Comprehensive Physiology Wiley Online Library

Ventilation and Brain Metabolism

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Brain Metabolism: A Brief Overview
1.1 Metabolic Rate and Blood Flow
1.2 Neurotransmitters and Cerebral Metabolic Rate
1.3 Cellular Function: Dependence on ATP and Oxygen
2 Influence of Hypoxia on Brain Metabolism
3 Carbon Dioxide and Brain Energy Metabolism
3.1 Hypocapnia
3.2 Hypercapnia
3.3 Regulation of Intracellular pH
3.4 Regulation of Cerebral Blood Flow
3.5 Neurotransmitters
4 Possible Coupling Mediators in Brain
4.1 Barbiturate Anesthesia: A Hypometabolic State
4.2 Epileptic Seizures: A Hypermetabolic State
4.3 Cerebral Metabolism and Physiological Control Mechanisms
Figure 1. Figure 1.

Correlation between local cerebral blood flow and local glucose utilization in unanesthetized rat. Points, mean blood flow obtained withiodoantipyrine technique of Sakurada et al. 181 and mean glucose utilization obtained with [14C]deoxyglucose technique of Sokoloff et al. 198 in numerous brain structures.

Adapted from Sokoloff 197
Figure 2. Figure 2.

Relationship between arterial partial pressure of O2 (arterial ) and cerebrovenous (superior sagittal sinus) in artificially ventilated rats during progressive reduction in inspired O2 concentration.

From MacMillan and Siesjö 127
Figure 3. Figure 3.

Brain tissue concentrations of lactate, phosphocreatine (PCr), ATP, ADP, and AMP during progressive lowering of arterial . At each level of hypoxia, was held constant for 15–30 min before tissue was analyzed. Filled circles, animals in which mean arterial blood pressure was maintained at 120 mmHg or higher. Open circles, animals in which pressure fell to 80–100 mmHg.

From Siesjö et al. 191
Figure 4. Figure 4.

Changes in pyruvate and citric acid cycle intermediates in rat cerebral cortex after 1‐, 2‐, 15‐, and 30‐min exposure to hypoxic gas mixture. Oxygen content of insufflated gas mixture was lowered to yield arterial of ∼25 mmHg. Values are means ±SE in percent of control. Filled symbols, values significantly different from control (P < 0.05). Pyr, pyruvate; Citr, citrate; Iso‐Citr, isocitrate; α‐Kg, α‐ketoglutarate; Succ, succinate; Fum, fumarate; mal, malate; OAA, oxaloacetate.

From Norberg and Siesjö 150
Figure 5. Figure 5.

Hydroxylation of tyrosine and tryptophan in rat brain in vivo as function of inspired O2 concentration (and arterial O2 saturation). Hydroxylation was measured as amount of dihydroxyphenylalanine (DOPA) and 5‐hydroxytryptophan (5‐HTP) accumulated after inhibition of aromatic amino acid decarboxylase.

From Davis and Carlsson 46
Figure 6. Figure 6.

Cerebral blood flow as function of arterial partial pressure of CO2 () in rats.

From Sage et al. 179
Figure 7. Figure 7.

Influence of arterial hypocapnia on calculated intracellular pH and on cerebral cortical concentrations of lactate and pyruvate in anesthetized rat. Intracellular pH was calculated on assumption of 10% or 20% extracellular fluid volume. Curves joining open circles in upper panels denote expected pH changes in system in which pH is not influenced by acid production. Tissue CO2 tensions derived from corresponding arterial values. ECS, extracellular space.

From MacMillan and Siesjö 128
Figure 8. Figure 8.

Influence of arterial on lactate/pyruvate ratio, phosphocreatine (PCr) and creatine concentrations, and adenylate energy charge (ATP + 0.5 ADP/ATP + ADP + AMP) of rat cerebral cortex.

From Siesjö 186
Figure 9. Figure 9.

Influence of hypercapnia (administration of 5% or 45% CO2 to ventilated rats) on cerebral cortical concentrations of pyruvate and citric acid cycle intermediates. Values are means ± SE in percent of control. Filled symbols, values significantly different from control (P < 0.05). See Fig. 4 for abbreviations.

From Folbergrová et al. 65
Figure 10. Figure 10.

Cerebral cortical concentrations of glutamate, glutamine, and aspartate during exposure of ventilated rats to ∼10% CO2. Values are means ± SE. Filled circles, values significantly different from control (P < 0.05).

From Folbergrová et al. 65
Figure 11. Figure 11.

Influence of hypercapnia and hypocapnia on rate of tyrosine and tryptophan hydroxylation (cf. Fig. 5). Open circles, changes during hypocapnia (low venous ) and hypercapnia (high venous ) in normoxic animals. Filled circles, hypercapnic animals made moderately hypoxic to normalize venous ; tryptophan hydroxylation but not tyrosine hydroxylation is normalized.

From Carlsson et al. 29
Figure 12. Figure 12.

Cerebral blood flow (CBF) and adenylate energy charge as functions of cerebal metabolic rate for O2 () in ventilated rats. 1) hypothermia, 22°C; 2) barbiturate, 150 mg/kg; 3) N2O/O2, analgesia; 4) hyperthermia, 41.5°‐42°C; 5) immobilization stress; 6) bicuculline‐induced seizures.

Adapted from Nilsson et al. 144 and Siesjö 186


Figure 1.

Correlation between local cerebral blood flow and local glucose utilization in unanesthetized rat. Points, mean blood flow obtained withiodoantipyrine technique of Sakurada et al. 181 and mean glucose utilization obtained with [14C]deoxyglucose technique of Sokoloff et al. 198 in numerous brain structures.

Adapted from Sokoloff 197


Figure 2.

Relationship between arterial partial pressure of O2 (arterial ) and cerebrovenous (superior sagittal sinus) in artificially ventilated rats during progressive reduction in inspired O2 concentration.

From MacMillan and Siesjö 127


Figure 3.

Brain tissue concentrations of lactate, phosphocreatine (PCr), ATP, ADP, and AMP during progressive lowering of arterial . At each level of hypoxia, was held constant for 15–30 min before tissue was analyzed. Filled circles, animals in which mean arterial blood pressure was maintained at 120 mmHg or higher. Open circles, animals in which pressure fell to 80–100 mmHg.

From Siesjö et al. 191


Figure 4.

Changes in pyruvate and citric acid cycle intermediates in rat cerebral cortex after 1‐, 2‐, 15‐, and 30‐min exposure to hypoxic gas mixture. Oxygen content of insufflated gas mixture was lowered to yield arterial of ∼25 mmHg. Values are means ±SE in percent of control. Filled symbols, values significantly different from control (P < 0.05). Pyr, pyruvate; Citr, citrate; Iso‐Citr, isocitrate; α‐Kg, α‐ketoglutarate; Succ, succinate; Fum, fumarate; mal, malate; OAA, oxaloacetate.

