Comprehensive Physiology Wiley Online Library

Breathing During Exercise

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Determinants of Exercise Ventilation
1.1 Alveolar Ventilation
1.2 Dead‐Space Ventilation
2 Pattern of Ventilatory Response
2.1 V.E−V.CO2 Relationship
2.2 Breathing Pattern Relationships
2.3 Mechanical Constraints on Pattern of Breathing
3 Effecting the Response
3.1 Respiratory Muscles
3.2 Power Output of Ventilatory Pump
3.3 Metabolic Cost of Breathing
3.4 Efficiency of Breathing
4 Factors Limiting Ventilatory Response
4.1 Chronic Obstructive Pulmonary Disease
4.2 Highly Fit Athletes
Figure 1. Figure 1.

Alveolar ventilation (A) requirement for increasing levels of CO2 output (CO2) during exercise at various set‐point levels of arterial partial pressure of CO2 (PaCO2). Arrows represent different ventilatory costs between unloaded cycle ergometry (CO2 ∼ 0.5 liter/min) and 150 watts (CO2 ∼ 2.0 liters/min) at four different PaCO2 set points. STPD, Standard temperature and pressure, dry; BTPS, body temperature, ambient pressure, saturated with water vapor.

Figure 2. Figure 2.

Schematic representation of increased alveolar ventilation (A) required to reduce arterial partial pressure of CO2 (PaCO2) by 10 Torr (from 50 to 40, 40 to 30, and 30 to 20 Torr) to provide respiratory compensation for metabolic acidosis of exercise. Cost increases as function of both rate of CO2 output (CO2) and decreasing PaCO2 set‐point level.

Figure 3. Figure 3.

Graphic display of influence of respiratory exchange ratio (R), arterial partial pressure of CO2 (PaCO2), and dead‐space fraction of breath (VDS/VT) on ventilatory requirement (E) for exercise. For a particular O2 uptake (O2), ventilatory requirement can be significantly altered from normal response (solid arrow), with particular combination of determining variables leading to reduced (arrow a) or markedly high (arrow b) E. A, alveolar ventilation.

Figure 4. Figure 4.

Schematic representation of effects of physical fitness (for sustained endurance exercise) on ventilatory response (E) to incremental exercise. In subanaerobic‐threshold region little difference is evident between groups, but maximum E (E, max) is progressively higher the greater the maximum O2 uptake (O2). As the maximum voluntary ventilation (MVV) is largely independent of physical fitness and training, difference between MVV and E, max [i.e., breathing reserve (BR)] becomes reduced with increasing levels of fitness. Maximum sustained ventilatory capacity (MSVC), which varies from 55%–80% of MVV in normal subjects, can be increased by endurance training of respiratory muscles (R.M. Tr.) and is considered to be high in highly fit athletes (Athl.?).

Figure 5. Figure 5.

Schematic summary of rib cage (rc) and abdominal (ab) contributions to total tidal volume [expressed as percentage of vital capacity (VC)] at rest, during exercise (900 kpm/min), and immediately after exercise in normal subject. Dashed lines, end‐inspiratory and end‐expiratory volumes at rest.

From Grimby et al. 75
Figure 6. Figure 6.

Schematic summary of rib cage (rc) and abdominal (ab) contributions to tidal volume at rest and during exercise (300 and 600 kpm/min) in patients with chronic obstructive pulmonary disease. Dashed lines, end‐inspiratory and end‐expiratory volumes at rest. TLC, total lung capacity; FRC, functional residual capacity; RV, residual volume.

From Grimby et al. 76
Figure 7. Figure 7.

Pressure‐volume diagrams of chest wall as a whole (Campbell diagram, upper panel) and its separate parts (rib cage, middle panels; abdomen, lower panels) during relaxation (dashed lines) and breathing at rest (closed loops). Volume changes left of relaxation line indicate inspiratory muscle activity and those right of the relaxation line indicate expiratory muscle activity. The negatively sloped clockwise loop in upper panel indicates inspiratory muscle activity that generates tidal volume. Expiration is passive (loop does not cross right of relaxation line). Both rib cage volume‐abdominal pressure (VRC‐PAB) curves (right middle and lower panels, respectively) fall on relaxation curves. Thus neither intercostal‐accessory nor abdominal muscles are active during breathing at rest. Only diaphragm (DI, middle panels) acts as a generator, producing the volume change of both rib cage and abdomen. VC, vital capacity; VL, lung volume.

From Grimby et al. 78
Figure 8. Figure 8.

Pressure‐volume diagrams of chest wall as a whole and its separate parts during relaxation (dashed lines) and during moderate (A) and heavy (B) exercise. VL, lung volume; VC, vital capacity; VT, tidal volume; f, breathing frequency; P, pressure; V, volume; RC, rib cage; DI, diaphragm; AB, abdomen.

From Grimby et al. 78
Figure 9. Figure 9.

A: relationship between respiratory muscle power and ventilation during exercise in normal subjects and during hyperventilation in patients with chronic obstructive pulmonary disease (COPD). B: relationship between respiratory muscle O2 consumption and ventilation during exercise and voluntary hyperpnea in normal subjects, and during exercise and hyperventilation in patients with COPD. STPD, Standard temperature and pressure, dry.

From Pardy et al. 151
Figure 10. Figure 10.

Pressure‐volume relationships during spontaneous breathing at rest (darkened area) and maximum exercise (MAX EX, inner solid bop) and during maximum voluntary ventilation (MVV, inner dashed loop), forced vital capacity (FVC, outer solid loop), and maximum static effort (MAX STAT, outer dashed loop) maneuvers. Inner dashed‐and‐dotted line indicates the pressure of respiratory muscles (Pmus) required to balance static recoil pressure; inner dotted line indicates approximate limit beyond which a further increase in Pmus does not increase expiratory flow. VC, vital capacity.

Adapted from Campbell et al. 34
Figure 11. Figure 11.

Ventilation (E) (as percentage of maximum breathing capacity, MBC) and respiratory muscle power vs. endurance time for voluntary hyperpnea. Both E and respiratory muscle power bear an exponential (or hyperbolic) relationship to endurance time. Asymptote of E or power on its respective ordinate indicates level of either variable that can be sustained “indefinitely.” Asymptote of E on left ordinate is the maximum sustained ventilatory capacity.

Adapted from Tenney and Reese 200 and Leith and Bradley 107
Figure 12. Figure 12.

Flow‐volume curves obtained from normal subject and patient with chronic obstructive pulmonary disease. Spontaneous flow‐volume curves at rest (dashed lines) and maximum exercise (MAX EX, dotted lines) are compared with maximum flow‐volume curve (outer solid lines). FEV1, forced expiratory volume in one second; VC, vital capacity.

From Leaver and Pride 106
Figure 13. Figure 13.

Spontaneous flow‐volume (‐V) curves generated at three submaximum and also at maximum work rates in three subjects (BS, EW, LW) of relatively high physical fitness, with reference to their maximum flow‐volume curves (outer solid line). O2, O2 uptake; E, ventilation; VT, tidal volume; f, breathing frequency; HR, heart rate; VC, vital capacity.

From Grimby et al. 80


Figure 1.

