Comprehensive Physiology Wiley Online Library

Mechanics of the Pleural Space

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Mechanical Coupling Between Lung and Chest Wall
1.1 Factors Holding Lung Against Chest Wall
1.2 Definitions: Pleural Liquid Pressure and Pleural Surface Pressure
2 Pleural Liquid
2.1 Volume
2.2 Physicochemical Features and Pleural Permeability
2.3 Cells
2.4 Thickness
2.5 Pressure
2.6 Exchange
3 Pleural Surface Pressure
3.1 Topography
3.2 Nature of the Vertical Gradient
3.3 Special Conditions
4 Liquid Pressure, Surface Pressure, and Liquid Thickness at Various Lung Heights and Volumes
4.1 Hydrothorax
Figure 1. Figure 1.

Pressures in the pleural space. Vertical thick and thin lines, parietal and visceral pleura, respectively; springs, structures through which pleural membranes contact when lung and chest wall fit snugly (bumps, liquid cells, microvilli); broken arrows, tension along pleural membranes; Pdef liq, deformation pressure over liquid area; PmusI, pressure exerted by inspiratory muscles; Pcon, pleural contact pressure. Gravitational effects are omitted for simplicity. Left: resting volume of respiratory system with thin hydrothorax. Pleural membranes do not contact. Pleural liquid pressure (Pliq) equals pleural surface pressure (Ppl), which equals pressure of relaxed chest wall (Pw), or transpulmonary pressure with opposite sign (−PL). Outward flow of liquid exceeds inward flow. Hence volume and thickness of pleural liquid decrease. Center: resting volume of respiratory system under normal conditions. Pleural membranes contact and are deformed. At points of contact, walls push on each other. Average pressure produced by deformation does not add to Pw or PL because deformation force over contact area balances that over liquid area. Outward flow of liquid balances inward flow. Right: end of a deep inspiration under normal conditions. Thickness of pleural liquid is decreased; Ppl and Pliq decrease; overall surface of pleural space is increased; contact area relative to overall surface area is probably but not necessarily increased. Pleural liquid is not in equilibrium because phenomenon is transient; Pliq decrease tends to draw liquid into the space. Contact pressure is increased but not necessarily on bumps because they could have been smoothed by increase of membrane tension rather than squeezed by contact.

Figure 2. Figure 2.

Histograms of pleural liquid thickness in superior and inferior parts of costal region in cats in lateral posture at resting volume of respiratory system. Thickness at or near lobar margins was not measured. Measurements were pooled in groups at 5‐μm intervals. Measurements below 2.5 μm were so few that they do not appear.

Adapted from Agostoni et al. 11
Figure 3. Figure 3.

Percentage of lung height against pleural surface pressure in right intercostal region of dogs at resting volume of respiratory system in various postures. Symbols represent data from different studies: ▽ 6, □ 10, • 13, ○ 48, and × (unpublished data of G. Miserocchi obtained with counterpressure on exposed parietal pleura). Curves are best‐fit equations. Broken line in lateral posture separates upper and lower hemithorax.

Adapted from Agostoni 2
Figure 4. Figure 4.

Lung height against overall vertical gradient of pleural surface pressure in lateral posture. Overall pressure gradient is the difference in pressure between bottom and top divided by lung height. Data refer to resting volume of respiratory system except for human (∼50% total lung capacity). Value for human is taken from indirect data of Kaneko et al. 88 assuming 23 cm lung height.

Adapted from Agostoni and D'Angelo 6
Figure 5. Figure 5.

Lung height against overall vertical gradient of pleural surface pressure in head‐up posture at resting volume of respiratory system. Pleural surface pressure was measured 1–3 cm above bottom and below top. Overall vertical pressure gradient was obtained by dividing difference between these pressures by vertical distance between corresponding points. Values on ordinate refer to whole height of lung: only D'Angelo, et al. •, ▪ 48 and Agostoni and Miserocchi [•, ▪ 13] provided measurements of lung height; other data were obtained indirectly. Values for vertical pressure gradient and for lung height [× 111] are approximately corrected for lung height at functional residual capacity because only lung height at total lung capacity was given. Other values for lung height [○ 102, ○ 86, and ○ 162] have been calculated from a relationship between lung height (at functional residual capacity in head‐up posture) and body weight.

Adapted from Agostoni 2
Figure 6. Figure 6.

Percentage of lung height against pleural surface pressure in right intercostal regions at resting volume of respiratory system in eviscerated rabbits (symbols visually fitted by broken line) and in normal rabbits (continuous line). Right ordinates indicate average height of lung in eviscerated rabbits, which is essentially the same in normal rabbits.

Adapted from Agostoni et al. 9
Figure 7. Figure 7.

Effect of decreasing abdominal pressure on pleural surface pressure at midlung height in supine rabbit and dog. Small numbers on left, pressure applied on caudal part of abdomen; numbers in the middle, lung volume as % total lung capacity (TLC). Broken lines, relationship on midaxillary line in head‐up posture at functional residual capacity for comparison (lung volume ∼67% TLC in rabbits and ∼60% TLC in dogs). Dotted lines, extrapolation to cranial and caudal ends.

From Agostoni and D'Angelo 7
Figure 8. Figure 8.

Pleural surface pressure (Ppl) on 3rd and 6th intercostal space (i.c.s.) and on diaphragmatic surface of lung, esophageal pressure (Pes), and changes of lung volume (ΔV) during spontaneous breathing, weak and strong bilateral stimulation of phrenic nerves.

From D'Angelo, Sant'Ambrogio, and Agostoni 52
Figure 9. Figure 9.

Pleural surface pressure (Ppl) on 3rd and 6th intercostal space and diaphragmatic surface of lung, esophageal pressure (Pes), and changes of lung volume (ΔV) during spontaneous breathing before (left) and after (right) complete bilateral phrenicotomy.

From D'Angelo, Sant'Ambrogio, and Agostoni 52
Figure 10. Figure 10.

