Comprehensive Physiology Wiley Online Library

Diffusion of Gases

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Historical Note
2 General Description of Gaseous Diffusion
3 Molecular Behavior: Kinetic Theory of Gases
3.1 Simple Kinetic Theory of Gases
3.2 Rigorous Kinetic Theory of Gases
4 Binary Diffusion
4.1 Fick's First Law: Steady Diffusion
4.2 Binary Diffusion Coefficients
4.3 Fick's Second Law: Unsteady Diffusion
4.4 Solution of Binary Diffusion Equation
5 Multicomponent Diffusion
5.1 Multicomponent Diffusion Equations
5.2 Multicomponent Diffusion Coefficients
5.3 Effective Diffusion Coefficients
6 Summary
Figure 1. Figure 1.

Sketch of molecular flux through plane 0 in z direction. A, B, planes; λ, distance; x, y, directions.

Figure 2. Figure 2.

Lennard‐Jones potential energy function, describing interaction of 2 spherical, nonpolar molecules, r, Distance of separation between 2 molecules; rm, separation distance where intermolecular forces change sign, i.e., repellent to attractive or vice versa; υ, maximum energy of attraction between pair of molecules; σ, collision diameter.

From Bird et al. 2
Figure 3. Figure 3.

Axisymmetric container segment of length dz with variable cross‐sectional area (A). Diffusion takes place in this container. N, molar flux with respect to stationary frame of reference.

Figure 4. Figure 4.

Diagrams illustrating principle of random‐walk method. A: from point X the “particle” in a random walk may take a step to neighboring point X1, X2, or X3 with probabilities P(1, X), P (2, X), and P(3, X), respectively. It may also terminate its walk with probability P(0, X). B: points X and X1 are surrounded by volumes V(X) and V(X1) and area of contact A(X, X1) can be assigned. Particles that move through area A(X, X1) in a unit of time are named M(X, X1).

From Stibitz 42
Figure 5. Figure 5.

Diffusion of Ar in an H2‐CH4‐Ar system. Although there is initially no gradient in Ar concentration, Ar will move transiently from CH4 side toward H2 side. Mole Fr. Diff., molar fractional difference.

Data from Arnold and Toor 1
Figure 6. Figure 6.

Fluxes of CO2 as function of the change in partial pressure of CO2 (). Nitrogen mixture passes through origin, deviating little from binary behavior; He mixture displays strong effect of multicomponent diffusion; SF6 mixture has moderate multicomponent behavior.

Adapted from Chang et al. 8


Figure 1.

Sketch of molecular flux through plane 0 in z direction. A, B, planes; λ, distance; x, y, directions.



Figure 2.

Lennard‐Jones potential energy function, describing interaction of 2 spherical, nonpolar molecules, r, Distance of separation between 2 molecules; rm, separation distance where intermolecular forces change sign, i.e., repellent to attractive or vice versa; υ, maximum energy of attraction between pair of molecules; σ, collision diameter.

From Bird et al. 2


Figure 3.

Axisymmetric container segment of length dz with variable cross‐sectional area (A). Diffusion takes place in this container. N, molar flux with respect to stationary frame of reference.



Figure 4.

Diagrams illustrating principle of random‐walk method. A: from point X the “particle” in a random walk may take a step to neighboring point X1, X2, or X3 with probabilities P(1, X), P (2, X), and P(3, X), respectively. It may also terminate its walk with probability P(0, X). B: points X and X1 are surrounded by volumes V(X) and V(X1) and area of contact A(X, X1) can be assigned. Particles that move through area A(X, X1) in a unit of time are named M(X, X1).

From Stibitz 42


Figure 5.

Diffusion of Ar in an H2‐CH4‐Ar system. Although there is initially no gradient in Ar concentration, Ar will move transiently from CH4 side toward H2 side. Mole Fr. Diff., molar fractional difference.

Data from Arnold and Toor 1


Figure 6.

Fluxes of CO2 as function of the change in partial pressure of CO2 (). Nitrogen mixture passes through origin, deviating little from binary behavior; He mixture displays strong effect of multicomponent diffusion; SF6 mixture has moderate multicomponent behavior.

