Comprehensive Physiology Wiley Online Library

Upper Airway Motor Systems

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Clues About Phylogeny: Upper Respiratory Tract Breathing Movements in Lower Vertebrates
2 Ontogeny: Development of Mammalian Upper Respiratory Tract Musculature
2.1 Structural Development During Intrauterine Life
2.2 Upper Airway Function During Fetal Life
2.3 Upper Airway Function at Birth
2.4 Postnatal Development
3 Adult Mammalian Upper Airway Motor Systems
3.1 Nose and Mouth
3.2 Pharynx
3.3 Larynx
4 Conclusion
Figure 1. Figure 1.

Head region of river lamprey (Lampetra fluviatilis), a primitive air breather.

From Wind 182
Figure 2. Figure 2.

African lungfish (Protopterus dolloi), a bimodal breather, taking a breath of air.

From Wind 182
Figure 3. Figure 3.

Dorsal view of pharyngeal floor of American bullfrog (Rana catesbeiana). Mucous membranes have been removed, revealing laryngeal entrance and glottic musculature.

From Wind 182
Figure 4. Figure 4.

Prenatal development of human larynx. A‐E: dorsal views of pharyngeal floor in embryos from 4 wk (5 mm) to 10 wk (40 mm) of gestational age. F: sagittal section of larynx at birth.

From Arey 5
Figure 5. Figure 5.

Prenatal development of human tongue. A‐C: dorsal views of pharyngeal floor in embryos from 4 wk (6 mm) to 7 wk (15 mm) of gestational age. D: tongue and glottis at birth.

From Arey 5
Figure 6. Figure 6.

Electromyograms of diaphragm, posterior cricoarytenoid (PCA), and thyroarytenoid (TA) muscles in unanesthetized fetal lamb. IPP, intrapleural pressure. Left, regular fetal breathing movements in rapid‐eye‐movement state. Right, inspiratory effort followed by TA activity in non‐rapid‐eye‐movement state.

From Harding et al. 79
Figure 7. Figure 7.

Plethysmograph records showing breathing patterns of 2 young opossums of different ages. Upward deflections denote inspiration. Note end‐inspiratory breath‐holding pattern in younger animal and in older animal during hypoxia.

From Farber 53
Figure 8. Figure 8.

Sagittal view of human pharynx.

From Hollinshead 84
Figure 9. Figure 9.

Sagittal view of human mouth, tongue, and larynx. Tongue is drawn forward by contraction of genioglossus (labeled Tongue) and geniohyoid muscles.

From Essentials of Human Anatomy, 6th ed., by Russell Woodburne. Copyright © 1978 by Oxford Univ. Press 183
Figure 10. Figure 10.

Electromyograms of tensor and levator muscles of soft palate in a human subject. Both are active in swallowing, but only the tensor muscle participates in breathing movements.

From Hairston and Sauerland 74
Figure 11. Figure 11.

Electromyograms (EMG) of genioglossus muscle in a human subject. Note marked reduction in genioglossus activity in rapid‐eye‐movement (REM) sleep. EEG, electroencephalogram.

From Sauerland and Harper 151
Figure 12. Figure 12.

Diagram illustrating actions of certain intrinsic laryngeal muscles on glottic aperture.

From Essentials of Human Anatomy, 6th ed., by Russell Woodburne. Copyright © 1978 by Oxford Univ. Press 183
Figure 13. Figure 13.

Schematic diagram of common method of measuring laryngeal resistance in anesthetized animals.

From Bartlett et al. 15
Figure 14. Figure 14.

Translaryngeal pressure records, reflecting laryngeal resistance, with diaphragm and posterior cricoarytenoid (PCA) electromyograms in an anesthetized cat. Airflow through larynx was 4 liters/min. Top, hyperoxic base‐line state; middle, hyperoxic hypercapnia; bottom, normocapnic hypoxia. Note increased PCA activity, particularly in expiration, in lower two panels with corresponding reductions in laryngeal resistance. and , alveolar partial pressures of O2 and CO2, respectively; Plar, translaryngeal pressure.

From Bartlett 12
Figure 15. Figure 15.

Pattern of laryngeal breathing movements in a normal human subject at rest, derived from computer‐assisted averaging of data taken every 0.12 s for 10 breaths. Laryngeal aperture values were taken from motion picture frames photographed through fiberoptic laryngoscope. Ti, inspiratory time; Te, expiratory time.

From England et al. 49
Figure 16. Figure 16.

Response to lung inflation in an anesthetized cat. Upper tracing, uncalibrated record of abdominal pressure (PAB). Other tracings, diaphragm and posterior cricoarytenoid (PCA) electromyograms and record of translaryngeal pressure (Pl). First arrow, lungs were inflated with 50 ml of air. Second arrow, inflation was released. Airflow through larynx was 3.1 liters/min.

From Bartlett et al. 15
Figure 17. Figure 17.

Translaryngeal pressure records reflecting laryngeal resistance of an anesthetized cat in control, hypercapnic, and hypoxic conditions before and after vagotomy. Airflow through larynx was 4 liters/min. Before vagotomy, hypercapnia and hypoxia lower expiratory laryngeal resistance. After vagotomy, hypoxia has the opposite effect.

From Bartlett 13
Figure 18. Figure 18.

Pattern of laryngeal breathing movements in normal human subject at rest breathing air ( = 36 Torr) and during mild hypercapnia ( = 42 Torr). Plots are derived as in Fig. 15. In hypercapnia, the expiratory decrease in aperture width is much briefer than in control state. Ti, inspiratory time; Te, expiratory time.

From England and Bartlett 48
Figure 19. Figure 19.

Pattern of laryngeal breathing movements in normal human subject at rest and during moderate exercise on cycle ergometer. Plots derived as in Fig. 15. Note that aperture remains large throughout breathing cycle.

From England and Bartlett 48
Figure 20. Figure 20.