Alveolar ventilation (A) requirement for increasing levels of CO2 output (CO2) during exercise at various set‐point levels of arterial partial pressure of CO2 (PaCO2). Arrows represent different ventilatory costs between unloaded cycle ergometry (CO2 ∼ 0.5 liter/min) and 150 watts (CO2 ∼ 2.0 liters/min) at four different PaCO2 set points. STPD, Standard temperature and pressure, dry; BTPS, body temperature, ambient pressure, saturated with water vapor.



Figure 2.

Schematic representation of increased alveolar ventilation (A) required to reduce arterial partial pressure of CO2 (PaCO2) by 10 Torr (from 50 to 40, 40 to 30, and 30 to 20 Torr) to provide respiratory compensation for metabolic acidosis of exercise. Cost increases as function of both rate of CO2 output (CO2) and decreasing PaCO2 set‐point level.



Figure 3.

Graphic display of influence of respiratory exchange ratio (R), arterial partial pressure of CO2 (PaCO2), and dead‐space fraction of breath (VDS/VT) on ventilatory requirement (E) for exercise. For a particular O2 uptake (O2), ventilatory requirement can be significantly altered from normal response (solid arrow), with particular combination of determining variables leading to reduced (arrow a) or markedly high (arrow b) E. A, alveolar ventilation.



Figure 4.

Schematic representation of effects of physical fitness (for sustained endurance exercise) on ventilatory response (E) to incremental exercise. In subanaerobic‐threshold region little difference is evident between groups, but maximum E (E, max) is progressively higher the greater the maximum O2 uptake (O2). As the maximum voluntary ventilation (MVV) is largely independent of physical fitness and training, difference between MVV and E, max [i.e., breathing reserve (BR)] becomes reduced with increasing levels of fitness. Maximum sustained ventilatory capacity (MSVC), which varies from 55%–80% of MVV in normal subjects, can be increased by endurance training of respiratory muscles (R.M. Tr.) and is considered to be high in highly fit athletes (Athl.?).



Figure 5.

Schematic summary of rib cage (rc) and abdominal (ab) contributions to total tidal volume [expressed as percentage of vital capacity (VC)] at rest, during exercise (900 kpm/min), and immediately after exercise in normal subject. Dashed lines, end‐inspiratory and end‐expiratory volumes at rest.

From Grimby et al. 75


Figure 6.

Schematic summary of rib cage (rc) and abdominal (ab) contributions to tidal volume at rest and during exercise (300 and 600 kpm/min) in patients with chronic obstructive pulmonary disease. Dashed lines, end‐inspiratory and end‐expiratory volumes at rest. TLC, total lung capacity; FRC, functional residual capacity; RV, residual volume.

From Grimby et al. 76


Figure 7.

Pressure‐volume diagrams of chest wall as a whole (Campbell diagram, upper panel) and its separate parts (rib cage, middle panels; abdomen, lower panels) during relaxation (dashed lines) and breathing at rest (closed loops). Volume changes left of relaxation line indicate inspiratory muscle activity and those right of the relaxation line indicate expiratory muscle activity. The negatively sloped clockwise loop in upper panel indicates inspiratory muscle activity that generates tidal volume. Expiration is passive (loop does not cross right of relaxation line). Both rib cage volume‐abdominal pressure (VRC‐PAB) curves (right middle and lower panels, respectively) fall on relaxation curves. Thus neither intercostal‐accessory nor abdominal muscles are active during breathing at rest. Only diaphragm (DI, middle panels) acts as a generator, producing the volume change of both rib cage and abdomen. VC, vital capacity; VL, lung volume.

From Grimby et al. 78


Figure 8.

Pressure‐volume diagrams of chest wall as a whole and its separate parts during relaxation (dashed lines) and during moderate (A) and heavy (B) exercise. VL, lung volume; VC, vital capacity; VT, tidal volume; f, breathing frequency; P, pressure; V, volume; RC, rib cage; DI, diaphragm; AB, abdomen.

From Grimby et al. 78


Figure 9.

A: relationship between respiratory muscle power and ventilation during exercise in normal subjects and during hyperventilation in patients with chronic obstructive pulmonary disease (COPD). B: relationship between respiratory muscle O2 consumption and ventilation during exercise and voluntary hyperpnea in normal subjects, and during exercise and hyperventilation in patients with COPD. STPD, Standard temperature and pressure, dry.

From Pardy et al. 151


Figure 10.

Pressure‐volume relationships during spontaneous breathing at rest (darkened area) and maximum exercise (MAX EX, inner solid bop) and during maximum voluntary ventilation (MVV, inner dashed loop), forced vital capacity (FVC, outer solid loop), and maximum static effort (MAX STAT, outer dashed loop) maneuvers. Inner dashed‐and‐dotted line indicates the pressure of respiratory muscles (Pmus) required to balance static recoil pressure; inner dotted line indicates approximate limit beyond which a further increase in Pmus does not increase expiratory flow. VC, vital capacity.

Adapted from Campbell et al. 34


Figure 11.

Ventilation (E) (as percentage of maximum breathing capacity, MBC) and respiratory muscle power vs. endurance time for voluntary hyperpnea. Both E and respiratory muscle power bear an exponential (or hyperbolic) relationship to endurance time. Asymptote of E or power on its respective ordinate indicates level of either variable that can be sustained “indefinitely.” Asymptote of E on left ordinate is the maximum sustained ventilatory capacity.

Adapted from Tenney and Reese 200 and Leith and Bradley 107


Figure 12.

Flow‐volume curves obtained from normal subject and patient with chronic obstructive pulmonary disease. Spontaneous flow‐volume curves at rest (dashed lines) and maximum exercise (MAX EX, dotted lines) are compared with maximum flow‐volume curve (outer solid lines). FEV1, forced expiratory volume in one second; VC, vital capacity.

From Leaver and Pride 106


Figure 13.

Spontaneous flow‐volume (‐V) curves generated at three submaximum and also at maximum work rates in three subjects (BS, EW, LW) of relatively high physical fitness, with reference to their maximum flow‐volume curves (outer solid line). O2, O2 uptake; E, ventilation; VT, tidal volume; f, breathing frequency; HR, heart rate; VC, vital capacity.

