Comprehensive Physiology Wiley Online Library

Interactions Between Respiration and Circulation

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Spontaneous Respiratory Variations in the Cardiovascular System
1.1 Arterial Blood Pressure
1.2 Heart Rate
1.3 Cardiac Output
1.4 Systemic Vascular Resistance
1.5 Pulmonary Hemodynamics
2 Central Nervous Control of Respiration and the Cardiovascular System
2.1 Receptors and Afferent Pathways
2.2 Cell Bodies and Efferent Pathways
2.3 Central Control of Sympathetic Efferent Activity
2.4 Descending Pathways to Spinal Sympathetic Outflow
3 Central and Local Peripheral Circulatory Control by Blood Gases
3.1 Central Effects
3.2 Peripheral Effects
4 Some Reflex Neural Control Mechanisms
4.1 Arterial Baroreceptors
4.2 Peripheral Arterial Chemoreceptors
4.3 Upper Airway Receptors
4.4 Facial Receptors
4.5 Cardiopulmonary Receptors
4.6 Overall Involvement of Cardiopulmonary Receptors
5 Reflex Cardiovascular Effects of Lung Inflation
5.1 Cardiac Responses
5.2 Changes in Systemic Vascular Resistance
5.3 Coronary Circulation
5.4 Nature of Pulmonary Receptors
6 Mechanisms of Respiratory Modulation
6.1 Pulmonary Vagal Reflex
6.2 Central Respiratory Neuronal Activity
6.3 Hypocapnia
7 Phasic Respiratory Modulation of Reflex Responses
7.1 Respiration
7.2 Heart Rate
8 Respiratory Modulation of Specific Inputs to Nervous System
8.1 Modulation by Hyperventilation
8.2 Modulation by Reflex Hypoventilation and Apnea
8.3 Interactions Between Carotid Baroreceptors and Chemoreceptors
9 Respiratory Modulation of Vagal and Sympathetic Efferent Fiber Activity
9.1 Activity in Cardiac Vagal Efferent Fibers
9.2 Activity in Sympathetic Efferent Nerves
9.3 Mechanisms of Central Integration
10 Respiratory Sinus Arrhythmia
10.1 Mechanisms
11 Some Examples of Respiratory‐Circulatory Integrative Control
11.1 Effects of Deep Breath
11.2 Valsalva Maneuver
11.3 Acute Hypoxia
11.4 Hypocapnia
11.5 Hypercapnia
11.6 Asphyxia and Breath Holding
11.7 Breath‐Hold Diving
12 Effects of Changes in the Cardiovascular System on Respiration
12.1 Respiration, Metabolism, and Cardiac Output
12.2 Hemorrhagic Hypotension
13 Medical Implications of Respiratory‐Cardiovascular Interactions
13.1 Diving Response
13.2 Protective Effects of Defense Mechanisms
13.3 Exaggerated Defense Responses
13.4 Restoration of Normal Cardiac Rhythm
13.5 Sudden Infant Death Syndrome
Figure 1. Figure 1.

Nervous control of respiratory and cardiovascular systems by arterial baroreceptors and chemoreceptors with some other inputs to nervous system by which integration between the 2 systems takes place. and arterial partial pressure of O2 and CO2, respectively.

Figure 2. Figure 2.

Sections of continuous tracing that show effects of changing respiratory rate on relationship between respiration and blood pressure in a human. During breathing, subject followed sinusoidal signal of slowly varying period. Between two slowest (top) and fastest (bottom) respiratory rates there is almost complete reversal of relation of blood pressure change to respiratory phase. Inspiration corresponds to downward movement of spirogram.

From Dornhorest et al. 227 by permission of the American Heart Association, Inc
Figure 3. Figure 3.

Effect of spontaneous respiration on venous return and cardiac output in dog with closed chest. Tracings from top to bottom: time and base line, aortic pressure (mmHg), pulmonary artery pressure, superior vena caval and intrathoracic pressures (mmH2O), pulmonary arterial and superior vena caval flows (ml · min−1). A, beginning of inspiration; S, acceleration of superior vena caval flow during ventricular systole; D, acceleration of superior vena caval flow during ventricular diastole. Stroke volume (ml) is shown below pulmonary arterial flow curve. Volume (ml) through superior vena cava during each cardiac cycle is shown at bottom. Electrical frequency response of both flowmeters is reduced from 400 to 40 Hz. Superior vena caval pressure curve is damped.

From Brecher 87. In: Venous Return, © 1956, Grune & Stratton
Figure 4. Figure 4.

Effects on heart rate and systemic vascular resistance of lung inflation during apneic asphyxia in dog with cardiopulmonary bypass, constant systemic blood flow, closed chest, and spontaneous respiration. Carotid sinus, aortic arch, and arterial blood = 138 mmHg, = 42 mmHg, and pH = 7.35. A: at signal, apneic asphyxia produced by reducing tidal volume of isolated perfused extracorporeal donor lungs from 400 to 75 ml while abolishing recipient's lung movements by injecting 3 mg of decamethonium into systemic arterial inflow tube. Break in record lasted 2 min. B: apneic asphyxia continued (carotid sinus, aortic arch, and arterial blood = 70 mmHg, = 71 mmHg, and pH = 7.19). Two maintained lung inflations with ∼300 ml air injected into trachea. Between B and C: tidal volume of isolated perfused lungs was restored to 400 ml. C: combined stimulation of carotid and aortic bodies by hypoxic hypercapnic blood ( = 40 mmHg, = 51 mmHg, and pH = 7.30). Systemic arterial blood = 130 mmHg, = 41 mmHg, and pH = 7.35. HR, heart (atrial) rate; TV, tidal volume (inspiration upward); AAP, mean aortic arch pressure; CSP, mean carotid sinus pressure; BP, mean systemic arterial perfusion pressure.

From Angell‐James and Daly 24
Figure 5. Figure 5.

Effects of maintained lung inflation with different pressures and volumes on systemic vascular resistance in 3 experiments. A and B: inflation volume and inflation pressure, respectively, are plotted against change in vascular resistance. Between inflations, lungs were allowed to collapse. C and D: same relationships are shown, but lungs were inflated from an expiratory pressure of 4 (○), 6 (•), and 10 (Δ) cmH2O. D: inflation pressure is difference between that at beginning and completion of inflation.

From Daly et al. 186
Figure 6. Figure 6.

A, B, and C: effects of stimulating carotid bodies with hypoxic blood in anesthetized dog on positive‐pressure artificial respiration with open pneumothorax. A and C: control states taken during normal artificial ventilation. Respiratory pump stroke volume = 150 ml, arterial blood = 38 mmHg, and pH = 7.35. B was taken 4 min after increasing stroke volume to 430 ml. Arterial blood = 24 mmHg and pH = 7.49. Frequency of pump was constant at 20 cycles · min−1. CSP, mean carotid sinus perfusion pressure; BP, mean systemic arterial blood pressure; HR, heart rate.

From Daly and Hazzledine 184
Figure 7. Figure 7.

Effects on heart rate of brief carotid body stimuli delivered during different phases of respiratory cycle in spontaneously breathing anesthetized dog. Records of tidal volume (inspiration upward), electrocardiogram (ECG), right atrial pressure (RAP), and arterial blood pressure (BP) are shown. A‐C: injections of CO2‐saline into carotid bifurcation caused brief chemoreceptor stimulation. When these stimuli were delivered during expiration (A and C), they evoked a prompt slowing of the heart and an expiratory effort. When stimuli were delivered during inspiration (B), they evoked an increased inspiratory effort but no change in heart rate. As control, chest was squeezed at D to mimic thoracic and atrial pressure changes seen with chemoreceptor stimuli given in expiration, but this did not affect heart rate.

From Haymet and McCloskey 323
Figure 8. Figure 8.

Modulation by phasic changes in respiration of respiratory and heart‐rate responses to brief stimuli applied to carotid body chemoreceptors by agents injected into common carotid artery. Stimuli were delivered to carotid bodies during inspiratory (○) and expiratory (•) phases of respiratory cycle. Ordinate: phase of respiratory cycle (inspiration, expiration), change in amplitude of inspiration, change in duration of expiration, or change in heart rate. Abscissa: time.

Data from Black and Torrance 81, Eldridge 250, Haymet and McCloskey 323, and M. de B. Daly (unpublished observations)
Figure 9. Figure 9.

Respiratory modulation of cardiac reflex responses to brief stimulations of carotid chemoreceptors and baroreceptors by 2 components, central inspiratory neuronal drive and pulmonary vagal reflex, in anesthetized animal paralyzed with neuromuscular blocking agent. Arrows, timing in relation to respiratory events of brief stimuli applied to carotid bodies (○) or carotid baroreceptors (•). Left: central inspiratory modulation alone; lungs were held in expiratory position to exclude pulmonary reflex component. Right: modulation by lung inflation during cessation of central inspiratory drive. (Compare arrow b with c, and c with d.) Note that lung denervation abolished modulation by lung inflation of chemoreceptor and baroreceptor responses.

Data from Daly and Angell‐James 178, Davidson et al. 203, and Gandevia et al. 273
Figure 10. Figure 10.

Effects of elective sustained stimulation of isolated perfused carotid body chemoreceptors by hypoxic hypercapnic blood on heart rate and respiration in spontaneously breathing animals. Relationship between changes in heart rate and respiratory minute volume under steady‐state conditions. •, Dog 193; ○, cat 191,486; x, seal 252; Δ, monkey 187.

Figure 11. Figure 11.

Reflex effects of lung inflation on vasoconstrictor responses elicited by stimulation of carotid bodies (CB) and aortic bodies (AB) in dog with cardiopulmonary bypass, constant systemic blood flow, open pneumothorax, and no ventilation of lungs. Separate perfusions of isolated carotid sinuses and of isolated aortic arch with blood from disk equilibrator ( = 140 mmHg, = 47 mmHg, and pH = 7.34). A‐D, effects of stimulation of CB and AB by hypoxic hypercapnic blood ( = 21 mmHg, = 83 mmHg and pH = 7.17) during continuous signal. Between arrows, lungs were inflated with 300 ml of room air. Between B and C, lungs were denervated. Note abolition of effects of lung inflation in C and D. At X, paper was stopped for 1.5 min. CSP, mean carotid sinus pressure; AAP, mean aortic arch pressure; BP, mean systemic arterial blood pressure. Time marker, 10 s.

Figure 12. Figure 12.

Central respiratory modulation of heart rate (HR) during stimulation of carotid body chemoreceptors in anesthetized dog with open chest and positive‐pressure ventilation. Both lungs are denervated by method of Daly and Scott 193. Av ENG, averaged phrenic electroneurogram; ENG, phrenic electroneurogram (efferent activity); ITP, intratracheal pressure; RM, rib movements (inspiration upward); BP, arterial blood pressure (mean and phasic). At signal, there was an intracarotid injection of 5 μg · kg−1 of sodium cyanide. Time marker, 10 s.

From Daly and Angell‐James 178
Figure 13. Figure 13.

Effects on changes in P‐P (P‐wave) interval of stimulating carotid baroreceptors (neck suction, −30 mmHg) for 0.6 s during early inspiration (left) and during expiration (right). Averaged P‐P intervals for 6 normal human subjects. •, Spontaneous changes provoked by inspiration without baroreceptor stimulation (0 mmHg); ▴, changes in pulse interval after neck suction applied in early inspiration; ▪, net response to baroreceptor stimulation (difference) calculated by subtracting responses without neck suction from responses with neck suction. TV, tidal volume

From Eckbere and Orshan 246
Figure 14. Figure 14.

Effects in 1 subject of single breath on cardiac response produced by stimulation of carotid sinus baroreceptors during period of apnea in expiratory position started 5 s earlier. Top: during apnea, 3 tests of baroreceptor stimulation started at zero time. In 2 tests (○, ▴), a single breath was taken, ↑, Start of inspiration; ↓, peak of inspiration and beginning of expiration. Bottom: 2 tests of apnea started at zero time. In one test (□), a single breath was superimposed as indicated by arrows. (J. E. Angell‐James and M. de B. Daly, unpublished observations.)

Figure 15. Figure 15.

Reflex interactions between inputs from trigeminal facial receptors (stimulated by water during experimental dive) and carotid body chemoreceptors. Effects of stimulating carotid body chemoreceptors alone [▪; (CB)] and during experimental dives [▪; (ED + CB)] on pulse interval and respiratory minute volume; experimental dives alone [□; (ED)]; control values [•; (C)]. Values are means ± SE from 10 tests in 5 animals. Where SE bars are not given, SE is less than size of symbol.

From Eisner et al. 252
Figure 16. Figure 16.

Effects of stimulating carotid body chemoreceptors with cyanide (7.0 μg · kg−1) alone and during period of apnea reflexly induced by electrical stimulation of central end of a superior laryngeal nerve in dog with intermittent positive‐pressure ventilation and open pneumothorax. A: superior laryngeal nerve stimulation (3V, 1 ms, 15 Hz). B: carotid body (CB) stimulation alone. C: carotid body stimulation during stimulation of superior laryngeal nerve. Repeat stimulation of carotid body alone (not shown) had effect similar to that shown in B. ITP, intratracheal pressure; RM, movements of the ribs (inspiration upward); BP, arterial blood pressure. Time calibration and time marker, 10 s.

From Angell‐James and Daly 31
Figure 17. Figure 17.

Three‐dimensional plot of relationship between time (t), pulse interval (PI) and volume (Vt) of right (test) lung (filled areas) during electrical stimulation of superior laryngeal nerve with stimulation of carotid body chemoreceptors by intracarotid cyanide in anesthetized dog with open pneumothorax. Tracheal divider separated left and right lung airways. Artificial ventilation of naturally perfused denervated left lung. Right lung was innervated, but pulmonary artery blood flow was obstructed by balloon. A: electrical stimulation of superior laryngeal nerve (bar) combined with intracarotid injection of cyanide at beginning of bar while right lung was in expiratory position (zero volume). B: right lung in expiratory position during combined stimulation of a superior laryngeal nerve and carotid body (bar) followed by inflation of right lung at arrow. Between B and C, right lung was denervated. C: inflation of right lung began at arrow during combined stimulation of superior laryngeal nerve and carotid body.

From Angell‐James and Daly 32
Figure 18. Figure 18.

Effects of stimulating carotid body chemoreceptors on carotid sinus baroreceptor control of muscle vascular resistance in 9 anesthetized, artificially ventilated, paralyzed, and vagotomized cats. Graphs show relationship between pressure in partly isolated perfused carotid sinuses and muscle vascular resistance (A) and arterial blood pressure (B). •—•, No carotid body stimulation; ○—○, with carotid body stimulation. C: carotid sinus pressure is related to the differences between the responses in A and B in terms of muscle vascular resistance (○) and arterial blood pressure (□), respectively, obtained at each carotid sinus pressure level with and without coexisting chemoreceptor stimulation. Values are means ± SE of numerous tests.

From Wennergren et al. 663
Figure 19. Figure 19.

Interactions between carotid baroreceptors and chemoreceptors in cat anesthetized with Althesin. A: response produced by inflating carotid blind sac to 210 mmHg. B: response evoked by stimulating carotid chemoreceptors with saline equilibrated with CO2 C: effect of stimulating chemoreceptors during an ongoing baroreceptor reflex. Resp., respiratory air flow; Vm, respiratory minute volume; HR, heart rate; BP, arterial blood pressure. In C, baroreceptor reflex was fully suppressed on chemoreceptor stimulation.

From Marshall 499
Figure 20. Figure 20.

Respiratory and vasomotor center activity during diffusion respiration as shown by action potential discharges in recurrent laryngeal (N) and cervical sympathetic (central end, CS) nerves in cat. Time in seconds. Top: control period. There is a rhythmic discharge in recurrent laryngeal nerve. Each burst of impulses is accompanied by increase in cervical sympathetic discharge. Middle: 1 min after beginning of diffusion respiration. Synchronization of recurrent laryngeal and cervical sympathetic activity is still present. Both discharges are intensified. Bottom: after 16 min of diffusion respiration. Recurrent laryngeal discharge is diminished in intensity and cervical sympathetic discharge no longer shows any rhythmicity.

From Joels and Samueloff 386
Figure 21. Figure 21.

Two tests used to evaluate effects of increased pulmonary afferent activity by lung inflation in decerebrate cat artificially ventilated with respiratory cycle‐triggered pump. A: lung inflation was stopped for 1 respiratory cycle. B: lung inflation started 800 ms (broken line) after onset of expiratory phase; duration of inflation was 750 ms. ITP, intratracheal pressure; PHR, integrated phrenic activity (time constant, 0.1 s); CS, integrated right cervical sympathetic activity (time constant, 0.1 s); SPL, integrated splanchnic activity (time constant, 0.1 s). In A note increased phrenic and sympathetic activity in absence of 1 cycle of lung inflation and in B note decreased sympathetic activity in absence of change in phrenic activity on lung inflation (begun at broken line).

From Gootman et al. 290
Figure 22. Figure 22.

Mechanisms of respiratory sinus arrhythmia: combination of central irradiation or central inspiratory neuronal activity (solid line) and pulmonary reflex (dashed and dotted lines). A: spontaneous activity of inspiratory motoneurons of respiratory center (RC) causes inhibition of cardiac vagal motoneurons (CVMN) and therefore tachycardia. B: tachycardia is enhanced by expansion of lungs, causing further inhibition of cardiac vagal motoneurons (dashed line). C: at height of inspiration, expanded lungs inhibit inspiratory neurons via Hering‐Breuer respiratory reflex and therefore partially restore activity of cardiac vagal motoneurons (dotted line). D: during expiration with lungs in expiratory position, vagal tone is fully restored, leading to bradycardia through combination of cessation of activity of inspiratory neurons and diminution of pulmonary stretch‐receptor activity. +, Stimulation; —, inhibition.

Adapted from Anrep et al. 39
Figure 23. Figure 23.

Effects of withdrawing arterial chemoreceptor drive and of reestablishing lung movements during apneic asphyxia in the dog with systemic circulation is perfused at constant blood flow, separate perfusions of isolated carotid sinuses and isolated aortic arch, closed chest, spontaneous respiration, and no pulmonary circulation. Systemic venous blood is oxygenated in isolated perfused lungs of a donor animal. Carotid sinus, aortic arch, and arterial blood = 133 mmHg, = 45 mmHg, and pH = 7.34. A: at signal, apneic asphyxia is produced by reducing tidal volume of isolated perfused donor lungs from 400 to 75 ml while creating a bilateral open pneumothorax in recipient animal; lungs are held in semi‐inflated position by occluding the trachea. Break in record lasted 3.5 min. B: apneic asphyxia continued (carotid sinus, aortic arch and arterial blood = 74 mmHg, = 70 mmHg, and pH = 7.19). During signal, carotid and aortic body chemoreceptor drive was withdrawn by substituting oxygenated blood ( = 140 mmHg, = 44 mmHg, and pH = 7.39). C: apneic asphyxia continued (carotid sinus, aortic arch and arterial blood = 74 mmHg, = 70 mmHg, and pH = 7.19). During signal, pneumothorax was reduced and spontaneous breathing was temporarily reestablished. D: apneic asphyxia ended at signal. Spontaneous breathing was reestablished and tidal volume of isolated perfused donor lungs was restored to 400 ml. Break in record lasted 4 min. Time calibration, 10 s. HR, heart (atrial) rate; TV, tidal volume (inspiration upward); AAP, aortic arch pressure; CSP, carotid sinus pressure; BP, systemic arterial perfusion blood pressure.

From Angell‐James and Daly 24
Figure 24. Figure 24.

Effects of withdrawal of carotid body (CB) chemoreceptor drive on diving response in seal. Carotid sinus‐CB regions were autoperfused under controlled conditions with arterial blood. Mean values (± SE; n = 11) for respiratory minute volume (), heart rate (HR) and systolic (S), diastolic (D), and mean (M) arterial blood pressure (BP). Filled bars, control values in spontaneously breathing animals before and after experimental dives; stippled bars in second column, values taken 105 s after start of experimental dive; open bars, withdrawal of chemoreceptor drive during dive by perfusion of CBs with blood of high and normal from external oxygenator; stippled bars in fourth column, chemoreceptor drive was reestablished during dive by perfusion of CBs with hypoxic hypercapnic blood from animal's circulation. Values for and for arterial blood (a) and blood perfusing CBs (cb) are expressed in mmHg; pH is expressed in units.

From Daly et al. 181
Figure 25. Figure 25.

Effect of increasing right lung blood flow by average of 133% on average activity of 10 J receptors in right lung. (Blood flow was increased by occluding left pulmonary artery at arrow.) Values are means ± SE.

From Anand and Paintal 17


Figure 1.

Nervous control of respiratory and cardiovascular systems by arterial baroreceptors and chemoreceptors with some other inputs to nervous system by which integration between the 2 systems takes place. and arterial partial pressure of O2 and CO2, respectively.



Figure 2.

Sections of continuous tracing that show effects of changing respiratory rate on relationship between respiration and blood pressure in a human. During breathing, subject followed sinusoidal signal of slowly varying period. Between two slowest (top) and fastest (bottom) respiratory rates there is almost complete reversal of relation of blood pressure change to respiratory phase. Inspiration corresponds to downward movement of spirogram.

From Dornhorest et al. 227 by permission of the American Heart Association, Inc


Figure 3.

Effect of spontaneous respiration on venous return and cardiac output in dog with closed chest. Tracings from top to bottom: time and base line, aortic pressure (mmHg), pulmonary artery pressure, superior vena caval and intrathoracic pressures (mmH2O), pulmonary arterial and superior vena caval flows (ml · min−1). A, beginning of inspiration; S, acceleration of superior vena caval flow during ventricular systole; D, acceleration of superior vena caval flow during ventricular diastole. Stroke volume (ml) is shown below pulmonary arterial flow curve. Volume (ml) through superior vena cava during each cardiac cycle is shown at bottom. Electrical frequency response of both flowmeters is reduced from 400 to 40 Hz. Superior vena caval pressure curve is damped.