Left: pleural liquid pressure (Pliq) against pleural surface pressure (Ppl) at 70% (○) and 22% (•) lung height (△ height = 5.5 cm) in a supine dog on increasing lung volume from functional residual capacity to ∼80% total lung capacity (TLC). Alveolar pressure was atmospheric because lung volume was increased by lowering abdominal pressure. Right: deformation pressure over liquid area (Pdef liq) against Ppl obtained from data of left panel. Numbers, % TLC; broken lines join lung iso‐volume points of upper and lower region; arrow, point on lower region iso‐Pliq with 32% TLC in upper region.

From Miserocchi, Nakamura, and Agostoni 119
Figure 11. Figure 11.

Volume of isotonic saline solution introduced into right pleural space against change of pleural liquid pressure in supine cats at resting volume of respiratory system. Horizontal bars, standard errors; each point refers to 7–13 animals.

From Agostoni 2
Figure 12. Figure 12.

Height of pleural space against thickness of pleural liquid after 1, 2.5, 5, 10, and 20 ml of isotonic saline solution were introduced into pleural space of supine cats at resting volume of respiratory system.

From Agostoni and D'Angelo 5
Figure 13. Figure 13.

Pressure of pleural liquid at various heights of pleural space against corresponding thickness of pleural liquid in supine cats at resting volume of respiratory system with hydrothoraces of various size. Thin broken line connects points referring to lowest part of lung for each hydrothorax. With a vertical gradient of 1 cmH2O/cm, value of Pliq at various lung heights may be found.

From Agostoni 2


Figure 1.

Pressures in the pleural space. Vertical thick and thin lines, parietal and visceral pleura, respectively; springs, structures through which pleural membranes contact when lung and chest wall fit snugly (bumps, liquid cells, microvilli); broken arrows, tension along pleural membranes; Pdef liq, deformation pressure over liquid area; PmusI, pressure exerted by inspiratory muscles; Pcon, pleural contact pressure. Gravitational effects are omitted for simplicity. Left: resting volume of respiratory system with thin hydrothorax. Pleural membranes do not contact. Pleural liquid pressure (Pliq) equals pleural surface pressure (Ppl), which equals pressure of relaxed chest wall (Pw), or transpulmonary pressure with opposite sign (−PL). Outward flow of liquid exceeds inward flow. Hence volume and thickness of pleural liquid decrease. Center: resting volume of respiratory system under normal conditions. Pleural membranes contact and are deformed. At points of contact, walls push on each other. Average pressure produced by deformation does not add to Pw or PL because deformation force over contact area balances that over liquid area. Outward flow of liquid balances inward flow. Right: end of a deep inspiration under normal conditions. Thickness of pleural liquid is decreased; Ppl and Pliq decrease; overall surface of pleural space is increased; contact area relative to overall surface area is probably but not necessarily increased. Pleural liquid is not in equilibrium because phenomenon is transient; Pliq decrease tends to draw liquid into the space. Contact pressure is increased but not necessarily on bumps because they could have been smoothed by increase of membrane tension rather than squeezed by contact.



Figure 2.

Histograms of pleural liquid thickness in superior and inferior parts of costal region in cats in lateral posture at resting volume of respiratory system. Thickness at or near lobar margins was not measured. Measurements were pooled in groups at 5‐μm intervals. Measurements below 2.5 μm were so few that they do not appear.

Adapted from Agostoni et al. 11


Figure 3.

Percentage of lung height against pleural surface pressure in right intercostal region of dogs at resting volume of respiratory system in various postures. Symbols represent data from different studies: ▽ 6, □ 10, • 13, ○ 48, and × (unpublished data of G. Miserocchi obtained with counterpressure on exposed parietal pleura). Curves are best‐fit equations. Broken line in lateral posture separates upper and lower hemithorax.

Adapted from Agostoni 2


Figure 4.

Lung height against overall vertical gradient of pleural surface pressure in lateral posture. Overall pressure gradient is the difference in pressure between bottom and top divided by lung height. Data refer to resting volume of respiratory system except for human (∼50% total lung capacity). Value for human is taken from indirect data of Kaneko et al. 88 assuming 23 cm lung height.

Adapted from Agostoni and D'Angelo 6


Figure 5.

Lung height against overall vertical gradient of pleural surface pressure in head‐up posture at resting volume of respiratory system. Pleural surface pressure was measured 1–3 cm above bottom and below top. Overall vertical pressure gradient was obtained by dividing difference between these pressures by vertical distance between corresponding points. Values on ordinate refer to whole height of lung: only D'Angelo, et al. •, ▪ 48 and Agostoni and Miserocchi [•, ▪ 13] provided measurements of lung height; other data were obtained indirectly. Values for vertical pressure gradient and for lung height [× 111] are approximately corrected for lung height at functional residual capacity because only lung height at total lung capacity was given. Other values for lung height [○ 102, ○ 86, and ○ 162] have been calculated from a relationship between lung height (at functional residual capacity in head‐up posture) and body weight.

Adapted from Agostoni 2


Figure 6.

Percentage of lung height against pleural surface pressure in right intercostal regions at resting volume of respiratory system in eviscerated rabbits (symbols visually fitted by broken line) and in normal rabbits (continuous line). Right ordinates indicate average height of lung in eviscerated rabbits, which is essentially the same in normal rabbits.

Adapted from Agostoni et al. 9


Figure 7.

Effect of decreasing abdominal pressure on pleural surface pressure at midlung height in supine rabbit and dog. Small numbers on left, pressure applied on caudal part of abdomen; numbers in the middle, lung volume as % total lung capacity (TLC). Broken lines, relationship on midaxillary line in head‐up posture at functional residual capacity for comparison (lung volume ∼67% TLC in rabbits and ∼60% TLC in dogs). Dotted lines, extrapolation to cranial and caudal ends.

From Agostoni and D'Angelo 7


Figure 8.

Pleural surface pressure (Ppl) on 3rd and 6th intercostal space (i.c.s.) and on diaphragmatic surface of lung, esophageal pressure (Pes), and changes of lung volume (ΔV) during spontaneous breathing, weak and strong bilateral stimulation of phrenic nerves.

From D'Angelo, Sant'Ambrogio, and Agostoni 52


Figure 9.