From Norberg and Siesjö 150


Figure 5.

Hydroxylation of tyrosine and tryptophan in rat brain in vivo as function of inspired O2 concentration (and arterial O2 saturation). Hydroxylation was measured as amount of dihydroxyphenylalanine (DOPA) and 5‐hydroxytryptophan (5‐HTP) accumulated after inhibition of aromatic amino acid decarboxylase.

From Davis and Carlsson 46


Figure 6.

Cerebral blood flow as function of arterial partial pressure of CO2 () in rats.

From Sage et al. 179


Figure 7.

Influence of arterial hypocapnia on calculated intracellular pH and on cerebral cortical concentrations of lactate and pyruvate in anesthetized rat. Intracellular pH was calculated on assumption of 10% or 20% extracellular fluid volume. Curves joining open circles in upper panels denote expected pH changes in system in which pH is not influenced by acid production. Tissue CO2 tensions derived from corresponding arterial values. ECS, extracellular space.

From MacMillan and Siesjö 128


Figure 8.

Influence of arterial on lactate/pyruvate ratio, phosphocreatine (PCr) and creatine concentrations, and adenylate energy charge (ATP + 0.5 ADP/ATP + ADP + AMP) of rat cerebral cortex.

From Siesjö 186


Figure 9.

Influence of hypercapnia (administration of 5% or 45% CO2 to ventilated rats) on cerebral cortical concentrations of pyruvate and citric acid cycle intermediates. Values are means ± SE in percent of control. Filled symbols, values significantly different from control (P < 0.05). See Fig. 4 for abbreviations.

From Folbergrová et al. 65


Figure 10.

Cerebral cortical concentrations of glutamate, glutamine, and aspartate during exposure of ventilated rats to ∼10% CO2. Values are means ± SE. Filled circles, values significantly different from control (P < 0.05).

From Folbergrová et al. 65


Figure 11.

Influence of hypercapnia and hypocapnia on rate of tyrosine and tryptophan hydroxylation (cf. Fig. 5). Open circles, changes during hypocapnia (low venous ) and hypercapnia (high venous ) in normoxic animals. Filled circles, hypercapnic animals made moderately hypoxic to normalize venous ; tryptophan hydroxylation but not tyrosine hydroxylation is normalized.

From Carlsson et al. 29


Figure 12.

Cerebral blood flow (CBF) and adenylate energy charge as functions of cerebal metabolic rate for O2 () in ventilated rats. 1) hypothermia, 22°C; 2) barbiturate, 150 mg/kg; 3) N2O/O2, analgesia; 4) hyperthermia, 41.5°‐42°C; 5) immobilization stress; 6) bicuculline‐induced seizures.

