to medial parabrachial nucleus stimulation at of 32 mmHg (A) and 53 mmHg (B). Scales of phrenic activity in relative units at right. Stimulus strength (Stim strength) with increasing values downward in volts above lowest threshold obtained that was equal at both levels (0.24 V). TI, inspiration duration.

From Euler and Trippenbach 179
Figure 26. Figure 26.

“Integrated” phrenic activity (Phr ampl) in cat without phasic vagal feedback at 2 different body temperatures. Thresholds plotted for inspiratory off‐switch mechanism to medial parabrachial nucleus stimulation at 36.1 °C (circles) and 40.2°C (squares). Scale of phrenic activity in relative units at right. Stimulus strength (Stim strength) with increasing values downward in volts above lowest threshold obtained (0.18 V at 40.2°C; 0.19 V at 36.1 °C).

From Euler and Trippenbach 179
Figure 27. Figure 27.

Tidal volume (VT)‐inspiration duration (TI) relationship (A, C, D) and expiration duration (TE)‐TI relationship (B). Transient effects in cat under light pentobarbital anesthesia showing typical hysteresis loop in response to step changes in inhaled CO2 concentration (A) and corresponding TE‐TI relationship (B). Crosses, response to rapid increase in from 3.8% (breathing air) to 8.0%; triangles, response back to breathing air with of 3.8%. Effects in decerebrate cat after bilateral vagotomy with no anesthesia (C) and after administration (15 mg/kg) of pentobarbital (D). Response shown to step increase (crosses) and decrease (squares) in inhaled CO2 concentration as changed from 3.5% to 6.2% and back to 3.4%. Note that slight prolongation of TI with increased in unanesthetized condition changed to shortening of TI after pentobarbital.

From Bradley et al. 65
Figure 28. Figure 28.

Projections of cat pulmonary stretch‐receptor (PSR) afferent in nucleus tractus solitarius (NTS) region as a result of microstimulation, and antidromic responses from single PSR afferent ganglion cell in nodose ganglion. Map represents extent of NTS in relation to view of medullary dorsal surface. Penetrations of microstimulation electrodes from which response contours of point (filled circles) or field (filled diamonds) type were produced or from which no antidromic responses were evoked (open circles) are shown and a likely course of the axon and its branches indicated. Main axon within tractus solitarius (TS) seems to branch both to lateral and medial subnuclei of NTS complex. Latencies of antidromic response from each site in milliseconds in parentheses. Note that latencies increase at terminal sites compared to stimulation of main axon. Scales give distances in millimeters rostral (R), caudal (C), and lateral to obex. N Comm, nucleus commisuralis; IV, 4th ventricle.

From Donoghue et al. 145
Figure 29. Figure 29.

Two hypotheses for functional organization of inspiratory off‐switch mechanism (I O‐S) of respiratory central pattern generator (CPG). Both diagrams include inputs to inspiratory off‐switch mechanism from pulmonary stretch receptors (PSR) and parabrachial‐Kölliker‐Fuse nuclear complex (NPB‐KF) in rostral pons. A: I O‐S receives its non‐PSR increase in excitability from recurrent feedback from central inspiratory activity (CIA) integrator itself, suggested by Bradley et al. 67 and Euler and Trippenbach 179. B: alternative and more complex hypothesis of separate inspiratory ramp (I ramp) integrator and timer for I O‐S mechanism, suggested by Younes et al. 529 and d'Angelo 130. Chemoreceptive inputs excite CIA integrator (and timing integrator) and inhibit I O‐S mechanism. A depicts possibility that PSR and CIA‐related inputs to I O‐S are mediated by Rβ neurons (Σ CIA, PSR). However, this hypothesis is not essential for the model; convergence of these 2 inputs could just as well take place in I O‐S itself (as shown in B). Pools probably have many other different inputs, both excitatory and inhibitory. Different pools do not represent any anatomically defined structures. I, inspiration‐inhibiting areas; E, expiration‐inhibiting areas of NPBM‐KF; IBS, inspiratory bulbospinal neuron; synch, synchronizing connections.

Figure 30. Figure 30.

Discharge patterns (cycle‐triggered histograms) and corresponding phrenic (Phr) activity in presence and absence of cyclic pulmonary stretch‐receptor feedback, i.e., during inflation (thin lines) and during withholding of inflation (thick lines). Discharge pattern of late‐onset inspiration‐related (putative off‐switch) neuron (A) is enhanced and that of early‐burst inspiration‐related neuron (B) is decreased by lung inflation. Richter 425 suggested that inhibition of late‐onset neurons during early part of inspiratory phase is mediated by early‐burst neurons. Time scale same for A and B.

Adapted from Cohen and Feldman 119
Figure 31. Figure 31.

Initial rising and early plateau parts of apneustic activity at different values in cat with bilateral parabrachial lesions (at sites where low‐intensity stimulation yielded pure inspiration‐inhibiting effects) and bilateral vagotomy. After levels had been constant for a while, apneusis was broken by a reflex elicited by pressing on lower part of chest. (From C. von Euler, I. Marttila, J. E. Remmers, and T. Trippenbach, unpublished observations.)

Figure 32. Figure 32.

Effects of changes in body temperature on duration of apneusis in “integrated” phrenic nerve activity. Values from cat with critical apneusis‐promoting lesions bilaterally in medial parabrachial nucleus, paralyzed and artificially ventilated with phrenic‐governed respirator that permits withholding lung inflations in the inspiratory phases. Note that gain of phrenic signal in F is half those of A‐E. Bars, absence of vagal volume feedback (servorespirator switched off). At right of each record is temperature, end‐tidal CO2 concentration, and in A and F, duration of 1st apneustic breath.

From Euler et al. 176
Figure 33. Figure 33.

Oscillatory apneustic activity, possibly reflecting negative‐feedback regulation of inspiratory activity around the inspiratory off‐switch threshold. Values from cat under light pentobarbital anesthesia, paralyzed and ventilated with phrenic (Phr)‐governed servorespirator. Apneustic activity caused by superficial unilateral cooling in dorsomedial part of medulla caudal to obex in region of nucleus gracilis, combined with withholding inflation (infl) during inspiratory phase by stopping respirator (as indicated by flow record). Insp, inspiration; Exp, expiration. (From K. Budzińska, C. von Euler, I. Homma, T. Pantaleo, and Y. Yamamoto, unpublished observations.)

Figure 34. Figure 34.

Schematic representation of volume (V), flow (V), and muscle pressure (Pmus) during inspiratory (Insp) and expiratory (Exp) phases in a normal spontaneous breath. E1 and E2 denote subdivisions of expiratory phase. Dashed lines, patterns that would occur if expiration were not broken by activity of inspiratory and laryngeal muscles.

Adapted from Mead and Agostoni 357
Figure 35. Figure 35.

A: inspiratory phrenic nerve activity. Records 1‐3 at 3 different time scales. B: efferent inspiratory phrenic activity (upper tracings in each pair) and corresponding expiratory internal intercostal nerve activity (lower tracings in each pair) at increasing levels from records 1 to 3.

From Richter 425
Figure 36. Figure 36.

Pattern of membrane potential (MP) and “integrated” efferent phrenic activity (‘Int’ Phr) of an inspiration‐related, augmenting propriobulbar neuron of thoracotomized cat under pentobarbital anesthesia. Intratracheal pressure (PTr) indicates pattern of artificial respiration. Membrane potential of this neuron shows progressively increasing excitation during inspiratory phase and abrupt inhibition that is strongest initially in the first part of the expiratory phase but lasts the whole expiratory phase.

Adapted from Richter and Ballantyne 427
Figure 37. Figure 37.

Pattern of membrane potential (MP) and “integrated” phrenic nerve activity (‘Int’ Phr) of an early expiration‐related, postinspiration inspiratory activity propriobulbar neuron of thoracotomized cat under pentobarbital anesthesia. Intratracheal pressure (PTr) indicates pattern of artificial respirator.

Adapted from Richter and Ballantyne 427
Figure 38. Figure 38.

Hypothetical variations in central inspiratory inhibition (CII) elicited by inflations (A‐C) and deflations (D‐F) during expiratory phase. A: inflation pulse (1) and small inflation step (2) applied during expiration. B, C: corresponding afferent pulse and step inputs integrated centrally to change CII and thereby expiratory duration (TE). D: subthreshold (3) and suprathreshold (4) deflation steps applied during expiration. E, F: resulting reductions in CII leading to shortening of TE. Response to subthreshold deflation gives graded decrease in TE seen in E, whereas suprathreshold deflation elicits almost immediate cessation of expiration and onset of new inspiration (F). As size and timing of volume maneuvers are varied, time course of the decay rate of CII changes and effect on TE is altered correspondingly. TEC, expiratory duration of control breaths.

Adapted from Knox 294
Figure 39. Figure 39.

Hypothetical changes in process (Φ) controlling expiration duration (TE), i.e., central inspiratory inhibition (CII), in response to rostral pontine stimuli that shorten TE (left) and prolong TE (right). The Φ, or CII, is considered to decay exponentially (time constant, 1.5 s) from its maximum value (1.0) at onset of expiratory phase. Control TE is 3.0 s, which with the time constant sets threshold value for onset of inspiration (ΦTHR) at 0.135. Left top, arrowed lines: pulse inputs that cause 0.250 reduction in Φ, followed by rebound increase of 0.125. Left bottom: shortening of TE produced by stimuli delivered at different times after onset of expiration (tE→ST). Right top, arrowed lines: pulse inputs that cause 0.250 increase in Φ. Right bottom: lengthening of TE produced by rostral pontine stimuli at different times. E, expiratory; I, inspiratory; TEC, expiratory duration of control breath; TEST, expiratory duration of stimulated breath.

From Cohen and Feldman 119
Figure 40. Figure 40.

Functional control of central inspiratory inhibition (CII) and expiratory duration emphasizing roles of magnocellular (FTM) and gigantocellular (FTG) tegmental fields. I O‐S, inspiratory off‐switch mechanisms; CIA, generator of control inspiratory activity; IBS, inspiratory bulbospinal premotor neurons; NPB‐KF, parabrachial‐Kölliker‐Fuse nuclear complex; open triangles, excitation; filled circles, inhibition. Note that CII‐related neurons are normally inhibited during inspiration and have peak discharge rate very early in expiration; thereafter discharge declines slowly. These characteristics correspond to those of early expiration‐related pro‐priobulbar neurons [185; see Fig. 14]. Diagram takes into account the possibility that I O‐S receives its pulmonary stretch‐receptor (PSR) input, combined with CIA‐related input, from Rβ neurons, whereas CII probably receives its PSR input from other nucleus tractus solitarius P‐cell interneurons (P). It cannot be excluded that effects of FTM and FTG lesions and stimulations are due to passing fibers coming from the lateral tegmental fields and projecting to respiratory interneurons. I, inspiratory phase; E, expiratory phase; Temp, temperature‐related inputs from anterior hypothalamus.

Adapted from Knox 295
Figure 41. Figure 41.

“Integrated” expiratory muscle activity of internal intercostal muscle (‘Int’ exp EMG) as function of expiratory duration (TE). During constant drive conditions, peak expiratory muscle activity increases with increasing TE. Changes in TE are produced by changes in lung volume. Inset: simultaneous records of “integrated” phrenic activity (‘Int’ Phr) and “integrated” internal intercostal muscle activity (‘Int’ IIC.) at 3 different TE values. (From A. F. DiMarco, C. von Euler, J. R. Romaniuk, and Y. Yamamoto, unpublished observations.)



Figure 1.

Pulse rate (upper trace) and respiration (lower trace) in human listening to dissonant atonal electronic music by Stockhausen (left) and melodic music by Chopin (right).

From Harrer 540


Figure 2.

Cyclic (A) and tonic (B) neuronal discharge patterns from different sites in medulla oblongata in neurally isolated and completely de‐nervated rhombencephalon in unanesthetized cat (delimited by intracollicular transection and transection at 1st cervical segment). A: 1, ventilation with 6.5% CO2 in O2; 2, ventilation with pure O2. B: 1, ventilation with 6.5% CO2 in O2; 2, ventilation with pure O2; 3, ventilation with 3% CO2 in O2; 4, ventilation with 15% CO2 in O2. Time, 20 cycles/s.

Adapted from Euler and Söderberg 177


Figure 3.

Effects of midsagittal section through rabbit medulla on respiratory motor outputs from left (A, B) and right (C, E) phrenic nerves. “Integrated” (A, C) and direct (B, E) records of efferent phrenic activity. D: reference line for end‐tidal CO2 trace in F; G: blood pressure. Note that different rhythms and patterns are obtained from the 2 sides. Bisection of medulla extended from 4 mm rostral to obex to 1 mm caudal to obex.

From Gromysz and Karczewski 222


Figure 4.

Discharge patterns of various respiration‐related neurons of the ventral respiratory group plotted for a single respiratory cycle. A‐D: late‐peak inspiration‐related neurons; E‐H: expiration‐related neurons; I‐K: early‐burst inspiration‐related cells. Bottom trace: chest circumference, inspiratory deflection upward.

From Merrill 362


Figure 5.

Medulla (and part of spinal cord) with the 2 main aggregates of respiration‐related neurons in medulla: longitudinal column constituting ventral respiratory group (VRG) with its 3 subdivisions (marked on right) and dorsal respiratory group (DRG). Diagram further shows the group of inspiration‐related relay neurons in 1st and 2nd segments of cervical spinal cord (C1‐C2 group of Aoki). Diagram shows locations of main groups of expiratory (circles) and inspiratory (triangles) bulbospinal and relay neurons (open symbols) and their descending axons projecting to spinal motoneurons (filled symbols). In nucleus ambiguus (NA), laryngeal motoneurons are indicated. For simplicity neurons and axons are only represented on 1 side. Böt. C, Bötzinger complex; NPA, nucleus para‐ambigualis; NRA, nucleus retroambigualis; NTS, nucleus tractus solitarius; X, 10th cranial nerve.



Figure 6.

Major aggregates (shaded areas) of respiration‐related neurons and their afferent (left) and efferent (right) connections, as revealed by anatomical and electrophysiological mapping techniques. A, B: medial parabrachial‐Kölliker‐Fuse complex; C, D: dorsal respiratory group; E, F: ventral respiratory group. Filled triangles, cell bodies; solid lines, axons and axon collaterals; Y‐shaped endings, axonal terminations. BC, brachium conjunctivum; Böt. C, Bötzinger complex; NPA, nucleus para‐ambigualis; NPBM, nucleus parabrachialis medialis; NRA, nucleus retroambigualis; NTS, nucleus tractus solitarius.

From Kalia 275. Reproduced with permission from Annu. Rev. Physiol, vol. 43. © 1981 by Annual Reviews, Inc


Figure 7.

Projections of different groups of medullary respiration‐related neurons. A: inspiratory bulbospinal neurons of nucleus para‐ambigualis (NPA) of the ventral respiratory group. B: early‐burst inspiration‐related neurons of NPA. (Main axonal branches probably cross midline at level rostral to obex, not as indicated here.) C: inspiratory bulbospinal neurons of nucleus tractus solitarius (NTS) of dorsal respiratory group. D: expiratory bulbospinal premotor neurons of nucleus retroambigualis (NRA) of ventral respiratory group, insp, Inspiratory; exp, expiratory. Large filled circles, cell bodies; small filled circles, axonal terminations.

Adapted from Merrill 364


Figure 8.

Locations of transverse lesions used to interrupt inputs to nucleus retroambigualis expiration‐related neurons in experiments described in text.

From Merrill 364


Figure 9.

Medullary projections of expiration‐related neurons of the Bötzinger complex (Böt). Projections to contralateral ventrolateral nucleus tractus solitarius (NST) and ipsilateral caudal nucleus retroambigualis (NRA) have been established with electrophysiological techniques. Projections to ipsilateral inspiratory (insp) nucleus para‐ambigualis regions appear likely. Projections to phrenic motoneuron pool have subsequently been established and reported to be inhibitory, exp, Expiratory.

From Merrill 365


Figure 10.

Inspiratory Rα neuron. Traces A and B (top to bottom): neuron discharge, phrenic neurogram, “integrated” phrenic activity, and intratracheal pressure. A: respirator driven by “integrated” phrenic activity and switched off during middle of 3 inspirations with no change in initial rate of increase of activity. Prolongation of inspiration due to lack of volume feedback. B: respirator driven by sine wave generator; no influence by inflations and deflations on discharge rate. Neuron could not be driven by electrical stimulation of vagus nerves. C: driven spike in response to single shocks to contralateral ventrolateral funiculus of cervical cord at the 4th cervical segment. Latency, 1.1‐1.4 ms at conduction distance of 42 mm; time, 2,000 cycles/s.

From Euler et al. 173


Figure 11.

Discharge patterns of 2 Rβ neurons in cat under pentobarbital anesthesia paralyzed and artificially ventilated by respirator governed by efferent phrenic activity. Trace A (top to bottom): instantaneous frequency record, neuron discharge, “integrated” phrenic activity, and intratracheal pressure. During first 2 inspiratory discharges, respirator was inflating lungs (with some time lag). During last inspiration, respirator was switched off so that neuron received central inspiratory activity input, giving a slower rate of increase of inspiratory activity, which reaches roughly the same value as in first 2 breaths, but after a longer time. Inspiration terminates when discharge rate reaches approximately the same level with or without volume feedback. Traces B and C (top to bottom): neuron discharge, efferent phrenic neurogram, intratracheal pressure (with some delay), and “integrated” phrenic activity. This Rβ neuron has somewhat higher threshold than that in A. B: respirator driven by “integrated” phrenic activity (after slight time lag). C: respirator driven by sine wave generator. Neuron discharge modulated by both inspiratory activity (central inspiratory activity input) and lung volume variations. Note that deflation coinciding with peak phrenic activity reduces neuron discharge and prolongs inspiratory phase. Neuron is responsive during postinspiration inspiratory activity.

Adapted from Euler et al. 173


Figure 12.

