Comprehensive Physiology Wiley Online Library

Micromechanics of the Lung

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Configuration of Terminal Air Spaces
1.1 Macroscopic Isotropy and Symmetry of Expansion
1.2 Alveolus–Alveolar Duct Interactions
1.3 Air‐Space Morphometry—Light Microscopy
1.4 Air‐Space Morphometry—Electron Microscopy
2 Mechanical Interactions of Tissue and Surface
2.1 Mechanical Models
2.2 Morphology in Presence and Absence of Surface Tension
2.3 Effects on Capillaries and Interstitial Fluid
3 Closure
3.1 Airways
3.2 Alveoli
3.3 Sequence of Closure
4 Opening
4.1 Airways
4.2 Alveoli
4.3 Mechanics of Opening
4.4 Septal Pleats
5 Gas Trapping
5.1 Foam
5.2 Mechanism
5.3 Trapping in Vivo
6 Instability
6.1 Negative Pressure‐ Volume Compliance
6.2 Configurational Stability
6.3 Surface Tension Elastance
6.4 Positive Tissue Elastance
6.5 Network Behavior (Interdependence)
Figure 1. Figure 1.

Possible acinar configuration changes and corresponding values of exponent n. A: isotropic expansion. B: alveolar septa change length by unfolding in an accordion‐like manner. Surface area is constant at all volumes. C: surface area is constant as shapes of alveoli change from “cup” to “saucer.” D: changes in lung volume result solely from recruitment or derecruitment of alveoli. Surface area and volume appear and disappear proportionately. E: alveoli bud from rigid alveolar duct and surface area increases disproportionately to volume.

Figure 2. Figure 2.

Schematic representation of the alveolar duct and its surrounding alveoli (top). The mechanical relationships of tissue (coiled lines) and surface tensions (wavy lines) are shown schematically (bottom). A, septa forming outer circumferential boundary; B, radially dispersed septa; C, alveolar entrance rings. Subscripts t and γ refer to tensions in the tissue elements and air‐liquid interfaces, respectively.

Figure 3. Figure 3.

Air‐liquid interfaces at sites of airway closure. A: peripheral airway (left) is closed by narrowing over a considerable length of airway. B: there is only a film across the lumen resulting in only minor narrowing. C: film has different surface tension on central and peripheral sides of an air bubble and is shown in straight airway (a) and at bifurcation (b).

Figure 4. Figure 4.

Theoretical pressure‐volume characteristics of alveolus showing region of negative compliance from B to C, causing an alveolus when inflated to critical opening pressure (PO) to jump from B to D and when deflated to critical closing pressure (PC) to jump from C to A.

Adapted from Mead 37
Figure 5. Figure 5.

Alveolar configuration during deflation from high (A) to middle (B) to low (C) volumes. With deflation septa shorten and, as tissue volume is conserved, they widen. Radius of curvature in the corners increases between high and middle volumes but decreases at low volumes, particularly in presence of some alveolar fluid.



Figure 1.

Possible acinar configuration changes and corresponding values of exponent n. A: isotropic expansion. B: alveolar septa change length by unfolding in an accordion‐like manner. Surface area is constant at all volumes. C: surface area is constant as shapes of alveoli change from “cup” to “saucer.” D: changes in lung volume result solely from recruitment or derecruitment of alveoli. Surface area and volume appear and disappear proportionately. E: alveoli bud from rigid alveolar duct and surface area increases disproportionately to volume.



Figure 2.

Schematic representation of the alveolar duct and its surrounding alveoli (top). The mechanical relationships of tissue (coiled lines) and surface tensions (wavy lines) are shown schematically (bottom). A, septa forming outer circumferential boundary; B, radially dispersed septa; C, alveolar entrance rings. Subscripts t and γ refer to tensions in the tissue elements and air‐liquid interfaces, respectively.



Figure 3.

Air‐liquid interfaces at sites of airway closure. A: peripheral airway (left) is closed by narrowing over a considerable length of airway. B: there is only a film across the lumen resulting in only minor narrowing. C: film has different surface tension on central and peripheral sides of an air bubble and is shown in straight airway (a) and at bifurcation (b).



