Comprehensive Physiology Wiley Online Library

Reflexes from the Upper Respiratory Tract

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Reflexes from the Nose
1.1 Receptors and Afferent Nerves
1.2 Apnea and the Diving Response
1.3 The Sneeze
1.4 Sniffing
1.5 Other Reflexes From the Nose
2 Reflexes from the Pharynx
2.1 Aspiration Reflex
2.2 Swallowing
2.3 Other Pharyngeal Reflexes
3 Reflexes from the Larynx
3.1 Nervous End Organs in the Larynx
3.2 Recordings From Afferent Fibers
3.3 Respiratory Reflexes
3.4 Cardiovascular Reflexes
3.5 Other Laryngeal Reflexes
4 General Upper Airway Reflex Responses
4.1 Responses to Pressure
4.2 Responses to Flow
4.3 Responses to Temperature Changes
4.4 Sensation
Figure 1. Figure 1.

Two intraepithelial nerve endings (arrows) from respiratory mucosa of nasal septum. Axon terminals are enwrapped by cell membranes of epithelial cells. Axoplasm of endings contains accumulations of typical small mitochondria and some microvesicles. Int, intercellular space; BL, epithelial basal lamina; M, part of basal or Bowman's membrane. Male, 11 yr old; × ∼16,700.

From Cauna 53
Figure 2. Figure 2.

Diagram of innervation of human nose. N, nerve; GG, geniculate ganglion; SG, sphenopalatine ganglion; SCG, superior cervical ganglion; MN, maxillary nerve; GSPN, greater superficial petrosal nerve.

From Eccles 80
Figure 3. Figure 3.

Development of bradycardia in response to forcible submersion of head of domestic duck Anas platyrhynchos (A) and muskrat Ondatra zibethica (B). Downward deflection of event marker indicates point of submersion in each case; ecg, electrocardiogram.

From Bamford and Jones 17
Figure 4. Figure 4.

Effect of nasal stimulation in 19‐day‐old rabbit. Nasal balloon inflated at marker by top trace and deflated 10 s later. Note prolonged apnea and bradycardia. and , partial pressures of O2 and CO2, respectively.

From Wealthall 289
Figure 5. Figure 5.

Effect of insufflation of ammonia vapor into nose. Each trace shows from top to bottom: signal, blood pressure (BP), transpulmonary pressure (Ptp), lower tracheal flow (), and tracheal pressure (translaryngeal pressure) (Ptr), with saturation of pressure recorder. A: insufflation of 3 ml of 1:100 ammonia vapor into nose, with superior laryngeal nerves intact. Note sneezing, positive deflections of Ptp, and increase in laryngeal resistance in expiratory phase. B: insufflation of 3 ml of 1:1,000 ammonia vapor into nose, with superior laryngeal nerves intact. Note no sneezing and increase in breathing frequency and laryngeal resistance. C: insufflation of 3 ml 1:1,000 ammonia vapor into nose, with superior laryngeal nerves cut. Note slowing of breathing and increase in laryngeal resistance.

From Szereda‐Przestaszewska and Widdicombe 265
Figure 6. Figure 6.

Schematic illustration of nasal autonomic innervation. Preganglionic sympathetic (S) neurons contain acetylcholine (ACh) and originate from thoracic region of spinal cord. These neurons relay in superior cervical ganglion (SCG). Most postganglionic noradrenergic (NA) fibers run together (not shown) with preganglionic parasympathetic (PS) nerve to form so‐called vidian nerve (*), which enters sphenopalatine ganglion (SPG). Sympathetic nerves predominantly innervate blood vessels (A, arterioles; V, venous sinusoids and venules), whereas adrenergic innervation of glands is sparse. Neuropeptide Y (NPY) occurs in noradrenergic periarterial nerves. Postganglionic cholinergic fibers innervate both blood vessels and exocrine glands. Vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are present in sphenopalatine ganglion cells, presumably together with ACh. Sensory supply from trigeminal ganglion (TG) travels in maxillary portion (**) and joins posterior nasal nerves. Substance P (SP) neurons constitute population of trigeminal efferents with peripheral branches within respiratory epithelium as well as around arterioles, venules, and sphenopalatine ganglion cells.

From Lundblad 161
Figure 7. Figure 7.

Frozen section, with Schofield's silver stain, of cat epipharyngeal region showing nerve fibers ramifying among epithelial cells. Photograph by A. M. S. White.

From Fillenz and Widdicombe 85
Figure 8. Figure 8.

Blood pressure (BP) and action potentials in strand of pharyngeal branch of glossopharyngeal nerve during stimulation of epipharynx. A: 3 ml of ammonia vapor at signal; no response. B: mechanical stimulation with nylon fiber during signal; transient discharges with each movement of thread. C and D: airflow at 6 liters/min through catheter in left nostril; rapidly adapting discharges at start of airflow only. Long horizontal bars mark duration of each stimulus.

From Nail et al. 192
Figure 9. Figure 9.

Illustration of innervation of upper airway mucous membrane. Note that lower laryngopharyngeal compartment formed by pharyngeal airway closure is supplied primarily by superior laryngeal branch of vagus nerve.

From Mathew et al. 169
Figure 10. Figure 10.

Response of phrenic motoneuron discharge to epipharyngeal stimulation. A: control ventilation. B: mechanical stimulation of epipharyngeal mucosa. C: electrical stimulation of glossopharyngeal nerve at 20 shocks/s. Each trace shows from top to bottom: systemic arterial blood pressure (BP), multifiber discharge, and single‐motoneuron discharge. Horizontal bars below B and C represent duration of stimulus. Note repeated brief inspiratory efforts in B and C and entrainment in C.

From Nail et al. 193
Figure 11. Figure 11.

Laryngeal mechanoreceptor responding to negative transmural pressure. Recording from left superior laryngeal nerve. A: upper airway breathing changed to tracheostomy breathing at arrow. B: upper airway breathing and upper airway occlusion. C: tracheostomy breathing and tracheal occlusion. Note that maximal activity is seen during upper airway occlusion, in which larynx is subjected to increased negative pressure. AP, action potentials; Pes, esophageal pressure.

From Sant'Ambrogio et al. 221
Figure 12. Figure 12.

Laryngeal mechanoreceptor responding to distortion caused by action of upper airway muscles (drive). Recordings are from left superior laryngeal nerve. A and D: upper airway breathing changed to tracheostomy breathing (arrow). B and E: upper airway breathing and upper airway occlusion. C and F: tracheostomy breathing and tracheal occlusion. Comparison of receptor discharge during efforts in B and C indicates inhibitory influence of negative pressure. Note in A‐C that inspiratory activity is present and is not influenced by flow. Inspiratory activity increases when inspiratory drive increases (occluded efforts). D‐F represent same receptor after cold block of recurrent laryngeal nerves. Note that in D‐F activity is substantially reduced. AP, action potentials; Ptr, pressure in tracheal lumen.

From Sant'Ambrogio et al. 221
Figure 13. Figure 13.

Behavior of laryngeal flow (cold) receptor during inhalation of warm air. Dog is spontaneously breathing through upper airway. Note that inspiratory modulation of receptor disappears when laryngeal temperature during inspiration is raised to expiratory level by inhalation of warm air (between arrows). AP, action potentials; Pes, esophageal pressure; , airflow; Lar. Temp, laryngeal temperature.

From Sant'Ambrogio et al. 224
Figure 14. Figure 14.

Recordings from single water‐sensitive fiber in superior laryngeal nerve of adult dog. Onset of discharge coincided with arrival of fluids in larynx with negligible latency. Time marks denote 1‐s intervals. Four solutions applied in lower traces were isotonic (300 mM). Only saline did not stimulate receptor.

From Boggs and Bartlett 27
Figure 15. Figure 15.

Coughing caused by insufflation of 20 ml of 1:200 ammonia vapor in air into larynx of cat. Note positive deflection of transpulmonary pressure (TPP) coinciding with activity in abdominal electromyogram. Each trace shows from top to bottom: blood pressure (BP), TPP, tidal volume, phrenic integral, phrenic activity, abdominal electromyogram, and signal; recording is continuous.

From Boushey et al. 32
Figure 16. Figure 16.

Simultaneous recording of afferent, efferent, and effector (ventilatory) component of expiration reflex in anesthetized cat. Note firing of afferent action potentials and expiratory effort. Each trace shows from top to bottom: pleural pressure (Ppl), tracheal airflow (), tidal volume (Vt), lumbar nerve electroneurogram (n. lumb.), action potentials from receptors recorded in superior laryngeal nerve (N. laryng. cran.), and brief contact of cotton wool pledget with dorsal part of both vocal folds (Stim). Time marker, 1 s.

From Tomori and Stransky 271
Figure 17. Figure 17.

Effect of insufflation of 1:105 ammonia vapor into larynx of cat before (top) and after (bottom) cutting superior laryngeal nerves. Note slight slowing of breathing, absence of expiratory efforts, and increase in laryngeal resistance before denervation. Each trace shows from top to bottom: signal, blood pressure (BP), transpulmonary pressure (Ptp), lower tracheal flow (), and translaryngeal pressure (Ptr), with saturation of pressure recorder.

From Szereda‐Przestaszewska and Widdicombe 265
Figure 18. Figure 18.

Airflow resistance of upper (•) and lower (▴) zones during sleep in normal humans. Resistance of larynx and lungs (▴) does not change, whereas resistance above retroepiglottic space increases during sleep. REM, rapid‐eye‐movement sleep. n = 5.

From Hudgel et al. 112
Figure 19. Figure 19.

Changes in respiratory frequency associated with changes in transmural airway pressure in rabbit isolated upper airway. Data from 1 animal. Frequency change was determined from first 3 breaths after change in pressure compared with last 3 breaths prior to change.

From Mathew et al. 167
Figure 20. Figure 20.