Pleural surface pressure (Ppl) on 3rd and 6th intercostal space and diaphragmatic surface of lung, esophageal pressure (Pes), and changes of lung volume (ΔV) during spontaneous breathing before (left) and after (right) complete bilateral phrenicotomy.

From D'Angelo, Sant'Ambrogio, and Agostoni 52


Figure 10.

Left: pleural liquid pressure (Pliq) against pleural surface pressure (Ppl) at 70% (○) and 22% (•) lung height (△ height = 5.5 cm) in a supine dog on increasing lung volume from functional residual capacity to ∼80% total lung capacity (TLC). Alveolar pressure was atmospheric because lung volume was increased by lowering abdominal pressure. Right: deformation pressure over liquid area (Pdef liq) against Ppl obtained from data of left panel. Numbers, % TLC; broken lines join lung iso‐volume points of upper and lower region; arrow, point on lower region iso‐Pliq with 32% TLC in upper region.

From Miserocchi, Nakamura, and Agostoni 119


Figure 11.

Volume of isotonic saline solution introduced into right pleural space against change of pleural liquid pressure in supine cats at resting volume of respiratory system. Horizontal bars, standard errors; each point refers to 7–13 animals.

From Agostoni 2


Figure 12.

Height of pleural space against thickness of pleural liquid after 1, 2.5, 5, 10, and 20 ml of isotonic saline solution were introduced into pleural space of supine cats at resting volume of respiratory system.

From Agostoni and D'Angelo 5


Figure 13.

Pressure of pleural liquid at various heights of pleural space against corresponding thickness of pleural liquid in supine cats at resting volume of respiratory system with hydrothoraces of various size. Thin broken line connects points referring to lowest part of lung for each hydrothorax. With a vertical gradient of 1 cmH2O/cm, value of Pliq at various lung heights may be found.