Figure 4.

Theoretical pressure‐volume characteristics of alveolus showing region of negative compliance from B to C, causing an alveolus when inflated to critical opening pressure (PO) to jump from B to D and when deflated to critical closing pressure (PC) to jump from C to A.

Adapted from Mead 37


Figure 5.

Alveolar configuration during deflation from high (A) to middle (B) to low (C) volumes. With deflation septa shorten and, as tissue volume is conserved, they widen. Radius of curvature in the corners increases between high and middle volumes but decreases at low volumes, particularly in presence of some alveolar fluid.

References
 1. Ardila, R., T. Horie, and J. Hildebrandt. Macroscopic isotropy of lung expansion. Respir. Physiol. 20: 105–115, 1974.
 2. Assimacopoulos, A., R. Guggenheim, and Y. Kapanci. Changes in alveolar capillary configuration at different levels of lung inflation in the rat. An ultrastructural and morphometric study. Lab. Invest. 34: 10–22, 1976.
 3. Bachofen, H., J. Hildebrandt, and M. Bachofen. Pressure‐volume curves of air‐ and liquid‐filled excised lungs—surface tension in situ. J. Appl. Physiol. 29: 422–431, 1970.
 4. Brown, R., A. J. Woolcock, N. J. Vincent, and P. T. Macklem. Physiological effects of experimental airway obstruction with beads. J. Appl. Physiol. 27: 328–335, 1969.
 5. Burger, E. J., Jr., and P. Macklem. Airway closure: demonstration by breathing 100% O2 at low lung volumes and by N2 washout. J. Appl. Physiol. 25: 139–148, 1968.
 6. Cavagna, G. A., E. J. Stemmler, and A. B. DuBois. Alveolar resistance to atelectasis. J. Appl. Physiol. 22: 441–452, 1967.
 7. Clements, J. A., R. F. Hustead, R. P. Johnson, and I. Gribetz. Pulmonary surface tension and alveolar stability. J. Appl. Physiol. 16: 444–450, 1961.
 8. D'Angelo, E. Local alveolar size and transpulmonary pressure in situ and in isolated lungs. Respir. Physiol. 14: 251–266, 1972.
 9. Dunnill, M. S. Effect of lung inflation on alveolar surface area in the dog. Nature London 214: 1013–1014, 1967.
 10. Engel, L. A., A. Grassino, and N. R. Anthonisen. Demonstration of airway closure in man. J. Appl. Physiol. 38: 1117–1125, 1975.
 11. Faridy, E. E., and S. Permutt. Surface forces and airway obstruction. J. Appl. Physiol. 30: 319–321, 1971.
 12. Faridy, E. E., S. Permutt, and R. L. Riley. Effect of ventilation on surface forces in excised dogs' lungs. J. Appl. Physiol. 21: 1453–1462, 1966.
 13. Flicker, E., and J.‐S. Lee. Equilibrium of force of subpleural alveoli: implications to lung mechanics. J. Appl. Physiol. 36: 366–374, 1974.
 14. Forkert, L., S. Dhingra, and N. R. Anthonisen. Airway closure and closing volume. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 24–30, 1979.
 15. Forrest, J. B. The effect of changes in lung volume on the size and shape of alveoli. J. Physiol. London 210: 533–547, 1970.
 16. Frank, N. R., E. P. Radford, Jr., and J. L. Whittenberger. Static volume‐pressure interrelations of the lungs and pulmonary blood vessels in excised cats' lungs. J. Appl. Physiol. 14: 167–173, 1959.
 17. Frazer, D. G., and B. Khoshnood. A model of the gas trapping mechanism in excised lungs. Proc. N. Engl. Bioeng. Conf. 7: 482–485, 1979.
 18. Frazer, D. G., P. W. Stengel, and K. C. Weber. Meniscus formation in airways of excised rat lungs. Respir. Physiol. 36: 121–129, 1979.
 19. Frazer, D. G., and K. C. Weber. Trapped air in ventilated excised rat lungs. J. Appl. Physiol. 40: 915–922, 1976.