Representation of Rβ neurons and their function as a summarizer of central inspiratory activity (CIA) corollary activity and pulmonary stretch‐receptor (PSR) afferent activity. The CIA corollary activity is probably not mediated by the Rα inspiratory premotor neurons; Rα and Rβ neurons probably share a common CIA input. IBS, inspiratory bulbospinal neuron.



Figure 13.

Discharge patterns (cycle‐triggered histograms) of early expiration‐related neurons in response to 2 kinds of reflex modulations of expiratory duration (TE). A: withholding inflation in inspiration (I) causes lengthening of inspiratory duration and proportional prolongation of TE. B: inflation during expiratory phase elicits a TE‐prolonging reflex. TE(C), average control TE; TE (T), average test TE. Test inflation (ITP) indicated in inset; duration, 80 ms; averages of 8 cycles.

From Feldman and Cohen 185


Figure 14.

Excitatory and synaptic inhibitory activity patterns of medullary respiration‐related neurons during inspiratory (I) and expiratory (E) phases (E1 and E2 denote subdivisions of expiratory phase). Note that there is some uncertainty about whether early expiration‐related (ER) neurons are different from postinspiration inspiratory activity (PIIA)‐related early expiratory neurons or whether they are the same neurons obtained under different experimental conditions with prolonged and normal PIIA, respectively. Vertical hatching, pattern of excitatory synaptic discharge; horizontal hatching, pattern of active synaptic inhibition. Note that during inspiratory phase the late‐onset inspiration‐related (IR) neurons receive augmenting excitation but are kept silent by dominating inhibition. During the first part of the expiratory phase, inspiratory bulbospinal (BS) neurons receive some synaptic inhibition with the synaptic excitation giving rise to their PIIA. PB, propriobulbar; Böt. C, Bötzinger complex.

Data based on Richter and Ballantyne 427 and K. Budzińska, C. von Euler, T. Pantaleo, and Y. Yamamoto, unpublished observations


Figure 15.

Superimposed records of moving averages of vagal afferent (Vagal aff) activity mainly from pulmonary stretch‐receptor afferents and phrenic efferent (Phr eff) activity during inflation (1) and withholding inflation in inspiration (2). This illustrates the threshold character of the Hering‐Breuer inspiration‐terminating reflex. No sign of inhibition of inspiratory activity before the inspiratory off‐switch effect close to the peak of phrenic activity in the presence of inflation and afferent feedback of pulmonary stretch‐receptor activity. (From C. von Euler and T. Trippenbach, unpublished observations.)



Figure 16.

Moving averages of inspiratory phrenic activity in the absence of cyclic, vagal, volume‐related feedback. A: 6 records of inspiratory trajectories at different alveolar partial pressures of CO2 () show that the rate of rise of inspiratory activity increases with increasing . B: upper trace, computer average of 30 phrenic trajectories at a partial pressure of CO2 () of 46 mmHg; lower trace, corresponding standard deviations magnified 10 times. Note that broad and rounded peak of averaged phrenic trajectories does not correspond to any such shape in any of the individual traces but is due to variations in the inspiratory off‐switch events and thus in durations of the inspiratory ramps. These variations are reflected by high values of the standard deviations.

From Bruce et al. 79


Figure 17.

Initial rate of rise of inspiratory activity, i.e., “integrated” phrenic activity (Int Phr ampl), in cat under light pentobarbital anesthesia made apneustic by bilateral lesions of the inspiratory off‐switch promoting sites in medial parabrachial structures and bilateral vagotomy. Effects of changes in alveolar (A) and body temperature (B). Open circles and dashed lines, half times for “integrated” phrenic activity (in relative units) to reach its apneustic plateaus. Note that the half time stays almost constant in A but is markedly shortened with increased temperature (B). insp, Inspiration.

Adapted from Euler et al. 176


Figure 18.

Effects on respiratory activity of unilateral moderate focal cooling (20°C) in the region of the nucleus paragigantocellularis lateralis. Moving average of phrenic efferent activity contralaterally (Phr contra) and of abdominal muscle activity ipsilaterally (Abd ipsi). (From K. Budzińska, C. von Euler, T. Pantaleo, and Y. Yamamoto, unpublished observations.)



Figure 19.

Lung volume of dog under pentobarbital anesthesia after bilateral vagotomy during resting condition (R), breathing CO2‐enriched gas (C), and exercise while inhaling CO2‐enriched gas (C + X).

Adapted from Kao et al. 279


Figure 20.

Inspiratory trajectories of moving average of efferent phrenic activity with and without brief tetanic stimulation of the right vagus nerve. A: stimulus intensity 2 dB higher than threshold for the coarsest vagal afferents (coarsest pulmonary stretch‐receptor afferents) causes transient graded stage 1 inhibition of inspiratory activity, resulting in resetting of the trajectory. Note that peak amplitude of reset trajectory reaches roughly the same height as that of unstimulated one. B: stimulus intensity 6 dB higher than threshold for the coarsest pulmonary stretch‐receptor afferents elicits inspiration‐facilitating response that in turn causes complete inspiratory off‐switching. This is probably the result of combined action of transient coactivation of pulmonary stretch‐receptor afferents and reflex increase of central inspiratory activity input. Solid bar, time and duration of stimulus (St). (From E. N. Bruce, C. von Euler, and J. R. Romaniuk, unpublished observations.)



Figure 21.

Moving average of phrenic (Phr) and inspiration‐related inferior laryngeal nerve (Lar inf) activity in presence (1) and absence (2) of cyclic volume feedback from lungs.



Figure 22.

Curvilinear (approximately hyperbolic) time dependence of Hering‐Breuer inspiration‐inhibiting reflex in cat (A) and human (B). Volume levels (a‐d) at which off‐switch threshold is attained versus corresponding inspiratory durations (TI). A: in absence of vagal feedback (broken lines), e.g., after vagotomy, TI may be relatively constant (TI,vgt). If tidal volume (VT) is altered by changing chemical drive, TI,vgt may exhibit drive dependence, an index of some mismatch between drive influence on the rate of rise of inspiratory activity and on inspiratory off‐switch threshold (see Match or mismatch between drive dependence of inspiratory off‐switch threshold and rate of CIA augmentation, p. 35). With higher volumes, inspiration‐facilitating reflexes may be elicited, providing range 3 VT‐inspiration duration relationship. B: Hering‐Breuer reflex in humans not apparent at low and moderate VT levels (range 1) but at higher volumes (range 2) is similar to that in cat. C: scatter of TI and VT in cats under light pentobarbital anesthesia at 2 different steady states of alveolar CO2 concentrations (). Volume‐time courses were not recorded, only the break points at inspiratory off‐switch. Triangles: 43 breaths, = 5.4%, TI = 1.48 s ± 0.08 (SD), VT = 31.7 ml ± 1.3 (SD). Squares: 37 breaths, = 6.5%, TI = 1.13 s ± 0.04 (SD), VT = 46.4 ml ± 1.7 (SD). Note that scatter of TI is considerably greater in states of low than with higher chemical drive. This may be because inspiratory off‐switching is more susceptible to noise variations in conditions when its threshold is approached and attained at a relatively slow rate compared to higher rate of rise of excitatory input to off‐switch mechanisms at higher . This results from both increased augmentation rate of postulated central inspiratory activity input and increased contribution from pulmonary stretch receptors. [From Bradley et al. 66.]

Data from Clark and Euler 105


Figure 23.

Tidal volume (VT)‐inspiration duration (TI) and TI‐expiration duration (TE) relationships in adult male without (open circles, solid line) and with (filled circles, dashed line) vibration stimulus. Note that with vibration stimulus, Hering‐Breuer threshold curve is shifted downward and range 1 of VT‐TI relationship (left) is almost abolished. Expiration duration is almost unaffected by vibration. Change in the TI‐TE relationship (right) is almost solely due to change in TI.

Adapted from Homma 252


Figure 24.

A: time course of fall in thresholds of inspiratory off‐switch mechanism to stimulation at optimal site in medial parabrachial nucleus (ordinate) at different times during inspiratory phase (TI, abscissa) with (filled circles) and without (open circles) phasic vagal feedback. Difference between the 2 threshold curves (hatched area) is vagal contribution to excitability of inspiratory off‐switch mechanism; its time course is represented by thick line. Stimulus strength (Stim strength) in volts above lowest threshold obtained that was equal with and without vagal feedback (0.22 V). B: corresponding curves for “integrated” phrenic activity (thick lines) with (I) and without (II) phasic vagal feedback with amplitude scale (Phr ampl) in relative units at right. Superimposed is mirror image of all threshold points from A (increasing stimulus strength downward) showing similarity in time courses between “integrated” phrenic activity and off‐switch excitability in absence of phasic vagal feedback (open circles).

From Euler and Trippenbach 179


Figure 25.

“Integrated” phrenic activity (Phr ampl) in cat without phasic vagal feedback. Circles, excitability (thresholds) for inspiratory off‐switch mechanism to medial parabrachial nucleus stimulation at of 32 mmHg (A) and 53 mmHg (B). Scales of phrenic activity in relative units at right. Stimulus strength (Stim strength) with increasing values downward in volts above lowest threshold obtained that was equal at both levels (0.24 V). TI, inspiration duration.

From Euler and Trippenbach 179


Figure 26.

“Integrated” phrenic activity (Phr ampl) in cat without phasic vagal feedback at 2 different body temperatures. Thresholds plotted for inspiratory off‐switch mechanism to medial parabrachial nucleus stimulation at 36.1 °C (circles) and 40.2°C (squares). Scale of phrenic activity in relative units at right. Stimulus strength (Stim strength) with increasing values downward in volts above lowest threshold obtained (0.18 V at 40.2°C; 0.19 V at 36.1 °C).

From Euler and Trippenbach 179


Figure 27.

Tidal volume (VT)‐inspiration duration (TI) relationship (A, C, D) and expiration duration (TE)‐TI relationship (B). Transient effects in cat under light pentobarbital anesthesia showing typical hysteresis loop in response to step changes in inhaled CO2 concentration (A) and corresponding TE‐TI relationship (B). Crosses, response to rapid increase in from 3.8% (breathing air) to 8.0%; triangles, response back to breathing air with of 3.8%. Effects in decerebrate cat after bilateral vagotomy with no anesthesia (C) and after administration (15 mg/kg) of pentobarbital (D). Response shown to step increase (crosses) and decrease (squares) in inhaled CO2 concentration as changed from 3.5% to 6.2% and back to 3.4%. Note that slight prolongation of TI with increased in unanesthetized condition changed to shortening of TI after pentobarbital.

From Bradley et al. 65


Figure 28.

Projections of cat pulmonary stretch‐receptor (PSR) afferent in nucleus tractus solitarius (NTS) region as a result of microstimulation, and antidromic responses from single PSR afferent ganglion cell in nodose ganglion. Map represents extent of NTS in relation to view of medullary dorsal surface. Penetrations of microstimulation electrodes from which response contours of point (filled circles) or field (filled diamonds) type were produced or from which no antidromic responses were evoked (open circles) are shown and a likely course of the axon and its branches indicated. Main axon within tractus solitarius (TS) seems to branch both to lateral and medial subnuclei of NTS complex. Latencies of antidromic response from each site in milliseconds in parentheses. Note that latencies increase at terminal sites compared to stimulation of main axon. Scales give distances in millimeters rostral (R), caudal (C), and lateral to obex. N Comm, nucleus commisuralis; IV, 4th ventricle.

From Donoghue et al. 145


Figure 29.

Two hypotheses for functional organization of inspiratory off‐switch mechanism (I O‐S) of respiratory central pattern generator (CPG). Both diagrams include inputs to inspiratory off‐switch mechanism from pulmonary stretch receptors (PSR) and parabrachial‐Kölliker‐Fuse nuclear complex (NPB‐KF) in rostral pons. A: I O‐S receives its non‐PSR increase in excitability from recurrent feedback from central inspiratory activity (CIA) integrator itself, suggested by Bradley et al. 67 and Euler and Trippenbach 179. B: alternative and more complex hypothesis of separate inspiratory ramp (I ramp) integrator and timer for I O‐S mechanism, suggested by Younes et al. 529 and d'Angelo 130. Chemoreceptive inputs excite CIA integrator (and timing integrator) and inhibit I O‐S mechanism. A depicts possibility that PSR and CIA‐related inputs to I O‐S are mediated by Rβ neurons (Σ CIA, PSR). However, this hypothesis is not essential for the model; convergence of these 2 inputs could just as well take place in I O‐S itself (as shown in B). Pools probably have many other different inputs, both excitatory and inhibitory. Different pools do not represent any anatomically defined structures. I, inspiration‐inhibiting areas; E, expiration‐inhibiting areas of NPBM‐KF; IBS, inspiratory bulbospinal neuron; synch, synchronizing connections.



Figure 30.

Discharge patterns (cycle‐triggered histograms) and corresponding phrenic (Phr) activity in presence and absence of cyclic pulmonary stretch‐receptor feedback, i.e., during inflation (thin lines) and during withholding of inflation (thick lines). Discharge pattern of late‐onset inspiration‐related (putative off‐switch) neuron (A) is enhanced and that of early‐burst inspiration‐related neuron (B) is decreased by lung inflation. Richter 425 suggested that inhibition of late‐onset neurons during early part of inspiratory phase is mediated by early‐burst neurons. Time scale same for A and B.

Adapted from Cohen and Feldman 119


Figure 31.

Initial rising and early plateau parts of apneustic activity at different values in cat with bilateral parabrachial lesions (at sites where low‐intensity stimulation yielded pure inspiration‐inhibiting effects) and bilateral vagotomy. After levels had been constant for a while, apneusis was broken by a reflex elicited by pressing on lower part of chest. (From C. von Euler, I. Marttila, J. E. Remmers, and T. Trippenbach, unpublished observations.)



Figure 32.

Effects of changes in body temperature on duration of apneusis in “integrated” phrenic nerve activity. Values from cat with critical apneusis‐promoting lesions bilaterally in medial parabrachial nucleus, paralyzed and artificially ventilated with phrenic‐governed respirator that permits withholding lung inflations in the inspiratory phases. Note that gain of phrenic signal in F is half those of A‐E. Bars, absence of vagal volume feedback (servorespirator switched off). At right of each record is temperature, end‐tidal CO2 concentration, and in A and F, duration of 1st apneustic breath.

From Euler et al. 176


Figure 33.

Oscillatory apneustic activity, possibly reflecting negative‐feedback regulation of inspiratory activity around the inspiratory off‐switch threshold. Values from cat under light pentobarbital anesthesia, paralyzed and ventilated with phrenic (Phr)‐governed servorespirator. Apneustic activity caused by superficial unilateral cooling in dorsomedial part of medulla caudal to obex in region of nucleus gracilis, combined with withholding inflation (infl) during inspiratory phase by stopping respirator (as indicated by flow record). Insp, inspiration; Exp, expiration. (From K. Budzińska, C. von Euler, I. Homma, T. Pantaleo, and Y. Yamamoto, unpublished observations.)



Figure 34.

Schematic representation of volume (V), flow (V), and muscle pressure (Pmus) during inspiratory (Insp) and expiratory (Exp) phases in a normal spontaneous breath. E1 and E2 denote subdivisions of expiratory phase. Dashed lines, patterns that would occur if expiration were not broken by activity of inspiratory and laryngeal muscles.

Adapted from Mead and Agostoni 357


Figure 35.

A: inspiratory phrenic nerve activity. Records 1‐3 at 3 different time scales. B: efferent inspiratory phrenic activity (upper tracings in each pair) and corresponding expiratory internal intercostal nerve activity (lower tracings in each pair) at increasing levels from records 1 to 3.

From Richter 425


Figure 36.

Pattern of membrane potential (MP) and “integrated” efferent phrenic activity (‘Int’ Phr) of an inspiration‐related, augmenting propriobulbar neuron of thoracotomized cat under pentobarbital anesthesia. Intratracheal pressure (PTr) indicates pattern of artificial respiration. Membrane potential of this neuron shows progressively increasing excitation during inspiratory phase and abrupt inhibition that is strongest initially in the first part of the expiratory phase but lasts the whole expiratory phase.

Adapted from Richter and Ballantyne 427


Figure 37.

Pattern of membrane potential (MP) and “integrated” phrenic nerve activity (‘Int’ Phr) of an early expiration‐related, postinspiration inspiratory activity propriobulbar neuron of thoracotomized cat under pentobarbital anesthesia. Intratracheal pressure (PTr) indicates pattern of artificial respirator.

Adapted from Richter and Ballantyne 427


Figure 38.

Hypothetical variations in central inspiratory inhibition (CII) elicited by inflations (A‐C) and deflations (D‐F) during expiratory phase. A: inflation pulse (1) and small inflation step (2) applied during expiration. B, C: corresponding afferent pulse and step inputs integrated centrally to change CII and thereby expiratory duration (TE). D: subthreshold (3) and suprathreshold (4) deflation steps applied during expiration. E, F: resulting reductions in CII leading to shortening of TE. Response to subthreshold deflation gives graded decrease in TE seen in E, whereas suprathreshold deflation elicits almost immediate cessation of expiration and onset of new inspiration (F). As size and timing of volume maneuvers are varied, time course of the decay rate of CII changes and effect on TE is altered correspondingly. TEC, expiratory duration of control breaths.

Adapted from Knox 294


Figure 39.

Hypothetical changes in process (Φ) controlling expiration duration (TE), i.e., central inspiratory inhibition (CII), in response to rostral pontine stimuli that shorten TE (left) and prolong TE (right). The Φ, or CII, is considered to decay exponentially (time constant, 1.5 s) from its maximum value (1.0) at onset of expiratory phase. Control TE is 3.0 s, which with the time constant sets threshold value for onset of inspiration (ΦTHR) at 0.135. Left top, arrowed lines: pulse inputs that cause 0.250 reduction in Φ, followed by rebound increase of 0.125. Left bottom: shortening of TE produced by stimuli delivered at different times after onset of expiration (tE→ST). Right top, arrowed lines: pulse inputs that cause 0.250 increase in Φ. Right bottom: lengthening of TE produced by rostral pontine stimuli at different times. E, expiratory; I, inspiratory; TEC, expiratory duration of control breath; TEST, expiratory duration of stimulated breath.

