Comprehensive Physiology Wiley Online Library

Form and Function of the Upper Airways and Larynx

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Upper Respiratory Tract as a Conducting Airway
2 Oronasal Breathing
3 Nasal Cycle
4 Effects of Nasal Breathing on Breathing Mechanics
5 Larynx
6 Patency and Obstruction of the Airways
Figure 1. Figure 1.

Xeroradiography illustrating upper airways in contrast to surrounding structures.

Figure 2. Figure 2.

Diagram of nasal airway showing sections through passage for 1 side of nasal valve (left) and midpassage (right). Nasal valve extends from nostrils through region indicated by dashed line at left and to anterior end of inferior turbinate.

From Proctor and Andersen 55
Figure 3. Figure 3.

Lines of inspiratory airflow determined from model studies. Most lines are between septum and meatus nasi medius. Nasal valve extends through region where bends in lines of flow begin.

Figure 4. Figure 4.

Radiograph showing velopharyngeal closure (heavy black line, upper right) and apposition of palate to the posterior nasopharyngeal wall.

Figure 5. Figure 5.

Frames from cinefluorograph (right) and tracings (left) showing variable positions of palate (P) and tongue (T). Upper pair, position found in most instances of oronasal breathing.

From Proctor 54
Figure 6. Figure 6.

Inspiratory (upper right) and expiratory (lower left) pressure‐flow relationships in the nose on maximum effort. Ordinate, flow; abscissa, pressure.

From Proctor 77
Figure 7. Figure 7.

Airflow resistance through the wide oral airway (oral) and nose (nasal). Ordinate, flow; abscissa, pressure.

From Proctor 78
Figure 8. Figure 8.

Changes in nasal airflow resistance from side to side in the nasal cycle.

From Eccles 22
Figure 9. Figure 9.

Flow‐volume curves, pressure‐flow charts, and pneumotachograms from normal subject breathing through nose (N) and mouthpiece (M) with nose clipped.

Data from M. Sheridan, unpublished observations
Figure 10. Figure 10.

A: laryngeal cartilages and ligaments; 3, vocal cords lengthen when cricothyroid muscles approximate the anterior ends of thyroid and cricoid cartilages. B: intrinsic laryngeal musculature.

From Proctor 76
Figure 11. Figure 11.

Action of various intrinsic muscles on arytenoid cartilages to open and close the glottis.



Figure 1.

Xeroradiography illustrating upper airways in contrast to surrounding structures.



Figure 2.

Diagram of nasal airway showing sections through passage for 1 side of nasal valve (left) and midpassage (right). Nasal valve extends from nostrils through region indicated by dashed line at left and to anterior end of inferior turbinate.

From Proctor and Andersen 55


Figure 3.

Lines of inspiratory airflow determined from model studies. Most lines are between septum and meatus nasi medius. Nasal valve extends through region where bends in lines of flow begin.



Figure 4.

Radiograph showing velopharyngeal closure (heavy black line, upper right) and apposition of palate to the posterior nasopharyngeal wall.



Figure 5.

Frames from cinefluorograph (right) and tracings (left) showing variable positions of palate (P) and tongue (T). Upper pair, position found in most instances of oronasal breathing.

From Proctor 54


Figure 6.

Inspiratory (upper right) and expiratory (lower left) pressure‐flow relationships in the nose on maximum effort. Ordinate, flow; abscissa, pressure.

From Proctor 77


Figure 7.

Airflow resistance through the wide oral airway (oral) and nose (nasal). Ordinate, flow; abscissa, pressure.

From Proctor 78


Figure 8.

Changes in nasal airflow resistance from side to side in the nasal cycle.

From Eccles 22


Figure 9.

Flow‐volume curves, pressure‐flow charts, and pneumotachograms from normal subject breathing through nose (N) and mouthpiece (M) with nose clipped.

Data from M. Sheridan, unpublished observations


Figure 10.

A: laryngeal cartilages and ligaments; 3, vocal cords lengthen when cricothyroid muscles approximate the anterior ends of thyroid and cricoid cartilages. B: intrinsic laryngeal musculature.

From Proctor 76


Figure 11.

Action of various intrinsic muscles on arytenoid cartilages to open and close the glottis.