Response to expiratory unloading in an unanesthetized cat. Pt, tracheal pressure. Asterisk, a previously closed chronic tracheostomy was suddenly opened at start of mechanical expiration. Note activation of diaphragm and inhibition of posterior cricoarytenoid (PCA) muscle, compared with previous two breaths. Expiratory duration of the unloaded breath is prolonged.

From Remmers and Bartlett 142


Figure 1.

Head region of river lamprey (Lampetra fluviatilis), a primitive air breather.

From Wind 182


Figure 2.

African lungfish (Protopterus dolloi), a bimodal breather, taking a breath of air.

From Wind 182


Figure 3.

Dorsal view of pharyngeal floor of American bullfrog (Rana catesbeiana). Mucous membranes have been removed, revealing laryngeal entrance and glottic musculature.

From Wind 182


Figure 4.

Prenatal development of human larynx. A‐E: dorsal views of pharyngeal floor in embryos from 4 wk (5 mm) to 10 wk (40 mm) of gestational age. F: sagittal section of larynx at birth.

From Arey 5


Figure 5.

Prenatal development of human tongue. A‐C: dorsal views of pharyngeal floor in embryos from 4 wk (6 mm) to 7 wk (15 mm) of gestational age. D: tongue and glottis at birth.

From Arey 5


Figure 6.

Electromyograms of diaphragm, posterior cricoarytenoid (PCA), and thyroarytenoid (TA) muscles in unanesthetized fetal lamb. IPP, intrapleural pressure. Left, regular fetal breathing movements in rapid‐eye‐movement state. Right, inspiratory effort followed by TA activity in non‐rapid‐eye‐movement state.

From Harding et al. 79


Figure 7.

Plethysmograph records showing breathing patterns of 2 young opossums of different ages. Upward deflections denote inspiration. Note end‐inspiratory breath‐holding pattern in younger animal and in older animal during hypoxia.

From Farber 53


Figure 8.

Sagittal view of human pharynx.

From Hollinshead 84


Figure 9.

Sagittal view of human mouth, tongue, and larynx. Tongue is drawn forward by contraction of genioglossus (labeled Tongue) and geniohyoid muscles.

From Essentials of Human Anatomy, 6th ed., by Russell Woodburne. Copyright © 1978 by Oxford Univ. Press 183


Figure 10.

Electromyograms of tensor and levator muscles of soft palate in a human subject. Both are active in swallowing, but only the tensor muscle participates in breathing movements.

From Hairston and Sauerland 74


Figure 11.

Electromyograms (EMG) of genioglossus muscle in a human subject. Note marked reduction in genioglossus activity in rapid‐eye‐movement (REM) sleep. EEG, electroencephalogram.

From Sauerland and Harper 151


Figure 12.

Diagram illustrating actions of certain intrinsic laryngeal muscles on glottic aperture.

From Essentials of Human Anatomy, 6th ed., by Russell Woodburne. Copyright © 1978 by Oxford Univ. Press 183


Figure 13.

Schematic diagram of common method of measuring laryngeal resistance in anesthetized animals.

From Bartlett et al. 15


Figure 14.

Translaryngeal pressure records, reflecting laryngeal resistance, with diaphragm and posterior cricoarytenoid (PCA) electromyograms in an anesthetized cat. Airflow through larynx was 4 liters/min. Top, hyperoxic base‐line state; middle, hyperoxic hypercapnia; bottom, normocapnic hypoxia. Note increased PCA activity, particularly in expiration, in lower two panels with corresponding reductions in laryngeal resistance. and , alveolar partial pressures of O2 and CO2, respectively; Plar, translaryngeal pressure.

From Bartlett 12


Figure 15.

Pattern of laryngeal breathing movements in a normal human subject at rest, derived from computer‐assisted averaging of data taken every 0.12 s for 10 breaths. Laryngeal aperture values were taken from motion picture frames photographed through fiberoptic laryngoscope. Ti, inspiratory time; Te, expiratory time.

From England et al. 49


Figure 16.

Response to lung inflation in an anesthetized cat. Upper tracing, uncalibrated record of abdominal pressure (PAB). Other tracings, diaphragm and posterior cricoarytenoid (PCA) electromyograms and record of translaryngeal pressure (Pl). First arrow, lungs were inflated with 50 ml of air. Second arrow, inflation was released. Airflow through larynx was 3.1 liters/min.

From Bartlett et al. 15


Figure 17.

Translaryngeal pressure records reflecting laryngeal resistance of an anesthetized cat in control, hypercapnic, and hypoxic conditions before and after vagotomy. Airflow through larynx was 4 liters/min. Before vagotomy, hypercapnia and hypoxia lower expiratory laryngeal resistance. After vagotomy, hypoxia has the opposite effect.

From Bartlett 13


Figure 18.

Pattern of laryngeal breathing movements in normal human subject at rest breathing air ( = 36 Torr) and during mild hypercapnia ( = 42 Torr). Plots are derived as in Fig. 15. In hypercapnia, the expiratory decrease in aperture width is much briefer than in control state. Ti, inspiratory time; Te, expiratory time.

From England and Bartlett 48


Figure 19.

Pattern of laryngeal breathing movements in normal human subject at rest and during moderate exercise on cycle ergometer. Plots derived as in Fig. 15. Note that aperture remains large throughout breathing cycle.

From England and Bartlett 48


Figure 20.

Response to expiratory unloading in an unanesthetized cat. Pt, tracheal pressure. Asterisk, a previously closed chronic tracheostomy was suddenly opened at start of mechanical expiration. Note activation of diaphragm and inhibition of posterior cricoarytenoid (PCA) muscle, compared with previous two breaths. Expiratory duration of the unloaded breath is prolonged.