 20. Frazer, D. G., and K. C. Weber. The effects of several gases (He, N2, N2O, and SF6) on gas trapping in excised lungs. Respir. Physiol. 40: 323–333, 1980.
 21. Fung, Y.‐C. Stress, deformation, and atelectasis of the lung. Circ. Res. 37: 481–496, 1975.
 22. Gil, J., H. Bachofen, P. Gehr, and E. R. Weibel. Alveolar volume‐surface area relation in air‐ and saline‐filled lungs fixed by vascular perfusion. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 990–1001, 1979.
 23. Gil, J., and E. R. Weibel. Morphological study of pressure‐volume hysteresis in rat lungs fixed by vascular perfusion. Respir. Physiol. 15: 190–213, 1972.
 24. Glaister, D. H., R. C. Schroter, M. F. Sudlow, and J. Milic‐Emili. Bulk elastic properties of excised lungs and the effect of a transpulmonary pressure gradient. Respir. Physiol. 17: 347–364, 1973.
 25. Goldberg, H. S., W. Mitzner, K. Adams, H. Menkes, S. Lichtenstein, and S. Permutt. Effect of intrathoracic pressure on pressure‐volume characteristics of the lung in man. J. Appl. Physiol. 38: 411–417, 1975.
 26. Hales, C. A., and H. Kazemi. Small airways function in myocardial infarction. N. Engl. J. Med. 290: 761–765, 1974.
 27. Hansen, J. E., and E. P. Ampaya. Lung morphometry: a fallacy in the use of the counting principle. J. Appl. Physiol. 37: 951–954, 1974.
 28. Hansen, J. E., and E. P. Ampaya. Human air space shapes, sizes, areas, and volumes. J. Appl. Physiol. 38: 990–995, 1975.
 29. Hughes, J. M. B., D. Y. Rosenzweig, and P. B. Kivitz. Site of airway closure in excised dog lungs: histologic demonstration. J. Appl. Physiol. 29: 340–344, 1970.
 30. Hyatt, R. E., G. C. Okeson, and J. R. Rodarte. Influence of expiratory flow limitation on the pattern of lung emptying in normal man. J. Appl. Physiol. 35: 411–419, 1973.
 31. Klingele, T. G., and N. C. Staub. Alveolar shape changes with volume in isolated, air‐filled lobes of cat lung. J. Appl. Physiol. 28: 411–414, 1970.
 32. Leith, D. E. Comparative mammalian respiratory mechanics. Physiologist 19: 485–510, 1976.
 33. Macklem, P. T. Airway obstruction and collateral ventilation. Physiol. Rev. 51: 368–436, 1971.
 34. Macklem, P. T., D. F. Proctor, and J. C. Hogg. The stability of peripheral airways. Respir. Physiol. 8: 191–203, 1970.
 35. Martin, H. B., and D. F. Proctor. Pressure‐volume measurements on dog bronchi. J. Appl. Physiol. 13: 337–343, 1958.
 36. Mazzone, R. W., C. M. Durand, and J. B. West. Electron microscopy of lung rapidly frozen under controlled physiological conditions. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 325–333, 1978.
 37. Mead, J. Mechanical properties of lungs. Physiol. Rev. 41: 281–330, 1961.
 38. Mead, J., T. Takishima, and D. Leith. Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol. 28: 596–608, 1970.
 39. Milic‐Emili, J., J. A. M. Henderson, M. B. Dolovich, D. Trop, and K. Kaneko. Regional distribution of inspired gas in the lung. J. Appl. Physiol. 21: 749–759, 1966.
 40. Nakamura, M., H. Sasaki, K. Sekizawa, M. Ishii, T. Takishima, and F. G. Hoppin, Jr. Series distribution of airway collapsibility in dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 325–333, 1981.
 41. Oldmixon, E. H., S. Suzuki, J. P. Butler, and F. G. Hoppin, Jr. Perfusion dehydration fixes elastin and preserves lung airspace dimensions. J. Appl. Physiol. 58: 105–113, 1985.
 42. Paumgartner, D., G. Losa, and E. R. Weibel. Resolution effect on the stereological estimation of surface volume and its interpretation in terms of fractal dimensions. J. Microsc. 121: 51–63, 1981.