Responses of moving averages of diaphragm (Dia) and upper airway muscles to upper airway negative pressure. A: electromyogram before and for first 3 breaths during application of −5 cmH2O to larynx in representative animal. All upper airway muscles show increases in phasic activity; inspiratory time is minimally increased. B: −10 cmH2O applied to nasopharynx of same animal produced greater effects on inspiratory time and peak amplitude of upper airway muscles. GG, genioglossus; PCA, posterior cricoarytenoid; AN, alae nasi.

From van Lunteren et al. 283
Figure 21. Figure 21.

Effect of negative upper airway pressure (UA press) on nasal electromyogram (EMG). UA pressure changes (top trace), direct nasal EMG (middle trace), and integrated nasal EMG (bottom trace) are shown. Phasic inspiratory activity present during control period increases markedly during negative pressure application, with increase in inspiratory and expiratory times.

From Mathew 166


Figure 1.

Two intraepithelial nerve endings (arrows) from respiratory mucosa of nasal septum. Axon terminals are enwrapped by cell membranes of epithelial cells. Axoplasm of endings contains accumulations of typical small mitochondria and some microvesicles. Int, intercellular space; BL, epithelial basal lamina; M, part of basal or Bowman's membrane. Male, 11 yr old; × ∼16,700.

From Cauna 53


Figure 2.

Diagram of innervation of human nose. N, nerve; GG, geniculate ganglion; SG, sphenopalatine ganglion; SCG, superior cervical ganglion; MN, maxillary nerve; GSPN, greater superficial petrosal nerve.

From Eccles 80


Figure 3.

Development of bradycardia in response to forcible submersion of head of domestic duck Anas platyrhynchos (A) and muskrat Ondatra zibethica (B). Downward deflection of event marker indicates point of submersion in each case; ecg, electrocardiogram.

From Bamford and Jones 17


Figure 4.

Effect of nasal stimulation in 19‐day‐old rabbit. Nasal balloon inflated at marker by top trace and deflated 10 s later. Note prolonged apnea and bradycardia. and , partial pressures of O2 and CO2, respectively.

From Wealthall 289


Figure 5.

Effect of insufflation of ammonia vapor into nose. Each trace shows from top to bottom: signal, blood pressure (BP), transpulmonary pressure (Ptp), lower tracheal flow (), and tracheal pressure (translaryngeal pressure) (Ptr), with saturation of pressure recorder. A: insufflation of 3 ml of 1:100 ammonia vapor into nose, with superior laryngeal nerves intact. Note sneezing, positive deflections of Ptp, and increase in laryngeal resistance in expiratory phase. B: insufflation of 3 ml of 1:1,000 ammonia vapor into nose, with superior laryngeal nerves intact. Note no sneezing and increase in breathing frequency and laryngeal resistance. C: insufflation of 3 ml 1:1,000 ammonia vapor into nose, with superior laryngeal nerves cut. Note slowing of breathing and increase in laryngeal resistance.

From Szereda‐Przestaszewska and Widdicombe 265


Figure 6.

Schematic illustration of nasal autonomic innervation. Preganglionic sympathetic (S) neurons contain acetylcholine (ACh) and originate from thoracic region of spinal cord. These neurons relay in superior cervical ganglion (SCG). Most postganglionic noradrenergic (NA) fibers run together (not shown) with preganglionic parasympathetic (PS) nerve to form so‐called vidian nerve (*), which enters sphenopalatine ganglion (SPG). Sympathetic nerves predominantly innervate blood vessels (A, arterioles; V, venous sinusoids and venules), whereas adrenergic innervation of glands is sparse. Neuropeptide Y (NPY) occurs in noradrenergic periarterial nerves. Postganglionic cholinergic fibers innervate both blood vessels and exocrine glands. Vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are present in sphenopalatine ganglion cells, presumably together with ACh. Sensory supply from trigeminal ganglion (TG) travels in maxillary portion (**) and joins posterior nasal nerves. Substance P (SP) neurons constitute population of trigeminal efferents with peripheral branches within respiratory epithelium as well as around arterioles, venules, and sphenopalatine ganglion cells.

From Lundblad 161


Figure 7.

Frozen section, with Schofield's silver stain, of cat epipharyngeal region showing nerve fibers ramifying among epithelial cells. Photograph by A. M. S. White.

From Fillenz and Widdicombe 85


Figure 8.

Blood pressure (BP) and action potentials in strand of pharyngeal branch of glossopharyngeal nerve during stimulation of epipharynx. A: 3 ml of ammonia vapor at signal; no response. B: mechanical stimulation with nylon fiber during signal; transient discharges with each movement of thread. C and D: airflow at 6 liters/min through catheter in left nostril; rapidly adapting discharges at start of airflow only. Long horizontal bars mark duration of each stimulus.

From Nail et al. 192


Figure 9.

Illustration of innervation of upper airway mucous membrane. Note that lower laryngopharyngeal compartment formed by pharyngeal airway closure is supplied primarily by superior laryngeal branch of vagus nerve.

From Mathew et al. 169


Figure 10.

Response of phrenic motoneuron discharge to epipharyngeal stimulation. A: control ventilation. B: mechanical stimulation of epipharyngeal mucosa. C: electrical stimulation of glossopharyngeal nerve at 20 shocks/s. Each trace shows from top to bottom: systemic arterial blood pressure (BP), multifiber discharge, and single‐motoneuron discharge. Horizontal bars below B and C represent duration of stimulus. Note repeated brief inspiratory efforts in B and C and entrainment in C.

From Nail et al. 193


Figure 11.

Laryngeal mechanoreceptor responding to negative transmural pressure. Recording from left superior laryngeal nerve. A: upper airway breathing changed to tracheostomy breathing at arrow. B: upper airway breathing and upper airway occlusion. C: tracheostomy breathing and tracheal occlusion. Note that maximal activity is seen during upper airway occlusion, in which larynx is subjected to increased negative pressure. AP, action potentials; Pes, esophageal pressure.

From Sant'Ambrogio et al. 221


Figure 12.

Laryngeal mechanoreceptor responding to distortion caused by action of upper airway muscles (drive). Recordings are from left superior laryngeal nerve. A and D: upper airway breathing changed to tracheostomy breathing (arrow). B and E: upper airway breathing and upper airway occlusion. C and F: tracheostomy breathing and tracheal occlusion. Comparison of receptor discharge during efforts in B and C indicates inhibitory influence of negative pressure. Note in A‐C that inspiratory activity is present and is not influenced by flow. Inspiratory activity increases when inspiratory drive increases (occluded efforts). D‐F represent same receptor after cold block of recurrent laryngeal nerves. Note that in D‐F activity is substantially reduced. AP, action potentials; Ptr, pressure in tracheal lumen.

From Sant'Ambrogio et al. 221


Figure 13.

Behavior of laryngeal flow (cold) receptor during inhalation of warm air. Dog is spontaneously breathing through upper airway. Note that inspiratory modulation of receptor disappears when laryngeal temperature during inspiration is raised to expiratory level by inhalation of warm air (between arrows). AP, action potentials; Pes, esophageal pressure; , airflow; Lar. Temp, laryngeal temperature.

From Sant'Ambrogio et al. 224


Figure 14.

Recordings from single water‐sensitive fiber in superior laryngeal nerve of adult dog. Onset of discharge coincided with arrival of fluids in larynx with negligible latency. Time marks denote 1‐s intervals. Four solutions applied in lower traces were isotonic (300 mM). Only saline did not stimulate receptor.

From Boggs and Bartlett 27


Figure 15.

Coughing caused by insufflation of 20 ml of 1:200 ammonia vapor in air into larynx of cat. Note positive deflection of transpulmonary pressure (TPP) coinciding with activity in abdominal electromyogram. Each trace shows from top to bottom: blood pressure (BP), TPP, tidal volume, phrenic integral, phrenic activity, abdominal electromyogram, and signal; recording is continuous.

From Boushey et al. 32


Figure 16.

Simultaneous recording of afferent, efferent, and effector (ventilatory) component of expiration reflex in anesthetized cat. Note firing of afferent action potentials and expiratory effort. Each trace shows from top to bottom: pleural pressure (Ppl), tracheal airflow (), tidal volume (Vt), lumbar nerve electroneurogram (n. lumb.), action potentials from receptors recorded in superior laryngeal nerve (N. laryng. cran.), and brief contact of cotton wool pledget with dorsal part of both vocal folds (Stim). Time marker, 1 s.

From Tomori and Stransky 271


Figure 17.

Effect of insufflation of 1:105 ammonia vapor into larynx of cat before (top) and after (bottom) cutting superior laryngeal nerves. Note slight slowing of breathing, absence of expiratory efforts, and increase in laryngeal resistance before denervation. Each trace shows from top to bottom: signal, blood pressure (BP), transpulmonary pressure (Ptp), lower tracheal flow (), and translaryngeal pressure (Ptr), with saturation of pressure recorder.

From Szereda‐Przestaszewska and Widdicombe 265


Figure 18.

Airflow resistance of upper (•) and lower (▴) zones during sleep in normal humans. Resistance of larynx and lungs (▴) does not change, whereas resistance above retroepiglottic space increases during sleep. REM, rapid‐eye‐movement sleep. n = 5.

From Hudgel et al. 112


Figure 19.

Changes in respiratory frequency associated with changes in transmural airway pressure in rabbit isolated upper airway. Data from 1 animal. Frequency change was determined from first 3 breaths after change in pressure compared with last 3 breaths prior to change.

From Mathew et al. 167


Figure 20.