From Remmers and Bartlett 142
References
 1. Agostoni, E. Volume‐pressure relationships of the thorax and lung in the newborn. J. Appl. Physiol. 14: 909–913, 1959.
 2. Anch, A. M., J. E. Remmers, E. K. Sauerland, and W. J. DeGroot. Oropharyngeal patency during waking and sleep in the Pickwickian syndrome. Electromyogr. Clin. Neurophysiol. 21: 317–330, 1981.
 3. Andrew, B. L. The respiratory displacement of the larynx: A study of the innervation of accessory respiratory muscles. J. Physiol. London 130: 474–487, 1955.
 4. Ardran, G. M., F. H. Kemp, and L. Manen. Closure of the larynx. Br. J. Radiol. 26: 497–509, 1953.
 5. Arey, L. B. Developmental Anatomy. A Textbook and Laboratory Manual of Embryology (7th ed.). Philadelphia, PA: Saunders, 1965.
 6. Baier, H., A. Wanner, S. Zarzecki, and M. A. Sackner. Relationships among glottis opening, respiratory flow, and upper airway resistance in humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 603–611, 1977.
 7. Ballard, W. W. Comparative Anatomy and Embryology. New York: Ronald, 1964.
 8. Ballintijn, C. M. Functional anatomy and movement coordination of the respiratory pump of the carp (Cyprinus carpio L.). J. Exp. Biol. 50: 547–567, 1969.
 9. Barcroft, J. Researches on Prenatal Life. Springfield, IL: Thomas, vol. I, 1947.
 10. Barillot, J.‐C., and A.‐L. Bianchi. Activité des motoneurones laryngés pendant les réflexes de Hering‐Breuer. J. Physiol. Paris 63: 783–792, 1971.
 11. Barillot, J.‐C., and M. Dussardier. Activité des motoneurones laryngés expiratoires. J. Physiol. Paris 72: 311–343, 1976.
 12. Bartlett, D., Jr. Effects of hypercapnia and hypoxia on laryngeal resistance to airflow. Respir. Physiol. 37: 293–302, 1979.
 13. Bartlett, D., Jr. Effects of vagal afferents on laryngeal responses to hypercapnia and hypoxia. Respir. Physiol. 42: 189–198, 1980.
 14. Bartlett, D., Jr., S. L. Knuth, and K. V. Knuth. Effects of pulmonary stretch receptor blockade on laryngeal responses to hypercapnia and hypoxia. Respir. Physiol. 45: 67–77, 1981.
 15. Bartlett, D., Jr., J. E. Remmers, and H. Gautier. Laryngeal regulation of respiratory airflow. Respir. Physiol. 18: 194–204, 1973.
 16. Bartoli, A., E. Bystrzycka, A. Guz, S. K. Jain, M. I. M. Noble, and D. Trenchard. Studies of the pulmonary vagal control of central respiratory rhythm in the absence of breathing movements. J. Physiol. London 230: 449–465, 1973.
 17. Basmajian, J. V., and C. R. Dutta. Electromyography of the pharyngeal constrictors and soft palate in rabbits. Anat. Rec. 139: 443–449, 1961.
 18. Basmajian, J. V., and C. R. Dutta. Electromyography of pharyngeal constrictors and levator palati in man. Anat. Rec. 139: 561–563, 1961.
 19. Bianchi, A. L. Localisation et étude des neurones respiratoires bulbaires. Mise en jeu antidromique par stimulation spinale ou vagale. J. Physiol. Paris 63: 5–40, 1971.
 20. Bianchi, A. L. Modalités de décharge et propriétés anatomo‐fonctionnelles des neurones respiratoires bulbaires. J. Physiol. Paris 68: 555–587, 1974.
 21. Bianchi, A. L., and J. C. Barillot. Activity of medullary respiratory neurones during reflexes from the lungs in cats. Respir. Physiol. 25: 335–352, 1975.
 22. Bianconi, R., and F. Raschi. Respiratory control of motoneurones of the recurrent laryngeal nerve and hypocapnic apnea. Arch. Ital. Biol. 102: 56–73, 1964.
 23. Bosma, J. F. Form and function in the infant's mouth and pharynx. In: Third Symposium on Oral Sensation and Perception: The Mouth of the Infant, edited by J. F. Bosma. Springfield, IL: Thomas, 1972, chapt. 1, p. 3–27.
 24. Bosma, J. F. Introduction to the symposium. In: Symposium on Development of Upper Respiratory Anatomy and Function: Implications for Sudden Infant Death Syndrome, edited by J. F. Bosma and J. Showacre. Washington, DC: US Govt. Printing Office, 1976, chapt. 2, p. 5–49.
 25. Bosma, J. F., H. M. Truby, and J. Lind. Studies of neonatal transition: correlated cineradiographic and visual‐acoustic observations. Acta Paediatr. Scand. Suppl. 163: 93–109, 1965.
 26. Bouhuys, A., D. F. Proctor, and J. Mead. Kinetic aspects of singing. J. Appl. Physiol. 21: 483–496, 1966.
 27. Breuer, J. Self‐steering of respiration through the nervus vagus [transl. by E. Ullmann]. In: Breathing: Hering‐Breuer Centenary Symposium, edited by R. Porter. London: Churchill, 1970, p. 365–394.
 28. Bridger, G. P., and D. F. Proctor. Maximum nasal inspiratory flow and nasal resistance. Ann. Otol. Rhinol. Laryngol. 79: 481–488, 1970.
 29. Brody, A. W. Mechanical compliance and resistance of the lung‐thorax calculated from the flow recorded during passive expiration. Am. J. Physiol. 178: 189–196, 1954.
 30. Brouillette, R. T., and B. T. Thach. A neuromuscular mechanism maintaining extrathoracic airway patency. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 772–779, 1979.
 31. Brouillette, R. T., and B. T. Thach. Control of genioglossus muscle inspiratory activity. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 801–808, 1980.
 32. Brouillette, R. T., B. T. Thach, Y. K. Abu‐Osba, and S. L. Wilson. Hiccups in infants: characteristics and effects on ventilation. J. Pediatr. 96: 219–225, 1980.