Adapted from Nilsson et al. 144 and Siesjö 186
References
 1. Alexander, S. C., T. C. Smith, G. Strobel, G. W. Stephen, and H. Wollman. Cerebral carbohydrate metabolism of man during respiratory and metabolic alkalosis. J. Appl. Physiol. 24: 66–72, 1968.
 2. Arieff, A. I., A. Kerian, S. G. Massry, and J. DeLima. Intracellular pH of brain: alterations in acute respiratory acidosis and alkalosis. Am. J. Physiol. 230: 804–812, 1976.
 3. Artru, A. A., and J. D. Michenfelder. Effects of hypercarbia on canine cerebral metabolism and blood flow with simultaneous direct and indirect measurement of blood flow. Anesthesiology 52: 466–469, 1980.
 4. Astrup, J., D. Heuser, N. A. Lassen, V. Nilsson, K. Norborg, and B. K. Siesjö. Evidence against H+ and K+ as main factors for the control of cerebral blood flow. A micro‐electrode study. In: Cerebral Vascular Smooth Muscle and Its Control, edited by M. Purves. Amsterdam: Elsevier/North‐Holland, 1978, p. 313–332. (Ciba Found. Symp. 56.).
 5. Astrup, J., L. Symon, N. M. Branston, and N. A. Lassen. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8: 51–57, 1977.
 6. Bain, J. A., and J. R. Klein. Effect of carbon dioxide on brain glucose, lactate, pyruvate and phosphates. Am. J. Physiol. 158: 478–484, 1949.
 7. Barondes, S. H. Axoplasmic transport. In: Handbook of Neurochemistry, edited by A. Lajtha. New York: Plenum, 1969, vol. 2, p. 435–446.
 8. Bazán, N. G. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218: 1–10, 1970.
 9. Bazán, N. G. Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. Adv. Exp. Med. Biol. 72: 317–335, 1976.
 10. Berntman, L., C. Carlsson, and B. K. Siesjö. Cerebral oxygen consumption and blood flow in hypoxia: influence of sympathoadrenal activation. Stroke 10: 20–25, 1979.
 11. Berntman, L., N. Dahlgren, and B. K. Siesjö. Influence of intravenously administered catecholamines on cerebral oxygen consumption and blood flow in the rat. Acta Physiol. Scand. 104: 101–108, 1978.
 12. Berntman, L., N. Dahlgren, and B. K. Siesjö. Influence of moderate and extreme hypercapnia on cerebral blood flow and oxygen consumption in the rat brain. Anesthesiology 50: 299–305, 1979.
 13. Bertler, A., B. Falck, C. Owman, and E. Rosengren. The localization of monoaminergic blood‐brain mechanisms. Pharmacol. Rev. 18: 369–385, 1966.
 14. Betz, E. Cerebral blood flow: its measurement and regulation. Physiol. Rev. 52: 595–630, 1972.
 15. Blass, J. P., and G. E. Gibson. Consequences of mild, graded hypoxia. Adv. Neurol. 26: 229–250, 1979.
 16. Blaustein, M. P., and A. L. Ector. Barbiturate inhibition of calcium uptake by depolarized nerve terminals in vitro. Mol. Pharmacol. 11: 369–378, 1975.
 17. Borgström, L., A. G. Chapman, and B. K. Siesjö. Glucose consumption in the cerebral cortex of rat during bicuculline‐induced status epilepticus. J. Neurochem. 27: 971–973, 1976.
 18. Borgström, L., H. Jóhannsson, and B. K. Siesjö. The relationship between arterial PO2 and cerebral blood flow in hypoxic hypoxia. Acta Physiol. Scand. 93: 423–432, 1975.
 19. Borgström, L., K. Norberg, and B. K. Siesjö. Glucose consumption in rat cerebral cortex in normoxia, hypoxia and hypercapnia. Acta Physiol. Scand. 96: 569–574, 1976.
 20. Branston, N. M., L. Symon, H. A. Crockard, and E. Pasztor. Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp. Neurol. 45: 195–208, 1974.
 21. Brown, R. M., J. N. Davis, and A. Carlsson. Dopa reversal of hypoxia‐induced disruption of the conditioned avoidance response. J. Pharm. Pharmacol. 25: 412–414, 1974.
 22. Brown, R. M., W. Kehr, and A. Carlsson. Functional and biochemical aspects of catecholamine metabolism in brain under hypoxia. Brain Res. 85: 491–509, 1975.
 23. Burnstock, G. Comparative studies on purinergic nerves. J. Exp. Zool. 194: 103–134, 1975.
 24. Burnstock, G. Neurotransmitters and trophic factors in the autonomic nervous system. J. Physiol. London 313: 1–35, 1981.
 25. Cain, S. M. An attempt to demonstrate cerebral anoxia during hyperventilation of anesthetized dogs. Am. J. Physiol. 204: 323–326, 1963.
 26. Calderini, G., A. Carlsson, and C.‐H. Nordström. Monoamine metabolism during bicuculline‐induced epileptic seizures in the rat. Brain Res. 157: 295–302, 1978.
 27. Carlsson, C., M. Hägerdal, A. E. Kaasik, and B. K. Siesjö. A catecholamine‐mediated increase in cerebral oxygen uptake during immobilisation stress in rats. Brain Res. 119: 223–231, 1977.
 28. Carlsson, C., J. Harp, and B. K. Siesjö. Metabolic changes in the cerebral cortex of the rat induced by intravenous pentothalsodium. Acta Anaesthesiol. Scand. Suppl. 57: 7–17, 1975.
 29. Carlsson, A., T. Holmin, M. Lindqvist, and B. K. Siesjö. Effect of hypercapnia and hypocapnia on tryptophan and tyrosine hydroxylation in rat brain. Acta Physiol. Scand. 99: 503–509, 1977.
 30. Celik, G., D. I. Graham, P. A. T. Kelly, and J. Mc‐Culloch. On the mechanism of kainic acid neurotoxicity. J. Cereb. Blood Flow Metab. 1, Suppl. 1: 102, 1981.
 31. Chapman, A. G., B. S. Meldrum, and B. K. Siesjö. Cerebral metabolic changes during prolonged epileptic seizures in rats. J. Neurochem. 28: 1025–1035, 1977.
 32. Chapman, A. G., C.‐H. Nordström, and B. K. Siesjö. Influence of phenobarbital anesthesia on carbohydrate and amino acid metabolism in rat. Anesthesiology 48: 175–182, 1978.
 33. Cohen, E. L., and R. J. Wurtman. Brain acetylcholine: control by dietary choline. Science 191: 561–562, 1976.
 34. Cohen, P. J., S. C. Alexander, T. C. Smith, M. Reivich, and H. Wollman. Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J. Appl. Physiol. 23: 183–189, 1967.
 35. Cohen, P. J., H. Wollman, S. C. Alexander, P. E. Chase, and M. G. Behar. Cerebral carbohydrate metabolism in man during halothane anesthesia. Anesthesiology 25: 185–191, 1964.
 36. Corrodi, H., K. Fuxe, P. Lidbrink, and L. Olsson. Minor tranquilizers, stress and central catecholamine neurons. Brain Res. 29: 1–16, 1971.
 37. Crews, F. T., F. Hirata, and J. Axelrod. Identification and properties of methyltransferases that synthesize phosphatidylcholine in rat brain synaptosomes. J. Neurochem. 34: 1491–1498, 1980.