From Grimby et al. 80
References
 1. Adachi, H., W. Straus, H. Ochi, and H. N. Wagner. The effect of hypoxia on the regional distribution of cardiac output in the dog. Circ. Res. 29: 314–319, 1976.
 2. Agostoni, E., and W. O. Fenn. Velocity of muscle shortening as a limiting factor in respiratory air flow. J. Appl. Physiol. 15: 349–353, 1960.
 3. Agostoni, E., and P. Mognoni. Deformation of the chest wall during breathing efforts. J. Appl. Physiol. 21: 1827–1832, 1966.
 4. Agostoni, E., P. Mognoni, G. Torri, and F. Saracino. Relation between changes of rib cage circumference and lung volume. J. Appl. Physiol. 20: 1179–1186, 1965.
 5. Agostoni, E., and H. Rahn. Abdominal and thoracic pressures at different lung volumes. J. Appl. Physiol. 15: 1087–1092, 1960.
 6. Agostoni, E., and G. Torri. An analysis of the chest wall motions at high values of ventilation. Respir. Physiol. 3: 318–332, 1967.
 7. Aguggini, G., P. Mognoni, F. Saibene, and M. G. Clement. Flusso ematico nell'arteria diafragmatica di cane durante iperventilazione. Proc. Natl. Congr. Ital. Physiol. Soc., Rome, 1972. p. 29.
 8. Andrews, J. D., L. E. Nery, D. Y. Sue, J. E. Hansen, and K. Wasserman. The effect of oxygen breathing on ventilatory mechanisms and gas exchange during exercise in subjects with COPD. Am. Rev. Respir. Dis. Suppl. 123: 203, 1981.
 9. Anrep, G. V., S. Cerqua, and A. Samaan. The effect of muscular contraction upon the blood flow in the skeletal muscle, in the diaphragm, and in the small intestine. Proc. R. Soc. London 114: 245–257, 1933.
 10. Askanazi, J., J. Milic‐Emili, J. R. Broell, A. I. Hyman, and J. M. Kinney. Influence of exercise and CO2 on breathing pattern of normal man. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 192–196, 1979.
 11. Asmussen, E. Muscular exercise. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn Washington, DC: Am. Physiol. Soc, 1965, sect. 3, vol. II, chapt. 36, p. 939–978.
 12. Asmussen, E. Similarities and dissimilarities between static and dynamic exercise. Circ. Res. 48: 3–10, 1981.
 13. Astrand, P.‐O., and K. Rodahl. Textbook of Work Physiology (2nd ed.). New York: McGraw‐Hill, 1977.
 14. Bai, T. R., B. J. Rabinovitch, and R. L. Pardy. Near‐maximal voluntary hyperpnea and ventilatory muscle function. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 57: 1742–1748, 1984.
 15. Bakers, J. H. M., and S. M. Tenney. The perception of some sensations associated with breathing. Respir. Physiol. 10: 85–92, 1970.
 16. Bartlett, R. G., Jr., H. F. Brubach, and H. Specht. Oxygen cost of breathing. J. Appl. Physiol. 12: 413–424, 1958.
 17. Bason, R., C. E. Billings, E. L. Fox, and R. Gerke. Oxygen kinetics for constant work loads at various altitudes. J. Appl. Physiol. 35: 497–500, 1973.
 18. Bates, D. V., P. T. Macklem, and R. V. Christie. Respiratory Function in Disease (2nd ed.). Philadelphia, PA: Saunders, 1971.
 19. Bechbache, R. R., H. H. K. Chow, J. Duffin, and E. C. Orsini. The effects of hypercapnia, hypoxia, exercise, and anxiety on the pattern of breathing in man. J. Physiol. London 293: 285–300, 1979.
 20. Belman, M. J., and C. Mittman. Ventilatory muscle training improves exercise capacity in chronic obstructive pulmonary disease patients. Am. Rev. Respir. Dis. 121: 273–280, 1980.
 21. Bergofsky, E. H. Relative contributions of the rib cage and the diaphragm to ventilation in man. J. Appl. Physiol. 19: 698–706, 1964.
 22. Bergofsky, E. H., G. M. Turino, and A. P. Fishman. Cardiorespiratory failure in kyphoscoliosis. Medicine Baltimore 38: 263–317, 1959.
 23. Bradley, G. W., and R. Crawford. Regulation of breathing during exercise in normal subjects and in chronic lung disease. Clin. Sci. Mol. Med. 51: 575–582, 1976.
 24. Bradley, M. E., and D. E. Leith. Ventilatory muscle training and the oxygen cost of sustained hyperpnea. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 885–892, 1978.
 25. Bretschger, H. J. Die Geschwindigkeitscurve der menschlichen Atemluft. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 210: 134–148, 1925.
 26. Brown, H. V., and K. Wasserman. Exercise performance in chronic obstructive pulmonary diseases. Med. Clin. North Am. 65: 525–547, 1981.
 27. Brown, H. V., K. Wasserman, and B. J. Whipp. Strategies of exercise testing in chronic lung disease. Bull. Eur. Physiopathol. Respir. 13: 409–423, 1977.
 28. Burdon, J. G. W., K. J. Killian, D. G. Stubbing, and E. J. M. Campbell. Effect of background loads on the perception of added loads to breathing. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 1222–1228, 1983.
 29. Bye, P. T. P., S. A. Esau, R. Levy, R. J. Shiner, P. T. Macklem, and R. L. Pardy. The effect of oxygen breathing on inspiratory muscle function during exercise in patients with chronic airflow limitation (Abstract). Am. Rev. Respir. Dis. 125: 207, 1982.
 30. Bye, P. T. P., S. A. Esau, K. R. Walley, P. T. Macklem, and R. L. Pardy. Ventilatory muscles during exercise in air and oxygen in normal men. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 56: 464–471, 1984.
 31. Bye, P. T. P., G. A. Farkas, and C. Roussos. Respiratory factors limiting exercise. Annu. Rev. Physiol. 45: 439–451, 1983.
 32. Cain, C. C., and A. B. Otis. Some physiological effects resulting from added resistance to respiration. J. Aviat. Med. 20: 149–160, 1949.
 33. Campbell, E. J. M. The Respiratory Muscles and the Mechanics of Breathing. Chicago, IL: Year Book, 1958.
 34. Campbell, E. J. M., E. Agostoni, and J. Newsom Davis The Respiratory Muscles: Mechanics and Neural Control. Philadelphia, PA: Saunders, 1970.
 35. Campbell, E. J. M., S. Freedman, P. S. Smith, and M. E. Taylor. The ability of man to detect added elastic loads to breathing. Clin. Sci. 20: 223–231, 1961.
 36. Campbell, E. J. M., and J. H. Green. The behaviour of the abdominal muscles and the intra‐abdominal pressure during quiet breathing and increased ventilation. A study in man. J. Physiol. London 127: 423–426, 1955.
 37. Campbell, E. J. M., E. K. Westlake, and R. M. Cherniack. Simple methods of estimating oxygen consumption and efficiency of the muscles of breathing. J. Appl. Physiol. 11: 303–308, 1957.
 38. Cherniack, R. M. The oxygen consumption and efficiency of respiratory muscles in health and emphysema. J. Clin. Invest. 38: 494–499, 1959.