Responses of moving averages of diaphragm (Dia) and upper airway muscles to upper airway negative pressure. A: electromyogram before and for first 3 breaths during application of −5 cmH2O to larynx in representative animal. All upper airway muscles show increases in phasic activity; inspiratory time is minimally increased. B: −10 cmH2O applied to nasopharynx of same animal produced greater effects on inspiratory time and peak amplitude of upper airway muscles. GG, genioglossus; PCA, posterior cricoarytenoid; AN, alae nasi.

From van Lunteren et al. 283


Figure 21.

Effect of negative upper airway pressure (UA press) on nasal electromyogram (EMG). UA pressure changes (top trace), direct nasal EMG (middle trace), and integrated nasal EMG (bottom trace) are shown. Phasic inspiratory activity present during control period increases markedly during negative pressure application, with increase in inspiratory and expiratory times.

From Mathew 166
References
 1. Abu‐Osba, Y. K., O. P. Mathew, and B. T. Thach. An animal model for airway sensory deprivation producing obstructive apnea with postmortem findings of sudden infant death syndrome. Pediatrics 68: 796–801, 1981.
 2. Adrian, E. D. Olfactory reactions in the brain of the hedgehog. J. Physiol. London 100: 459–473, 1942.
 3. Adzaku, F. K., and B. D. Wyke. Innervation of the subglottic mucosa of the larynx, and its significance. Folia Phoniatr. 31: 271–283, 1978.
 4. Agostoni, E., J. E. Chinnock, M. de B. Daly, and J. G. Murray. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J. Physiol. London 135: 182–205, 1957.
 5. Allen, W. F. Effect on respiration, blood pressure and carotid pulse of various inhaled and insufflated vapors when stimulating one cranial nerve and various combinations of cranial nerves. III. Olfactory and trigeminals stimulated. Am. J. Physiol. 88: 117–129, 1929.
 6. Allen, W. F. Studies on the level of anesthesia for the olfactory and trigeminal respiratory reflexes in dogs and rabbits. Am. J. Physiol. 115: 579–587, 1936.
 7. Allison, D. J., T. P. Clay, J. M. B. Hughes, H. A. Jones, and A. Shevis. Effects of nasal stimulation on total respiratory resistance in the rabbit (Abstract). J. Physiol. London 239: 23P–24P, 1974.
 8. Al‐Shway, S. F., and J. P. Mortola. Respiratory effects of airflow through the upper airways in newborn kittens and puppies. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 805–814, 1982.
 9. Anch, A. M., J. E. Remmers, and H. Bunce III. Supraglottic airway resistance in normal subjects and patients with occlussive sleep apnea. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 1158–1163, 1982.
 10. Andersen, P. Inhibitory reflexes elicited from the trigeminal and olfactory nerves in rabbits. Acta Physiol. Scand. 30: 137–148, 1954.
 11. Andrew, B. L. Proprioception at the joint of the epiglottis of the rat. J. Physiol. London 130: 474–487, 1955.
 12. Andrew, B. L. A functional analysis of the myelinated fibres of the superior laryngeal nerve of the rat. J. Physiol. London 133: 420–432, 1956.
 13. Angell‐James, J. E., and M. de B. Daly. Nasal reflexes. Proc. R. Soc. Med. 62: 1287–1293, 1969.
 14. Angell‐James, J. E., and M. de B. Daly. Reflex respiratory and cardiovascular effects of stimulation on receptors in the nose of the dog. J. Physiol. London 220: 673–696, 1972.
 15. Angell‐James, J. E., and M. de B. Daly. Some aspects of upper respiratory tract reflexes. Acta Oto‐Laryngol. 79: 242–251, 1975.
 16. Baken, R. J. Neuromuscular spindles in the intrinsic muscles of a human larynx. Folia Phoniatr. 23: 204–210, 1971.
 17. Bamford, O. S., and D. R. Jones. On the initiation of apnoea and some cardiovascular responses to submergence in ducks. Respir. Physiol. 22: 199–216, 1974.
 18. Banting, F. G., G. E. Hall, J. M. Janes, B. Leibel, and D. W. Lougheed. Physiological studies in experimental drowning. Can. Med. Assoc. J. 39: 226–228, 1938.
 19. Batsel, H. L. Trigeminal and reticular neurons concerned with sneezing (Abstract). Physiologist 12: 171, 1969.
 20. Batsel, H. L., and A. J. Lines. Bulbar respiratory neurons participating in the sniff reflex in the cat. Exp. Neurol. 39: 469–481, 1973.
 21. Batsel, H. L., and A. J. Lines. Neural mechanisms of sneeze. Am. J. Physiol. 229: 770–776, 1975.
 22. Berger, A. J., and R. A. Mitchell. Lateralized phrenic nerve responses to stimulating respiratory afferents in the cat. Am. J. Physiol. 230: 1314–1320, 1976.
 23. Berglund, E., B. S. Nilsson, B. Mossberg, and B. Bake (editors). Cough and Expectoration. Copenhagen: Munksgaard, 1980.
 24. Birch, A. C. Sneezing. Practitioner 182: 122–124, 1959.
 25. Biscoe, T. J., and S. R. Sampson. An analysis of the inhibition of phrenic motoneurones that occurs on stimulation of some cranial nerve afferents. J. Physiol. London 209: 375–393, 1970.
 26. Bligh, J. The receptors concerned in the thermal stimulus to panting in sheep. J. Physiol. London 146: 142–151, 1959.
 27. Boggs, D. F., and D. Bartlett. Chemical specificity of a laryngeal apneic reflex in puppies. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 455–462, 1982.
 28. Borum, P., H. Grønborg, S. Brofeldt, and N. Mygind. Nasal reactivity in rhinitis. Eur. J. Respir. Dis. Suppl. 128: 65–71, 1983.
 29. Bosma, J. F., and J. Showacre. (editors). Development of Upper Respiratory and Function. Implications for Sudden Infant Death Syndrome. Washington, DC: US Govt. Printing Office, 1976.
 30. Boushey, H. A., and P. S. Richardson. The reflex effects of intralaryngeal carbon dioxide on the pattern of breathing. J. Physiol. London 228: 181–192, 1973.
 31. Boushey, H. A., P. S. Richardson, and J. G. Widdicombe. Reflex changes in airways resistance and the pattern of breathing arising from laryngeal stimulation. Bull. Physiopathol. Respir. 8: 449–452, 1972.
 32. Boushey, H. A., P. S. Richardson, and J. G. Widdicombe. Reflex effects of laryngeal irritation on the pattern of breathing and total lung resistance. J. Physiol. London 224: 501–513, 1972.
 33. Boushey, H. A., P. S. Richardson, J. G. Widdicombe, and J. C. M. Wise. The response of laryngeal afferent fibres to mechanical and chemical stimuli. J. Physiol. London 240: 153–175, 1974.
 34. Bradley, R. M., M. L. Cheal, and Y. Kim. Quantitative analysis of developing epiglottal taste buds in sheep. J. Anat. 130: 25–32, 1980.
 35. Brancatisano, T., P. W. Collett, and L. A. Engel. Respiratory movements of the vocal cords. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 1269–1276, 1983.
 36. Brancatisano, T. P., D. S. Dodd, P. W. Collett, and L. A. Engel. Effect of expiratory loading on glottic dimensions in humans. J. Appl. Physiol. 58: 605–611, 1985.
 37. Brancatisano, T., D. Dodd, and L. A. Engel. Factors influencing glottic dimensions during forced expiration. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 55: 1825–1829, 1983.
 38. Brouillette, R. T., and B. T. Thach. A neuromuscular mechanism maintaining extrathoracic airway patency. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 772–779, 1979.
 39. Brouillette, R. T., and B. T. Thach. Control of genioglossus muscle inspiratory activity. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 801–808, 1980.
 40. Brubaker, A. The physiology of sneezing. J. Am. Med. Assoc. 73: 585–587, 1919.
 41. Brunecky, Z. Zlozvyky v Detskem Veku a Jine Vychovne Problemy. Prague: SZN, 1959.
 42. Bucher, K. Pathophysiology and pharmacology of cough. Pharmacol. Rev. 10: 43–58, 1958.
 43. Bucher, K., and C. Jacot. Zum Mechanismus des Hustens. Helv. Physiol. Pharmacol. Acta 9: 454–462, 1951.
 44. Burgess, K. R., and W. A. Whitelaw. Reducing ventilatory response to carbon dioxide by breathing cold air. Am. Rev. Respir. Dis. 129: 687–690, 1984.
 45. Burkart, F. Zum Mechanismus des Niesreflexes. Helv. Physiol. Pharmacol. Acta 18: 482–490, 1960.
 46. Burkart, F., and K. Bucher. Bedeutung des Vagus fur Husten und Niesen. Med. Exp. 3: 297–302, 1960.
 47. Burki, N. K., P. W. Davenport, F. Safdar, and F. W. Zechman. The effects of airway anesthesia on magnitude estimation of added inspiratory resistive and elastic loads. Am. Rev. Respir. Dis. 127: 2–4, 1983.
 48. Burrow, A., R. Eccles, and A. S. Jones. The effects of camphor, eucalyptus and menthol vapour on nasal resistance to airflow and nasal sensation of airflow. Acta Oto‐Laryngol. 96: 157–161, 1983.