 33. Bruce, E. N., N. S. Cherniack, J. Mitra, D. Weiner, and J. Salamone. Carotid sinus and medullary chemoreceptor contributions to phrenic and hypoglossal nerve responses during rebreathing (Abstract). Physiologist 23 (4): 182, 1980.
 34. Campbell, C. J., J. A. Murtagh, and C. F. Raber. Laryngeal resistance to airflow. Ann. Otol. Rhinol. Laryngol. 72: 5–30, 1963.
 35. Campbell, C. J., J. A. Murtagh, and C. F. Raber. Chemical agents and reflex control of laryngeal glottis. Ann. Otol. Rhinol. Laryngol. 72: 589–604, 1963.
 36. Chang, H. K., and J. P. Mortola. Fluid dynamic factors in tracheal pressure measurement. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 218–225, 1981.
 37. Cherniack, N. S. Respiratory dysrhythmias during sleep. New Engl. J. Med. 305: 325–330, 1981.
 38. Clark, B. D., C. Gans, and H. I. Rosenberg. Air flow in snake ventilation. Respir. Physiol. 32: 207–212, 1978.
 39. Cohen, M. I. Phrenic and recurrent laryngeal discharge patterns and the Hering‐Breuer reflex. Am. J. Physiol. 228: 1489–1496, 1975.
 40. Crelin, E. S. Development of the upper respiratory system. Clin. Symp. 28: 1–30, 1976.
 41. Dawes, G. S., H. E. Fox, B. M. Leduc, G. C. Liggins, and R. T. Richards. Respiratory movements and paradoxical sleep in the foetal lamb (Abstract). J. Physiol. London 210: 47P–48P, 1970.
 42. Dawes, G. S., H. E. Fox, B. M. Leduc, G. C. Liggins, and R. T. Richards. Respiratory movements and rapid eye movement sleep in the foetal lamb. J. Physiol. London 220: 119–143, 1972.
 43. De Jongh, H. J., and C. Gans. On the mechanism of respiration in the bullfrog, Rana catesbeiana: a reassessment. J. Morphol. 127: 259–290, 1969.
 44. Denison, R. H. The soft anatomy of Bothriolepis. J. Paleontol. 15: 553–561, 1941.
 45. Dixon, M., M. Szereda‐Przestaszewska, J. G. Widdicombe, and J. C. M. Wise. Studies on laryngeal calibre during stimulation of peripheral and central chemoreceptors, pneumothorax and increased respiratory loads. J. Physiol. London 239: 347–363, 1974.
 46. Dixon, M., J. G. Widdicombe, and J. C. M. Wise. Laryngeal calibre during hyperthermia in cats. Respir. Physiol. 20: 371–377, 1974.
 47. Edström, L., C. Lindquist, and A. Martensson. Correlation between functional and histochemical properties of the intrinsic laryngeal muscles in the cat. In: Ventilatory and Phonatory Control Systems, edited by B. Wyke. London: Oxford Univ. Press, 1974, p. 392–404.
 48. England, S. J., and D. Bartlett, Jr. Changes in respiratory movements of the human vocal cords during hyperpnea. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 780–785, 1982.
 49. England, S. J., D. Bartlett, Jr., and J. A. Daubenspeck. Influence of human vocal cord movements on airflow and resistance in eupnea. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 773–779, 1982.
 50. England, S. J., D. Bartlett, Jr., and S. L. Knuth. Comparison of human vocal cord movements during isocapnic hypoxia and hypercapnia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 81–86, 1982.
 51. Eyzaguirre, C., and J. R. Taylor. Respiratory discharge of some vagal motoneurons. J. Neurophysiol. 26: 61–78, 1963.
 52. Faaborg‐Andersen, K. Electromyographic investigation of intrinsic laryngeal muscles in humans. Acta Physiol. Scand. Suppl. 140: 1–149, 1957.
 53. Farber, J. P. Development of pulmonary reflexes and pattern of breathing in the Virginia opossum. Respir. Physiol. 14: 278–286, 1972.
 54. Farber, J. P. Laryngeal effects and respiration in the suckling opossum. Respir. Physiol. 35: 189–201, 1978.
 55. Ferris, B. G., Jr., J. Mead, and L. H. Opie. Partitioning of respiratory flow resistance in man. J. Appl. Physiol. 19: 653–658, 1964.
 56. Fink, B. R. Spring mechanisms in the human larynx. Acta Oto‐Laryngol. 11: 295–304, 1974.
 57. Fink, B. R. The Human Larynx: A Functional Study. New York: Raven, 1975.
 58. Fink, B. R., M. Basek, and V. Epanchin. The mechanism of opening of the human larynx. Laryngoscope 66: 410–425, 1956.
 59. Fisher, J. T., and J. P. Mortola. Statics of the respiratory system in newborn mammals. Respir. Physiol. 41: 155–172, 1980.
 60. Fisher, J. T., J. P. Mortola, J. B. Smith, G. S. Fox, and S. Weeks. Respiration in newborns: Development of the control of breathing. Am. Rev. Respir. Dis. 125: 650–657, 1982.
 61. Fukuda, H., and J. A. Kirchner. Changes in the respiratory activity of the cricothyroid muscle with intrathoracic interruption of the vagus nerve. Ann. Otol. Rhinol. Laryngol. 81: 532–537, 1972.
 62. Fukuda, H., C. T. Sasaki, and J. A. Kirchner. Vagal afferent influences on the phasic activity of the posterior cricoarytenoid muscle. Acta Oto‐Laryngol. 75: 112–118, 1973.
 63. Gans, C., and B. Clark. Studies on ventilation of Caiman crocodilus (Crocodilia: Reptilia). Respir. Physiol. 26: 285–301, 1976.
 64. Gans, C., and G. M. Hughes. The mechanism of lung ventilation in the tortoise Testudo graeca Linné. J. Exp. Biol. 47: 1–20, 1967.
 65. Gaunt, A. S., and C. Gans. Mechanics of respiration in the snapping turtle, Chelydra serpentina (Linné). J. Morphol. 128: 195–228, 1969.