From Agostoni 2
References
 1. Agostoni, E. Thickness and pressure of the pleural liquid. In: The Pulmonary Circulation and Interstitial Space, edited by A. P. Fishman and H. H. Hecht Chicago, IL: Univ. of Chicago Press, 1969, p. 65–78. (IUPS Satellite Symp., August 31‐September 2, 1968.).
 2. Agostoni, E. Mechanics of the pleural space. Physiol. Rev. 52: 57–128, 1972.
 3. Agostoni, E. Transpulmonary pressure. In: Regional Differences in the Lung, edited by J. B. West New York: Academic, 1977, p. 245–280.
 4. Agostoni, E., and E. D'Angelo. The recoil of the most dependent part of the lung. Respir. Physiol. 5: 379–384, 1968.
 5. Agostoni, E., and E. D'Angelo. Thickness and pressure of the pleural liquid at various heights and with various hydrothoraces. Respir. Physiol. 6: 330–342, 1969.
 6. Agostoni, E., and E. D'Angelo. Comparative features of the transpulmonary pressure. Respir. Physiol. 11: 76–83, 1970.
 7. Agostoni, E., and E. D'Angelo. Topography of pleural surface pressure during simulation of gravity effect on abdomen. Respir. Physiol. 12: 102–109, 1971.
 8. Agostoni, E., E. D'Angelo, and M. V. Bonanni. Measurements of pleural liquid pressure without cannula. J. Appl Physiol. 26: 258–260, 1969.
 9. Agostoni, E., E. D'Angelo, and M. V. Bonanni. The effect of the abdomen on the vertical gradient of pleural surface pressure. Respir. Physiol. 8: 332–346, 1970.
 10. Agostoni, E., E. D'Angelo, and M. V. Bonanni. Topography of pleural surface pressure above resting volume in relaxed animals. J. Appl. Physiol. 29: 297–306, 1970.
 11. Agostoni, E., E. D'Angelo, and G. Roncoroni. The thickness of the pleural liquid. Respir. Physiol. 5: 1–13, 1968.
 12. Agostoni, E., and J. Mead. Statics of the respiratory system. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 13, p. 387–409.
 13. Agostoni, E., and G. Miserocchi. Vertical gradient of transpulmonary pressure with active and artificial lung expansion. J. Appl. Physiol. 29: 705–712, 1970.
 14. Agostoni, E., G. Miserocchi, and M. V. Bonanni. Thickness and pressure of the pleural liquid in some mammals. Respir. Physiol. 6: 245–256, 1969.
 15. Agostoni, E., P. Mognoni, G. Torri, and G. Miserocchi. Forces deforming the rib cage. Respir. Physiol. 2: 105–117, 1966.
 16. Agostoni, E., and J. Piiper. Capillary pressure and distribution of vascular resistance in isolated lung. Am. J. Physiol. 202: 1033–1036, 1962.
 17. Agostoni, E., A. Taglietti, and I. Setnikar. Absorption force of the capillaries of the visceral pleura in determination of the intrapleural pressure. Am. J. Physiol. 191: 277–282, 1957.
 18. Allen, L., and E. Vogt. A mechanism of lymphatic absorption from serous cavities. Am. J. Physiol. 119: 776–782, 1937.
 19. Anthonisen, N. R., and R. R. Martin. Regional lung function in pleural effusion. Am. Rev. Respir. Dis. 116: 201–207, 1977.
 20. Arai, H., M. Endo, A. Yokosawa, H. Sato, M. Motomiya, and K. Konno. On acid glycosaminoglycans (mucopolysaccharides) in pleural effusion. Am. Rev. Respir. Dis. 111: 37–42, 1975.
 21. Aukland, K., and G. Nicolaysen. Interstitial fluid volume: local regulatory mechanisms. Physiol. Rev. 61: 556–643, 1981.
 22. Banchero, N., P. E. Schwartz, A. G. Tsakiris, and E. H. Wood. Pleural and esophageal pressures in the upright body position. J. Appl. Physiol. 23: 228–234, 1967.
 23. Bashoff, M. A., R. H. Ingram, Jr., and D. P. Schilder. Effect of expiratory flow rate on the nitrogen concentration vs. volume relationship. J. Appl. Physiol. 23: 895–901, 1967.
 24. Berend, N., C. Skoog, D. W. Galaugher, and W. M. Thurlbeck. Lobar pressure‐volume characteristics of excised human lungs (Abstract). Physiologist 22 ( 4): 9, 1979.
 25. Black, L. F. The pleural space and pleural fluid. Mayo Clin. Proc. 47: 493–506, 1972.
 26. Bollet, A. J., M. W. Seraydarian, and W. F. Simpson. Acid mucopolysaccharides in pleural, pericardial, and ascitic fluids. J. Lab. Clin. Med. 50: 795, 1957.
 27. Bryan, A. C., J. Milic‐Emili, and D. Pengelly. Effect of gravity on the distribution of pulmonary ventilation. J. Appl. Physiol. 21: 778–784, 1966.
 28. Burke, H. E. The lymphatics which drain the potential space between the visceral and the parietal pleura. Am. Rev. Tuberc. 79: 52–65, 1959.
 29. carson, J. On the elasticity of the lungs. Philos. Trans. R. Soc. London Ser. B 110: 29–45, 1820.
 30. Casley‐Smith, J. R. A theoretical support for the transport of macromolecules by osmotic flow across a leaky membrane against a concentration gradient. Microvasc. Res. 9: 43–48, 1975.
 31. Casley‐Smith, J. R. The initial lymphatic cycle and the forces responsible for it. In: Advances in Physiological Sciences. Cardiovascular Physiology, Microcirculation and Capillary Exchange, edited by A. G. B. Kovách, J. Hamar, and L. Szabó Budapest: Akad. Kiadò, 1981, vol. 7, p. 219–228.
 32. Casley‐Smith, J. R., and T. Bolton. Large effective colloidal osmotic pressure across large pores. Microvasc. Res. 5: 213–216, 1973.
 33. Clough, G., and L. H. Smaje. Simultaneous measurement of pressure in the interstitium and the terminal lymphatics of the cat mesentery. J. Physiol. London 283: 457–468, 1978.
 34. Colebatch, H. J. H., and C. A. Mitchell. Constriction of isolated living liquid‐filled dog and cat lungs with histamine. J. Appl. Physiol. 30: 691–702, 1971.
 35. Colebatch, H. J. H., C. R. Olsen, and J. A. Nadel. Effect of histamine, serotonin, and acetylcholine on the peripheral airways. J. Appl. Physiol. 21: 217–226, 1966.
 36. Coulam, C. M., and E. H. Wood. Regional differences in pleural and esophageal pressures in head‐up and head‐down positions. J. Appl. Physiol. 31: 277–287, 1971.
 37. Courtice, F. C., and W. J. Simmonds. Absorption of fluids from the pleural cavities of rabbits and cats. J. Physiol. London 109: 117–130, 1949.
 38. Courtice, F. C., and W. J. Simmonds. Physiological significance of lymph drainage of the serous cavities and lungs. Physiol. Rev. 34: 419–448, 1954.
