Comprehensive Physiology Wiley Online Library

Oscillation, Gating, and Memory in the Respiratory Control System

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Oscillation of Respiratory Stimuli
1.1 Chemical Stimuli
1.2 Mechanical Stimuli
2 Gating
2.1 Mechanisms
2.2 Physiological Effects
3 Memory in Respiratory Control System
3.1 Memories of Short and Medium Duration
3.2 Memories of Long Duration
Figure 1. Figure 1.

Arterial pressure (AP), change of medullary extracellular fluid (ECF) pH, and airway partial pressure of CO2 () in a paralyzed ventilated cat. A: oscillations of ECF pH (0.006 units) and arterial pressure with same period ventilation produced by respirator. Time lag between inspiration (down‐stroke of CO2 tracing) and onset of alkaline shift in medullary ECF pH is ∼4 s. B: effects of reversing arterial pressure oscillations by inflation of balloon in descending aorta (horizontal bars). Reversal has no effect on amplitude or timing of medullary ECF pH oscillations and shows that they result from CO2 oscillations derived from breathing.

Figure 2. Figure 2.

Carotid body discharge and relationship to respiratory activity. A: carotid sinus nerve (CSN) activity and integrated phrenic activity in vagotomized paralyzed cat ventilated at slow rate. One CSN is intact. Activity of CSN oscillates with frequency of ventilator; phrenic bursting frequency is almost twice as fast. Arrows mark last half of inspiration, when carotid activity should be most effective in modifying inspiration. Phrenic bursts occurring at peak of oscillating CSN discharge are greater than those occurring at its nadir. Variations of phrenic activity disappeared (not shown) after remaining intact CSN was cut. AP, arterial pressure. B: CSN activity, tidal volume, and airway partial pressure of CO2 () in spontaneously breathing cat with intact vagi and 1 intact carotid body. Peak of inspiration (arrows) occurs just before nadir of CSN oscillation.

From Eldridge 64
Figure 3. Figure 3.

Facilitatory respiratory memory after stimulation of carotid sinus nerve (CSN) in paralyzed vagotomized cat with partial pressure of CO2 () kept constant by servocontroller. Recording shows facilitatory effect of CSN stimulus and slow recovery process (after‐discharge) after its cessation. Time constant of afterdischarge is 58 s.

From Eldridge and Gill‐Kumar 66
Figure 4. Figure 4.

Experiments showing that complete suppression of inspiratory activity during carotid sinus nerve (CSN) stimulation does not prevent activation of central memory or afterdischarge in paralyzed vagotomized cat. A: control experiment showing base‐line activity at left, effect of CSN stimulation of 30 s, and afterdischarge. B: base‐line activity, effect of combined CSN and vagal stimulation, and recovery. Although inspiration is completely inhibited by vagal effects during combined stimulation, poststimulation respiratory activity is augmented, just as in control experiment, and decays with approximately the same time course.

From Eldridge and Gill‐Kumar 66
Figure 5. Figure 5.

Effects of different modes of carotid sinus nerve stimulation on respiratory (phrenic) response during stimulation and on recovery process in paralyzed vagotomized cat. A: continuous stimulation. B: expiratory‐only stimulation. C: alternate‐cycle stimulation. Stimulated breaths of alternate‐cycle experiment are similar to those of continuous stimulation, and nonstimulated breaths are similar to those of expiratory stimulation. Despite differences in direct effects of stimulus, afterdischarges are similar in all 3 experiments. Slowly rising activity during expiratory‐only stimulations represents increasing activation of mechanism producing afterdischarge. AP, arterial pressure.

From Eldridge and Gill‐Kumar 68
Figure 6. Figure 6.

Integrated phrenic activity from paralyzed ventilated newborn piglet before, during, and after electrical stimulation of superior laryngeal nerve lasting (from top down) 5, 10, 30, and 45 s. Bars, duration of stimulation. With each increase of stimulus duration, period of poststimulus apnea is progressively longer and initial respiratory activity is progressively less.

From Lawson 120
Figure 7. Figure 7.

Phrenic nerve activity and integrated phrenic activity in paralyzed ventilated vagotomized cat before, during (bars, 30‐s duration), and after stimulation of pulmonary stretch receptor afferents in cervical vagus nerve. Effect of central memory shown during poststimulus recovery of 2 experiments (A and B) performed at different end‐tidal partial pressure of CO2 () levels. The effect, which is a prolonged inspiratory duration and slowed frequency, is opposite of that expected if memory involved only persistence of vagally mediated off‐switch input.

Figure 8. Figure 8.

Poststimulus effect in spinal motoneurons. Recording shows effect in paralyzed spinal (C1) cat of physical stimulation of calf muscles on phrenic burst activity evoked by rhythmic compression of posterior lower thorax. Muscle stimulation causes marked inhibition of phrenic bursts, but at its offset there is marked overshoot of activity that returns to control only after >20 s. AP, arterial pressure.

From Eldridge, Millhorn, et al. 70
Figure 9. Figure 9.

Long‐lasting facilitatory memory induced by carotid sinus nerve (CSN) stimulation. Records are from paralyzed vagotomized glomectomized cat with end‐tidal partial pressure of CO2 () held constant at 31 Torr by servocontroller. Records show arterial pressure (AP) and integrated phrenic nerve activity. Top: control, CSN stimulation of 2 min, and recovery (afterdischarge). Phrenic activity is increased over control even after complete decay of afterdischarge at 5 min. The 2nd, 3rd, and 4th stimulations are not shown, but phrenic activity increases further both before and after 5th stimulation (middle). Phrenic activity remains elevated for at least 50 min after final stimulation (bottom).

From Millhorn, Eldridge, and Waldrop 134
Figure 10. Figure 10.

Long‐lasting poststimulation inhibition of respiration after stimulation of calf muscles. A: integrated phrenic activity and arterial pressure in paralyzed vagotomized glomectomized cat. Records show control, stimulation of muscles, and recovery. Brief poststimulus facilitatory memory (afterdischarge) occurs but is followed by decrease of phrenic activity to below prestimulation level. B: expanded record showing that poststimulus depression of phrenic activity persists for >30 min. AP, arterial pressure.