 38. Dahlgren, N., O. Lindvall, A. Nobin, and U. Stenevi. Cerebral circulatory response to hypercapnia: effects of lesions of central dopaminergic and serotonergic neuron systems. Brain Res. 230: 221–233, 1981.
 39. Dahlgren, N., O. Lindvall, T. Sakabe, and B. K. Siesjö. Cerebral blood flow and oxygen consumption in the rat brain after lesions of the noradrenergic locus coeruleus system. Brain Res. 209: 11–23, 1981.
 40. Dahlgren, N., B. Nilsson, T. Sakabe, and B. K. Siesjö. The effect of indomethacin on cerebral blood flow and oxygen consumption in the rat at normal and increased carbon dioxide tensions. Acta Physiol. Scand. 111: 475–485, 1981.
 41. Dahlgren, N., I. Rosén, T. Sakabe, and B. K. Siesjö. Cerebral functional, metabolic and circulatory effects of intravenous infusion of adrenaline in the rat. Brain Res. 184: 143–152, 1980.
 42. Dahlström, A. Axoplasmic transport (with particular respect to adrenergic neurons). Philos. Trans. R. Soc. London Ser. B 261: 325–358, 1971.
 43. Davis, H., and W. M. Wallace. Factors affecting changes produced in the electroencephalogram by standardized hyperventilation. Arch. Neurol. Psychiatry 47: 606–625, 1942.
 44. Davis, J. N. Brain tyrosine hydroxylation: alteration of oxygen affinity in vivo by immobilization or electroshock in the rat. J. Neurochem. 27: 211–215, 1976.
 45. Davis, J. N. Synaptosomal tyrosine hydroxylation affinity for oxygen. J. Neurochem. 28: 1043–1050, 1977.
 46. Davis, J. N., and A. Carlsson. Effect of hypoxia on tyrosine and tryptophan hydroxlation in unanaesthetized rat brain. J. Nërochem. 20: 913–915, 1973.
 47. Davis, J. N., A. Carlsson, V. MacMillan, and B. K. Siesjö. Brain tryptophan hydroxylation: dependence on arterial oxygen tension. Science 182: 72–74, 1973.
 48. Delcher, H. K., and J. C. Shipp. Effect of pH, Pco2 and bicarbonate on metabolism of glucose by perfused rat heart. Biochim. Biophys. Acta 121: 250–260, 1966.
 49. De Yebenes Prous, J. G., A. Carlsson, and M. A. M. Gomez. The effect of CO2 on monoamine metabolism in rat brain. Naunyn‐Schmiedeberg's Arch. Pharmacol. 301: 11–15, 1977.
 50. Domonkos, J., and I. Huszák. Effect of hydrogen‐ion concentration on the carbohydrate metabolism of brain tissue. J. Neurochem. 4: 238–243, 1959.
 51. Drewes, L. R., and D. D. Gilboe. Cerebral metabolite and adenylate energy charge recovery following 10 min of anoxia. Biochim. Biophys. Acta 320: 701–707, 1973.
 52. Droz, B., and H. L. Koenig. Localization of protein metabolism in neurons. In: Protein Metabolism of the Nervous System, edited by A. Lajtha. New York: Plenum, 1970, p. 93–106.
 53. Duffy, T. E., D. C. Howse, and F. Plum. Cerebral energy metabolism during experimental status epilepticus. J. Neurochem. 24: 925–934, 1975.
 54. Duffy, T. E., S. R. Nelson, and O. H. Lowry. Cerebral carbohydrate metabolism during acute hypoxia and recovery. J. Neurochem. 19: 925–934, 1972.
 55. Duffy, T. E., and F. Plum. Seizures, coma and major metabolic encephalopathies. In: Basic Neurochemistry (3rd ed.), edited by G. J. Siegel, R. W. Albers, R. Katzman, and B. W. Agranoff. Boston, MA: Little, Brown, 1981, p. 693–718.
 56. Edvinsson, L., J. Fahrenkrug, J. Hanko, C. Owman, F. Sundler, and R. Uddman. VIP (vasoactive intestinal polypeptide)‐containing nerves of intracranial arteries in mammals. Cell Tissue Res. 208: 135–142, 1980.
 57. Edvinsson, L., and E. T. MacKenzie. Amine mechanisms in the cerebral circulation. Pharmacol. Rev. 28: 275–347, 1977.
 58. Eklöf B., N. A. Lassen, L. Nilsson, K. Norberg, and B. K. Siesjö. Blood flow and metabolic rate for oxygen in the cerebral cortex of the rat. Acta Physiol. Scand. 88: 587–589, 1973.
 59. Elliott, K. A. C., and N. Henderson. Metabolism of brain tissue slices and suspensions from various mammals. J. Neurophysiol. 11: 473–484, 1948.
 60. Fencl, V., J. R. Vale, and J. A. Broch. Respiration and cerebral blood flow in metabolic acidosis and alkalosis in humans. J. Appl. Physiol. 27: 67–76, 1969.
 61. Fleckenstein, A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu. Rev. Pharmacol. Toxicol. 17: 149–166, 1977.
 62. Folbergrová, J., V. MacMillan, and B. K. Siesjö. The effect of moderate and marked hypercapnia upon the energy state and upon the cytoplasmatic NADH/NAD+ ratio of the rat brain. J. Neurochem. 19: 2497–2505, 1972.
 63. Folbergrová, J., V. MacMillan, and B. K. Siesjö. The effect of hypercapnic acidosis upon some glycolytic and Krebs cycle‐associated intermediates in the rat brain. J. Neurochem. 19: 2507–2517, 1972.
 64. Folbergrová, J., K. Norberg, B. Quistorff, and B. K. Siesjö. Carbohydrate and amino acid metabolism in rat cerebral cortex in moderate and extreme hypercapnia. J. Neurochem. 25: 457–462, 1975.
 65. Folbergrová, J., U. Pontén, and B. K. Siesjö. Patterns of changes in brain carbohydrate metabolites, amino acids and organic phosphates at increased carbon dioxide tensions. J. Neurochem. 22: 1115–1125, 1974.
 66. Forester, T., A. M. Harper, E. T. MacKenzie, and E. M. Thomson. Effect of adenosine triphosphate and some derivatives on cerebral blood flow and metabolism. J. Physiol. London 296: 343–355, 1979.
 67. Frackowiak, R. S., G.‐L. Lenzi, T. Jones, and J. D. Heather. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 150 and positron emission tomography: theory, procedure, and normal values. J. Comput. Assist. Tomogr. 4: 727–736, 1980.
 68. Gardiner, M., B. Nilsson, S. Rehncrona, and B. K. Siesjö. Free fatty acids in the rat brain in moderate and severe hypoxia. J. Neurochem. 36: 1500–1505, 1981.
 69. Gibbs, F. A., E. L. Gibbs, and W. G. Lennox. The value of carbon dioxide in counteracting the effects of low oxygen. J. Aviat. Med. 14: 250–261, 1943.
 70. Gibson, G. E., and J. P. Blass. Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycemia. J. Neurochem. 27: 37–42, 1976.
 71. Gibson, G. E., and T. E. Duffy. Impaired synthesis of acetylcholine by mild hypoxic hypoxia, or nitrous oxide. J. Neurochem. 36: 28–33, 1981.
 72. Gibson, G. E., R. Jope, and J. P. Blass. Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem. J. 148: 17–23, 1975.
 73. Gibson, G. E., W. Pulsinelli, J. P. Blass, and T. E. Duffy. Brain dysfunction in mild to moderate hypoxia. Am. J. Med. 70: 1247–1254, 1981.