From Brecher 87. In: Venous Return, © 1956, Grune & Stratton


Figure 4.

Effects on heart rate and systemic vascular resistance of lung inflation during apneic asphyxia in dog with cardiopulmonary bypass, constant systemic blood flow, closed chest, and spontaneous respiration. Carotid sinus, aortic arch, and arterial blood = 138 mmHg, = 42 mmHg, and pH = 7.35. A: at signal, apneic asphyxia produced by reducing tidal volume of isolated perfused extracorporeal donor lungs from 400 to 75 ml while abolishing recipient's lung movements by injecting 3 mg of decamethonium into systemic arterial inflow tube. Break in record lasted 2 min. B: apneic asphyxia continued (carotid sinus, aortic arch, and arterial blood = 70 mmHg, = 71 mmHg, and pH = 7.19). Two maintained lung inflations with ∼300 ml air injected into trachea. Between B and C: tidal volume of isolated perfused lungs was restored to 400 ml. C: combined stimulation of carotid and aortic bodies by hypoxic hypercapnic blood ( = 40 mmHg, = 51 mmHg, and pH = 7.30). Systemic arterial blood = 130 mmHg, = 41 mmHg, and pH = 7.35. HR, heart (atrial) rate; TV, tidal volume (inspiration upward); AAP, mean aortic arch pressure; CSP, mean carotid sinus pressure; BP, mean systemic arterial perfusion pressure.

From Angell‐James and Daly 24


Figure 5.

Effects of maintained lung inflation with different pressures and volumes on systemic vascular resistance in 3 experiments. A and B: inflation volume and inflation pressure, respectively, are plotted against change in vascular resistance. Between inflations, lungs were allowed to collapse. C and D: same relationships are shown, but lungs were inflated from an expiratory pressure of 4 (○), 6 (•), and 10 (Δ) cmH2O. D: inflation pressure is difference between that at beginning and completion of inflation.

From Daly et al. 186


Figure 6.

A, B, and C: effects of stimulating carotid bodies with hypoxic blood in anesthetized dog on positive‐pressure artificial respiration with open pneumothorax. A and C: control states taken during normal artificial ventilation. Respiratory pump stroke volume = 150 ml, arterial blood = 38 mmHg, and pH = 7.35. B was taken 4 min after increasing stroke volume to 430 ml. Arterial blood = 24 mmHg and pH = 7.49. Frequency of pump was constant at 20 cycles · min−1. CSP, mean carotid sinus perfusion pressure; BP, mean systemic arterial blood pressure; HR, heart rate.

From Daly and Hazzledine 184


Figure 7.

Effects on heart rate of brief carotid body stimuli delivered during different phases of respiratory cycle in spontaneously breathing anesthetized dog. Records of tidal volume (inspiration upward), electrocardiogram (ECG), right atrial pressure (RAP), and arterial blood pressure (BP) are shown. A‐C: injections of CO2‐saline into carotid bifurcation caused brief chemoreceptor stimulation. When these stimuli were delivered during expiration (A and C), they evoked a prompt slowing of the heart and an expiratory effort. When stimuli were delivered during inspiration (B), they evoked an increased inspiratory effort but no change in heart rate. As control, chest was squeezed at D to mimic thoracic and atrial pressure changes seen with chemoreceptor stimuli given in expiration, but this did not affect heart rate.

From Haymet and McCloskey 323


Figure 8.

Modulation by phasic changes in respiration of respiratory and heart‐rate responses to brief stimuli applied to carotid body chemoreceptors by agents injected into common carotid artery. Stimuli were delivered to carotid bodies during inspiratory (○) and expiratory (•) phases of respiratory cycle. Ordinate: phase of respiratory cycle (inspiration, expiration), change in amplitude of inspiration, change in duration of expiration, or change in heart rate. Abscissa: time.

Data from Black and Torrance 81, Eldridge 250, Haymet and McCloskey 323, and M. de B. Daly (unpublished observations)


Figure 9.

Respiratory modulation of cardiac reflex responses to brief stimulations of carotid chemoreceptors and baroreceptors by 2 components, central inspiratory neuronal drive and pulmonary vagal reflex, in anesthetized animal paralyzed with neuromuscular blocking agent. Arrows, timing in relation to respiratory events of brief stimuli applied to carotid bodies (○) or carotid baroreceptors (•). Left: central inspiratory modulation alone; lungs were held in expiratory position to exclude pulmonary reflex component. Right: modulation by lung inflation during cessation of central inspiratory drive. (Compare arrow b with c, and c with d.) Note that lung denervation abolished modulation by lung inflation of chemoreceptor and baroreceptor responses.

Data from Daly and Angell‐James 178, Davidson et al. 203, and Gandevia et al. 273


Figure 10.

Effects of elective sustained stimulation of isolated perfused carotid body chemoreceptors by hypoxic hypercapnic blood on heart rate and respiration in spontaneously breathing animals. Relationship between changes in heart rate and respiratory minute volume under steady‐state conditions. •, Dog 193; ○, cat 191,486; x, seal 252; Δ, monkey 187.



Figure 11.

Reflex effects of lung inflation on vasoconstrictor responses elicited by stimulation of carotid bodies (CB) and aortic bodies (AB) in dog with cardiopulmonary bypass, constant systemic blood flow, open pneumothorax, and no ventilation of lungs. Separate perfusions of isolated carotid sinuses and of isolated aortic arch with blood from disk equilibrator ( = 140 mmHg, = 47 mmHg, and pH = 7.34). A‐D, effects of stimulation of CB and AB by hypoxic hypercapnic blood ( = 21 mmHg, = 83 mmHg and pH = 7.17) during continuous signal. Between arrows, lungs were inflated with 300 ml of room air. Between B and C, lungs were denervated. Note abolition of effects of lung inflation in C and D. At X, paper was stopped for 1.5 min. CSP, mean carotid sinus pressure; AAP, mean aortic arch pressure; BP, mean systemic arterial blood pressure. Time marker, 10 s.



Figure 12.

Central respiratory modulation of heart rate (HR) during stimulation of carotid body chemoreceptors in anesthetized dog with open chest and positive‐pressure ventilation. Both lungs are denervated by method of Daly and Scott 193. Av ENG, averaged phrenic electroneurogram; ENG, phrenic electroneurogram (efferent activity); ITP, intratracheal pressure; RM, rib movements (inspiration upward); BP, arterial blood pressure (mean and phasic). At signal, there was an intracarotid injection of 5 μg · kg−1 of sodium cyanide. Time marker, 10 s.

From Daly and Angell‐James 178


Figure 13.

Effects on changes in P‐P (P‐wave) interval of stimulating carotid baroreceptors (neck suction, −30 mmHg) for 0.6 s during early inspiration (left) and during expiration (right). Averaged P‐P intervals for 6 normal human subjects. •, Spontaneous changes provoked by inspiration without baroreceptor stimulation (0 mmHg); ▴, changes in pulse interval after neck suction applied in early inspiration; ▪, net response to baroreceptor stimulation (difference) calculated by subtracting responses without neck suction from responses with neck suction. TV, tidal volume

From Eckbere and Orshan 246


Figure 14.

Effects in 1 subject of single breath on cardiac response produced by stimulation of carotid sinus baroreceptors during period of apnea in expiratory position started 5 s earlier. Top: during apnea, 3 tests of baroreceptor stimulation started at zero time. In 2 tests (○, ▴), a single breath was taken, ↑, Start of inspiration; ↓, peak of inspiration and beginning of expiration. Bottom: 2 tests of apnea started at zero time. In one test (□), a single breath was superimposed as indicated by arrows. (J. E. Angell‐James and M. de B. Daly, unpublished observations.)



Figure 15.

Reflex interactions between inputs from trigeminal facial receptors (stimulated by water during experimental dive) and carotid body chemoreceptors. Effects of stimulating carotid body chemoreceptors alone [▪; (CB)] and during experimental dives [▪; (ED + CB)] on pulse interval and respiratory minute volume; experimental dives alone [□; (ED)]; control values [•; (C)]. Values are means ± SE from 10 tests in 5 animals. Where SE bars are not given, SE is less than size of symbol.

From Eisner et al. 252


Figure 16.

Effects of stimulating carotid body chemoreceptors with cyanide (7.0 μg · kg−1) alone and during period of apnea reflexly induced by electrical stimulation of central end of a superior laryngeal nerve in dog with intermittent positive‐pressure ventilation and open pneumothorax. A: superior laryngeal nerve stimulation (3V, 1 ms, 15 Hz). B: carotid body (CB) stimulation alone. C: carotid body stimulation during stimulation of superior laryngeal nerve. Repeat stimulation of carotid body alone (not shown) had effect similar to that shown in B. ITP, intratracheal pressure; RM, movements of the ribs (inspiration upward); BP, arterial blood pressure. Time calibration and time marker, 10 s.

From Angell‐James and Daly 31


Figure 17.

Three‐dimensional plot of relationship between time (t), pulse interval (PI) and volume (Vt) of right (test) lung (filled areas) during electrical stimulation of superior laryngeal nerve with stimulation of carotid body chemoreceptors by intracarotid cyanide in anesthetized dog with open pneumothorax. Tracheal divider separated left and right lung airways. Artificial ventilation of naturally perfused denervated left lung. Right lung was innervated, but pulmonary artery blood flow was obstructed by balloon. A: electrical stimulation of superior laryngeal nerve (bar) combined with intracarotid injection of cyanide at beginning of bar while right lung was in expiratory position (zero volume). B: right lung in expiratory position during combined stimulation of a superior laryngeal nerve and carotid body (bar) followed by inflation of right lung at arrow. Between B and C, right lung was denervated. C: inflation of right lung began at arrow during combined stimulation of superior laryngeal nerve and carotid body.

From Angell‐James and Daly 32


Figure 18.

Effects of stimulating carotid body chemoreceptors on carotid sinus baroreceptor control of muscle vascular resistance in 9 anesthetized, artificially ventilated, paralyzed, and vagotomized cats. Graphs show relationship between pressure in partly isolated perfused carotid sinuses and muscle vascular resistance (A) and arterial blood pressure (B). •—•, No carotid body stimulation; ○—○, with carotid body stimulation. C: carotid sinus pressure is related to the differences between the responses in A and B in terms of muscle vascular resistance (○) and arterial blood pressure (□), respectively, obtained at each carotid sinus pressure level with and without coexisting chemoreceptor stimulation. Values are means ± SE of numerous tests.

From Wennergren et al. 663


Figure 19.

Interactions between carotid baroreceptors and chemoreceptors in cat anesthetized with Althesin. A: response produced by inflating carotid blind sac to 210 mmHg. B: response evoked by stimulating carotid chemoreceptors with saline equilibrated with CO2 C: effect of stimulating chemoreceptors during an ongoing baroreceptor reflex. Resp., respiratory air flow; Vm, respiratory minute volume; HR, heart rate; BP, arterial blood pressure. In C, baroreceptor reflex was fully suppressed on chemoreceptor stimulation.

From Marshall 499


Figure 20.

Respiratory and vasomotor center activity during diffusion respiration as shown by action potential discharges in recurrent laryngeal (N) and cervical sympathetic (central end, CS) nerves in cat. Time in seconds. Top: control period. There is a rhythmic discharge in recurrent laryngeal nerve. Each burst of impulses is accompanied by increase in cervical sympathetic discharge. Middle: 1 min after beginning of diffusion respiration. Synchronization of recurrent laryngeal and cervical sympathetic activity is still present. Both discharges are intensified. Bottom: after 16 min of diffusion respiration. Recurrent laryngeal discharge is diminished in intensity and cervical sympathetic discharge no longer shows any rhythmicity.

From Joels and Samueloff 386


Figure 21.

Two tests used to evaluate effects of increased pulmonary afferent activity by lung inflation in decerebrate cat artificially ventilated with respiratory cycle‐triggered pump. A: lung inflation was stopped for 1 respiratory cycle. B: lung inflation started 800 ms (broken line) after onset of expiratory phase; duration of inflation was 750 ms. ITP, intratracheal pressure; PHR, integrated phrenic activity (time constant, 0.1 s); CS, integrated right cervical sympathetic activity (time constant, 0.1 s); SPL, integrated splanchnic activity (time constant, 0.1 s). In A note increased phrenic and sympathetic activity in absence of 1 cycle of lung inflation and in B note decreased sympathetic activity in absence of change in phrenic activity on lung inflation (begun at broken line).

From Gootman et al. 290


Figure 22.

Mechanisms of respiratory sinus arrhythmia: combination of central irradiation or central inspiratory neuronal activity (solid line) and pulmonary reflex (dashed and dotted lines). A: spontaneous activity of inspiratory motoneurons of respiratory center (RC) causes inhibition of cardiac vagal motoneurons (CVMN) and therefore tachycardia. B: tachycardia is enhanced by expansion of lungs, causing further inhibition of cardiac vagal motoneurons (dashed line). C: at height of inspiration, expanded lungs inhibit inspiratory neurons via Hering‐Breuer respiratory reflex and therefore partially restore activity of cardiac vagal motoneurons (dotted line). D: during expiration with lungs in expiratory position, vagal tone is fully restored, leading to bradycardia through combination of cessation of activity of inspiratory neurons and diminution of pulmonary stretch‐receptor activity. +, Stimulation; —, inhibition.

Adapted from Anrep et al. 39


Figure 23.

Effects of withdrawing arterial chemoreceptor drive and of reestablishing lung movements during apneic asphyxia in the dog with systemic circulation is perfused at constant blood flow, separate perfusions of isolated carotid sinuses and isolated aortic arch, closed chest, spontaneous respiration, and no pulmonary circulation. Systemic venous blood is oxygenated in isolated perfused lungs of a donor animal. Carotid sinus, aortic arch, and arterial blood = 133 mmHg, = 45 mmHg, and pH = 7.34. A: at signal, apneic asphyxia is produced by reducing tidal volume of isolated perfused donor lungs from 400 to 75 ml while creating a bilateral open pneumothorax in recipient animal; lungs are held in semi‐inflated position by occluding the trachea. Break in record lasted 3.5 min. B: apneic asphyxia continued (carotid sinus, aortic arch and arterial blood = 74 mmHg, = 70 mmHg, and pH = 7.19). During signal, carotid and aortic body chemoreceptor drive was withdrawn by substituting oxygenated blood ( = 140 mmHg, = 44 mmHg, and pH = 7.39). C: apneic asphyxia continued (carotid sinus, aortic arch and arterial blood = 74 mmHg, = 70 mmHg, and pH = 7.19). During signal, pneumothorax was reduced and spontaneous breathing was temporarily reestablished. D: apneic asphyxia ended at signal. Spontaneous breathing was reestablished and tidal volume of isolated perfused donor lungs was restored to 400 ml. Break in record lasted 4 min. Time calibration, 10 s. HR, heart (atrial) rate; TV, tidal volume (inspiration upward); AAP, aortic arch pressure; CSP, carotid sinus pressure; BP, systemic arterial perfusion blood pressure.

From Angell‐James and Daly 24


Figure 24.

Effects of withdrawal of carotid body (CB) chemoreceptor drive on diving response in seal. Carotid sinus‐CB regions were autoperfused under controlled conditions with arterial blood. Mean values (± SE; n = 11) for respiratory minute volume (), heart rate (HR) and systolic (S), diastolic (D), and mean (M) arterial blood pressure (BP). Filled bars, control values in spontaneously breathing animals before and after experimental dives; stippled bars in second column, values taken 105 s after start of experimental dive; open bars, withdrawal of chemoreceptor drive during dive by perfusion of CBs with blood of high and normal from external oxygenator; stippled bars in fourth column, chemoreceptor drive was reestablished during dive by perfusion of CBs with hypoxic hypercapnic blood from animal's circulation. Values for and for arterial blood (a) and blood perfusing CBs (cb) are expressed in mmHg; pH is expressed in units.

From Daly et al. 181


Figure 25.

Effect of increasing right lung blood flow by average of 133% on average activity of 10 J receptors in right lung. (Blood flow was increased by occluding left pulmonary artery at arrow.) Values are means ± SE.