From Cohen and Feldman 119


Figure 40.

Functional control of central inspiratory inhibition (CII) and expiratory duration emphasizing roles of magnocellular (FTM) and gigantocellular (FTG) tegmental fields. I O‐S, inspiratory off‐switch mechanisms; CIA, generator of control inspiratory activity; IBS, inspiratory bulbospinal premotor neurons; NPB‐KF, parabrachial‐Kölliker‐Fuse nuclear complex; open triangles, excitation; filled circles, inhibition. Note that CII‐related neurons are normally inhibited during inspiration and have peak discharge rate very early in expiration; thereafter discharge declines slowly. These characteristics correspond to those of early expiration‐related pro‐priobulbar neurons [185; see Fig. 14]. Diagram takes into account the possibility that I O‐S receives its pulmonary stretch‐receptor (PSR) input, combined with CIA‐related input, from Rβ neurons, whereas CII probably receives its PSR input from other nucleus tractus solitarius P‐cell interneurons (P). It cannot be excluded that effects of FTM and FTG lesions and stimulations are due to passing fibers coming from the lateral tegmental fields and projecting to respiratory interneurons. I, inspiratory phase; E, expiratory phase; Temp, temperature‐related inputs from anterior hypothalamus.

Adapted from Knox 295


Figure 41.

“Integrated” expiratory muscle activity of internal intercostal muscle (‘Int’ exp EMG) as function of expiratory duration (TE). During constant drive conditions, peak expiratory muscle activity increases with increasing TE. Changes in TE are produced by changes in lung volume. Inset: simultaneous records of “integrated” phrenic activity (‘Int’ Phr) and “integrated” internal intercostal muscle activity (‘Int’ IIC.) at 3 different TE values. (From A. F. DiMarco, C. von Euler, J. R. Romaniuk, and Y. Yamamoto, unpublished observations.)

