Comprehensive Physiology Wiley Online Library

Methods for Study of the Chest Wall

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Measurements of Displacement
1.1 Measurement of Chest Wall Dimensions
1.2 Techniques for Measuring Volume Displacements
1.3 Assessment of Muscle Action
2 Pressure Measurements for Chest Wall
3 Neuromuscular Electrophysiological Measurements
3.1 Types of Electrodes
3.2 Characteristics of Neuromuscular Electrical Signals
3.3 Amplification and Filtering of Neuromuscular Electrical Signals
3.4 Introduction to Processing of Neuromuscular Electrical Signals
3.5 Mass Discharge Recordings: Extracting Respiratory Periodic Signal
3.6 Alternative Characterizations of Mass Discharge Recordings
3.7 Comparing Two Signals
3.8 Processing Single‐Unit Activity
4 Conclusion
Figure 1. Figure 1.

Respiratory muscle EMG recordings from human subject during CO2‐stimulated breathing. Ees, esophageal diaphragmatic EMG; Eics EMG from surface electrodes on right lower ventrolateral rib cage; Eps, EMG from bipolar Basmajian‐type intramuscular wire electrode in parasternal region of 2nd intercostal interspace; Eics, moving average of Eics from Paynter filter with averaging interval of 100 ms. All EMG values are band‐pass filtered from 15 to 250 Hz.

Figure 2. Figure 2.

Logarithmic power spectra of diaphragm EMG signals recorded from 3 different sites. RS and LS are from electrodes on right and left ventrolateral surface of rib cage in 7th and 8th interspaces. ES is from esophageal electrode. Spectra are ensemble averages based on 256‐ms samples of signals from each of 30 consecutive inspirations. Short vertical bar on LS trace indicates size of 95% confidence interval for all frequencies and all 3 spectra. Vertical displacement of curves is for visual purposes only.

From Bruce and Goldman 19


Figure 1.

Respiratory muscle EMG recordings from human subject during CO2‐stimulated breathing. Ees, esophageal diaphragmatic EMG; Eics EMG from surface electrodes on right lower ventrolateral rib cage; Eps, EMG from bipolar Basmajian‐type intramuscular wire electrode in parasternal region of 2nd intercostal interspace; Eics, moving average of Eics from Paynter filter with averaging interval of 100 ms. All EMG values are band‐pass filtered from 15 to 250 Hz.



Figure 2.

Logarithmic power spectra of diaphragm EMG signals recorded from 3 different sites. RS and LS are from electrodes on right and left ventrolateral surface of rib cage in 7th and 8th interspaces. ES is from esophageal electrode. Spectra are ensemble averages based on 256‐ms samples of signals from each of 30 consecutive inspirations. Short vertical bar on LS trace indicates size of 95% confidence interval for all frequencies and all 3 spectra. Vertical displacement of curves is for visual purposes only.