References
 1. Allison, D. J., T. P. Clay, J. M. B. Hughes, H. A. Jones, and A. Sheris. Effects of nasal stimulation on total respiratory resistance in the rabbit (Abstract). J. Physiol. London 239: 23P–24P, 1974.
 2. Andersen, I., G. R. Lundqvist, P. L. Jensen, and D. F. Proctor. Human response to controlled levels of sulfur dioxide. Arch. Environ. Health 28: 31–39, 1974.
 3. Andersen, I., G. R. Lundqvist, P. L. Jensen, and D. F. Proctor. Human response to 78 hours exposure to dry air. Arch. Environ. Health 29: 319–324, 1974.
 4. Andersen, I., G. R. Lundqvist, and D. F. Proctor. Human mucosal function in a controlled climate. Arch. Environ. Health 23: 408–420, 1971.
 5. Andersen, I., G. R. Lundqvist, D. F. Proctor, and D. L. Swift. Human response to controlled levels of inert dust. Am. Rev. Respir. Dis. 119: 619–628, 1979.
 6. Andrew, B. L. The respiratory displacement of the larynx: a study of the innervation of accessory respiratory muscles. J. Physiol. London 130: 474–487, 1955.
 7. Angell‐James, J. E., and M. B. Daly. Some aspects of upper respiratory tract reflexes. Acta Oto‐Laryngol. 79: 242–252, 1975.
 8. Baier, H., A. Wanner, S. Zarzecki, and M. A. Sackner. Relationships among glottis Opening, respiratory flow, and upper airway resistance in humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 603–611, 1977.
 9. Bartlett, D., Jr. Effects of hypercapnia and hypoxia on laryngeal resistance to airflow. Respir. Physiol. 37: 293–302, 1979.
 10. Bartlett, D., Jr., J. E. Remmers, and H. Gautier. Laryngeal regulation of respiratory airflow. Respir. Physiol. 18: 194–204, 1973.
 11. Bosma, J. F. Physiology of the mouth. In: Otolaryngology: Basic Sciences and Related Disciplines, edited by M. A. Paparella and D. A. Shumrick. Philadelphia, PA: Saunders, 1980, vol. 1, p. 319–331.
 12. Bosma, J. F., and M. W. Donner. Physiology of the pharynx. In: Otolaryngology: Basic Sciences and Related Disciplines, edited by M. A. Paparella and D. A. Shumrick. Philadelphia, PA: Saunders, 1980, vol. 1, p. 332–345.
 13. Brain, J. D., D. F. Proctor, and L. M. Reid (editors). Lung Biology in Health and Disease. Respiratory Defense Mechanisms. New York: Dekker, 1977, vol. 5, pt. I.
 14. Bridger, G. P., and D. F. Proctor. Maximum nasal inspiratory flow and nasal resistance. Ann. Otol. Rhinol. Laryngol. 79: 481–489, 1970.
 15. Brody, A. W., R. R. Stoughton, T. L. Connolly, J. J. Shehan, J. J. Navin, and E. E. Kobald. Experimental value of the Reynolds critical flow in the human airway. J. Lab. Clin. Med. 67: 43–57, 1966.
 16. Butler, J. The work of breathing through the nose. Clin. Sci. 19: 55–62, 1960.
 17. Camner, P., and B. Bakke. Nose or mouth breathing. Environ. Res. 21: 394–398, 1980.
 18. Cockcroft, D. W., D. W. MacCormack, S. M. Tario, F. E. Hargreave, and L. D. Pengally. Nasal airway inspiratory resistance. Am. Rev. Respir. Dis. 119: 921–926, 1979.
 19. Cole, P., S. Mintz, V. Niinimaa, and F. Silverman. Nasal aerodynamics. J. Otolaryngol. 8: 191–195, 1979.
 20. Dallimore, N. S., and R. Eccles. Changes in human nasal resistance associated with exercise, hyperventilation and re‐breathing. Acta Oto‐Laryngol. 84: 416–421, 1977.
 21. Eccles, R. Proceedings: cyclic changes in human nasal resistance to air flow (Abstract). J. Physiol. London 272: 75P–76P, 1977.
 22. Eccles, R. The central rhythm of the nasal cycle. Acta Oto‐Laryngol. 86: 464–468, 1978.
 23. Eccles, R., and R. L. Maynard. Proceedings: studies on the nasal cycle in the immobilized pig (Abstract). J. Physiol. London 247: 1P, 1975.
 24. Eckenhoff, J. E. Some anatomic considerations of the infant larynx influencing endotracheal anesthesia. Anesthesiology 12: 401–410, 1951.
 25. Engel, S. Lung Structure. Springfield, IL: Thomas, 1962.
 26. Ferris, B. G., Jr., J. Mead, and L. H. Opie. Partitioning of respiratory flow resistance in man. J. Appl. Physiol. 19: 653–658, 1964.
 27. Fink, B. R. The Human Larynx: A Functional Study. New York: Raven, 1975.
 28. Fink, B. R., and R. J. Demarest. Respiratory folding. In: Laryngeal Biomechanics. Cambridge, MA: Harvard Univ. Press, 1978.