 49. But, V. I., and V. I. Klimova‐Cherkasova. Afferentation from upper respiratory tract. Bull. Exp. Biol. Med. 64: 13–16, 1967.
 50. Butler, P. J., and D. R. Jones. Onset of and recovery from diving. J. Physiol. London 196: 255–272, 1968.
 51. Bystrzycka, E., B. S. Nail, and M. J. Purves. Central and peripheral neural respiratory activity in the mature sheep foetus and newborn lamb. Respir. Physiol. 25: 199–215, 1975.
 52. Campbell, L. B., B. A. Gooden, and J. D. Horowitz. Cardiovascular responses to partial and total immersion in man. J. Physiol. London 202: 239–250, 1969.
 53. Cauna, N. Blood and nerve supply of the nasal lining. In: The Nose: Upper Airway Physiology and the Atmospheric Environment, edited by D. F. Proctor and I. B. Andersen. Amsterdam: Elsevier, 1982, p. 45–69.
 54. Cauna, N., K. H. Hinderer, and R. T. Wentges. Sensory receptor organs of the human nasal respiratory mucosa. Am. J. Anat. 14: 295–300, 1969.
 55. Chaudhary, B. A., and N. K. Burki. The effects of airway anaesthesia and the ability to detect added inspiratory resistive loads. Clin. Sci. Mol. Med. 54: 621–626, 1978.
 56. Chaudhary, B. A., and N. K. Burki. The effects of airway anesthesia on detection of added inspiratory elastic loads. Am. Rev. Respir. Dis. 122: 635–639, 1980.
 57. Christensen, K. The innervation of the nasal mucosa with special reference to its afferent supply. Ann. Otol. Rhinol. Laryngol. 43: 1066–1083, 1934.
 58. Clarke, S. W., and D. Pavia (editors). Lung mucociliary clearance and the deposition of therapeutic aerosols. Chest Suppl. 80: 1981.
 59. Cohen, M. J., S. Hagiwara, and Y. Zotterman. The response spectrum of taste fibres in the cat: a single fibre analysis. Acta Physiol. Scand. 33: 316–332, 1955.
 60. Cole, P. Modification of inspired air. In: The Nose: Upper Airway Physiology and the Atmospheric Environment, edited by D. F. Proctor and I. B. Andersen. Amsterdam: Elsevier, 1982, p. 351–376.
 61. Collett, P. W. T., T. P. Brancatisano, and L. A. Engel. Changes in the glottic aperture during bronchial asthma. Am. Rev. Respir. Dis. 128: 719–723, 1983.
 62. Connell, J. F. Reciprocal nasal congestion decongestion reflex. Trans. Am. Acad. Ophthalmol. Otolaryngol. 72: 422–426, 1968.
 63. Corbett, J. L., J. H. Kerr, and C. Prys‐Roberts. Cardiovascular responses to aspiration of secretions from the respiratory tract in man (Abstract). J. Physiol. London 201: 51P–52P, 1969.
 64. Craig, A. B. Jr.. Underwater swimming and loss of consciousness. J. Am. Med. Assoc. 176: 255–258, 1961.
 65. Craig, A. B., Jr. Heart rate responses to apneic underwater diving and to breath holding in man. J. Appl. Physiol. 18: 854–862, 1963.
 66. Daly, M. de B., J. E. Angell‐James, and R. Elsner. Cardiovascular‐respiratory interactions in breath‐hold diving. In: Central Interactions Between Respiratory and Cardiovascular Control Systems, edited by H. P. Koepchen, S. M. Hilton, and A. Trzebski. Berlin: Springer‐Verlag, 1980, p. 224–231.
 67. Daubenspeck, J. A., and D. Bartlett, Jr. Expiratory pattern and laryngeal responses to single‐breath expiratory resistance loads. Respir. Physiol. 54: 307–316, 1983.
 68. Davies, A., M. Dixon, D. Callanan, A. Huszczuk, J. G. Widdicombe, and J. C. M. Wise. Lung reflexes in rabbits during pulmonary stretch receptor block by sulphur dioxide. Respir. Physiol. 34: 83–101, 1978.
 69. Davies, A., and R. Eccles. The effects of nasal airflow on the electromyographic activity of nasal muscles in the anaesthetised cat (Abstract). J. Physiol. London 358: 102P, 1984.
 70. Davies, A., and M. Vizek. Effects of pulses of pressure applied to the larynx of rabbits and their pattern of breathing. Lung 160: 157–164, 1982.
 71. Davis, P. J., and B. S. Nail. Quantitative aspects of laryngeal mechanosensitivity (Abstract). In: Proc. Int. Congr. Physiol. Sci., 29th, Sidney, 1983, vol. 14, p. 243.
 72. Dixon, M., M. Szereda‐Przestaszewska, J. G. Widdicombe, and J. C. M. Wise. Studies on laryngeal calibre during stimulation of peripheral and central chemoreceptors, pneumothorax and increased respiratory loads. J. Physiol. London 239: 347–363, 1974.
 73. Douglas, N. J., D. P. White, J. V. Weil, and C. W. Zwillich. Effects of breathing route on ventilation and ventilatory drive. Respir. Physiol. 51: 209–218, 1983.
 74. Downing, S. E., and J. C. Lee. Laryngeal chemosensitivity: a possible mechanism for sudden infant death. Pediatrics 55: 640–649, 1975.
 75. Duggan, A. W., D. Lodge, and T. J. Biscoe. The inhibition of hypoglossal motoneurones by impulses in the glossopharyngeal nerve of the rat. Exp. Brain Res. 17: 261–270, 1973.
 76. Ebbecke, U. Reflexgesetzmassigkeiten des nenschlischen Schluckreflexes bei seiner Auslosung von der Gesichtshaut her. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 246: 675–692, 1943.
 77. Ebbecke, U. Ubersichten der Gesichtsreflex des Trigeminus als Warmeschutzreflex (Wind‐ und Wetterreflex) des Kopfes. Klin. Wochenschr. 23: 141–145, 1944.
 78. Ebbecke, U. Der Niesreflax, ein physiologischer Beitrag zum Leib‐Seele‐Problem. Dtsch. Med. Wochenschr. 82: 883–888, 1957.
 79. Ebbecke, U., and F. Knuchel. Uber den Trigeminus‐, Atem‐, Schluck‐ und Herzreflex beim Kaninchen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 247: 255–263, 1943.
 80. Eccles, R. Neurological and pharmacological considerations. In: The Nose: Upper Airway Physiology and the Atmospheric Environment, edited by D. F. Proctor and I. B. Andersen. Amsterdam: Elsevier, 1982, p. 191–214.
 81. Elsner, R., and B. Gooden. Diving and Asphyxia. Monographs of the Physiological Society No. 40. Cambridge, U.K.: Cambridge Univ. Press, 1983.
 82. Eschenbacher, W. L., H. A. Boushey, and D. Sheppard. Alterations in osmolarity of inhaled aerosols cause bronchoconstriction and cough, but absence of a permeant anion causes cough alone. Am. Rev. Respir. Dis. 129: 211–215, 1984.
 83. Everett, H. C. Sneezing in response to light. Neurology 14: 483–490, 1964.
 84. Feindel, W. J. The neural pattern of the epiglottis. J. Comp. Neurol. 105: 269–280, 1956.
 85. Fillenz, M., and J. G. Widdicombe. Receptors of the lungs and airways. In: Handbook of Sensory Physiology, Berlin: Springer‐Verlag, 1971, vol. 3, p. 81–112.
 86. Folgering, H., and O. Olivier. The diving response depresses ventilation in man. Clin. Respir. Physiol. 21: 143–147, 1985.
 87. Frank, N. R., and F. E. Speizer. SO2 effects on the respiratory system in dogs. Arch. Environ. Health 2: 624–634, 1965.
 88. Frankenhauser, B., and A. Lundervold. A note on an inhibitory reflex from the nose of the rabbit. Acta Physiol. Scand. 18: 238–242, 1949.
 89. Gandevia, S. C., K. J. Killian, and E. J. M. Campbell. The contribution of upper airway and inspiratory muscle mechanisms to the detection of pressure changes at the mouth in normal subjects. Clin. Sci. 60: 513–518, 1981.
 90. Gracheva, M. S. Morfologiya i Funktsionalnoe Znachenie Nervnogo Apparata Gortani. Moscow: Medgiz, 1956.
 91. Gracheva, M. S. Sensory innervation of the locomotor apparatus of the larynx. Federation Proc. 22: T1120–T1123, 1963.
 92. Graziadei, P. P. C. The olfactory mucosa of vertebrates. In: Handbook of Sensory Physiology. Chemical Senses, edited by L. M. Beidler. New York: Springer‐Verlag, 1971, vol. 4, pt. 1, p. 27–58.
 93. Grote, J. J., W. Kuijpers, and P. L. M. Huygen. Selective denervation of the autonomic nerve supply of the nasal mucosa. Acta Oto‐Laryngol. 79: 124–132, 1975.
 94. Hammouda, M., and W. H. Wilson. Influences which affect the form of the respiratory cycle, in particular that of the expiratory phase. J. Physiol. London 80: 261–284, 1933.
 95. Hanacek, J., A. Davies, and J. G. Widdicombe. Influence of lung stretch receptors on the cough reflex in rabbits. Respiration 45: 161–168, 1984.
 96. Harding, R. Function of the larynx in the fetus and newborn. Am. Rev. Physiol. 46: 645–659, 1984.
 97. Harding, R., P. Johnson, B. Johnston, M. E. McClelland, and A. R. Wilkinson. Cardiovascular changes in newborn lambs during apnoea induced by stimulation of laryngeal receptors with water (Abstract). J. Physiol. London 256: 35P–36P, 1975.
 98. Harding, R., P. Johnson, and M. E. McClelland. Liquid sensitive laryngeal receptors in the developing sheep, cat and monkey. J. Physiol. London 277: 409–422, 1978.
 99. Harding, R., P. Johnson, and M. E. McClelland. Respiratory function of the larynx in developing sheep and the influence of sleep state. Respir. Physiol. 40: 165–179, 1980.