From Waldrop, Eldridge, and Millhorn 178


Figure 1.

Arterial pressure (AP), change of medullary extracellular fluid (ECF) pH, and airway partial pressure of CO2 () in a paralyzed ventilated cat. A: oscillations of ECF pH (0.006 units) and arterial pressure with same period ventilation produced by respirator. Time lag between inspiration (down‐stroke of CO2 tracing) and onset of alkaline shift in medullary ECF pH is ∼4 s. B: effects of reversing arterial pressure oscillations by inflation of balloon in descending aorta (horizontal bars). Reversal has no effect on amplitude or timing of medullary ECF pH oscillations and shows that they result from CO2 oscillations derived from breathing.



Figure 2.

Carotid body discharge and relationship to respiratory activity. A: carotid sinus nerve (CSN) activity and integrated phrenic activity in vagotomized paralyzed cat ventilated at slow rate. One CSN is intact. Activity of CSN oscillates with frequency of ventilator; phrenic bursting frequency is almost twice as fast. Arrows mark last half of inspiration, when carotid activity should be most effective in modifying inspiration. Phrenic bursts occurring at peak of oscillating CSN discharge are greater than those occurring at its nadir. Variations of phrenic activity disappeared (not shown) after remaining intact CSN was cut. AP, arterial pressure. B: CSN activity, tidal volume, and airway partial pressure of CO2 () in spontaneously breathing cat with intact vagi and 1 intact carotid body. Peak of inspiration (arrows) occurs just before nadir of CSN oscillation.

From Eldridge 64


Figure 3.

Facilitatory respiratory memory after stimulation of carotid sinus nerve (CSN) in paralyzed vagotomized cat with partial pressure of CO2 () kept constant by servocontroller. Recording shows facilitatory effect of CSN stimulus and slow recovery process (after‐discharge) after its cessation. Time constant of afterdischarge is 58 s.

From Eldridge and Gill‐Kumar 66


Figure 4.

Experiments showing that complete suppression of inspiratory activity during carotid sinus nerve (CSN) stimulation does not prevent activation of central memory or afterdischarge in paralyzed vagotomized cat. A: control experiment showing base‐line activity at left, effect of CSN stimulation of 30 s, and afterdischarge. B: base‐line activity, effect of combined CSN and vagal stimulation, and recovery. Although inspiration is completely inhibited by vagal effects during combined stimulation, poststimulation respiratory activity is augmented, just as in control experiment, and decays with approximately the same time course.

From Eldridge and Gill‐Kumar 66


Figure 5.

Effects of different modes of carotid sinus nerve stimulation on respiratory (phrenic) response during stimulation and on recovery process in paralyzed vagotomized cat. A: continuous stimulation. B: expiratory‐only stimulation. C: alternate‐cycle stimulation. Stimulated breaths of alternate‐cycle experiment are similar to those of continuous stimulation, and nonstimulated breaths are similar to those of expiratory stimulation. Despite differences in direct effects of stimulus, afterdischarges are similar in all 3 experiments. Slowly rising activity during expiratory‐only stimulations represents increasing activation of mechanism producing afterdischarge. AP, arterial pressure.

From Eldridge and Gill‐Kumar 68


Figure 6.

Integrated phrenic activity from paralyzed ventilated newborn piglet before, during, and after electrical stimulation of superior laryngeal nerve lasting (from top down) 5, 10, 30, and 45 s. Bars, duration of stimulation. With each increase of stimulus duration, period of poststimulus apnea is progressively longer and initial respiratory activity is progressively less.

From Lawson 120


Figure 7.

Phrenic nerve activity and integrated phrenic activity in paralyzed ventilated vagotomized cat before, during (bars, 30‐s duration), and after stimulation of pulmonary stretch receptor afferents in cervical vagus nerve. Effect of central memory shown during poststimulus recovery of 2 experiments (A and B) performed at different end‐tidal partial pressure of CO2 () levels. The effect, which is a prolonged inspiratory duration and slowed frequency, is opposite of that expected if memory involved only persistence of vagally mediated off‐switch input.



Figure 8.

Poststimulus effect in spinal motoneurons. Recording shows effect in paralyzed spinal (C1) cat of physical stimulation of calf muscles on phrenic burst activity evoked by rhythmic compression of posterior lower thorax. Muscle stimulation causes marked inhibition of phrenic bursts, but at its offset there is marked overshoot of activity that returns to control only after >20 s. AP, arterial pressure.

From Eldridge, Millhorn, et al. 70


Figure 9.

Long‐lasting facilitatory memory induced by carotid sinus nerve (CSN) stimulation. Records are from paralyzed vagotomized glomectomized cat with end‐tidal partial pressure of CO2 () held constant at 31 Torr by servocontroller. Records show arterial pressure (AP) and integrated phrenic nerve activity. Top: control, CSN stimulation of 2 min, and recovery (afterdischarge). Phrenic activity is increased over control even after complete decay of afterdischarge at 5 min. The 2nd, 3rd, and 4th stimulations are not shown, but phrenic activity increases further both before and after 5th stimulation (middle). Phrenic activity remains elevated for at least 50 min after final stimulation (bottom).

From Millhorn, Eldridge, and Waldrop 134


Figure 10.

Long‐lasting poststimulation inhibition of respiration after stimulation of calf muscles. A: integrated phrenic activity and arterial pressure in paralyzed vagotomized glomectomized cat. Records show control, stimulation of muscles, and recovery. Brief poststimulus facilitatory memory (afterdischarge) occurs but is followed by decrease of phrenic activity to below prestimulation level. B: expanded record showing that poststimulus depression of phrenic activity persists for >30 min. AP, arterial pressure.