From Anand and Paintal 17
References
 1. Aars, H. Aortic baroreceptor activity in normal and hypertensive rabbits. Acta Physiol. Scand. 72: 298–309, 1968.
 2. Aars, H. Effects of noradrenaline on activity in single aortic baroreceptor fibres. Acta Physiol. Scand. 83: 335–343, 1971.
 3. Abrahams, V. C., S. M. Hilton, and A. W. Zbrozyna. Active muscle vasodilatation produced by stimulation of the brain stem: its significance in the defence reaction. J. Physiol. London 154: 491–513, 1960.
 4. Abrahams, V. C., S. M. Hilton, and A. W. Zbrozyna. The role of active muscle vasodilatation in the alerting stage of the defence reaction. J. Physiol. London 171: 189–202, 1964.
 5. Abramson, D. I., and E. B. Ferris. Responses of blood vessels in the resting hand and forearm to various stimuli. Am. Heart J. 19: 541–553, 1940.
 6. Achari, N. K., S. S. Al‐Ubaidy, and C. B. B. Downman. Spinal sympathoexcitatory pathways activated by stimulating fastigial nuclei, hypothalamus and lower brain stem in cats. Exp. Neurol 62: 230–240, 1978.
 7. Acker, H., and R. G. O'Regan. The effects of stimulation of autonomic nerves on carotid body blood flow in the cat. J. Physiol. London 315: 99–110, 1981.
 8. Adams, W. E. The Comparative Morphology of the Carotid Body and Carotid Sinus. Springfield, IL: Thomas, 1958.
 9. Adrian, E. D. Afferent impulses in the vagus and their effect on respiration. J. Physiol. London 79: 332–358, 1933.
 10. Adrian, E. D., D. W. Bronk, and G. Phillips. Discharges in mammalian sympathetic nerves. J. Physiol. London 74: 115–133, 1932.
 11. Agostoni, E., J. E. Chinnock, M. de B. Daly, and J. G. Murray. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J. Physiol. London 135: 182–205, 1957.
 12. Alexander, R. S. The effects of blood flow and anoxia on spinal cardiovascular centers. Am. J. Physiol. 143: 698–708, 1945.
 13. Alexander, R. S. Tonic and reflex functions of medullary sympathetic cardiovascular centers. J. Neurophysiol 9: 205–217, 1946.
 14. Allison, D. J., and D. A. Powis. Adrenal catecholamine secretion during stimulation of the nasal mucous membrane in the rabbit. J. Physiol. London 217: 327–340, 1971.
 15. Amann, A., and H. Schaefer. Über sensible Impulse im Herznerven. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 246: 757–789, 1943.
 16. Anand, A., H. H. Loeschcke, W. Marek, and A. S. Paintal. Significance of the respiratory drive by impulses from J receptors (Abstract). J. Physiol. London 325: 14P, 1982.
 17. Anand, A., and A. S. Paintal. Reflex effects following selective stimulation of J receptors in the cat. J. Physiol. London 299: 553–572, 1980.
 18. Andersen, H. T. Physiological adaptations in diving vertebrates. Physiol. Rev. 46: 212–243, 1966.
 19. Anderson, B., R. A. Kenney, and E. Neil. The role of the chemoreceptors of the carotid and aortic regions in the production of the Mayer waves. Acta Physiol. Scand. 20: 203–220, 1950.
 20. Angell‐James, J. E. The responses of aortic arch and right subclavian baroreceptors to changes of non‐pulsatile pressure and their modification by hypothermia. J. Physiol. London 214: 201–223, 1971.
 21. Angell‐James, J. E. Characteristics of single aortic and right subclavian baroreceptor fiber activity in rabbits with chronic renal hypertension. Circ. Res. 32: 149–161, 1973.
 22. Angell‐James, J. E. Arterial baroreceptor activity in rabbits with experimental atherosclerosis. Circ. Res. 34: 27–39, 1974.
 23. Angell‐James, J. E. Pathophysiology of aortic baroreceptors in rabbits with vitamin D sclerosis and hypertension. Circ. Res. 34: 327–338, 1974.
 24. Angell‐James, J. E., and M. de B. Daly. Cardiovascular responses in apnoeic asphyxia: role of arterial chemoreceptors and the modification of their effects by a pulmonary vagal inflation reflex. J. Physiol. London 201: 87–104, 1969.
 25. Angell‐James, J. E., and M. de B. Daly. Nasal reflexes. Proc. R. Soc. Med. 62: 1287–1293, 1969.
 26. Angell‐James, J. E., and M. de B. Daly. Comparison of the reflex vasomotor responses to separate and combined stimulation of the carotid sinus and aortic arch baroreceptors by pulsatile and non‐pulsatile pressures in the dog. J. Physiol. London 209: 257–294, 1970.
 27. Angell‐James, J. E., and M. de B. Daly. Effects of graded pulsatile pressures on the reflex vasomotor responses elicited by changes of mean pressure in the perfused carotid sinus‐aortic arch regions of the dog. J. Physiol. London 214: 51–64, 1971.
 28. Angell‐James, J. E., and M. de B. Daly. Reflex respiratory and cardiovascular effects of stimulation of receptors in the nose of the dog. J. Physiol. London 220: 673–696, 1972.
 29. Angell‐James, J. E., and M. de B. Daly. Some mechanisms involved in the cardiovascular adaptations to diving. In: The Effects of Pressure on Organisms, edited by M. A. Sleigh and A. G. MacDonald Cambridge, UK: Cambridge Univ. Press, 1972, p. 313–341. (Symp. Soc. Exp. Biol.).
 30. Angell‐James, J. E., and M. de B. Daly. The interaction of reflexes elicited by stimulation of carotid body chemoreceptors and receptors in the nasal mucosa affecting respiration and pulse interval in the dog. J. Physiol. London 299: 133–149, 1973.
 31. Angell‐James, J. E., and M. de B. Daly. Some aspects of upper respiratory tract reflexes. Acta Oto‐Laryngol. 79: 242–251, 1975.
 32. Angell‐James, J. E., and M. de B. Daly. The effects of artificial lung inflation on reflexly induced bradycardia associated with apnoea in the dog. J. Physiol. London 274: 349–366, 1978.
 33. Angell‐James, J. E., M. de B. Daly, and R. Elsner. Arterial baroreceptor reflexes in the seal and their modification during experimental dives. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H730–H739, 1978.
 34. Angell‐James, J. E., M. de B. Daly, and A. Taton. Modification of the baroreflex control of pulse interval by the integrative activity of inputs from the upper airways, carotid bodies and lungs in the conscious animal. In: Baroreceptors and Hypertension, edited by P. Sleight Oxford, UK: Oxford Univ. Press, 1980, p. 297–304.
 35. Angell‐James, J. E., R. Elsner, and M. de B. Daly. Lung inflation: effects on heart rate, respiration, and vagal afferent activity in seals. Am. J. Physiol. 240 (Heart Circ. Physiol. 9): H190–H198, 1981.
 36. Angelone, A., and N. A. Coulter Jr.. Respiratory sinus arrhythmia: a frequency dependent phenomenon. J. Appl. Physiol. 19: 479–482, 1964.
 37. Angelone, A., and N. A. Coulter, Jr. Heart rate response to held lung volume. J. Appl. Physiol. 20: 464–468, 1965.
 38. Anrep, G. V., W. Pascual, and R. Rössler. Respiratory variations of the heart rate. I. The reflex mechanism of the respiratory arrhythmia. Proc. R. Soc. London Ser. B 119: 119–217, 1936.
 39. Anrep, G. V., W. Pascual, and R. Rössler. Respiratory variations of the heart rate. II. The central mechanism of the respiratory arrhythmia and the interrelations between the central and the reflex mechanisms. Proc. R. Soc. London Ser. B 119: 218–230, 1936.
 40. Armstrong, G. G., Jr., and L. S. Irby. Arterial blood pressure waves in the absence of functioning aortic and carotid chemoreceptors. Am. J. Physiol. 202: 963–966, 1962.
 41. Aschner, B. Über einen Bisher noch nicht beschriebenen Reflex vom auge auf Kreislauf und Atmung. Wien Klin. Wochenschr. 21: 1529–1540, 1908.
 42. Aserinsky, E., and D. A. DeBias. Suppression of oculocardiac reflex by artificial respiration. Arch. Ophthalmol. 69: 484–491, 1963.
 43. Attinger, F. M. L., E. O. Attinger, D. Cooperson, and W. Gottschalk. Interactions between carotid sinus mechanoreceptor and chemoreceptor reflex loops. Pfluegers Arch. 366: 255–261, 1976.
 44. Aviado, D. M., M. de B. Daly, C. Y. Lee, and C. F. Schmidt. The contribution of the bronchial circulation to venous admixture in pulmonary venous blood. J. Physiol. London 155: 602–622, 1961.
 45. Aviado, D. M., Jr., T. H. Li, W. Kalow, C. F. Schmidt, G. L. Turnbull, G. W. Peskin, M. E. Hess, and A. J. Weiss. Respiratory and circulatory reflexes from the perfused heart and pulmonary circulation of the dog. Am. J. Physiol. 165: 261–277, 1951.
 46. Aviado, D. M., Jr., and C. F. Schmidt. Reflexes from stretch receptors in blood vessels, heart and lungs. Physiol. Rev. 35: 247–300, 1955.
 47. Aviado, D. M., Jr., and C. F. Schmidt. Cardiovascular and respiratory reflexes from the left side of the heart. Am. J. Physiol. 196: 726–730, 1959.
 48. Bainbridge, F. A. The influence of venous filling upon the rate of the heart. J. Physiol. London 50: 65–84, 1915.
 49. Bainbridge, F. A. The relation between respiration and the pulse‐rate. J. Physiol. London 54: 192–202, 1920.
 50. Bainbridge, F. A., and R. Hilton. The relation between respiration and the pulse‐rate (Abstract). J. Physiol. London 52: 65P–66P, 1919.
 51. Baker, D. G., H. M. Coleridge, J. C. G. Coleridge, and T. Nerdrum. Search for a cardiac nociceptor: stimulation by bradykinin of sympathetic afferent nerve endings in the heart of the cat. J. Physiol. London 306: 519–536, 1980.
 52. Band, D. M., I. R. Cameron, and S. J. G. Semple. Oscillations in arterial pH with breathing in the cat. J. Appl. Physiol. 26: 261–267, 1969.
 53. Band, D. M., I. R. Cameron, and S. J. G. Semple. The effect on respiration of abrupt changes in carotid artery pH and PCO2 in the cat. J. Physiol. London 211: 479–494, 1970.
 54. Band, D. M., M. McClelland, D. L. Phillips, K. B. Saunders, and C. B. Wolff. Sensitivity of the carotid body to within‐breath changes in arterial PCO2. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 768–777, 1978.
 55. Band, D. M., and C. B. Wolff. Respiratory oscillations in discharge frequency of chemoreceptor afferents in sinus nerve of anaesthetized cats at normal and low arterial oxygen tensions. J. Physiol. London 282: 1–6, 1978.
 56. Band, D. M., C. B. Wolff, J. Ward, G. M. Cochrane, and J. G. Prior. Respiratory oscillations in arterial carbon dioxide tension as a control signal in exercise. Nature London 283: 84–85, 1980.
 57. Banister, J., G. Fegler, and C. Hebb. Initial respiratory responses to the intratracheal inhalation of phosgene or ammonia. Q. J. Exp. Physiol. 35: 233–250, 1949.
 58. Banister, J., and R. W. Torrance. The effects of the tracheal pressure upon flow: pressure relations in the vascular bed of isolated lungs. Q. J. Exp. Physiol. 45: 352–367, 1960.
 59. Barman, S. M., and G. L. Gebber. Basis for synchronization of sympathetic and phrenic nerve discharges. Am. J. Physiol. 231: 1601–1607, 1976.
 60. Barry, D. T. Afferent impressions from the respiratory mechanism. J. Physiol. London 45: 473–481, 1913.
 61. Baumgarten, R. von, A. von Baumgarten, and K.‐P. Schaefer. Beitrag zur Localisationsfrage bulboreticuläres respiratorischer Neurone der Katze. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 264: 217–227, 1957.
 62. Baumgarten, R. von, and E. Kanzow. The interaction of two types of inspiratory neurons in the region of the tractus solitarius of the cat. Arch. Ital. Biol. 96: 361–373, 1958.
 63. Baxter, I. G., and J. W. Pearce. Simultaneous measurement of pulmonary arterial flow and pressure using condenser manometers. J. Physiol. London 115: 410–429, 1951.
 64. Bayliss, W. M. On reciprocal innervation in vasomotor reflexes and on the action of strychnine and of chloroform thereon. Proc. R. Soc. London Ser. B 80: 339–375, 1908.
 65. Berger, A. J., R. A. Mitchell, and J. W. Severinghaus. Regulation of respiration. N. Engl. J. Med. 297: 92–97, 138‐143, 194‐201, 1977.
 66. Berk, J. L., and M. N. Levy. Profound reflex bradycardia produced by transient hypoxia or hypercapnia in man. Eur. Surg. Res. 9: 75–84, 1977.
 67. Bernards, J. A. Orbitocirculatory reflex. I. Effects of pressure on the eyes on circulation in the dog. II. Role of sympathetic nerves in circulatory changes produced by eye pressure in the dog. Arch. Int. Physiol. 68: 761–773, 1960.
 68. Bernthal, T. Chemo‐reflex control of vascular reactions through the carotid body. Am. J. Physiol. 121: 1–20, 1938.
 69. Bernthal, T., W. Greene, Jr., and A. M. Revzin. Role of carotid chemoreceptors in hypoxic cardiac acceleration. Proc. Soc. Exp. Biol. NY 76: 121–124, 1951.
 70. Bernthal, T., H. E. Motley, F. J. Schwind, and W. F. Weeks. The efferent pathway of chemoreflex vasomotor reactions arising from the carotid body. Am. J. Physiol. 143: 220–225, 1945.
 71. Bezold, A. von, and L. Hirt. Über die physiologischen Wirkungen des essigsauren Veratrins. Unters Physiol. Lab. Würzburg 1: 73–156, 1867.
 72. Bianconi, R., and J. H. Green. Pulmonary baroreceptors in the cat. Arch. Ital. Biol. 97: 305–315, 1959.
 73. Billingsley, P. R., and S. W. Ranson. On the number of nerve cells in the ganglion cervicale superius and of nerve fibers in the cephalic end of the truncus sympatheticus in the cat and on the numerical relations of preganglionic and postganglionic neurones. J. Comp. Neurol. 29: 359–366, 1918.
 74. Biscoe, T. J., and M. J. Purves. Observations on carotid body chemoreceptor activity and cervical sympathetic discharge in the cat. J. Physiol. London 190: 413–424, 1967.
 75. Biscoe, T. J., and S. R. Sampson. Field potentials evoked in the brain stem of the cat by stimulation of the carotid sinus, glossopharyngeal, aortic and superior laryngeal nerves. J. Physiol. London 209: 341–358, 1970.
 76. Biscoe, T. J., and S. R. Sampson. Responses of cells in the brain stem of the cat to stimulation of the sinus, glossopharyngeal, aortic and superior laryngeal nerves. J. Physiol. London 209: 359–373, 1970.
 77. Bisset, G. S., III, W. Gaum, and S. Kaplan. The ice bag: a new technique for interruption of supraventricular tachycardia. J. Pediatr. 97: 593–595, 1980.
 78. Bizzi, E., A. Libretti, A. Malliani, and A. Zanchetti. Reflex chemoceptive excitation of diencephalic sham rage behavior. Am. J. Physiol. 200: 923–926, 1961.
 79. Black, A. M. S., D. I. McCloskey, and R. W. Torrance. The responses of carotid body chemoreceptors in the cat to sudden changes of hypercapnic and hypoxic stimuli. Respir. Physiol. 13: 36–49, 1971.
 80. Black, A. M. S., and R. W. Torrance. Chemoreceptor effects in the respiratory cycle (Abstract). J. Physiol. London 189: 59P–61P, 1967.
 81. Black, A. M. S., and R. W. Torrance. Respiratory oscillations in chemoreceptor discharge in the control of breathing. Respir. Physiol. 13: 221–237, 1971.
 82. Black, J. E., and I. C. Roddie. The mechanism of the changes in forearm vascular resistance during hypoxia. J. Physiol. London 143: 226–235, 1958.
 83. Bolton, b., E. A. Carmichael, and G. Sturup. Vasoconstriction following deep inspiration. J. Physiol. London 86: 83–94, 1936.
 84. Bond, W. C., C. Bohs, J. Ebey, and S. Wolf. Rhythmic heart rate variability (sinus arrhythmia) related to stages of sleep. Cond. Reflex 8: 98–107, 1973.
 85. Borison, H. L., and D. Domjan. Persistence of the cardioinhibitory response to brainstem ischaemia after destruction of the area postrema and the dorsal vagal nuclei. J. Physiol. London 211: 263–277, 1970.
 86. Boushey, H. A., P. S. Richardson, J. G. Widdicombe, and J. C. M. Wise. The response of laryngeal afferent fibres to mechanical and chemical stimuli. J. Physiol. London 240: 153–276, 1974.
 87. Brecher, G. A. Venous Return. New York: Grune & Stratton, 1956.
 88. Breuer, J. Die Selbststeuerung der Athmung durch den Nervals vagus. Sitzungsber. Akad. Wiss. Wien 58: 909–937, 1868.
 89. Bristow, J. D., E. b. Brown, Jr., D. J. C. Cunningham, R. C. Goode, M. G. Howson, and P. Sleight. The effects of hypercapnia, hypoxia and ventilation on the baroreflex regulation of the pulse interval. J. Physiol. London 216: 281–302, 1971.
 90. Bristow, J. D., E. B. Brown, Jr., D. J. C. Cunningham, M. G. Howson, M. J. R. Lee, T. G. Pickering, and P. Sleight. The effects of raising alveolar PCO2 and ventilation separately and together on the sensitivity and setting of the baroreceptor cardiodepressor reflex in man. J. Physiol. London 243: 401–425, 1974.
 91. Brodie, T. G., and A. E. Russell. On reflex cardiac inhibition. J. Physiol. London 26: 92–106, 1900.
 92. Bronk, D. W., L. K. Ferguson, R. Margaria, and D. Y. Solandt. The activity of the cardiac sympathetic centers. Am. J. Physiol. 117: 237–249, 1936.
 93. Brooks, C. McC. Introduction. Control of the autonomic nervous system and the multiple integrative roles it plays in regulating cardiovascular functions. J. Auton. Nerv. Syst. 4: 115–120, 1981.
 94. Brown, A. M., H. N. Duke, and N. Joels. The part played by cerebral anaemia in the response to occlusion of the common carotid arteries in the cat. J. Physiol. London 165: 266–273, 1963.
 95. Brown, H. V., K. Wasserman, and b. J. Whipp. Effect of beta‐adrenergic blockade during exercise on ventilation and gas exchange. J. Appl. Physiol. 41: 886–892, 1976.
 96. Brown‐Séquard. Note sur l'association des efforts inspiratoires avec une diminution ou l'arrêt des mouvements du coeur. J. Physiol. Paris 1: 512–518, 1858.
 97. Browse, N. L., and P. J. Hardwick. The deep breath‐venoconstriction reflex. Clin. Sci. 37: 125–135, 1969.
 98. Brunner, M. J., M. S. Sussman, A. S. Greene, C. H. Kallman, and A. A. Shoukas. Carotid sinus baroreceptor reflex control of respiration. Circ. Res. 51: 624–636, 1982.
 99. Burch, G. E., A. E. Cohn, and C. Neumann. A study by quantitative methods of the spontaneous variations in volume of the finger tip, toe tip, and postero‐superior portion of the pinna of resting normal white adults. Am. J. Physiol. 136: 433–447, 1942.
 100. Burnum, J. F., J. B. Hickman, and H. D. McIntosh. The effect of hypocapnia on arterial blood pressure. Circulation 9: 89–95, 1954.
 101. Burton, A. C. The range and variability of the blood flow in the human fingers and the vasomotor regulation of body temperature. Am. J. Physiol. 127: 437–453, 1939.
 102. Calarescu, F. R., and J. W. Pearce. Effects on heart rate of electrical stimulation of medullary vagal structures in the cat. J. Physiol. London 176: 241–251, 1965.
 103. Campbell, E. J. M., E. Agostoni, and J. N. Davis. The Respiratory Muscles. New York: Lloyd‐Luke, 1970, p. 205–233.
 104. Camps, F. E. Gradwohl's Legal Medicine (2nd ed.). Bristol, UK: Wright, 1968, p. 347.
 105. Cannon, W. B. Bodily Changes in Pain, Hunger, Fear and Rage. New York: Appleton, 1915, p. 26–29.
 106. Cassidy, S. S., W. L. Eschenbacher, and R. L. Johnson, Jr. Reflex cardiovascular depression during unilateral lung hyperinflation in the dog. J. Clin. Invest. 64: 620–626, 1979.
 107. Chalmers, J. P., J. P. Isbister, P. I. Korner, and H. Y. I. Mok. The role of the sympathetic nervous system in the circulatory response of the rabbit to arterial hypoxia. J. Physiol. London 181: 175–191, 1965.
 108. Chalmers, J. P., P. I. Korner, and S. W. White. The control of the circulation in skeletal muscle during arterial hypoxia in the rabbit. J. Physiol. London 184: 698–716, 1966.
 109. Chalmers, J. P., P. I. Korner, and S. W. White. The relative roles of the aortic and carotid sinus nerves in the rabbit in the control of respiration and circulation during arterial hypoxia and hypercapnia. J. Physiol. London 188: 435–450, 1967.
 110. Chalmers, J. P., P. I. Korner, and S. W. White. Local and reflex factors affecting the distribution of the peripheral blood flow during arterial hypoxia in the rabbit. J. Physiol. London 192: 537–548, 1967.
 111. Chungcharoen, D., M. de B. Daly, E. Neil, and A. Schweitzer. The effect of carotid occlusion upon the intrasinusal pressure with special reference to vascular communications between the carotid and vertebral circulations in the dog, cat and rabbit. J. Physiol. London 117: 56–76, 1952.
 112. Chungcharoen, D., M. de B. Daly, and A. Schweitzer. The blood supply of the carotid body in cats, dogs and rabbits. J. Physiol. London 117: 347–358, 1952.
 113. Clarke, J. A., and M. de B. Daly. Distribution of carotid body type‐I cells and other periadventitial type‐I cells in the carotid bifurcation regions of the rabbit. Cell Tissue Res. 216: 603–614, 1981.