 39. Chiang, S. T., N. H. Steigbigel, and H. A. Lyons. Pulmonary compliance and nonelastic resistance during treadmill exercise. J. Appl. Physiol. 20: 1194–1198, 1965.
 40. Clark, F. J., and C. von Euler. On the regulation of depth and rate of breathing. J. Physiol. London 222: 267–295, 1972.
 41. Clark, T. J. H., S. Freedman, E. J. M. Campbell, and R. R. Winn. The ventilatory capacity of patients with chronic airway obstruction. Clin. Sci. 36: 307–316, 1969.
 42. Cotes, J. E. Lung Function (3rd ed.). Philadelphia, PA: Lippincott, 1975, chapt. 14, p. 340–395.
 43. Craig, A. B., Jr. Maximal work of one breathing cycle. J. Appl. Physiol. 15: 1098–1100, 1960.
 44. Cunningham, D. J. C. Integrative aspects of the regulation of breathing: a personal view. In: Respiratory Physiology I, edited by J. G. Widdicombe Baltimore, MD: University Park, 1974, vol. 2, p. 303–369. (Int. Rev. Physiol. Ser.).
 45. Davis, J. A., M. H. Frank, B. J. Whipp, and K. Wasserman. Anaerobic threshold alterations caused by endurance training in middle‐aged men. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 1039–1046, 1979.
 46. Davis, J. A., B. J. Whipp, and K. Wasserman. The relation of ventilation to metabolic rate during moderate exercise in man. Eur. J. Appl. Physiol. 44: 97–108, 1980.
 47. Dempsey, J. A., N. Gledhill, W. G. Reddan, H. V. Forster, P. G. Hanson, and A. D. Claremont. Pulmonary adaptation to exercise: effects of exercise type and duration, chronic hypoxia and physical training. Ann. NY Acad. Sci. 243–261, 1977.
 48. Dempsey, J., P. Hanson, D. Pegelow, A. Claremont, and J. Rankin. Limitation to exercise capacity in endurance: pulmonary system. Can. J. Appl. Sport Sci. 7: 4–13, 1982.
 49. Dempsey, J. A., D. A. Pelligrino, D. Aggarwal, and E. B. Olson, Jr. The brain's role in exercise hyperpnea. Med. Sci. Sports 11: 213–220, 1979.
 50. Derenne, J.‐P., P. T. Macklem, and C. Roussos. The respiratory muscles: mechanics, control, and pathophysiology. III. Am. Rev. Respir. Dis. 118: 581–601, 1978.
 51. De Troyer, A., M. Sampson, S. Sigrist, and P. T. Macklem. The diaphragm: two muscles. Science 213: 237–238, 1981.
 52. Diamant, B., J. Karlsson, and B. Saltin. Muscle tissue lactate after maximal exercise in man. Acta Physiol. Scand. 72: 383–384, 1968.
 53. Dodd, D. S., T. Brancatisano, and L. A. Engel. Chest wall mechanics during exercise in patients with severe chronic airflow limitation. Am. Rev. Respir. Dis. 129: 33–38, 1984.
 54. Druz, W. S., and J. T. Sharp. Activity of respiratory muscles in upright and recumbent humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1552–1561, 1981.
 55. Edwards, R. H. T. Human muscle function and fatigue. In: Human Muscle Fatigue, edited by R. Porter and J. Whelan London: Pitman, 1981, p. 1–34. (Ciba Found. Symp. 82.).
 56. Eldridge, F. L., and K. Z. Vaughn. Relationship of thoracic volume and airway occlusion pressure: muscular effects. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 312–321, 1977.
 57. Evanich, M. J., M. J. Franco, and R. V. Lourenço. Force output of the diaphragm as a function of phrenic nerve firing rate and lung volume. J. Appl. Physiol. 35: 208–212, 1973.
 58. Farkas, G. A., and C. Roussos. Adaptability of the hamster diaphragm to exercise and/or emphysema. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 1263–1272, 1982.
 59. Faulkner, J. A. New perspectives in training for maximum performance. J. Am. Med. Assoc. 205: 741–746, 1968.
 60. Fenn, W. O. The relation between the work performed and the energy liberated in muscle contraction. J. Physiol. London 58: 373–395, 1924.
 61. Fixler, D. E., J. M. Atkins, J. H. mitchell, and L. D. Horwitz. Blood flow to respiratory, cardiac, and limb muscles in dogs during graded exercise. Am. J. Physiol. 231: 1515–1519, 1976.
 62. Folinsbee, L. J., E. S. Wallace, J. F. Bedi, and S. M. Horvath. Respiratory patterns and control during unrestrained human running. In: Modelling and Control of Breathing, edited by B. J. Whipp and D. M. Wiberg New York: Elsevier, 1983, p. 205–212.
 63. Freedman, S. Sustained maximum voluntary ventilation. Respir. Physiol. 8: 230–244, 1970.
 64. Fritts, H. N., J. Filler, A. B. Fishman, and A. Cournand. The efficiency of ventilation during voluntary hyperpnea. J. Clin. Invest. 38: 1339–1348, 1959.
 65. Gabriel, S. The physical working capacity in patients with chronic obstructive and restrictive lung disease (Abstract). Scand. J. Respir. Dis. Suppl. 77: 130, 1971.
 66. Gardner, W. N. The relation between tidal volume and inspiratory and expiratory times during steady‐state carbon dioxide inhalation in man. J. Physiol. London 272: 591–611, 1977.
 67. Garlind, T., and H. Linderholm. Hypoventilation syndrome in a case of chronic epidemic encephalitis. Acta Med. Scand. 162: 333–337, 1958.
 68. Gautier, H. Respiratory responses of the anesthetized rabbit to vagotomy and thoracic dorsal rhizotomy. Respir. Physiol. 17: 238–247, 1973.
 69. Gilbert, R., and J. H. Auchincloss. Mechanics of breathing in normal subjects during brief, severe exercise. J. Lab. Clin. Med. 73: 439–450, 1969.
 70. Goldman, M. D. Respiratory muscles: the generator. In: Muscular Exercise and the Lung, edited by J. A. Dempsey and C. E. Reed Madison: Univ. of Wisconsin Press, 1977, p. 7–15.
 71. Goldman, M. D., G. Grimby, and J. mead. Mechanical work of breathing derived from rib cage and abdominal V‐P partitioning. J. Appl. Physiol. 41: 752–763, 1976.
 72. Goldman, M. D., and J. mead. Mechanical interaction between the diaphragm and rib cage. J. Appl. Physiol. 35: 197–204, 1973.
 73. Granath, A., E. Horie, and H. Linderholm. Compliance and resistance of the lungs in the sitting and supine positions at rest and during exercise. Scand. J. Clin. Lab. Invest. 11: 226–234, 1959.
 74. Grassino, A., D. Gross, P. T. Macklem, C. Roussos, and G. Zagelbaum. Inspiratory muscle fatigue as a factor limiting exercise. Bull. Eur. Physiopathol. Respir. 15: 105–111, 1979.
 75. Grimby, G., J. Bunn, and J. Mead. Relative contribution of rib cage and abdomen to ventilation during exercise. J. Appl. Physiol. 24: 159–166, 1968.
 76. Grimby, G., G. Elgefors, and H. Oxhoj. Ventilatory levels and chest wall mechanics during exercise in obstructive lung disease. Scand. J. Respir. Dis. 54: 45–52, 1973.