 29. Fischer, R. Das Strömungsprofil der Respirationsluft in der Nase bei physiologischer Atmung. Arch. Klin. Exp. Ohren Nasen Kehlkopfheilkd. 188: 404–408, 1967.
 30. Frantz, I. D., III, S. M. Adler, I. F. Abroms, and B. T. Thach. Respiratory response to airway occlusion in infants: sleep state and maturation. J. Appl. Physiol. 41: 634–638, 1976.
 31. Gautier, H., J. E. Remmers, and D. Bartlett, Jr. Control of the duration of expiration. Respir. Physiol. 18: 205–221, 1973.
 32. Graamans, K. Neus en lachtweg. Plethysmografischi meting van luchtwegweerstanden bij klachten over neusobstructie. Rotterdam, The Netherlands: Wyt & Zoner, 1980.
 33. Green, J. H., and E. Neil. The respiratory function of the laryngeal muscles. J. Physiol. London 129: 134–141, 1955.
 34. Hamilton, L. H. Nasal airway resistance: its measurement and regulation. Physiologist 22 (3): 43–49, 1979.
 35. Higenbottam, T. Narrowing of glottis opening in humans associated with experimentally induced bronchoconstriction. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 403–407, 1980.
 36. Jackson, A. C., P. J. Gulesian, Jr., and J. Mead. Glottal aperture during panting with voluntary limitation of tidal volume. J. Appl. Physiol. 39: 834–836, 1975.
 37. Kaufman, J., J. C. Chen, and G. W. Wright. The effect of trigeminal resection on reflex bronchoconstriction after nasal and nasopharyngeal irritation in man. Am. Rev. Respir. Dis. 101: 768–769, 1970.
 38. Kaufman, J., and G. W. Wright. The effect of nasal and nasopharyngeal irritation on airway resistance in man. Am. Rev. Respir. Dis. 100: 626–630, 1969.
 39. Keuning, J. On the nasal cycle. Rhinology Rhin. 6: 99–136, 1968.
 40. Lacourt, G., and G. Polgar. Interaction between nasal and pulmonary resistance in newborn infants. J. Appl. Physiol. 30: 870–873, 1971.
 41. Lugaresi, E., G. Coccagna, and F. Civignotta. Polygraphic and cineradiographic aspects of obstructive apneas occurring during sleep: physiological implications. In: Central Nervous Control Mechanisms in Breathing, edited by C. von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, vol. 32, p. 495–501. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 42. Mann, D. G., C. T. Sasaki, M. Suzuki, H. Fukuda, and J. R. Hernandez. Dilator naris muscle. Ann. Otol. Rhinol. Laryngol. 86: 362–372, 1977.
 43. McCaffrey, T. V., and E. B. Kern. Response of nasal airway resistance to hypercapnia and hypoxia in man. Ann. Otol. Rhinol. Laryngol. 88: 247–252, 1979.
 44. Mostafa, S. M. Variation in subglottic size in children. Proc. R. Soc. Med. 69: 793–795, 1976.
 45. Nakamura, F., Y. Oyeda, and Y. Sonoda. Electromyographic study of respiratory movements of the intrinsic laryngeal muscles. Laryngoscope 68: 109–119, 1958.
 46. Niinimaa, V., P. Cole, S. Mintz, and R. J. Shephard. A head‐out exercise body plethysmograph. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1336–1339, 1979.
 47. Niinimaa, V., P. Cole, S. Mintz, and R. J. Shephard. The switching point from nasal to oronasal breathing. Respir. Physiol. 42: 61–71, 1980.
 48. Niinamaa, V., P. Cole, S. Mintz, and R. J. Shephard. Oronasal distribution of respiratory airflow. Respir. Physiol. 43: 69–75, 1981.
 49. Nolte, D., and I. Luder‐Lühr. Comparing measurements of nasal resistance by body plethysmograph and by rhinomanometer. Respiration 30: 31–38, 1973.
 50. Ogura, J. H. Physiologic relationships of the upper and lower airways. Ann. Otol. Rhinol. Laryngol. 79: 495–498, 1970.
 51. Patrick, G. A., and G. R. Sharp. Oronasal distribution of inspiratory flow during various activities (Abstract). J. Physiol. London 206: 22P–23P, 1970.
 52. Polgar, G., and T. R. Weng. The functional development of the respiratory system. Am. Rev. Respir. Dis. 120: 625–695, 1979.
 53. Proctor, D. F. Physiology of the upper airway. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 8, p. 309–345.
 54. Proctor, D. F. The upper airways. I. Nasal physiology and the defense of the lungs. Am. Rev. Respir. Dis. 115: 97–130, 1977.