 39. Cunningham, R. S. The physiology of the serous membranes. Physiol. Rev. 6: 242–280, 1926.
 40. Daly, W. J., and S. Bondurant. Direct measurement of respiratory pleural pressure changes in normal man. J. Appl. Physiol. 18: 513–518, 1963.
 41. D'Angelo, E. Local alveolar size and transpulmonary pressure in situ and in isolated lungs. Respir. Physiol. 14: 251–266, 1972.
 42. D'Angelo, E. Effect of papain‐induced emphysema on the distribution of pleural surface pressure. Respir. Physiol. 27: 1–20, 1976.
 43. D'Angelo, E. Cranio‐caudal rib cage distortion with increasing inspiratory airflow in man. Respir. Physiol. 44: 215–237, 1981.
 44. D'angelo, E., and E. agostoni. Continuous recording of pleural surface pressure at various sites. Respir. Physiol. 19: 356–368, 1973.
 45. D'Angelo, E., and E. Agostoni. Effect of histamine on the vertical gradient of transpulmonary pressure. Respir. Physiol. 20: 331–335, 1974.
 46. D'Angelo, E., and E. Agostoni. Distribution of transpulmonary pressure and chest wall shape. Respir. Physiol. 22: 335–344, 1974.
 47. D'Angelo, E., and E. Agostoni. Vertical gradient of pleural and transpulmonary pressure with liquid filled lungs. Respir. Physiol. 23: 159–173, 1975.
 48. D'Angelo, E., M. V. Bonanni, S. Michelini, and E. Agostoni. Topography of the pleural surface pressure in rabbits and dogs. Respir. Physiol. 8: 204–229, 1970.
 49. D'Angelo, E., N. Heisler, and E. Agostoni. Acid‐base balance of pleural liquid in dogs. Respir. Physiol. 37: 137–149, 1979.
 50. D'Angelo, E., S. Michelini, and E. Agostoni. Partition of factor contributing to the vertical gradient of transpulmonary pressure. Respir. Physiol. 12: 90–101, 1971.
 51. D'Angelo, E., G. Miserocchi, S. Michelini, and E. Agostoni. Local transpulmonary pressure after lobar occlusion. Respir. Physiol. 18: 328–337, 1973.
 52. D'Angelo, E., G. Sant'Ambrogio, and E. Agostoni. Effect of diaphragm activity or paralysis on distribution of pleural pressure. J. Appl. Physiol. 37: 311–315, 1974.
 53. De Gasperis, C., and A. Miani. Observations sur l'ultrastmcture du mésothélium pleural de l'homme. Bull. Assoc. Anat. 145: 188–202, 1970.
 54. de Wilde, R., J. Clément, J. M. Hellemans, M. Decramer, M. Demedts, R. Boving, and K. P. Van de Woestune. Model of elasticity of the human lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 254–261, 1981.
 55. Dintenfass, L. Rheology of complex fluids and some observations on joint lubrication. Federation Proc. 25: 1054–1060, 1966.
 56. Donders, F. C. Beiträge zum Mechanismus der Respiration und Circulation im gesunden und kranken Zustande. Z. Rat. Med. 3: 287–319, 1853. (German transl. of paper in Ned. Lancet 1849–50.).
 57. Drinker, C. K., and J. M. Yoffey. Lymphatics, Lymph and Lymphoid Tissue. Cambridge, MA: Harvard Univ. Press, 1941.
 58. Duomarco, J. L., R. Rimini, and J. P. Migliaro. Intraesophageal pressure and the local differences in pleural pressure. Acta Physiol. Lat. Am. 4: 133–140, 1954.
 59. Einthoven, W. Der Donders'sche Druck und die Gasspannungen in der Pleurahöhle. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 44: 152–174, 1888.
 60. Emerson, P. A. Yellow nails, lymphoedema, and pleural effusions. Thorax 21: 247–253, 1966.
 61. Farhi, L., A. B. Otis, and D. F. Proctor. Measurement of intrapleural pressure at different points in the chest of the dog. J. Appl. Physiol. 10: 15–18, 1957.
 62. Faridy, E. E., R. Kidd, and J. Milic‐Emili. Topographical distribution of inspired gas in excised lobes of dogs. J. Appl. Physiol. 22: 760–766, 1967.
 63. Fisher, J. T., and J. P. Mortola. Statics of the respiratory system in newborn mammals. Respir. Physiol. 41: 155–172, 1980.
 64. Ford, G. T., C. A. Bradley, and N. R. Anthonisen. Forces involved in lobar atelectasis in intact dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 29–33, 1980.
 65. Ford, G. T., D. Gillett, and N. R. Anthonisen. Volume shifts with partial submersion of isolated lung lobes. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1143–1147, 1979.
 66. Gaar, K. A., Jr., A. E. Taylor, L. J. Owens, and A. C. Guyton. Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung. Am. J. Physiol. 213: 910–914, 1967.
 67. Gillett, D., G. T. Ford, and N. R. Anthonisen. Shape and regional volume in immersed lung lobes. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1457–1462, 1981.
 68. Glaister, D. H. The effect of positive centrifugal acceleration upon distribution of ventilation and perfusion within the human lung, and its relation to pulmonary arterial and intraoesophageal pressures. Proc. R. Soc. London Ser. B 168: 311–334, 1967.
 69. Glaister, D. H. The effect of posture on the distribution of ventilation and blood flow in the normal lung. Clin. Sci. 33: 391–398, 1967.
 70. Glaister, D. H. Distribution of pulmonary blood flow and ventilation during forward (+Gx) acceleration. J. Appl. Physiol. 29: 432–439, 1970.
 71. Glazier, J. B., J. M. B. Hughes, J. E. Maloney, and J. B. West. Vertical gradient of alveolar size in lungs of dogs frozen intact. J. Appl. Physiol. 23: 694–705, 1967.
 72. Granger, H. J., and A. P. Shepherd. Dynamics and control of the microcirculation. IV. Transcapillary fluid balance and its control. Adv. Biomed. Eng. 7: 36–60, 1979.
 73. Grassino, A. E., and N. R. Anthonisen. Chest wall distortion and regional lung volume distribution in erect humans. J. Appl. Physiol. 39: 1004–1007, 1975.
 74. Grassino, A. E., B. Bake, R. R. Martin, and N. R. Anthonisen. Voluntary changes of thoracoabdominal shape and regional lung volumes in humans. J. Appl. Physiol. 39: 997–1003, 1975.
 75. Grassino, A. E., L. Forkert, and N. R. Anthonisen. Configuration of the chest wall during increased gravitational stress in erect humans. Respir. Physiol. 33: 271–278, 1978.
 76. Greene, C. H., J. L. Bollman, N. M. Keith, and F. G. Wakefield. The distribution of electrolytes between serum and transudates. J. Biol Chem. 91: 203–216, 1931.