 77. Grimby, G., M. Goldman, and J. mead. Rib cage and abdominal volume partitioning during exercise and induced hyperventilation. Scand. J. Respir. Dis. Suppl. 77: 4–7, 1971.
 78. Grimby, G., M. Goldman, and J. mead. Respiratory muscle action inferred from rib cage and abdominal V‐P partitioning. J. Appl. Physiol. 41: 739–751, 1976.
 79. Grimby, G., and B. Saltin. Physiological effects of physical training. Scand. J. Rehabil. Med. 3: 6–14, 1972.
 80. Grimby, G., B. Saltin, and L. Wilhelmsen. Pulmonary flow‐volume and pressure‐volume relationship during submaximal and maximal exercise in young well‐trained men. Bull Physio‐Pathol. Respir. 7: 157–172, 1971.
 81. Grimby, G., and J. Stiksa. Flow‐volume curves and breathing patterns during exercise in patients with obstructive lung disease. Scand. J. Clin. Lab. Invest. 25: 303–313, 1970.
 82. Grodins, F. S., and S. M. Yamashiro. Modeling the respiratory system: essentials. In: Muscular Exercise and the Lung, edited by J. A. Dempsey and C. E. Reed Madison: Univ. of Wisconsin Press, 1977, p. 25–38.
 83. Hamalainen, R. P. Optimization of respiratory airflow. In: Modelling and Control of Breathing, edited by B. J. Whipp and D. M. Wiberg New York: Elsevier, 1983, p. 181–188.
 84. Hansen, J. E., and K. Wasserman. Exercise testing. In: Adult Pulmonary Function Testing, edited by E. L. Chusid Mount Kisco, NY: Futura, 1983, p. 199–224.
 85. Hanson, J. S., B. S. Tabakin, A. M. Levy, and H. L. Falsetti. Alterations in pulmonary mechanics with airway obstruction during rest and exercise. J. Appl. Physiol. 20: 664–668, 1965.
 86. Hartley, L. H., G. Grimby, A. kilbom, N. J. Nilsson, I. Astrand, J. Bjure, B. Ekblom, and B. Saltin. Physical training in sedentary middle‐aged and older men. III. Cardiac output and gas exchange at submaximal and maximal exercise. Scand. J. Clin. Lab. Invest. 24: 335–344, 1969.
 87. Hesser, C. M., and F. Lind. Ventilatory and occlusion‐pressure responses to incremental‐load exercise. Respir. Physiol. 51: 391–401, 1983.
 88. Hesser, C. M., D. Linnarsson, and L. Fagraeus. Pulmonary mechanics and work of breathing at maximal ventilation and raised air pressure. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 747–753, 1981.
 89. Hey, E. N., B. B. Lloyd, D. J. C. Cunningham, M. G. M. Jukes, and D. P. G. Bolton. Effects of various respiratory stimuli on the depth and frequency of breathing in man. Respir. Physiol. 1: 193–205, 1966.
 90. Hill, A. V. The maximum work and mechanical efficiency of human muscles, and their most economical speed. J. Physiol. London 56: 19–41, 1922.
 91. Holloszy, J. O. Adaptations of muscular tissue to training. Prog. Cardiovasc. Dis. 18: 445–458, 1976.
 92. Holloszy, J. O., and F. W. Booth. Biochemical adaptations to endurance exercise in muscle. Annu. Rev. Physiol. 38: 273–291, 1976.
 93. Holmgren, A., P. Herzog, and H. Astrom. Work of breathing during exercise in healthy young men and women. Scand. J. Clin. Lab. Invest. 31: 165–174, 1973.
 94. Jaeger, M. J., and A. B. Otis. Effects of compressibility of alveolar gas on dynamics and work of breathing. J. Appl. Physiol. 19: 83–91, 1964.
 95. Jensen, J. I., S. Lyager, and O. F. Pedersen. The relationship between maximal ventilation, breathing pattern and mechanical limitation of ventilation. J. Physiol. London 309: 521–532, 1980.
 96. Jones, N. L., G. Jones, and R. H. T. Edwards. Exercise tolerance in chronic airway obstruction. Am. Rev. Respir. Dis. 103: 477–491, 1971.
 97. Jones, N. L., and A. S. Rebuck. Rebreathing equilibration of CO2 during exercise. J. Appl. Physiol. 35: 538–541, 1973.
 98. Jones, N. L., and A. S. Rebuck. Tidal volume during exercise in patients with diffuse fibrosing alveolitis. Bull. Eur. Physiopathol. Respir. 15: 321–327, 1979.
 99. Juratsch, C. E., B. J. Whipp, D. J. Huntsman, M. M. Laks, and K. Wasserman. Ventilatory control during experimental maldistribution of in the dog. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 245–253, 1982.
 100. Kanarek, D., D. Kaplan, and H. Kazemi. The anaerobic threshold in severe chronic obstructive lung disease. Bull. Eur. Physiopathol. Respir. 15: 163–169, 1979.
 101. Karetzky, M. S., and S. M. Cain. Factors controlling O2 uptake. Chest 61, Suppl.: 48S–49S, 1972.
 102. Keens, T. G., I. R. B. Krastins, E. M. Wannamaker, H. Levison, D. N. Crozier, and A. C. Bryan. Ventilatory muscle endurance training in normal subjects and patients with cystic fibrosis. Am. Rev. Respir. Dis. 116: 853–860, 1977.
 103. Killian, K. J., D. D. Bucens, and E. J. M. Campbell. Effect of breathing patterns on the perceived magnitude of added loads to breathing. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 578–584, 1982.
 104. Konno, K., and J. Mead. Measurement of the separate volume changes of rib cage and abdomen during breathing. J. Appl. Physiol. 22: 407–422, 1967.
 105. Konno, K., and J. Mead. Static volume‐pressure characteristics of the rib cage and abdomen. J. Appl. Physiol. 24: 544–548, 1968.
 106. Leaver, D. J., and N. B. Pride. Flow‐volume curves and expiratory pressures during exercise in patients with chronic airway obstruction. Scand. J. Respir. Dis. Suppl. 77: 23–27, 1971.
 107. Leith, D. E., and M. Bradley. Ventilatory muscle strength and endurance training. J. Appl. Physiol. 41: 508–516, 1976.
 108. Levison, H., and R. M. Cherniack. Ventilatory cost of exercise in chronic obstructive pulmonary disease. J. Appl. Physiol. 25: 21–27, 1968.
 109. Liljestrand, G. Untersuchungen über die Atmungsarbeit. Skand. Arch. Physiol. 35: 199–293, 1918.
 110. Linnarsson, D. Dynamics of pulmonary gas exchange and heart rate at start and end of exercise. Acta Physiol. Scand. Suppl. 415: 1–68, 1974.
 111. Loring, S. H., and J. Mead. Action of the diaphragm on the rib cage inferred from a force‐balance analysis. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 756–760, 1982.
 112. Macklem, P. T. Discussion of “Inspiratory muscle fatigue as a factor limiting exercise” by A. Grassino, D. Gross, P. T. Macklem, C. Roussos, and G. Zagelbaum. Bull. Eur. Physiopathol. Respir. 15: 111–115, 1979.
 113. Macklem, P. T. A mathematical and graphical analysis of inspiratory muscle action. Respir. Physiol. 38: 153–171, 1979.
 114. Macklem, P. T. Respiratory muscles: the vital pump. Chest 78: 753–758, 1980.