From Waldrop, Eldridge, and Millhorn 178
References
 1. Adrian, E. D. Afferent impulses in the vagus and their effect on respiration. J. Physiol. London 79: 332–358, 1933.
 2. Ahmad, H. R., H. H. Woidtke, and H. H. Loeschcke. Transients of ventilation and pH in the brain extracellular fluid following a step change of end‐tidal Pco2 (Abstract). Pfluegers Arch. 368, Suppl.: R18, 1977.
 3. Ashbridge, K. M., S. Jennett, and J. B. North. The absence of post‐hyperventilation apnoea in the wakeful state (Abstract). J. Physiol. London 230: 52P, 1973.
 4. Amassian, V. E., and R. V. Devito. Unit activity in reticular formation and nearby structures. J. Neurophysiol. 17: 575–603, 1954.
 5. Bainton, C. R., P. A. Kirkwood, and T. A. Sears. On the transmission of the stimulating effects of carbon dioxide to the muscles of respiration. J. Physiol. London 280: 249–272, 1978.
 6. Bainton, C. R., and R. A. Mitchell. Posthyperventilation apnea in awake man. J. Appl. Physiol. 21: 411–415, 1966.
 7. Band, D. M., I. R. Cameron, and S. J. G. Semple. Oscillations in arterial pH with breathing in the cat. J. Appl. Physiol. 26: 261–267, 1969.
 8. Band, D. M., I. R. Cameron, and S. J. G. Semple. Effect of different methods of CO2 administration on oscillations of arterial pH in the cat. J. Appl. Physiol. 26: 268–273, 1969.
 9. Band, D. M., I. R. Cameron, and S. J. G. Semple. The effect on respiration of abrupt changes in carotid artery pH and Pco2 in the cat. J. Physiol. London 211: 479–494, 1970.
 10. Band, D. M., M. McClelland, D. L. Phillips, K. B. Saunders, and C. B. Wolff. Sensitivity of the carotid body to within‐breath changes in arterial Pco2. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 768–777, 1978.
 11. Band, D. M., and C. B. Wolff. The effect of hypoxia on the respiratory fluctuations in chemoreceptor discharge in the cat (Abstract). J. Physiol. London 234: 71P–72P, 1973.
 12. Benchitrit, G., and F. Bertrand. A short‐term memory in the respiratory centres: statistical analysis. Respir. Physiol. 23: 147–158, 1975.
 13. Benchitrit, G., and T. Pham Dinh. Analyse d'une étude statistique de la ventilation cycle par cycle chez l'homme au repos. Biom. Humaine 8: 7–19, 1973.
 14. Benchitrit, G., and T. Pham Dinh. Un essai d'analyse statistique des séries de données respiratoires. Rev. Stat. Appl. 12: 51–68, 1974.
 15. Berger, A. J. Dorsal respiratory group neurons in the medulla of the cat: spinal projections, responses to lung inflation and superior laryngeal nerve stimulation. Brain Res. 135: 231–254, 1977.
 16. Berger, A. J. Respiratory gating of phrenic motoneuron responses to superior laryngeal nerve stimulation. Brain Res. 157: 381–384, 1978.
 17. Berger, A. J., and R. A. Mitchell. Lateralized phrenic nerve responses to stimulating respiratory afferents in the cat. Am. J. Physiol. 230: 1314–1320, 1976.
 18. Bergman, N. A. Cyclic variations in blood oxygenation with the respiratory cycle. Anesthesiology 22: 900–908, 1961.
 19. Bernards, J. A., and J. F. Sisterman. Transient changes in lung ventilation by brief stimulation of the carotid bodies in the dog (Abstract). Acta Physiol. Pharmacol. Neerl. 15: 28–29, 1969.
 20. Biscoe, T. J., G. W. Bradley, and M. J. Purves. The relation between carotid body chemoreceptor discharge, carotid sinus pressure and carotid body venous flow. J. Physiol. London 208: 99–120, 1970.
 21. Biscoe, T. J., and M. J. Purves. Observations on the rhythmic variation in the cat carotid body chemoreceptor activity which has the same period as respiration. J. Physiol. London 190: 389–393, 1967.
 22. Black, A. M. S., N. W. Goodman, B. S. Nail, P. S. Rao, and R. W. Torrance. The significance of the timing of chemoreceptor impulses for their effect upon respiration. Acta Neurobiol. Exp. 33: 139–147, 1973.
 23. Black, A. M. S., D. I. McCloskey, and R. W. Torrance. The responses of carotid body chemoreceptors in the cat to sudden changes of hypercapnic and hypoxic stimuli. Respir. Physiol. 13: 36–49, 1971.
 24. Black, A. M. S., and R. W. Torrance. The effect of respiratory variations in chemoreceptor discharge upon inspiratory activity (Abstract). J. Physiol. London 191: 114P–115P, 1967.
 25. Black, A. M. S., and R. W. Torrance. Respiratory oscillations in chemoreceptor discharge in the control of breathing. Respir. Physiol. 13: 221–237, 1971.
 26. Boothby, W. M. Absence of apnoea after forced breathing. J. Physiol. London 45: 328–333, 1912.
 27. Bucher, K., H. Schwitter, B. Hool‐Zulauf, and E. Batschelet. Links between cardiac and respiratory rhythmicity. Res. Exp. Med. 157: 281–288, 1972.
 28. Budzińska, K. Respiratory Cycle as an Index of CNS Excitability. Warsaw: Univ. of Warsaw, 1978. PhD thesis.
 29. Budzińska, K., W. A. Karczewski, E. Naslońska, and J. R. Romaniuk. Post‐stimulus effects and their possible role for stabilizing respiratory output. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1980, p. 115–127.
 30. Burns, D. B. Some properties of isolated cerebral cortex in the unanaesthetized cat. J. Physiol. London 112: 156–175, 1951.
 31. Burns, D. B. The mechanism of after‐bursts in cerebral cortex. J. Physiol. London 127: 168–188, 1955.
 32. Camerer, H., D. W. Richter, N. Rörhig, and M. Meeseman. Lung stretch receptor inputs to Rβ‐neurons: a model for “respiratory gating.” In: Central Nervous Control Mechanism in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1980, p. 261–266.