 74. Gjedde, A., J. J. Caronna, B. Hindfelt, and F. Plum. Whole‐brain blood flow and oxygen metabolism in the rat during nitrous oxide anesthesia. Am. J. Physiol. 229: 113–118, 1975.
 75. Gotoh, F., J. S. Meyer, and Y. Takagi. Cerebral effects of hyperventilation in man. Arch. Neurol. 12: 410–423, 1965.
 76. Hansen, J. Extracellular ion concentration in cerebral ischemia. In: The Application of Ionselective Microelectrodes, edited by T. Zeuthen. Amsterdam: Elsevier/North‐Holland, 1981, p. 239–254.
 77. Hardebo, J. E., and C. Owman. Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood‐brain interface. Ann. Neurol. 8: 1–11, 1980.
 78. Harper, A. M., and E. T. MacKenzie. Cerebral circulatory and metabolic effects of 5‐hydroxytryptamine in anaesthetized baboons. J. Physiol. London 271: 721–733, 1977.
 79. Harris, R. J., L. Symon, N. M. Branston, and M. Bayhan. Changes in extracellular calcium activity in cerebral ischaemia. J. Cereb. Blood Flow Metab. 1: 203–209, 1981.
 80. Harris, W. E., and W. L. Stahl. Interactions of adrenergic compounds with brain membrane constituents. Biochem. Pharmacol. 27: 2015–2019, 1978.
 81. Hawkins, R. A., D. H. Williamson, and H. A. Krebs. Ketone‐body utilization by adult and suckling rat brain in vivo. Biochem. J. 122: 13–18, 1971.
 82. Hawthorne, J. N., and M. R. Pickard. Phospholipids in synaptic function. J. Neurochem. 32: 5–14, 1979.
 83. Haycock, J. W., W. B. Levy, and C. W. Cotman. Pentobarbital depression of stimulus‐secretion coupling in brain. Selective inhibition of depolarization‐induced calcium‐dependent release. Biochem. Pharmacol. 26: 159–161, 1977.
 84. Heinemann, U., H. D. Lux, and M. J. Gutnick. Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp. Brain Res. 27: 237–243, 1977.
 85. Heistad, D. D., M. L. Marcus, J. K. Gourley, and D. W. Busija. Effect of adenosine and dipyridamole on cerebral blood flow. Am. J. Physiol. 240 (Heart Circ. Physiol. 9): H775–H780, 1981.
 86. Heistad, D. D., M. L. Marcus, S. I. Said, and P. M. Gross. Effect of acetylcholine and vasoactive intestinal peptide on cerebral blood flow. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H73–H80, 1980.
 87. Hemmingsen, R., M. M. Hertz, and D. I. Barry. The effect of propranolol on cerebral oxygen consumption and blood flow in the rat: measurements during normocapnia and hypercapnia. Acta Physiol. Scand. 105: 274–281, 1979.
 88. Hertz, L. Energy metabolism of glial cells. In: Dynamic Properties of Glia Cells, edited by E. Schoffeniels, G. Franch, L. Hertz, and D. B. Tower. Oxford, UK: Pergamon, 1978, p. 121–132.
 89. Hertz, L. Features of astrocyte function apparently involved in the response of central nervous tissue to ischemia‐hypoxia. J. Cereb. Blood Flow Metab. 1: 143–154, 1981.
 90. Hexum, T. D. The effect of catecholamines on transport (Na, K) adenosine triphosphatase. Biochem. Pharmacol. 26: 1221–1227, 1977.
 91. Hirata, F., and J. Axelrod. Phospholipid methylation and biological signal transmission. Science 209: 1082–1090, 1980.
 92. Hökfelt, T., O. Johansson, Å. Ljungdahl, J. M. Lundberg, and M. Schultzberg. Peptidergic neurones. Nature London 284: 515–521, 1980.
 93. Horton, R. W., B. S. Meldrum, T. A. Pedley, and J. R. McWilliam. Regional cerebral blood flow in the rat during prolonged seizure activity. Brain Res. 192: 399–412, 1980.
 94. Howse, D. C., and T. E. Duffy. Control of the redox state of the pyridine nucleotides in the rat cerebral cortex. Effect of electroshock‐induced seizures. J. Neurochem. 24: 935–940, 1975.
 95. Ingvar, M., and B. K. Siesjö. Local blood flow and glucose consumption in the rat brain during sustained bicuculline‐induced seizures. Acta Neurol. Scand. 68: 129–144, 1983.
 96. Jóhannsson, H., and B. K. Siesjö. Cerebral blood flow and oxygen consumption in the rat in hypoxic hypoxia. Acta Physiol. Scand. 93: 269–276, 1975.
 97. Katz, I. R. Oxygen affinity of tyrosine and tryptophan hydroxylases in synaptosomes. J. Neurochem. 35: 760–763, 1980.
 98. Kazemi, H., N. S. Shore, V. E. Shih, and D. C. Shannon. Brain organic buffers in respiratory acidosis and alkalosis. J. Appl. Physiol. 34: 478–482, 1973.
 99. Kazemi, H., L. M. Valenca, and D. C. Shannon. Brain and cerebrospinal fluid lactate concentration in respiratory acidosis and alkalosis. Respir. Physiol. 6: 178–186, 1969.
 100. Kety, S. S. Circulation and metabolism of the human brain in health and disease. Am. J. Med. 8: 205–217, 1950.
 101. Kety, S. S., and C. F. Schmidt. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J. Clin. Invest. 27: 484–491, 1948.
 102. King, B. D., L. Sokoloff, and R. L. Wechsler. The effects of l‐epinephrine and l‐norepinephrine upon cerebral circulation and metabolism in man. J. Clin. Invest. 31: 273–279, 1952.
 103. Kjällquist, Å., M. Nardini, and B. K. Siesjö. The regulation of extra‐ and intracellular acid‐base parameters in the rat brain during hyper‐ and hypocapnia. Acta Physiol. Scand. 76: 485–494, 1969.
 104. Kliefoth, A. B., R. L. Grubb, Jr., and M. E. Raichle. Depression of cerebral oxygen utilization by hypercapnia in the rhesus monkey. J. Neurochem. 32: 661–663, 1979.
 105. Kogure, K., P. Scheinberg, O. M. Reinmuth, M. Fujishima, and R. Busto. Mechanisms of cerebral vasodilatation in hypoxia. J. Appl. Physiol. 29: 223–229, 1970.
 106. Kreisman, N. R., T. J. Sick, J. C. Lamanna, and M. Rosenthal. Local tissue oxygen tension—cytochrome a,a3 redox relationships in rat cerebral cortex in vivo. Brain Res. 218: 161–174, 1981.
 107. Kuhl, D. E., J. Engel, Jr., M. E. Phelps, and C. Selin. Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann. Neurol. 8: 348–360, 1980.
 108. Kuschinsky, W., and M. Wahl. Local chemical and neurogenic regulation of cerebral vascular resistance. Physiol. Rev. 58: 656–689, 1978.
 109. Lambertsen, C. J., R. H. Kough, D. Y. Cooper, G. L. Emmel, H. H. Loeschcke, and C. F. Schmidt. Oxygen toxicity. Effects in man of oxygen inhalation at 1 and 3.5 atmospheres upon blood gas transport, cerebral circulation, and cerebral metabolism. J. Appl. Physiol. 5: 471–486, 1953.