 55. Proctor, D. F. The upper airways. II. The larynx and trachea. Am. Rev. Respir. Dis. 115: 315–342, 1977.
 56. Proctor, D. F. The upper respiratory tract. In: Pulmonary Diseases and Disorders, edited by A. P. Fishman. New York: McGraw‐Hill, 1979, p. 3–17.
 57. Proctor, D. F. Breathing, Speech, and Song. New York: Springer‐Verlag, 1980.
 58. Proctor, D. F., and I. Andersen (editors). The Nose, Upper Airway Physiology and the Atmospheric Environment. Amsterdam: Elsevier/North‐Holland, 1982.
 59. Proctor, D. F., and J. B. Hardy. Studies of respiratory air flow. I. Significance of the normal pneumotachogram. Bull. Johns Hopkins Hosp. 85: 253–280, 1949.
 60. Rao, S., and A. Potdar. Nasal airflow with body in various positions. J. Appl. Physiol. 28: 162–165, 1970.
 61. Rattenburg, C. Laryngeal regulation of respiration. Acta Anaesthesiol. Scand. 5: 129–140, 1961.
 62. Remmers, J. E., and D. Bartlett, Jr. Reflex control of expiratory airflow and duration. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 80–87, 1977.
 63. Remmers, J. E., W. J. deGroot, E. K. Sauerland, and A. M. Anch. Pathogenesis of upper airway occlusion during sleep. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 931–938, 1978.
 64. Richerson, H. B., and P. M. Seebohm. Nasal airway response to exercise. J. Allergy 41: 269–284, 1968.
 65. Rundcrantz, H. Postural variations of nasal patency. Acta Oto‐Laryngol. 68: 435–443, 1969.
 66. Saibene, F., P. Mognoni, C. L. Lafortuna, and R. Hostard. Oronasal breathing during exercise. Pfluegers Arch. 378: 64–69, 1978.
 67. Saketkhoo, K., I. Kaplan, and M. A. Sackner. Effect of exercise on nasal mucous velocity and nasal airflow resistance in normal subjects. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 369–371, 1979.
 68. Schiratzki, H. The oral and laryngeal components of the upper airway resistance during mouth breathing. Acta Oto‐Laryngol. 60: 71–82, 1965.
 69. Spann, R. W., and R. E. Hyatt. Factors affecting upper airway resistance in conscious man. J. Appl. Physiol. 31: 708–712, 1971.
 70. Strohl, K. P., M. J. Hensley, M. Hallett, N. A. Saunders, and R. H. Ingram, Jr. Activation of upper airway muscles before onset of inspiration in normal humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 638–642, 1980.
 71. Swift, P. G. F., and J. L. Emery. Clinical observations on response to nasal occlusion in infancy. Arch. Dis. Child. 48: 947–951, 1973.
 72. Takagi, Y., D. F. Proctor, S. Salman, and S. Evering. Effects of cold air and carbon dioxide on nasal air flow resistance. Ann. Otol. Rhinol. Laryngol. 78: 40–49, 1969.
 73. Thach, B. T., AND R. T. Brouillette. The respiratory function of pharyngeal musculature: relevance to clinical obstructive apnea. In: Central Nervous Control Mechanisms in Breathing, edited by C. von Euler and H. Lagercrantz. Oxford, UK: Pergamon, vol. 32, p. 483–494. (Wenner‐Gren Ctr. Int. Symp. Ser.).
 74. Uddstromer, M. Nasal respiration: critical survey of some of the current physiological and clinical aspects on respiratory mechanism with description of new method of diagnosis. Acta Oto‐Laryngol. Suppl. 42: 3–146, 1940.
 75. Widdicombe, J. G. Proceedings: reflex control of the larynx (Abstract). Bull. Physio‐Pathol. Respir. 11: 102P–103P, 1975.
 76. Wyke, B. D. (editor). Ventilatory and Phonatory Control Systems: An International Symposium. London: Oxford Univ. Press, 1974.
 77. Wyke, B. D., and J. A. Kirchner. Neurology of the larynx. In: Scientific Foundation of Otolaryngology. London: Heinemann, 1976, p. 546–574.
 78. Wyllie, J. W., E. B. Kern, P. C. O'Brien, and R. E. Hyatt. Alteration of pulmonary function associated with artificial nasal obstruction. Surg. Forum 27: 535–537, 1976.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Donald F. Proctor. Form and Function of the Upper Airways and Larynx. Compr Physiol 2011, Supplement 12: Handbook of Physiology, The Respiratory System, Mechanics of Breathing: 63-73. First published in print 1986. doi: 10.1002/cphy.cp030306