 33. Chilton, A. B., D. S. Barth, and R. W. Stacey. A mathematical analysis of oxygen respiration in man. Bull. Math. Biophys. 16: 1–14, 1954.
 34. Chilton, A. B., and R. W. Stacey. A mathematical analysis of carbon dioxide respiration in man. Bull. Math. Biophys. 14: 1–18, 1952.
 35. Clark, F. J., and C. Von Euler. On the regulation of depth and rate of breathing. J. Physiol. London 222: 267–295, 1972.
 36. Cohen, M. I., and J. L. Feldman. Models of respiratory phase‐switching. Federation Proc. 36: 2367–2374, 1977.
 37. Comroe, J. H., Jr. The location and function of the chemoreceptors of the aorta. Am. J. Physiol. 127: 176–191, 1939.
 38. Comroe, J. H., Jr. and C. F. Schmidt. The part played by reflexes from the carotid body in the chemical regulation of respiration in the dog. Am. J. Physiol. 121: 75–97, 1938.
 39. Coombs, J. S., D. R. Curtis, and J. C. Eccles. The electrical constants of the motoneurone membrane. J. Physiol. London 145: 505–528, 1959.
 40. Corda, M., C. Von Euler, and G. Lennerstrand. Proprioceptive innervation of the diaphragm. J. Physiol. London 178: 161–177, 1965.
 41. Cragg, P., L. Patterson, and M. J. Purves. The pH of brain extracellular fluid in the cat. J. Physiol. London 272: 137–166, 1977.
 42. Critchlow, V., and C. Von Euler. Intercostal muscle spindle activity and its gamma motor control. J. Physiol. London 169: 820–847, 1963.
 43. Cross, B. A., B. J. B. Grant, A. Guz, P. W. Jones, S. J. G. Semple, and R. P. Stidwell. Dependence of phrenic motoneurone output on the oscillatory component of arterial blood gas composition. J. Physiol. London 290: 163–184, 1979.
 44. Cross, B. A., B. J. B. Grant, A. Guz, P. W. Jones, S. J. G. Semple, and R. P. Stidwell. An assessment of the effect of the oscillatory component of arterial blood gas composition on pulmonary ventilation. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1980, p. 91–94.
 45. d'Angelo, E. Effects of single breath lung inflation on the pattern of subsequent breaths. Respir. Physiol. 31: 1–18, 1977.
 46. d'Angelo, E. Mechanisms controlling inspirations studied by electrical vagal stimulation in rabbits. Respir. Physiol. 38: 185–202, 1979.
 47. Davenport, P. W., D. T. Frazier, and F. W. Zechman, Jr. The effect of resistive loading of inspiration and expiration on pulmonary stretch receptor discharge. Respir. Physiol. 43: 299–314, 1981.
 48. Davies, A., M. Roumy, J. G. Widdicombe, and J. C. M. Wise. Effects of brief changes in lung volume on pattern of breathing in rabbits (Abstract). Proc. Int. Congr. Physiol. Sci., 27th, Paris, 1977, vol. 13, p. 163.
 49. Davis, H. L., W. S. Fowler, and E. H. Lambert. Effect of volume and rate of inflation and deflation on transpulmonary pressure and response of pulmonary stretch receptors. Am. J. Physiol. 187: 558–566, 1956.
 50. Downing, S. E., and J. P. Lee. Laryngeal chemosensitivity: a possible mechanism for sudden infant death. Pediatrics 55: 646–649, 1975.
 51. DuBois, A. B. Alveolar CO2 and O2 during breath holding, expiration, and inspiration. J. Appl. Physiol. 5: 1–12, 1952.
 52. DuBois, A. B., A. G. Britt, and W. O. Fenn. Alveolar CO2 during the respiratory cycle. J. Appl. Physiol. 4: 535–548, 1952.
 53. Dutton, R. E., R. S. Fitzgerald, and N. Gross. Ventilatory response to square‐wave forcing of carbon dioxide at the carotid bodies. Respir. Physiol. 4: 101–108, 1968.
 54. Dutton, R. E., W. A. Hodson, D. G. Davies, and A. Fenner. Effect of rate of rise of carotid body Pco2 on the time course of ventilation. Respir. Physiol. 3: 367–379, 1967.
 55. Ead, H. W., J. H. Green, and E. Neil. A comparison of the effects of pulsatile and non‐pulsatile blood flow through the carotid sinus on the reflexogenic activity of the sinus baroreceptors in the cat. J. Physiol. London 118: 509–519, 1952.
 56. Eldridge, F. L. The importance of timing on the respiratory effects of intermittent carotid sinus nerve stimulation. J. Physiol. London 222: 297–318, 1972.
 57. Eldridge, F. L. The importance of timing on the respiratory effects of intermittent carotid body chemoreceptor stimulation. J. Physiol. London 222: 319–333, 1972.
 58. Eldridge, F. L. Posthyperventilation breathing: different effects of active and passive hyperventilation. J. Appl. Physiol. 34: 422–430, 1973.
 59. Eldridge, F. L. Central neural respiratory stimulatory effect of active respiration. J. Appl. Physiol. 37: 723–735, 1974.
 60. Eldridge, F. L. Central neural stimulation of respiration in unanesthetized decerebrate cats. J. Appl. Physiol. 40: 23–28, 1976.
 61. Eldridge, F. L. Expiratory effects of brief carotid sinus nerve and carotid body stimulations. Respir. Physiol. 26: 395–410, 1976.
 62. Eldridge, F. L. Maintenance of respiration by central neural feedback mechanisms. Federation Proc. 36: 2400–2404, 1977.
 63. Eldridge, F. L. The different respiratory effects of inspiratory and expiratory stimulations of the carotid sinus nerve and carotid body. In: The Regulation of Respiration During Sleep and Anesthesia, edited by R. S. Fitzgerald, H. Gautier, and S. Lahiri. New York: Plenum, 1978, p. 325–333.
 64. Eldridge, F. L. Central modulation of inspiratory and expiratory stimulations of the carotid body and carotid sinus nerve. In: Central Interactions Between Respiratory and Cardiovascular Control Systems, edited by H. P. Koepchen, S. M. Hilton, and A. Trzebski. Heidelberg: Springer‐Verlag, 1980, p. 180–187.