 115. Macklem, P. T. Action of the diaphragm on the rib cage. In: Respiration, edited by I. Hutás and L. A. Debreczeni New York: Pergamon, 1981, vol. 10, p. 47–54. (Proc. Int. Congr. Physiol. Sci., 28th, Budapest, 1980.).
 116. Macklem, P. T., D. Gross, A. Grassino, and C. Roussos. Partitioning of inspiratory pressure swings between diaphragm and intercostal/accessory muscles. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 200–208, 1978.
 117. Macklem, P. T., D. M. Macklem, and A. De Troyer. A model of inspiratory muscle mechanics. J. Appl. Physiol. Respirat. Environ. Exercise Physiol. 55: 547–557, 1983.
 118. Macklem, P. T., and C. S. Roussos. Respiratory muscle fatigue: a cause of respiratory failure. Clin. Sci. Mol. Med. 53: 419–422, 1977.
 119. Mannhart, M., A. Kostyal, H. R. Baumann, and H. Gerzog. Central alveolar hypoventilation during exertion with normal arterial blood gas tensions at rest. Helv. Med. Acta 33: 479–486, 1967.
 120. Margaria, R., G. Milic‐Emili, J. M. Petit, and G. Cavagna. Mechanical work of breathing during muscular exercise. J. Appl. Physiol. 15: 354–358, 1960.
 121. Martin, B. J., and J. M. Stager. Ventilatory endurance in athletes and non‐athletes. Med. Sci. Sports Exercise 13: 21–26, 1981.
 122. Martin, B. J., and J. V. Weil. CO2 and exercise tidal volume. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 322–325, 1979.
 123. Martin, J. G., M. Habib, and L. A. Engel. Inspiratory muscle activity during induced hyperinflation. Respir. Physiol. 39: 303–313, 1980.
 124. Martin, J. G., E. Powell, S. Shore, J. Enrich, and L. A. Engel. The role of respiratory muscles in the hyperinflation of bronchial asthma. Am. Rev. Respir. Dis. 121: 441–447, 1980.
 125. McGilvery, R. W. Fuel for breathing. Am. Rev. Respir. Dis. 119: 85–88, 1979.
 126. McGregor, M., and M. R. Becklake. The relationship of oxygen cost of breathing to respiratory mechanical work and respiratory force. J. Clin. Invest. 40: 971–980, 1961.
 127. McIlroy, M. R., R. Marshall, and R. V. Christie. The work of breathing in normal subjects. Clin. Sci. 13: 127–136, 1954.
 128. McKerrow, C. B., and A. B. Otis. Oxygen cost of hyperventilation. J. Appl. Physiol. 9: 375–379, 1956.
 129. Mead, J. Control of respiratory frequency. J. Appl. Physiol. 15: 325–336, 1960.
 130. Mead, J., and S. H. Loring. Analysis of volume displacement and length changes of the diaphragm during breathing. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 750–755, 1982.
 131. Mead, J., J. D. Smith, and S. H. Loring. Volume displacements of the chest wall and their mechanical significance. In: Lung Biology in Health and Disease. The Thorax, edited by C. S. Roussos and P. T. Macklem New York: Dekker, in press.
 132. Mihevic, P. M. Sensory cues for perceived exertion: a review. Med. Sci. Sports Exercise 13: 150–163, 1981.
 133. Milic‐Emili, G., and F. Cajani. La frequenza dei respiri in funzione della ventilazione polmonare durante il risto. Bol. Soc. Ital. Biol. Sper. 33: 821–824, 1957.
 134. Milic‐Emili, G., and F. Cajani. La frequenza dei respiri in funzione della ventilazione polmonare durante la marcia. Bol. Soc. Ital. Biol. Sper. 33: 825–827, 1957.
 135. Milic‐Emili, G., and J. M. Petit. Il lavoro mecanico della respirazione ad varia frequenza respiratoria. Arch. Sci. Biol. Bologna 43: 326–330, 1959.
 136. Milic‐Emili, G., and J. M. Petit. Mechanical efficiency of breathing. J. Appl. Physiol. 15: 359–362, 1960.
 137. Milic‐Emili, G., J. M. Petit, and R. Deroanne. The effects of respiratory rate on the mechanical work of breathing during muscular exercise. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 18: 330–340, 1960.
 138. Milic‐Emili, G., J. M. Petit, and R. Deroanne. Mechanical work of breathing during exercise in trained and untrained subjects. J. Appl. Physiol. 17: 43–46, 1962.
 139. Milic‐Emili, J., W. A. Whitelaw, and A. E. Grassino. Measurement and testing of respiratory drive. In: Lung Biology in Health and Disease. Regulation of Breathing, edited by T. F. Hornbein New York: Dekker, 1981, vol. 17, pt. 2, chapt. 10, p. 675–743.
 140. Mognoni, P., F. Saibene, G. Sant'Ambrogio, and E. Camparesi. Perfusion of inspiratory muscles at different levels of ventilation in rabbits. Respir. Physiol. 20: 171–179, 1974.
 141. Moore, R. L., and P. Gollnick. Response of ventilatory muscles of the rat to endurance training. Pfluegers Arch. 392: 268–271, 1982.
 142. Moritani, T., A. Nagata, H. A. de Vries, and M. Muro. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics 24: 339–350, 1981.
 143. Moxham, J., A. J. R. Morris, S. G. Spiro, R. H. T. Edwards, and M. Green. Contractile properties and fatigue of the diaphragm in man. Thorax 36: 164–168, 1981.
 144. Muller, N., A. C. Bryan, and N. Zamel. Tonic inspiratory muscle activity as a cause of hyperinflation in histamine‐induced asthma. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 869–874, 1980.
 145. Ogilvie, C. M., R. W. Stone, and R. Marshall. The mechanics of breathing during the maximum breathing capacity test. Clin. Sci. 14: 101–107, 1955.
 146. Olafsson, S., and R. E. Hyatt. Ventilatory mechanics and expiratory flow limitation during exercise in normal subjects. J. Clin. Invest. 48: 564–573, 1969.
 147. Otis, A. B. The work of breathing. Physiol. Rev. 34: 449–458, 1954.
 148. Otis, A. B. The work of breathing. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 17, p. 463–476.
 149. Otis, A. B., W. O. Fenn, and H. Rahn. Mechanics of breathing in man. J. Appl. Physiol. 2: 592–607, 1950.
 150. Otis, A. B., and A. R. Guyatt. The maximal frequency of breathing in man at various tidal volumes. Respir. Physiol. 5: 118–129, 1968.
 151. Pardy, R. L., S. N. A. Hussain, and P. T. Macklem. The ventilatory pump in exercise. In: Clinics in Chest Medicine, edited by J. Loke. 5: 35–49, 1984.
 152. Pardy, R. L., R. N. Rivington, P. J. Despas, and P. T. Macklem. Inspiratory muscle training compared with physiotherapy in patients with chronic airflow limitations. Am. Rev. Respir. Dis. 123: 421–425, 1981.
 153. Pardy, R. L., R. N. Rivington, P. J. Despas, and P. T. Macklem. The effects of inspiratory muscle training on exercise performance in chronic airflow limitations. Am. Rev. Respir. Dis. 123: 426–433, 1981.