 77. Greene, R., J. M. B. Hughes, M. F. Sudlow, and J. Milic‐Emili. Regional lung volumes during water immersion to the xiphoid in seated man. J. Appl. Physiol. 36: 734–736, 1974.
 78. Guyton, A. C., A. E. Taylor, R. E. Drake, and J. C. Parker. Dynamics of subatmospheric pressure in the pulmonary interstitial fluid. In: Lung Liquids, edited by R. Porter and M. O'Connor Amsterdam: Excerpta Med., 1976, p. 77–95. (Ciba Found. Symp. 38, April 22–24, 1975.).
 79. Guyton, A. C., A. E. Taylor, and H. J. Granger. Dynamics and Control of the Body Fluids. Philadelphia, PA: Saunders, 1975, p. 125–140.
 80. Hajji, M. A., T. A. Wilson, and S. J. Lai‐Fook. Improved measurements of shear modulus and pleural membrane tension of the lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 175–185, 1979.
 81. Hall, J. G., B. Morris, and G. Woolley. Intrinsic rhythmic propulsion of lymph in the unanaesthetized sheep. J. Physiol. London 180: 336–349, 1965.
 82. Hargens, A. R., and B. Zweifach. Transport between blood and peripheral lymph in intestine. Microvasc. Res. 11: 89–101, 1976.
 83. Hayek, H. von The Human Lung. New York: Hafner, 1960, p. 294.
 84. Heynsius, A. Ueber die Grösse des negativen Drucks im Thorax beim ruhigen Athmen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 29: 265–311, 1882.
 85. Hogan, R. D. Intralymphatic vs. tissue pressure in the edematous bat wing. In: Advances in Physiological Sciences. Cardiovascular Physiology, Microcirculation and Capillary Exchange, edited by A. G. B. Kovách, J. Hamar, and L. Szabó Budapest: Akad. Kiadò, 1981, vol. 7, p. 193–200.
 86. Hogg, J. C., and S. Nepszy. Regional lung volume and pleural pressure gradient estimated from lung density in dogs. J. Appl. Physiol. 27: 198–203, 1969.
 87. Hoppin, F. G., Jr., I. D. Green, and J. Mead. Distribution of pleural surface pressure in dogs. J. Appl. Physiol. 27: 863–873, 1969.
 88. Johnson, P. C., and K. M. Hanson. Effect of arterial pressure on arterial and venous resistance of intestine. J. Appl. Physiol. 17: 503–508, 1962.
 89. Kaneko, K., J. Milic‐Emili, M. B. Dolovich, A. Dawson, and D. V. Bates. Regional distribution of ventilation and perfusion as a function of body position. J. Appl Physiol. 21: 767–777, 1966.
 90. Katsura, T., R. Rozencwajg, P. W. Sutherland, J. Hogg, and J. Milic‐Emili. Effect of external support on regional alveolar expansion in excised dog lungs. J. Appl. Physiol 28: 133–137, 1970.
 91. Kim, K., A. McElroy Critz, and E. D. Crandall. Transport of water and solutes across sheep visceral pleura. Am. Rev. Respir. Dis. 120: 883–892, 1979.
 92. Kinasewitz, G. T., and A. P. Fishman. Influence of alterations in Starling forces on visceral pleural fluid movement. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 671–677, 1981.
 93. Kosch, P. C., J. R. Gillespie, and J. D. Berry. Respiratory mechanics in normal bonnet and rhesus monkeys. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol 46: 166–175, 1979.
 94. Krueger, J. J., T. Bain, and J. L. Patterson, Jr. Elevation gradient of intrathoracic pressure. J. Appl Physiol. 16: 465–468, 1961.
 95. Landis, E. M. Capillary pressure and capillary permeability. Physiol. Rev. 14: 404–481, 1934.
 96. Lemelin, J., W. R. D. Ross, R. R. Martin, and N. R. Anthonisen. Regional lung volumes with positive pressure inflation in erect humans. Respir. Physiol 16: 273–281, 1972.
 97. Levine, O. R., R. B. Mellins, R. M. Senior, and A. P. Fishman. The application of Starling's law of capillary exchange to the lungs. J. Clin. Invest. 46: 934–944, 1967.
 98. Loeb, R. F., D. A. Atchley, and W. W. Palmer. On the equilibrium conditions between blood serum and serous cavity fluids. J. Gen. Physiol. 4: 591–595, 1922.
 99. Lomonaco, T., A. Scano, and F. Rossanigo. Comportamento di alcuni dati fisio‐psichici nell'uomo sottoposto a variazioni di accelerazione comprese fra 3 e zero G. Riv. Med. Aeronaut. 21: 691–704, 1958.
 100. Lupi‐Herrera, E., C. Prefault, A. E. Grassino, and N. R. Anthonisen. Effect of negative abdominal pressure on regional lung volume in supine dogs. Respir. Physiol. 26: 213–221, 1976.
 101. Macklem, P. T. Relationship between lung mechanics and ventilation distribution. Physiologist 16: 580–588, 1973.
 102. Mayerson, H. S. On lymph and lymphatics. Circulation 28: 839–842, 1963.
 103. McMahon, S. M., D. F. Proctor, and S. Permutt. Pleural surface pressure in dogs. J. Appl. Physiol. 27: 881–885, 1969.
 104. Mead, J. Mechanical properties of lungs. Physiol. Rev. 41: 281–330, 1961.
 105. Melissinos, C. G., M. Goldman, E. Bruce, E. Elliott, and J. Mead. Chest wall shape during forced expiratory maneuvers. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 84–93, 1981.
 106. Mellins, R. B., O. R. Levine, and A. P. Fishman. Effect of systemic and pulmonary venous hypertension on pleural and pericardial fluid accumulation. J. Appl. Physiol. 29: 564–569, 1970.
 107. Menkes, H., D. Lindsay, L. Wood, A. Muir, and P. T. Macklem. Interdependence of lung units in intact dog lungs. J. Appl. Physiol. 32: 681–686, 1972.
 108. Michel, C. C. The transport of solute by osmotic flow across a leaky membrane and a note on the osmotic reflection coefficient. Microvasc. Res. 8: 122–124, 1974.
 109. Michels, D. B., P. J. Friedman, and J. B. West. Radiographic comparison of human lung shape during normal gravity and weightlessness. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 851–857, 1979.
 110. Michels, D. B., and J. B. West. Distribution of pulmonary ventilation and perfusion during short periods of weightlessness. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 987–998, 1978.
 111. Milic‐Emili, J. Ventilation. In: Regional Differences in the Lung, edited by J. B. West New York: Academic, 1977, p. 167–199.
 112. Milic‐Emili, J., J. A. M. Henderson, M. B. Dolovich, D. Trop, and K. Kaneko. Regional distribution of inspired gas in the lung. J. Appl. Physiol. 21: 749–759, 1966.