 65. Eldridge, F. L. Subthreshold central neural respiratory activity and afterdischarge. Respir. Physiol. 39: 327–343, 1980.
 66. Eldridge, F. L., and P. Gill‐Kumar. Lack of effect of vagal afferent input on central neural respiratory afterdischarge. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 339–344, 1978.
 67. Eldridge, F. L., and P. Gill‐Kumar. Central neural drive mechanisms and respiratory afterdischarge‐the “T‐pool” concept. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1980, p. 101–113.
 68. Eldridge, F. L., and P. Gill‐Kumar. Central neural respiratory drive and afterdischarge. Respir. Physiol. 40: 49–63, 1980.
 69. Eldridge, F. L., P. Gill‐Kumar, and D. E. Millhorn. Input‐output relationships of central neural circuits involved in respiration in cats. J. Physiol. London 311: 81–95, 1981.
 70. Eldridge, F. L., P. Gill‐Kumar, D. E. Millhorn, and T. G. Waldrop. Spinal inhibition of phrenic motoneurones by stimulation of afferents from peripheral muscles. J. Physiol. London 311: 67–79, 1981.
 71. Euler, C. von. The functional organization of the respiratory phase‐switching mechanisms. Federation Proc. 36: 2375–2380, 1977.
 72. Euler, C. von, J. N. Hayward, I. Marttila, and R. J. Wyman. Respiratory neurones of the ventrolateral nucleus of the solitary tract of cat: vagal input, spinal connections and morphological identification. Brain Res. 61: 1–22, 1973.
 73. Euler, U. S. von, G. Liljestrand, and Y. Zotterman. The excitation mechanism of the chemoreceptors of the carotid body. Skand. Arch. Physiol. 83: 132–152, 1952.
 74. Eyzaguirre, C., and J. Lewin. Effect of different oxygen tensions on the carotid body in vitro. J. Physiol. London 159: 238–250, 1961.
 75. Fink, B. R. Influence of cerebral activity in wakefulness on regulation of breathing. J. Appl. Physiol. 16: 15–20, 1961.
 76. Fitzgerald, R. S., L. M. Leitner, and M. J. Liaubet. Carotid chemoreceptor response to intermittent or sustained stimulation in the cat. Respir. Physiol. 6: 395–402, 1969.
 77. Folgering, H. Beta‐adrenergic drugs do not affect phrenic nerve afterdischarge. Pfluegers Arch. 391: 355–356, 1981.
 78. Gehrich, J. L., and G. P. Moore. Statistical analysis of cyclic variations in carotid body chemoreceptor activity. J. Appl. Physiol. 35: 642–648, 1973.
 79. Gerber, U., and C. Polosa. Some effects of superior laryngeal nerve stimulation on sympathetic preganglionic neuron firing. Can. J. Physiol. Pharmacol. 57: 1073–1081, 1979.
 80. Gesell, R., C. R. Brassfield, and M. A. Hamilton. An acid‐neurohumoral mechanism of nerve cell activation. Am. J. Physiol. 136: 604–608, 1942.
 81. Gesell, R., and M. A. Hamilton. Reflexogenic components of breathing. Am. J. Physiol. 133: 694–719, 1941.
 82. Gillette, R., M. P. Kovac, and W. J. Davis. Command neurons in Pleurobranchaea receive synaptic feedback from the motor network they excite. Science 199: 798–801, 1978.
 83. Goodman, N. W., B. S. Nail, and R. W. Torrance. Oscillations in the discharge of single carotid chemoreceptor fibres of the cat. Respir. Physiol. 20: 251–269, 1974.
 84. Gray, B. A. Responses of the perfused carotid body to changes in pH and Pco2. Respir. Physiol. 4: 229–245, 1968.
 85. Gromysz, H., W. A. Karczewski, E. Naslońska, and J. R. Romaniuk. The role of timing and magnitude of the vagal input in controlling the phrenic output in rabbits and baboons. Acta Neurobiol. Exp. 40: 563–574, 1980.
 86. Haldane, J. S., and J. G. Priestly. The regulation of lung ventilation. J. Physiol. London 32: 225–266, 1905.
 87. Haymet, B. T., and D. I. McCloskey. Baroreceptor and chemoreceptor influences on heart rate during the respiratory cycle in the dog. J. Physiol. London 245: 699–712, 1975.
 88. Henderson, Y. Acapnia and shock. IV. Fatal apnoea after excessive respiration. Am. J. Physiol. 25: 310–333, 1910.
 89. Hesser, C. M. Central and chemoreflex components in the respiratory activity during acid base displacements in the blood. Acta Physiol. Scand. Suppl. 64: 5–69, 1949.
 90. Heymans, C., J. J. Bouckaert, and L. Dautrebande. Sinus carotidien et réflexes respiratoires. II. Influences respiratoires réflexes de l'acidoise, de l'alcalose, de l'anhydride carbonique, de l'ion hydrogène et de l'anoxemie. Sinus carotidien et échanges respiratoires dans les poumons et au dela des poumons. Arch. Int. Pharmacodyn. Ther. 39: 400–450, 1930.
 91. Hilaire, C., and R. Monteau. Activité en polypnée des recepteurs pulmonaires d'inflation: étude unitaire chez le chat. J. Physiol. Paris 70: 219–238, 1975.
 92. Hildebrandt, J. R. Gating: a mechanism for selective receptivity in the respiratory center. Federation Proc. 36: 2381–2385, 1977.
 93. Honda, Y., and M. Ueda. Fluctuations of arterial pH associated with the respiratory cycle in dogs. Jpn. J. Physiol. 11: 223–228, 1961.
 94. Hornbein, T. F. Effect of respiratory oscillations of arterial Po2 and Pco2 on carotid chemoreceptor activity and phrenic nerve activity (Abstract). Physiologist 8: 197, 1965.
 95. Hornbein, T. F., Z. J. Griffo, and A. Roos. Quantitation of chemoreceptor activity: interaction of hypoxia and hyper‐capnia. J. Neurophysiol. 24: 561–568, 1961.