 110. Landau, W. M., W. H. Freygang, L. P. Rowland, L. Sokoloff, and S. S. Kety. The local circulation of the living brain: values in unanesthetized and anesthetized cat. Trans. Am. Neurol. Assoc. 80: 125–129, 1955.
 111. Lassen, N. A. Cerebral blood flow and oxygen consumption in man. Physiol. Rev. 39: 183–238, 1959.
 112. Lassen, N. A. Brain extracellular pH: the main factor controlling cerebral blood flow. Scand. J. Clin. Lab Invest. 22: 247–251, 1968.
 113. Lassen, N. A., D. H. Ingvar, and E. Skinhöj. Brain function and blood flow. Sci. Am. 239: 62–71, 1978.
 114. Leusen, I., E. Lacroix, and G. Demeester. Lactate and pyruvate in the brain of rats during changes in acid‐base balance. Arch. Int. Physiol. Biochim. 75: 310–324, 1967.
 115. Lewis, L. D., U. Pontén, and B. K. Siesjö. Arterial acid‐base changes in unanaesthetized rats in acute hypoxia. Respir. Physiol. 19: 312–321, 1973.
 116. Lidbrink, P., H. Corrodi, K. Fuxe, and L. Olson. Barbiturates and meprobamate: decreases in catecholamine turnover of central dopamine and noradrenaline neuronal systems and the influence of immobilization stress. Brain Res. 45: 507–524, 1972.
 117. Lidbrink, P., and L.‐O. Farnebo. Uptake and release of noradrenaline in rat cerebral cortex in vitro: no effect of benzodiazepines and barbiturates. Neuropharmacology 12: 1087–1095, 1973.
 118. Lothman, E. W., and R. C. Collins. Kainic acid‐induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res. 21: 299–318, 1981.
 119. Lowry, O. H., and J. V. Passonneau. The relationship between substrates and enzymes of glycolysis in brain. J. Biol. Chem. 239: 31–42, 1964.
 120. Lübbers, D. W. Das O2‐Versorgungssystem der Warmblüterorgane. In: Jahrbuch der Max‐Planck‐Gesellschaft zur Förderung der Wissenschaften E. V. Munich: Generalverwaltung Max‐Planck‐Gesellschaft, 1974, p. 87–112.
 121. Luft, U. C. Aviation physiology—the effects of altitude. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1965, sect. 3, vol. II, chapt. 44, p. 1099–1145.
 122. MacIntosh, F. C. Acetylcholine. In: Basic Neurochemistry, edited by G. J. Siegel, R. W. Albers, R. Katzman, and B. W. Agranoff. Boston, MA: Little, Brown, 1979, p. 180–202.
 123. MacKenzie, E. T., J. McCulloch, and A. M. Harper. Influence of endogenous norepinephrine on cerebral blood flow and metabolism. Am. J. Physiol. 231: 489–494, 1976.
 124. MacKenzie, E. T., J. McCulloch, M. O'Keane, J. D. Pickard, and A. M. Harper. Cerebral circulation and norepinephrine: relevance of the blood‐brain barrier. Am. J. Physiol. 231: 483–488, 1976.
 125. MacMillan, V., L. G. Salford, and B. K. Siesjö. Metabolic state and blood flow in rat cerebral cortex, cerebellum, and brainstem in hypoxic hypoxia. Acta Physiol. Scand. 92: 103–113, 1974.
 126. MacMillan, V., and B. K. Siesjö. Intracellular pH of the brain in arterial hypoxemia, evaluated with the CO2 method and from the creatinine phosphokinase equilibrium. Scand. J. Clin. Lab. Invest. 30: 117–125, 1972.
 127. MacMillan, V., and B. K. Siesjö. Brain energy metabolism in hypoxemia. Scand. J. Clin. Lab. Invest. 30: 126–136, 1972.
 128. MacMillan, V., and B. K. Siesjö. The effect of phenobar‐bitone anaesthesia upon some organic phosphates, glycolytic metabolites and citric acid cycle‐associated intermediates of the rat brain. J. Neurochem. 20: 1669–1681, 1973.
 129. MacMillan, V., and B. K. Siesjö. The influence of hypocapnia upon intracellular pH and upon some carbohydrate substrates, amino acids and organic phosphates in the brain. J. Neurochem. 21: 1283–1299, 1973.
 130. McCormack, J. G., and R. M. Denton. The effects of calcium ions and adenine nucleotides on the activity of pig heart 2‐oxoglutarate dehydrogenase complex. Biochem. J. 180: 533–544, 1979.
 131. McCulloch, J., and L. Edvinsson. Cerebral circulatory and metabolic effects of vasoactive intestinal polypeptide. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H449–H456, 1980.
 132. McCulloch, J., and A. M. Harper. Cerebral circulation: effect of stimulation and blockade of dopamine receptors. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H222–H227, 1977.
 133. McCulloch, J., H. E. Savaki, M. C. McCulloch, and L. Sokoloff. Specific distribution of metabolic alterations in cerebral cortex following apomorphine administration. Nature London 282: 303–305, 1979.
 134. McDowall, D. G. Interrelationships between blood oxygen tensions and cerebral blood flow. In: Oxygen Measurements in Blood and Tissues, edited by J. P. Payne and D. W. Hill. London: Churchill, 1966, p. 205–219.
 135. McDowall, D. G., D. Heuser, Y. Okuda, G. M. Jones, and A. Wadon. Relationship between cerebral blood flow changes and cortical extracellular fluid pH during cerebral metabolic depression induced by althesin. Br. J. Anaesth. 51: 1109–1115, 1979.
 136. McIlwain, H., and H. S. Bachelard. Biochemistry and the Central Nervous System. London: Churchill Livingstone, 1971.
 137. Meldrum, B. S., and B. Nilsson. Cerebral blood flow and metabolic rate early and late in prolonged epileptic seizures induced in rats by bicuculline. Brain 99: 523–542, 1976.
 138. Michell, R. H. Inositol phospholipids and cell surface receptor function. Biochim. Biophys Acta 415: 81–147, 1975.
 139. Michenfelder, J. D., and R. A. Theye. The effects of profound hypocapnia and dilutional anemia on canine cerebral metabolism and blood flow. Anesthesiology 31: 449–457, 1969.
 140. Miller, A. L., R. A. Hawkins, R. L. Harris, and R. L. Veech. The effects of acute and chronic morphine treatment and of morphine withdrawal on rat brain in vivo. Biochem. J. 129: 463–469, 1972.
 141. Miller, A. L., R. A. Hawkins, and R. L. Veech. Decreased rate of glucose utilization by rat brain in vivo after exposures to atmospheres containing high concentrations of CO2. J. Neurochem. 25: 553–558, 1975.
 142. Miller, A. T., Jr., K. E. Curtin, A. L. Shen, and C. K. Suiter. Brain oxygenation in the rat during hyperventilation with air and with low O2 mixtures. Am. J. Physiol. 219: 798–801, 1970.
 143. Nicholson, C. Brain‐cell microenvironment as a communication channel. In: The Neurosciences: Fourth Study Program, edited by F. O. Schmitt and F. G. Worden. Cambridge, MA: MIT Press, 1979, p. 457–476.