References
 1. Adams, C., and R. R. Munro. The relationship between internal intercostal muscle activity and pause placement in the connected utterance of native and non‐native speakers of English. Phonetica 28: 227–250, 1973.
 2. Adrian, E. D. Afferent impulses in the vagus and their effect on respiration. J. Physiol. London 79: 332–358, 1933.
 3. Adrian, E. D., and F. J. J. Buytendijk. Potential changes in the isolated brain stem of the goldfish. J. Physiol. London 71: 121–135, 1931.
 4. Agostoni, E., G. Citterio, and E. d'Angelo. Decay rate of inspiratory muscle pressure during expiration in man. Respir. Physiol. 36: 269–285, 1979.
 5. Albers, C. Der Mechanismus des Wärmehechelns beim Hund. I. Die Ventilation und die arteriellen Blutgase während des Wärmehechelns. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 274: 125–147, 1961.
 6. Altose, M. D., N. S. Cherniack, B. Gothe, S. G. Kelsen, and N. Wolkove. Non‐chemical factors in the control of breathing in patients with pulmonary disorders. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 389–396. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 7. Aminoff, M. J., and T. A. Sears. Spinal integration of segmental cortical and breathing inputs to thoracic respiratory motoneurones. J. Physiol. London 215: 557–575, 1971.
 8. Amoroso, E. C., F. R. Bell, and H. Rosenberg. The localization of respiratory regions in the rhombencephalon of the sheep. Proc. R. Soc. London Ser. B 139: 128–140, 1951.
 9. Andersen, P., and T. A. Sears. Medullary activation of intercostal fusimotor and alpha motoneurones. J. Physiol. London 209: 739–755, 1970.
 10. Andersson, O., H. Forssberg, S. Grillner, and M. Lindquist. Phasic gain control of the transmission in cutaneous reflex pathways to motoneurones during ‘fictive’ locomotion. Brain Res. 149: 503–507, 1978.
 11. Andrezik, J. A., V. Chan‐Palay, and S. L. Palay. The nucleus paragigantocellularis lateralis in the rat. Demonstration of afferents by the retrograde transport of horseradish peroxidase. Anat. Embryol. 161: 373–390, 1981.
 12. Aoki, M., T. Kasaba, and Y. Kurosawa. Respiratory neuron activities in the upper cervical cord of the cat (Abstract). Proc. Int. Congr. Physiol. Sci, 29th, Sydney, 1983, vol. 15, p. 35.
 13. Aoki, M., S. Mori, K. Kawahara, H. Watanabe, and N. Ebata. Generation of spontaneous respiratory rhythm in high spinal cats. Brain Res. 202: 51–63, 1980.
 14. Arnheim, K. Beiträge zur Theorie der Atmung. Arch. Anat. Physiol. Physiol. Abt. 1–50, 1894.
 15. Asmussen, E. Regulation of respiration: “the black box.” Acta Physiol. Scand. 99: 85–90, 1977.
 16. Averill, D. B., W. E. Cameron, and A. J. Berger. Monosynaptic connections of pulmonary stretch receptors with P cells (Abstract). In: Central Neural Production of Periodic Respiratory Movements, edited by J. L. Feldman and A. J. Berger. Chicago, IL: Northwestern Univ., 1982, p. 170–171. (Proc. Int. Symp., Lake Bluff, Illinois, April, 1982.).
 17. Bainton, C. R., and P. A. Kirkwood. The effect of carbon dioxide on the tonic and the rhythmic discharges of expiratory bulbospinal neurones. J. Physiol. London 296: 291–314, 1979.
 18. Bainton, C. R., P. A. Kirkwood, and T. A. Sears. On the transmission of the stimulating effects of carbon dioxide to the muscles of respiration. J. Physiol. London 280: 249–272, 1978.
 19. Baker, J. P. Jr., D. T. Frazier, M. Hanley, and F. W. Zechman. Behaviour of expiratory neurons in responses to mechanical and chemical loading. Respir. Physiol. 36: 337–351, 1979.
 20. Baker, J. P., Jr. and J. E. Remmers. Characteristics of sustained graded inspiratory inhibition by phasic lung volume changes. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 302–307, 1980.
 21. Baker, J. P., Jr. and J. E. Remmers. Temporal correlation of graded reversible inspiratory inhibition with discharge patterns of late inspiratory neurons located in the dorsal respiratory group in cats. Brain Res. 200: 331–340, 1980.
 22. Bakers, J. H. C. M., and S. M. Tenney. The perception of some sensations associated with breathing. Respir. Physiol. 10: 85–92, 1970.
 23. Bartlett, D., Jr. Effects of vagal afferents on laryngeal responses to hypercapnia and hypoxia. Respir. Physiol. 42: 189–198, 1980.
 24. Bartlett, D., Jr. P. Jeffery, G. Sant'Ambrogio, and J. C. M. Wise. Location of stretch receptors in the trachea and bronchi of the dog. J. Physiol. London 258: 409–420, 1976.
 25. Bartlett, D., Jr. J. E. Remmers, and H. Gautier. Laryngeal regulation of respiratory airflow. Respir. Physiol. 18: 194–204, 1973.
 26. Bartlett, D., Jr. G. Sant'Ambrogio, and J. C. M. Wise. Transduction properties of tracheal stretch receptors. J. Physiol. London 258: 421–432, 1976.
 27. Bartoli, A., B. A. Cross, A. Guz, A. Huszczuk, and R. Jefferies. The effect of varying tidal volume on the associated phrenic motoneurone output: studies of vagal and chemical feedback. Respir. Physiol. 25: 135–155, 1975.
 28. Batsel, H. L. Localization of bulbar respiratory center by microelectrode sounding. Exp. Neurol. 9: 410–426, 1964.
 29. Batsel, H. L. Activity of bulbar respiratory neurons during passive hyperventilation. Exp. Neurol. 19: 357–374, 1967.
 30. Batsel, H. L. Respiratory neurons of nucleus tractus solitarius in the dog (Abstract). Federation Proc. 37: 805, 1978.
 31. Baumgarten, R. von, A. Von Baumgarten, and K.‐P. Schaefer. Beitrag zur Lokalisationsfrage bulboreticulärer respiratorischer Neurone der Katze. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 264: 217–227, 1957.
 32. Baumgarten, R. von, and E. Kanzow. The interaction of two types of inspiratory neurons in the region of the tractus solitarius of the cat. Arch. Ital. Biol. 96: 361–373, 1958.
 33. Baumgarten, R. von, and S. Nakayama. Spontane und reizbedingte Anderungen der antidromen Erregbarkeit von bulbären respiratorischen Nervenzellen der Katze. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 281: 245–258, 1964.
 34. Beaton, L. E., and H. W. Magoun. Localization of the medullary respiratory centers in the monkey. Am. J. Physiol. 134: 177–185, 1941.
 35. Bechbache, R. R., H. H. K. Chow, J. Duffin, and E. C. Orsini. The effects of hypercapnia, hypoxia, exercise and anxiety on the pattern of breathing in man. J. Physiol. London 293: 285–300, 1979.
 36. Bechbache, R. R., and J. Duffin. The entrainment of breathing frequency by exercise rhythm. J. Physiol. London 272: 553–561, 1977.
 37. Bechterew, W. v. Die Funktionen der Nervencentra (Erstes Heft). Jena, Germany: Fischer, 1908, 691 p.
 38. Benchetrit, G., and F. Bertrand. A short‐term memory in the respiratory centres: statistical analysis. Respir. Physiol. 23: 147–158, 1975.
 39. Bennet, E. D., M. I. V. Hayson, D. Rubenstein, and E. J. M. Campbell. The ability of man to detect added non‐elastic loads to breathing. Clin. Sci. 23: 155–162, 1962.
 40. Berger, A. J. Dorsal respiratory group neurons in the medulla of cat: spinal projections, responses to lung inflation and superior laryngeal nerve stimulation. Brain Res. 135: 231–254, 1977.
 41. Berger, A. J. Properties of medullary respiratory neurons. Federation Proc. 40: 2378–2383, 1981.
 42. Berger, A. J., and D. B. Averill. Central projection of single slowly adapting pulmonary stretch receptors (PSRs) to the region of the tractus solitarius (TS) as determined by spike triggered averaging (STA). Soc. Neurosci. Abstr. 7: 942, 1981.
 43. Berger, A. J., and K. A. Cooney. Ventilatory effects of kainic acid injection of the ventrolateral solitary nucleus. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 131–140, 1982.
 44. Berntson, G. G. Attack grooming, and threat elicited by stimulation of the pontine tegmentum in cats. Physiol. Behav. 11: 81–87, 1973.
 45. Bertrand, F., D. Caille, and J. F. Vibert. Quantitative effects of anaesthesia on bulbo‐pontine respiratory unit populations. In: Respiratory Centres and Afferent Systems, edited by B. Duron. Paris: INSERM, 1976, vol. 59, p. 55–62.
 46. Bertrand, F., and A. Hugelin. Respiratory synchronizing function of nucleus parabrachialis medialis: pneumotaxic mechanisms. J. Neurophysiol. 34: 189–207, 1971.
 47. Bertrand, F., A. Hugelin, and J. F. Vibert. Quantitative study of anatomical distribution of respiration related neurons in the pons. Exp. Brain Res. 16: 383–399, 1973.
 48. Bertrand, F., A. Hugelin, and J. F. Vibert. A stereologic model of pneumotaxic oscillator based on spatial and temporal distributions of neuronal bursts. J. Neurophysiol. 37: 91–107, 1974.
 49. Bianchi, A. L. Localisation et étude des neurones respiratoires bulbaires. Mise en jeu antidromique par stimulation spinale ou vagale. J. Physiol. Paris 63: 5–40, 1971.
 50. Bianchi, A. L. Modalités de décharge et proprietés anatomofonctionelles des neurones respiratoires bulbaires. J. Physiol. Paris 68: 555–587, 1974.
 51. Bianchi, A. L., and J. C. Barillot. Activity of medullary respiratory neurones during reflexes from the lungs in cats. Respir. Physiol. 25: 335–352, 1975.
 52. Bianchi, A. L., and J. C. Barillot. Mode d'intervention des neurones bulbo‐spinaux et des neurones propriobulbaires inspiratoires dans la commande de la respiration. In: Respiratory Centres and Afferent Systems, edited by B. Duron. Paris: INSERM, 1976, vol. 59, p. 31–39.
 53. Bianchi, A. L., and J. C. Barillot. Effects of anesthesia on activity patterns of respiratory neurones. Adv. Exp. Med. Biol. 99: 17–22, 1978.
 54. Bianchi, A. L., and J. C. Barillot. Respiratory neurons in the region of the retrofacial nucleus: pontile, medullary, spinal and vagal projections. Neurosci. Lett. 31: 277–282, 1982.
 55. Bianconi, R., and F. Raschi. Respiratory control of moto‐neurones of the recurrent laryngeal nerve and hypocapnic apnoea. Arch. Ital. Biol. 102: 56–73, 1964.
 56. Binet, L., M. V. Strumza, and J. M. Strumza‐Poutonnet. Sur la “respiration” expérimentale médullaire. J. Physiol. Paris 45: 41–43, 1953.
 57. Black, A. M. S., and R. W. Torrance. Chemoreceptor effects in the respiratory cycle (Abstract). J. Physiol. London 189: 59P–61P, 1967.
 58. Black, A. M. S., and R. W. Torrance. Respiratory oscillations in chemoreceptor discharge in the control of breathing. Respir. Physiol. 13: 221–237, 1971.
 59. Borchert, J., A. Dinter, H. P. Koepchen, and A. Schlarnke. The direct action of hypoxia on medullary respiratory neurones. Pfluegers Arch. 355, Suppl.: R31, 1975.
 60. Bowden, E. S., and J. Duffin. Response of the dorsomedial respiratory neurons of cats to changes in lung volume. Exp. Neurol. 69: 334–348, 1980.
 61. Bowden, R. E. M. Innervation of intrinsic laryngeal muscles. In: Ventilatory and Phonatory Control Systems, edited by B. Wyke. London: Oxford Univ. Press, 1974, p. 370–391.
 62. Boyd, T. E., and C. A. Maaske. Vagal inhibition of inspiration, and accompanying changes of respiratory rhythm. J. Neurophysiol. 2: 533–542, 1939.
 63. Bradley, G. W. Pulmonary receptor recording in vitro. Acta Physiol. Scand. 91: 427–429, 1974.
 64. Bradley, G. W. The effect of CO2, body temperature, and anaesthesia on the response to vagal stimulation. In: Respiratory Centres and Afferent Systems, edited by B. Duron. Paris: INSERM, 1976, vol. 59, p. 139–154.
 65. Bradley, G. W. Control of the breathing pattern. In: Respiratory Physiology II, edited by J. G. Widdicombe. Baltimore, MD: University Park, 1977, vol. 14, p. 185–217. (Int. Rev. Physiol. Ser.).
 66. Bradley, G. W., C. Von Euler, I. Marttila, and B. Roos. Transient and steady state effects of CO2 on mechanisms determining rate and depth of breathing. Acta Physiol. Scand. 92: 341–350, 1974.
 67. Bradley, G. W., C. Von Euler, I. Marttila, and B. Roos. Steady state effects of CO2 and temperature on the relationship between lung volume and inspiratory duration (Hering‐Breuer threshold curve). Acta Physiol. Scand. 92: 351–363, 1974.
 68. Bradley, G. W., C. Von Euler, I. Marttila, and B. Roos. A model of the central and reflex inhibition of inspiration in the cat. Biol. Cybern. 19: 105–116, 1975.
 69. Bradley, G. W., and N. Scheurmier. The transduction properties of tracheal stretch receptors in vitro. Respir. Physiol. 31: 365–375, 1977.
 70. Breckenridge, C. G., and H. E. Hoff. Pontine and medullary regulation of respiration in the cat. Am. J. Physiol. 160: 385–394, 1950.
 71. Breuer, J. Die Selbststeuerung der Atmung durch den Nervus vagus. Sitzungsber. Akad. Wiss. Wien Abt. 2 58: 909–937, 1868.
 72. Brodie, D. A., and H. L. Borison. Evidence for a medullary inspiratory pacemaker. Functional concept of central regulation of respiration. Am. J. Physiol. 188: 347–354, 1957.
 73. Brookhart, J. M. The respiratory effects of localized faradic stimulation of the medulla oblongata. Am. J. Physiol. 129: 709–723, 1940.
 74. Brown, T. G. On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J. Physiol. London 48: 18–46, 1914.
 75. Brown‐Séquard, C. E. Recherches sur les causes de mort après l'ablation de la partie de la moelle allongée qui a été nomnée point vital. J. Physiol. Paris 1: 217–233, 1858.
 76. Brown‐Séquard, C. E. Recherches expérimentales sur la physiologie de la moelle allongée. J. Physiol. Paris 3: 151–157, 1860.
 77. Brown‐Séquard, C. E. Faits cliniques et expérimentaux contre l'opinion que le centre respiratoire se trouve uniquement ou principalement dans le bulbe rachidien. Arch. Physiol. Norm. Pathol. 25: 131–141, 1893.
 78. Bruce, E. N., C. Von Euler, J. R. Romaniuk, and S. M. Yamashiro. Bilateral reflex effects on phrenic nerve activity in response to single‐shock vagal stimulation. Acta Physiol. Scand. 116: 351–362, 1982.
 79. Bruce, E., C. Von Euler, and S. Yamashiro. Central chemical drive and reflex influences on phrenic activity after high ipsilateral cervical hemisection (Abstract). Physiologist 22 (4): 15, 1979.
 80. Bruce, E. N., C. Von Euler, and S. M. Yamashiro. Reflex and central chemoceptive control of the time course of inspiratory activity. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 177–184. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 81. Bruce, E. N., and M. D. Goldman. High‐frequency oscillations in human respiratory electromyograms during volitional breathing. Brain Res. 269: 259–265, 1983.
 82. Budzińska, K., C. Von Euler, I. Homma, T. Pantaleo, and Y. Yamamoto. On the differential control of the engagement of the different respiratory muscles (Abstract). Bull. Eur. Physiopathol. Respir. 18: 10, 1982.
 83. Budzińska, K., C. Von Euler, I. Homma, T. Pantaleo, and Y. Yamamoto. Apnoea induced by focal cold block in the rostral medulla (Abstract). Boll. Soc. Ital. Biol. Sper. 60, Suppl.: 29–30, 1984.
 84. Budzińska, K., C. Von Euler, T. Pantaleo, and Y. Yamamoto. Respiratory activity during focal cold block of the medulla (Abstract). Bull. Eur. Physiopathol. Respir. 19: 66P, 1983.
 85. Budzińska, K., C. Von Euler, T. Pantaleo, and Y. Yamamoto. Effects of focal block in the medulla on expiratory activity (Abstract). Acta Physiol. Scand. 120: 26A, 1984.
 86. Buff, R., and E. A. Koller. Studies on mechanisms underlying the reflex hyperpnoea induced by inhalation of chemical irritants. Respir. Physiol. 21: 371–383, 1974.
 87. Bülow, K. Respiration and wakefulness in man. Acta Physiol. Scand. 59, Suppl. 209: 1–110, 1963.
 88. Bülow, K., and D. H. Ingvar. Respiration and state of wakefulness in normals, studied by spirography, capnography and EEG. Acta Physiol. Scand. 51: 230–238, 1961.
 89. Bunn, J. C., and J. Mead. Control of ventilation during speech. J. Appl. Physiol. 31: 870–872, 1971.
 90. Burns, B. D., and G. C. Salmoiraghi. Repetitive firing of respiratory neurones during their burst activity. J. Neurophysiol. 23: 27–46, 1960.
 91. Burrows, M. The control of sets of motoneurones by local interneurones in the locust. J. Physiol. London 298: 213–233, 1980.
 92. Bystrzycka, E. K. Afferent projections to the dorsal and ventral respiratory nuclei in the medulla oblongata of the cat studied by the horseradish peroxidase technique. Brain Res. 185: 59–66, 1980.
 93. Bystrzycka, E., H. Gromysz, A. Huszczuk, and W. Karczewski. Etude chez le lapin de l'activité électrique des neurones respiratoires du tronc cérébral. I. Influence de la vagotomie et de l'injection d'histamine. Electroencephalogr. Clin. Neurophysiol. 29: 363–372, 1970.
 94. Caille, D., J. F. Vibert, F. Bertrand, H. Gromysz, and A. Hugelin. Pentobarbitone effects on respiration related units: selective depression of bulbopontine reticular neurones. Respir. Physiol. 36: 201–216, 1979.
 95. Camerer, H., D. W. Richter, N. Röhrig, and M. Meesmann. Lung stretch receptor inputs to Rβ‐neurones: a model for “respiratory gating.” In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 261–266. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 96. Campbell, E. J. M., E. Agostoni, and J. Newsom Davis. The Respiratory Muscles. Mechanics and Neural Control (2nd ed.). London: Lloyd‐Luke, 1970.
 97. Campbell, E. J. M., O. P. Dinnick, and J. B. L. Howell. The immediate effects of elastic loads on the breathing of man. J. Physiol. London 156: 260–273, 1961.
 98. Carlo, W. A., R. J. Martin, E. F. Abboud, E. N. Bruce, and K. P. Strohl. Effect of sleep state and hypercapnia on alae nasi and diaphragm EMGs in preterm infants. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 1590–1596, 1983.
 99. Carregal, E. J. A., B. Williams, and L. Birzis. Respiratory centers in the dog and squirrel monkey: a comparative study. Respir. Physiol. 3: 333–348, 1967.
 100. Chan‐Palay, V. Cerebellar Dentate Nucleus. Organization, Cytology and Transmitters. Berlin: Springer‐Verlag, 1977, 548 p.
 101. Chan‐Palay, V. Indolamine neurons and their processes in the normal rat brain and in chronic diet‐induced thiamine deficiency demonstrated by uptake of 3H‐serotonin. J. Comp. Neurol. 176: 467–494, 1977.
 102. Chan‐Palay, V. Morphological correlates for transmitter synthesis, transport, release, uptake and catabolism: a study of serotonin neurons in the nucleus paragigantocellularis lateralis. In: Amino Acids as Chemical Transmitters, edited by F. Fonnum. New York: Plenum, 1978, p. 1–29. (NATO Adv. Study Symp.).
 103. Cherniack, N. S., E. Bruce, W. van de Graaff, and J. Mitra. Chemical and neural mechanisms modifying the activity of upper airway muscles (Abstract). In: Central Neural Production of Periodic Respiratory Movements, edited by J. L. Feldman and A. J. Berger. Chicago, IL: Northwestern Univ., 1982, p. 99–100. (Proc. Int. Symp., Lake Bluff, Illinois, April, 1982.).
 104. Cherniack, N. S., C. Von Euler, I. Homma, and F. F. Kao. Graded changes in central chemoceptor input by local temperature changes on the ventral surface of medulla. J. Physiol. London 287: 191–211, 1979.
 105. Cherniack, N. S., C. Von Euler, I. Homma, and F. F. Kao. Experimentally induced Cheyne‐Stokes breathing. Respir. Physiol. 37: 185–200, 1979.
 106. Chernick, V. Endorphines and ventilatory control. N. Engl. J. Med. 304: 1227–1228, 1981.
 107. Chu, N.‐S., and F. E. Bloom. The catecholamine‐containing neurons in the cat dorsolateral pontine tegmentum: distribution of the cell bodies and some axonal projections. Brain Res. 66: 1–21, 1974.