 96. Howard, P., B. Bromberger‐Barnea, R. S. Fitzgerald, and H. N. Bane. Ventilatory responses to peripheral nerve stimulation at different times in the respiratory cycle. Respir. Physiol. 7: 389–398, 1969.
 97. Hugelin, A., and M. I. Cohen. The reticular activating system and respiratory regulation in the cat. Ann. NY Acad. Sci. 109: 586–603, 1963.
 98. Iscoe, S. Respiratory and stepping frequencies in conscious exercising cats. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 835–839, 1981.
 99. Iscoe, S. Pulmonary stretch receptor discharge patterns in eupnea, hypercapnia, and hypoxia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 346–354, 1982.
 100. Iscoe, S., and C. Polosa. Synchronization of respiratory frequency by somatic afferent stimulation. J. Appl. Physiol. 40: 138–148, 1976.
 101. Iscoe, S., and S. Vanner. Respiratory periodicity following stimulation of vagal afferents. Can. J. Physiol. Pharmacol. 58: 823–829, 1980.
 102. Jennings, K. R., L. K. Kaczmarek, R. M. Hewick, W. J. Oreyer, and F. Strumwasser. Protein phosphorylation during afterdischarge in peptidergic neurons of Aplysia. J. Neurosci. 2: 158–168, 1982.
 103. Kaczmarek, L. K., and F. Strumwasser. The expression of long lasting afterdischarge by isolated Aplysia bag cell neurons. J. Neurosci. 1: 626–634, 1981.
 104. Kandel, E. R., and J. H. Schwartz. Molecular biology of learning: modulation of transmitter release. Science 218: 433–443, 1982.
 105. Karczewski, W. A. A model of proprioceptive information from the lungs. In: Proc. Int. Conf. Med. Electron. (5th ed.), edited by F. H. Bostem. Liège, Belgium: Int. Fed. Med. Electron., 1963, p. 78–79.
 106. Karczewski, W. A., K. Budzińska, H. Gromysz, R. Herczynski, and J. R. Romaniuk. Some responses of the respiratory complex to stimulation of its vagal and mesencephalic inputs. In: Respiratory Centres and Afferent Systems, edited by B. Duron. Paris: INSERM, 1976, p. 107–115.
 107. Karczewski, W. A., K. Budzińska, E. Naslońska, E. Jazowiecka, J. R. Romaniuk, and M. Kyba. Rate of rise of inspiration at various levels of CNS excitability. In: The Regulation of Respiration During Sleep and Anesthesia, edited by R. S. Fitzgerald, H. Gautier, and S. Lahiri. New York: Plenum, 1978, p. 23–33.
 108. Karczewski, W. A., E. Naslońska, and J. R. Romaniuk. Respiratory responses to stimulation of afferent vagal fibres in rabbits. Acta Neurobiol. Exp. 40: 543–562, 1980.
 109. Karczewski, W. A., and J. R. Romaniuk. Neural control of breathing and central nervous system plasticity. Acta Physiol. Pol. Supl. 20: 1–10, 1980.
 110. Keller, C. J., and A. Loeser. Der Zentripetale Lungenvagus. Z. Biol. Munich 89: 373–395, 1929.
 111. Knowlton, G. C., and M. G. Larrabee. A unitary analysis of pulmonary volume receptors. Am. J. Physiol. 147: 100–114, 1946.
 112. Knox, C. K. Characteristics of inflation and deflation reflexes during expiration in the cat. J. Neurophysiol. 36: 284–295, 1973.
 113. Krogh, A., and J. Lindhard. On the average composition of the alveolar air and its variation during the respiration cycle. J. Physiol. London 47: 431–445, 1914.
 114. Kumazawa, T., E. Tadaki, and K. Kim. A possible participation of endogenous opiates in respiratory reflexes induced by thin‐fiber muscular afferents. Brain Res. 199: 244–248, 1980.
 115. Lahiri, S., N. H. Edelman, N. S. Cherniack, and A. P. Fishman. Role of carotid chemoreflex in respiratory acclimatization in goat and sheep. Respir. Physiol. 46: 367–382, 1981.
 116. Lahiri, S., A. Mokashi, R. G. Delaney, and A. P. Fishman. Arterial Po2 and Pco2 stimulus threshold for carotid chemo‐receptors and breathing. Respir. Physiol. 34: 359–375, 1978.
 117. Lamb, T. W., N. R. Anthonisen, and S. M. Tenney. Controlled frequency breathing during muscular exercise. J. Appl. Physiol. 20: 244–248, 1965.
 118. Landgren, S., and E. Neil. Chemoreceptor impulse activity following haemorrhage. Acta Physiol. Scand. 23: 158–167, 1951.
 119. Lawson, E. E. Prolonged central respiratory inhibition following reflex‐induced apnea. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 874–879, 1981.
 120. Lawson, E. E. Recovery from central apnea: effect of stimulus duration and end‐tidal CO2 partial pressure. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 105–109, 1982.
 121. Lee, K. D., R. A. Mayou, and R. W. Torrance. The effect of blood pressure upon chemoreceptor discharge to hypoxia and the modification of this effect by the sympathetic‐adrenal system. Q. J. Exp. Physiol. 49: 171–183, 1964.
 122. Leitner, L. M., and P. Dejours. The speed of response of chemoreceptors. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 79–88.
 123. Leitner, L. M., B. Pages, R. Puccinelli, and P. Dejours. Étude simultaneé de la ventilation et des dècharges des chemorecépteurs du glomus carotidien chez le chat. I. Au cours d'inhalations brèves d'oxygene pur. Arch. Int. Pharmacodyn. Ther. 154: 421–426, 1965.
 124. Leitner, L. M., B. Pages, R. Puccinelli, and P. Dejours. Étude simultaneé de la ventilation et des dècharges des chemorecépteurs du glomus carotidien chez le chat. II. Au cours d'inhalations brèves d'anhydride carbonique. Arch. Int. Pharmacodyn. Ther. 154: 427–433, 1965.
 125. Lewis, G., J. Ponte, and M. J. Purves. Fluctuations of Paco2 with the same period as respiration in the cat. J. Physiol. London 298: 1–11, 1980.