From Bruce and Goldman 19
References
 1. Abraham, W. M., H. Watson, A. Schneider, M. King, L. Yerger, and M. A. Sackner. Noninvasive ventilatory monitoring by respiratory inductive plethysmography in conscious sheep. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1657–1661, 1981.
 2. Agostoni, E., and J. Mead. Statics of the respiratory system. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 13, p. 387–409.
 3. Agostoni, E., and P. Mognoni. Deformation of the chest wall during breathing efforts. J. Appl. Physiol. 21: 1827–1832, 1966.
 4. Agostoni, E., P. Mognoni, G. Torri, and F. Saracino. Relation between changes of rib cage circumference and lung volume. J. Appl. Physiol. 20: 1179–1186, 1965.
 5. Agostoni, E., G. Sant'Ambrogio, and H. del Portillo Carrasco. Electromyography of the diaphragm in man and transdiaphragmatic pressure. J. Appl. Physiol. 15: 1093–1097, 1960.
 6. Altose, M. D., N. N. Stanley, N. S. Cherniack, and A. P. Fishman. Effects of mechanical loading and hypercapnia on inspiratory muscle EMG. J. Appl Physiol. 38: 467–473, 1975.
 7. Banzett, R. B. Implantable electrode pair for recording from intact small nerves. IEEE Trans. Biomed. Eng. 27: 53–54, 1980.
 8. Banzett, R., E. Bruce, M. Goldman, and J. Mead. Artifactual changes in diaphragm EMG amplitude caused by mechanical interventions to breathing (Abstract). Physiologist 20 (4): 5, 1977.
 9. Basmajian, J. V. Muscles Alive: Their Functions Revealed by Electromyography (4th ed.). Baltimore, MD: Williams & Wilkins, 1978.
 10. Basmajian, J. V., and G. Stecko. A new bipolar electrode for electromyography. J. Appl. Physiol 17: 849, 1962.
 11. Bellemare, F., J. P. Clozel, C. M. Lavigne, and A. Grassino. Sonomicrometry: a technique to study contraction of respiratory muscles (Abstract). Federation Proc. 42: 1010, 1983.
 12. Bendat, J. S., and A. G. Piersol. Random Data: Analysis and Measurement Procedures. New York: Wiley‐Interscience, 1971.
 13. Bendat, J. S., and A. G. Piersol. Engineering Applications of Correlation and Spectral Analysis. New York: Wiley‐Interscience, 1980.
 14. Bergofsky, E. H. Relative contributions of the rib cage and the diaphragm to ventilation in man. J. Appl. Physiol. 19: 698–706, 1964.
 15. Bigland, B., and O. C. J. Lippold. The relation between force, velocity and integrated electrical activity in human muscles. J. Physiol. London 123: 214–224, 1954.
 16. Bigland‐Ritchie, B., E. F. Donovan, and C. S. Roussos. Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1300–1305, 1981.
 17. Biro, G., and L. D. Partridge. Analysis of multiunit spike records. J. Appl. Physiol. 30: 521–526, 1971.
 18. Braun, N. M. T., N. S. Arora, and D. F. Rochester. Force‐length relationship of the normal human diaphragm. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 405–412, 1982.
 19. Bruce, E. N., and M. D. Goldman. High frequency oscillations in human respiratory electromyograms during voluntary breathing. Brain Res. 269: 259–265, 1983.
 20. Bruce, E. N., M. D. Goldman, and J. Mead. A digital computer technique for analyzing respiratory muscle EMG's. J. Appl. Physiol. 43: 551–556, 1977.
 21. Brusil, P. J., T. B. Waggener, and R. E. Kronauer. Using a comb filter to describe time‐varying biological rhythmicities. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 557–561, 1980.
 22. Campbell, E. J. M., E. Agostoni, and J. Newsom Davis. The Respiratory Muscles: Mechanics and Neural Control (2nd ed.). Philadelphia, PA: Saunders, 1970.