 66. Gauthier, P., J. C. Barillot, and M. Dussardier. Mise en évidence electrophysiologique de bifurcations d'axone dans le nerf récurrent laryngé. J. Physiol. Paris 76: 39–48, 1980.
 67. Gautier, H., J. E. Remmers, and D. Bartlett, Jr. Control of the duration of expiration. Respir. Physiol. 18: 205–221, 1973.
 68. Gesell, R., and F. White. Recruitment of muscular activity and the central neurone after‐discharge of hyperpnea. Am. J. Physiol. 122: 48–56, 1938.
 69. Glogowska, M., A. Stransky, and J. G. Widdicombe. Reflex control of discharge in motor fibres to the larynx. J. Physiol. London 239: 365–379, 1974.
 70. Goulden, B. E., G. R. G. Barnes, and T. J. Quinlan. The electromyographic activity of intrinsic laryngeal muscles during quiet breathing in the anaesthetized horse. N. Z. Vet. J. 24: 157–162, 1976.
 71. Green, J. H., and E. Neil. The respiratory function of the laryngeal muscles. J. Physiol. London 129: 134–141, 1955.
 72. Guilleminault, C., and W. C. Dement (editors). Sleep Apnea Syndromes. New York: Liss, 1978.
 73. Guz, A., M. I. M. Noble, J. H. Eisele, and D. Trenchard. The role of vagal inflation reflexes in man and other animals. In: Breathing: Hering‐Breuer Centenary Symposium, edited by R. Porter. London: Churchill, 1970, p. 17–40.
 74. Hairston, L. E., and E. K. Sauerland. Electromyography of the human palate: discharge patterns of the levator and tensor veli palatini. Electromyogr. Clin. Neurophysiol. 21: 287–297, 1981.
 75. Hairston, L. E., and E. K. Sauerland. Electromyography of the human pharynx: discharge patterns of the superior pharyngeal constrictor during respiration. Electromyogr. Clin. Neurophysiol. 21: 299–306, 1981.
 76. Hairston, L. E., E. K. Sauerland, and W. C. Orr. The role of oropharyngeal muscles in respiration: an electromyographic study during wakefulness and sleep (Abstract). Anat. Rec. 190: 411, 1978.
 77. Hamilton, L. H. Nasal airway resistance: its measurement and regulation. Physiologist 22 (3): 43–49, 1979.
 78. Harding, R. State‐related and developmental changes in laryngeal function. Sleep 3: 307–322, 1980.
 79. Harding, R., P. Johnson, and M. E. McClelland. Respiratory function of the larynx in developing sheep and the influence of sleep state. Respir. Physiol. 40: 165–179, 1980.
 80. Harper, R. M., and E. K. Sauerland. The role of the tongue in sleep apnea. In: Sleep Apnea Syndromes, edited by C. Guilleminault and W. C. Dement. New York: Liss, 1978, chapt. 14, p. 219–234.
 81. Hast, M. H. Developmental anatomy of the larynx. In: Scientific Foundations of Otolaryngology, edited by R. Hinchcliffe and D. Harrison. Chicago, IL: Year Book, 1976, chapt. 38, p. 529–535.
 82. Higenbottam, T. Narrowing of glottis in humans associated with experimentally induced bronchoconstriction. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 403–407, 1980.
 83. Hill, M. W., C. Guilleminault, and F. B. Simmons. Fiberoptic and EMG studies in hypersomnia‐sleep apnea syndrome. In: Sleep Apnea Syndromes, edited by C. Guilleminault and W. C. Dement. New York: Liss, 1978, chapt. 16, p. 249–258.
 84. Hollinshead, W. H. Textbook of Anatomy (3rd ed.). Hagerstown, Md.: Harper & Row, 1974.
 85. Horiuchi, M., and C. T. Sasaki. Cricothyroid muscle in respiration. Ann. Otol. Rhinol. Laryngol. 87: 386–391, 1978.
 86. Hughes, G. M. Evolution between air and water. In: Development of the Lung, edited by A. V. S. de Reuck and R. Porter. Boston, MA: Little, Brown, 1967, p. 64–80. (Ciba Found. Symp.).
 87. Hughes, G. M., and G. Shelton. Respiratory mechanisms and their nervous control in fish. Adv. Comp. Physiol. Biochem. 1: 275–364, 1962.
 88. Hyatt, R. E., and R. E. Wilcox. Extrathoracic airway resistance in man. J. Appl. Physiol. 16: 326–330, 1961.
 89. Hyland, R. H., M. A. Hutcheon, A. Perl, G. Bowes, N. R. Anthonisen, N. Zamel, and E. A. Phillipson. Upper airway occlusion induced by diaphragm pacing for primary alveolar hypoventilation: implications for the pathogenesis of obstructive sleep apnea. Am. Rev. Respir. Dis. 124: 180–185, 1981.
 90. Ingram, R. H., and D. P. Schilder. Effect of pursed lips expiration on the pulmonary pressure‐flow relationship in obstructive lung disease. Am. Rev. Respir. Dis. 96: 381–388, 1967.
 91. Irving, L. Comparative anatomy and physiology of gas transport mechanisms. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 5, p. 177–212.
 92. Jackson, A. C., P. J. Gulesian, Jr., and J. Mead. Glottal aperture during panting with voluntary limitation of tidal volume. J. Appl. Physiol. 39: 834–836, 1975.
 93. Jiménez‐Vargas, J., J. Miranda, and A. Mouriz. Physiology of the cough. Differentiation of constrictor and dilatory reflexes of the laryngeal sphincter. Rev. Exp. Fisiol. 18: 7–21, 1962.
 94. Johansen, K. Air breathing in fishes. In: Fish Physiology, edited by W. S. Hoar and D. J. Randall. New York: Academic, 1970, vol. IV, chapt. 9, p. 361–411.
 95. Johnson, P. Comparative aspects of the control of breathing during development. In: Central Nervous Control Mechanisms in Breathing, edited by C. von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, p. 337–351.