 100. Harding, R., P. Johnson, M. E. McClelland, C. N. McLeod, and P. L. Whyte. Laryngeal function during breathing and swallowing in foetal and newborn lambs (Abstract). J. Physiol. London 272: 14P–15P, 1977.
 101. Harding, R., and D. A. Titchen. Oesophageal and diaphragmatic activity during suckling in lambs. J. Physiol. London 321: 317–329, 1981.
 102. Harned, H. S., J. Myracle, and J. Ferreiro. Respiratory suppression and swallowing from introduction of fluids into the laryngeal region of the lamb. Pediatr. Res. 12: 1003–1009, 1978.
 103. Hatakeyama, S. Histological study of the nerve distribution in the larynx in the cat. Arch. Jpn. Histol. 19: 369–389, 1960.
 104. Hayward, J. S., C. Hay, B. R. Matthews, C. H. Overweel, and D. D. Radford. Temperature effect on the human dive response in relation to cold water near‐drowning. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 56: 202–206, 1984.
 105. Hayward, J., W. F. Holmes, and B. A. Gooden. Cardiovascular responses in man to a stream of cold air. Cardiovasc. Res. 10: 691–696, 1976.
 106. Hensel, H., K. H. Andres, and M. V. During. Structure and function of cold receptors. Pfluegers Arch. 352: 1–10, 1974.
 107. Hensel, H., and D. R. Kensholo. Warm receptors in the nasal region of cats. J. Physiol. London 204: 99–112, 1969.
 108. Higenbottam, T. Narrowing of glottis opening in humans associated with experimentally induced bronchoconstriction. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 403–407, 1980.
 109. Higenbottam, T. Cough induced by changes of ionic composition of airway surface liquids. Clin. Respir. Physiol. 20: 553–562, 1984.
 110. Higenbottam, T., and J. Payne. Glottis narrowing in lung disease. Am. Rev. Respir. Dis. 125: 746–750, 1982.
 111. Holst, D. V., and H. Kolb. Sniffing frequency in Tupaia belangeri. Measure of central nervous activity (arousal). J. Comp. Physiol. 105: 243–258, 1976.
 112. Hudgel, D. W., R. J. Martin, B. Johnson, and P. Hill. Mechanics of the respiratory system and breathing pattern during sleep in normal humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 56: 133–137, 1984.
 113. Huxley, F. M. On the reflex nature of apnoea in the duck in diving. I. The reflex nature of submersion apnoea. Q. J. Exp. Physiol. 6: 147–157, 1913.
 114. Huxley, F. M. On the reflex nature of apnoea in the duck in diving. II. Reflex postural apnoea. Q. J. Exp. Physiol. 6: 159–182, 1913.
 115. Hwang, J. C., W. M. St. John, and D. Bartlett, Jr. Afferent pathways for hypoglossal and phrenic responses to changes in upper airway pressure. Respir. Physiol. 55: 341–354, 1984.
 116. Hwang, J. C., W. M. St. John, and D. Bartlett, Jr. Receptors corresponding to changes in upper airway pressure. Respir. Physiol. 55: 355–366, 1984.
 117. Irving, L. Respiration in diving mammals. Physiol. Rev. 19: 112–134, 1939.
 118. Iscoe, S., J. L. Feldman, and M. I. Cohen. Properties of inspiratory termination by superior laryngeal and vagal stimulation. Respir. Physiol. 36: 353–366, 1979.
 119. Issa, F. G., and C. E. Sullivan. Arousal and breathing responses to airway occlusion in healthy sleeping adults. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 55: 1113–1119, 1983.
 120. Issa, F. G., and C. E. Sullivan. Upper airway closing pressures in obstructive sleep apnea. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 57: 520–527, 1984.
 121. Ivanco, I., and J. Korpas. K Otazke laryngealneho a trachealneho kasla. Bratisl. Lek. Listy 34: 1391–1396, 1954.
 122. Jammes, Y., P. Barthelemy, and S. Delpierre. Respiratory effect of cold air breathing in anaesthetized cats. Respir. Physiol. 54: 41–54, 1983.
 123. Javorka, K., and Z. Tomori. Effect of sympatholytic agents on cardiovascular, respiratory and glottal changes during the apnoeic reflex of nasal origin. Physiol. Bohemoslov. 21: 517–522, 1972.
 124. Jeffery, P. K., J. Korpas, and J. G. Widdicombe. Intraepithelial nerve fibres of the cat larynx and the expiration reflex (Abstract). J. Physiol. London 275: 35P–36P, 1978.
 125. Johnson, J. Effect of superior laryngeal nerves on tracheal mucus. Ann. Surg. 101: 494–499, 1935.
 126. Johnson, P. Laryngeal‐induced apnea. In: SIDS. Proc. Francis E. Camps Symp., edited by R. R. Robinson. Toronto: Can. Found. Study Infant Death, 1974, p. 231–242.
 127. Johnstone, M. Respiratory and cardiac control during endotracheal intubation. Br. J. Anaesth. 24: 36–50, 1952.
 128. Josenhans, W. T., G. N. Melville, and W. T. Ulmer. Effect of facial cold stimulation on airway conductance in healthy man. Can. J. Physiol. 47: 453–457, 1969.
 129. Kahn, R. H. Studien über den Schluckreflex. I. Die sensible Innervation. Arch. Anat. Physiol. Physiol. Abt. Suppl. 27: 386–426, 1903.
 130. Kaufman, J., J. C. Chen, and G. W. Wright. The effect of trigeminal resection on reflex bronchoconstriction after nasal and nasopharyngeal irritation in man. Am. Rev. Respir. Dis. 101: 768–769, 1970.
 131. Kaufman, J., and G. W. Wright. The effect of nasal and nasopharyngeal irritation on airway resistance in man. Am. Rev. Respir. Dis. 100: 626–630, 1969.
 132. Keatinge, W. R., M. B. McIlroy, and A. Goldfien. Cardiovascular responses to ice‐cold showers. J. Appl. Physiol. 19: 1145–1150, 1964.
 133. Keatinge, W. R., and J. A. Nadel. Immediate respiratory response to sudden cooling of the skin. J. Appl. Physiol. 20: 65–69, 1965.
 134. Keene, M. F. L. Muscle spindles in human laryngeal muscles. J. Anat. 95: 25–29, 1961.
 135. Kirchner, J. A., and B. D. Wyke. Afferent discharges from laryngeal articular mechanoreceptors. Nature London 205: 86–87, 1965.
 136. Kirchner, J. A., and B. D. Wyke. Articular reflex mechanism in the larynx. Ann. Otol. Rhinol. Laryngol. 74: 749–769, 1965.
 137. Kirkegaard, J., C. Secher, and N. Mygind. Inhibition of histamine‐induced nasal symptoms by the H1 antihistamine chlorpheniramine maleate. Demonstration of topical effect. Br. J. Dis. Chest 77: 113–122, 1983.
 138. Kito, G., Y. Kase, and T. Miyata. A cough‐like respiratory response induced by electrical stimulation of the amygdaloid complex in the cat. Arch. Int. Pharmacodyn. 227: 82–92, 1977.
 139. Kitsuda, A. Effect of nasal mucosa irritation on respiratory system. J. Nippon Med. Sch. 42: 60–68, 1975.
 140. Koizumi, H. On sensory innervation of the larynx in dog. Tohoku J. Exp. Med. 58: 199–210, 1953.
 141. Koizumi, H. On innervation of mucous membrane of larynx in canine foetus. Tokohu J. Exp. Med. 58: 217–221, 1953.
 142. Koizumi, H., and S. Mikami. On innervation of mucous membranes of larynx in canine fetus. Tohoku J. Exp. Med. 58: 199–210, 1953.
 143. Konno, A. Reflex of the tracheobronchial smooth muscle to nasal mucosa stimulation. Auris Nasus Larynx 3: 75–92, 1976.
 144. Konno, A., and K. Togawa. Role of the vidian neurectomy in nasal allergy. Ann. Otol. Rhinol. Laryngol. 88: 258–266, 1979.
 145. Korpas, J. The expiration reflex from vocal cords. Physiol. Bohemoslov. 21: 408–409, 1972.
 146. Korpas, J. Differentiation of the expiration and the cough reflex. Physiol. Bohemoslov. 21: 677–682, 1972.
 147. Korpas, J., and G. Kalocsayova. The expiration reflex from vocal folds of the rabbit. Physiol. Bohemoslov. 23: 333–340, 1974.
 148. Korpas, J., and Z. Tomori. Cough and Other Respiratory Reflexes. Basel: Karger, 1979.
 149. Korpas, J., and J. G. Widdicombe. Defensive respiratory reflexes in ferrets. Respiration 44: 128–135, 1983.
 150. Kovar, I., U. Selstam, W. Z. Catterton, M. T. Stahlman, and H. W. Sudell. Laryngeal chemoreflex in newborn lambs: respiratory and swallowing response to salt, acids and sugars. Pediatr. Res. 13: 1144–1149, 1979.
 151. Kratschmer, F. Über reflexe von der Nasenschleimhaut auf Athmung und Kreislauf. Sitzungsker. Acad. Wiss. Wien Math. Naturwiss. Kl. Abt. 3 62: 147–170, 1870.
 152. Lashkov, V. F. Innervatsiya Organov Dykhaniya. Moscow: Medgiz, p. 250.
 153. Lee, J. C., B. J. Stoll, and S. E. Downing. Properties of the laryngeal chemoreflex in neonatal piglets. Am. J. Physiol. 233 (Regulatory Integrative Comp. Physiol. 2): R30–R36, 1977.
 154. Leith, D. E. Cough. In: Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, pt. 2, p. 545–592.
 155. Leitner, L.‐M., and M. Roumy. Thermosensitive units in the tongue and in the skin of the duck's bill. Pfluegers Arch. 346: 151–155, 1974.