 108. Citterio, G., and E. Agostoni. Decay of inspiratory muscle activity and breath timing in man. Respir. Physiol. 43: 117–132, 1981.
 109. Clark, F. J., and C. Von Euler. On the regulation of depth and rate of breathing. J. Physiol. London 222: 267–295, 1972.
 110. Coglianese, C. J., C. N. Peiss, and R. D. Wurster. Rhythmic phrenic nerve activity and respiratory activity in spinal dogs. Respir. Physiol. 29: 247–254, 1977.
 111. Cohen, M. I. Intrinsic periodicity of the pontile pneumotaxic mechanism. Am. J. Physiol. 195: 23–27, 1958.
 112. Cohen, M. I. Respiratory periodicity in the paralyzed, vagotomized cat: hypocapnic polypnea. Am. J. Physiol. 206: 845–854, 1964.
 113. Cohen, M. I. Discharge patterns of brain‐stem respiratory neurons in relation to carbon dioxide tension. J. Neurophysiol. 31: 142–165, 1968.
 114. Cohen, M. I. Discharge patterns of brain‐stem respiratory neurons during Hering‐Breuer reflex evoked by lung inflation. J. Neurophysiol. 32: 356–374, 1969.
 115. Cohen, M. I. Switching of the respiratory phases and evoked phrenic responses produced by rostral pontine electrical stimulation. J. Physiol. London 217: 133–158, 1971.
 116. Cohen, M. I. Synchronization of discharge, spontaneous and evoked, between inspiratory neurons. Acta Neurobiol. Exp. 33: 189–218, 1973.
 117. Cohen, M. I. The genesis of respiratory rhythmicity. In: Central Rhythmic and Regulation, edited by W. Umbach and H. P. Koepchen. Stuttgart, West Germany: Hippokrates, 1974, p. 15–35.
 118. Cohen, M. I. Phrenic and recurrent laryngeal discharge patterns and the Hering‐Breuer reflex. Am. J. Physiol. 228: 1489–1496, 1975.
 119. Cohen, M. I. Synaptic relations between inspiratory neurons. In: Respiratory Centres and Afferent Systems, edited by B. Duron. Paris: INSERM, 1976, vol. 59, p. 19–29.
 120. Cohen, M. I. Neurogenesis of respiratory rhythm in the mammal. Physiol. Rev. 59: 1105–1173, 1979.
 121. Cohen, M. I. Central determinants of respiratory rhythm. Annu. Rev. Physiol. 43: 91–104, 1981.
 122. Cohen, M. I. Pulmonary afferent and central influences on respiratory phase‐switching in the cat. Can. J. Physiol. Pharmacol. 59: 675–682, 1981.
 123. Cohen, M. I., and J. L. Feldman. Models of respiratory phase‐switching. Federation Proc. 36: 2367–2374, 1977.
 124. Cohen, M. I., and J. L. Feldman. Central mechanisms controlling expiratory duration. In: The Regulation of Respiration During Sleep and Anesthesia. Advances in Experimental Medicine and Biology, edited by R. S. Fitzgerald, H. Gautier, and S. Lahiri. New York: Plenum, 1978, vol. 99, p. 369–382.
 125. Cohen, M. I., M. F. Piercey, P. M. Gootman, and P. Wolotsky. Synaptic connections between medullary inspiratory neurons and phrenic motoneurons as revealed by cross‐correlation. Brain Res. 81: 319–324, 1974.
 126. Cohen, M. I., and S. C. Wang. Respiratory neuronal activity in pons of cat. J. Neurophysiol. 22: 33–50, 1959.
 127. Corda, M., G. Eklund, and C. Von Euler. External intercostal and phrenic α motor responses to changes in respiratory load. Acta Physiol. Scand. 63: 391–400, 1965.
 128. Corda, M., C. Von Euler, and G. Lennerstrand. Reflex and cerebellar influences on α and on ‘rhythmic’ and ‘tonic’ γ activity in the intercostal muscle. J. Physiol. London 184: 898–923, 1966.
 129. Cordier, D., and C. Heymans. Le centre respiratoires. Ann. Physiol. Physicochim. Biol. 11: 535–757, 1935.
 130. Crawford, E. C., Jr. Mechanical aspects of panting in dogs. J. Appl. Physiol. 17: 249–251, 1962.
 131. Cross, B. A., P. W. Jones, and A. Guz. The role of vagal afferent information during inspiration in determining phrenic motoneurone output. Respir. Physiol. 39: 149–167, 1980.
 132. Dahlström, A., and K. Fuxe. Evidence for the existence of monoamine‐containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 62, Suppl. 232: 1–55, 1964.
 133. d'Angelo, E. Central and direct vagal dependent control of expiratory duration in anesthetized rabbits. Respir. Physiol. 34: 103–109, 1978.
 134. d'Angelo, E. Cournand lecture. Control of breathing: central mechanisms and peripheral inputs. Bull. Eur. Physiopathol. Respir. 16: 111–122, 1980.
 135. Davis, H. L., W. S. Fowler, and E. M. Lambert. Effect of volume and rate of inflation and deflation on transpulmonary pressure and response of pulmonary stretch receptors. Am. J. Physiol. 187: 558–566, 1956.
 136. Davis, W. J., and R. Gillette. Neural correlate of behavioural plasticity in command neurons of Pleurobranchaea. Science 199: 801–804, 1978.
 137. Decima, E. E., and C. Von Euler. Excitability of phrenic motoneurones to afferent input from lower intercostal nerves in the spinal cat. Acta Physiol. Scand. 75: 580–591, 1969.
 138. Decima, E. E., and C. Von Euler. Intercostal and cerebellar influences on efferent phrenic activity in the decerebrate cat. Acta Physiol. Scand. 76: 148–158, 1969.
 139. Decima, E. E., C. Von Euler, and U. Thoden. Intercostal‐to‐phrenic reflexes in the spinal cat. Acta Physiol. Scand. 75: 568–579, 1969.
 140. De Goede, J., A. Berkenbosch, C. N. Olievier, and P. H. Quanjer. Ventilatory response to carbon dioxide and apnoeic thresholds. Respir. Physiol. 45: 185–199, 1981.
 141. Denavit‐Saubié, M., J. Champagnat, G. Rondouin, and M. P. Surun. The effect of soma destruction in the NTS region following kainic acid microinjections (Abstract). In: The Role of the Nuclei Tractus Solitarii in the Central Regulation of the Respiratory and Cardiovascular Systems, edited by D. W. Richter. Heidelberg, West Germany: Univ. of Heidelberg, 1980. (Int. Workshop on Central Control of Circulation and Respiration, Heidelberg, March, 1980.).
 142. Dermietzel, R. Central chemosensitivity, morphological studies. In: Acid Base Homeostasis of the Brain Extracellular Fluid and the Respiratory Control System, edited by H. H. Loeschcke. Stuttgart, West Germany: Thieme, 1976, p. 52–66.
 143. DiMarco, A. F., C. Von Euler, J. R. Romaniuk, and Y. Yamamoto. Low threshold facilitation of inspiration by lung volume increments. Acta Physiol. Scand. 109: 343–344, 1980.
 144. DiMarco, A. F., C. Von Euler, R. Romaniuk, and Y. Yamamoto. Changes in respiratory activity associated with locomotion (Abstract). Federation Proc. 40: 379, 1981.
 145. DiMarco, A. F., C. Von Euler, J. R. Romaniuk, and Y. Yamamoto. Positive feedback facilitation of external intercostal and phrenic inspiratory activity by pulmonary stretch receptors. Acta Physiol. Scand. 113: 375–386, 1981.
 146. DiMarco, A. F., J. R. Romaniuk, C. Von Euler, and Y. Yamamoto. Immediate changes in ventilation and respiratory pattern associated with onset and cessation of locomotion in the cat. J. Physiol. London 343: 1–16, 1983.
 147. Dirken, M. N. J., and S. Woldring. Unit activity in bulbar respiratory centre. J. Neurophysiol. 14: 211–225, 1951.
 148. Dixon, M., M. Szereda‐Przestaszewska, J. G. Widdicombe, and J. C. M. Wise. Studies on laryngeal calibre during stimulation of peripheral and central chemoreceptors, pneumothorax and increased respiratory loads. J. Physiol. London 239: 347–363, 1974.
 149. Donoghue, S., M. Garcia, D. Jordan, and K. M. Spyer. The brain‐stem projections of pulmonary stretch afferent neurones in cats and rabbits. J. Physiol. London 322: 353–363, 1982.
 150. Doris, P. A., and M. A. Baker. Hypothalamic control of thermoregulation during dehydration. Brain Res. 206: 219–222, 1981.
 151. Downman, C. B. B. Skeletal muscle reflexes of splanchnic and intercostal nerve origin in acute spinal and decerebrate cats. J. Neurophysiol. 18: 217–235, 1955.
 152. Draper, M. H., O. Ladefoged, and D. Whitteridge. Respiratory muscles in speech. J. Speech Hear. Res. 2: 16–27, 1959.
 153. Duron, B. Postural and ventilatory functions of intercostal muscles. Acta Neurobiol. Exp. 33: 355–380, 1973.
 154. Edelman, G. M. Group selection and phasic reentrant signaling: a theory of higher brain function. In: The Mindful Brain, edited by G. M. Edelman and V. B. Mountcastle. Cambridge, MA: MIT Press, 1982, p. 51–100.
 155. Eklund, G., C. Von Euler, and S. Rutkowski. Spontaneous and reflex activity of intercostal gamma motorneurones. J. Physiol. London 171: 139–163, 1964.
 156. Elam, M., T. Yao, P. Thorén, and T. H. Svensson. Hypercapnia and hypoxia: chemoreceptor‐mediated control of locus coeruleus neurons and splanchnic, sympathetic nerves. Brain Res. 222: 373–381, 1981.
 157. Eldridge, F. L. Relationship between phrenic nerve activity and ventilation. Am. J. Physiol. 221: 535–543, 1971.
 158. Eldrige, F. L. The importance of timing on the respiratory effects of intermittent carotid body stimulation. J. Physiol. London 222: 319–333, 1972.
 159. Eldridge, F. L. Relationship between respiratory nerve and muscle activity and muscle force output. J. Appl. Physiol. 39: 567–574, 1975.
 160. Eldridge, F. L. Expiratory effects of brief carotid sinus nerve and carotid body stimulations. Respir. Physiol. 26: 395–410, 1976.
 161. Eldridge, F. L., and P. Gill‐Kumar. Central neural drive mechanisms and respiratory afterdischarge—the “T‐pool” concept. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 101–113. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 162. Eldridge, F. L., and D. E. Millhorn. Central regulation of respiration by endogenous neurotransmitters and neuromodulators. Annu. Rev. Physiol. 43: 121–135, 1981.
 163. Eldridge, F. L., D. E. Millhorn, and T. G. Waldrop. Exercise hyperpnea and locomotion: parallel activation from the hypothalamus. Science 211: 844–846, 1981.
 164. Errington, M. L., and M. C. Dashwood. Projections to the ventral surface of the cat brainstem demonstrated by horseradish peroxidase. Neurosci. Lett. 12: 153–158, 1979.
 165. Euler, C. von. Physiology and pharmacology of temperature regulation. Pharmacol. Rev. 13: 361–398, 1961.
 166. Euler, C. von. Fusimotor activity in spindle control of natural movements with special reference to respiration. In: Excitatory Synaptic Mechanisms, edited by P. Andersen and J. K. S. Jansen. Oslo: Universitetsforlaget, 1970, p. 341–349.
 167. Euler, C. von. Time‐dependent changes in responsiveness to inflations and deflations of the lungs during inspiration and expiration; their significance for the control of depth and rate of breathing. Arch. Fisiol. 69, Suppl.: 424–432, 1972.
 168. Euler, C. von. The role of proprioceptive afferents in the control of respiratory muscles. Acta Neurobiol. Exp. 33: 329–341, 1973.
 169. Euler, C. von. On the role of proprioceptors in perception and execution of motor acts with special reference to breathing. In: Loaded Breathing, edited by L. D. Pengelly, A. S. Rebuck, and E. J. M. Campbell. Ontario: Longman, 1974, p. 139–149.
 170. Euler, C. von. The functional organization of the respiratory phase‐switching mechanisms. Federation Proc. 36: 2375–2380, 1977.
 171. Euler, C. von. On the neural organization of the motor control of the diaphragm. Am. Rev. Respir. Dis. 119, Suppl.: 45–50, 1979.
 172. Euler, C. von. Central pattern generation during breathing. Trends Neurosci. 3: 275–277, 1980.
 173. Euler, C. von. The contribution of sensory inputs to the pattern generation of breathing. Can. J. Physiol. Pharmacol. 59: 700–706, 1981.
 174. Euler, C. von. Some aspects on speech breathing physiology. In: Speech Motor Control, edited by S. Grillner, B. Lindblom, J. Lubker, and A. Persson. Oxford, UK: Pergamon, 1982, vol. 36, p. 95–103. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 175. Euler, C. von. On the central pattern generator for the basic breathing rhythmicity. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 55: 1647–1659, 1983.
 176. Euler, C. von. On the functional organization of the generators of rhythmic motor synergy in breathing. In: Central Neurone Environment and the Control Systems of Breathing and Circulation, edited by M. E. Schlaefke, H. P. Koepchen, and W. R. See. Berlin: Springer‐Verlag, 1983, p. 157–163.
 177. Euler, C. von. On the origin and pattern control of breathing rhythmicity in mammals. In: Neural Origin of Rhythmic Movements, edited by A. Roberts and B. Roberts. London: Cambridge Univ. Press, 1983, p. 469–485. (Soc. Exp. Biol. Symp., Brighton, Sept. 1982.).
 178. Euler, C. von, and H. W. Fritts. Quantitative aspects on respiratory reflexes from the lungs and chest walls of cats. Acta Physiol. Scand. 57: 284–300, 1963.
 179. Euler, C. von. J. N. Hayward, I. Marttila, and R. J. Wyman. Respiratory neurones of the ventrolateral nucleus of the solitary tract of cat: vagal input, spinal connections and morphological identification. Brain Res. 61: 1–22, 1973.
 180. Euler, C. von. J. N. Hayward, I. Marttila, and R. J. Wyman. The spinal connections of the inspiratory neurones of the ventrolateral nucleus of the cat's tractus solitarius. Brain Res. 61: 23–33, 1973.
 181. Euler, C. von. F. Herrero, and I. Wexler. Control mechanisms determining rate and depth of respiratory movements. Respir. Physiol. 10: 93–108, 1970.
 182. Euler, C. von. I. Marttila, J. E. Remmers, and T. Trippenbach. Effects of lesions in the parabrachial nucleus on the mechanisms for central and reflex termination of inspiration in the cat. Acta Physiol. Scand. 96: 324–337, 1976.
 183. Euler, C. von, and U. Söderberg. Medullary chemo‐sensitive receptors. J. Physiol. London 118: 545–554, 1952.
 184. Euler, C. von, and T. Trippenbach. Temperature effects on the inflation reflex during expiratory time in the cat. Acta. Physiol. Scand. 96: 338–350, 1976.
 185. Euler, C. von, and T. Trippenbach. Excitability changes of the inspiratory ‘off‐switch’ mechanism tested by electrical stimulation in nucleus parabrachialis in the cat. Acta Physiol. Scand. 97: 175–188, 1976.
 186. Euler, C. von, and T. Trippenbach. Proprioceptive lung reflexes controlling the pattern of breathing. In: Respiratory Adaptations, Capillary Exchange and Reflex Mechanisms, edited by A. S. Paintal and P. Gill‐Kumar. New Delhi: Vallabhbhai Patel Chest Inst., 1977, p. 326–333.
 187. Evanich, M. J., M. Lopata, and R. V. Lourenço. Analytical methods for the study of electrical activity in respiratory nerves and muscles. Chest 70: 1585–1625, 1976.
 188. Eyzaguirre, C., and J. R. Taylor. Respiratory discharge of some vagal motoneurons. J. Neurophysiol. 26: 61–78, 1963.
 189. Fallert, M., G. Maneck, and U. Wellner. The bulbar respiratory centre in the rabbit. I. Changes of respiratory parameters caused by intermittent electrical bulbar stimulation during inspiration or expiration. Pfluegers Arch. 364: 257–268, 1976.
 190. Feldman, J. L. Interactions between brainstem respiratory neurons? Federation Proc. 40: 2384–2388, 1981.
 191. Feldman, J. L., and M. I. Cohen. Relation between expiratory duration and rostral medullary expiratory neuronal discharge. Brain Res. 141: 172–178, 1978.
 192. Feldman, J. L., M. I. Cohen, and P. Wolotsky. Phasic pulmonary afferent activity drastically alters the respiratory modulation of neurons in the rostral pontine pneumotaxic centre. In: Respiratory Centres and Afferent Systems, edited by B. Duron. Paris: INSERM, 1976, vol. 59, p. 95–105.
 193. Feldman, J. L., M. I. Cohen, and P. Wolotsky. Powerful inhibition of pontine respiratory neurons by pulmonary afferent activity. Brain Res. 104: 341–346, 1976.
 194. Feldman, J. L., and J. D. Cowan. Large‐scale activity in neural nets. II. A model for the brainstem respiratory oscillator. Biol. Cybern. 17: 39–51, 1975.
 195. Feldman, J. L., and H. Gautier. Interaction of pulmonary afferents and pneumotaxic center in control of respiratory pattern in cats. J. Neurophysiol. 39: 31–44, 1976.
 196. Feldman, J. L., D. Sommer, and M. I. Cohen. Short time scale correlations between discharges of medullary respiratory neurons. J. Neurophysiol. 43: 1284–1295, 1980.
 197. Feldman, J. L., and D. F. Speck. Interactions among inspiratory neurons in dorsal and ventral respiratory groups in cat medulla. J. Neurophysiol. 49: 472–490, 1983.
 198. Fenn, W. O. Introductory remarks. Ann. NY Acad. Sci. 109: 415–417, 1963.
 199. Fink, B. R. Influence of cerebral activity in wakefulness on regulation of breathing. J. Appl. Physiol. 16: 15–20, 1961.
 200. Fink, B. R., R. Katz, H. Reinhold, and A. Schoolman. Suprapontine mechanisms in regulation of respiration. Am. J. Physiol. 202: 217–220, 1962.
 201. Flourens, P. Note sur le point vital de la moelle alongée. C. R. Acad. Sci. Paris 33: 437–439, 1851.
 202. Frey, M. von. Studien über den Kraftsinn. Z. Biol. Munich 63: 129–154, 1913.
 203. Frey, M. von. Die Vergleichung von Gewichten mit Helfe des Kraftsinns. Z. Biol. Munich 65: 203–224, 1914.
 204. Gacek, R. R. Localization of laryngeal motor neurons in the kitten. Laryngoscope 85: 1841–1860, 1975.
 205. Gad, J. Über das Athmungscentrum in der Medulla oblongata. Arch. Anat. Physiol. 17: 175–184, 1893.
 206. Gad, J., and G. Marinesco. Recherches expérimentales sur le centre respiratoire bulbaire. C. R. Acad. Sci. Paris 115: 444–447, 1892.
 207. Gautier, H. Control of the pattern of breathing. Clin. Sci. 58: 343–348, 1980.
 208. Gautier, H., and F. Bertrand. Respiratory effects of pneumotaxic center lesions and subsequent vagotomy in chronic cats. Respir. Physiol. 23: 71–85, 1975.
 209. Gautier, H., and M. Bonora. Possible alterations in brain monoamine metabolism during hypoxia‐induced tachypnea in cats. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 769–777, 1980.
 210. Gautier, H., M. Bonora, and J. H. Gaudy. Breuer‐Hering inflation reflex and breathing pattern in anesthetized humans and cats. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1162–1168, 1981.
 211. Gautier, H., J. E. Remmers, and D. Bartlett, Jr. Control of the duration of expiration. Respir. Physiol. 18: 205–221, 1973.
 212. Gesell, R., J. Bricker, and C. Magee. Structural and functional organization of the central mechanism controlling breathing. Am. J. Physiol. 117: 423–452, 1936.
 213. Gesell, R., C. S. Magee, and J. W. Bricker. Activity patterns of the respiratory neurons and muscles. Am. J. Physiol. 128: 615–628, 1940.
 214. Gill, P. K., and M. Kuno. Excitatory and inhibitory actions of phrenic motoneurones. J. Physiol. London 168: 274–289, 1963.
 215. Gill‐Kumar, P., and M. Kuno. Properties of phrenic motoneurons and their responses to some synaptic inputs. Am. Rev. Respir. Dis. 119: 51–55, 1979.
 216. Glogowska, M., and M. Szereda‐Przestaszewska. The effect of the larynx on the breathing pattern in anaesthetized rabbits. Acta Physiol. Pol. 32: 437–447, 1981.
 217. Gonsalves, S. F., and H. L. Borison. Apneustic respiration normalized by an atypical cholinergic drug action in cats. Respir. Physiol. 43: 249–262, 1981.
 218. Gootman, P. M., and M. I. Cohen. The interrelationships between sympathetic discharge and central respiratory drive. In: Central Rhythmic and Regulation, edited by W. Umbach and H. P. Koepchen. Stuttgart, West Germany: Hippokrates, 1974, p. 195–209.
 219. Gootman, P. M., J. L. Feldman, and M. I. Cohen. Pulmonary afferent influences on respiratory modulation of sympathetic discharge. In: Central Interaction Between Respiratory and Cardiovascular Control, edited by H. P. Koepchen, S. M. Hilton, and A. Trzebski. Berlin: Springer‐Verlag, 1980, p. 172–179.