 144. Nilsson, B., S. Rehncrona, and B. K. Siesjö. Coupling of cerebral metabolism and blood flow in epileptic seizures, hypoxia and hypoglycaemia. In: Cerebral Vascular Smooth Muscle and Its Control. Amsterdam: Elsevier/North‐Holland, 1978, p. 199–214. (Ciba Found. Symp. 56.).
 145. Nilsson, B., and B. K. Siesjö. A method for determining blood flow and oxygen consumption in the rat brain. Acta Physiol. Scand. 96: 72–82, 1976.
 146. Nilsson, L., and R. Busto. Controlled hyperventilation and its effect on brain energy and acid‐base parameters. Acta Anaesthesiol. Scand. 19: 199–205, 1973.
 147. Norberg, K. Changes in the cerebral metabolism induced by hyperventilation at different blood glucose levels. J. Neurochem. 26: 353–359, 1976.
 148. Norberg, K., and B. K. Siesjö. Quantitative measurement of blood flow and oxygen consumption in the rat brain. Acta Physiol. Scand. 91: 154–164, 1974.
 149. Norberg, K., and B. K. Siesjö. Cerebral metabolism in hypoxic hypoxia. I. Pattern of activation of glycolysis, a reevaluation. Brain Res. 86: 31–44, 1975.
 150. Norberg, K., and B. K. Siesjö. Cerebral metabolism in hypoxic hypoxia. II. Citric acid cycle intermediates and associated amino acids. Brain Res. 86: 45–54, 1975.
 151. Olesen, J. Contralateral focal increase of cerebral blood flow in man during arm work. Brain 94: 635–646, 1971.
 152. Olney, R. W., V. Rhee, and O. L. Ho. Kainic acid: a powerful neurotoxic analogue of glutamic acid. Brain Res. 77: 507–512, 1979.
 153. Otis, A. B., H. Rahn, M. A. Epstein, and W. O. Fenn. Performance as related to composition of alveolar air. Am. J. Physiol. 146: 207–221, 1946.
 154. Owen, O. E., A. P. Morgan, H. G. Kemp, J. M. Sullivan, M. G. Herrera, and G. F. Cahill, Jr. Brain metabolism during fasting. J. Clin. Invest. 46: 1589–1595, 1967.
 155. Pardridge, W. M., and W. H. Oldendorf. Transport of metabolic substrates through the blood‐brain barrier. J. Neurochem. 28: 5–12, 1977.
 156. Patrick, R. L., and M. T. Rendel. pH‐induced alterations in dopamine synthesis regulation in rat brain striatal synaptosomes. J. Neurochem. 34: 1506–1513, 1980.
 157. Pelligrino, D. A., T. I. Musch, and J. A. Dempsey. Interregional differences in brain intracellular pH and water compartmentation during acute normoxic and hypoxic hypocapnia in the anesthetized dog. Brain Res. 214: 387–404, 1981.
 158. Pelligrino, D. A., and B. K. Siesjö. The influence of circulating adrenaline on extracellular fluid potassium concentration in the brain. Acta Physiol. Scand. 110: 111–112, 1980.
 159. Peterson, C., and G. E. Gibson. 3,4‐Diaminopyridine alters acetylcholine metabolism and behaviour during hypoxia. J. Pharmacol. Exp. Ther. 222: 576–582, 1982.
 160. Phelps, M. E., S. C. Huang, E. J. Hoffman, C. Selin, L. Sokoloff, and D. E. Kuhl. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F‐18) 2‐fluoro‐2‐deoxy‐D‐glucose: validation of method. Ann. Neurol. 6: 371–388, 1979.
 161. Phelps, M. E., J. C. Mazziotta, and D. E. Kuhl. Metabolic mapping of the brain's response to visual stimulation: studies in man. Science 211: 1445–1448, 1981.
 162. Phillis, J. W. The role of calcium in the central effect of biogenic amines. Life Sci. 14: 1189–1201, 1974.
 163. Pickard, J. D., L. A. MacDonell, E. T. MacKenzie, and A. M. Harper. Prostaglandin‐induced effects in the primate cerebral circulation. Eur. J. Pharmacol. 43: 343–351, 1977.
 164. Pickard, J. D., and E. T. MacKenzie. Inhibition of prostaglandin synthesis and the response of baboon cerebral circulation to carbon dioxide. Nature London New Biol. 245: 187–188, 1973.
 165. Plum, F., and J. B. Posner. Blood and cerebrospinal fluid lactate during hyperventilation. Am. J. Physiol. 212: 864–870, 1967.
 166. Plum, F., J. B. Posner, and W. W. Smith. Effect of hyper‐baric‐hyperoxic hyperventilation on blood, brain and CSF lactate. Am. J. Physiol. 215: 1240–1244, 1968.
 167. Plum, F., J. B. Posner, and B. Troy. Cerebral metabolic and circulatory responses to induced convulsions in animals. Arch. Neurol. Chicago 18: 1–13, 1968.
 168. Racagni, G., D. L. Cheney, M. Trabuchi, C. Wang, and E. Costa. Measurement of acetylcholine turnover rate in discrete areas of rat brain. Life Sci. 15: 1961–1975, 1974.
 169. Raichle, M. Quantitative in vivo autoradiography with positron emission tomography. Brain Res. Rev. 1: 47–68, 1979.
 170. Rapoport, S. I. Blood‐Brain Barrier in Physiology and Medicine. New York: Raven, 1976.
 171. Reivich, M., P. J. Cohen, and L. Greenbaum. Alterations in the electroencephalogram of awake man produced by hyperventilation: effects of 100% oxygen at 3 atmospheres (absolute) pressure (Abstract). Neurology 16: 304, 1966.
 172. Reivich, M., J. Jehle, L. Sokoloff, and S. S. Kety. Measurement of regional cerebral blood flow with antipyrine‐14C in awake cats. J. Appl. Physiol. 27: 296–300, 1969.
 173. Reivich, M., D. Kuhl, A. Wolf, J. Greenberg, M. Phelps, T. Ido, V. Cassella, J. Fowler, E. Hoffman, A. Alavi, P. Som, and L. Sokoloff. The 18F‐fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ. Res. 44: 127–137, 1979.
 174. Rhodes, C. G., G. L. Lenzi, R. S. J. Frackowiak, T. Jones, and C. Pozzilli. Measurements of CBF and CMRo2 using the continuous inhalation of C15O2 and 15O2. Experimental validation using CO2 reactivity in the anesthetized dog. J. Neurol. Sci. 50: 381–389, 1981.
 175. Roberts, E. Epilepsy and antiepileptic drugs: a speculative synthesis. In: Antiepileptic Drugs: Mechanisms of Action, edited by G. H. Glaser, J. K. Penry, and D. M. Woodbury. New York: Raven, 1980, p. 667–713.
 176. Roberts, E., T. N. Chase, and D. B. Tower (editors). GABA in Nervous System Function. Amsterdam: Excerpta Med., 1976.
 177. Rosenthal, M., J. C. Lamanna, F. F. Jöbsis, J. Levasseur, H. Kontos, and J. Patterson. Effects of respiratory gases on cytochrome a in intact cerebral cortex: is there a critical Po2? Brain Res. 108: 143–154, 1979.
 178. Ruderman, N. B., P. S. Ross, M. Berger, and M. N. Goodman. Regulation of glucose and ketone‐body metabolism in brain of anaesthetized rats. Biochem. J. 138: 1–10, 1974.
 179. Sacktor, B., J. E. Wilson, and C. G. Tiekert. Regulation of glycolysis in brain, in situ, during convulsions. J. Biol. Chem. 241: 5071–5075, 1966.