 113. Milic‐Emili, J., J. A. M. Henderson, and K. Kaneko. Regional distribution of pulmonary ventilation. In: Form and Function in the Human Lung, edited by G. Cumming and L. B. Hunt Edinburgh: Livingstone, 1968, p. 66–75. (Proc. Symp. Univ. of Birmingham, April 5–7, 1967.).
 114. Milic‐Emili, J., J. Mead, and J. M. Turner. Topography of esophageal pressure as a function of posture in man. J. Appl. Physiol. 19: 212–216, 1964.
 115. Minh, V.‐D., N. Kurihara, P. J. Friedman, and K. M. Moser. Reversal of the pleural pressure gradient during electrophrenic stimulation. J. Appl. Physiol. 37: 496–504, 1974.
 116. Miserocchi, G., and E. Agostoni. Contents of the pleural space. J. Appl. Physiol. 30: 208–213, 1971.
 117. Miserocchi, G., and E. Agostoni. Pleural liquid and surface pressure at various lung volumes. Respir. Physiol. 39: 315–326, 1980.
 118. Miserocchi, G., E. D'Angelo, and E. Agostoni. Topography of pleural surface pressure after pneumo‐ or hydrothorax. J. Appl. Physiol. 32: 296–303, 1972.
 119. Miserocchi, G., E. D'Angelo, S. Michelini, and E. Agostoni. Displacement of the lung hilum, pleural surface pressure and alveolar morphology. Respir. Physiol. 16: 161–174, 1972.
 120. Miserocchi, G., E. Mariani, and D. Negrini. Role of the diaphragm in setting liquid pressure in serous cavities. Respir. Physiol. 50: 381–392, 1982.
 121. Miserocchi, G., T. Nakamura, and E. Agostoni. Change pattern of pleural deformation pressure on varying lung height and volume. Respir. Physiol. 43: 197–208, 1981.
 122. Miserocchi, G., T. Nakamura, E. Mariani, and D. Negrini. Pleural liquid pressure over the interlobar, mediastinal and diaphragmatic surfaces of the lung. Respir. Physiol. 46: 61–69, 1981.
 123. Miserocchi, G., D. Negrini, E. Mariani, and M. Passafaro. Reabsorption of a saline‐ or plasma‐induced hydrothorax. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 1574–1578, 1983.
 124. Murphy, B. G., and P. T. Macklem. Stress at the pleural surface. Respir. Physiol. 28: 65–74, 1976.
 125. Neergaard, K. von Zur Frage des Druckes im Pleuraspalt. Beitr. Klin. Erforsch. Tuberk. Lungenkr. 65: 476–485, 1927.
 126. Newton Harvey, E. Bubble formation. In: Underwater Physiology Symposium, edited by L. G. Goff Washington, DC: Natl. Res. Counc, Natl. Acad. Sci., 1955, p. 53–60.
 127. Nicolaysen, G., A. Nicolaysen, and N. C. Staub. A quantitative radioautographic comparison of albumin concentration in different sized lymph vessels in normal mouse lung. Microvasc. Res. 10: 138–152, 1975.
 128. Nicoll, P. A., and A. E. Taylor. Lymph formation and flow. Annu. Rev. Physiol. 39: 73–95, 1977.
 129. Ogston, A. G., and J. E. Stanier. The physiological function of hyaluronic acid in synovial fluid; viscous, elastic and lubricant properties. J. Physiol. London 119: 244–252, 1953.
 130. Pappenheimer, J. R., and A. Soto‐Rivera. Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimbs of cats and dogs. Am. J. Physiol. 152: 471–491, 1948.
 131. Parker, J. C., A. C. Guyton, and A. E. Taylor. Pulmonary interstitial and capillary pressures estimated from intra‐alveolar fluid pressures. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 267–276, 1978.
 132. Parodi, F. La mécanique pulmonaire. Paris: Masson, 1933.
 133. Permutt, S., P. Caldini, H. N. Bane, P. Howard, and R. L. Riley. Liquid pressure versus surface pressure of the esophagus. J. Appl. Physiol. 23: 927–933, 1967.
 134. Policard, A., and P. Galy. Considérations histophysiologiques sur la plèvre pulmonaire chez l'homme. Bull. Histol. Appl. Tech. Microsc. 18: 67–89, 1941.
 135. Powell, W. R. Static mechanical properties of the trachea and bronchial tree. J. Biomech. 8: 111–117, 1975.
 136. Prinzmetal, M., and W. B. Kounts. Intrapleural pressure in health and disease and its influence on body function. Medicine 14: 457–498, 1935.
 137. Proctor, D. F., P. Caldini, and S. Permutt. The pressure surrounding the lungs. Respir. Physiol. 5: 130–144, 1968.
 138. Rehder, K., N. Abboud, J. R. Rodarte, and R. E. Hyatt. Positive airway pressure and vertical transpulmonary pressure gradient in man. J. Appl. Physiol. 38: 896–899, 1975.
 139. Rehder, K., A. D. Sessler, and J. R. Rodarte. Regional intrapulmonary gas distribution in awake and anesthetized‐paralyzed man. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 391–402, 1977.
 140. Rist, E., and A. Strohl. Études expérimentales et critiques sur le pneumothorax. Ann. Med. Paris 8: 233–270, 1920.
 141. Rist, E., and A. Strohl. Sur le rôle de la diffusion dans la résorption gazeuse et le maintien de la pression sous‐at‐mosphérique dans la plèvre. Presse Med. 30: 69–71, 1922.
 142. Rohrer, F. Physiologie der Atembewegung. In: Handbuch der normalen und pathologischen Physiologie, mit Berücksichtigung der experimentellen Pharmakologie, edited by A. Bethe, G. von Bergmann, G. Embden, and A. Ellinger Berlin: Springer‐Verlag, 1925, vol. II, p. 70–127.
 143. Rolf, L. L., and D. M. Travis. Pleural fluid‐plasma bicarbonate gradients in oxygen‐toxic and normal rats. Am. J. Physiol. 224: 857–861, 1973.
 144. Roussos, C. S., M. Fixley, J. Genest, M. Cosio, S. Kelly, R. R. Martin, and L. A. Engel. Voluntary factors influencing the distribution of inspired gas. Am. Rev. Respir. Dis. 116: 457–467, 1977.
 145. Roussos, C. S., Y. Fukuchi, P. T. Macklem, and L. A. Engel. Influence of diaphragmatic contraction on ventilation distribution in horizontal man. J. Appl. Physiol. 40: 417–424, 1976.
 146. Roussos, C. S., R. R. Martin, and L. A. Engel. Diaphragmatic contraction and the gradient of alveolar expansion in the lateral posture. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 32–38, 1977.
 147. Rutishauser, W. J., N. Banchero, A. G. Tsakiris, A. C. Edmundowicz, and E. Wood. Pleural pressures at dorsal and ventral sites in supine and prone body positions. J. Appl. Physiol. 21: 1500–1510, 1966.