 96. Johnston, M. C., and R. D. Hazelton. Embryonic origins of facial structures related to oral sensory and motor functions. In: Third Symposium on Oral Sensation and Perception: The Mouth of the Infant, edited by J. F. Bosma. Springfield, IL: Thomas, 1972, chapt. 4, p. 76–96.
 97. Knox, C. K. Characteristics of inflation and deflation reflexes during expiration in the cat. J. Neurophysiol. 36: 284–295, 1973.
 98. Konrad, H. R., and C. C. Rattenborg. Combined action of laryngeal muscles. Acta Oto‐Laryngol. 67: 646–649, 1969.
 99. Kotby, M. N., and L. K. Haugen. Critical evaluation of the action of the posterior cricoarytenoid muscle, utilizing direct EMG‐study. Acta Oto‐Laryngol. 70: 260–268, 1970.
 100. Ladefoged, P. Respiration, laryngeal activity and linguistics. In: Ventilatory and Phonatory Control Systems, edited by B. Wyke. London: Oxford Univ. Press, 1974, chapt. 18, p. 299–307.
 101. Loring, S. H., E. A. Elliott, and J. M. Drazen. Kinetic energy loss and convective acceleration in respiratory resistance measurements. Lung 156: 33–42, 1979.
 102. Mathew, O. P., Y. K. Abu‐Osba, and B. T. Thach. Influence of upper airway pressure changes on genioglossus muscle respiratory activity. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 438–444, 1982.
 103. Mathew, O. P., Y. K. Abu‐Osba, and B. T. Thach. Genioglossus muscle responses to upper airway pressure changes: afferent pathways. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 445–450, 1982.
 104. McCaffrey, T. V., and E. B. Kern. Response of nasal airway resistance to hypercapnia and hypoxia in man. Ann. Otol. Rhinol. Laryngol. 88: 247–252, 1979.
 105. McCaffrey, T. V., and E. B. Kern. Laryngeal regulation of airway resistance. I. Chemoreceptor reflexes. Ann. Otol. Rhinol. Laryngol. 89: 209–214, 1980.
 106. McCaffrey, T. V., and E. B. Kern. Laryngeal regulation of airway resistance. II. Pulmonary receptor reflexes. Ann. Otol. Rhinol. Laryngol. 89: 462–466, 1980.
 107. McMahon, B. R. A functional analysis of the aquatic and aerial respiratory movements of an African lungfish, Protopterus aethiopicus, with reference to the evolution of the lung‐ventilation mechanism in vertebrates. J. Exp. Biol. 51: 407–430, 1969.
 108. Mead, J., J. M. Turner, P. T. Macklem, and J. B. Little. Significance of the relationship between lung recoil and maximum expiratory flow. J. Appl. Physiol. 22: 95–108, 1967.
 109. Megirian, D., and J. H. Sherrey. Respiratory functions of the laryngeal muscles during sleep. Sleep 3: 289–298, 1980.
 110. Merlet, C., J. Hoerter, C. Devilleneuve, and C. Tchobroutsky. Mise en évidence de mouvements respiratoires chez le foetus d'agneau in utero en course du dernier mois de la gestation. C. R. Acad. Sci. Ser. D 270: 2462–2464, 1970.
 111. Mitchinson, A. G., and J. M. Yoffey. Respiratory displacement of larynx, hyoid bone and tongue. J. Anat. 81: 118–121, 1947.
 112. Monteau, R., and G. Hilaire. Modifications d'activité des motoneurones laryngés lors de l'installation de la polypnée thermique. J. Physiol. Paris 68: 331–342, 1974.
 113. Mortola, J. P., and J. T. Fisher. Mouth and nose resistance in newborn kittens and puppies. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 641–645, 1981.
 114. Mortola, J. P., J. T. Fisher, J. B. Smith, G. S. Fox, S. Weeks, and D. Willis. Onset of respiration in infants delivered by cesarean section. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 716–724, 1982.
 115. Murakami, Y., and J. A. Kirchner. Respiratory movements of the vocal cords. An electromyographic study in the cat. Laryngoscope 82: 454–467, 1972.
 116. Murphy, A. J., G. H. Koepke, E. M. Smith, and D. G. Dickinson. Sequence of action of the diaphragm and intercostal muscles during respiration. II. Expiration. Arch. Phys. Med. Rehabil. 40: 337–342, 1959.
 117. Nakamura, F., Y. Uyeda, and Y. Sonoda. Electromyographic study on respiratory movements of the intrinsic laryngeal muscles. Laryngoscope 68: 109–119, 1958.
 118. Negus, V. E. The Mechanism of the Larynx. St. Louis, MO: Mosby, 1929.
 119. Negus, V. E. The Comparative Anatomy and Physiology of the Larynx. London: Heinemann, 1949.
 120. Newsom‐Davis, J. An experimental study of hiccup. Brain 93: 851–872, 1970.
 121. Niinimaa, V., P. Cole, S. Mintz, and R. J. Shephard. Oronasal distribution of respiratory airflow. Respir. Physiol. 43: 69–75, 1981.
 122. Nye, R. E., Jr. Influence of the cyclical pattern of ventilatory flow on pulmonary gas exchange. Respir. Physiol. 10: 321–337, 1970.
 123. Ogawa, T., N. C. Jefferson, J. E. Toman, T. Chiles, A. Zambetoglou, and H. Necheles. Action potentials of accessory respiratory muscles in dogs. Am. J. Physiol. 199: 569–572, 1960.
 124. Olsen, C. R., F. C. Hale, and R. Elsner. Mechanics of ventilation in the pilot whale. Respir. Physiol. 7: 137–149, 1969.
 125. Önal, E., M. Lopata, and T. D. O'Connor. Diaphragmatic and genioglossal electromyogram responses to CO2 rebreathing in humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 1052–1055, 1981.
 126. Önal, E., M. Lopata, and T. D. O'Connor. Diaphragmatic and genioglossal electromyogram responses to isocapnic hypoxia in humans. Am. Rev. Respir. Dis. 124: 215–217, 1981.