 114. Clarke, J. A., and M. de B. Daly. A comparative study of the distribution of carotid body type‐I cells and periadventitial type‐I cells in the carotid bifurcation regions of the rabbit, rat, guinea pig and mouse. Cell Tissue Res. 220: 753–772, 1981.
 115. Clarke, J. A., and M. de B. Daly. The distribution of carotid body type‐I cells and periadventitial type‐I cells in the carotid bifurcation regions of the dog. Acta Anat. 113: 352–370, 1982.
 116. Clarke, J. A., and M. de B. Daly. Distribution of carotid body type‐I cells and other periadventitial type‐I cells in the carotid bifurcation regions of the cat. Anat. Embryol. 166: 169–189, 1983.
 117. Clarke, R. S. J. The effect of voluntary overbreathing on the blood flow through the human forearm. J. Physiol. London 118: 537–544, 1952.
 118. Clement, D. L., C. L. Pelletier, and J. T. Shepherd. Role of vagal afferents in the control of renal sympathetic nerve activity in the rabbit. Circ. Res. 31: 824–830, 1972.
 119. Clynes, M. Computer analysis of reflex control and organization: respiratory sinus arrhythmia. Science 131: 300–302, 1960.
 120. Clynes, M. Respiratory sinus arrhythmia: laws derived from computer simulation. J. Appl. Physiol. 15: 863–874, 1960.
 121. Cochrane, G. M., C. G. Newstead, R. V. Nowell, P. Openshaw, and C. B. Wolff. The rate of rise of carbon dioxide pressure during expiration in man. J. Physiol. London 333: 17–27, 1982.
 122. Cochrane, G. M., J. G. Prior, and C. B. Wolff. Respiratory arterial pH and PCO2 oscillations in patients with chronic obstructive airways disease. Clin. Sci. 61: 693–702, 1981.
 123. Cohen, M. I. Discharge patterns of brain‐stem respiratory neurons during Hering‐Breuer reflex evoked by lung inflation. J. Neurophysiol. 32: 356–374, 1969.
 124. Cohen, M. I. The genesis of respiratory rhythmicity. In: Central Rhythmic and Regulation, edited by W. Umbach and H. P. Koepchen Stuttgart, West Germany: Hippokrates, 1974, p. 15–35.
 125. Cohen, M. I. Neurogenesis of respiratory rhythm in the mammal. Physiol. Rev. 59: 1105–1173, 1979.
 126. Cohen, M. I., and P. M. Gootman. Periodicities in efferent discharge of splanchnic nerve of the cat. Am. J. Physiol. 218: 1092–1101, 1970.
 127. Cohen, M. I., P. M. Gootman, and J. L. Feldman. Inhibition of sympathetic discharge by lung inflation. In: Arterial Baroreceptors and Hypertension, edited by P. Sleight Oxford, UK: Oxford Univ. Press, 1980, p. 161–167.
 128. Coleridge, H. M., and J. C. G. Coleridge. Afferent vagal C‐fibers in the dog lung: their discharge during spontaneous breathing, and their stimulation by alloxan and pulmonary congestion. In: Krogh Centenary Symposium on Respiratory Adaptations, Capillary Exchange and Reflex Mechanisms, edited by A. S. Paintal and P. Gill‐Kumar Delhi: Vallabhbhai Patel Chest Inst., 1977, p. 396–405.
 129. Coleridge, H. M., and J. C. G. Coleridge. Impulse activity in afferent vagal C‐fibres with endings in the intrapulmonary airways of dogs. Respir. Physiol. 29: 125–142, 1977.
 130. Coleridge, H. M., and J. C. G. Coleridge. Cardiovascular afferents involved in regulation of peripheral vessels. Annu. Rev. Physiol. 42: 413–427, 1980.
 131. Coleridge, H. M., J. C. G. Coleridge, A. Danzel, C. Kidd, J. C. Luck, and P. Sleight. Impulses in slowly conducting vagal fibers from afferent endings in the veins, atria and arteries of dogs and cats. Circ. Res. 33: 87–97, 1973.
 132. Coleridge, H. M., J. C. G. Coleridge, and A. Howe. A search for pulmonary arterial chemoreceptors in the cat, with a comparison of the blood supply of the aortic bodies in the new‐born and adult animal. J. Physiol. London 191: 353–374, 1967.
 133. Coleridge, H. M., J. C. G. Coleridge, and A. Howe. Thoracic chemoreceptors in the dog. A histological and electrophysiological study of the location, innervation and blood supply of the aortic bodies. Circ. Res. 26: 235–247, 1970.
 134. Coleridge, H. M., J. C. G. Coleridge, and C. Kidd. Cardiac receptors in the dog, with special reference to two types of afferent sending in the ventricular wall. J. Physiol. London 174: 323–339, 1964.
 135. Coleridge, H. M., J. C. G. Coleridge, and C. Kidd. Afferent innervation of the heart and great vessels: a comparison of the vagal and sympathetic components. Acta Physiol. Pol. 29, Suppl. 17: 55–79, 1978.
 136. Coleridge, H. M., J. C. G. Coleridge, and J. C. Luck. Pulmonary afferent fibres of small diameter stimulated by capsaicin and by hyperinflation of the lungs. J. Physiol. London 179: 248–262, 1965.
 137. Coleridge, J. C. G., and H. M. Coleridge. Chemoreflex regulation of the heart. In: Handbook of Physiology. The Cardiovascular System. The Heart, edited by R. M. Berne and N. Sperelakis Bethesda, MD: Am. Physiol. Soc., 1979, sect. 2, vol. I, chapt. 18, p. 653–676.
 138. Coleridge, J. C. G., H. M. Coleridge, and D. G. Baker. Vagal afferent C‐fibres from the ventricle. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden Cambridge, UK: Cambridge Univ. Press, 1979, p. 117–137.
 139. Coleridge, J. C. G., and C. Kidd. Electrophysiological evidence of baroreceptors in the pulmonary artery of the dog. J. Physiol. London 150: 319–331, 1960.
 140. Coleridge, J. C. G., and C. Kidd. Reflex effects of stimulating baroreceptors in the pulmonary artery. J. Physiol. London 166: 197–219, 1963.
 141. Coleridge, J. C. G., C. Kidd, and J. A. Sharp. The distribution, connexions and histology of baroreceptors in the pulmonary artery, with some observations on the sensory innervation of the ductus arteriosus. J. Physiol. London 156: 591–602, 1961.
 142. Coleridge, J. C. G., and R. J. Linden. The measurement of effective atrial pressure. J. Physiol. London 126: 304–318, 1954.
 143. Coleridge, J. C. G., and R. J. Linden. The effect of intravenous infusions upon the heart rate of the anaesthetized dog. J. Physiol. London 128: 310–319, 1955.
 144. Comroe, J. H., Jr. The location and function of the chemoreceptors of the aorta. Am. J. Physiol. 127: 176–191, 1939.
 145. Comroe, J. H., Jr., and L. Mortimer. The respiratory and cardiovascular responses of temporally separated aortic and carotid bodies to cyanide, nicotine, phenyldiguanide and serotonin. J. Pharmacol. 146: 33–41, 1964.
 146. Comroe, J. H., Jr., and C. F. Schmidt. The part played by reflexes from the carotid body in the chemical regulation of respiration in the dog. Am. J. Physiol. 121: 75–97, 1938.
 147. Coote, J. H., S. M. Hilton, and J. F. Perez‐Gonzalez. Inhibition of the baroreceptor reflex on stimulation in the brain stem defence center. J. Physiol. London 288: 549–560, 1979.
 148. Coote, J. H., and V. H. Macleod. The influence of bulbospinal monoaminergic pathways on sympathetic nerve activity. J. Physiol. London 241: 453–475, 1974.
 149. Coote, J. H., and V. H. Macleod. Evidence for the involvement in the baroreceptor reflex of a descending inhibitory pathway. J. Physiol. London 241: 477–496, 1974.
 150. Coote, J. H., and V. H. Macleod. The spinal route of sympatho‐inhibitory pathways descending from the medulla oblongata. Pfluegers Arch. 359: 335–347, 1975.
 151. Coote, J. H., and V. H. Macleod. The effect of intraspinal microinjections of 6‐hydroxydopamine on the inhibitory influence exerted on spinal sympathetic activity by the baroreceptors. Pfluegers Arch. 371: 271–277, 1977.
 152. Coote, J. H., V. H. Macleod, and I. L. Martin. A search for the role of bulbospinal tryptaminergic neurones in the control of sympathetic activity. Pfluegers Arch. 377: 109–116, 1978.
 153. Coote, J. H., and A. Sato. Supraspinal regulation of spinal reflex discharge into cardiac sympathetic nerves. Brain Res. 142: 425–437, 1978.
 154. Cordero, L., Jr., and E. H. Hon. Neonatal bradycardia following nasopharyngeal stimulation. J. Pediatr. 78: 441–447, 1971.
 155. Craig, A. B., Jr. Underwater swimming and loss of consciousness. J. Am. Med. Assoc. 176: 255–258, 1961.
 156. Crocker, E. F., R. O. Johnson, P. I. Korner, J. B. Uther, and S. W. white. Effects of hyperventilation on the circulatory response of the rabbit to arterial hypoxia. J. Physiol. London 199: 267–282, 1968.
 157. Cropp, G. J. A., and J. H. Comroe, Jr. Role of mixed venous blood PCO2 in respiratory control. J. Appl. Physiol. 16: 1029–1033, 1961.
 158. Cross, B. A., A. Davey, A. Guz, P. G. Katona, M. MacLean, K. Murphy, S. J. G. Semple, and R. Stidwell. The pH oscillations in arterial blood during exercise; a potential signal for the ventilatory response in the dog. J. Physiol. London 329: 57–73, 1982.
 159. Cross, B. A., B. J. B. Grant, A. Guz, P. W. Jones, S. J. G. Semple, and R. P. Stidwell. Dependence of phrenic motoneurone output on the oscillatory component of arterial blood gas composition. J. Physiol. London 290: 163–184, 1979.
 160. Cross, C. E., P. A. Rieben, C. I. Barron, and P. F. Salisbury. Effects of arterial hypoxia on the heart and circulation: an integrative study. Am. J. Physiol. 205: 963–970, 1963.
 161. Cross, K. W., and S. R. Lewis. Upper respiratory obstruction and cot death. Arch. Dis. Child. 46: 211–213, 1971.
 162. Cross, K. W., and P. Warner. The effect of inhalation of high and low oxygen concentrations on the respirations of the newborn infant. J. Physiol. London 114: 283–295, 1951.
 163. Culver, B. H., and J. Butler. Mechanical influences on the pulmonary microcirculation. Annu. Rev. Physiol. 42: 187–198, 1980.
 164. Cumming, G. The pulmonary circulation. In: Cardiovascular Physiology I, edited by A. C. Guyton and C. E. Jones Baltimore, MD: University Park, 1974, vol. 1, p. 93–122. (Int. Rev. Physiol. Ser.).
 165. Cunningham, D. J. C., E. N. Hey, J. M. Patrick, and B. B. Lloyd. The effect of noradrenaline infusion on the relation between pulmonary ventilation and the alveolar PO2 in man. Ann. NY Acad. Sci. 109: 756–770, 1963.
 166. Cunningham, D. J. C., E. S. Petersen, T. G. Pickering, and P. Sleight. The effects of hypoxia, hypercapnia, and asphyxia on the baroreceptor‐cardiac reflex at rest and during exercise in man. Acta Physiol. Scand. 86: 456–465, 1972.
 167. Dagnini, G. Analisi di alcune forme di alleritmia cardiaca. Bull. Sci. Med. 8: 380–390, 1908.
 168. d'Agostini, N. Osservazioni sullo svilluppo pre‐e postnatale del glomo zucclavio e sullo svilluppo del glomo carotideo del coniglio. Arch. Ital. Anat. Embriol. 64: 16–39, 1959.
 169. Daily, W. J. R., M. Klaus, and H. B. P. Meyer. Apnea in premature infants: monitoring, incidence, heart rate changes, and an effect of environmental temperature. Pediatrics 43: 510–518, 1969.
 170. Dale, H. H., and C. L. Evans. Effects on the circulation of changes in the carbon dioxide content of the blood. J. Physiol. London 56: 125–145, 1922.
 171. Daly, I. de B., and M. de B. Daly. The effects of stimulation of the carotid body chemoreceptors on the pulmonary vascular resistance in the dog: the “vasosensory controlled perfused living animal” preparation. J. Physiol. London 148: 201–219, 1959.
 172. Daly, I. de B., and C. Hebb. Pulmonary and Bronchial Vascular Systems. London: Arnold, 1966.
 173. Daly, I. de B., G. Ludàny, A. Todd, and E. B. Verney. Sensory receptors in the pulmonary vascular bed. Q. J. Exp. Physiol. 27: 123–146, 1937.
 174. Daly, I. de B., and E. B. Verney. The localization of receptors involved in the reflex regulation of the heart rate. J. Physiol. London 62: 330–340, 1927.
 175. Daly, M. de B. Interactions of cardiovascular reflexes. Lect. Sci. Basis.Med.: 307–332, 1972.
 176. Daly, M. de B. Peripheral arterial chemoreceptors and the cardiovascular system. In: Physiology of the Peripheral Arterial Chemoreceptors, edited by H. Acker and R. G. O'Regan Amsterdam: Elsevier/North‐Holland, 1983, p. 325–393.
 177. Daly, M. de B. Breath‐hold diving: mechanisms of cardiovascular adjustments in the mammal. In: Recent Advances in Physiology, edited by P. F. Baker Edinburgh: Churchill Livingstone, 1984, vol. 10, p. 201–245.
 178. Daly, M. de B., and J. E. Angell‐James. Role of the arterial chemoreceptors in the control of the cardiovascular responses to breath‐hold diving. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves London: Cambridge Univ. Press, 1975, p. 387–407.
 179. Daly, M. de B., and J. E. Angell‐James. The “diving response” and its possible clinical implications. Internatl. Med. 1: 12–19, 1979.
 180. Daly, M. de B., J. E. Angell‐James, and R. Elsner. Role of carotid‐body chemoreceptors and their reflex interactions in bradycardia and cardiac arrest. Lancet 1: 764–767, 1979.
 181. Daly, M. de B., J. E. Angell‐James, and R. Elsner. Cardiovascular‐respiratory interactions in breath‐hold diving. In: Central Interaction Between Respiratory and Cardiovascular Control Systems, edited by H. P. Koepchen, S. M. Hilton, and A. Trzebski Berlin: Springer‐Verlag, 1980, p. 224–231.
 182. Daly, M. de B., R. Elsner, and J. E. Angell‐James. Cardiorespiratory control by carotid chemoreceptors during experimental dives in the seal. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H508–H516, 1977.
 183. Daly, M. de B., and D. H. L. Evans. Functional and histological changes in the vagus nerve of the cat after degenerative section at various levels. J. Physiol. London 120: 579–595, 1953.
 184. Daly, M. de B., and J. L. Hazzledine. The effects of artificially induced hyperventilation on the primary cardiac reflex response to stimulation of the carotid bodies in the dog. J. Physiol. London 168: 872–889, 1963.
 185. Daly, M. de B., J. L. Hazzledine, and A. Howe. Reflex respiratory and peripheral vascular responses to stimulation of the isolated perfused aortic arch chemoreceptors of the dog. J. Physiol. London 177: 300–322, 1965.
 186. Daly, M. de B., J. L. Hazzledine, and A. Ungar. The reflex effects of alterations in lung volume on systemic vascular resistance in the dog. J. Physiol. London 188: 331–351, 1967.
 187. Daly, M. de B., P. I. Korner, J. E. Angell‐James, and J. R. Oliver. Cardiovascular and respiratory effects of carotid body stimulation in the monkey. Clin. Exp. Pharmacol. Physiol. 5: 511–524, 1978.
 188. Daly, M. de B., P. I. Korner, J. E. Angell‐James, and J. R. Oliver. Cardiovascular‐respiratory reflex interactions between carotid bodies and upper‐airways receptors in the monkey. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H293–H299, 1978.
 189. Daly, M. de B., C. J. Lambertsen, and A. Schweitzer. Observations on the volume of blood flow and oxygen utilization of the carotid body in the cat. J. Physiol. London 125: 67–89, 1954.
 190. Daly, M. de B., A. S. Litherland, and L. M. Wood. The reflex effects of inflation of the lungs on heart rate and hind limb vascular resistance in the cat. IRCS Med. Sci. Libr. Compend. 11: 859–860, 1983.
 191. Daly, M. de B., A. S. Litherland, and L. M. Wood. The modification of the respiratory, cardiac and vascular responses to stimulation of the carotid body chemoreceptors by a laryngeal input in the cat. IRCS Med. Sci. Libr. Compend. 11: 861–862, 1983.
 192. Daly, M. de B., and B. H. Robinson. An analysis of the reflex systemic vasodilator response elicited by lung inflation in the dog. J. Physiol. London 195: 387–406, 1968.
 193. Daly, M. de B., and M. J. Scott. The effects of stimulation of the carotid body chemoreceptors on heart rate in the dog. J. Physiol. London 144: 148–166, 1958.
 194. Daly, M. de B., and M. J. Scott. The effect of hypoxia on the heart rate of the dog with special reference to the contribution of the carotid body chemoreceptors. J. Physiol. London 145: 440–446, 1959.
 195. Daly, M. de B., and M. J. Scott. An analysis of the primary cardiovascular reflex effects of stimulation of the carotid body chemoreceptors in the dog. J. Physiol. London 162: 555–573, 1962.
 196. Daly, M. de B., and M. J. Scott. The cardiovascular responses to stimulation of the carotid body chemoreceptors in the dog. J. Physiol. London 165: 179–197, 1963.
 197. Daly, M. de B., and M. J. Scott. The cardiovascular effects of hypoxia in the dog with special reference to the contribution of the carotid body chemoreceptors. J. Physiol. London 193: 201–214, 1964.
 198. Daly, M. de B., and M. J. Scott. A method for independent and reversible exclusion of changes in activity of the carotid chemoreceptors and baroreceptors: studies on systemic hypoxia. Q. J. Exp. Physiol. 50: 127–141, 1965.
 199. Daly, M. de B., and A. Taton. Interactions of cardiorespiratory reflexes elicited from the carotid bodies and upper airways receptors in the conscious rabbit (Abstract). J. Physiol. London 291: 34P, 1979.
 200. Daly, M. de B., and A. Taton. Upper airways reflexes evoked by bronchodilator drugs administered in pressurized aerosol form in the conscious rabbit. IRCS Med. Sci. Libr. Compend. 7: 255, 1979.
 201. Daly, M. de B., and A. Ungar. Comparison of the reflex responses elicited by stimulation of the separately perfused carotid and aortic body chemoreceptors in the dog. J. Physiol. London 182: 379–403, 1966.
 202. Daly, M. de B., J. Ward, and L. M. Wood. Comparison of the effects of lung inflation on the hind limb vascular responses to stimulation of the carotid chemoreceptors and baroreceptors and to urinary bladder distension in the anaesthetized dog (Abstract). J. Physiol. London 353: 115P, 1984.
 203. Davidson, N. S., S. Goldner, and D. I. McCloskey. Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate and cardiac vagal efferent nerve activity. J. Physiol. London 259: 523–530, 1976.
 204. Davies, C. T. M., and J. M. M. Neilson. Sinus arrhythmia in man at rest. J. Appl. Physiol. 22: 947–955, 1967.
 205. Davies, R. O., and M. W. Edwards, Jr. Medullary relay neurones in the carotid body chemoreceptor pathway of cats. Respir. Physiol. 24: 69–79, 1975.
 206. Davis, A. L., D. I. McCloskey, and E. K. Potter. Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate through the sympathetic nervous system. J. Physiol. London 272: 691–703, 1977.
 207. Davis, H. L., W. S. Fowler, and E. H. Lambert. Effect of volume and rate of inflation and deflation on transpulmonary pressure and response of pulmonary stretch receptors. Am. J. Physiol. 187: 558–566, 1956.
 208. Dawes, G. S. Studies on veratrum alkaloids. VII. Receptor areas in the coronary arteries and elsewhere as revealed by the use of veratridine. J. Pharmacol. 89: 325–342, 1947.
 209. DAWES, G. S. Foetal and Neonatal Physiology. Chicago, IL: Year Book, 1968.
 210. Dawes, G. S. Sudden death in babies: physiology of the fetus and newborn. Am. J. Cardiol. 22: 469–478, 1968.
 211. Dawes, G. S., and J. H. Comroe, Jr. Chemoreflexes from the heart and lungs. Physiol. Rev. 34: 167–201, 1954.
 212. Dawes, G. S., S. L. B. Duncan, B. V. Lewis, C. L. Merlet, J. B. Owen‐Thomas, and J. T. Reeves. Hypoxaemia and aortic chemoreceptor function in foetal lambs. J. Physiol. London 201: 105–116, 1969.
 213. Dawes, G. S., S. L. B. Duncan, B. V. Lewis, C. L. Merlet, J. B. Owen‐Thomas, and J. T. Reeves. Cyanide stimulation of the systemic arterial chemoreceptors in foetal lambs. J. Physiol. London 201: 117–128, 1969.
 214. Dawes, G. S., B. V. Lewis, J. E. Milligan, M. R. Roach, and N. S. Talner. Vasomotor responses in the hind limbs of foetal and new‐born lambs to asphyxia and aortic chemoreceptor stimulation. J. Physiol. London 195: 55–81, 1968.
 215. Dawes, G. S., J. C. Mott, and J. G. Widdicombe. Respiratory and cardiovascular reflexes from the heart and lungs. J. Physiol. London 115: 258–291, 1951.
 216. DeGeest, H., M. N. Levy, and H. Zieske. Reflex effects of cephalic hypoxia, hypercapnia, and ischemia upon ventricular contractility. Circ. Res. 17: 349–358, 1965.
 217. Dejours, P. Control of respiration in muscular exercise. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 25, p. 631–648.
 218. Dejours, P., Y. Labrousse, J. Raynaud, P. Girard, and A. Teilloc. Stimulus oxygène de la ventilation au repos et au de l'exercice musculaire, a basse altitude (50 m) chez l'homme. Rev. Fr. Etud. Clin. Biol. 3: 105–123, 1958.
 219. Delius, W., K‐E. Hagbarth, A. Hongell, and B. G. Wallin. General characteristics of sympathetic activity in human muscle nerves. Acta Physiol. Scand. 84: 65–81, 1972.