 126. Linton, R. A. F., R. Miller, and I. R. Cameron. Role of Pco2 oscillations and chemoreceptors in ventilatory response to inhaled and infused CO2. Respir. Physiol. 29: 201–210, 1977.
 127. Lipski, J., R. M. McAllen, and K. M. Spyer. The carotid chemoreceptor input to the respiratory neurones of the nucleus of tractus solitarius. J. Physiol. London 269: 797–810, 1977.
 128. Loeschcke, H. H., J. DeLattre, M. E. Schlafke, and C. O. Trouth. Effects on respiration and circulation of electrically stimulating the ventral surface of the medulla oblongata. Respir. Physiol. 10: 184–197, 1970.
 129. Marek, W., N. R. Prabhakar, and H. H. Loeschcke. Effects of electrical stimulation of chemosensory afferents in different phases of the respiratory cycle (Abstract). Federation Proc. 37: 903, 1978.
 130. Masumoto, K. Histologische Studien über die peripheren Nerven des Zwerchfells. Mitt. Med. Akad. Kioto 10: 1015–1018, 1934.
 131. McCloskey, D. I. Carbon dioxide and the carotid body. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 279–293.
 132. Mikulski, A., and A. Trzebski. The effects of brief chemical stimulation of the central chemosensitive structures (CChS) in different phases of respiration on integrated phrenic nerve activity (Abstract). Federation Proc. 41: 1691, 1982.
 133. Millhorn, D. E., F. L. Eldridge, and J. P. Kiley. Medullary ECF pH oscillates with the same period as respiration (Abstract). Federation Proc. 42: 1252, 1983.
 134. Millhorn, D. E., F. L. Eldridge, and T. G. Waldrop. Prolonged stimulation of respiration by a new central neural mechanism. Respir. Physiol. 41: 87–103, 1980.
 135. Millhorn, D. E., F. L. Eldridge, and T. G. Waldrop. Prolonged stimulation of respiration by endogenous central serotonin. Respir. Physiol. 42: 171–188, 1980.
 136. Millhorn, D. E., F. L. Eldridge, and T. G. Waldrop. Pharmacologic study of respiratory afterdischarge. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 239–244, 1981.
 137. Millhorn, D. E., F. L. Eldridge, and T. G. Waldrop. Effects of medullary area I(s) cooling on respiratory response to chemoreceptor input. Respir. Physiol. 49: 23–39, 1982.
 138. Mills, J. N. Hyperpnea induced by forced breathing. J. Physiol. London 105: 95–116, 1946.
 139. Miserocchi, G., and G. Sant'Ambrogio. Responses of pulmonary stretch receptors to static pressure inflations. Respir. Physiol. 21: 77–85, 1974.
 140. Mitchell, R. A., C. R. Bainton, and G. Edelist. Posthyperventilation apnea in awake dogs during metabolic acidosis and hypoxia. J. Appl. Physiol. 21: 1363–1367, 1966.
 141. Mitchell, R. A., and D. A. Herbert. The effect of carbon dioxide on the membrane potential of medullary respiratory neurons. Brain Res. 75: 345–349, 1973.
 142. Mitchell, R. A., H. H. Loeschcke, J. W. Severinghaus, B. W. Richardson, and W. H. Massion. Regions of respiratory chemosensitivity on the surface of the medulla. Ann. NY Acad. Sci. 109: 661–681, 1963.
 143. Mosso, A. La physiologie de l'apnée etudiée chez l'homme. Arch. Ital. Biol. 40: 1–30, 1903.
 144. Nims, L. F., and C. Marshall. Blood pH in vivo. I. Changes due to respiration. Yale J. Biol. Med. 10: 445–448, 1938.
 145. Nishino, T. Effects of chemical drive on the inhibition of respiration produced by laryngeal stimulation in cats. Jpn. J. Physiol. 30: 827–840, 1980.
 146. Ogura, J. H., and R. L. Lam. Anatomical and physiological correlations on stimulating the human superior laryngeal nerve. Laryngoscope 63: 947–959, 1953.
 147. Palkovits, M., M. Brownstern, and J. Saavedra. Serotonin content of the brain stem nuclei in the cat. Brain Res. 80: 237–249, 1974.
 148. Parida, B., J. M. Senapati, and M. Kalia. Role of carotid body in hyperpnea due to stimulation of muscle receptors in the dog. J. Appl. Physiol. 27: 519–522, 1969.
 149. Perkel, D. H., and B. Mulloney. Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound. Science 185: 181–183, 1974.
 150. Plaas‐Link, A., A. Luttmann, J. Mueller, K. Mueckenhoff, and H. H. Loeschcke. The influence on respiration of natural Pco2 oscillations (Abstract). Federation Proc. 37: 535, 1978.
 151. Plaas‐Link, A., J. Meuller, A. Luttman, K. Mueckenhoff, and H. H. Loeschcke. Measurement of natural arterial CO2 oscillations and production of artificial ones in cats (Abstract). Federation Proc. 36: 425, 1977.
 152. Plum, F., H. W. Brown, and E. Snoep. The neurological significance of posthyperventilation apnea. J. Am. Med. Assoc. 181: 1050–1055, 1962.
 153. Polc, P., and M. Monnier. An activating mechanism in the pontobulbar raphe system of the rabbit. Brain Res. 22: 47–61, 1970.
 154. Ponte, J., and M. J. Purves. Frequency response of carotid body chemoreceptors in the cat to changes of Paco2, Pao2, and pHa. J. Appl. Physiol. 37: 635–647, 1974.
 155. Priban, I. P. An analysis of some short‐term patterns of breathing in man at rest. J. Physiol. London 166: 425–434, 1963.
 156. Purves, M. J. Fluctuations of arterial oxygen tension which have the same period as respiration. Respir. Physiol. 1: 281–296, 1966.
 157. Remmers, J. E. Extra‐segmental reflexes derived from intercostal afferents: phrenic and laryngeal responses. J. Physiol. London 233: 45–62, 1973.
 158. Richter, D. W., H. Camerer, M. Meesmann, and N. Röhrig. Studies on the synaptic interconnection between bulbar respiratory neurones of cats. Pfluegers Arch. 380: 245–257, 1979.