 127. Orem, J. Some observations on breathing during sleep in the cat. In: Sleep Apnea Syndromes, edited by C. Guilleminault and W. C. Dement. New York: Liss, 1978, chapt. 5, p. 65–91.
 128. Orem, J., and R. Lydic. Upper airway function during sleep and wakefulness: experimental studies on normal and anesthetized cats. Sleep 1: 49–78, 1978.
 129. Orem, J., A. Netick, and W. C. Dement. Increased upper airway resistance to breathing during sleep in the cat. Etectroencephalogr. Clin. Neurophysiol. 43: 14–22, 1977.
 130. Payne, J. K., T. Higenbottam, and G. M. Guindi. A surface electrode for laryngeal electromyography. J. Neurol. Neurosurg. Psychiatry 43: 853–854, 1980.
 131. Payne, J., T. Higenbottam, and G. Guindi. Respiratory activity of the vocal cords in normal subjects and patients with airflow obstruction: an electromyographic study. Clin. Sci. 61: 163–167, 1981.
 132. Petit, J. M., G. Milic‐Emili, and L. Delhez. Role of the diaphragm in breathing in conscious normal man: an electromyographic study. J. Appl. Physiol. 15: 1101–1106, 1960.
 133. Polgar, G., and T. R. Weng. The functional development of the respiratory system from the period of gestation to adulthood. Am. Rev. Respir. Dis. 120: 625–695, 1979.
 134. Pressman, J. J., and G. Kelemen. Physiology of the larynx. Physiol. Rev. 35: 506–554, 1955.
 135. Proctor, D. F. Physiology of the upper airway. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 8, p. 309–345.
 136. Proctor, D. F. The upper airways. I. Nasal physiology and defense of the lungs. Am. Rev. Respir. Dis. 115: 97–129, 1977.
 137. Proctor, D. F. The upper airways. II. The larynx and trachea. Am. Rev. Respir. Dis. 115: 315–342, 1977.
 138. Randall, D. J. Respiration. In: The Biology of Lampreys, edited by M. W. Hardisty and I. C. Potter. London: Academic, 1972, vol. II, chapt. 19, p. 287–306.
 139. Randall, D. J., W. W. Burggren, A. P. Farrell, and M. S. Haswell. The Evolution of Air Breathing in Vertebrates. Cambridge, UK: Cambridge Univ. Press, 1981.
 140. Rattenborg, C. Laryngeal regulation of respiration. Acta Anaesthesiol. Scand. 5: 129–140, 1961.
 141. Remmers, J. E. Extra‐segmental reflexes derived from intercostal afferents: phrenic and laryngeal responses. J. Physiol. London 233: 45–62, 1973.
 142. Remmers, J. E., and D. Bartlett, Jr. Reflex control of expiratory airflow and duration. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 80–87, 1977.
 143. Remmers, J. E., W. J. DeGroot, E. K. Sauerland, and A. M. Anch. Neural and mechanical factors controlling pharyngeal occlusion during sleep. In: Sleep Apnea Syndromes, edited by C. Guilleminault and W. C. Dement. New York: Liss, 1978, chapt. 13, p. 211–217.
 144. Remmers, J. E., W. J. DeGroot, E. K. Sauerland, and A. M. Anch. Pathogenesis of upper airway occlusion during sleep. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 931–938, 1978.
 145. Remmers, J. E., and H. Gautier. Neural and mechanical mechanisms of feline purring. Respir. Physiol. 16: 351–361, 1972.
 146. Richards, C. C., and L. Bachman. Lung and chest wall compliance of apneic paralyzed infants. J. Clin. Invest. 40: 273–278, 1961.
 147. Romer, A. S. Major steps in vertebrate evolution. Science 158: 1629–1637, 1967.
 148. Rovainen, C. M., and M. H. Schieber. Ventilation of larval lampreys. J. Comp. Physiol. 104: 185–203, 1975.
 149. Saibene, F., P. Mognoni, C. L. Lafortuna, and R. Mostardi. Oronasal breathing during exercise. Pfluegers Arch. 378: 65–69, 1978.
 150. Sasaki, C. T., M. Suzuki, and M. Horiuchi. Postnatal development of laryngeal reflexes in the dog. Arch. Otolaryngol. 103: 138–143, 1977.
 151. Sauerland, E. K., and R. M. Harper. The human tongue during sleep: electromyographic activity of the genioglossus muscle. Exp. Neurol. 51: 160–170, 1976.
 152. Sauerland, E. K., and S. P. Mitchell. Electromyographic activity of intrinsic and extrinsic muscles of the human tongue. Tex. Rep. Biol. Med. 33: 445–455. 1975.
 153. Sauerland, E. K., W. C. Orr, and L. E. Hairston. EMG patterns of oropharyngeal muscles during respiration in wakefulness and sleep. Electromyogr. Clin. Neurophysiol. 21: 307–316, 1981.
 154. Scharf, S. M., N. T. Feldman, M. D. Goldman, H. Z. Hant, E. Bruce, and R. H. Ingram, Jr. Vocal cord closure: a cause of upper airway obstruction during controlled ventilation. Am. Rev. Respir. Dis. 117: 391–397, 1978.
 155. Schiratzki, H. Upper airway resistance in normal man during mouth breathing. Acta Oto‐Laryngol. 58: 535–554, 1964.
 156. Scholander, P. F. Experimental investigations on the respiratory function in diving mammals and birds. Hvalradets Skr.; Nor. Vidensk. Akad. Oslo Arbok 22: 1–131, 1940.
 157. Semon, F. On the position of the vocal cords in quiet respiration of man, and on the reflex‐tonus of their abductor muscles. Proc. R. Soc. London 48: 156–159, 1891.
 158. Sherrey, J. H., and D. Megirian. Spontaneous and reflexly evoked laryngeal abductor and adductor muscle activity of cat. Exp. Neurol. 43: 487–498, 1974.
 159. Sherrey, J. H., and D. Megirian. Analysis of the respiratory role of pharyngeal constrictor motoneurons of cat. Exp. Neurol. 49: 839–851, 1975.