 220. Diamond, J. Observations on the excitation by acetylcholine and by pressure of sensory receptors in the cat's carotid sinus. J. Physiol. London 130: 513–532, 1955.
 221. Diji, A. Local vasodilator action of carbon dioxide on blood vessels of the hand. J. Appl. Physiol. 14: 414–416, 1959.
 222. Donald, D. E., and A. J. Edis. Comparison of aortic and carotid baroreflexes in the dog. J. Physiol. London 215: 521–538, 1971.
 223. Donald, D. E., and J. T. Shepherd. Reflexes from the heart and lungs: physiological curiosities or important regulatory mechanisms. Cardiovasc. Res. 12: 449–469, 1978.
 224. Donders, F. C. Weitere Beiträge zur Physiologie der Respiration und Circulation. Heule Pfleufer Z. Med. Heidelberg 4: 241–256, 1853.
 225. Donders, F. C. Physiologie des Menschen. Leipzig, Germany: Hirzel, 1859.
 226. Dontas, A. S. Effects of protoveratrine, serotonin and ATP on afferent and splanchnic nerve activity. Circ. Res. 3: 363–373, 1955.
 227. Dornhorst, A. C., P. Howard, and G. L. Leathart. Respiratory variations in blood pressure. Circulation 6: 553–558, 1952.
 228. Downing, S. E., and J. C. Lee. Laryngeal chemosensitivity: a possible mechanism for sudden infant death. Pediatrics 55: 640–649, 1975.
 229. Downing, S. E., J. H. Mitchell, and A. G. Wallace. Cardiovascular responses to ischemia, hypoxia, and hypercapnia of the central nervous system. Am. J. Physiol. 204: 881–887, 1963.
 230. Downing, S. E., J. P. Remensnyder, and J. H. Mitchell. Cardiovascular responses to hypoxic stimulation of the carotid bodies. Circ. Res. 10: 676–685, 1962.
 231. Downing, S. E., and J. H. Siegel. Baroreceptor and chemoreceptor influences on sympathetic discharge to the heart. Am. J. Physiol. 204: 471–479, 1963.
 232. Dripps, R. D., and J. H. Comroe, Jr. The effect of the inhalation of high and low oxygen concentrations on respiration, pulse rate, ballistocardiogram and arterial oxygen saturation (oximeter) of normal individuals. Am. J. Physiol. 149: 277–291, 1947.
 233. Drummond, P. C., and D. R. Jones. The initiation and maintenance of bradycardia in a diving mammal, the muskrat, Ondatra zibethica. J. Physiol. London 290: 253–271, 1979.
 234. Drysdale, D. B., and E. S. Petersen. Arterial chemoreceptors, ventilation and heart rate in man. J. Physiol. London 273: 109–120, 1977.
 235. D'Silva, J. L., D. Gill, and D. Mendel. The effect of acute haemorrhage on respiration in the cat. J. Physiol. London 187: 369–377, 1966.
 236. Dubois, A. B., A. G. Britt, and W. O. Fenn. Alveolar CO2 during the respiratory cycle. J. Appl. Physiol. 4: 535–548, 1952.
 237. Duomarco, J., R. Rimini, and P. Recarte. La presion intraabdominal y la presion en la vena cava inferior. Rev. Argent. Cardiol. 11: 273–285, 1944.
 238. Duomarco, J., P. Recarte, and R. Rimini. Influencia de las presiones abdominal y toracica sobre el retorno venoso en la cava inferior. Rev. Argent. Cardiol. 11: 286–297, 1944.
 239. Dutton, R. E., R. S. Fitzgerald, and N. Gross. Ventilatory response to square‐wave forcing of carbon dioxide at the carotid bodies. Respir. Physiol. 4: 101–108, 1968.
 240. Dykes, R. W. Factors related to the dive reflex in harbor seals: respiration, immersion bradycardia, and lability of the heart rate. Can. J. Physiol. Pharmacol. 52: 248–258, 1974.
 241. Dykes, R. W. Factors related to the dive reflex in harbor seals: sensory contributions from the trigeminal region. Can. J. Physiol. Pharmacol. 52: 259–265, 1974.
 242. Ead, H. W., J. H. Green, and E. Neil. A comparison of the effects of pulsatile and non‐pulsatile blood flow through the carotid sinus on the reflexogenic activity of the sinus baroreceptors in the cat. J. Physiol. London 118: 509–519, 1952.
 243. Eckberg, D. L., H. Bastow III, and A. E. Scruby. Modulation of human sinus node function by systemic hypoxia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 570–577, 1982.
 244. Eckberg, D. L., M. S. Cavanaugh, A. L. Mark, and F. M. Abboud. A simplified neck suction device for activation of carotid baroreceptors. J. Lab. Clin. Med. 85: 167–173, 1975.
 245. Eckberg, D. L., Y. T. Kifle, and V. L. Roberts. Phase relationship between normal human respiration and baroreflex responsiveness. J. Physiol. London 304: 489–502, 1980.
 246. Eckberg, D. L., and C. R. Orshan. Respiratory and baroreceptor reflex interactions in man. J. Clin. Invest. 59: 780–785, 1977.
 247. Edis, A. J., D. E. Donald, and J. T. Shepherd. Cardiovascular reflexes from stretch of pulmonary vein‐atrial junctions in the dog. Circ. Res. 27: 1091–1100, 1970.
 248. Einbrodt, M. Über den Einfluss der Athembemegungen auf herzschlag und Blutdruck. Sitzungsber. Akad. Wiss. Wien 40: 345–360, 1860.
 249. Eldridge, F. L. The importance of timing on the respiratory effects of intermittent carotid sinus nerve stimulation. J. Physiol. London 222: 297–318, 1972.
 250. Eldridge, F. L. The importance of timing on the respiratory effects of intermittent carotid sinus nerve stimulation. J. Physiol. London 222: 319–333, 1972.
 251. Elkins, R. C., and W. R. Milnor. Pulmonary vascular response to exercise in the dog. Circ. Res. 29: 591–599, 1971.
 252. Elsner, R., J. E. Angell‐James, and M. de B. Daly. Carotid body chemoreceptor reflexes and their interactions in the seal. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H517–H525, 1977.
 253. Elsner, R., D. L. Franklin, R. L.Van Citters, and D. V. Kenney. Cardiovascular defense against asphyxia. Science 153: 941–949, 1966.
 254. Elsner, R., and B. A. Gooden. Diving and Asphyxia. Cambridge, UK: Cambridge Univ. Press, 1983.
 255. Ernsting, J., and D. J. Parry. Some observations on the effects of stimulating the stretch receptors in the carotid artery of man (Abstract). J. Physiol. London 137: 45P–46P, 1957.
 256. Evans, D. H. L., and J. G. Murray. Histological and functional studies on the fibre composition of the vagus nerve of the rabbit. J. Anat. 88: 320–337, 1954.
 257. Eyzaguirre, C., and J. Lewin. The effect of sympathetic stimulation on carotid nerve activity. J. Physiol. London 159: 251–267, 1961.
 258. Fagius, J., and B. C. Wallin. Sympathetic reflex latencies and conduction velocities in normal man. J. Neurol Sci. 47: 433–448, 1980.
 259. Feldberg, W., and P. G. Guertzenstein. A vasodepressor effect of pentobarbitone sodium. J. Physiol. London 224: 83–103, 1972.
 260. Ferretti, R., N. S. Cherniack, G. Longobardo, O. R. Levine, E. Morkin, D. H. Singer, and A. P. Fishman. Systemic and pulmonary vasomotor waves. Am. J. Physiol. 209: 37–50, 1965.
 261. Ferretti, R., N. S. Cherniack, G. Longobardo, and D. Singer. Chemoreceptors in the genesis of the Traube‐Hering Mayer waves (Abstract). Federation Proc. 22: 182, 1963.
 262. Fitzgerald, R. S., L. M. Leitner, and M. J. Liaubet. Carotid chemoreceptor response to intermittent or sustained stimulation in the cat. Respir. Physiol. 6: 395–402, 1969.
 263. Floyd, K. Light microscopy of nerve endings in the atrial endocardium. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden Cambridge, UK: Cambridge Univ. Press, 1979, p. 3–24.
 264. Floyd, W. F., and E. Neil. The influence of the sympathetic innervation of the carotid bifurcation on chemoreceptor and baroreceptor activity in the cat. Arch. Int. Pharmacodyn. Ther. 91: 230–239, 1952.
 265. Foà, C. Periodische automatic des herzhemmenden und des vasomotorischen Bulbarzentrums. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 153: 522–545, 1913.
 266. Foreman, R. D., and R. D. Wurster. Localization and functional characteristics of descending sympathetic spinal pathways. Am. J. Physiol. 225: 212–217, 1973.
 267. Fox, I. J., W. P. Crowley, Jr., J. B. Grace, and E. H. Wood. Effects of the Valsalva maneuver on blood flow in the thoracic aorta in man. J. Appl. Physiol. 21: 1553–1560, 1966.
 268. François‐Franck, C. A. Effects réflexes produits par l'excitation des filets sensibles du pneumogastrique et du laryngé supérieure sur le coeur et les vaisseaux. C. R. Acad. Sci. 88: 893–894, 1879.
 269. François‐Franck, C. A. Contribution à l'étude expérimentale des névroses réflexes d'origine nasale. Arch. Physiol. 21: 538–555, 1889.
 270. Frankel, H. L., C. J. Mathias, and J. M. K. Spalding. Mechanisms of reflex cardiac arrest in tetraplegic patients. Lancet 2: 1183–1185, 1975.
 271. Frédericq, L. De l'influence de la respiration sur la circulation. (1re partie). Les oscillations respiratoires, de la pression artérielle chez le chien. Arch. Biol. Paris 3: 55–100, 1882.
 272. Freyschuss, U., and A. Melcher. Sinus arrhythmia in man: influence of tidal volume and oesophageal pressure. Scand. J. Clin. Lab. Invest. 35: 487–496, 1975.
 273. Gandevia, S. C., D. I. McCloskey, and E. K. Potter. Inhibition of baroreceptor and chemoreceptor reflexes on heart rate by afferents from the lungs. J. Physiol. London 276: 369–382, 1978.
 274. Gandevia, S. C., D. I. McCloskey, and E. K. Potter. Reflex bradycardia occurring in response to diving, nasopharyngeal stimulation and ocular pressure, and its modification by respiration and swallowing. J. Physiol. London 276: 383–394, 1978.
 275. Gebber, G. L. Central oscillators responsible for sympathetic nerve discharge. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H143–H155, 1980.
 276. Gebber, G. L., D. G. Taylor, and L. C. Weaver. Electrophysiological studies on organization of central vasopressor pathways. Am. J. Physiol. 224: 470–481, 1973.
 277. Gerber, U., and C. Polosa. Effects of pulmonary stretch receptor afferent stimulation on sympathetic preganglionic neuron firing. Can. J. Physiol. Pharmacol. 56: 191–198, 1978.
 278. Gernandt, B. E. A study of the respiratory reflexes elicited from the aortic and carotid bodies. Acta Physiol. Scand. 11, Suppl. 35: 1–81, 1946.
 279. Gilliatt, R. W. Vasoconstriction in the finger after deep inspiration. J. Physiol. London 107: 76–88, 1948.
 280. Gilliatt, R. W., L. Guttmann, and D. Whitteridge. Inspiratory vasoconstriction in patients after spinal injuries. J. Physiol. London 107: 67–75, 1948.
 281. Glick, G., A. S. Wechsler, and S. E. Epstein. Reflex cardiovascular depression produced by stimulation of pulmonary stretch receptors in the dog. J. Clin. Invest. 48: 467–473, 1969.
 282. Göetz, R. H. Der Fingerplethysmograph als Mittelzur Untersuchungen der Regulations mechanismen in peripheren Gefässgebieten. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 235: 271–287, 1935.
 283. Goldring, R. M., G. M. Turino, G. Cohen, A. G. Jameson, B. G. Bass, and A. P. Fishman. The catecholamines in the pulmonary arterial pressor response to acute hypoxia. J. Clin. Invest. 41: 1121–1221, 1962.
 284. Goode, R. C., E. B. Brown, Jr., M. G. Howson, and D. J. C. Cunningham. Respiratory effects of breathing down a tube. Respir. Physiol. 6: 218–229, 1969.
 285. Gooden, B. A. The diving response in clinical medicine. Aviat. Space Environ. Med. 53: 273–276, 1982.
 286. Goodman, N. W., B. S. Nail, and R. W. Torrance. Oscillations in the discharge of single carotid chemoreceptor fibres of the cat. Respir. Physiol. 20: 251–269, 1974.
 287. Gootman, P. M., and M. I. Cohen. Periodic modulation (cardiac and respiratory) of spontaneous and evoked sympathetic discharge. Acta Physiol. Pol. 24: 97–109, 1971.
 288. Gootman, P. M., and M. I. Cohen. The interrelationships between sympathetic discharge and central respiratory drive. In: Central Rhythmic and Regulation, edited by W. Umbach and H. P. Koepchen Stuttgart, West Germany: Hippokrates, 1974, p. 195–209.
 289. Gootman, P. M., M. I. Cohen, M. P. Piercey, and P. Wolotsky. A search for medullary neurons with activity patterns similar to those in sympathetic nerves. Brain Res. 87: 395–406, 1975.
 290. Gootman, P. M., J. L. Feldman, and M. I. Cohen. Pulmonary afferent influences on respiratory modulation of sympathetic discharge. In: Central Interaction Between Respiratory and Cardiovascular Control Systems, edited by H. P. Koepchen, S. M. Hilton, and A. Trzebski Berlin: Springer‐Verlag, 1980, p. 172–178.
 291. Green, J. H. Cardiac vagal efferent activity in the cat (Abstract). J. Physiol. London 149: 47P–49P, 1959.
 292. Green, J. H., and J. H. Heffron. The inter‐relationship between sympathetic activity and the heart rate. Arch. Int. Pharmacodyn. Ther. 169: 15–25, 1967.
 293. Greenfield, J. C., Jr., R. L. Cox, R. R. Hermandez, C. Thomas, and F. W. Schoonmaker. Pressure‐flow studies in man during the Valsalva maneuver with observations on mechanical properties of the ascending aorta. Circulation 35: 653–661, 1967.
 294. Greenwood, P. V., R. Hainsworth, F. Karim, G. W. Morrison, and O. A. Sofola. Reflex inotropic responses of the heart from lung inflation in anaesthetized dogs. Pfluegers Arch. 386: 199–205, 1980.
 295. Gross, P. M., B. J. Whipp, J. T. Davidson, S. N. Koyal, and K. Wasserman. Role of the carotid bodies in the heart rate response to breath holding in man. J. Appl. Physiol. 41: 336–340, 1976.
 296. Guazzi, M., G. Baccelli, and A. Zanchetti. Carotid body chemoreceptors: physiological role in buffering fall in blood pressure during sleep. Science 153: 206–207, 1966.
 297. Guazzi, M., A. Libretti, and A. Zanchetti. Tonic reflex regulation of the cat's blood pressure through vagal afferents from the cardiopulmonary region. Circ. Res. 11: 7–16, 1962.
 298. Guazzi, M., and A. Zanchetti. Blood pressure and heart rate during natural sleep of the cat and their regulation by carotid sinus and aortic reflexes. Arch. Ital. Biol. 103: 789–817, 1965.
 299. Guilleminault, C., R. Ariagno, R. Korobkin, L. Nagal, R. Baldwin, S. Coons, and M. Owen. Mixed and obstructive sleep apnea and near miss for sudden infant death syndrome. II. Comparison of near miss and normal control infants by age. Pediatrics 64: 882–891, 1979.
 300. Guilleminault, C., and W. C. Dement (editors). Sleep Apnea Syndromes. New York: Liss, 1978. (Kroc Found. Ser., vol. 2.).
 301. Guilleminault, C., J. van den Hoed, and M. M. Mitler. Clinical overview of sleep apnea syndromes. In: Sleep Apnea Syndromes, edited by C. Guilleminault and W. C. Dement New York: Liss, 1978, p. 1–11. (Kroc Found. Ser., vol. 2.).
 302. Gunn, C. G., G. Sevelius, M. J. Puiggari, and F. K. Myers. Vagal cardiomotor mechanisms in the hindbrain of the dog and cat. Am. J. Physiol. 214: 258–262, 1968.
 303. Gupta, P. D., and M. Singh. Carotid chemoreceptors and vagi in hypoxic and cyanide‐induced tachycardia in the dog. Am. J. Physiol. 240 (Heart Circ. Physiol. 9): H874–H880, 1981.
 304. Gurwitz, D., L. L. Spriet, M. H. Bryan, and A. C. Bryan. Carotid body function in siblings in SIDS (Abstract). Pediatr. Res. 14: 643, 1980.
 305. Guyton, A. C., and J. W. Harris. Pressoreceptor‐autonomic oscillation: a probable cause of vasomotor waves. Am. J. Physiol. 165: 158–166, 1951.
 306. Hagbarth, K. E., and A. B. Vallbo. Pulse and respiratory grouping of sympathetic impulses in human muscle nerves. Acta Physiol. Scand. 74: 96–108, 1968.
 307. Hainsworth, R. Circulatory responses from lung inflation in anesthetized dogs. Am. J. Physiol. 226: 247–255, 1974.
 308. Hainsworth, R., F. Karim, K. H. McGregor, and L. M. Wood. Abdominal vascular resistance responses from lung inflation (Abstract). J. Physiol. London 317: 67P–68P, 1981.
 309. Hainsworth, R., F. Karim, and O. A. Sofola. Left ventricular inotropic responses to stimulation of carotid body chemoreceptors in anaesthetized dogs. J. Physiol. London 287: 455–466, 1979.
 310. Hainsworth, R., A. J. Rankin, and A. O. Soladoya. Cardiac inotropic responses from cephalic hypercapnia in the dog (Abstract). J. Physiol. London 328: 60P–61P, 1982.
 311. Haldane, J. S., and J. G. Priestley. Respiration. Oxford, UK: Clarendon, 1935.
 312. Hales, S. Statistical Essays: Containing Haemastaticks. London, 1733, vol. 2.
 313. Hamilton, W. F., R. A. Woodbury, and H. T. Harper, Jr. Arterial, cerebrospinal and venous pressures in man during cough and strain. Am. J. Physiol. 141: 42–50, 1944.
 314. Hamlin, R. L., C. R. Smith, and D. L. Smetzer. Sinus arrhythmia in the dog. Am. J. Physiol. 210: 321–328, 1966.
 315. Hanna, B. D., F. Lioy, and C. Polosa. The effect of cold blockade of the medullary chemoreceptors on the CO2 modulation of vascular tone and heart rate. Can. J. Physiol. Pharmacol. 57: 461–468, 1979.
 316. Harding, R., P. Johnson, and M. E. McClelland. Liquidsensitive laryngeal receptors in the developing sheep, cat and monkey. J. Physiol. London 277: 409–422, 1978.
 317. Harper, R. M., D. O. Walter, B. Leake, H. J. Hoffman, G. C. Sieck, M. B. Sterman, T. Hoppenbrouwers, and J. Hodgman. Development of sinus arrhythmia during sleeping and waking states in normal infants. Sleep 1: 33–48, 1978.
 318. Harrison, R. J., and J. D. W. Tomlinson. Normal and experimental diving in the common seal Phoca vitulina. Mammalia 24: 386–399, 1960.
 319. Harrison, T. R., and A. Blalock. The regulation of circulation. VI. The effects of severe anoxemia of short duration on the cardiac output of morphinized dogs and trained unnarcotized dogs. Am. J. Physiol. 80: 169–178, 1927.
 320. Harrison, T. R., W. G. Harrison, Jr., and J. P. Marsh. Reflex stimulation of respiration from increase in venous pressure. Am. J. Physiol. 100: 417–419, 1932.
 321. Hauss, W. H., H. Kreuziger, and H. Asteroth. Über die Reizung der Pressorezeptoren im Sinus caroticus beim Hund. Z. Kreislaufforsch. 38: 28–33, 1949.
 322. Hayashi, K. D. Responses of systemic arterial pressure and heart rate to increased intrapulmonary pressure in anesthetized dogs. Proc. Soc. Exp. Biol. Med. 131: 426–429, 1969.
 323. Haymet, B. T., and D. I. McCloskey. Baroreceptor and chemoreceptor influences on heart rate during the respiratory cycle in the dog. J. Physiol. London 245: 699–712, 1975.
 324. Head, H. On the regulation of respiration. J. Physiol. London 10: 1–70, 1889.
 325. Heistad, D. D. Carotid baro‐ and chemoreceptors (Letters to the editor). Circ. Res. 37: 396, 1975.
 326. Heistad, D. D., F. M. Abboud, A. L. Mark, and P. G. Schmid. Interaction of baroreceptor and chemoreceptor reflexes. Modulation of the chemoreceptor reflex by changes in baroreceptor activity. J. Clin. Invest. 53: 1226–1236, 1974.
 327. Heistad, D. D., F. M. Abboud, A. L. Mark, and P. G. Schmid. Effect of baroreceptor activity on ventilatory response to chemoreceptor stimulation. J. Appl. Physiol. 39: 411–416, 1975.
 328. Heistad, D. D., and R. C. Wheeler. Simulated diving during hypoxia in man. J. Appl. Physiol. 28: 652–656, 1970.
 329. Heistad, D. D., R. C. Wheeler, A. L. Mark, P. G. Schmid, and F. M. Abboud. Effects of adrenergic stimulation on ventilation in man. J. Clin. Invest. 51: 1469–1475, 1972.
 330. Henderson, Y. Acapnia and shock. I. Carbon‐dioxide as a factor in the regulation of the heart‐rate. Am. J. Physiol. 21: 126–156, 1908.
 331. Henderson, Y. Acapnia and shock. II. A principle underlying the normal variations in the volume of the blood stream, and the deviation from this principle in shock. Am. J. Physiol. 23: 345–373, 1909.
 332. Henderson, Y., and T. B. Barringer, Jr. The relation of venous pressure to cardiac efficiency. Am. J. Physiol. 31: 352–369, 1913.
 333. Hering, E. Die Selbststeuerung der Athmung durch den Nervus vagus. Sitzungsber. Akad. Wiss. Wien 57: 672–677, 1868.
 334. Hering, E. Über den Einfluss der Athmung auf den Kreislauf. Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. Kl. Abt. 2 60: 829–856, 1869.
 335. Hering, E. Über den Einfluss der Athmung auf den Kreislauf. Zweite Mittheilung. Über die reflectorische Beziehung zwischen Lunge und Herz. Sitzungsber. Akad. Wiss. Wien 64: 333–353, 1871.
 336. Hering, H. E. Die Änderung der Herzschlagzahl durch Änderung des arteriellen Blutdruckes erfolgt auf reflektorischen Wege. Pfluegers Arch. Gesamte Physiol. Menshen Tiere 206: 721–723, 1924.
 337. Hering, H. E. Ueber die Abhangigkeit der Lungenaufblasung und bei der respiratiorischen Arrhythmie auftretenden Frequenzanderungen des Herzens von den Blutdruckzuglern. Arch. Kreislaufforsch. 22: 593–598, 1930.