 154. Pardy, R. L., and C. Roussos. Endurance of hyperventilation in chronic airflow limitation. Chest 83: 744–750, 1983.
 155. Pengelly, L. D., A. S. Rebuck, and E. J. M. Campbell Loaded Breathing. Edinburgh: Livingstone, 1974.
 156. Peress, L., P. McLean, C. R. Woolf, and N. Zamel. Ventilatory muscle training in obstructive lung disease. Bull. Eur. Physiopathol. Respir. 15: 91–92, 1979.
 157. Pierce, A. K., D. Luterman, J. Loudermilk, G. Blomqvist, and R. L. Johnson, Jr. Exercise ventilatory patterns in normal subjects and patients with airway obstruction. J. Appl. Physiol. 25: 249–254, 1968.
 158. Pokorski, M., and S. Lahiri. Aortic and carotid chemoreceptor responses to metabolic acidosis in the cat. Am. J. Physiol. 244 (Regulatory Integrative Comp. Physiol. 13): R652–R658, 1983.
 159. Pollock, M. L., R. L. Bohannon, K. H. Cooper, J. J. Ayres, A. Ward, S. R. White, and A. C. Linnend. A comparative analysis of four protocols for maximal exercise stress testing. Am. Heart J. 92: 39–46, 1976.
 160. Poon, C. S. Optimal control of ventilation in hypoxia, hypercapnia and exercise. In: Modelling and Control of Breathing, edited by B. J. Whipp and D. M. Wiberg New York: Elsevier, 1983, p. 189–196.
 161. Potter, W. A., S. Olafsson, and R. E. Hyatt. Ventilatory mechanics and expiratory flow limitation during exercise in patients with obstructive lung disease. J. Clin. Invest. 50: 910–919, 1971.
 162. Rahn, H. A concept of mean alveolar air and the ventilation‐bloodflow relationships during pulmonary gas exchange. Am. J. Physiol. 158: 21–30, 1949.
 163. Rahn, H., and W. O. Fenn. A Graphical Analysis of the Respiratory Gas Exchange. The O2‐CO2 Diagram. Washington, DC: Am. Physiol. Soc, 1955.
 164. Rahn, H., A. B. Otis, L. E. Chadwick, and W. O. Fenn. The pressure‐volume diagram of the thorax and lung. Am. J. Physiol. 146: 161–178, 1946.
 165. Remmers, J., and D. Bartlett. Neural control mechanisms. In: Muscular Exercise and the Lung, edited by J. A. Dempsey and C. E. Reed Madison: Univ. of Wisconsin Press, 1977, p. 41–56.
 166. Richter, T., J. R. West, and A. P. Fishman. The syndrome of alveolar hypoventilation and diminished sensitivity of the respiratory center. N. Engl. J. Med. 256: 1165–1170, 1957.
 167. Riley, R. L., and A. Cournand. “Ideal” alveolar air and the analysis of ventilation‐perfusion relationships in the lungs. J. Appl. Physiol. 1: 825–847, 1949.
 168. Robertson, C. H., G. H. Foster, and R. L. Johnson. The relationship of respiratory failure to the oxygen consumption of, lactic production by, and distribution of blood flow among respiratory muscles during increasing inspiratory resistance. J. Clin. Invest. 59: 31–42, 1977.
 169. Robertson, C. H., M. A. Pagel, and R. L. Johnson. The distribution of blood flow, oxygen consumption, and work output among the respiratory muscles during unobstructed hyperventilation. J. Clin. Invest. 59: 43–50, 1977.
 170. Rochester, D. F. Measurement of diaphragmatic blood flow and oxygen consumption in the dog by the Kety‐Schmidt technique. J. Clin. Invest. 53: 1216–1225, 1974.
 171. Rochester, D. F., N. S. Arora, N. M. T. Braun, and S. K. Goldberg. The respiratory muscles in chronic obstructive pulmonary disease (COPD). Bull. Eur. Physiopathol. Respir. 15: 951–975, 1979.
 172. Rochester, D. F., and G. Bettini. Diaphragmatic blood flow and energy expenditure in the dog. J. Clin. Invest. 5: 661–672, 1976.
 173. Rochester, D. F., and A. M. Briscoe. Metabolism of the working diaphragm. Am. Rev. Respir. Dis. 119: 85–88, 1979.
 174. Rochester, D. F., and M. Pradel‐Guena. Measurement of diaphragmatic blood flow in dogs from xenon 133 clearance. J. Appl. Physiol. 34: 68–74, 1973.
 175. Rodman, T., M. E. Resnick, R. D. Berkowitz, J. F. Fennelly, and J. Olivia. Alveolar hypoventilation due to involvement of the respiratory center by obscure disease of the central nervous system. Am. J. Med. 32: 208–211, 1962.
 176. Rohrer, F. Physiologie der Atembewegung. In: Handbuch der normalen und pathologischen Physiologie, edited by A. T. J. Bethe, G. von Bergmann, G. Embden, and A. Ellinger Berlin: Springer, 1925, p. 70–127.
 177. Rouss, P., and H. P. Gilding. Studies of tissue maintenance. I. The changes with diminished blood bulk. J. Exp. Med. 50: 189–211, 1929.
 178. Roussos, C. Respiratory muscle fatigue in the hypercapnic patient. Bull. Eur. Physiopathol. Respir. 15: 117–126, 1979.
 179. Roussos, C., M. Fixley, D. Gross, and P. T. Macklem. Fatigue of inspiratory muscles and their synergic behavior. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 897–904, 1979.
 180. Rowell, L. B., H. L. Taylor, Y. Wang, and W. S. Carlson. Saturation of arterial blood with oxygen during maximal exercise. J. Appl. Physiol. 19: 284–286, 1964.
 181. Rudolf, M., R. A. Banks, and S. J. G. Semple. Hypercapnia during oxygen therapy in acute exacerbation of chronic respiratory failure. Lancet 2: 483–486, 1977.
 182. Saibene, F., P. Mognoni, G. Aguggini, and M. G. Clement. Work of breathing in dog during exercise. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 1087–1092, 1981.
 183. Saltin, B., and L. B. Rowell. Functional adaptations to physical activity and inactivity. Federation Proc. 39: 1506–1513, 1980.
 184. Saunier, C., M. Gimenez, and D. Harteman. Blood glycolysis during muscular exercise in patients with chronic lung disease and hypoxemia. Bull. Eur. Physiopathol. Respir. 15: 291–302, 1979.
 185. Schaanning, J. Respiratory cycle time duration during exercise in patients with chronic obstructive lung disease. Scand. J. Respir. Dis. 59: 313–318, 1978.
 186. Sergysels, R., S. Degré, P. Garcia‐Herreros, R. Willeput, and A. De Coster. Le profil ventilatoire à l'exercise dans les bronchopathies chroniques obstructives. Bull. Eur. Physiopathol Respir. 15: 57–73, 1979.
 187. Shannon, R. Effects of thoracic dorsal rhizotomies on the respiratory pattern in anesthetized cats. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 20–26, 1977.
 188. Sharp, J. T., P. Van Lith, C. V. Nuchprayoon, R. Briney, and F. N. Johnson. The thorax in chronic obstructive lung disease. Am. J. Med. 44: 39–46, 1968.
 189. Shephard, R. J. The oxygen cost of breathing during vigorous exercise. Q. J. Exp. Physiol. 51: 336–350, 1966.