 220. Gottfried, S. B., K. P. Strohl, W. van de Graaff, J. M. Fouke, and A. F. DiMarco. Effects of phrenic stimulation on upper airway resistance in anesthetized dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 55: 419–426, 1983.
 221. Granit, R. Constant errors in the execution and appreciation of movement. Brain 95: 649–660, 1972.
 222. Grillner, S. On the neural control of movement—a comparison of different basic rhythmic behaviors. In: Functions and Formation of Neural Systems: Report of the Dahlem Workshop on Function and Formation of Neural Systems, edited by G. S. Stent. Berlin: Dahlem, 1977, vol. 6, p. 197–224. (Life Sci. Res. Rep.).
 223. Grillner, S. Control of locomotion in bipeds, tetrapods, and fish. In: Handbook of Physiology. The Nervous System, edited by J. M. Brookhart and V. B. Mountcastle. Bethesda, MD: Am. Physiol. Soc., 1981, sect. 1, vol. II, pt. 2, chapt. 26, p. 1179–1236.
 224. Grodins, F. S., and S. M. Yamashiro. What is the pattern of breathing regulated for? In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 169–176. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 225. Gromysz, H., and W. A. Karczewski. Responses of respiratory neurones of the rabbit to some excitatory and inhibitory stimuli. Acta Neurobiol. Exp. 33: 245–261, 1973.
 226. Gromysz, H., and W. A. Karczewski. Respiratory neurons of the ventral respiratory nucleus of the rabbit and their vagal connections. Acta Neurobiol. Exp. 36: 581–592, 1976.
 227. Gromysz, H., and W. A. Karczewski. The effects of brainstem transection on respiratory activity in the rabbit. Acta Neurobiol. Exp. 41: 225–235, 1981.
 228. Gromysz, H., and W. A. Karczewski. Respiratory activity generated by a split brainstem preparation of the rabbit. Acta Neurobiol. Exp. 41: 237–242, 1981.
 229. Gromysz, H., and W. A. Karczewski. Phrenic motoneurone activity in split‐brainstem cats and monkeys. Respir. Physiol. 50: 51–61, 1982.
 230. Gromysz, H., W. A. Karczewski, E. Naslonska, and J. R. Romaniuk. The role of timing and magnitude of the vagal input in controlling the phrenic output in rabbits and baboons. Acta Neurobiol. Exp. 40: 563–574, 1980.
 231. Grónbæk, P., E. Moltke, and A. P. Skouby. The influence of arterial blood gases and the mental state on the activity pattern of the diaphragm and some muscles of the trunk and neck in patients with asthma and emphysema. Acta Med. Scand. 173: 723–730, 1963.
 232. Grotek, A., J. R. Romaniuk, and M. Ryba. Relation between pulmonary stretch receptors activity and transpulmonary pressure (Abstract). IRCS J. Med. Sci. 3: 12, 1975.
 233. Grunstein, M. M., W. M. Fisk, L. A. Leiter, and J. Milic‐Emili. Effect of body temperature on respiratory frequency in anesthetized cats. J. Appl. Physiol. 34: 154–159, 1973.
 234. Grunstein, M. M., M. Younes, and J. Milic‐Emili. Control of tidal volume and respiratory frequency in anesthetized cats. J. Appl. Physiol. 35: 463–476, 1973.
 235. Guz, A., and D. Trenchard. Pulmonary stretch receptor activity in man: a comparison with dog and cat. J. Physiol. London 213: 329–343, 1971.
 236. Haber, E., K. W. Kohn, S. H. Ngai, D. A. Holaday, and S. C. Wang. Localization of spontaneous respiratory neuronal activities in the medulla oblongata of the cat: a new location of the expiratory center. Am. J. Physiol. 190: 350–355, 1957.
 237. Hagbarth, K.‐E., R. G. Hallin, A. Hongell, H. E. Torebjörk, and B. G. Wallin. General characteristics of sympathetic activity in human skin nerves. Acta Physiol. Scand. 84: 164–176, 1972.
 238. Hagbarth, K.‐E., and Å. B. Vallbo. Pulse and respiratory grouping of sympathetic impulses in human muscle nerves. Acta Physiol. Scand. 74: 96–108, 1968.
 239. Harding, R., P. Johnson, and M. E. McClelland. The expiratory role of the larynx during development and the influence of behavioural state. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 353–359. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 240. Harding, R., P. Johnson, and M. E. McClelland. Respiratory function of the larynx in developing sheep and the influence of sleep state. Respir. Physiol. 40: 165–180, 1980.
 241. Harding, R., and D. A. Titchen. Oesophageal and diaphragmatic activity during sucking in lambs. J. Physiol. London 321: 317–329, 1981.
 242. Harrer, G. Somatische Aspekte des Musikerlebens. Med. Monatsspiegel 6: 124–217, 1970.
 243. Head, H. On the regulation of respiration. J. Physiol. London 10: 1–71, 1889.
 244. Hedner, T., J. Hedner, J. Jonason, and D. Lundberg. Evidence suggesting a role of Substance P in central respiratory regulation in the rat. Acta Physiol. Scand. 112: 487–489, 1981.
 245. Henderson, V. E., and E. H. Craigie. On the respiratory centre. Am. J. Physiol. 115: 520–529, 1936.
 246. Henderson, V. E., and T. A. Sweet. On the respiratory centre. Am. J. Physiol. 91: 94–102, 1929.
 247. Henderson‐Smart, D. J., P. Johnson, and M. E. McClelland. Asynchronous respiratory activity of the diaphragm during spontaneous breathing in the lamb. J. Physiol. London 327: 377–391, 1982.
 248. Henderson‐Smart, D. J., and D. J. C. Read. Depression of intercostal and abdominal muscle activity and vulnerability to asphyxia during active sleep in the newborn. In: Sleep Apnea Syndromes, edited by C. Guilleminault and W. C. Dement. New York: Liss, 1978, p. 93–117.
 249. Hering, E. Die Selbststeuerung der Atmung durch den Nervus vagus. Sitzungsber. Akad. Wiss. Wein Abt. 2 57: 672–677, 1868.
 250. Hey, E. N., B. B. Lloyd, D. J. C. Cunningham, M. G. M. Jukes, and D. P. G. Bolton. Effects of various respiratory stimuli on the depth and frequency of breathing in man. Respir. Physiol. 1: 193–205, 1966.
 251. Hilaire, G., and R. Monteau. Activité des motoneurones phréniques au cours de la polypnée thermique ou hypocapnique. J. Physiol. Paris 68: 193–203, 1974.
 252. Hilaire, G., and R. Monteau. Connexions entre les neurones inspiratoires bulbaires et les motoneurones phréniques et intercostaus. J. Physiol. Paris 72: 987–1000, 1976.
 253. Hildebrandt, J. R. Intracellular activity of medullary respiratory neurons. Exp. Neurol. 45: 298–313, 1974.
 254. Hildebrandt, J. R. Gating: a mechanism for selective receptivity in the respiratory center. Federation Proc. 36: 2381–2385, 1977.
 255. Hobson, J. A. Toward a cellular neurophysiology of the reticular formation: conceptual and methodological milestones. In: The Reticular Formation Revisited, edited by J. A. Hobson and M. A. B. Brazier. New York: Raven, 1980, p. 7–29.
 256. Hoff, H. E., and C. G. Breckenridge. The medullary origin of respiratory periodicity in the dog. Am. J. Physiol. 158: 157–172, 1949.
 257. Hökfelt, T., R. Elde, O. Johansson, L. Terenius, and L. Stein. The distribution of enkephalin immunoreactive cell bodies in the rat central nervous system. Neurosci. Lett. 5: 25–31, 1977.
 258. Hökfelt, T., L. Terenius, H. G. J. M. Kuypers, and O. Dann. Evidence for enkephalin immunoreactive neurons in the medulla oblongata projecting to the spinal cord. Neurosci. Lett. 14: 55–60, 1979.
 259. Homma, I. Inspiratory inhibitory reflex caused by the chest wall vibration in man. Respir. Physiol. 39: 345–353, 1980.
 260. Homma, I., G. Eklund, and K.‐E. Hagbarth. Respiration in man affected by TVR contractions elicited in inspiratory and expiratory intercostal muscles. Respir. Physiol. 35: 335–348, 1978.
 261. Howard, B. R., and M. Tabatabai. Localization of the medullary respiratory neurons in rats by microelectrode recording. J. Appl. Physiol. 39: 812–817, 1975.
 262. Hugelin, A. Anatomical organization of bulbopontine respiratory oscillators. Federation Proc. 36: 2390–2394, 1977.
 263. Hugelin, A., and F. Bertrand. Le système pneumotaxique. Arch. Ital. Biol. 111: 527–545, 1973.
 264. Hukuhara, T., Jr. Neuronal organization of the central respiratory mechanisms in the brain stem of the cat. Acta Neurobiol. Exp. 33: 219–244, 1973.
 265. Hukuhara, T., Jr. Functional organization of brain stem respiratory neurons and its modulation induced by afferences. In: Respiratory Centres and Afferent Systems, edited by B. Duron. Paris: INSERM, 1976, vol. 59, p. 41–53.
 266. Hukuhara, T., Jr. K. Goto, Y. Kiguchi, and K. Takano. Unterschiedliche stabilität respiratorischer Einzelneuronen‐aktivität im Hirnstamm der Katze. Jikeikai Med. J. 26: 245–261, 1979.
 267. Hukuhara, T., Jr. K. Goto, K. Takano, and Y. Hattammaru. Localization and functional organization of bulbar and pontine respiratory neurons in the rabbit. In: Advances in Physiological Sciences. Respiration, edited by I. Hutás and L. A. Debreczeni. Oxford, UK: Pergamon, 1981, vol. 10, p. 579–586. (Proc. Int. Congr. Physiol. Sci., 28th, Budapest, 1980.).
 268. Hukuhara, T., Jr. S. Nakayama, and H. Okada. Action potentials in the normal respiratory centers and its centrifugal pathways in the medulla oblongata and spinal cord. Jpn. J. Physiol. 4: 145–153, 1954.
 269. Hukuhara, T., Jr. Y. Saji, N. Kumadaki, H. Kojima, H. Tamaki, R. Takeda, and F. Sakai. Die Lokalisation von atemsynchron entladenden Neuronen in der retikulären Formation des Hirnstammes der Katze unter verschiedenen experimentellen Bedingungen. Naunyn‐Schmiedebergs Arch. Pharmakol. Exp. Pathol. 263: 462–484, 1969.
 270. Huszczuk, A. A respiratory pump controlled by phrenic nerve activity (Abstract). J. Physiol. London 210: 183P–184P, 1970.
 271. Huszczuk, A., L. Jankowska, J. Kulesza, and M. Ryba. Studies on reflex control of breathing in pigs and baboons. Acta Neurobiol. Exp. 37: 275–298, 1977.
 272. Ingvar, D. H., and K. B. Bülow. Respiratory regulation in sleep. Ann. NY Acad. Sci. 109: 870–881, 1963.
 273. Iscoe, S., J. L. Feldman, and M. I. Cohen. Properties of inspiratory termination by superior laryngeal and vagal stimulation. Respir. Physiol. 36: 353–366, 1979.
 274. Iscoe, S., and S. Vanner. Respiratory periodicity following stimulation of vagal afferents. Can. J. Physiol. Pharmacol. 58: 823–829, 1980.
 275. Jankowska, E., and W. Roberts. An electrophysiological demonstration of the axonal projections of single spinal interneurones in the cat. J. Physiol. London 222: 597–622, 1972.
 276. Janscó, G., and E. Király. Distribution of chemosensitive primary sensory afferents in the central nervous system of the rat. J. Comp. Neurol. 190: 781–792, 1980.
 277. Johansson, J. E. Ueber die Einwirkung der Muskelthätigkeit auf die Athmung und die Herzthätigkeit. Skand. Arch. Physiol. 5: 20–66, 1895.
 278. Johnson, P. Comparative aspects of the control of breathing during development. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 337–352. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 279. Jones B. E., and R. Y. Moore. Catecholamine‐containing neurons of the nucleus locus coeruleus in the cat. J. Comp. Neurol. 157: 43–52, 1974.
 280. Jordan, D., and K. M. Spyer. Effects of acetylcholine on respiratory neurones in the nucleus ambiguus‐retroambigualis complex of the cat. J. Physiol. London 320: 103–111, 1981.
 281. Jürgens, U., and R. Pratt. Role of the periaqueductal grey in vocal expression of emotion. Brain Res. 167: 367–378, 1979.
 282. Kalia, M. P. Anatomical organization of central respiratory neurons. Annu. Rev. Physiol. 43: 105–120, 1981.
 283. Kalia, M. Neurohistochemical methods in tracing central respiratory mechanisms. Federation Proc. 40: 2365–2371, 1981.
 284. Kalia, M., J. L. Feldman, and M. I. Cohen. Afferent projections to the inspiratory neuronal region of the ventrolateral nucleus of the tractus solitarius in the cat. Brain Res. 171: 135–141, 1979.
 285. Kalia, M., and J. M. Sullivan. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J. Comp. Neurol. 211: 248–264, 1982.
 286. Kao, F. F., S. S. Mei, and M. Kalia. Interaction between neurogenic exercise drive and chemical drive. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 75–89. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 287. Karczewski, W. A. Some effects of anaesthetics on the functional organisation of the bulbo‐pontine respiratory complex. Bull. Physio‐Pathol. Respir. 9: 731–738, 1973.
 288. Karczewski, W. A., K. Budzińska, H. Gromysz, R. Herczynski, and J. R. Romaniuk. Some responses of the respiratory complex to stimulation of its vagal and mesencephalic inputs. In: Respiratory Centres and Afferent Systems, edited by B. Duron. Paris: INSERM, 1976, vol. 59, p. 107–115.
 289. Karczewski, W. A., K. Budzińska, E. Naslonska, E. Jazowiecka, J. R. Romaniuk, and M. Ryba. Rate of rise of inspiration at various levels of CNS excitability. In: The Regulation of Respiration During Sleep and Anesthesia, Advances in Experimental Medicine and Biology, edited by R. S. Fitzgerald, H. Gautier, and S. Lahiri. New York: Plenum, 1978, vol. 99, p. 23–33.
 290. Karczewski, W. A., and H. Gromysz. The “split respiratory centre”: lessions from brainstem transections. In: Advances in Physiological Sciences. Respiration, edited by I. Hutás and L. A. Debreczeni. Oxford, UK: Pergamon, 1981, vol. 10, p. 587–594. (Proc. Int. Congr. Physiol. Sci., 28th, Budapest, 1980.).
 291. Karczewski, W. A., E. Naslonska, and J. R. Romaniuk. Respiratory responses to stimulation of vagal afferent fibers in rabbits. Acta Neurobiol. Exp. 40: 543–562, 1980.
 292. Karczewski, W. A., E. Naslonska, and J. R. Romaniuk. Inspiratory facilitatory and inhibitory vagal influences during apnea in rabbits. Acta Neurobiol. Exp. 40: 575–592, 1980.
 293. Katz‐Salamon, M. The ability of human subjects to detect small changes in breathing volume. Acta Physiol. Scand. 120: 43–51, 1984.
 294. Katz‐Salamon, M. Assessment of ventilation and respiratory rate by healthy subjects. Acta Physiol. Scand. 120: 53–60, 1984.
 295. Kawasaki, R. Breathing rhythm‐generation in the adult lamprey, Entosphenus japonicus. Jpn. J. Physiol. 29: 327–338, 1979.
 296. Keder‐Stepanova, I. Direct and synaptic responses of the cat's medullary respiratory neurons evoked by microstimulation. Neuroscience 3: 551–559, 1978.
 297. Kirkwood, P. A., N. Nisimaru, and T. A. Sears. Monosynaptic excitation of bulbospinal respiratory neurones by chemo‐receptor afferents in the carotid sinus nerve (Abstract). J. Physiol. London 293: 35P–36P, 1979.
 298. Kirkwood, P. A., and T. A. Sears. Monosynaptic excitation of thoracic expiratory motoneurones from lateral respiratory neurones in the medulla of the cat (Abstract). J. Physiol. London 234: 87P–89P, 1973.
 299. Kirkwood, P. A., and T. A. Sears. The synaptic connections to intercostal motoneurons as revealed by the average common excitation potential. J. Physiol. London 275: 103–134, 1978.
 300. Kirkwood, P. A., T. A. Sears, D. Stagg, and R. H. Westgaard. The spatial distribution of synchronization of intercostal motoneurones in the cat. J. Physiol. London 327: 137–155, 1982.
 301. Kirkwood, P. A., T. A. Sears, D. L. Tuck, and R. H. Westgaard. Variations in the time course of the synchronization of intercostal motoneurones in the cat. J. Physiol. London 327: 105–135, 1982.
 302. Knox, C. K. Characteristics of inflation and deflation reflexes during expiration in the cat. J. Neurophysiol. 36: 284–295, 1973.
 303. Knox, C. K. Reflex and central mechanisms controlling expiratory duration. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 203–216. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 304. Knox, C. K., and G. W. King. Changes in the Breuer‐Hering reflexes following rostral pontine lesion. Respir. Physiol. 28: 189–206, 1976.
 305. Koehler, R. C., and B. Bishop. Effect of expiratory elastic and resistive loading on the duration of expiration (Abstract). Physiologist 19: 255, 1976.
 306. Koepchen, H. P. Respiratory and cardiovascular “centres”: functional entirety or separate structures? In: Central Neurone Environment and the Control Systems of Breathing and Circulation, edited by M. E. Schlaefke, H. P. Koepchen, and W. R. Koepchen. See. Berlin: Springer‐Verlag, 1983, p. 221–237.
 307. Koepchen, H. P., J. Borchert, C. Frank, D. Klüssendorf, K. Kolbe, and D. Sommer. Respiratory centre input‐output relations in response to different afferences. In: Respiratory Centres and Afferent Systems, edited by B. Duron. Paris: INSERM, 1976, vol. 59, p. 73–84.
 308. Koepchen, H. P., D. Klüssendorf, M. Bilan, N. Sapunarow, and D. Sommer. Central transmission of pulmonary inflation and deflation reflexes (Abstract). Proc. Int. Congr. Physiol. Sci., 25th, Munich, 1971, vol. 9, p. 312.
 309. Koepchen, H. P., D. Klüssendorf, and U. Philipp. Mechanisms of central transmission of respiratory reflexes. Acta Neurobiol. Exp. 33: 287–299, 1973.
 310. Koepchen, H. P., P. Langhorst, H. Seller, J. Polster, and P. H. Wagner. Neuronale Aktivität im unterem Hirnstamm mit Beziehung zum Kreislauf. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 294: 40–64, 1967.
 311. Koepchen, H. P., H. Lazar, and J. Borchert. On the role of nucleus infrasolitarius in the determination of respiratory periodicity (Abstract). Proc. Int. Congr. Physiol. Sci., 26th, New Dehli, 1974, vol. 11, p. 81.
 312. Koepchen, H. P., D. Sommer, C. Frank, D. Klüssendorf, A. Krämer, P. Rosin, and K. Forstreuter. Characteristics and functional significance of the expiratory bulbar neurone pools. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 217–232. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 313. Kreidl, A. Ueber das athmungscentrum. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 74: 181–192, 1899.
 314. Kreuter, F., D. W. Richter, H. Camerer, and R. Senekowitsch. Morphological and electrical description of medullary respiratory neurons of the cat. Pfluegers Arch. 372: 7–16, 1977.
 315. Krieger, A. J., H. D. Christensen, H. N. Sapru, and S. C. Wang. Changes in ventilatory patterns after ablation of various respiratory feedback mechanisms. J. Appl. Physiol. 33: 431–435, 1972.
 316. Krogh, A., and J. Lindhard. The regulation of respiration and circulation during the initial stages of muscular work. J. Physiol. London 47: 112–136, 1913.
 317. Kronecker, H., and M. Marckwald. Über die Athembewegung des Zwerchfells. Arch. Anat. Physiol. Physiol. Abt.: 592–594, 1879.
 318. Kubin, L. Respiratory input to laryngeal motoneurons (Abstract). Neurosci. Lett. Suppl. 7: S208, 1981. (Eur. Neurosci. Congr., 5th, Liege, 1981.).
 319. Kumazawa, T., E. Tadaki, and K. Kim. A possible participation of endogenous opiates in respiratory reflexes induced by thin‐fiber muscular afferents. Brain Res. 199: 244–248, 1980.
 320. Kuypers, H. G. J. M. Cortico‐bulbar connexions to the pons and lower brain stem in man: an anatomical study. Brain 81: 364–388, 1958.
 321. Lagercrantz, H., Y. Yamamoto, B. B. Fredholm, N. R. Prabhakar, and C. Von Euler. Adenosine analogues depress ventilation in rabbit neonates. Theophylline stimulation of respiration via adenosine receptors? Pediatr. Res. 18: 387–390, 1984.
 322. Lahiri, S., and T. Nishino. Lessons from reinitiation of breathing after apnea. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 427–441. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 323. Langendorff, O. Ueber das Atmungscentrum. Centralbl. Med. Wiss. 17: 913–915, 1879.