 338. Hermandez‐Martinez, J.‐P. Étude expérimental du controle chémoreflexe de la fréquence cardiaque chez l'homme au repos. Trav. Lab. Physiol. Fac. Med. Lyon 1‐49, 1967.
 339. Hermann, H., F. Jourdan, and J. Vial. Mouvements respiratoires et tonus cardio‐moderateur. C. R. Seances Soc. Biol. Paris 115: 526–528, 1934.
 340. Heymans, C. Influence of blood pressure and blood flow on the activity of the respiratory, vasomotor and cardioregulatory centres. Nature London 156: 750, 1945.
 341. Heymans, C., J. J. Bouckaert, and L. Dautrebande. Sinus carotidien et réflexes respiratoires. II. Influences respiratoires réflexes de l'acidose, de l'alcolose, de l'anhydride carbonique, de l'ion hydrogène et de l'anoxémie. Sinus carotidiens et échanges respiratoires dans les poumons et au dela des poumons. Arch. Int. Pharmacodyn. Ther. 39: 400–448, 1930.
 342. Heymans, C., J. J. Bouckaert, and L. Dautrebande. Sinus carotidien et réflexes respiratoires. III. Sensibilité des sinus carotidiens aux substances chimiques. Action stimulante respiratoire réflexe du sulfure de sodium, du cyanure de potassium, de la nicotine et de la lobéline. Arch. Int. Pharmacodyn. Ther. 40: 54–91, 1931.
 343. Heymans, C., J. J. Bouckaert, and L. Dautrebande. Au sujet du mecanisme de la bradycardie provoquee par la nicotine, la lobéline, le cyanure, le sulfure de sodium, les nitrites et la morphine, et de la bradycardie asphyxique. Arch. Int. Pharmacodyn. Ther. 41: 261–289, 1931.
 344. Heymans, C., J. J. Bouckaert, U. S. von Euler, and L. Dautrebande. Sinus carotidiens et réflexe vasomoteurs. Arch. Int. Pharmacodyn Ther. 43: 86–110, 1932.
 345. Heymans, C., J. J. Bouckaert, S. Farber, and F. J. Hsu. Influence réflexogène de l'acetylcholine sur les terminaisons nerveuses, chimio‐sensitives du sinus carotidien. Arch. Int. Pharmacodyn. Ther. 54: 129–135, 1936.
 346. Heymans, C., J. J. Bouckaert, and A. Samaan. Influences des variations de la teneur du sang en oxygène et en CO2 sur l'excitabilité réflexe et directe des elements centraux et périphériques des neufs cardio‐régulateurs. Arch. Int. Pharmacodyn. Ther. 48: 457–487, 1934.
 347. Heymans, C., and E. Neil. Reflexogenic Areas of the Cardiovascular System. London: Churchill, 1958.
 348. Heymans, J. F., and C. Heymans. Sur les modifications diréctes et sur la régulation réflexe de l'activité du centre respiratoire de la tête isolée du chien. Arch. Int. Pharmacodyn. Ther. 33: 273–373, 1927.
 349. Heymans, J. F., and C. Heymans. Sur le méchanisme de 1′arythmie cardiaque d'origine respiratoire. Arch. Sci. Biol. 12: 153–162, 1928.
 350. Hilton, S. M. Hypothalamic regulation of the cardiovascular system. Br. Med. Bull. 22: 243–248, 1966.
 351. Hilton, S. M. Ways of viewing the central nervous control of the circulation—old and new. Brain Res. 87: 213–219, 1975.
 352. Hilton, S. M., and J. M. Marshall. The pattern of cardiovascular response to carotid chemoreceptor stimulation in the cat. J. Physiol. London 326: 495–513, 1982.
 353. Hilton, S. M., and P. R. Smith. Ventral medullary neurones excited from the hypothalamic and mid‐brain defence areas. J. Auton. Nerv. Syst. 11: 35–42, 1984.
 354. Hirsch, L. J., E. Boyd, and L. N. Katz. Effect of intravenous volume infusion on heart rate in unanesthetized dogs. Am. J. Physiol. 206: 992–996, 1964.
 355. Holm, B., and S. C. Sorensen. The role of carotid body in the diving reflex in the duck. Respir. Physiol. 15: 302–309, 1972.
 356. Holmes, R., and R. W. Torrance. Afferent fibres of the stellate ganglion. Q. J. Exp. Physiol. 44: 271–281, 1959.
 357. Holt, J. P. The measurement of venous pressure in man eliminating the hydrostatic factor. Am. J. Physiol. 130: 635–641, 1940.
 358. Holt, J. P. The collapse factor in the measurement of venous pressure. The flow of fluid through collapsible tubes. Am. J. Physiol. 134: 292–299, 1941.
 359. Honda, Y., S. Myojo, S. Hasegawa, T. Hasegawa, and J. W. Severinghaus. Decreased exercise hyperpnea in patients with bilateral carotid chemoreceptor resection. J. Appl. Physiol. 46: 908–912, 1979.
 360. Honda, Y., S. Watanabe, S. Hasegawa, S. Myojo, H. Takizawa, T. Sugita, K. Kimura, T. Hasegawa, T. Kuriyama, Y. Saito, Y. Satomura, H. Katsuki, and J. W. Severinghaus. Respiration in man after chronic glomectomy. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal Delhi: Vallabhbhai Patel Chest Inst., 1976, p. 147–153.
 361. Honda, Y., S. Watanabe, I. Hashizume, Y. Satomura, N. Hata, Y. Sakakibara, and J. W. Severinghaus. Hypoxic chemosensitivity in asthmatic patients two decades after carotid body resection. J. Appl. Physiol.: Respirat. Environ Exercise Physiol. 46: 632–638, 1979.
 362. Hornbein, T. F., Z. J. Griffo, and A. Roos. Quantitation of chemoreceptor activity: interrelation of hypoxia and hypercapnia. J. Neurophysiol. 24: 561–568, 1961.
 363. Horwitz, L. D., and V. S. Bishop. Effect of acute volume loading on heart rate in the conscious dog. Circ. Res. 30: 316–321, 1972.
 364. Howard, P., B. Bromberger‐Barnea, R. S. Fitzgerald, and H. N. Bane. Ventilatory responses to peripheral nerve stimulation at different times in the respiratory cycle. Respir. Physiol. 7: 389–398, 1969.
 365. Howe, A. The vasculature of the aortic bodies in the cat. J. Physiol. London 134: 311–318, 1956.
 366. Howell, J. B. L., S. Permutt, D. F. Proctor, and R. L. Riley. Effect of inflation of the lung on different parts of pulmonary vascular bed. J. Appl. Physiol. 16: 71–76, 1961.
 367. Huang, T. F., and Y. I. Peng. Role of the chemoreceptor in bradycardia in rat. Jpn. J. Physiol. 26: 395–401, 1976.
 368. Hunt, C. E., K. McCulloch, and R. T. Brouillette. Decreased ventilatory response in near‐miss sudden infant death syndrome (Abstract). Pediatr. Res. 14: 644, 1980.
 369. Hustin, A. Influence des mouvements respiratoires sur la frequence cardiaque de l'homme normal. Acta Cardiol. 8: 569–593, 1953.
 370. Huxley, F. M. Reflex apnoea and resistance to asphyxia in the duck. Manchester, UK: Univ. of Manchester Press, 1912. MD thesis.
 371. Huxley, F. M. On the reflex nature of apnoea in the duck in diving. I. The reflex nature of submersion apnoea. Q. J. Exp. Physiol. 6: 147–196, 1913.
 372. Ingram, W. R. Central autonomic mechanisms. In: Handbook of Physiology. Neurophysiology, edited by J. Field and H. W. Magoun Washington, DC: Am. Physiol. Soc., 1960, sect. 1, vol. II, chapt. 37, p. 951–978.
 373. Iriuchijima, J., and M. Kumada. Efferent cardiac vagal discharge of the dog in response to electrical stimulation of sensory nerve. Jpn. J. Physiol. 13: 599–605, 1963.
 374. Iriuchijima, J., and M. Kumada. Activity of single vagal fibres efferent to the heart. Jpn. J. Physiol. 14: 479–487, 1964.
 375. Irving, L. Changes in the blood flow through the brain and muscles during the arrest of breathing. Am, J. Physiol. 122: 207–214, 1938.
 376. Irving, L., P. F. Scholander, and S. W. Grinnell. The regulation of arterial blood pressure in the seal during diving. Am. J. Physiol. 135: 557–566, 1942.
 377. Irving, L., O. M. Solandt, D. Y. Solandt, and K. C. Fisher. The respiratory metabolism of the seal and its adjustment to diving. J. Cell Comp. Physiol. 7: 137–151, 1935.
 378. Jager, S. de. Ueber die Saugkraft des Herzens. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 30: 491–510, 1883.
 379. Jain, S. K., S. Subramanian, D. B. Julka, and A. Guz. Search for evidence of lung chemoreflexes in man: study of respiratory and circulatory effects of phenyldiguanide and lobeline. Clin. Sci. 42: 163–177, 1972.
 380. Jardin, F., J.‐C. Farcot, L. Boisante, N. Curien, A. Margairazm, and J.‐P. Bourdarias. Influence of positive end‐expiratory pressure on left ventricular performance. N. Engl. J. Med. 304: 387–391, 1981.
 381. Jarisch, A., and Y. Zotterman. Depressor reflexes from the heart. Acta Physiol. Scand. 16: 31–51, 1948.
 382. Jennett, S. Changes in ventilation and heart rate during and after brief moderate hypoxia in resting man (Abstract). J. Physiol. London 200: 106P–107P, 1969.
 383. Jennett, S. The response of heart rate to hypoxia in man after cervical spinal cord transection. Paraplegia 18: 1–13, 1970.
 384. Jennett, S., J. F. Lamb, and P. Travis. Sudden large periodic changes in heart rate in healthy young men after short periods of exercise. Br. Med. J. 285: 1154–1156, 1982.
 385. Jewett, D. L. Activity of single efferent fibres in the cervical vagus nerve of the dog, with special reference to possible cardio‐inhibitory fibres. J. Physiol. London 175: 321–357, 1964.
 386. Joels, N. Reflex respiratory effects of circulating catecholamines. In: Handbook of Physiology. Endocrinology, edited by R. O. Greep and E. B. Astwood Washington, DC: Am. Physiol. Soc., 1975, sect. 7, vol. VI, chapt. 31, p. 491–505.
 387. Joels, N., and M. Samueloff. The activity of the medullary centres in diffusion respiration. J. Physiol. London 133: 360–372, 1956.
 388. Joels, N., and H. White. The contribution of the arterial chemoreceptors to the stimulation of respiration by adrenaline and noradrenaline in the cat. J. Physiol. London 197: 1–23, 1968.
 389. Johansen, K., W. Burggren, and M. Glass. Pulmonary stretch receptors regulate heart rate and pulmonary blood flow in the turtle, Pseudemys scipta. Comp. Biochem. Physiol. A 58: 185–191, 1977.
 390. Johnson, P., G. S. Dawes, and J. S. Robinson. Maintenance of breathing in newborn lamb (Abstract). Arch. Dis. Child. 47: 151, 1972.
 391. Johnson, P., R. H. Harding, M. E. McClelland, and A. H. N. Wilkinson. Cardiovascular changes associated with laryngeal stimulation and feeding in newborn lambs (Abstract). Pediatr. Res. 10: 874, 1976.
 392. Johnson, P., J. S. Robinson, and D. Salisbury. The onset and control of breathing after birth. In: Foetal and Neonatal Physiology, edited by R. S. Comline, K. W. Cross, G. S. Dawes, and P. W. Nathanielsz London: Cambridge Univ. Press, 1973, p. 217–221. (Proc. Sir Joseph Barcroft Centenary Symp.).
 393. Johnson, P., D. M. Salisbury, and A. T. Storey. Apnoea induced by stimulation of sensory receptors in the larynx. In: Implications for Sudden Infant Death Syndrome, edited by J. Bosma and J. Showacre Washington, DC: US Dept. of Health, Education, and Welfare, 1975, chapt. 11, p. 160–178. (Symp. on Development of Upper Respiratory Anatomy and Function.).
 394. Jones, D. R. Systemic arterial baroreceptors in ducks and the consequences of their denervation on some cardiovascular responses to diving. J. Physiol. London 234: 499–518, 1973.
 395. Jones, D. R., and M. J. Purves. The carotid body in the duck and the consequences of its denervation upon the cardiac responses to immersion. J. Physiol. London 211: 279–294, 1970.
 396. Jones, P. W., W. French, M. L. Weissman, and K. Wasserman. Ventilatory responses to cardiac output changes in patients with pacemakers. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1103–1107, 1981.
 397. Jones, P. W., A. Huszczuk, and K. Wasserman. Cardiac output as a controller of ventilation through changes in right ventricular load. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 218–224, 1982.
 398. Jordan, D., S. Donoghue, and K. M. Spyer. Respiratory modulation of afferent terminal excitability in the nucleus tractus solitarius. J. Auton. Nerv. Syst. 3: 291–297, 1981.
 399. Jordan, D., and K. M. Spyer. Studies on the termination of sinus nerve afferents. Pfluegers Arch. 360: 65–73, 1977.
 400. Jordan, D., and K. M. Spyer. Studies on the excitability of sinus nerve afferent terminals. J. Physiol. London 297: 123–134, 1979.
 401. Jordan, D., and K. M. Spyer. Effects of acetylcholine on respiratory neurones in the nucleus ambiguus‐retroambigualis complex of the cat. J. Physiol. London 320: 103–111, 1981.
 402. Kalia, M. Neuroanatomical organization of the respiratory centers. Federation Proc. 36: 2405–2411, 1977.
 403. Kalia, M., and M.‐M. Mesulam. Brain stem projections of sensory and motor components of the vagus complex in the cat. II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J. Comp. Neurol. 193: 467–508, 1980.
 404. Kan, W. O., J. R. Ledsome, and C. P. Bolter. Pulmonary arterial distension and activity in phrenic nerve of anesthetized dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 625–631, 1979.
 405. Kao, F. F., C. C. Michel, and S. S. Mei. Carbon dioxide and pulmonary ventilation in muscular exercise. J. Appl. Physiol. 19: 1075–1080, 1964.
 406. Kappagoda, C. T., R. J. Linden, and D. A. Saunders. The effect on heart rate of distending the atrial appendages in the dog. J. Physiol. London 225: 705–719, 1972.
 407. Karczewski, W. Organization of the brain stem respiratory complex. In: Respiratory Physiology I, edited by J. G. Widdicombe Baltimore, MD: University Park, 1974, vol. 2, p. 197–219. (Int. Rev. Physiol. Ser.).
 408. Karim, F., R. Hainsworth, O. A. Sofola, and L. M. Wood. Responses of the heart to stimulation of aortic body chemoreceptors in dogs. Circ. Res. 46: 77–83, 1980.
 409. Karim, F., C. Kidd, C. M. Malpus, and P. E. Penna. The effects of stimulation of the left atrial receptors on sympathetic efferent nerve activity. J. Physiol. London 227: 243–260, 1972.
 410. Katona, P. G., and F. Jih. Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J. Appl. Physiol. 39: 801–805, 1975.
 411. Katona, P. G., J. W. Poitras, G. O. Barnett, and B. S. Terry. Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am. J. Physiol. 218: 1030–1037, 1970.
 412. Kaufman, M. P., G. A. Iwamoto, J. H. Ashton, and S. S. Cassidy. Responses to inflation of vagal afferents with endings in the lungs of dogs. Circ. Res. 51: 525–531, 1982.
 413. Kawakami, Y., B. H. Natelson, and A. B. DuBois. Cardiovascular effects of face immersion and factors affecting diving reflex in man. J. Appl. Physiol. 23: 964–970, 1967.
 414. Keatinge, W. R. The effect of increased filling pressure on rhythmicity and atrio‐ventricular conduction in isolated hearts. J. Physiol. London 149: 193–208, 1959.
 415. Kenney, R. A., and E. Neil. The contribution of aortic chemoceptor mechanisms to the maintenance of arterial blood pressure of cats and dogs after haemorrhage. J. Physiol. London 112: 223–228, 1951.
 416. Kerem, D., and R. Elsner. Cerebral tolerance to asphyxial hypoxia in the harbor seal. Respir. Physiol. 19: 188–200, 1973.
 417. Kerr, F. W. L. Preserved vagal visceromotor function following destruction of the dorsal motor nucleus. J. Physiol. London 202: 755–769, 1965.
 418. Kety, S. S., and C. F. Schmidt. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J. Clin. Invest. 27: 484–492, 1948.
 419. Kezdi, P. Baroreceptors and Hypertension. Oxford, UK: Pergamon, 1967.
 420. Kidd C. Central connections of vagal cardiac receptors. In: Central Interaction Between Respiratory and Cardiovascular Control Systems, edited by H. P. Koepchen, S. M. Hilton, and A. Trzebski Berlin: Springer‐Verlag, 1980, p. 104–112.
 421. Kirchheim, H. R. Systemic arterial baroreceptor reflexes. Physiol. Rev. 56: 100–176, 1976.
 422. Knoll, P. Ueber die Folgen der Herzcompression. Jahb Lotos Prague 2: 1–34, 1881.
 423. Knowlton, F. P., and E. H. Starling. The influence of variations in temperature and blood pressure on the performance of the isolated mammalian heart. J. Physiol. London 44: 206–219, 1912.
 424. Koepchen, H. P., H. D. Lux, and P.‐H. Wagner. Untersuchungen über Zeitbedarf und zentrale Verarbeitung des pressoreceptor ischen Herzreflexes. Pfluegers Arch. 273: 413–430, 1961.
 425. Koepchen, H. P., P.‐H. Wagner, and H. D. Lux. Über die Zusammenhange zwischen zentralen Erregbarkeit, reflektorischem Tonus and Atemrhythmus bei der nervosen steuerung der Herzfrequenz. Pfluegers Arch. 273: 443–465, 1961.
 426. Koizumi, K., and C. McC. Brooks. The integration of autonomic system reactions: a discussion of autonomic reflexes, their control and their association with somatic reactions. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 67: 1–68, 1972.
 427. Koizumi, K., H. Seller, A. Kaufman, and C. McC. Brooks. Patterns of sympathetic discharges and their relation to baroreceptor and respiratory activities. Brain Res. 27: 281–294, 1971.
 428. Kollai, M., and K. koizumi. The mechanisms of differential control in the sympathetic system studied by hypothalamic stimulation. J. Auton. Nerv. Syst. 2: 377–389, 1980.
 429. Kollai, M., K. Koizumi, and C. McC. Brooks. Nature of differential sympathetic discharges in chemoreceptor reflexes. Proc. Natl. Acad. Sci. USA 75: 5239–5243, 1978.
 430. Kontos, H. A., D. Goldin, D. W. Richardson, and J. L. Patterson, Jr. Contribution of pulmonary vagal reflexes to circulatory response to hypoxia. Am. J. Physiol. 212: 1441–1446, 1967.
 431. Kontos, H. A., J. E. Levasseur, D. W. Richardson, H. P. Mauck, Jr., and J. L. Patterson, Jr. Comparative circulatory responses to systemic hypoxia in man and in unanesthetized dog. J. Appl. Physiol. 23: 381–386, 1967.
 432. Kontos, H. A., H. P. Mauck, Jr., D. W. Richardson, and J. L. Patterson, Jr. Circulatory responses to hypocapnia in the anesthetized dog. Am. J. Physiol. 208: 139–143, 1965.
 433. Kontos, H. A., G. W. Vetrovec, and D. W. Richardson. Role of carotid chemoreceptors in circulatory response to hypoxia in dogs. J. Appl. Physiol. 28: 561–565, 1970.
 434. Kordy, M. T., E. Neil, and J. F. Palmer. The influence of laryngeal afferent stimulation on cardiac vagal responses to carotid chemoreceptor excitation (Abstract). J. Physiol. London 247: 24P–25P, 1975.
 435. Korner, P. I. The role of the arterial chemoreceptors and baroreceptors in the circulatory response to hypoxia of the rabbit. J. Physiol. London 180: 279–303, 1965.
 436. Korner, P. I. Integrative neural cardiovascular control. Physiol. Rev. 51: 312–367, 1971.
 437. Korner, P. I. Central nervous control of autonomic cardiovascular function. In: Handbook of Physiology. The Cardiovascular System. The Heart, edited by R. M. Berne and N. Sperelakis Bethesda, MD: Am. Physiol. Soc., 1979, sect. 2, vol. I, chapt. 20, p. 691–739.
 438. Korner, P. I., J. P. Chalmers, and S. W. White. Some mechanisms of reflex control of the circulation by the sympatho‐adrenal system. Circ. Res. 20/21, Suppl. 2: 157–172, 1967.
 439. Korner, P. I., and A. W. T. Edwards. The immediate effects of acute hypoxia on the heart rate, arterial pressure, cardiac output and ventilation of the unanesthetized rabbit. Q. J. Exp. Physiol. 45: 113–122, 1960.
 440. Korner, P. I., J. Shaw, M. J. West, and J. R. Oliver. Central nervous system control of baroreceptor reflexes in the rabbit. Circ. Res. 31: 637–652, 1972.
 441. Korner, P. I., J. Shaw, M. J. West, J. R. Oliver, and R. G. Hilder. Integrative reflex control of the heart rate of the rabbit. Circ. Res. 33: 63–73, 1973.
 442. Korner, P. I., A. M. Tonkin, and J. B. Uther. Reflex and mechanical circulatory effects of graded Valsalva maneuvers in normal man. J. Appl. Physiol. 40: 434–440, 1976.
 443. Korner, P. I., A. M. Tonkin, and J. B. Uther. Valsalva constrictor and heart rate reflexes in subjects with essential hypertension and with normal blood pressure. Clin. Exp. Pharmacol. Physiol. 6: 97–110, 1979.
 444. Korner, P. I., J. B. Uther, and S. W. White. Central nervous integration of the circulatory and respiratory responses to arterial hypoxemia in the rabbit. Circ. Res. 24: 757–776, 1969.
 445. Korpás, J., and Z. Tomori. Cough and other respiratory reflexes. Prog. Respir. Res. 12: 1–356, 1979.
 446. Kostreva, D. R., F. A. Hopp, E. J. Zuperku, and J. P. Kampine. Apnea, tachypnea, and hypotension elicited by cardiac vagal afferents. J. Appl. Physiol. 47: 312–318, 1979.
 447. Krasney, J. A., and R. C. Koehler. Neural control of the circulation during hypoxia. In: Neural Control of Circulation, edited by M. J. Hughes and C. D. Barnes New York: Academic, 1980, p. 123–147.
 448. Kratschmer, F. Über Reflexe von der Nasenschleimhaut auf Athmung und Kreislauf. Sitzungsber. Akad. Wiss. Wien 62: 147–170, 1870.