 156. Lewis, D. J., and D. E. Prentice. The ultrastructure of rat laryngeal epithelia. J. Anat. 130: 617–632, 1980.
 157. Lucier, G. E., A. T. Storey, and B. J. Sessle. Effects of upper respiratory tract stimuli on neonatal respiration and single neuron analysis in the kitten. Biol. Neonate 38: 82–89, 1979.
 158. Lumsden, T. The regulation of respiration. II. Normal type. J. Physiol. London 58: 111–126, 1923.
 159. Lundberg, J. M., A. Anggard, J. Fahrenkrug, T. Hokfelt, and V. Mutt. Vasoactive intestinal polypeptide in cholinergic neurons of exocrine glands: functional significance of coexisting transmitters for vasodilation and secretion. Proc. Natl. Acad. Sci. USA 77: 1651–1655, 1980.
 160. Lundberg, J. M., and A. Saria. Capsaicin‐induced desensitization of airway mucosa to cigarette smoke, mechanical and chemical irritants. Nature London 302: 251–253, 1983.
 161. Lundblad, L. Protective reflexes and vascular effects in the nasal mucosa elicited by activation of capsaicin‐sensitive substance P‐immunoreactive trigeminal neurons. Acta Physiol. Scand. Suppl. 529: 1–42, 1984.
 162. Lundblad, L., J. M. Lundberg, E. Brodin, and A. Anggard. Origin and distribution of capsaicin‐sensitive substance P‐immunoreactive nerves in the nasal mucosa. Acta Oto‐Laryngol. 96: 485–493, 1983.
 163. Lundblad, L., A. Saria, J. M. Lundberg, and A. Anggard. Increased vascular permeability in rat nasal mucosa induced by substance P and stimulation of capsaicin‐sensitive trigeminal neurons. Acta Oto‐Laryngol. 96: 479–484, 1983.
 164. Malcolmson, K. G. The vasomotor activities of the nasal mucous membrane. J. Laryngol. Otol. 73: 73–98, 1959.
 165. Martensson, A. Proprioceptive impulse patterns during contraction of intrinsic laryngeal muscles. Acta Physiol. Scand. 62: 176–194, 1964.
 166. Mathew, O. P. Upper airway negative‐pressure effects on respiratory activity of upper airway muscles. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 56: 500–505, 1984.
 167. Mathew, O. P., Y. K. Abu‐Osba, and B. T. Thach. Influence of upper airway pressure changes on respiratory frequency. Respir. Physiol. 49: 223–233, 1982.
 168. Mathew, O. P., Y. K. Abu‐Osba, and B. T. Thach. Influence of upper airway pressure changes on genioglossus muscle respiratory activity. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 438–444, 1982.
 169. Mathew, O. P., Y. K. Abu‐Osba, and B. T. Thach. Genioglossus muscle responses to upper airway pressure changes: afferent pathways. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 445–450, 1982.
 170. Mathew, O. P., and J. P. Farber. Effect of upper airway negative pressure on respiratory timing. Respir. Physiol. 54: 252–268, 1983.
 171. Mathew, O. P., G. Sant'Ambrogio, J. T. Fisher, and F. B. Sant'Ambrogio. Laryngeal pressure receptors. Respir. Physiol. 57: 113–122, 1984.
 172. McBride, B., and W. A. Whitelaw. A physiological stimulus to upper airway receptors in humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1189–1197, 1981.
 173. McNally, J. F., P. Enright, J. E. Hirsch, and J. F. Souhrada. The attenuation of exercise‐induced bronchoconstriction by oropharyngeal anesthesia. Am. Rev. Respir. Dis. 119: 247–252, 1979.
 174. McRitchie, R. J., S. W. White, and P. I. Korner. Afferent mechanisms concerned in cardio‐respiratory response to noxious gaseous stimuli in unanaesthetised rabbits (Abstract). Proc. Aust. Physiol. Pharmacol. Soc. 1: 52, 1970.
 175. Mei, N., M. Condamin, and A. Rousseau. Composition histologique du nerf laryngé superiéur du chat. C. R. Seances Soc. Biol. 162: 145–149, 1967.
 176. Mei, N., and B. Nourigat. Étude électrophysiologique des neuron sensitifs du nerf larynge superiéur. C. R. Seanc. Acad. Sci. Paris 162: 149–153, 1967.
 177. Melon, J. Activité secrétoire de la muqueuse nasale. Acta Oto‐Rino‐Laryngol. Belg. 22: 11–244, 1968.
 178. Melville, G. N. Cold II: nervous pathways in the respiratory response to facial cold. Environ. Physiol. Biochem. 2: 179–187, 1972.
 179. Melville, G. N., and D. Morris. Cold I: effect on airway resistance in health and disease. Environ. Physiol. Biochem. 2: 107–116, 1972.
 180. Meredith, M., and R. J. O'Connell. Efferent control of stimulus access to the hamster vomeronasal organ. J. Physiol. London 286: 301–316, 1979.
 181. Miller, A. J. Deglutition. Physiol. Rev. 62: 129–184, 1982.
 182. Miller, A. J., and R. F. Loizzi. Anatomical and functional differentiation of superior laryngeal nerve fibres affecting swallowing and respiration. Exp. Neurol. 42: 369–387.
 183. Mitra, J., and N. S. Cherniack. The effects of hypercapnia and hypoxia on single hypoglossal nerve fibre activity. Respir. Physiol. 54: 55–66, 1983.
 184. Mortola, J. P., S. Al‐Shway, and A. Noworaj. Importance of upper airway airflow in the ventilatory depression of laryngeal origin. Pediatr. Res. 17: 550–552, 1983.
 185. Mukhtar, M. R., and J. M. Patrick. Face immersion prolongs maximal breath‐holding in man (Abstract). J. Physiol. London 361: 67P, 1985.
 186. Murray, N., and J. Bierer. Prolonged sneezing. Psychosom. Med. 13: 56–58, 1951.
 187. Mygind, N., and H. Lowenstein. Allergy and other environmental factors. In: The Nose: Upper Airway Physiology and the Atmospheric Environment, edited by D. F. Proctor and I. B. Andersen. Amsterdam: Elsevier, 1982, p. 377–397.
 188. Mygind, N., C. Secher, and J. Kirkegaard. Role of histamine and antihistamine in the nose. Eur. J. Respir. Dis. Suppl. 128: 16–20, 1983.
 189. Nadel, J. A. Autonomic regulation of airway smooth muscle. In: Physiology and Pharmacology of the Airways, edited by J. A. Nadel. New York: Dekker, 1980, p. 217–257.
 190. Nadel, J. A., and J. G. Widdicombe. Reflex effects of upper airway irritation on total lung resistance and blood pressure. J. Appl. Physiol. 17: 861–865, 1962.
 191. Nail, B. S. Sensitization of polymodal airway receptors. In: Advances in Physiological Sciences. Respiration, edited by J. Hutas and L. A. Debreczeni. Budapest: Akad. Kiadò, 1981, vol. 10, p. 479–484.
 192. Nail, B. S., G. M. Sterling, and J. G. Widdicombe. Epipharyngeal receptors responding to mechanical stimulation. J. Physiol. London 204: 91–98, 1969.
 193. Nail, B. S., G. M. Sterling, and J. G. Widdicombe. Patterns of spontaneous and reflexly‐induced activity in phrenic and intercostal motoneurones. Exp. Brain Res. 15: 318–332, 1972.
 194. Negus, V. The Mechanism of the Larynx. London: Heinemann, 1929.
 195. Negus, V. The Comparative Anatomy and Physiology of the Nose and Paranasal Sinuses. Edinburgh: Churchill Livingstone, 1958.
 196. Noble, M. I. M., H. L. Frankel, W. Else, and A. Guz. The sensation produced by threshold resistive loads to breathing. Eur. J. Clin. Invest. 2: 72–77, 1972.
 197. Nolte, D., and D. Berger. On vagal bronchoconstriction in asthmatic patients induced by nasal irritation. Eur. J. Respir. Dis. Suppl. 128: 110–114, 1983.
 198. Okuda, M. Mechanisms in nasal allergy. Part 1. Oto‐Rhino‐Laryngol. Dig. 39: 22–31, 1977.
 199. Okuda, M. Mechanisms in nasal allergy. Part 2. Oto‐Rhino‐Laryngol. Dig. 39: 32–34, 1977.
 200. Olsen, C. R., D. D. Fanestil, and P. F. Scholander. Some effects of breath holding and apneic underwater diving on cardiac rhythm in man. J. Appl. Physiol. 17: 461–466, 1962.
 201. Pack, R. J., L. H. Al‐Ugaily, and J. G. Widdicombe. The innervation of the trachea and extrapulmonary bronchi of the mouse. Cell Tissue Res. 238: 61–68, 1984.
 202. Phillips, G. D., and G. V. Raghavan. Responses of unshorn and shorn sheep to thermal stress. J. Physiol. London 208: 317–328, 1970.
 203. Phillips, G. D., and G. V. Raghavan. Role of naso‐buccal passages in thermoregulation in sheep. J. Physiol. London 208: 329–337, 1970.
 204. Phipps, R. J. The airway mucociliary system. In: Respiratory Physiology III, edited by J. G. Widdicombe. Baltimore, MD: University Park, 1981, vol. 23, p. 213–260. (Int. Rev. Physiol. Ser.).
 205. Phipps, R. J., and P. S. Richardson. The effects of irritation at various levels of the airway upon tracheal mucus secretion in the cat. J. Physiol. London 261: 563–581, 1976.
 206. Pommerenke, W. T. A study of the sensory areas eliciting the swallowing reflex. Am. J. Physiol. 84: 36–41, 1928.
 207. Pressman, J. J., and G. Kelemen. Physiology of the larynx. Physiol. Rev. 35: 506–554, 1955.
 208. Proctor, D. F. Historical background. In: The Nose: Upper Airway Physiology and the Atmospheric Environment, edited by D. F. Proctor and I. B. Andersen. Amsterdam: Elsevier, 1982, p. 1–22.