 23. Chadha, T. S., H. Watson, S. Birch, G. A. Jenouri, A. W. Schneider, M. A. Cohn, and M. A. Sackner. Validation of respiratory inductive plethysmography using different calibration procedures. Am. Rev. Respir. Dis. 125: 644–649, 1982.
 24. Chevalier, P. A., J. F. Greenleaf, R. A. Robb, and E. H. Wood. Biplane videoroentgenographic analysis of dynamic regional lung strains in dogs. J. Appl. Physiol. 40: 118–122, 1976.
 25. Cohen, M. I. Synchronization of discharge, spontaneous and evoked, between inspiratory neurons. Acta Neurobiol. Exp. 33: 189–218, 1973.
 26. Cohen, M. I., M. F. Piercey, P. M. Gootman, and P. wolotsky. Synaptic connections between medullary respiratory neurons and phrenic motoneurons as revealed by cross‐correlation. Brain Res. 81: 319–324, 1974.
 27. Cohn, M. A., A. S. V. Rao, M. Broudy, S. Birch, H. Watson, N. Atkins, B. Davis, F. D. Stott, and M. A. Sackner. The respiratory inductive plethysmograph: a new non‐invasive monitor of respiration. Bull Eur. Physiopathol. Respir. 18: 643–658, 1982.
 28. D'Angelo, E., and G. Sant'Ambrogio. Direct action of contracting diaphragm on the rib cage in rabbits and dogs. J. Appl. Physiol. 36: 715–719, 1974.
 29. Danon, J., W. S. Druz, N. B. Goldberg, and J. T. Sharp. Function of the isolated paced diaphragm and the cervical accessory muscles in C1 quadriplegics. Am. Rev. Respir. Dis. 119: 909–919, 1979.
 30. Da Silva, K. M. C., B. M. Sayers, T. A. Sears, and D. T. stagg. The changes in configuration of the rib cage and abdomen during breathing in the anaesthetized cat. J. Physiol. London 266: 499–521, 1977.
 31. Davenport, W. B., Jr., and W. L. Root. An Introduction to the Theory of Random Signals and Noise. New York: McGraw‐Hill, 1958.
 32. De Luca, C. J. Physiology and mathematics of myoelectric signals. IEEE Trans. Biomed. Eng. 26: 313–325, 1979.
 33. Denison, D. M., A. J. Peacock, M. D. L. Morgan, M. A. Branthwaite, and A. R. Gourlay. Does the lung work? 3. Shedding light on the subject. Br. J. Dis. Chest 76: 20–34, 1982.
 34. Dick, D. E., J. R. Meyer, and J. V. Weil. A new approach to quantitation of whole nerve bundle activity. J. Appl Physiol. 36: 393–397, 1974.
 35. Druz, W. S., and J. T. Sharp. Activity of respiratory muscles in upright and recumbent humans. J. Appl Physiol.: Respirat. Environ. Exercise Physiol 51: 1552–1561, 1981.
 36. Duomarco, J. L., and R. Rimini. La presion intra‐abdominal en el hombre. Buenos Aires: El Ateneo, 1947.
 37. Edwards, R. H. T. Physiological analysis of skeletal muscle weakness and fatigue. Clin. Sci. Mol Med. 54: 463–470, 1978.
 38. Eldridge, F. L. Relationship between respiratory nerve and muscle activity and muscle force output. J. Appl. Physiol. 39: 567–574, 1975.
 39. Evanich, M. J., M. Lopata, and R. V. Lourenço. Analytical methods for the study of electrical activity in respiratory nerves and muscles. Chest 70: 158–162, 1976.
 40. Evanich, M. J., M. Lopata, and R. V. Lourenço. Phrenic nerve activity and occlusion pressure changes during CO2 rebreathing in cats. J. Appl. Physiol. 41: 536–543, 1976.
 41. Fluck, D. C. Chest movements in hemiplegia. Clin. Sci. 31: 383–388, 1966.
 42. Froese, A. B., and A. C. Bryan. Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 41: 242–255, 1974.
 43. Garland, H., R. W. Angel, and R. D. Mellon. A state variable averaging filter for electromyogram processing. Med. Biol. Eng. 10: 559–560, 1972.
 44. Geddes, L. A. Electrodes and the Measurement of Bioelectric Events. New York: Wiley‐Interscience, 1972.