 449. Krayer, O. The history of the Bezold‐Jarisch effects. Arch. Exp. Pathol. Pharmakol. 240: 361–368, 1961.
 450. Krogh, A., and J. Lindhart. On the average composition of the alveolar air and its variation during the respiratory cycle. J. Physiol. London 47: 431–445, 1914.
 451. Kumada, M., R. A. L. Dampney, and D. J. Reis. The trigeminal depressor response: a cardiovascular reflex originating from the trigeminal system. Brain Res. 92: 485–489, 1975.
 452. Kumada, M., R. A. L. Dampney, and D. J. Reis. The trigeminal depressor response: a novel vasodepressor response originating from the trigeminal system. Brain Res. 119: 305–326, 1977.
 453. Kunze, D. L. Reflex discharge patterns of cardiac vagal efferent fibres. J. Physiol. London 222: 1–15, 1972.
 454. Lamb, T. W. Ventilatory responses to intravenous and inspired carbon dioxide in anesthetized cats. Respir. Physiol. 2: 99–104, 1966.
 455. Landgren, S., and E. Neil. Chemoreceptor impulse activity following haemorrhage. Acta Physiol. Scand. 23: 158–167, 1951.
 456. Lange, G., H.‐H. Lu, A. Chang, and C. McC. Brooks. Effect of stretch on the isolated cat sinoatrial node. Am. J. Physiol. 211: 1192–1196, 1966.
 457. Leape, L. L., T. M. Holder, J. D. Franklin, R. A. Amoury, and K. W. Ashcraft. Respiratory arrest in infants secondary to gastroesophageal reflux. Pediatrics 60: 924–928, 1977.
 458. Ledsome, J. R., and W.‐O. Kan. Reflex changes in hind limb and renal vascular resistance in response to distension of the isolated pulmonary arteries of the dog. Circ. Res. 40: 64–72, 1977.
 459. Ledsome, J. R., and R. J. Linden. A reflex increase in heart rate from distension of the pulmonary vein—atrial junction. J. Physiol. London 170: 456–473, 1964.
 460. Lee, J. C., B. J. Stoll, and S. E. Downing. Properties of the laryngeal chemoreflex in neonatal piglets. Am. J. Physiol. 233 (Regulatory Integrative Comp. Physiol. 1): R30–R36, 1977.
 461. Lee, K. D., R. A. Mayou, and R. W. Torrance. The effect of blood pressure upon chemoreceptor discharge to hypoxia, and the modification of this effect by the sympathetic adrenal system. Q. J. Exp. Physiol. 49: 171–183, 1964.
 462. lee, T. M., J. S. Kuo, and C. Y. Chai. Central integrating mechanism of the Bezold‐Jarisch and baroreceptor reflexes. Am. J. Physiol. 222: 713–720, 1972.
 463. Leitner, L. M., and P. Dejours. The speed of response of the arterial chemoreceptors. In: The Arterial Chemoreceptors, edited by R. W. Torrance Oxford, UK: Blackwell, 1968, p. 79–88.
 464. Levy, M. N., H. DeGeest, and H. Zieske. Effects of respiratory centre activity on the heart. Circ. Res. 18: 67–78, 1966.
 465. Lewin, R. J., C. E. Cross, P. A. Rieben, and P. F. Salisbury. Stretch reflexes from the main pulmonary artery to the systemic circulation. Circ. Res. 9: 585–588, 1961.
 466. Lewis, B. M. and R. Gorlin. Effects of hypoxia on pulmonary circulation of the dog. Am. J. Physiol. 170: 574–587, 1952.
 467. Lewis, T. Studies of the relationship between respiration and blood pressure. Pt. II. J. Physiol. London 37: 233–255, 1908.
 468. Linden, R. J., and C. T. Kappagoda. Atrial Receptors. Cambridge, UK: Cambridge Univ. Press, 1982.
 469. Lindgren, I., and H. Olivecrona. Surgical treatment of angina pectoris. J. Neurosurg. 4: 19–39, 1947.
 470. Linton, R. A. F., R. Miller, and I. R. Cameron. Role of PCO2 oscillations and chemoreceptors in ventilatory response to inhaled and infused CO2. Respir. Physiol. 29: 201–210, 1977.
 471. Lioy, F., B. D. Hanna, and C. Polosa. CO2‐dependent component of the neurogenic vascular tone in the cat. Pfluegers Arch. 374: 187–191, 1978.
 472. Lipski, J., J. H. Coote, and A. Trzebski. Temporal patterns of antidromic invasion latencies of sympathetic preganglionic neurons related to central inspiratory activity and pulmonary stretch receptor reflex. Brain Res. 135: 162–166, 1977.
 473. Lipski, J., R. M. McAllen, and K. M. Spyer. The sinus nerve and baroreceptor input to the medulla of the cat. J. Physiol. London 251: 61–78, 1975.
 474. Lipski, J., R. M. McAllen, and K. M. Spyer. The carotid chemoreceptor input to the respiratory neurones of the nucleus of tractus solitarius. J. Physiol. London 269: 797–810, 1977.
 475. Lipski, J., R. M. McAllen, and A. Trzebski. Carotid baroreceptor and chemoreceptor inputs onto single medullary neurones. Brain Res. 107: 132–136, 1976.
 476. Little, R., G. Wennergren, and B. Öberg. Aspects of the central integration of arterial baroreceptor and cardiac ventricular receptor reflexes in the cat. Acta Physiol. Scand. 93: 85–96, 1975.
 477. Loeschcke, H. H. Functional aspects of central chemosensitivity. In: Central Nervous Control Mechanisms in Breathing, edited by C. von Euler and H. Lagercrantz Oxford, UK: Pergamon, 1979, vol. 32, p. 13–24. (Wenner‐Gren Int. Symp. Ser.).
 478. Loewy, A. D., and H. Burton. Nuclei of the solitary tract: efferent connections to the lower brain stem and spinal cord of the cat. J. Comp. Neurol. 181: 421–450, 1978.
 479. Loewy, A. D., and S. McKeller. The neuroanatomical basis of central cardiovascular control. Federation Proc. 39: 2495–2504, 1980.
 480. Loewy, A. D., S. McKeller, and C. B. Saper. Direct projections from the A5 catecholamine cell group to the intermediolateral cell column. Brain Res. 194: 309–314, 1979.
 481. Lombardi, F., A. Malliani, and M. Pagani. Nervous activity of afferent sympathetic fibers innervating the pulmonary veins. Brain Res. 113: 197–200, 1976.
 482. lopes, O. U., and J. F. Palmer. Proposed respiratory ‘gating’ mechanism for cardiac slowing. Nature London 264: 454–456, 1976.
 483. Lopes, O. U., and J. F. Palmer. Electrical activity in sympathetic fibres to hind limb muscles of the cat produced by hypothalamic stimulation. Q. J. Exp. Physiol. 62: 41–53, 1977.
 484. Ludwig, C. Beiträge zur Kenntniss des Einflusses der Respir‐ationsbewegungen auf den Blutlauf im Aortensysteme. Arch. Anat. Physiol. Leipzig 242–302, 1847.
 485. Lugliani, R., B. J. Whipp, C. Seard, and K. Wasserman. Effect of bilateral carotid‐body resection on ventilatory control at rest and during exercise in man. N. Engl. J. Med. 285: 1105–1111, 1971.
 486. Lugliani, R., B. J. Whipp, and K. Wasserman. A role for the carotid body in cardiovascular control in man. Chest 63: 744–750, 1973.
 487. Macleod, R. D. M., and M. J. Scott. The heart rate responses to carotid body chemoreceptor stimulation in the cat. J. Physiol. London 175: 193–202, 1964.
 488. Malliani, A., and M. Pagani. Afferent sympathetic nerve fibres with aortic endings. J. Physiol. London 263: 157–169, 1976.
 489. Malliani, A., M. Parks, R. P. Tuckett, and A. M. Brown. Reflex increases in heart rate elicited by stimulation of afferent cardiac sympathetic nerve fibers in the cat. Circ. Res. 32: 9–14, 1973.
 490. Malliani, A., D. F. Peterson, V. S. Bishop, and A. M. Brown. Spinal sympathetic cardiocardiac reflexes. Circ. Res. 30: 158–166, 1972.
 491. Malliani, A., G. Recordati, and P. J. Schwartz. Nervous activity of afferent cardiac sympathetic fibres with atrial and ventricular endings. J. Physiol. London 229: 457–469, 1973.
 492. Mancia, G. Influence of carotid baroreceptors on vascular responses to carotid chemoreceptor stimulation in the dog. Circ. Res. 36: 270–276, 1975.
 493. Mancia, G. Carotid baro‐ and chemoreceptors. Circ. Res. 37: 396–397, 1975.
 494. Mancia, G., and D. E. Donald. Demonstration that the atria, ventricles, and lungs each are responsible for a tonic inhibition of the vasomotor center in the dog. Circ. Res. 36: 310–318, 1975.
 495. Mancia, G., D. E. Donald, and J. T. Shepherd. Inhibition of adrenergic outflow to peripheral blood vessels by vagal afferents from the cardiopulmonary region in the dog. Circ. Res. 33: 713–721, 1973.
 496. Mancia, G., J. T. Shepherd, and D. E. Donald. Interplay among carotid sinus, cardiopulmonary, and carotid body reflexes in dogs. Am. J. Physiol. 230: 19–24, 1976.
 497. Manning, J. W. Intracranial mechanisms of regulation. In: Neural Regulation of the Heart, edited by W. C. Randall London: Oxford Univ. Press, 1977, p. 187–209.
 498. Manning, J. W. Central cardiovascular control: a distributed neural network. Federation Proc. 39: 2485–2486, 1980.
 499. Manzotti, M. The effect of some respiratory manoeuvres on the heart rate. J. Physiol. London 144: 541–557, 1958.
 500. Marshall, J. M. Interaction between the responses to stimulation of peripheral chemoreceptors and baroreceptors: the importance of chemoreceptor activation of the defence areas. J. Auton. Nerv. Syst. 3: 389–400, 1981.
 501. Mayer, S. Studien zur Physiologie des Herzen und der Blutgefässe. Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. Kl. Abt. 3: 74: 281–307, 1876.
 502. McAllen, R. M., and K. M. Spyer. The location of cardiac vagal preganglionic motoneurones in the medulla of the cat. J. Physiol. London 258: 198–204, 1976.
 503. McAllen, R. M., and K. M. Spyer. Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J. Physiol. London 282: 353–364, 1978.
 504. McAllen, R. M., and K. M. Spyer. The baroreceptor input to cardiac vagal motoneurones. J. Physiol. London 282: 365–374, 1978.
 505. McCrady, J. D., C. Vallbona, and H. E. Hoff. Neural origin of the respiratory—heart rate response. Am. J. Physiol. 211: 323–328, 1966.
 506. McDowall, R. J. S. A vago‐pressor reflex. J. Physiol. London 59: 41–47, 1924.
 507. McIntosh, H. D., J. F. Burnum, J. B. Hickam, and J. V. Warren. Circulatory changes produced by the Valsalva maneuver in normal subjects, patients with initial stenosis, and autonomic nervous system alterations. Circulation 9: 511–520, 1954.
 508. McQueen, D. S., and C. Eyzaguirre. Effects of temperature on carotid chemoreceptor and baroreceptor activity. J. Neurophysiol. 37: 1287–1296, 1974.
 509. Merrill, E. G. Preliminary studies on nucleus retroambigualis‐nucleus of the solitary tract interactions in cats (Abstract). J. Physiol. London 244: 54P–55P, 1975.
 510. Meyer, B. J., A. Meyer, and A. C. Guyton. Interstitial fluid pressure. V. Negative pressure in the lungs. Circ. Res. 22: 263–271, 1968.
 511. Meyrick, B., and L. Reid. Intra‐alveolar wall nerve in rat lung: an electron‐microscopic study (Abstract). J. Physiol. London 214: 6P–7P, 1971.
 512. Mills, J., H. Sellick, and J. G. Widdicombe. The role of lung irritant receptors in respiratory responses to multiple pulmonary embolism, anaphylaxis and histamine‐induced bronchoconstriction. J. Physiol. London 203: 337–357, 1969.
 513. Milner, A. D., R. A. Saunders, and I. E. Hopkin. Apnoea induced by airflow obstruction. Arch. Dis. Child. 52: 379–382, 1977.
 514. Mitchell, G. A. G., and R. Warwick. The dorsal vagal nucleus. Acta Anat. 25: 371–395, 1955.
 515. Miura, M., and D. J. Reis. The role of the solitary and paramedian reticular nuclei in mediating cardiovascular reflex responses from carotid baro‐ and chemoreceptors. J. Physiol. London 223: 525–548, 1972.
 516. Moore, T. O., R. Elsner, Y. C. Lin, D. A. Lally, and S. K. Hong. Effects of alveolar PO2 and PCO2 on apneic bradycardia in man. J. Appl. Physiol. 34: 795–798, 1973.
 517. Moore, T. O., Y. C. Lin, D. A. Lally, and S. K. Hong. Effects of temperature, immersion, and ambient pressure on human apneic bradycardia. J. Appl. Physiol. 33: 36–41, 1972.
 518. Mulinos, M. G., and I. Shulman. Vasoconstriction in the hand from a deep inspiration. Am. J. Physiol. 125: 310–322, 1939.
 519. Muratori, G. Istofisiologia comparata delle zone aorticoarteriose pressorecettive e degli annessi dispositivi chemorecettori (paraganglio carotico, paraganglio succlavio, paraganglio aortico‐polmonare). Monit. Zool. Ital. 68: 17–84, 1959.
 520. Murdaugh, H. V., Jr., E. D. Robin, J. E. Millen, W. F. Drewry, and E. Weiss. Adaptations to diving in the harbor seal: cardiac output during diving. Am. J. Physiol. 210: 176–180, 1966.
 521. Nahas, G. G. Influence of low oxygen tension on pulmonary circulation after temporary arrest of ventilation in curarized dogs. J. Appl. Physiol. 9: 352–358, 1956.
 522. Nahas, G. G., M. B. Visscher, G. W. Mather, F. J. Haddy, and H. R. Warner. Influence of hypoxia on the pulmonary circulation of nonnarcotized dogs. J. Appl. Physiol. 6: 467–476, 1954.
 523. Neil, E. Influence of the carotid chemoreceptor reflexes on the heart rate in systemic anoxia. Arch. Int. Pharmacodyn. Ther. 105: 477–488, 1956.
 524. Neil, E. Catecholamines and the cardiovascular system. In: Handbook of Physiology. Endocrinology, edited by R. O. Greep and E. B. Astwood Washington, DC: Am. Physiol. Soc., 1975, sect. 7, vol. VI, chapt. 30, p. 473–490.
 525. Neil, E. Cardiac vagal efferent activity. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden Cambridge, UK: Cambridge Univ. Press, 1979, p. 361–374.
 526. Neil, E., and J. F. Palmer. Effects of spontaneous respiration on the latency of reflex cardiac chronotropic responses to baroreceptor stimulation (Abstract). J. Physiol. London 247: 16P, 1975.
 527. Neil, E., C. R. M. Redwood, and A. Schweitzer. Effects of electrical stimulation of the aortic nerve on blood pressure and respiration in cats and rabbits under chloralose and nembutal anaesthesia. J. Physiol. London 109: 392–401, 1949.
 528. Nemiroff, M. J. Accidental cold‐water immersion and survival characteristics (Abstract). Undersea Biomed. Res. 4: A56, 1977.
 529. Nishi, K., M. Sakanashi, and F. Takenaka. Afferent fibres from pulmonary arterial baroreceptors in the left cardiac sympathetic nerve of the cat. J. Physiol. London 240: 53–66, 1974.
 530. Nonidez, J. F. Distribution of the aortic nerve fibers and the epithelial bodies (supracardial ‘paraganglia’) in the dog. Anat. Rec. 69: 299–317, 1937.
 531. Nonidez, J. F. Identification of the receptor areas in the venae cavae and pulmonary veins which initiate reflex cardiac acceleration (Bainbridge's reflex). Am. J. Anat. 61: 203–231, 1937.
 532. Nonidez, J. F. Studies on the innervation of the heart. I. Distribution of the cardiac nerves, with special reference to the identification of the sympathetic and parasympathetic postganglionics. Am. J. Anat. 65: 361–413, 1939.
 533. Öberg, B., and P. Thorén. Studies on left ventricular receptors, signalling in non‐medullated vagal afferents. Acta Physiol. Scand. 85: 145–163, 1972.
 534. Öberg, B., and P. Thorén. Circulatory responses to stimulation of left ventricular receptors in the cat. Acta Physiol. Scand. 88: 8–22, 1973.
 535. Öberg, B., and S. White. Circulatory effects of interruption and stimulation of cardiac vagal afferents. Acta Physiol. Scand. 80: 383–394, 1970.
 536. Oberholzer, R. J. H., and W. O. Tofani. The neural control of respiration. In: Handbook of Physiology. Neurophysiology, edited by J. Field and H. W. Magoun Washington DC: Am. Physiol. Soc., 1960, sect. 1, vol. II, chapt. 43, p. 1111–1129.
 537. Okada, H., and I. J. Fox. Respiratory grouping of abdominal sympathetic activity in the dog. Am. J. Physiol. 213: 48–56, 1967.
 538. Olsen, C. R., D. D. Fanestil, and P. F. Scholander. Some effects of breath holding and apneic underwater diving on cardiac rhythm in man. J. Appl. Physiol. 17: 461–466, 1962.
 539. Opdyke, D. F., and G. A. Brecher. Effect of normal and abnormal changes of intrathoracic pressure on effective right and left atrial pressures. Am. J. Physiol. 160: 556–566, 1950.
 540. O'Regan, R. G. Responses of carotid body chemosensory activity and blood flow to stimulation of sympathetic nerves in the cat. J. Physiol. London 315: 81–98, 1981.
 541. Osorio, J., and M. Russek. Reflex changes on the pulmonary and systemic pressures elicited by stimulation of baroreceptors in the pulmonary artery. Circ. Res. 10: 664–667, 1962.
 542. Ott, N. T., R. R. Lorenz, and J. T. Shepherd. Modification of lung‐inflation reflex in rabbits by hypercapnia. Am. J. Physiol. 223: 812–819, 1972.
 543. Ott, N. T., and J. T. Shepherd. Vasodepressor reflex from lung inflation in the rabbit. Am. J. Physiol. 221: 889–895, 1971.
 544. Paintal, A. S. Impulses in vagal afferent fibres from specific pulmonary deflation receptors. The response of these fibres to phenyldiguanide, potato starch, 5‐hydroxytryptamine and nicotine, and their role in respiratory and cardiovascular reflexes. Q. J. Exp. Physiol. 40: 89–111, 1955.
 545. Paintal, A. S. Mechanism of stimulation of type J pulmonary receptors. J. Physiol. London 203: 511–532, 1969.
 546. Paintal, A. S. Vagal sensory receptors and their reflex effects. Physiol. Rev. 53: 159–227, 1973.
 547. Paintal, A. S., and R. L. Riley. Responses of aortic chemoreceptors. J. Appl. Physiol. 21: 543–548, 1966.
 548. Pathak, C. L. Alternative mechanism of cardiac acceleration in Bainbridge's infusion experiments. Am. J. Physiol. 197: 441–444, 1959.
 549. Peiss, C. N. Concepts of cardiovascular regulation: past, present and future. In: Nervous Control of the Heart, edited by W. C. Randall Baltimore, MD: Williams & Wilkins, 1965, p. 154–197.
 550. Perez‐Gomez, F., and A. Garcia‐Agnado. Origin of ventricular reflexes caused by coronary arteriography. Br. Heart J. 39: 967–973, 1977.
 551. Permutt, S. Mechanical influences on water accumulation in the lungs. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin Bethesda, MD: Am. Physiol. Soc., 1979, p. 175–194.
 552. Permutt, S., S. Bromberger‐Barnes, and H. N. Bane. Alveolar pressure, pulmonary venous pressure and the vascular waterfall. Med. Thorac. 19: 239–260, 1962.
 553. Petersen, E. S., H. Vejby‐Christensen, and T. M. Nielsen. Effect of autonomic blockade on the transient changes in cardiac frequency on relief of hypoxia in man. Clin. Sci. 47: 521–530, 1974.
 554. Peterson, D. F., and A. M. Brown. Pressor reflexes produced by stimulation of afferent fibers in the cardiac sympathetic nerves of the cat. Circ. Res. 28: 605–610, 1971.
 555. Phillipson, E. A., G. Bowes, E. R. Townsend, J. Duffin, and J. D. Cooper. Carotid chemoreceptors in ventilatory responses to changes in venous CO2 load. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1398–1403, 1981.
 556. Phillipson, E. A., G. Bowes, E. R. Townsend, J. Duffin, and J. D. Cooper. Role of metabolic CO2 production in ventilatory response to steady‐state exercise. J. Clin. Invest. 68: 768–774, 1981.
 557. Phillipson, E. A., J. Duffin, and J. D. Cooper. Critical dependence of respiratory rhythmicity on metabolic CO2 load. J. Appl. Physiol.: Respirat. Environ Exercise Physiol. 50: 45–54, 1981.
 558. Pillsbury, H. R. C., III, M. Guazzi, and E. D. Freis. Vagal afferent depressor nerves in the rabbit. Am. J. Physiol. 217: 768–770, 1969.
 559. Ponte, J., and M. J. Purves. Carbon dioxide and venous return and their interaction as stimuli to ventilation in the cat. J. Physiol. London 274: 455–475, 1978.
 560. Preiss, G., F. Kirchner, and C. Polosa. Patterning of sympathetic preganglionic neuron firing by the central respiratory drive. Brain Res. 87: 363–374, 1975.
 561. Przybyla, A. C., and S. C. Wang. Neurophysiological characteristics of cardiovascular neurons in the medulla oblongata of the cat. J. Neurophysiol. 30: 645–660, 1967.
 562. Purves, M. J. The effect of hypoxia, hypercapnia and hypotension upon carotid body blood flow and oxygen consumption in the cat. J. Physiol. London 209: 395–416, 1970.
 563. Purves, M. J. The role of the cervical sympathetic nerve in the regulation of oxygen consumption of the carotid body of the cat. J. Physiol. London 209: 417–431, 1970.
 564. Rahn, H., and T. Yokoyama. Physiology of Breath‐Hold Diving and the Ama of Japan. Washington, DC: Natl. Res. Counc, Natl. Acad. Sci., 1965.
 565. Reis, D. J. Central neural mechanisms governing the circulation with particular reference to the lower brainstem and cerebellum. In: Neural and Psychological Mechanisms in Cardiovascular Disease, edited by A. Zanchetti Milan: Casa Editrice II Ponte, 1972, p. 255–280.
 566. Richardson, D. W., H. A. Kontos, W. Shapiro, and J. L. Patterson, Jr. Role of hypocapnia in the circulatory responses to acute hypoxia in man. J. Appl. Physiol. 21: 22–26, 1966.