 160. Sherrey, J. H., and D. Megirian. State dependence of upper airway respiratory motoneurons: functions of the cricothyroid and nasolabial muscles of the unanesthetized rat. Electroencephalogr. Clin. Neurophysiol. 43: 218–228, 1977.
 161. Sherrey, J. H., and D. Megirian. Respiratory EMG activity of the posterior cricoarytenoid, cricothyroid and diaphragm muscles during sleep. Respir. Physiol. 39: 355–365, 1980.
 162. Sicher, H., and S. N. Bhaskar. Orban's Oral Histology and Embryology (7th ed.). St. Louis, MO: Mosby, 1972.
 163. Spann, R. W., and R. E. Hyatt. Factors affecting upper airway resistance in conscious man. J. Appl. Physiol. 31: 708–712, 1971.
 164. Stänescu, D. C, J. Pattijn, J. Clément, and K. P. van de Woestijne. Glottis opening and airway resistance. J. Appl. Physiol. 32: 460–466, 1972.
 165. St. John, W. M. D. Bartlett, Jr., K. V. Knuth, and J.‐C. Hwang. Brain stem genesis of automatic ventilatory patterns independent of spinal mechanisms. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 204–210, 1981.
 166. Stransky, A., M. Szereda‐Przestaszewska, and J. G. Widdicombe. The effects of lung reflexes on laryngeal resistance and motoneurone discharge. J. Physiol. London 231: 417–438, 1973.
 167. Strohl, K. P., M. J. Hensley, M. Hallett, N. A. Saunders, and R. H. Ingram, Jr. Activation of upper airway muscles before onset of inspiration in normal humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 638–642, 1980.
 168. Sumi, T. Coordination of neural organization of respiration and deglutition: its change with postnatal maturation. In: Symposium on Development of Upper Respiratory Anatomy and Function: Implications for Sudden Infant Death Syndrome, edited by J. F. Bosma and J. Showacre. Washington, DC: US Govt. Printing Office, 1976, chapt. 10, p. 145–157.
 169. Suzuki, M., and J. A. Kirchner. The posterior cricoarytenoid as an inspiratory muscle. Ann. Otol. Rhinol. Laryngol. 78: 849–864, 1969.
 170. Suzuki, M., J. A. Kirchner, and Y. Murakami. The cricothyroid as a respiratory muscle. Its characteristics in bilateral recurrent laryngeal nerve paralysis. Ann. Otol. Rhinol. Laryngol. 79: 976–983, 1970.
 171. Swift, P. G. F., and J. L. Emery. Clinical observations on response to nasal occlusion in infancy. Arch. Dis. Child. 48: 947–951, 1973.
 172. Szereda‐Przestaszewska, M., and J. G. Widdicombe. Reflex effects of chemical irritation of the upper airways on the laryngeal lumen in cats. Respir. Physiol. 18: 107–115, 1973.
 173. Szereda‐Przestaszewska, M., and J. G. Widdicombe. The effect of intravascular injections of veratrine on laryngeal resistance to airflow in cats. Q. J. Exp. Physiol. 58: 379–385, 1973.
 174. Takagi, Y., D. F. Proctor, S. Salman, and S. Evering. Effects of cold air and carbon dioxide on nasal air flow resistance. Ann. Otol. Rhinol. Laryngol. 78: 40–48, 1969.
 175. Tenney, S. M. A synopsis of breathing mechanisms. In: Evolution of Respiratory Processes, edited by S. C. Wood and C. Lenfant. New York: Dekker, 1978, chapt. 2, p. 51–113.
 176. Tenney, S. M., and J. B. Tenney. Quantitative morphology of cold‐blooded lungs: amphibia and reptilia. Respir. Physiol. 9: 197–215, 1970.
 177. Thach, B. T., and R. T. Brouillette. The respiratory function of pharyngeal musculature: relevance to clinical obstructive apnea. In: Central Nervous Control Mechanisms in Breathing, edited by C. von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, p. 483–494.
 178. Tonkin, S. L., J. Partridge, D. Beach, and S. Whiteney. The pharyngeal effect of partial nasal obstruction. Pediatrics 63: 261–271, 1979.
 179. Van Dishoeck, H. A. E. Elektrogramm der Nasenflügelmuskeln und Nasenwiderstandskurve. Acta Oto‐Laryngol. 25: 285–295, 1937.
 180. Weitzman, E. D., C. P. Pollak, B. Borowiecki, B. Burack, R. Shprintzen, and S. Rakoff. The hypersomnia‐sleep apnea syndrome: site and mechanism of upper airway obstruction. In: Sleep Apnea Syndromes, edited by C. Guilleminault and W. C. Dement. New York: Liss, 1978, chapt. 15, p. 235–248.
 181. West, N. H., and D. R. Jones. Breathing movements in the frog Rana pipiens. I. The mechanical events associated with lung and buccal ventilation. Can. J. Zool. 53: 332–344, 1975.
 182. Wind, J. On the Phytogeny and the Ontogeny of the Human Larynx. Groningen, The Netherlands: Wolters‐Noordhoff, 1970.
 183. Woodburne, R. T. Essentials of Human Anatomy (6th ed.). London: Oxford Univ. Press, 1978.
 184. Wyke, B. D., and J. A. Kirchner. Neurology of the larynx. In: Scientific Foundations of Otolaryngology, edited by R. Hinchcliffe and D. Harrison. Chicago, IL: Year Book, 1976, chapt. 40, p. 546–574.
 185. Younes, M. K., and J. E. Remmers. Control of tidal volume and respiratory frequency. In: Regulation of Breathing, Part I, edited by T. F. Hornbein. New York: Dekker, 1981, chapt. 9, p. 621–671.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Donald Bartlett. Upper Airway Motor Systems. Compr Physiol 2011, Supplement 11: Handbook of Physiology, The Respiratory System, Control of Breathing: 223-245. First published in print 1986. doi: 10.1002/cphy.cp030208