 324. Langendorff, O., and R. Nitschmann. Studien über die Innervation des Athembewegungen. I. Mitteilung. Über die spinalen Centren der Athmung. Arch. Anat. Physiol. Physiol. Abt.: 518–549, 1880.
 325. Langendorff, O., R. Nitschmann, and H. Witzack. Studien über die Innervation der Athembewegungen. II. Mitteilung. Über ungleichzeitige Thätigkeit beider Zwerchfellshälften. Arch. Anat. Physiol. Physiol. Abt.: 78–81, 1881.
 326. Larrabee, M. G., and R. Hodes. Cyclic changes in the respiratory centers, revealed by the effects of afferent impulses. Am. J. Physiol. 155: 147–164, 1948.
 327. Larrabee, M. G., and G. C. Knowlton. Excitation and inhibition of phrenic motoneurones by inflation of the lungs. Am. J. Physiol. 147: 90–99, 1946.
 328. Ledlie, J. F., M. Ogilvie, A. I. Pack, and A. P. Fishman. Effect of hypercapnia on inhibition by lung volume of the rate of rise of peripheral expiratory activity (Abstract). Federation Proc. 39: 1075, 1980.
 329. Ledlie, J. F., A. I. Pack, and A. P. Fishman. The configuration of abdominal expiratory nerve activity in the absence of breathing movements (Abstract). Federation Proc. 37: 806, 1978.
 330. Legallois, C. J. J. Expériences sur le principe de la vie. Paris: d'Hautel, 1812.
 331. Leibstein, A. G., I. M. Willenberg, and R. Dermietzel. Morphology of the medullary chemosensitive fields. I. Mapping of the neuronal matrix by a horseradish peroxidase technique. Pfluegers Arch. 391: 226–230, 1981.
 332. Liljestrand, Å. Respiratory reactions elicited from medulla oblongata of the cat. Acta Physiol. Scand. Suppl. 106: 321–393, 1953.
 333. Liljestrand, G. Untersuchungen über die Atmungsarbeit. Skand. Arch. Physiol. 35: 199–293, 1918.
 334. Lipski, J. Antidromic activation of neurones as an analytic tool in the study of the central nervous system. J. Neurosci. Methods 4: 1–32, 1981.
 335. Lipski, J. Brainstem microstimulation and microlesion; some critical remarks (Abstract). In: Central Neural Production of Periodic Respiratory Movements, edited by J. L. Feldman and A. J. Berger. Chicago, IL: Northwestern Univ., 1982, p. 190–194. (Proc. Int. Symp., Lake Bluff, Illinois, April, 1982.).
 336. Lipski, J., and L. Fedorko. Spinal action of dorsal Rα and Rβ respiratory cells (Abstract). Proc. Int. Congr. Physiol. Sci., 28th, Budapest, 1980, vol. 14, p. 550.
 337. Lipski, J., R. M. McAllen, and K. M. Spyer. The carotid chemoreceptor input to the respiratory neurones of the nucleus of tractus solitarius. J. Physiol. London 269: 797–810, 1977.
 338. Lipski, J., and E. G. Merrill. Electrophysiological demonstration of the projection from expiratory neurones in rostral medulla to contralateral dorsal respiratory group. Brain Res. 197: 521–524, 1980.
 339. Lipski, J., A. Trzebski, and L. Kubin. Excitability changes of dorsal inspiratory neurons during lung inflations as studied by measurement of antidromic invasion latencies. Brain Res. 161: 25–38, 1979.
 340. Ljungdahl, Å., T. Hökfelt, and G. Nilsson. Distribution of substance P‐like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals. Neuroscience 3: 861–943, 1978.
 341. Ljungdahl, Å., T. Hökfelt, G. Nilsson, and M. Goldstein. Distribution of substance P‐like immunoreactivity in the central nervous system of the rat. II. Light microscopic localization in relation to catecholamine‐containing neurons. Neuroscience 3: 945–976, 1978.
 342. Llinas, R., and C. A. Terzuolo. Mechanisms of supraspinal actions upon spinal cord activities. Reticular inhibitory mechanisms on alpha‐extensor motoneurons. J. Neurophysiol. 27: 579–591, 1964.
 343. Loeschcke, H. H. Functional aspects of central chemosensitivity. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 13–24. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 344. Loeschcke, H. H. Chemical alterations of cerebrospinal fluid on respiratory and circulatory control systems. In: Neurobiology of Cerebrospinal Fluid, edited by J. H. Wood. New York: Plenum, 1980, vol. 1, p. 29–40.
 345. Loeschcke, H. H., J. de Lattre, M. E. Schlaefke, and C. O. Trouth. Effects on respiration and circulation of electrically stimulating the ventral surface of the medulla oblongata. Respir. Physiol. 10: 184–197, 1970.
 346. Loewy, A. D., and H. Burton. Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat. J. Comp. Neurol. 181: 421–449, 1978.
 347. Longet, F. A. Traité de physiologie (3rd ed.). Paris: Baillière, 1868, vol. 1.
 348. Lopes, O. U., and J. F. Palmer. Proposed respiratory “gating” mechanism for cardiac slowing. Nature London 264: 454–456, 1976.
 349. Lowe, A. A., and B. J. Sessle. Tongue activity during respiration, jaw opening, and swallowing in cat. Can. J. Physiol. Pharmacol. 51: 1009–1011, 1973.
 350. Lumsden, T. Observations on the respiratory centres in the cat. J. Physiol. London 57: 153–160, 1923.
 351. Lumsden, T. Observations on the respiratory centres. J. Physiol. London 57: 354–367, 1923.
 352. Lumsden, T. The regulation of respiration. Part I. J. Physiol. London 58: 81–91, 1923.
 353. Lund, J. P., S. Rossignol, and A. M. Smith. Interaction between sensory inputs and movements. Can. J. Physiol. Pharmacol. 59: 627–778, 1981.
 354. Lundberg, A. Reflex control of stepping. In: The Nansen Memorial Lecture V. Oslo: Universitetsforlaget, 1969, p. 1–42.
 355. Lydic, R., and J. Orem. Respiratory neurons of the pneumotaxic center during sleep and wakefulness. Neurosci. Lett. 15: 187–192, 1979.
 356. Madden, K. P., and J. E. Remmers. Short time scale correlations between spike activity of neighboring respiratory neurons of nucleus tractus solitarius. J. Neurophysiol. 48: 749–760, 1982.
 357. Magoun, H. W., and L. E. Beaton. Respiratory responses from stimulation of the medulla of the cat. Am. J. Physiol. 134: 186–191, 1941.
 358. Magoun, H. W., and R. Rhines. An inhibitory mechanism in the bulbar reticular formation. J. Neurophysiol. 9: 165–171, 1946.
 359. Marckwald, M. The Movements of Respiration and Their Innervation in the Rabbit, translated by T. A. Haig. London: Blackie, 1888.
 360. Marek, W., N. R. Prabhakar, and H. H. Loeschcke. Respiratory responses to electrical stimulation of chemosensory afferents in different phases of the respiratory cycle. Pfluegers Arch. 373, Suppl.: R75, 1978.
 361. Marek, W., N. R. Prabhakar, and A. Mikulski. The influence of chemosensory, laryngeal, and vagal afferents on respiratory phase‐switching mechanisms and the generation of in‐ and expiratory efferent activities. In: Central Neurone Environment and the Control Systems of Breathing and Circulation, edited by M. E. Schlaefke, H. P. Koepchen, and W. R. See. Berlin: Springer‐Verlag, 1983, p. 197–203.
 362. Massion, J. Postural function of respiratory muscles. In: Respiratory Centres and Afferent Systems, edited by B. Duron. Paris: INSERM, 1976, vol. 59, p. 175–181.
 363. Massion, J., M. Meulders, and J. Colle. Fonction posturale des muscles respiratoires. Arch. Int. Physiol. Biochim. 68: 314–326, 1960.
 364. McAllen, R. M., and K. M. Spyer. The baroreceptor input to cardiac vagal motoneurones. J. Physiol. London 282: 365–374, 1978.
 365. Mead, J. Control of respiratory frequency. J. Appl. Physiol. 15: 325–336, 1960.
 366. Mead, J., and E. Agostoni. Dynamics of breathing. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 14, p. 411–427.
 367. Mead, J., and J. C. Bunn. Speech as breathing. In: Ventilatory and Phonatory Control Systems, edited by B. Wyke. London: Oxford Univ. Press, 1974, p. 33–38.
 368. Merrill, E. G. The lateral respiratory neurones of the medulla: their associations with nucleus ambiguus, nucleus retroambigualis, the spinal accessory nucleus and the spinal cord. Brain Res. 24: 11–28, 1970.
 369. Merrill, E. G. The descending pathways from the lateral respiratory neurones in cats (Abstract). J. Physiol. London 218: 82P–83P, 1971.
 370. Merrill, E. G. Interactions between medullary respiratory neurones in cats (Abstract). J. Physiol. London 226: 72P–74P, 1972.
 371. Merrill, E. G. Finding a respiratory function for the medullary respiratory neurons. In: Essays on the Nervous System, edited by R. Bellairs and E. G. Gray. Oxford, UK: Clarendon, 1974, p. 451–486.
 372. Merrill, E. G. Absence of correlations between lateral expiratory neurones in cat (Abstract). J. Physiol. London 276: 33P–34P, 1978.
 373. Merrill, E. G. Is there reciprocal inhibition between medullary inspiratory and expiratory neurones? In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 239–254. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 374. Merrill, E. G. Where are the real respiratory neurons? Federation Proc. 40: 2389–2394, 1981.
 375. Merrill, E. G. Network properties of respiratory neurones (Abstract). In: Central Neural Production of Periodic Respiratory Movements, edited by J. L. Feldman and A. J. Berger. Chicago, IL: Northwestern Univ., 1982, p. 54–55. (Proc. Int. Symp., Lake Bluff, Illinois, April, 1982.).
 376. Merrill, E. G., J. Lipski, L. Kubin, and L. Fedorko. Origin of the expiratory inhibition of nucleus tractus solitarius inspiratory neurones. Brain Res. 263: 43–50, 1983.
 377. Milic‐Emili, J. Spirometric and airway occlusion waveform. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 185–193. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 378. Milic‐Emili, J., and M. M. Grunstein. Drive and timing components of ventilation. Chest 70, Suppl.: 131–133, 1976.
 379. Mislawsky, N. A. Über das Atmungszentrum. Kazan, Russia: 1884. Dissertation. [Quoted in Bechterew (36).].
 380. Mislawsky, N. Innervation des mouvements respiratoires (Abstract). Centralbl. Physiol. 15: 481, 1901. (Int. Congr. Physiol. Sci., 5th, Turin, 1901.).
 381. Mitchell, R. A., and D. A. Herbert. The effect of carbon dioxide on the membrane potential of medullary respiratory neurons. Brain Res. 75: 345–349, 1974.
 382. Mitchell, R. A., and D. A. Herbert. Synchronized high frequency synaptic potentials in medullary respiratory neurons. Brain Res. 75: 350–355, 1974.
 383. Mitchell, R. A., H. H. Loeschcke, W. H. Massion, and J. W. Severinghaus. Respiratory responses mediated through superficial chemosensitive areas on the medulla. J. Appl. Physiol. 18: 523–533, 1963.
 384. Moltke, E., and A. P. Skouby. The influence of tonic neck reflexes on the activity of some muscles of the trunk in patients with asthma and emphysema. Acta Med. Scand. 173: 299–305, 1963.
 385. Monnier, M. Physiologie des formations réticulées. II. Respiration. Effets de l'exitation faradique du bulbe chez le chat. Rev. Neurol. 69: 517–523, 1938.
 386. Mortola, J. P., and G. Sant'Ambrogio. Mechanics of the trachea and behaviour of its slowly adapting stretch receptors. J. Physiol. London 286: 577–590, 1979.
 387. Mraovitch, S., M. Kumada, and D. J. Reis. Role of the nucleus parabrachialis in cardiovascular regulation in cat. Brain Res. 232: 57–75, 1982.
 388. Mueller, R. A., D. Lundberg, and G. R. Breese. Evidence that respiratory depression by serotonin agonists may be exerted in the central nervous system. Pharmacol. Biochem. Behav. 13: 247–255, 1980.
 389. Nakayama, S., and R. Von Baumgarten. Lokalisierung absteigender Atmungsbahnen im Rückenmark der Katze mittels antidromer Reizung. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 281: 231–244, 1964.
 390. Nelson, J. R. Single unit activity in medullary respiratory centers of cat. J. Neurophysiol. 22: 590–598, 1959.
 391. Nesland, R. S., and F. Plum. Subtypes of medullary respiratory neurons. Exp. Neurol. 12: 337–348, 1965.
 392. Newsom Davis, J., L. Loh, J. Nodal, and M. Charnock. Effects of sleep on the pattern of CO2 stimulated breathing in males and females. In: The Regulation of Respiration During Sleep and Anesthesia. Advances in Experimental Medicine and Biology, edited by R. S. Fitzgerald, H. Gautier, and S. Lahiri. New York: Plenum, 1978, vol. 99, p. 79–83.
 393. Newsom Davis, J., and F. Plum. Separation of descending spinal pathways to respiratory motoneurons. Exp. Neurol. 34: 78–94, 1972.
 394. Newsom Davis, J., and D. Stagg. Interrelationships of the volume and time components of individual breaths in resting man. J. Physiol. London 245: 481–498, 1975.
 395. Ngai, S. H., and S. C. Wang. Organization of central respiratory mechanisms in the brain stem of the cat: localization by stimulation and destruction. Am. J. Physiol. 190: 343–349, 1957.
 396. Nicholson, H. C., and J. Hong. Respiratory effects of brain stem transections (Abstract). Federation Proc. 1: 63, 1942.
 397. Nye, P. C. G., M. A. Hanson, and R. W. Torrance. The effect on breathing of abruptly stopping carotid body discharge. Respir. Physiol. 46: 309–326, 1981.
 398. Ondina, D. M., W. S. Yamamoto, and W. S. Masland. Respiratory centers in the albino rat. Am. J. Physiol. 198: 389–392, 1960.
 399. Orem, J. Medullary respiratory neuron activity: relationship to tonic and phasic REM sleep. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 54–65, 1980.
 400. Orem, J., and W. C. Dement. Neurophysiological substrates of the changes in respiration during sleep. In: Advances in Sleep Research, edited by E. D. Weitzman. New York: Spectrum, 1976, p. 1–42.
 401. Otis, A. B., W. O. Fenn, and H. Rahn. Mechanisms of breathing in man. J. Appl. Physiol. 2: 592–607, 1950.
 402. Pack, A. I., R. G. DeLaney, and A. P. Fishman. Augmentation of phrenic neural activity by increased rates of lung inflation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 149–161, 1981.
 403. Palkovits, M., and D. M. Jacobowits. Topographic atlas of catecholamine and acetylcholinesterase‐containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon). J. Comp. Neurol. 157: 29–42, 1974.
 404. Parmeggiani, P. L. Integrative aspects of hypothalamic influences on respiratory brain stem mechanisms during wakefulness and sleep. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 53–69. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 405. Perret, C., M. Millanvoye, and J. M. Cabelguen. Messages spinaux ascendants pendant une locomotion fictive chez le chat curarisé. J. Physiol. Paris 65: 153A, 1972.
 406. Petrovický, P. Über die Glia marginalis und oberflächliche Nervenzellen im Hirnstamm der Katze. Z. Anat. Entwicklungsgesch. 127: 221–231, 1968.
 407. Phillipson, E. A. Respiratory adaptations in sleep. Annu. Rev. Physiol. 40: 133–156, 1978.
 408. Phillipson, E. A., P. A. McClean, C. E. Sullivan, and N. Zamel. Interaction of metabolic and behavioral respiratory control during hypercapnia and speech. Am. Rev. Respir. Dis. 117: 903–909, 1978.
 409. Pitts, R. F. The differentiation of respiratory centers. Am. J. Physiol. 134: 192–201, 1941.
 410. Pitts, R. F. Organization of the respiratory center. Physiol. Rev. 26: 609–630, 1946.
 411. Pitts, R. F., H. W. Magoun, and S. W. Ranson. Localization of medullary respiratory centers in the cat. Am. J. Physiol. 126: 673–688, 1939.
 412. Pleschka, K., and S. C. Wang. The activity of respiratory neurons before and during panting in the cat. Pfluegers Arch. 353: 303–315, 1975.
 413. Plum, F. Neurological integration of behavioural and metabolic control of breathing. In: Breathing: Hering‐Breuer Centenary Symposium, edited by R. Porter. London: Churchill, 1970, p. 159–181.
 414. Plum, F., and E. C. Alvord, Jr. Apneustic breathing in man. Arch. Neurol. 10: 101–112, 1964.
 415. Plum, F., and R. J. Leigh. Abnormalities of central mechanisms. In: Lung Biology in Health and Disease. Regulation of Breathing, edited by T. F. Hornbein. New York: Dekker, 1981, vol. 17, pt. II, p. 989–1067.
 416. Poitras, D., and A. Parent. Atlas of the distribution of monoamine‐containing nerve cell bodies in the brain stem of the cat. J. Comp. Neurol. 179: 699–718, 1978.
 417. Pokorski, M., P. Grieb, and J. Wideman. Opiate system influences central respiratory chemosensors. Brain Res. 211: 221–226, 1981.
 418. Polacheck, J., J. Remmers, and M. Younes. Effect of volume on expiratory neural output (Abstract). Federation Proc. 37: 806, 1978.
 419. Polacheck, J., R. Strong, J. Arens, C. Davies, I. Metcalf, and M. Younes. Phasic vagal influence on inspiratory motor output in anesthetized human subjects. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 609–619, 1980.
 420. Prabhakar, N. R., and W. Marek. Respiratory and cardiovascular reflexes from the afferent sympathetic nerves. In: Central Neurone Environment and the Control Systems of Breathing and Circulation, edited by M. E. Schlaefke, H. P. Koepchen, and W. R. See. Berlin: Springer‐Verlag, 1983, p. 142–146.
 421. Prabhakar, N. R., W. Marek, and H. H. Loeschcke. Changing from diaphragmatic to thoracic respiration during stimulation of sympathetic afferents. Pfluegers Arch. 382, Suppl.: R20, 1979.
 422. Prabhakar, N. R., W. Marek, and H. H. Loeschcke. Veränderungen des Atemtyps während Stimulation des afferenten Sympathikus. Atemwegs Lungenkr. 6: 161–164, 1980.
 423. Prechtl, H. F. R., L. A. van Eykern, and M. J. O'Brien. Respiratory muscle EMG in newborns: a non‐intrusive method. Early Hum. Dev. 1: 265–283, 1977.
 424. Priban, I. P. An analysis of some short‐term patterns of breathing in man at rest. J. Physiol. London 166: 425–434, 1963.
 425. Proctor, D. F. Breathing, Speech, and Song. Vienna: Springer‐Verlag, 1980, 176 p.
 426. Purves, M. J. What do we breathe for? In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 7–12. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 427. Remmers, J. E. Functional role of the inspiratory terminating reflex from intercostal muscle spindles. In: Respiratory Centres and Afferent Systems, edited by B. Duron. Paris: INSERM, 1976, vol. 59, p. 183–191.
 428. Remmers, J. E., J. P. Baker, Jr., and M. K. Younes. Graded inspiratory inhibition: the first stage of inspiratory “off‐switching.” In: Central Nervous Control Mechanism in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 195–201. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 429. Remmers, J. E., and D. Bartlett, Jr. Reflex control of expiratory airflow and duration. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 80–87, 1977.
 430. Remmers, J. E., and H. Gautier. Servo respirator constructed from a positive‐pressure ventilator. J. Appl. Physiol. 41: 252–255, 1976.
 431. Remmers, J. E., and I. Marttila. Action of intercostal muscle afferents on the respiratory rhythm of anesthetized cats. Respir. Physiol. 24: 31–41, 1975.
 432. Remmers, J. E., and W. G. Tsiaras. Effect of lateral cervical cord lesions on the respiratory rhythm of anesthetized, decerebrate cats after vagotomy. J. Physiol. London 233: 63–74, 1973.
 433. Renqvist, Y. Über den Bewegungswahrnehmungen zugrunde liegenden Reize. Skand. Arch. Physiol. 50: 52, 1926.
 434. Richardson, C. A., and R. A. Mitchell. Power spectral analysis of inspiratory nerve activity in the decerebrate cat. Brain Res. 233: 317–336, 1982.
 435. Richter, D. W. Generation and maintenance of the respiratory rhythm. J. Exp. Biol. 100: 93–107, 1982.
 436. Richter, D. W., and D. Ballantyne. Central rhythm generation by inspiratory neurones in the anaesthetised cat. Neurosci. Lett. Suppl. 7: S117, 1981.