 209. Proctor, D. F., and I. B. Andersen (editors). The Nose: Upper Airway Physiology and the Atmospheric Environment. Amsterdam: Elsevier, 1982.
 210. Proetz, A. W. Applied Physiology of the Nose. St. Louis, MO: Annals, 1953.
 211. Prys‐Roberts, C., L. T. Greene, R. Maloche, and P. Foex. Studies of anaesthesia in relation to hypertension. II. Haemodynamic consequences of induction and endotracheal intubation. Br. J. Anaesth. 43: 531–547, 1971.
 212. Rall, J. E., N. C. Gilbert, and R. Trump. Certain aspects of the bronchial reflexes obtained by stimulation of the nasopharynx. J. Lab. Clin. Med. 30: 953–956, 1945.
 213. Ramos, J. G. On the integration of respiratory movements. III. The fifth nerve afferent. Acta Physiol. Lat. Am. 10: 104–113, 1959.
 214. Rapoport, D. M., S. M. Garay, and R. M. Goldring. Nasal CPAP in obstructive sleep apnea: mechanisms of action. Clin. Respir. Physiol. 19: 616–620, 1983.
 215. Rees, P. J., and T. J. H. Clark. Pattern of breathing during cigarette smoking. Clin. Sci. 61: 85–90, 1981.
 216. Remmers, J. E., and D. Bartlett, Jr. Reflex control of expiratory airflow and duration. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 80–87, 1977.
 217. Roberts, J. L., W. R. Reed, and B. T. Thach. Pharyngeal airway‐stabilizing function of sternohyoid and sternothyroid muscles in the rabbit. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 57: 1790–1795, 1984.
 218. Rodenstein, D. O., L. Goncette, and D. L. Stãescu. Extrathoracic airways changes during plethysmographic measurements of lung volume. Respir. Physiol. 52: 217–227, 1983.
 219. Rodenstein, D. O., N. Perlmutter, and D. L. Stãescu. Infants are not obligatory mouth breathers. Am. Rev. Respir. Dis. 131: 343–347, 1985.
 220. Sampson, S., and C. Eyzaguirre. Some functional characteristics of mechanoreceptors in the larynx of the cat. J. Neurophysiol. 27: 464–480, 1964.
 221. Sant'Ambrogio, G. Information arising from the tracheobronchial tree of mammals. Physiol. Rev. 62: 531–569, 1982.
 222. Sant'Ambrogio, G., O. P. Mathew, J. T. Fisher, and F. B. Sant'Ambrogio. Laryngeal receptors responding to transmural pressure, airflow and local muscle activity. Respir. Physiol. 54: 317–333, 1983.
 223. Sant'Ambrogio, G., O. P. Mathew, J. T. Fisher, F. B. Sant'Ambrogio, and J. P. Farber. Responses of laryngeal mechanoreceptors to transmural pressure in the upper airway (Abstract). Physiologist 25 (4): 310, 1982.
 224. Sant'Ambrogio, G., O. P. Mathew, and F. B. Sant'Ambrogio. Mode of activation of laryngeal ‘drive’ receptors (Abstract). Federation Proc. 44: 1001, 1985.
 225. Sant'Ambrogio, G., O. P. Mathew, F. B. Sant'Ambrogio, and J. T. Fisher. Laryngeal cold receptors. Respir. Physiol. 59: 35–46, 1985.
 226. Sant'Ambrogio, G., F. B. Sant'Ambrogio, and A. Davies. Airway receptors in cough. Clin. Respir. Physiol. 20: 43–47, 1984.
 227. Sasaki, C. T., H. Fukuda, and J. A. Kirchner. Laryngeal abductor activity in response to varying ventilatory resistance. Trans. Am. Acad. Ophthalmol. Otolaryngol. 77: 403–410, 1973.
 228. Sasaki, C. T., and M. Suzuki. Laryngeal reflexes in cat, dog and man. Arch. Otolaryngol. 102: 400–402, 1976.
 229. Sato, T. Effect of nasal mucosa irritation on airway resistance. Auris Nasus Larynx 7: 39–50, 1980.
 230. Schneider, R. A., and S. Wolf. Olfactory perception thresholds for citral utilizing a new type olfactorium. J. Appl. Physiol. 8: 337–342, 1955.
 231. Schneider, U. Katter Hautriez und Atrung. Hippokrates 28: 433–435, 1957.
 232. Secher, C., J. Kirgegaard, J. Borum, A. Maansson, P. Osterhammel, and N. Mygind. Significance of H1 and H2 receptors in the human nose. Rationale for topical use of combined antihistamine preparations. J. Allergy Clin. Immunol. 70: 211–215, 1982.
 233. Sercer, A. The nasothoracic and the naso‐pulmonary reflexes. Med. Press 19: 476–483, 1935.
 234. Servit, Z., and A. Strejckova. Influence of nasal respiration upon normal EEG and epileptic electrographic activities in frog and turtle. Physiol. Bohemoslov. 25: 109–114, 1976.
 235. Sessle, B. J., L. F. Greenwood, J. P. Lund, and G. E. Lucier. Effect of upper respiratory tract stimuli on respiration and single respiratory neurons in the adult cat. Exp. Neurol. 61: 245–259, 1978.
 236. Sharpey‐Schafer, E. P. The mechanism of syncope after coughing. Br. Med. J. 2: 860–863, 1953.
 237. Sheppard, D., N. W. Rizk, H. A. Boushey, and R. A. Bethel. Mechanism of cough and bronchoconstriction induced by distilled water aerosol. Am. Rev. Respir. Dis. 127: 691–694, 1983.
 238. Sherrey, J. H., and C. Megirian. Spontaneous and reflexly evoked laryngeal abductor and adductor muscle activity of cat. Exp. Neurol. 43: 487–498, 1974.
 239. Sherrey, J. H., and C. Megirian. Analysis of the respiratory role of pharyngeal constrictor motoneurons of cat. Exp. Neurol. 49: 839–851, 1975.
 240. Sherry, J. H., and D. Megirian. Respiratory EMG activity in the posterior cricoarytenoid, cricothyroid and diaphragm muscles during sleep. Respir. Physiol. 39: 355–365, 1980.
 241. Shilkret, H. H. Psychogenic sneezing and snoring. Psychosom. Med. 11: 127–128, 1949.
 242. Shingai, T. Ionic mechanism of water receptors in the laryngeal mucosa of the rabbit. Jpn. J. Physiol. 27: 27–42, 1977.
 243. Shingai, T. Physicochemical study of receptive mechanism of laryngeal water fibres in the rabbit. Jpn. J. Physiol. 29: 459–570, 1979.
 244. Sica, A. L., M. I. Cohen. D. F. Donnelly, and H. Zhang. Hypoglossal motoneuron responses to pulmonary and superior laryngeal afferent inputs. Respir. Physiol. 56: 339–358, 1984.
 245. Spann, R. W., and R. E. Hyatt. Factors affecting upper airway resistance in conscious man. J. Appl. Physiol. 31: 708–712, 1971.
 246. Speizer, F. E., and N. R. Frank. A comparison of changes in pulmonary flow resistance in healthy volunteers acutely exposed to SO2 by mouth and by nose. Br. J. Ind. Med. 23: 75–79, 1966.
 247. Storey, A. T. Laryngeal initiation of swallowing. Exp. Neurol. 20: 359–365, 1968.
 248. Storey, A. T. A functional analysis of sensory units innervating epiglottis and larynx. Exp. Neurol. 20: 366–383, 1968.
 249. Storey, A. T. Laryngeal reflexes in sensitized guinea‐pigs. In: Development of Upper Respiratory Anatomy and Function. Implications for Sudden Infant Death Syndrome, edited by J. P. Bosma and J. Showacre. Washington, DC: US Govt. Printing Office, 1976, p. 199–204.
 250. Storey, A. T., and P. Johnson. Laryngeal water receptors initiating apnoea in the lamb. Exp. Neurol. 47: 42–55, 1975.
 251. Stransky, A. Aktivita Laryngealnych Motoneuronov a zmeny Laryngealneho Odporu pri Stimulacii Receptorov pluc a Dychacich ciest. Bratislava, CSSR: Medical Faculty, Martin, CSSR, 1975, p. 169.
 252. Stransky, A., M. Szereda‐Przestaszewska, and J. G. Widdicombe. The effect of lung reflexes on laryngeal resistance and motoneurone discharge. J. Physiol. London 231: 417–438, 1973.
 253. Strohl, K. P., and J. M. Fouke. Dilating forces on the upper airway of anesthetized dogs. J. Appl. Physiol. 58: 452–458, 1985.
 254. Strohl, K. P., C. F. O'Cain, and A. S. Slutsky. Alae nasi activation and nasal resistance in healthy subjects. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1432–1437, 1982.
 255. Sullivan, C. E., and F. G. Issa. Pathophysiological mechanisms in obstructive sleep apnea. Sleep 3: 235–246, 1981.
 256. Sullivan, C. E., F. G. Issa, M. Berthon‐Jones, and L. Eves. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 1: 862–865, 1981.
 257. Sullivan, C. E., E. Murphy, L. F. Kozar, and E. A. Phillipson. Waking and ventilatory responses to laryngeal stimulation in sleeping dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 681–689, 1978.
 258. Sumi, T. The activity of brain‐stem respiratory neurons and spinal respiratory motoneurons during swallowing. J. Neurophysiol. 26: 466–477, 1963.
 259. Sumi, T. Neuronal mechanisms in swallowing. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 278: 467–477, 1964.
 260. Sumi, T. Coordination of neural organization of respiration and deglutition: its change with postnatal maturation. In: Development of Upper Respiratory Anatomy and Function. Implications for Sudden Infant Death Syndrome, edited by J. P. Bosma and J. Showacre. Washington, DC: US Govt. Printing Office, 1976, p. 145–157.