 45. Geddes, L. A., and L. E. Baker. Principles of Applied Biomedical Instrumentation (2nd ed.). New York: Wiley‐Interscience, 1975, p. 374–417.
 46. Goldman, M. D. Interpretation of thoracoabdominal movements during breathing. Clin. Sci. 62: 7–11, 1982.
 47. Goldstein, D., and J. Mead. Use of magnetometers to volume‐reference flow‐volume curves. J. Appl Physiol.: Respirat. Environ. Exercise Physiol. 48: 731–736, 1980.
 48. Gottlieb, G. L., M. S. Agarwal, and G. C. Agarwal. Filtering of electromyographic signals. Am. J. Phys. Med. 49: 142–146, 1970.
 49. Gourlay, A. R., G. Kaye, D. M. Denison, A. J. Peacock, and M. D. L. Morgan. Analysis of an optical mapping technique for lung function studies. Comput. Biol. Med. 14: 47–58, 1984.
 50. Grassino, A., M. D. Goldman, J. Mead, and T. A. Sears. Mechanics of the human diaphragm during voluntary contraction: statics. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 829–839, 1978.
 51. Grassino, A., W. A. Whitelaw, and J. Milic‐Emili. Influence of lung volume and electrode position on electromyography of the diaphragm. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 40: 971–975, 1976.
 52. Green, M., J. Mead, and T. A. Sears. Muscle activity during chest wall restriction and positive pressure breathing. Respir. Physiol 35: 283–300, 1978.
 53. Gross, D., A. Grassino, W. R. D. Ross, and P. T. Macklem. Electromyogram pattern of diaphragmatic fatigue. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 1–7, 1979.
 54. Hagg, G. Electromyographic fatigue analysis based on the number of zero crossings. Pfluegers Arch. 391: 78–80, 1981.
 55. Hathorn, M. K. S. Analysis of periodic changes in ventilation in newborn infants. J. Physiol London 285: 85–99, 1978.
 56. Hoffman, E. A., L. J. Sinak, R. A. Robb, and E. L. Ritman. Noninvasive quantitative imaging of shape and volume of lungs. J. Appl Physiol.: Respirat. Environ. Exercise Physiol. 54: 1414–1421, 1983.
 57. Iscoe, S., J. Dankoff, R. Migicovsky, and C. Polosa. Recruitment and discharge frequency of phrenic motoneurones during inspiration. Respir. Physiol. 26: 113–128, 1976.
 58. Jenkins, G. M., and D. G. Watts. Spectral Analysis and Its Applications. San Francisco, CA: Holden‐Day, 1968.
 59. Katz, R. L., B. R. Fink, and S. H. Ngai. Relationship between electrical activity of the diaphragm and ventilation. Proc. Soc. Exp. Biol. Med. 110: 792–794, 1962.
 60. Kay, S. M., and S. L. Marple. Spectrum analysis—a modern perspective. Proc. IEEE 69: 1380–1419, 1981.
 61. Kim, M. J., W. S. Druz, J. Danon, W. Machnach, and J. T. Sharp. Mechanics of the canine diaphragm. J. Appl. Physiol. 41: 369–382, 1976.
 62. Kim, M. J., W. S. Druz, W. Machnach, and J. T. Sharp. Relationship of direct diaphragmatic EMG to muscle length in a canine diaphragm strip preparation (Abstract). Physiologist 23 (4): 2, 1980.
 63. Komi, P. V., and J. H. T. Vitasalo. Signal characteristics of EMG at different levels of muscle tension. Acta Physiol. Scand. 96: 267–276, 1976.
 64. Konno, K., and J. Mead. Measurement of separate volume changes of rib cage and abdomen during breathing. J. Appl. Physiol. 22: 407–422, 1967.
 65. Kovatz, F., Jr. Plethysmographie optique du tronc. Étude du cycle ventilatoire maximal. Bull. Physio‐Pathol. Respir. 6: 833–845, 1970.
 66. Kreifeldt, J. G. Signal versus noise characteristics of filtered EMG used as a control source. IEEE Trans. Biomed. Eng. 18: 16–22, 1971.
 67. Kwatny, E., D. H. Thomas, and H. G. Kwatny. An application of signal processing techniques to the study of myoelectric signals. IEEE Trans. Biomed. Eng. 17: 303–312, 1970.