 437. Richter, D. W., and D. Ballantyne. A three phase theory about the basic respiratory pattern generator. In: Central Neurone Environment and the Control Systems of Breathing and Circulatio, edited by M. E. Schlaefke, H. P. Koepchen, and W. R. See. Berlin: Springer‐Verlag, 1983, p. 164–174.
 438. Richter, D. W., H. Camerer, M. Meesman, and N. Röhrig. Studies on the synaptic interconnection between bulbar respiratory neurones of cats. Pfluegers Arch. 380: 245–257, 1979.
 439. Richter, D. W., H. Camerer, and N. Röhrig. Monosynaptic transmission from lung stretch receptor afferents to Rβ‐neurones. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 267–271. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 440. Richter, D. W., and F. Heyde. Accommodative reactions of medullary respiratory neurons of the cat. J. Neurophysiol. 38: 1172–1180, 1975.
 441. Richter, D. W., F. Heyde, and M. Gabriel. Intracellular recordings from different types of medullary respiratory neurons of the cat. J. Neurophysiol. 38: 1162–1171, 1975.
 442. Rigg, J. R. A., E. M. Inman, N. A. Saunders, S. R. Leeder, and N. L. Jones. Interaction of mental factors with hypercapnic ventilatory drive in man. Clin. Sci. Mol. Med. 52: 269–275, 1977.
 443. Rijlant, P. Localization of the respiratory centre (Abstract). J. Physiol. London 90: 43P–45P, 1937.
 444. Rohrer, F. Handbuch der normalen und pathologischen Pathologie. Berlin: Springer‐Verlag, 1925, vol. 2, 70 p.
 445. Romaniuk, J. R., M. Ryba, and J. Kulesza. The effect of volume and duration of lung inflation on the parameters of respiratory rhythm. Acta Physiol. Pol. 27: 505–515, 1976.
 446. Sahn, S. A., C. W. Zwillich, N. Dick, R. E. McCullough, S. Lakshminarayan, and J. V. Weil. Variability of ventilatory responses to hypoxia and hypercapnia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 1019–1025, 1977.
 447. Saito, H., K. Sakai, and M. Jouvet. Discharge patterns of the nucleus parabrachialis lateralis neurons of the cat during sleep and waking. Brain Res. 134: 59–72, 1977.
 448. Salamon, M., C. Von Euler, and O. Franzén. Perception of mechanical factors in breathing. In: Physical Work and Effort, edited by G. Borg. Oxford, UK: Pergamon, 1976, vol. 28, p. 101–113. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 449. Salmoiraghi, G. C., and R. Von Baumgarten. Intracellular potentials from respiratory neurones in brain‐stem of cat and mechanism of rhythmic respiration. J. Neurophysiol. 24: 203–218, 1961.
 450. Salmoiraghi, G. C., and B. D. Burns. Localization and patterns of discharge of respiratory neurones in brain‐stem of cat. J. Neurophysiol. 23: 2–13, 1960.
 451. Salmoiraghi, G. C., and B. D. Burns. Notes on mechanism of rhythmic respiration. J. Neurophysiol. 23: 14–26, 1960.
 452. Sant'Ambrogio, G. Information arising from the tracheobronchial tree of mammals. Physiol. Rev. 62: 531–569, 1982.
 453. Saunders, N. A., S. Heilpern, and S. A. Rebuck. Relation between personality and ventilatory response to carbon dioxide in normal subjects: a role in asthma? Br. Med. J. 1: 719–721, 1972.
 454. Schiff, J. M. Lehrbuch der Physiologie des Menschen. I. Muskel‐ und Nervenphysiologie. Lahr, West Germany: Schauenburg, 1958‐1959, 424 p.
 455. Schlaefke, M. E. Central chemosensitivity: neurophysiology and contribution to regulation. In: Acid Base Homeostasis of the Brain Extracellular Fluid and the Respiratory Control System, edited by H. H. Loeschcke. Stuttgart, West Germany: Thieme, 1976, p. 66–80.
 456. Schlaefke, M. E. Central chemosensitivity: a respiratory drive. Rev. Physiol. Biochem. Pharmacol. 90: 171–244, 1981.
 457. Schlaefke, M. E., J. Kille, H. Folgering, A. Herker, and W. R. See. Breathing without central chemosensitivity. In: Central Rhythmic and Regulation, edited by H. P. Koepchen, H. Selbach, and W. Umbach. Stuttgart, West Germany: Hippokrates, 1974, p. 97–104.
 458. Schlaefke, M., and H. H. Loeschcke. Lokalisation eines an der Regulation von Atmung und Kreislauf beteiligten Gebietes an der ventralen Oberfläche der Medulla oblongata durch Kälteblockade. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 297: 201–220, 1967.
 459. Schlaefke, M. E., W. R. See, and J. R. Kille. Origin and afferent modification of respiratory drive from ventral medullary areas. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 25–34. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 460. Schmidt‐Nielsen, K. Desert Animals. Physiological Problems of Heat and Water. London: Oxford Univ. Press, 1964, 277 p.
 461. Schmidt‐Nielsen, K., B. Schmidt‐Nielsen, S. A. Jarnum, and T. R. Houpt. Body temperature of the camel and its relation to water economy. Am. J. Physiol. 188: 103–112, 1957.
 462. Sears, T. A. Investigations on respiratory motoneurones of the thoracic spinal cord. In: Progress in Brain Research. Physiology of Spinal Neurons, edited by J. C. Eccles and J. P. Schadé. Amsterdam: Elsevier, 1964, vol. 12, p. 259–272.
 463. Sears, T. A. The slow potentials of thoracic respiratory motoneurones and their relation to breathing. J. Physiol. London 175: 404–424, 1964.
 464. Sears, T. A. Pathways of supra‐spinal origin regulating the activity of respiratory motoneurones. In: Muscular Afferents and Motor Control, edited by R. Granit. Stockholm: Almqvist & Wiksell, 1966, p. 187–196. (Nobel Symp. 1.).
 465. Sears, T. A. Breathing: a sensori‐motor act. In: The Scientific Basis of Medicine. Annual Reviews, edited by I. Gilliland and J. Francis. London: Athlone, 1971, p. 129–147.
 466. Sears, T. A. The respiratory motoneuron and apneusis. Federation Proc. 36: 2412–2420, 1977.
 467. Sears, T. A., A. J. Berger, and E. A. Phillipson. Reciprocal tonic activation of inspiratory and expiratory motoneurones by chemical drives. Nature London 299: 728–730, 1982.
 468. See, W.‐R. Über den Beitrag des Hypothalamus zur Atmung nach Ausschaltung der chemischen Atemantriebe. Bochum, West Germany: Ruhr‐Universität, 1976, 123 p. Dissertation.
 469. See, W.‐R., H. Folgering, and M. E. Schlaefke. Further studies on the interaction of the central chemosensitive drive and the respiratory drive in hyperthermia. In: Central Neurone Environment and the Control Systems, edited by M. E. Schlaefke, H. P. Koepchen, and W. R. See. Berlin: Springer‐Verlag, 1983, p. 66–73.
 470. Shannon, R. Intercostal and abdominal muscle afferent influence on medullary dorsal respiratory group neurons. Respir. Physiol. 39: 73–94, 1980.
 471. Shannon, R., and D. Freeman. Nucleus retroambigualis respiratory neurons: responses to intercostal and abdominal muscle afferents. Respir. Physiol. 45: 357–375, 1981.
 472. Sherrey, J. H., and D. Megirian. Spontaneous and reflexly evoked laryngeal abductor and adductor muscle activity of cat. Exp. Neurol. 43: 487–498, 1974.
 473. Shik, M. L., and G. N. Orlovsky. Neurophysiology of locomotor automatism. Physiol. Rev. 56: 465–501, 1976.
 474. Sieck, G. C., and R. M. Harper. Pneumotaxic area neuronal discharge during sleep‐waking states in the cat. Exp. Neurol. 67: 79–102, 1980.
 475. Smith, A. M. The coactivation of antagonist muscles. Can. J. Physiol. Pharmacol. 59: 733–747, 1981.
 476. Sommer, D., J. L. Feldman, and M. I. Cohen. Responses of caudal medullary expiratory neurons to lung inflation (Abstract). Federation Proc. 38: 1144, 1979.
 477. Speck, D. F., and J. L. Feldman. The effects of micro‐stimulation and microlesions in the ventral and dorsal respiratory groups in medulla of cat. J. Neurosci. 2: 744–757, 1982.
 478. Speck, D. F., and C. L. Webber. Time course of intercostal afferent termination of the inspiratory process. Respir. Physiol. 43: 133–145, 1981.
 479. Stella, G. On the mechanism of production, and the physiological significance of “apneusis.” J. Physiol. London 93: 10–23, 1938.
 480. Stella, G. The dependence of the activity of the “apneustic centre” on the carbon dioxide of the arterial blood. J. Physiol. London 93: 263–275, 1938.
 481. Stella, G. The reflex response of the “apneustic” centre to stimulation of the chemoreceptors of the carotid sinus. J. Physiol. London 95: 365–372, 1939.
 482. Stevens, R. T., C. J. Hodge, Jr., and A. V. Apkarian. Kölliker‐Fuse nucleus: the principal source of pontine catecholaminergic cells projecting to the lumbar spinal cord of cat. Brain Res. 239: 589–594, 1982.
 483. St. John, W. M. Respiratory tidal volume responses of cats with chronic pneumotaxic center lesions. Respir. Physiol. 16: 92–108, 1972.
 484. St. John, W. M. Characterization of the tidal volume regulating function of the pneumotaxic center. Respir. Physiol. 18: 64–79, 1973.
 485. St. John, W. M. Differing responses to hypercapnia and hypoxia following pneumotaxic center ablation. Respir. Physiol. 23: 1–9, 1975.
 486. St. John, W. M. Respiratory neuron responses to hypercapnia and carotid chemoreceptor stimulation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 816–822, 1981.
 487. St. John, W. M. Independent, bilateral sites for ventilatory neurogenesis (Abstract). In: Central Neural Production of Periodic Respiratory Movements, edited by J. L. Feldman and A. J. Berger. Chicago, IL: Northwestern Univ., 1982, p. 167–168. (Proc. Int. Symp., Lake Bluff, Illinois, April, 1982.).
 488. St. John, W. M., D. Bartlett, Jr., K. V. Knuth, and J.‐C. Hwang. Brain stem genesis of automatic ventilatory patterns independent of spinal mechanisms. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 204–210, 1981.
 489. St. John, W. M., R. L. Glasser, and R. A. King. Apneustic breathing after vagotomy in cats with chronic pneumotaxic center lesions. Respir. Physiol. 12: 239–250, 1971.
 490. St. John, W. M., R. L. Glasser, and R. A. King. Rhythmic respiration in awake vagotomized cats with chronic pneumotaxic area lesions. Respir. Physiol. 15: 233–244, 1972.
 491. St. John, W. M., and S. C. Wang. Integration of chemoreceptor stimuli by caudal pontile and rostral medullary sites. J. Appl. Physiol. 41: 612–622, 1976.
 492. St. John, W. M., and S. C. Wang. Alteration from apneusis to more regular rhythmic respiration in decerebrate cats. Respir. Physiol. 31: 91–106, 1977.
 493. Strohl, K. P., M. J. Hensley, M. Hallett, N. A. Saunders, and R. H. Ingram, Jr. Activation of upper airway muscles before onset of inspiration in normal humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 638–642, 1980.
 494. Strohl, K. P., J. Mead, R. B. Banzett, S. H. Loring, and P. C. Kosch. Regional differences in abdominal muscle activity during various maneuvers in humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1471–1476, 1981.
 495. Strohl, K. P., C. F. O'Cain, and A. S. Slutsky. Alae nasi activation and nasal resistance in healthy subjects. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1432–1437, 1982.
 496. Sullivan, C. E., E. Murphy, L. F. Kozar, and E. A. Phillipson. Ventilatory responses to CO2 and lung inflation in tonic versus phasic REM sleep. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1304–1310, 1979.
 497. Sutton, P. M. I. The interaction between reflex apnea and bradycardia produced by injecting 5‐HT into the nodose ganglion of the cat. Pfluegers Arch. 389: 181–187, 1981.
 498. Swindle, P. F. Superimposed respirations or Cheyne‐Stokes breathing of amphibious and non‐amphibious mammals. Am. J. Physiol. 79: 188–205, 1926.
 499. Szentágothai, J., and K. Rajkovits. Der Hirnnervenanteil der Pyramidenbahn und der prämotorische Apparat motorischer Hirnnervenkerne. Arch. Psychiatr. Nervenkr. 197: 335–354, 1958.
 500. Tang, P. C. Localization of the pneumotaxic center in the cat. Am. J. Physiol. 172: 645–652, 1953.
 501. Tang, P. C. Brain stem control of respiratory depth and rate in cat. Respir. Physiol. 3: 349–366, 1967.
 502. Teregulow, A. G. Zur Frage der Existenz von Atmungszentren in den vorderen Abschnitten der Medulla oblongata. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 221: 486–498, 1929.
 503. Tilney, F., and F. H. Pike. Muscular coordination experimentally studied in its relation to the cerebellum. Arch. Neurol. Psychiatry 13: 289–334, 1925.
 504. Torvik, A. The spinal projection from the nucleus of the solitary tract. An experimental study in the cat. J. Anat. 91: 314–322, 1957.
 505. Trenchard, D. Role of pulmonary stretch receptors during breathing in rabbits, cats, and dogs. Respir. Physiol. 29: 231–246, 1977.
 506. Trippenbach, T. Laryngeal, vagal and intercostal reflexes during the early postnatal period. J. Dev. Physiol. 3: 133–159, 1981.
 507. Trippenbach, T. Effects of drugs on the respiratory control system in the perinatal period and during postnatal development. Pharmacol. Ther. 20: 307–340, 1983.
 508. Trippenbach, T., G. Kelly, and D. Marlot. Respiratory effects of stimulation of intercostal muscles and saphenous nerve in kittens. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 1736–1744, 1983.
 509. Trippenbach, T., and J. Milic‐Emili. Temperature and CO2 effect on phrenic activity and tracheal occlusion pressure. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 449–454, 1977.
 510. Trippenbach, T., and J. Milic‐Emili. Vagal contribution to the inspiratory ‘off‐switch’ mechanism. Federation Proc. 36: 2395–2399, 1977.
 511. Vachon, B. R., and J. Duffin. Cross‐correlation of medullary respiratory neurons in the cat. Exp. Neurol. 61: 15–30, 1978.
 512. Vassella, F. Lokalisation eines inspiratorischen Zentrum in der Medulla oblongata des Kaninchens. Helv. Physiol. Pharmacol. Acta 19: 166–182, 1961.
 513. Vibert, J. F., F. Bertrand, M. Denavit‐Saubié, and A. Hugelin. Discharge patterns of bulbo‐pontine respiratory unit populations in cat. Brain Res. 114: 211–225, 1976.
 514. Vibert, J. F., D. Caille, F. Bertrand, H. Gromysz, and A. Hugelin. Ascending projection from the respiratory centre to mesencephalon and diencephalon. Neurosci. Lett. 11: 29–33, 1979.
 515. Waldron, I. Activity patterns in respiratory muscles and in respiratory neurones of the rostral medulla of the cat. J. Physiol. London 208: 373–383, 1970.
 516. Wallin, B. G., and U. König. Changes of skin nerve sympathetic activity during induction of general anaesthesia with thiopentone in man. Brain Res. 103: 157–160, 1976.
 517. Wang, S. C., and S. H. Ngai. Respiration coordinating mechanism of the brainstem—a few controversial points. Ann. NY Acad. Sci. 109: 550–559, 1963.
 518. Wang, S. C., S. H. Ngai, and M. J. Frumin. Organization of central respiratory mechanisms in the brain stem of the cat: genesis of normal respiratory rhythmicity. Am. J. Physiol. 190: 333–342, 1957.
 519. Wang, S. C., and L. F. Nims. The effect of various anesthetics and decerebration on the CO2 stimulating action on respiration in cats. J. Pharmacol. Exp. Ther. 92: 187–195, 1948.
 520. Ward, D. G., W. E. Grizzle, and D. S. Gann. Inhibitory and facilitatory areas of the rostral pons mediating ACTH release in the cat. Endocrinology 99: 1220–1228, 1976.
 521. Ward, D. G., A. M. Lefcourt, and D. S. Gann. Neurons in the dorsal rostral pons process information about changes in venous return and in arterial pressure. Brain Res. 181: 75–88, 1980.
 522. Webber, C. L. The structural and functional organization of the phrenic motoneuron pool. Am. Rev. Respir. Dis. 119: 57–60, 1979.
 523. Weiner, D., J. Mitra, J. Salamone, and N. S. Cherniack. Effect of chemical stimuli on nerves supplying upper airway muscles. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 530–536, 1982.
 524. Widdicombe, J. G. Receptors in the trachea and bronchi of the cat. J. Physiol. London 123: 71–104, 1954.
 525. Widdicombe, J. G., and M. Glogowska. Relative roles of irritant, type J, and pulmonary stretch receptors in lung reflexes. Acta Neurobiol. Exp. 33: 21–33, 1976.
 526. Widdicombe, J. G., and A. Winning. Effects of hypoxia, hypercapnia and changes in body temperature on the pattern of breathing in cats. Respir. Physiol. 21: 203–221, 1974.
 527. Winn, H. R., R. Rubio, and R. M. Berne. Brain adenosine concentration during hypoxia in rats. Am. J. Physiol. 241 (Heart Circ. Physiol. 10): H235–H242, 1981.
 528. Winning, A. J., and J. G. Widdicombe. The effect of lung reflexes on the pattern of breathing in cats. Respir. Physiol. 27: 253–266, 1976.
 529. Woldring, S., and M. N. J. Dirken. Site and extension of bulbar respiratory centre. J. Neurophysiol. 14: 227–241, 1951.
 530. Wolkove, N., M. D. Altose, S. G. Kelsen, P. G. Kondapalli, and N. S. Cherniack. Perception of changes in breathing in normal human subjects. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 78–83, 1981.
 531. Wyke, B. D., and J. A. Kirchner. Neurology of the larynx. In: Scientific Foundations of Otolaryngology, edited by R. Hinchcliffe and D. Harrison. London: Heinemann, 1976, p. 546–574.
 532. Wyman, R. J. Neural generation of the breathing rhythm. Annu. Rev. Physiol. 39: 417–448, 1977.
 533. Wyss, O. A. M. Die tonische Innervation des Zwerchfells. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 244: 712–735, 1941.
 534. Wyss, O. A. M. Die nervöse Steuerung der Atmung. Ergeb. Physiol. 54: 1–479, 1964.
 535. Yamamoto, Y., H. Lagercrantz, and C. Von Euler. Effects of substance P and TRH on ventilation and pattern of breathing in newborn rabbits. Acta Physiol. Scand. 113: 541–543, 1981.
 536. Yamamoto, Y., H. Lagercrantz, B. B. Fredholm, and C. Von Euler. Effects of some neuroactive substances on ventilation in newborn rabbits. Acta Physiol. Scand. Suppl. 508: 34, 1982.
 537. Yamashiro, S. M., J. A. Daubenspeck, T. N. Lauritsen, and F. S. Grodins. Total work rate of breathing optimization in CO2 inhalation and exercise. J. Appl. Physiol. 38: 702–709, 1975.
 538. Yoshida, Y., T. Miyazaki, M. Hirano, T. Shin, T. Totoki, and T. Kanaseki. Localization of motoneurons supplying the cricopharyngeal muscle in the cat studied by means of the horseradish peroxidase method. Neurosci. Lett. 18: 1–4, 1980.
 539. Younes, M., S. Iscoe, and J. Milic‐Emili. A method for the assessment of phasic vagal influence on tidal volume. J. Appl. Physiol. 38: 335–343, 1975.
 540. Younes, M. K., J. E. Remmers, and J. Baker. Characteristics of inspiratory inhibition by phasic volume feedback in cats. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 80–86, 1978.
 541. Zechman, F. W., D. T. Frazier, and D. A. Lally. Respiratory volume‐time relationships during resistive loading in the cat. J. Appl. Physiol. 40: 177–183, 1976.
 542. Zetterström, T., L. Vernet, U. Ungerstedt, U. Tossman, B. Jonzon, and B. B. Fredholm. Purine levels in the intact brain. Studies with an implanted perfused hollow fibre. Neurosci. Lett. 29: 111–115, 1982.
 543. Zin, W. A., L. D. Pengelly, and J. Milic‐Emili. Single‐breath method for measurement of respiratory mechanics in anesthetized animals. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1266–1271, 1982.
 544. Zuperku, E. J., F. A. Hopp, and J. P. Kampine. Central integration of pulmonary stretch receptor input in the control of expiration. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1296–1315, 1982.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Curt Von Euler. Brain Stem Mechanisms for Generation and Control of Breathing Pattern. Compr Physiol 2011, Supplement 11: Handbook of Physiology, The Respiratory System, Control of Breathing: 1-67. First published in print 1986. doi: 10.1002/cphy.cp030201