 567. Richardson, D. W., A. J. Wasserman, and J. L. Patterson, Jr. General and regional circulatory responses to change in blood pH and carbon dioxide tension. J. Clin. Invest. 40: 31–43, 1961.
 568. Richter, D. W., W. Keck, and H. Seller. The course of inhibition of sympathetic activity during various patterns of carotid sinus nerve stimulation. Pfluegers Arch. 317: 110–123, 1970.
 569. Rigatto, H., and J. P. Brady. Periodic breathing and apnea in preterm infants. II. Hypoxia as a primary event. Pediatrics 50: 219–228, 1972.
 570. Rijlant, P. Courants d'action du nerf pneumogastrique. C. R. Seances Soc. Biol. Paris 112: 1225–1229, 1933.
 571. Rijlant, P. Courant d'action du système nerveux orthosympathique. C. R. Seances Soc. Biol. Paris 112: 1229–1233, 1933.
 572. Rijlant, P. Le contrôle extrinsèque de la fréquence du bettement cardique. C. R. Seances Soc. Biol. Paris 123: 99–101, 1936.
 573. Rijlant, P. l'arythmie cardiaque respiratoire. C. R. Seances Soc. Biol. Paris 123: 997–1001, 1936.
 574. Rijlant, P. Les modifications reflexes de la respiration centrale. C. R. Seances Soc. Biol. Paris 124: 586–588, 1937.
 575. Riley, R. L. The hyperpnoea of exercise. In: Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd Oxford, UK: Blackwell, 1963, p. 525–534.
 576. Roddie, I. C., J. T. Shepherd, and R. F. Whelan. Humoral vasodilatation in the forearm during voluntary hyperventilation. J. Physiol. London 137: 80–85, 1957.
 577. Roddie, I. C., J. T. Shepherd, and R. F. Whelan. Reflex changes in human skeletal muscle blood flow associated with intrathoracic pressure changes. Circ. Res. 6: 232–238, 1958.
 578. Rutherford, J. D., and S. F. Vatner. Integrated carotid chemoreceptor and pulmonary inflation reflex control of peripheral vasoactivity in conscious dogs. Circ. Res. 43: 200–208, 1978.
 579. Saalfeld, E. von. Herzreflexe pulmonalen Ursprungs. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 231: 33–47, 1932.
 580. Saalfeld, E. von. Venöser Blutdruck und Herzreflexe pulmonalen Ursprings. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 231: 724–728, 1933.
 581. Salisbury, P. F., C. E. Cross, and P. A. Reiben. Reflex effects of left ventricular distension. Circ. Res. 8: 530–534, 1960.
 582. Salisbury, P. F., P. M. Galletti, R. J. Lewin, and P. A. Rieben. Stretch reflexes from the dog's lung to the systemic circulation. Circ. Res. 7: 62–67, 1959.
 583. Sant'Ambrogio, G. Afferent activity from the lung during occlusion of the airway, and location of pulmonary stretch receptors. In: Loaded Breathing, edited by L. D. Pengelly London: Churchill, 1974, p. 180–186.
 584. Saper, C., A. D. Loewy, L. W. Swanson, and W. N. Cowan. Direct hypothalamo‐autonomic connections. Brain Res. 117: 305–312, 1976.
 585. Sapru, H. N., and A. J. Krieger. Carotid and aortic chemoreceptor function in the rat. J. Appl. Physiol. 42: 344–348, 1977.
 586. Satchell, G. H. Circulation in Fishes. Cambridge, UK: Cambridge Univ. Press, 1971, p. 87–89. (Cambridge Monogr. Exp. Biol. No. 18.).
 587. Sauerbruch, F. Pathologie des offenen Pneumothorax die Grundlagen meines Verfahrens zu seiner Ausschaltung. Mitt. Grenzgeb. Med. Chir. 13: 399–482, 1904.
 588. Saunders, K. B. Oscillations of arterial carbon dioxide tension in a respiratory model: some implications for the control of breathing in exercise. J. Theor. Biol. 84: 163–179, 1980.
 589. Schmidt, C. F. Carotid sinus reflexes to the respiratory center. I. Identification. Am. J. Physiol. 102: 94–118, 1932.
 590. Scholander, P. F. Experimental investigations on the respiratory function in diving mammals and birds. Hvalradets Skr. 22: 1–131, 1940.
 591. Schroeder, J. A., J. Motta, and C. Guilleminault. Hemodynamic studies in sleep apnea. In: Sleep Apnea Syndromes, edited by C. Guilleminault and W. C. Dement New York: Liss, 1978, p. 177–195. (Kroc Found. Ser., vol. 2.).
 592. Schwaber, J., and N. Schneiderman. Aortic nerve‐activated cardioinhibitory neurons and interneurons. Am. J. Physiol. 229: 783–789, 1975.
 593. Schwartz, P. J., M. Pagani, F. Lombardi, A. Malliani, and A. M. Brown. A cardiocardiac sympathovagal reflex in the cat. Circ. Res. 32: 215–220, 1973.
 594. Schweitzer, A. Die Irradiation Autonomer Reflexe. Basel: Karger, 1937.
 595. Schweitzer, A. Rhythmical fluctuations of the arterial blood pressure (Abstract). J. Physiol. London 104: 25P–26P, 1945.
 596. Scott, M. J. The effects of hyperventilation on the reflex cardiac response from the carotid bodies in the cat. J. Physiol. London 186: 307–320, 1966.
 597. Scott, M. J. Reflex effects of carotid body chemoreceptor stimulation of the heart rate of the rabbit. Aust. J. Exp. Biol. Med Sci. 44: 393–404, 1966.
 598. Sears, T. A., A. J. Berger, and E. A. Phillipson. Reciprocal tonic activation of inspiratory and expiratory motoneurones by chemical drives. Nature London 299: 728–730, 1982.
 599. Seller, H. The discharge pattern of single units in thoracic and lumbar white rami in relation to cardiovascular events. Pfluegers Arch. 243: 317–330, 1973.
 600. Seller, H., and M. Illert. The localization of the first synapse in the carotid sinus baroreceptor reflex pathway and its alteration of the afferent input. Pfluegers Arch. 306: 1–19, 1969.
 601. Seller, H., P. Langhorst, D. Richter, and H. P. Koepchen. Über die Abhangigkeit der pressoreceptorischen Hemmung des Sympathiens von der Atemphase und ihre Auswirkung in der Vasomotorik. Pfluegers Arch. 302: 300–314, 1968.
 602. Sellick, H., and J. G. Widdicombe. The activity of lung irritant receptors during pneumothorax, hyperpnoea and pulmonary vascular congestion. J. Physiol. London 203: 359–381, 1969.
 603. Shannon, D. C., D. H. Kelly, and K. O'Connell. Abnormal regulation of ventilation in infants at risk for sudden‐infant‐death syndrome. N. Engl. J. Med. 297: 747–750, 1977.
 604. Sharpey‐Schafer, E. P. The mechanism of syncope after coughing. Br. Med. J. 2: 860–863, 1953.
 605. Sharpey‐Schafer, E. P. Effect of respiratory acts on the circulation. In: Handbook of Physiology. Circulation, edited by W. F. Hamilton and P. Dow Washington, DC: Am. Physiol. Soc., 1965, sect. 2, vol. III, chapt. 52, p. 1875–1886.
 606. Shelton, G., and D. J. Randall. The relationship between heart beat and respiration in teleost fish. Comp. Biochem. Physiol. 7: 237–250, 1962.
 607. Simon, E., and W. Riedel. Diversity of regional sympathetic outflow in integrative cardiovascular control: patterns and mechanisms. Brain Res. 87: 232–333, 1975.
 608. Sleight, P. A cardiovascular depressor reflex from the epicardium of the left ventricle in the dog. J. Physiol. London 173: 321–343, 1964.
 609. Sleight, P. Arterial Baroreceptors and Hypertension. Oxford, UK: Oxford Univ. Press, 1980.
 610. Sleight, P., A. Lall, and M. Muers. Reflex cardiovascular effects of epicardial stimulation by acetylstrophanthidine in dogs. Circ. Res. 25: 705–711, 1969.
 611. Sleight, P., and J. G. Widdicombe. Action potentials in fibres from receptors in the epicardium and myocardium of the dog's left ventricle. J. Physiol. London 181: 235–258, 1965.
 612. Smith, P. G., and E. Mills. Restoration of reflex ventilatory response to hypoxia after removal of carotid bodies in the cat. Neuroscience 5: 573–580, 1980.
 613. Smyth, H. S., P. Sleight, and G. W. Pickering. Reflex regulation of arterial pressure during sleep in man. Circ. Res. 24: 109–121, 1969.
 614. Snyder, C. D. A study of the causes of respiratory change of heart rate. Am. J. Physiol. 37: 104–117, 1915.
 615. Spickler, J. W., and P. Kezdi. Dynamic response characteristics of carotid sinus baroreceptors. Am. J. Physiol. 212: 472–476, 1967.
 616. Spyer, K. M. Neural organisation and control of the baroreceptor reflex. Rev. Physiol. Biochem. Pharmacol. 88: 24–124, 1981.
 617. Spyer, K. M. Central nervous integration of cardiovascular control. J. Exp. Biol. 100: 109–128, 1982.
 618. Staszewska‐Barczak, J., S. H. Ferreira, and J. R. Vane. An excitatory nociceptive cardiac reflex elicited by bradykinin and potentiated by prostaglandins and myocardial ischaemia. Cardiovasc. Res. 10: 314–327, 1976.
 619. Steinschneider, A. Prolonged apnea and the sudden infant death syndrome. Clinical laboratory observations. Pediatrics 50: 646–654, 1972.
 620. Stephenson, H. E., Jr. Cardiac Arrest and Resuscitation (4th ed.). St. Louis, MO: Mosby, 1974.
 621. Sterman, M. B., J. F. Hodgman, T. Hoppenbrouwers, R. M. Harper, C. B. Martin, and B. Sciassi. Cardiopulmonary patterns during quiet and active states in the fetus, newborn and infant. In: Sleep Research, edited by M. H. Chase, W. C. Stern, and P. Walter Los Angeles, CA.: Brain Res. Inst., UCLA, 1973, vol. 2, p. 79.
 622. Stroh‐Werz, M., P. Langhorst, and H. Camerer. Neuronal activity with cardiac rhythm in the nucleus of the solitary tract in cats and dogs. I. Different discharge patterns related to the cardiac cycle. Brain Res. 133: 65–80, 1977.
 623. Strømme, S. B., and A. S. Blix. Indirect evidence for arterial chemoreceptor reflex facilitation by face immersion in man. Aviat. Space Environ. Med. 47: 597–599, 1976.
 624. Stürup, G., B. Bolton, D. J. Williams, and E. A. Carmichael. Vasomotor responses in hemiplegic patients. Brain 58: 456–469, 1935.
 625. Sutton, D. C., and H. C. Lueth. Experimental production of pain on excitation of the heart and great vessels. Arch. Intern. Med. 45: 827–867, 1930.
 626. Suutarinen, T. Cardiovascular responses to changes in arterial carbon dioxide tension. Acta Physiol. Scand. 226: 1–16, 1966.
 627. Swanson, G. D., B. J. Whipp, R. D. Kaufman, K. A. Aqleh, B. Winter, and J. W. Bellville. Effect of hypercapnia on hypoxic ventilatory drive in carotid body‐resected man. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 971–977, 1978.
 628. Szentagothai, J. The general visceral efferent column of the brain stem. Acta Morphol. Acad. Sci. Hung. 2: 313–328, 1952.
 629. Tang, P. C., F. W. Maire, and V. E. Amassian. Respiratory influence on the vasomotor center. Am. J. Physiol. 191: 218–224, 1957.
 630. Thames, M. D., D. E. Donald, and J. T. Shepherd. Behavior of cardiac receptors with non‐myelinated vagal afferents during spontaneous respiration. Circ. Res. 41: 694–701, 1977.
 631. Thames, M. D., H. A. Kontos, and R. R. Lower. Sinus arrhythmia in dogs after cardiac transplantation. Am. J. Cardiol. 24: 54–58, 1969.
 632. Thorén, P. Left ventricular receptors activated by severe asphyxia and by coronary artery occlusion. Acta Physiol. Scand. 85: 455–463, 1972.
 633. Thorén, P. Characteristics of left ventricular receptors with non‐medullated vagal afferents in the cat. Circ. Res. 40: 415–421, 1977.
 634. Thorén, P. Role of cardiac vagal C‐fibers in cardiovascular control. Rev. Physiol. Biochem. Pharmacol. 86: 1–94, 1979.
 635. Thorén, P. N., G. Mancia, and J. T. Shepherd. Vasomotor inhibition in rabbits by vagal nonmedulated fibers from cardiopulmonary area. Am. J. Physiol. 229: 1410–1413, 1975.
 636. Thorén, P., J. T. Shepherd, and D. E. Donald. Anodal block of medullated cardiopulmonary vagal afferents in cats. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 461–465, 1977.
 637. Timms, R. J. A study of the amygdaloid defence reaction showing the value of Althesin anaesthesia in studies of the functions of the fore‐brain in cats. Pfluegers Arch. 391: 49–56, 1981.
 638. Timms, R. J. Central blocking action of ketamine anaesthesia on the visceral alerting and chemoreceptor reflex responses in the cat. Pfluegers Arch. 394: 12–15, 1982.
 639. Tomori, A., K. Javorka, and A. Stransky. Cardiovascular, respiratory and glottal changes during the apnoeic reflex of olfactory‐trigeminal and vagal origin. Physiol. Bohemoslov. 21: 45–52, 1972.
 640. Torvik, A. Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures. J. Comp. Neurol. 106: 51–141, 1955.
 641. Traube, L. Ueber periodische Thatigkeits‐Aeusserungen des vasomotorischen und Hemmungs‐Nervencentrums. Cbl. Med. Wiss. 56: 881–885, 1865.
 642. Trzebski, A., J. Lipski, S. Majcherczyk, P. Szulczyk, and L. Chruscielewski. Central organization and interaction of the carotid baroreceptors and chemoreceptors sympathetic reflex. Brain Res. 87: 227–237, 1975.
 643. Trzebski, A., A. Zielinski, S. Majcherczyk, J. Lipski, and P. Szulczyk. Effect of chemical stimulation and depression of the medullary superficial areas on the respiratory motoneurone discharges, sympathetic activity and efferent control of carotid area receptors. In: Central Rhythmic and Regulation, edited by W. Umbach and H. P. Koepchen Stuttgart, West Germany: Hipprokrates, 1974, p. 170–177.
 644. Uchida, Y. Tachypnea after stimulation of afferent cardiac sympathetic nerve fibers. Am. J. Physiol. 230: 1003–1007, 1976.
 645. Uchida, Y., and S. Murao. Bradykinin‐induced excitation of afferent cardiac sympathetic nerve fibers. Jpn. Heart J. 15: 84–91, 1974.
 646. Ueda, H., Y. Uchida, and K. Kamisaka. Distribution and response of the cardiac sympathetic receptors to mechanically induced circulatory changes. Jpn. Heart J. 10: 70–81, 1969.
 647. Uvnäs, B. Central cardiovascular control. In: Handbook of Physiology. Neurophysiology, edited by J. Field and H. W. Magoun Washington, DC: Am. Physiol. Soc., 1960, sect. 1, vol. II, chapt. 44, p. 1131–1162.
 648. Vanderlinden, P. Influence de l'ésérine, de la prostigmine, de l'ergotamine, de la morphine, du CO2 de l'hyperventilation et du animal sur les réflexes cardio‐inhibiteurs du sinus carotidien. C. R. Séances Soc. Biol. Paris 110: 574–576, 1932.
 649. Vatner, S. F., D. H. Beottcher, G. R. Heyndrickx, and R. J. McRitchie. Reduced baroreflex sensitivity with volume loading in conscious dogs. Circ. Res. 37: 236–242, 1975.
 650. Vatner, S. F., and R. J. McRitchie. Interaction of the chemoreflex and the pulmonary inflation reflex in the regulation of cornary circulation in conscious dogs. Circ. Res. 37: 664–673, 1975.
 651. Vatner, S. F., and J. D. Rutherford. Control of the myocardial contractile state by carotid chemo‐ and baroreceptor and pulmonary inflation reflexes in conscious dogs. J. Clin. Invest. 61: 1593–1601, 1978.
 652. Verrier, R. L., and B. Lown. Sympathetic parasympathetic interactions and ventricular electrical stability. In: Perspectives in Cardiovascular Research. Neural Mechanisms in Cardiac Arrhythmias, edited by P. J. Schwartz New York: Raven, 1978, vol. 2, p. 75–85.
 653. Visscher, M. B., A. Rupp, and F. H. Scott. The respiratory wave in arterial blood pressure. Am. J. Physiol. 70: 586–606, 1924.
 654. Wang, S. C., and S. H. Ngai. General organization of central respiratory mechanisms. Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 19, p. 487–505.
 655. Wasserman, K., R. A. Mitchell, A. J. Berger, R. Casaburi, and J. A. Davis. Mechanism of the isoproterenol hyperpnea in the cat. Respir. Physiol. 38: 359–376, 1979.
 656. Wasserman, K., A. L.Van Kessel, and G. G. Burton. Interaction of physiological mechanisms during exercise. J. Appl. Physiol. 22: 71–85, 1967.
 657. Wasserman, K., B. J. Whipp, R. Casaburi, and W. L. Beaver. Carbon dioxide flow and exercise hyperpnea: cause and effect. Am. Rev. Respir. Dis. 115: 225–237, 1977.
 658. Wasserman, K., B. J. Whipp, R. Casaburi, D. J. Huntsman, J. Castagna, and R. Lugliani. Regulation of arterial PCO2 during intravenous CO2 loading. J. Appl. Physiol. 38: 651–656, 1975.
 659. Wasserman, K., B. J. Whipp, and J. Castagna. Cardiodynamic hyperpnea: hyperpnea secondary to cardiac output increase. J. Appl. Physiol. 36: 457–464, 1974.
 660. Wasserman, K., B. J. Whipp, and J. A. Davis. Respiratory physiology of exercise: metabolism, gas exchange, and ventilatory control. In: Respiratory Physiology III, edited by J. G. Widdicombe Baltimore, MD: University Park, 1981, vol. 23, p. 149–211. (Int. Rev. Physiol. Ser.).
 661. Wasserman, K., B. J. Whipp, S. N. Koyal, and M. G. Cleary. Effect of carotid body resection on ventilatory and acid‐base control during exercise. J. Appl. Physiol. 39: 354–358, 1975.
 662. Weidinger, H., and V. Leschhorn. Sympathische Tonisierung und rhythmische Blutdruckschwankungen. Z. Kreishlaufforsch. 53: 985–1002, 1964.
 663. Wendling, M. G., J. W. Eckstein, and F. M. Abboud. Cardiovascular responses to carbon dioxide before and after beta‐adrenergic blockade. J. Appl. Physiol. 22: 223–226, 1967.
 664. Wennergren, G., R. Little, and B. Öberg. Studies on the central integration of excitatory chemoreceptor influences and inhibitory baroreceptor and cardiac receptor influences. Acta Physiol. Scand. 96: 1–18, 1976.
 665. Wennergren, G., and B. Öberg. Cardiovascular effects elicited from the ventral surface of medulla oblongata in the cat. Pfluegers Arch. 387: 189–195, 1980.
 666. West, J. B., C. T. Dollery, and A. Naimark. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J. Appl. Physiol. 19: 713–724, 1964.
 667. Whayne, T. F., Jr., and T. Killip III. Simulated diving in man: comparison of facial stimuli and response in arrhythmia. J. Appl. Physiol. 22: 800–807, 1967.
 668. Whelan, R. F. Vasodilatation in human skeletal muscle during adrenaline infusions. J. Physiol. London 118: 575–587, 1952.
 669. Whelan, R. F., and I. M. Young. The effect of adrenaline and noradrenaline infusions on respiration in man. Br. J. Pharmacol. 8: 98–102, 1953.
 670. White, F. N. Circulation. Biol. Reptilia 5: 275–334, 1976.
 671. White, S. W., P. Andres, D. Brown, R. J. McRitchie, J. V. O. Reid, and P. I. Korner. Arterial hypoxia in the unanaesthetized monkey: role of autonomic and local circulatory mechanisms. Proc. Aust. Physiol. Pharmacol. Soc. 4: 90–91, 1973.
 672. White, S. W., and R. J. McRitchie. Nasopharyngeal reflexes: integrative analysis of evoked respiratory and cardiovascular effects. Aust. J. Exp. Biol. Med. Sci. 51: 17–31, 1973.
 673. White, S. W., R. J. McRitchie, W. L. Porges, and P. I. Korner. Respiratory and circulatory effects of arterial hypoxia in the monkey. Proc. Aust. Physiol. Pharmacol Soc. 3: 88–89, 1972.
 674. Whittenberger, J. L. Artificial respiration. Physiol. Rev. 35: 611–628, 1955.
 675. Widdicombe, J. G. Reflex control of breathing. In: Respiratory Physiology I, edited by J. G. Widdicombe Baltimore, MD: University Park, 1974, vol. 2, p. 273–302. (Int. Rev. Physiol. Ser.).
 676. Widdicombe, J. G. Defensive mechanisms of the respiratory system. In: Respiratory Physiology II, edited by J. G. Widdicombe Baltimore, MD: University Park, 1977, vol. 14, p. 291–315. (Int. Rev. Physiol. Ser.).
 677. Wiggers, C. J. The initial and progressive stages of circulatory failure in abdominal shock. Am. J. Physiol. 45: 485–499, 1918.
 678. Wiggers, C. J., M. N. Levy, and G. Graham. Regional intrathoracic pressures and their bearing on calculation of effective venous pressure. Am. J. Physiol. 151: 1–12, 1947.
 679. Wildenthal, K., J. M. Atkins, S. J. Leshin, and C. J. Skelton. The diving reflex used to treat paroxysmal atrial tachycardia. Lancet 1: 12–14, 1975.
 680. Wolf, G. A., Jr. The ratio of preganglionic neurons to postganglionic neurons in the visceral nervous system. J. Comp. Neurol. 75: 235–243, 1941.
 681. Wolf, S. Sudden death and the oxygen conserving reflex. Am. Heart J. 71: 840–841, 1966.
 682. Wyman, R. J. Neurophysiology of the motor output pattern generator for breathing. Federation Proc. 35: 2013–2023, 1976.
 683. Yabek, S. M., and H. Koffler. Immersion in ice water to treat supraventricular tachycardia. J. Pediatr. 92: 686–687, 1978.
 684. Yamamoto, W. S. Mathematical analysis of the time course of alveolar CO2. J. Appl. Physiol. 15: 215–219, 1960.
 685. Yamamoto, W. S., and McI. W. Edwards, Jr. Homeostasis of carbon dioxide during intravenous infusion of carbon dioxide. J. Appl. Physiol. 15: 807–818, 1960.
 686. Zanchetti, A. Neural and Psychological Mechanisms in Cardiovascular Disease. Milan: Casa Editrice II Ponte, 1972.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

M. De Burgh Daly. Interactions Between Respiration and Circulation. Compr Physiol 2011, Supplement 11: Handbook of Physiology, The Respiratory System, Control of Breathing: 529-594. First published in print 1986. doi: 10.1002/cphy.cp030216