 68. Lindström, L., R. Kadefors, and I. Petersén. An electromyographic index for localized muscle fatigue. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 750–754, 1977.
 69. Lindström, L. H., and R. I. Magnussön. Interpretation of myoelectric power spectra: a model and its applications. Proc. IEEE 65: 653–662, 1977.
 70. Lindström, L. H., R. I. Magnusson, and I. Petersén. Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals. Electromyography 10: 341–356, 1970.
 71. Lippold, O. C. J. The relation between integrated action potentials in a human muscle and its isometric tension. J. Physiol. London 117: 492–499, 1952.
 72. Lopata, M., M. J. Evanich, and R. V. Lourenço. Quantification of diaphragmatic EMG response to CO2 rebreathing in humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 262–270, 1977.
 73. Lourenço, R. V., N. S. Cherniack, J. R. Malm, and A. P. Fishman. Nervous output from the respiratory center during obstructed breathing. J. Appl. Physiol. 21: 527–533, 1966.
 74. Marmorelis, P. Z., and V. Z. Marmorelis. Analysis of Physiological Systems: The White‐Noise Approach. New York: Plenum, 1978.
 75. Mead, J., and S. H. Loring. Analysis of volume displacement and length changes of the diaphragm during breathing. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 750–755, 1982.
 76. Mead, J., N. Peterson, G. Grimby, and J. Mead. Pulmonary ventilation measured by body surface movements. Science 156: 1383–1384, 1967.
 77. Moore, G. P., D. H. Perkel, and J. P. Segundo. Statistical analysis and functional interpretation of neuronal spike data. Annu. Rev. Physiol. 28: 493–522, 1966.
 78. Moxham, J., C. M. Wiles, D. Newham, and R. H. T. Edwards. Contractile function and fatigue of the respiratory muscles in man. In: Human Muscle Fatigue: Physiological Mechanisms. London: Pitman, 1981, p. 197–212. (Ciba Found. Symp. 82.)
 79. Mueller, E. P., and R. V. Lourenço. On‐line subtraction of the cardiac activity from the esophageal electromyogram of the diaphragm. IEEE Trans. Biomed. Eng. 15: 115–118, 1968.
 80. Muller, N., G. Gulston, D. Cade, J. Whitton, A. B. Froese, M. H. Bryan, and A. C. Bryan. Diaphragmatic muscle fatigue in the newborn. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 688–695, 1979.
 81. önal, E., M. Lopata, and M. J. Evanich. Effects of electrode position on esophageal diaphragmatic EMG in humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1234–1238, 1979.
 82. Oppenheim, A. V., and R. W. Schafer. Digital Signal Processing. Englewood Cliffs, NJ: Prentice‐Hall, 1975.
 83. Otis, A. B., and C. V. Peterson. Regional length changes in the diaphragm of anesthetized dogs measured with Hall effect transducers (Abstract). Physiologist 24 (4): 96, 1981.
 84. Papoulis, A. Probability, Random Variables and Stochastic Processes. New York: McGraw‐Hill, 1965.
 85. Peacock, A. J., M. D. L. Morgan, C. Turton, A. R. Gourlay, and D. M. Denison. Optical mapping of the thoracoabdominal wall. Thorax 39: 93–100, 1984.
 86. Perkel, D. H., G. L. Gerstein, and G. P. Moore. Neuronal spike trains and stochastic point processes. I. The single spike train. Biophys. J. 7: 391–418, 1967.
 87. Perkel, D. H., G. L. Gerstein, and G. P. Moore. Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys. J. 7: 419–440, 1967.
 88. Petit, J. M., G. Milic‐Emili, and L. Delhez. Role of the diaphragm in breathing in conscious normal man: an electromyographic study. J. Appl. Physiol. 15: 1101–1106, 1960.