 180. Sage, J. I., R. L. Van Uitert, and T. E. Duffy. Simultaneous measurement of cerebral blood flow and unidirectional movement of substances across the blood‐brain barrier: theory, method, and application to leucine. J. Neurochem. 36: 1731–1738, 1981.
 181. Sakabe, T., and B. K. Siesjö. The effect of indomethacin on the blood flow‐metabolism couple in the brain under normal, hypercapnic and hypoxic conditions. Acta Physiol. Scand. 107: 283–284, 1979.
 182. Sakurada, O., C. Kennedy, J. Jehle, J. D. Brown, G. L. Carbin, and L. Sokoloff. Measurement of local cerebral blood flow with iodo [14C]‐antipyrine. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H59–H66, 1978.
 183. Scheuer, J., and M. N. Berry. Effect of alkalosis on glycolysis in the isolated rat heart. Am. J. Physiol. 213: 1143–1148, 1967.
 184. Schmal, F. W., E. Betz, E. Dettinger, and H. J. Hohorst. Energiestoffwechsel der Grosshirnrinde und Elektroencephalogramm bei Sauerstoffmangel. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 292: 46–59, 1966.
 185. Siesjö, B. K. The regulation of the cerebrospinal fluid pH. Kidney Int. 1: 360–374, 1972.
 186. Siesjö, B. K. Metabolic control of intracellular pH (Editorial). Scand. J. Clin. Lab. Invest. 32: 97–104, 1973.
 187. Siesjö, B. K. Brain Energy Metabolism. New York: Wiley, 1978.
 188. Siesjö, B. K. Cerebral metabolic rate in hypercarbia—a controversy. Anesthesiology 52: 461–465, 1980.
 189. Siesjö, B. K. Cell damage in the brain: a speculative synthesis. J. Cereb. Blood Flow Metab. 1: 155–185, 1981.
 190. Siesjö, B. K., J. Folbergrová, and V. MacMillan. The effect of hypercapnia upon intracellular pH in the brain, evaluated by the bicarbonate‐carbonic acid method and from the creatinine phosphokinase equilibrium. J. Neurochem. 19: 2483–2495, 1972.
 191. Siesjö, B. K., and M. Ingvar. Blood flow. In: Handbook of Neurochemistry (2nd ed.), edited by A. Lajtha. New York: Plenum, vol. 3, 1983, p. 653–688.
 192. Siesjö, B. K., H. Jóhannsson, B. Ljunggren, and K. Norberg. Brain dysfunction in cerebral hypoxia and ischemia. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 53: 75–112, 1974.
 193. Siesjö, B. K., and K. Messeter. Factors determining intracellular pH. In: Ion Homeostasis of the Brain, edited by B. K. Siesjö and S. C. Sorensen. Copenhagen: Munksgaard, 1971, p. 244–262.
 194. Siesjö, B. K., and L. Nilsson. The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentrations in the rat brain. Scand. J. Clin. Lab. Invest. 27: 83–96, 1971.
 195. Sokoloff, L. The action of drugs on the cerebral circulation. Pharmacol. Rev. 11: 1–85, 1959.
 196. Sokoloff, L. Relation between physiological function and energy metabolism in the central nervous system. J. Neurochem. 29: 13–26, 1977.
 197. Sokoloff, L. Circulation and energy metabolism of the brain. In: Basic Neurochemistry (3rd ed.), edited by G. J. Siegel, R. W. Albers, R. Katzman, and B. W. Agranoff. Boston, MA: Little, Brown, 1981, p. 471–496.
 198. Sokoloff, L. Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J. Cereb. Blood Flow Metab. 1: 7–36, 1981.
 199. Sokoloff, L., M. Reivich, C. Kennedy, M. H. Des Rosiers, C. S. Patlak, K. D. Pettigrew, O. Sakurada, and M. Shinohara. The [14C]‐deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anaesthetized albino rat. J. Neurochem. 28: 897–916, 1977.
 200. Sugioka, K., and D. A. Davis. Hyperventilation with oxygen—a possible cause of cerebral hypoxia. Anesthesiology 21: 135–143, 1960.
 201. Sundwall, A. Effect of pentobarbital on the turnover of acetylcholine in brain nerve terminals in vivo. Brain Res. 62: 531–536, 1973.
 202. Ter‐Pogossian, M. M., J. O. Eichling, D. O. Davis, and M. J. Welch. The measure in vivo of regional cerebral oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen‐15. J. Clin. Invest. 49: 381–391, 1970.
 203. Tews, J. K., S. H. Carter, P. D. Roa, and W. E. Stone. Free amino acids and related compounds in dog brain: postmortem and anoxic changes, effects of ammonium chloride infusion, and levels during seizures induced by picrotoxin and by pentylenetetrazole. J. Neurochem. 10: 641–653, 1963.
 204. Thesleff, S. Aminopyridines and synaptic transmission. Neuroscience 5: 1413–1419, 1980.
 205. Tower, D. B., and O. M. Young. The activities of butyryl‐cholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J. Neurochem. 20: 269–278, 1973.
 206. Weil‐Malherbe, H., L. G. Whitby, and J. Axelrod. The blood‐brain barrier for catecholamines in different regions of the brain. In: Regional Neurochemistry, edited by S. S. Kety and J. Elkes. Oxford, UK: Pergamon, 1961, p. 284–292.
 207. Weyne, J., G. Demeester, and I. Leusen. Brain and blood lactate during acute and prolonged respiratory acidosis and alkalosis. Arch. Int. Physiol. 76: 157–159, 1968.
 208. Whisler, K. E., J. K. Tews, and W. E. Stone. Cerebral amino acids and lipids in drug‐induced status epilepticus. J. Neurochem. 15: 215–220, 1968.
 209. Winn, H. R., R. Rubio, and R. M. Berne. Brain adenosine concentration during hypoxia in rats. Am. J. Physiol. 241 (Heart Circ. Physiol. 10): H235–H242, 1981.
 210. Winn, H. R., R. Rubio, and R. M. Berne. The role of adenosine in the regulation of cerebral blood flow. J. Cereb. Blood Flow Metab. 1: 239–244, 1981.
 211. Winn, H. R., J. Welsh, R. Rubio, and R. M. Berne. Changes in brain adenosine during bicuculline‐induced seizures in rats: effects of hypoxia and altered systemic blood pressure. Circ. Res. 47: 481–491, 1980.
 212. Wollman, H., T. C. Smith, G. W. Stephen, E. T. Colton III, H. E. Gleaton, and S. C. Alexander. Effects of extremes of respiratory and metabolic alkalosis on cerebral blood flow in man. J. Appl. Physiol. 24: 60–65, 1968.
 213. Yoshino, Y., and K. A. C Elliot. Incorporation of carbon atoms from glucose into free amino acids in brain under normal and altered conditions. Can. J. Biochem. 48: 228–235, 1970.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Bo K. Siesjö, Martin Ingvar. Ventilation and Brain Metabolism. Compr Physiol 2011, Supplement 11: Handbook of Physiology, The Respiratory System, Control of Breathing: 141-161. First published in print 1986. doi: 10.1002/cphy.cp030205