 43. Radford, E. P., Jr. Mechanical factors determining alveolar configuration. Am. Rev. Respir. Dis. 81: 743–744, 1960.
 44. Radford, E. P., Jr. Mechanical stability of the lung. Arch. Environ. Health 6: 128–133, 1963.
 45. Radford, E. P., Jr., and M. McLaughlin. Dependence of lung mechanical properties on anatomic relationships within terminal lung units (Abstract). Federation Proc. 15: 147, 1956.
 46. Rodarte, J. R., R. E. Hyatt, and D. A. Cortese. Influence of expiratory flow on closing capacity at low expiratory flow rates. J. Appl. Physiol. 39: 60–65, 1975.
 47. Sanderson, R. J., G. W. Paul, A. E. Vatter, and G. F. Filley. Morphological and physiological basis for lung surfactant action. Respir. Physiol. 27: 379–392, 1976.
 48. Sasaki, H., and F. G. Hoppin, Jr. Hysteresis of contracted airway smooth muscle. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1251–1262, 1979.
 49. Sasaki, H., F. G. Hoppin, Jr., and T. Takishima. Peribronchial pressure in excised dog lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 858–869, 1978.
 50. Schürch, S. Surface tension at low lung volumes: dependence on time and alveolar size. Respir. Physiol. 48: 339–355, 1982.
 51. Schürch, S., D. F. Gerson, and D. J. L. McIver. Determination of cell/medium interfacial tensions from contact angles in aqueous polymer systems. Biochim. Biophys. Acta 640: 557–571, 1981.
 52. Schürch, S., J. Goerke, and J. A. Clements. Direct determination of surface tension in the lungs. Proc. Natl. Acad. Sci. USA 73: 4698–4701, 1976.
 53. Sergysels, R., R. Amyot, P. T. Macklem, and R. R. Martin. In vivo gas trapping induced by nitrous oxide. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 414–420, 1977.
 54. Sittipong, R., and R. E. Hyatt. Static mechanical behavior of bronchi in excised dog lung. J. Appl. Physiol. 37: 201–206, 1974.
 55. Storey, W. F., and N. C. Staub. Ventilation of terminal air units. J. Appl. Physiol. 17: 391–397, 1962.
 56. Sybrecht, G. W., L. Garrett, and N. R. Anthonisen. Effect of chest strapping on regional lung function. J. Appl. Physiol. 39: 707–713, 1975.
 57. Tsunoda, S., H. Fukaya, T. Sugihara, C. J. Martin, and J. Hildebrandt. Lung volume, thickness of alveolar walls, and microscopic anisotropy of expansion. Respir. Physiol. 22: 285–296, 1974.
 58. Valberg, P. A., and J. D. Brain. Lung surface tension and air space dimensions from multiple pressure‐volume curves. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 730–738, 1977.
 59. Von Neergaard, K. Neue Auffassungen über einen Grundbegriff der Atemmechanik. Die Retraktionskraft der Lunge, Abhängig von der Oberflachenspannung in den Alveolen. Z. Gesamte Exp. Med. 66: 373–394, 1929.
 60. Weibel, R. R., P. Untersee, J. Gil, and M. Zulauf. Morphometric estimation of pulmonary diffusion capacity. VI. Effect of varying positive pressure inflation of air spaces. Respir. Physiol. 18: 285–308, 1973.
 61. Wilson, T. A. Relations among recoil pressure, surface area, and surface tension in the lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 921–926, 1981.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Ian A. Greaves, Jacob Hildebrandt, Frederic G. Hoppin. Micromechanics of the Lung. Compr Physiol 2011, Supplement 12: Handbook of Physiology, The Respiratory System, Mechanics of Breathing: 217-231. First published in print 1986. doi: 10.1002/cphy.cp030314