Adapted from Chang et al. 8
References
 1. Arnold, K. R., and H. L. Toor. Unsteady diffusion in ternary gas mixtures. AIChE J. 13: 909–914, 1967.
 2. Bird, R. B., W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. New York: Wiley, 1960.
 3. Carslaw, H. S., and J. C. Jaeger. Conduction of Heat in Solids. Oxford, UK: Clarendon, 1959.
 4. Chang, H. K. Multicomponent diffusion in the lung. Federation Proc. 39: 2759–2764, 1980.
 5. Chang, H. K., R. T. Cheng, and L. E. Farhi. A model study of gas diffusions in alveolar sacs. Respir. Physiol. 18: 386–397, 1973.
 6. Chang, H. K., and L. E. Farhi. On mathematical analysis of gas transport in the lung. Respir. Physiol. 18: 370–385, 1973.
 7. Chang, H. K., and L. E. Farhi. Ternary diffusion and effective diffusion coefficients in alveolar spaces. Respir. Physiol. 40: 269–279, 1980.
 8. Chang, H. K., R. C. Tai, and L. E. Farhi. Some implications of ternary diffusion in the lung. Respir. Physiol. 23: 109–120, 1975.
 9. Chapman, S., and T. G. Cowling. The Mathematical Theory of Non‐Uniform Gases (3rd ed.). New York: Cambridge Univ. Press, 1970.
 10. Churchill, R. V. Fourier Series and Boundary Value Problems (2nd ed.). New York: McGraw‐Hill, 1963.
 11. Crank, J. The Mathematics of Diffusion (2nd ed.). Oxford, UK: Clarendon, 1975.
 12. Cumming, G., J. Crank, K. Horsfield, and I. Parker. Gaseous diffusion in the airways of the human lung. Respir. Physiol. 1: 58–74, 1966.
 13. Curtiss, C. F., and J. O. Hirschfelder. Transport properties of multicomponent gas mixtures. J. Chem. Phys. 17: 550–555, 1949.
 14. Cussler, E. L. Multicomponent Diffusion. Amsterdam: Elsevier, 1976.
 15. Engel, L. A., and P. T. Macklem. Gas mixing and distribution in the lung. In: Respiratory Physiology II, edited by J. G. Widdicombe. Baltimore, MD: University Park, 1977, vol. 14, p. 37–82. (Int. Rev. Physiol. Ser.)
 16. Erasmus, D., and H. Rahn. Effects of ambient pressures, He and SF6 on O2 and CO2 transport in the avian egg. Respir. Physiol. 27: 53–64, 1976.
 17. Fairbanks, D. F., and C. R. Wilke. Diffusion coefficients in multicomponent gas mixtures. Ind. Eng. Chem. 42: 471–475, 1950.
 18. Feller, V. J. An Introduction to Probability Theory and Its Applications (3rd ed.). New York: Wiley, 1968, p. 50.
 19. Fick, A. E. Uber die Diffusion. Ann. Phys. Chem. 94: 59–86, 1855.
 20. Graham, T. On the law of the diffusion of gases. Phil Mag. 2: 175–190, 269–276, 351–358, 1833.
 21. Gupta, P. K., and A. R. Cooper, Jr. The D matrix for multicomponent diffusion. Physica 54: 39–59, 1971.
 22. Haji‐Sheikh, A., and E. M. Sparrow. The floating random walk and its application to Monte Carlo solutions of heat equations. J. SIAM 14: 370–389, 1966.
 23. Hirschfelder, J. O., C. F. Curtiss, and R. B. Bird. The Molecular Theory of Gases and Liquids. New York: Wiley, 1954.
 24. Hsu, H. W., and R. B. Bird. Multicomponent diffusion problems. AIChE J. 6: 516–524, 1960.
 25. Jeans, J. Introduction to the Kinetic Theory of Gases. London: Cambridge Univ. Press, 1940.
 26. Krishna, R., and G. L. Standart. A multicomponent film model incorporating an exact matrix method of solution to the Maxwell‐Stefan equations. AIChE J. 22: 383–389, 1976.
 27. Krishna, R., and G. L. Standart. Mass and energy transfer in multicomponent systems. Chem. Eng. Commun. 3: 201–276, 1979.
 28. La Force, R. C., and B. M. Lewis. Diffusional transport in the human lung. J. Appl. Physiol. 28: 291–298, 1970.
 29. Marrero, T. R., and E. A. Mason. Gaseous diffusion coefficients. J. Phys. Chem. Ref. Data 1: 1–119, 1972.
 30. Maxwell, J. C. On the dynamic theory of gases. Philos. Trans. R. Soc. Lond. 157, 1866. (Reprint in: Scientific Papers. New York: Dover, 1952, vol. II, p. 26–78.)