 148. Rutishauser, W. J., N. Banchero, A. G. Tsakiris, and E. H. Wood. Effect of gravitational and inertial forces on pleural and esophageal pressures. J. Appl. Physiol. 22: 1041–1052, 1967.
 149. Sahn, S. A., M. L. Willcox, J. T. Good, Jr., D. E. Potts, and G. F. Filley. Characteristics of normal rabbit pleural fluid: physiologic and biochemical implications. Lung 156: 63–69, 1979.
 150. Schwartzkopff, W. Die chemische Zusammensetzung von Pleurahöhlenergussen in Abhängigkeit von Anderung in den Filtrations‐ und Diffusionraten. Z. Klin. Med. 155: 65–87, 1958.
 151. Setnikar, I., and E. Agostoni. Factors keeping the lung expanded in the chest. Proc. Int. Congr. Physiol. Sci., 22nd, Leiden, 1962, vol. 1, p. 281–286.
 152. Setnikar, I., E. Agostoni, and A. Taglietti. Entità caratteristiche e origine della depressione pleurica. Arch. Sci. Biol. Bologna 41: 312–325, 1957.
 153. Setnikar, I., A. Taglietti, and E. Agostoni. La cinetica del liquido pleurico studiata per mezzo di albumina marcata con 131I. Boll. Soc. Ital. Biol. Sper. 33: 1650–1652, 1957.
 154. Silvers, G. W., T. L. Petty, R. E. Stanford, and G. F. Filley. The elastic properties of lobes of excised human lungs. Am. Rev. Respir. Dis. 120: 207–209, 1979.
 155. Starling, E. H. Arris and Gale lectures on some points in pathology of heart disease. Lancet 1: 723–726, 1897.
 156. Starling, E. H., and A. H. Tubby. On absorption from and secretion into the serous cavities. J. Physiol. London 16: 140–155, 1894.
 157. Stewart, P. B., and A. S. V. Burgen. The turnover of fluid in the dog's pleural cavity. J. Lab. Clin. Med. 52: 212–230, 1958.
 158. Surprenant, E. L., and S. Rodbard. A hydrostatic pressure gradient in the pleural sac. Am. Heart J. 66: 215–220, 1963.
 159. Sutherland, P. W., T. Katsura, and J. Milic‐Emili. Previous volume history of the lung and regional distribution of gas. J. Appl. Physiol. 25: 566–574, 1968.
 160. Sybrecht, G. W., L. Garrett, and N. R. Anthonisen. Effect of chest strapping on regional lung function. J. Appl. Physiol. 39: 707–713, 1975.
 161. Sybrecht, G., L. Landau, B. G. Murphy, L. A. Engel, R. R. Martin, and P. T. Macklem. Influence of posture on flow dependence of distribution of inhaled 133Xe boli. J. Appl. Physiol. 41: 489–496, 1976.
 162. Sylvester, J. T., H. A. Menkes, and F. Stitik. Lung volume and interdependence in the pig. J. Appl. Physiol. 38: 395–401, 1975.
 163. Szabò, G. Macromolecular removal via blood and lymph. In: Advances in Physiological Sciences. Cardiovascular Physiology, Microcirculation and Capillary Exchange, edited by A. G. B. Kovách, J. Hamar, and L. Szabó Budapest: Akad. Kiadò, 1981, vol. 7, p. 241–251.
 164. Taylor, A. E., and K. A. Gaar, Jr. Estimation of equivalent pore radii of pulmonary capillary and alveolar membranes. Am. J. Physiol. 218: 1133–1140, 1970.
 165. Trop, D., K. P. van de Woestijne, and M. Afschrift. Influence of mediastinal structures on the esophageal pressure gradient in dogs. J. Appl. Physiol. 23: 426–432, 1967.
 166. Turner, J. M. Distribution of lung surface pressure as a function of posture in dogs. Physiologist 5: 223, 1962.
 167. Vawter, D. L., F. L. Matthews, and J. B. West. Effect of shape and size of lung and chest wall on stresses in the lung. J. Appl. Physiol. 39: 9–17, 1975.
 168. Vellody, V. P., M. Nassery, W. S. Druz, and J. T. Sharp. Effects of body position change on thoracoabdominal motion. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 581–589, 1978.
 169. Wang, N. S. The regional difference of pleural mesothelial cells in rabbits. Am. Rev. Respir. Dis. 110: 623–633, 1974.
 170. Wang, N. S. The preformed stomas connecting the pleural cavity and the lymphatics in the parietal pleura. Am. Rev. Respir. Dis. 111: 12–20, 1975.
 171. West, J. B. Physiological consequences of the apposition of blood and gas in the lung. In: Development of the Lung, edited by A. V. S. de Reuck and R. Porter London: Churchill, 1967, p. 176–195. (Ciba Found. Symp., November 1–3, 1965.).
 172. West, J. B. Stresses. In: Regional Differences in the Lung, edited by J. B. West New York: Academic, 1977, p. 281–322.
 173. West, J. B. Distortion of the lung within the chest. Federation Proc. 38: 11–16, 1979.
 174. West, J. B., and F. L. Matthews. Stresses, strains, and surface pressures in the lung caused by its weight. J. Appl. Physiol. 32: 332–345, 1972.
 175. Wilson, T. A. Nonuniform lung deformations. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 1443–1450, 1983.
 176. Wirz, K. Das Verhalten des Druckes im Pleuraraum bei der Atmung und die Ursachen seiner Veränderlichkeit. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 199: 1–56, 1923.
 177. Witte, S. Concentration of macromolecules in the tissue and lymphatics. In: Advances in Physiological Sciences. Cardiovascular Physiology, Microcirculation and Capillary Exchange, edited by A. G. B. Kovách, J. Hamar, and L. Szabó Budapest: Akad. Kiadò, 1981, vol. 7, p. 201–210.
 178. Yamada, S. Über die seröse Flüsigkeit in der Pleurahöhle der gesunden Menschen. Z. Gesamte Exp. Med. 90: 342–348, 1933.
 179. Zidulka, A., M. Demedts, S. Nadler, and N. R. Anthonisen. Pleural pressure with lobar obstruction in dogs. Respir. Physiol. 26: 239–248, 1976.
 180. Zidulka, A., J. T. Sylvester, S. Nadler, and N. R. Anthonisen. Lung interdependence and lung‐chest wall interaction of sublobar and lobar units in pigs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 8–13, 1979.
 181. Zweifach, B. W., and J. W. Prather. Micromanipulation of pressure in terminal lymphatics in the mesentery. Am. J. Physiol. 228: 1326–1335, 1975.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Emilio Agostoni. Mechanics of the Pleural Space. Compr Physiol 2011, Supplement 12: Handbook of Physiology, The Respiratory System, Mechanics of Breathing: 531-559. First published in print 1986. doi: 10.1002/cphy.cp030330