 190. Shephard, R. J. The maximum sustained voluntary ventilation in exercise. Clin. Sci. 32: 167–176, 1967.
 191. Shepherd, J. T., C. G. Blomqvist, A. R. Lind, J. H. Mitchell, and B. Saltin. Static (isometric) exercise. Retrospection and introspection. Circ. Res. 48: 179–188, 1981.
 192. Siafakas, N., A. J. R. Morris, and F. J. Prime. The rate of change of mouth occlusion pressure during exercise. Clin. Sci. 56: 455–461, 1979.
 193. Sonne, L. J., and J. A. Davis. Increased exercise performance in patients with severe COPD following inspiratory resistive training. Chest 81: 436–439, 1982.
 194. Stubbing, D. G., and N. L. Jones. The thorax in exercise. In: Lung Biology in Health and Disease. The Thorax, edited by C. S. Roussos and P. T. Macklem New York: Dekker, in press.
 195. Stubbing. D. G., K. J. Killian, and E. J. M. Campbell. Weber's law and resistive load detection. Am. Rev. Respir. Dis. 127: 5–7, 1983.
 196. Stubbing, D. G., L. D. Pengelly, J. L. C. Morse, and N. L. Jones. Pulmonary mechanics during exercise in normal males. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 506–510, 1980.
 197. Stubbing, D. G., L. D. Pengelly, J. L. C. Morse, and N. L. Jones. Pulmonary mechanics during exercise in subjects with chronic airflow obstruction. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 511–515, 1980.
 198. Supinski, G. L., and S. G. Kelsen. Effect of elastase‐induced emphysema on the force‐generating ability of the diaphragm. J. Clin. Invest. 70: 978–988, 1982.
 199. Taylor, A. The contribution of the intercostal muscles to the effort of respiration in man. J. Physiol. London 151: 390–402, 1960.
 200. Tenney, S. M., and R. E. Reese. The ability to sustain great breathing efforts. Respir. Physiol. 5: 187–201, 1968.
 201. Thoden, J. S., J. A. Dempsey, W. G. Reddan, M. L. Birnbaum, H. V. Forster, R. F. Grover, and J. Rankin. Ventilatory work during steady‐state response to exercise. Federation Proc. 28: 1316–1321, 1969.
 202. Vu‐Dinh, M., H. M. Lee, P. Vasquez, and J. W. Shephard. Relation of VO2max to cardiopulmonary function in patients with chronic obstructive lung disease. Bull. Eur. Physiopathol. Respir. 15: 359–375, 1979.
 203. Wade, O. L. Movements of the thoracic cage and diaphragm in respiration. J. Physiol. London 124: 193–212, 1954.
 204. Ward, S. A., J. A. Davis, M. L. Weissman, K. Wasserman, and B. J. Whipp. Lung gas stores and the kinetics of gas exchange during exercise (Abstract). Physiologist 22 (4): 129, 1979.
 205. Ward, S. A., and B. J. Whipp. Ventilatory control during exercise with increased external dead space. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 225–231, 1980.
 206. Wasserman, D. H., and B. J. Whipp. Coupling of ventilation to pulmonary gas exchange during nonsteady‐state work in men. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 587–593, 1983.
 207. Wasserman, K., and M. B. McIlroy. Detecting the threshold of anaerobic metabolism. Am. J. Cardiol. 14: 844–852, 1964.
 208. Wasserman, K., A. L. Van Kessel, and G. G. Burton. Interaction of physiological mechanisms during exercise. J. Appl. Physiol. 22: 71–85, 1967.
 209. Wasserman, K., and B. J. Whipp. Exercise physiology in health and disease. Am. Rev. Respir. Dis. 112: 219–249, 1975.
 210. Wasserman, K., B. J. Whipp, and R. Casaburi. Respiratory control during exercise. In: Handbook of Physiology. The Respiratory System. Control of Breathing, edited by N. S. Cherniack and J. G. Widdicombe Bethesda, MD: Am. Physiol. Soc., 1986, sect. 3, vol. II, chapt. 17, p. 595–619.
 211. Wasserman, K., B. J. Whipp, R. Casaburi, W. L. Beaver, and H. V. Brown. CO2 flow to the lungs and ventilatory control. In: Muscular Exercise and the Lung, edited by J. A. Dempsey and C. E. Reed Madison: Univ. of Wisconsin Press, 1977. p. 103–135.
 212. Wasserman, K., B. J. Whipp, S. N. Koyal, and W. L. Beaver. Anaerobic threshold and respiratory gas exchange during exercise. J. Appl. Physiol. 35: 236–243, 1973.
 213. West, J. B. Respiratory Physiology: The Essentials (2nd ed.). Baltimore, MD: Williams & Wilkins, 1974, chapt. 5, p. 66–67.
 214. West, J. B. Ventilation‐perfusion and diffusion disturbances in asthma. In: Bronchial Asthma, Mechanisms and Therapeutics, edited by E. B. Weiss and M. S. Segal Boston, MA: Little, Brown, 1976, p. 195–316.
 215. West, J. B. Pulmonary Pathophysiology. Baltimore, MD: Williams & Wilkins, 1977.
 216. Whipp, B. J., and J. A. Davis. Does ventilatory mechanics limit maximum exercise? In: Exercise, A Workshop, edited by P. Russo and G. Gass Sydney, Australia: Cumberland College, 1979, p. 20–26.
 217. Whipp, B. J., D. J. Huntsman, T. W. Storer, N. Lamarra, and K. Wasserman. A constant which determines the duration of tolerance to high‐intensity work (Abstract). Federation Proc. 41: 1591, 1982.
 218. Whipp, B. J., and E. E. Phillips, Jr. Cardiopulmonary and metabolic responses to sustained isometric exercise. Arch. Phys. Med. Rehabil. 51: 398–402, 1970.
 219. Whipp, B. J., and S. A. Ward. Ventilatory control dynamics during muscular exercise in man. Int. J. Sports Med. 1: 146–159, 1980.
 220. Whipp, B. J., and S. A. Ward. The control of ventilation. In: Pulmonary Function Testing: Indications and Interpretations, edited by A. Wilson New York: Academic, in press.
 221. Whipp, B. J., and K. Wasserman. Oxygen uptake kinetics for various intensities of constant‐load work. J. Appl. Physiol. 33: 351–356, 1972.
 222. Widdicombe, J. G. Reflex control of breathing. In: Respiratory Physiology I, edited by J. G. Widdicombe Baltimore, MD: University Park, 1974, vol. 2, p. 273–301. (Int. Rev. Physiol. Ser.).
 223. Yamashiro, S. M., J. A. Daubenspeck, T. N. Lauritsen, and F. S. Grodins. Total work rate of breathing optimization in CO2 inhalation and exercise. J. Appl. Physiol. 38: 702–709, 1975.
 224. Yamashiro, S. M., and F. S. Grodins. Optimal regulation of respiratory airflow. J. Appl. Physiol. 30: 597–602, 1971.
 225. Yamashiro, S. M., and F. S. Grodins. Respiratory cycle optimization in exercise. J. Appl. Physiol. 35: 522–525, 1973.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Brian J. Whipp, Richard L. Pardy. Breathing During Exercise. Compr Physiol 2011, Supplement 12: Handbook of Physiology, The Respiratory System, Mechanics of Breathing: 605-629. First published in print 1986. doi: 10.1002/cphy.cp030334