 261. Sutton, D., E. M. Taylor, and R. Lindeman. Prolonged apnea in infant monkeys resulting from stimulation of superior laryngeal nerve. Pediatrics 61: 519–521, 1978.
 262. Suzuki, M., and J. A. Kirchner. Sensory fibres in the recurrent laryngeal nerve. Ann. Otol. Rhinol. Laryngol. 78: 1–11, 1960.
 263. Suzuki, M., and C. T. Sasaki. Initiation of reflex glottic closure. Ann. Otol. Rhinol. Laryngol. 85: 382–386, 1976.
 264. Suzuki, M., and C. T. Sasaki. Effect of various sensory stimuli on reflex laryngeal adduction. Ann. Otol. Rhinol. Laryngol. 86: 30–36, 1977.
 265. Suzuki, M., and C. T. Sasaki. Laryngeal spasm: a neuro‐physiologic redefinition. Ann. Otol. Rhinol. Laryngol. 86: 150–157, 1977.
 266. Szereda‐Przestaszewska, M., and J. G. Widdicombe. Reflex effects of chemical irritation of the upper airways on the laryngeal lumen in cats. Respir. Physiol. 18: 107–115, 1973.
 267. Tatar, M., and J. Korpas. Exspiracny reflex u bdelych maciek. Bratisl. Lek. Listy 67: 138–144, 1977.
 268. Tchobroutsky, C., C. Merlet, and P. Rey. The diving reflex in rabbit, sheep and newborn lambs and its afferent pathways. Respir. Physiol. 8: 108–117, 1969.
 269. Thach, B. T., P. A. Menon, and G. Schefft. Effect of negative upper airway pressure on respiratory timing in the human infant (Abstract). Federation Proc. 44: 1002, 1985.
 270. Tomori, Z. Modelova macka pre studium obrannych reflexov z roznych oblasti dychacich ciest. Ceskoslov. Fysiol. 9: 311–312, 1960.
 271. Tomori, Z. Further analysis of the aspiration reflex evoked by mechanical stimulation of the epipharynx in the cat (Abstract). Physiol. Bohemoslov. 17: 494, 1968.
 272. Tomori, Z., and A. Stransky. Electroneurographic and pneumotachographic analysis of the expiration reflex. Physiol. Bohemoslov. 22: 589–601, 1973.
 273. Tomori, Z., and K. Tomoriova. Vplyv decerebraie a prerusenia trigeminu na kasel a ine obranne reflexy dychacich ciest. Bratisl. Lek. Listy 59: 523–530, 1973.
 274. Tomori, Z., and J. G. Widdicombe. Muscular, bronchomotor and cardiovascular reflexes elicited by mechanical stimulation of the respiratory tract. J. Physiol. London 200: 25–50, 1969.
 275. Tucker, D. Nonolfactory responses from the nasal cavity; Jacobson's organ and the trigeminal system. In: Handbook of Sensory Physiology. Chemical Senses. Olfaction, edited by L. M. Beidler. Berlin: Springer‐Verlag, 1971, vol. IV, pt. 1, p. 151–181.
 276. Uddman, R., J. Alumets, O. Densert, R. Hakanson, and F. Sundler. Occurrence and distribution of VIP nerves in the nasal mucosa and tracheobronchial wall. Acta Oto‐Laryngol. 86: 443–448, 1978.
 277. Uddman, R., L. Edvinsson, and L. Malm. Perivascular nerves in the feline carotid rete. Cell Tissue Res. 226: 301–308, 1982.
 278. Uddman, R., L. Malm, and F. Sundler. The origin of vasoactive polypeptide (VIP) nerves in the feline nasal mucosa. Acta Oto‐Laryngol. 89: 152–156, 1980.
 279. Uddman, R., L. Malm, and F. Sundler. Substance P‐containing nerve fibers in the nasal mucosa. Arch. Otorhinolaryngol. 238: 9–16, 1983.
 280. Ueki, S., and E. F. Domino. Some evidence for a mechanical receptor in olfactory function. J. Neurophysiol. 24: 12–25, 1961.
 281. Van de Graaff, W. B., S. B. Gottfried, J. Mitra, E. van Lunteren, N. S. Cherniack, and K. P. Strohl. Respiratory function of hyoid muscles and hyoid arch. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 57: 197–204, 1984.
 282. Van Lunteren, E., M. A. Haxhiu, J. Mitra, and N. S. Cherniack. Effects of dopamine, isoproterenol, and lobeline on cranial and phrenic motoneurons. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 56: 737–745, 1984.
 283. Van Lunteren, E., K. P. Strohl, D. M. Parker, E. N. Bruce, W. B. Van de Graaff, and N. S. Cherniack. Phasic volume‐related feedback on upper airway muscle activity. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 56: 730–736, 1984.
 284. Van Lunteren, E., W. B. Van de Graaff, D. M. Parker, J. Mitra, M. A. Haxhiu, K. P. Strohl, and N. S. Cherniack. Nasal and laryngeal reflex responses to negative upper airway pressure. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 56: 746–752, 1984.
 285. Van Michel, C. Considérations morphologiques sur les appareils sensoriels de la muqueuse vocale humaine. Acta Anat. 52: 188–192, 1963.
 286. Vincent, S., and A. T. Cameron. A note on an inhibitory respiratory reflex in the frog and some other animals. J. Comp. Neurol. 31: 283–291, 1920.
 287. Waller, A., and J. L. Prevost. Étude relative aux nerfs sensitifs qui president aux phénomènes reflexes de la deglutition. Arch. Physiol. Norm. Pathol. 3: 343–354, 1870.
 288. Waranch, H. R., and M. Terman. Control of the rat's sniffing behavior by response‐independent and dependent schedules of reinforcing brain stimulation. Physiol. Behav. 15: 365–372, 1975.
 289. Wassilieff, N. Wo wird der Schluckreflex ausgelost? Z. Biol. Munich 24: 29–47, 1888.
 290. Wealthall, S. R. Factors resulting in failure to interrupt apnea. In: Development of Upper Respiratory Anatomy and Function. Implications for Sudden Infant Death Syndrome, edited by J. P. Bosma and J. Showacre. Washington, DC: US Govt. Printing Office, 1976, p. 212–225.
 291. Weiner, D., J. Mitra, J. Salamone, and N. S. Cherniack. Effect of chemical stimuli on nerves supplying upper airway muscles. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 530–536, 1982.
 292. Welker, W. I. Analysis of sniffing in the albino rat. Behaviour 22: 223–244, 1964.
 293. Wells, R. E., J. E. C. Walker, and R. B. Hickler. Effects of cold air on respiratory airflow resistance in patients with respiratory tract disease. New Engl. J. Med. 11: 268–273, 1960.
 294. Wicker, J. H., and E. B. Kern. The nasopulmonary reflex in the awake animal. Ann. Otol. 82: 355–358, 1973.
 295. Widdicombe, J. G. Regulation of tracheobronchial smooth muscle. Physiol. Rev. 43: 1–37, 1963.
 296. Widdicombe, J. G. Respiratory reflexes. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. 1, chapt. 24, p. 585–630.
 297. Widdicombe, J. G. Action potentials in parasympathetic and sympathetic efferent fibres to the trachea and lungs of dogs and cats. J. Physiol. London 186: 56–88, 1966.
 298. Widdicombe, J. G. Respiratory reflexes and defense. In: Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, pt. 2, p. 593–680.
 299. Widdicombe, J. G. Nervous receptors in the respiratory tract and lungs. In: Regulation of Breathing, edited by T. F. Hornbein. New York: Dekker, 1981, pt. 1, p. 429–472.
 300. Widdicombe, J. G. Control of airway calibre. Am. Rev. Respir. Dis. 131: 533–535, 1985.
 301. Widdicombe, J. G., and U. M. Wells. Airway secretions. In: The Nose: Upper Airway Physiology and the Atmospheric Environment, edited by D. F. Proctor and I. B. Andersen. Amsterdam: Elsevier, 1982, p. 215–244.
 302. Williams, C. J. B. Report of experiments on the physiology of the lungs and air‐tubes. Rep. Br. Assn. Adv. Sci. Aug.: 411–420, 1841.
 303. Wilson, S. L., B. T. Thach, R. T. Brouillette, and Y. K. Abu‐Osba. Upper airway patency in the human infant: influence of airway pressure and posture. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 500–504, 1980.
 304. Wyke, B. D. Myotatic reflexogenic systems in the intrinsic muscles of the larynx. Folia Morphol. 21: 113–118, 1973.
 305. Wyke, B. D., and J. A. Kirchner. Neurology of the larynx. In: Scientific Foundations of Otolaryngology, edited by R. Hinchcliffe and D. Harrison. London: Heinemann, 1978, p. 546–574.
 306. Wysock, C. J. Neurobehavioral evidence for the involvement of the vomeronasal system in mammalian reproduction. Neurosci. Biobehav. Rev. 3: 301–341, 1979.
 307. Yan, K., and C. Salome. The response of the airways to nasal stimulation in asthmatics with rhinitis. Eur. J. Respir. Dis. Suppl. 128: 105–108, 1983.
 308. Zotterman, Y. Thermal sensations. In: Handbook of Physiology. Neurophysiology, edited by J. Field and H. W. Magoun. Washington, DC: Am. Physiol. Soc., 1959, sect. 1, vol. 1, chapt. 18, p. 431–458.
 309. Zwillich, C. W., C. Pickett, F. N. Hanson, and J. V. Weil. Disturbed sleep and prolonged apnea during nasal obstruction in normal man. Am. Rev. Respir. Dis. 124: 158–160, 1981.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

John G. Widdicombe. Reflexes from the Upper Respiratory Tract. Compr Physiol 2011, Supplement 11: Handbook of Physiology, The Respiratory System, Control of Breathing: 363-394. First published in print 1986. doi: 10.1002/cphy.cp030211