 31. Maxwell, J. C. On Loschmidt's experiments on diffusion in relation to the kinetic theory of gases. Nature Lond. 8: 298, 1871. (Reprint in:
 32. Scientific Papers. New York: Dover, 1952, vol. II, p. 343–350.
 33. Obermeier, E., and A. Schaber. A simple formula for multi‐component gaseous diffusion coefficients derived from mean free path theory. Int. J. Heat Mass Transfer 20: 1301–1306, 1977.
 34. Onsager, L. Theories and problems of liquid diffusion. Ann. NY Acad. Sci. 46: 241–265, 1945.
 35. Paganelli, C. B., A. Ar, and H. Rahn. Multicomponent diffusion of O2 and CO2 across the hen's egg shell in air and helium‐oxygen mixtures (Abstract). Federation Proc. 38: 966, 1979.
 36. Rauwerda, P. E. Unequal Ventilation of Different Parts of the Lung and Determination of Cardiac Output. Gronigen, The Netherlands: Groningen State Univ., 1946. PhD thesis.
 37. Reid, R. C., J. M. Prausnitz, and T. S. Sherwood. The Properties of Gases and Liquids (3rd ed.). New York: McGraw‐Hill, 1977.
 38. Salvadori, M. G., and M. C. Baron. Numerical Methods in Engineering (2nd ed.). Englewood Cliffs, NJ: Prentice‐Hall, 1961.
 39. Saul'yev, V. K. Integration of Equations of Parabolic Type by the Methods of Nets. New York: Macmillan, 1964.
 40. Scheid, P., and J. Piiper. Intrapulmonary gas mixing and stratification. In: Pulmonary Gas Exchange. Ventilation, Blood Flow, and Diffusion, edited by J. B. West. New York: Academic, 1980, vol. I, p. 87–130.
 41. Spitzer, F. Principles of Random Walk. New York: Van Nostrand Reinhold, 1964.
 42. Stewart, W. E., and R. Prober. Matrix calculations of multicomponent mass transfer in isothermal systems. Ind. Eng. Chem. Fundam. 3: 224–235, 1964.
 43. Stibitz, G. R. Calculating diffusion in biological systems by random walks with special reference to gaseous diffusion in the lung. Respir. Physiol. 7: 230–262, 1969.
 44. Stibitz, G. R. A model of diffusion in the respiratory unit. Respir. Physiol. 18: 249–257, 1973.
 45. Svehla, R. A. Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures. Washington, DC: Natl. Aeronaut, and Space Admin., 1962. (NASA Tech. Rep. R‐132.)
 46. Tai, R. C., and H. K. Chang. A mathematical study of non‐equimolar ternary gas diffusion. Bull. Math. Biol. 41: 591–606, 1979.
 47. Tai, R. C., H. K. Chang, and L. E. Farhi. Nonequimolar counter‐diffusion in ternary gas systems. Respir. Physiol. 40: 253–267, 1980.
 48. Taylor, R., and D. R. Webb. On the relationship between the exact and linearized solutions of the Maxwell‐Stefan equations for multicomponent film model. Chem. Eng. Commun. 7: 287–299, 1980.
 49. Toor, H. L. Solution of the linearized equations of multicomponent mass transfer. I. AIChE J. 10: 448–455, 1964.
 50. Toor, H. L. Solution of the linearized equations of multicomponent mass transfer. II. Matrix methods. AIChE J. 10: 460–465, 1964.
 51. Toor, H. L., C. V. Seshadri, and K. R. Arnold. Diffusion and mass transfer in multicomponent mixture of ideal gases. AIChE J. 11: 744–755, 1965.
 52. Wilke, C. R. Diffusional properties of multicomponent gases. Chem. Eng. Prog. 46: 95–104, 1950.
 53. Worth, H., and J. Piiper. Diffusion of helium, carbon monoxide and sulfur hexafluoride in gas mixtures similar in alveolar gas. Respir. Physiol. 32: 155–166, 1978.
 54. Worth, H., and J. Piiper. Model experiments on diffusional equilibration of oxygen and carbon dioxide between inspired and alveolar gas. Respir. Physiol. 35: 1–7, 1978.
 55. Zienkiewicz, O. C. The Finite Element Method in Engineering Science. New York: McGraw‐Hill, 1971.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

H. K. Chang. Diffusion of Gases. Compr Physiol 2011, Supplement 13: Handbook of Physiology, The Respiratory System, Gas Exchange: 33-50. First published in print 1987. doi: 10.1002/cphy.cp030403