 89. Prechtl, H. F. R., L. A. Van Eykern, and M. J. O'Brien. Respiratory muscle EMG in newborns: a non‐intrusive method. Early Hum. Dev. 1: 265–283, 1977.
 90. Reid, M. B., and R. L. Johnson, Jr. Efficiency, maximal blood flow, and aerobic work capacity of canine diaphragm. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 763–772, 1983.
 91. Robertson, C. H., Jr., M. E. Bradley, and L. D. Homer. Comparison of two‐ and four‐magnetometer methods of measuring ventilation. J. Appl Physiol.: Respirat. Environ. Exercise Physiol 49: 355–362, 1980.
 92. Roth, P. R. Effective measurements using digital signal analysis. IEEE Spectrum 8: 62–70, 1971.
 93. Sackner, J. D., A. J. Nixon, B. Davis, N. Atkins, and M. A. Sackner. Non‐invasive measurement of ventilation during exercise using a respiratory inductive plethysmograph. I. Am. Rev. Respir. Dis. 122: 867–871, 1980.
 94. Saumarez, R. C. Automated Measurement and Analysis of the Movements of the Human Torso Surface During Breathing. London: University of London, 1982. PhD thesis.
 95. Saunders, N. A., S. M. Kreitzer, and R. H. Ingram, Jr. Rib cage deformation during static inspiratory efforts. J. Appl Physiol.: Respirat. Environ. Exercise Physiol. 46: 1071–1075, 1979.
 96. Schweitzer, T. W., J. W. Fitzgerald, J. A. Bowden, and P. Lynne‐Davies. Spectral analysis of human inspiratory diaphragmatic electromyograms. J. Appl Physiol.: Respirat. Environ. Exercise Physiol 46: 152–165, 1979.
 97. Scott, R. N. Myo‐electric energy spectra. Med. Biol. Eng. 5: 303–305, 1967.
 98. Sears, T. A. Efferent discharges in alpha and fusimotor fibres of intercostal nerves of the cat. J. Physiol. London 174: 295–315, 1964.
 99. Sears, T. A., and D. Stagg. Short‐term synchronization of intercostal motoneurone activity. J. Physiol London 263: 357–381, 1976.
 100. Smith, J. C., and J. Mead. Degrees of freedom of chest wall motion in man (Abstract). Physiologist 24 (4): 98, 1981.
 101. Stagg, D., M. Goldman, and J. Newsom Davis. Computer‐aided measurement of breath volume and time components using magnetometers. J. Appl Physiol.: Respirat. Environ. Exercise Physiol. 44: 623–633, 1978.
 102. Stegall, H. F., M. B. Kardon, H. L. Stone, and V. S. Bishop. A portable, simple sonomicrometer. J. Appl. Physiol. 23: 289–293, 1967.
 103. Stulen, F. B., and C. T. De Luca. Frequency measures of the myoelectric signal as a measure of muscle conduction velocity. Trans. Biomed. Eng. 28: 515–523, 1981.
 104. Viljanen, A. A., H. Poppius, R. M. Bergström, and M. Hakumaki. Electrical and mechanical activity in human respiratory muscles. Acta Neurol. Scand. Suppl. 13: 237–239, 1965.
 105. Wade, O. L. Movements of the thoracic cage and diaphragm in respiration. J. Physiol. London 124: 193–212, 1954.
 106. Walsh, L. F., and B. P. Halpern. Digitally controlled summator for quantizing multiunit responses. J. Appl. Physiol. 37: 748–751, 1974.
 107. Watson, H. The technology of respiratory inductive plethysmography. In: Proc. 3rd Int. Symp. Ambulatory Monitoring, 1979, edited by F. D. Scott. London: Academic, 1980, p. 537–558.
 108. Zealear, D. L., and w. F. Crandall. Stimulating and recording from axons within their myelin sheaths: a stable and nondamaging method for studying single motor units. J. Neurosci. Methods 5: 47–54, 1982.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Stephen H. Loring, Eugene N Bruce. Methods for Study of the Chest Wall. Compr Physiol 2011, Supplement 12: Handbook of Physiology, The Respiratory System, Mechanics of Breathing: 415-428. First published in print 1986. doi: 10.1002/cphy.cp030324