 159. Richter, D. W., and H. Seller. Baroreceptor effects on medullary respiratory neurones of the cat. Brain Res. 86: 168–171, 1975.
 160. Rudomin, P. Presynaptic inhibition induced by vagal afferent volleys. J. Neurophysiol. 30: 964–981, 1967.
 161. Sant'Ambrogio, G., and G. Miserocchi. Functional localization of pulmonary stretch receptors in the airways of the cat. Arch. Fisiol. 70: 3–9, 1973.
 162. Schläfke, M. E., and H. H. Loeschcke. Lokalization eines an der Regulation von Atmung und Kreislauf beteiligten Gebietes an der ventralen Oberfläche der Medulla Oblongata durch Kälte blockade. Pfluegers Arch. 297: 205–220, 1967.
 163. Schmidt, C. F., J. H. Comroe, Jr., and R. D. Dripps, Jr. Carotid body reflexes in the dog. Proc. Soc. Exp. Biol. Med. 42: 31–32, 1939.
 164. Sears, T. A. The slow potentials of thoracic respiratory motoneurones of the cat's thoracic spinal cord. J. Physiol. London 175: 404–424, 1964.
 165. Sears, T. A. The respiratory motoneurone: integration at spinal segmental level. In: Breathlessness, edited by J. B. L. Howell and E. J. M. Campbell. Oxford, UK: Blackwell, 1966, p. 33–47.
 166. Sellick, H., and J. C. Widdicombe. Vagal deflation and inflation reflexes mediated by lung irritant receptors. Q. J. Exp. Physiol. 55: 153–163, 1970.
 167. Senapati, J. M. Effect of stimulation of muscle afferents on ventilation of dogs. J. Appl. Physiol. 21: 242–246, 1966.
 168. Sherrington, C. Lecture II. Co‐ordination in the simple reflex (continued). In: The Integrative Action of the Nervous System (2nd ed.). New Haven, CT: Yale Univ. Press, 1947, p. 36–69.
 169. Siebens, A. A., and F. Puletti. Afferent units in dorsal roots driven by respiration. Science 133: 1418–1419, 1961.
 170. Siminoff, R. The analysis of cardiovascular reflexes with an analog cross‐correlation. Int. J. Neuropharmacol. 3: 253–259, 1964.
 171. Sutton, D., E. M. Taylor, and R. C. Lindeman. Prolonged apnea in infant monkeys resulting from stimulation of the superior laryngeal nerve. Pediatrics 61: 519–527, 1978.
 172. Swanson, G. D., D. S. Ward, and J. W. Bellville. Posthyperventilation isocapnic hyperpnea. J. Appl. Physiol. 40: 592–596, 1976.
 173. Tawadrous, F. D., and F. L. Eldridge. Posthyperventilation breathing patterns after active hyperventilation in man. J. Appl. Physiol. 37: 353–356, 1974.
 174. Taylor, C. P., and F. E. Dudek. Synchronous neural afterdischarges in cat hippocampal slices without active chemical synapses. Science 218: 810–812, 1982.
 175. Torrance, R. W. Prolegomena. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 1–40.
 176. Vis, A. Dynamic Aspects of the Regulation of Breathing. Nijmegen, The Netherlands: Katholieke Univ., 1981. PhD thesis.
 177. Vis, A., and H. T. Folgering. Phrenic nerve afterdischarge after electrical stimulation of the carotid sinus nerve in cats. Respir. Physiol. 45: 217–227, 1981.
 178. Waldrop, T. G., F. L. Eldridge, and D. E. Millhorn. Prolonged post‐stimulus inhibition of breathing following stimulation of afferents from muscle. Respir. Physiol. 50: 239–254, 1982.
 179. Waldrop, T. G., D. E. Millhorn, and F. L. Eldridge. Long‐lasting inhibition of respiration following calf muscle stimulation (Abstract). Physiologist 22 (4): 129, 1979.
 180. Waldrop, T. G., D. E. Millhorn, and F. L. Eldridge. Long‐lasting central inhibition of respiration: mediation by GABA and endogenous opiates (Abstract). Physiologist 24 (4): 102, 1981.
 181. Weiss, H. R., and J. Salzano. Formation of whole number ratios of heart rate and breathing frequency. J. Appl. Physiol. 29: 350–354, 1970.
 182. Widdicombe, J. G. Receptors in the trachea and bronchi of the cat. J. Physiol. London 123: 71–104, 1954.
 183. Widdicombe, J. G. The site of pulmonary stretch receptors in the cat. J. Physiol. London 125: 336–351, 1954.
 184. Wyss, D. A. M. The part played by the lungs in the reflex control of breathing. Helv. Physiol. Pharmacol. Acta Suppl. 10: 26–35, 1954.
 185. Yamamoto, W. S. Mathematical analysis of the time course of alveolar CO2. J. Appl. Physiol. 15: 215–219, 1960.
 186. Yao, T., S. Andersson, and P. Thorén. Long‐lasting cardiovascular depressor response following sciatic stimulation in spontaneously hypertensive rats. Evidence for the involvement of central endorphin and serotonin systems. Brain Res. 244: 295–303, 1982.
 187. Yokota, H., L. J. C. Hoofd, and F. Kreuzer. Alveolar oxygen tension in anesthetized, artifically ventilated dogs. Pfluegers Arch. 340: 273–290, 1973.
 188. Yokota, H., and F. Kreuzer. Alveolar to arterial transmission of oxygen fluctuations due to respiration in anesthetized dogs. Pfluegers Arch. 340: 291–306, 1973.
 189. Younes, M., and J. Polacheck. Temporal changes in effectiveness of a constant inspiratory‐terminating vagal stimulus. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 1183–1192, 1981.
 190. Zuperku, E. J., F. A. Hopp, and J. P. Kampine. Central integration of pulmonary stretch receptor input in the control of expiration. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1296–1315, 1982.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Frederic L. Eldridge, David E. Millhorn. Oscillation, Gating, and Memory in the Respiratory Control System. Compr Physiol 2011, Supplement 11: Handbook of Physiology, The Respiratory System, Control of Breathing: 93-114. First published in print 1986. doi: 10.1002/cphy.cp030203