Comprehensive Physiology Wiley Online Library

Diffusion and Convection in Intrapulmonary Gas Mixing

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Diffusion
1.1 Diffusion Laws
1.2 Binary Diffusion
1.3 Diffusion in Multicomponent Systems
2 Diffusion, Convection, and Their Interactions
2.1 Dispersion
2.2 Attempts to Quantify Dispersion in Upper Airways
2.3 Dispersion During High‐Frequency Oscillation
2.4 Convective Mixing by Mechanical Action of the Heart
3 Anatomical Basis for Models of Lung Gas Mixing
3.1 Regularly Branching Lung Model
3.2 Irrregularly Branching Lung Model
3.3 Conclusion
4 Mathematical Analysis of Lung Gas Mixing
4.1 Models Considering Diffusive Mixing Alone
4.2 Models Considering Convection and Diffusion
5 Experimental Evidence for Stratification in Lungs
5.1 Effects of Series and Parallel Inhomogeneities
5.2 Methods and Results
5.3 Attempts at Quantification
6 Critical Remarks and Conclusions
6.1 Physiological Measurements Versus Morphometric Models
6.2 Dead Space Versus Stratification
6.3 Effects of Series and Parallel Inhomogeneity
6.4 Mixing in Overall Pulmonary Gas Transfer
Figure 1. Figure 1.

Schema of lung structure shows potential for parallel [ventilation‐perfusion ratio (VA/Q)] and series (stratified) inhomogeneities and their effects on efficiency of alveolar gas exchange. Levels of partial pressure of O2 and CO2 (Po2 and Pco2) in compartments 1 and 2 [arterialized blood (a) = alveolar gas (A)] are indicated. In parallel inhomogeneity, mixed alveolar gas () and arterial blood () result from ventilation‐weighted and perfusion‐weighted mixing, respectively. In series inhomogeneity, partial pressures in arterial blood () result from mixing, but values in expired alveolar gas (A′) are those of proximal compartment 1 (A1). In both cases, there arise alveolar‐arterial Po2 and Pco2 differences (AaD).

Figure 2. Figure 2.

Dispersion in a fluid moving steadily (mean velocity, ) in circular tube under laminar‐flow conditions. Left panels: tracer distribution [dots, introduced at t = 0 at x = 0 (t, time; x, length)] is displayed at t > 0, when imaginary plane, moving with , has moved to x = t. Right panels: mean tracer concentration, (x). A: dispersion of nondiffusible tracer occurs only by convection (left panel). Thin arrows, radial distribution of flow relative to moving plane. Heavy arrow, net convective tracer transport through this plane. Axial distribution of mean concentration (right panel) decreases linearly in axial range from x = 0 to x = 2 t. B: dispersion of diffusible tracer (Taylor dispersion). Broken parabolic line (left panel), denotes radial flow distribution (equal to distribution of nondiffusible tracer, see A). Radial diffusion (open arrows) leads to net convective tracer back‐transport through moving plane (closed small arrows). Hence net convective transport through moving plane in direction of movement (closed arrow) is reduced and so is axial dispersion (right panel, thin straight line for comparison with A). C: dispersion when radial diffusion is infinitely fast and axial diffusion is significant (disregarded in B). Net diffusive transport through moving plane (left panel, open arrow) leads to axial tracer dispersion (right panel).

Figure 3. Figure 3.

Morphometric lung model according to Weibel 164. A: equivalent radius plotted against axial distance. Same length scale for both axes. B: details of terminal airways (acinus) resolved by expanding abscissa scale 100‐fold, retaining ordinate scale. Bottom schema shows representative path in acinus, which originates from one terminal bronchiole.

From Scheid and Piiper 133
Figure 4. Figure 4.

Concentration profiles during respiratory cycle in trumpet model. Linear abscissa scale for axial distance from terminal end of bronchial tree. Delimitation of generations shown on upper scale. Ordinate: O2 fraction (FO2). Single breath of O2 is inhaled into, and then exhaled from, an initially O2‐free lung with constant flow. Solid lines, concentration profiles at successive equally timed periods during inspiration (1–5) and expiration 6,7,8,9,10. Dashed‐dotted lines 1,2,3,4,5, tidal volume front (i.e., concentration front for nondiffusible tracer) during inspiration. Dashed line 6, concentration profile calculated assuming no (axial) diffusion during expiration.

Adapted from Paiva 102
Figure 5. Figure 5.

Branched‐trumpet model. Two trumpets branch off a common stem. By cutting off from end of second trumpet, ratio of both trumpet volumes (V2/V1) can be made to vary. S and s, cross‐sectional area of trumpet branches with and without alveoli, respectively.

From Paiva and Engel 106
Figure 6. Figure 6.

Profiles of O2 concentration during expiration, after single breath of O2 (see Fig. 4), calculated for branched‐trumpet model with uneven volume ratio (V2/V1 = 0.12). Abscissa: distance, x, from the terminal surface. Ordinate: fractional O2 concentration, F(x,t), as function of distance x (abscissa) and time t (parameter). Dashed lines refer to short unit; solid lines, long unit. Numbers 5–10, concentration profiles at successive equally timed periods during expiration. Inset: expirogram. Ordinate: fractional O2 concentration, F(x1v), at model exit (generation 13/14).

From Paiva and Engel 106
Figure 7. Figure 7.

Two‐compartment models of series and parallel inhomogeneities. Gas‐transfer conductance between compartments 1 and 2 of series model is indicated (0, finite, or ∞). Thickness of arrows in parallel models denotes magnitude of ventilation (A) and perfusion (). For inhomogeneities, a general case and 2 limiting cases, shunt [giving rise to shuntlike effects, () > (PaCO2 ‐ PACO2)] and alveolar dead space [producing alveolar dead space‐like effects, () ≈ (PaCO2 ‐ PACO2)] are shown.



Figure 1.

Schema of lung structure shows potential for parallel [ventilation‐perfusion ratio (VA/Q)] and series (stratified) inhomogeneities and their effects on efficiency of alveolar gas exchange. Levels of partial pressure of O2 and CO2 (Po2 and Pco2) in compartments 1 and 2 [arterialized blood (a) = alveolar gas (A)] are indicated. In parallel inhomogeneity, mixed alveolar gas () and arterial blood () result from ventilation‐weighted and perfusion‐weighted mixing, respectively. In series inhomogeneity, partial pressures in arterial blood () result from mixing, but values in expired alveolar gas (A′) are those of proximal compartment 1 (A1). In both cases, there arise alveolar‐arterial Po2 and Pco2 differences (AaD).



Figure 2.

Dispersion in a fluid moving steadily (mean velocity, ) in circular tube under laminar‐flow conditions. Left panels: tracer distribution [dots, introduced at t = 0 at x = 0 (t, time; x, length)] is displayed at t > 0, when imaginary plane, moving with , has moved to x = t. Right panels: mean tracer concentration, (x). A: dispersion of nondiffusible tracer occurs only by convection (left panel). Thin arrows, radial distribution of flow relative to moving plane. Heavy arrow, net convective tracer transport through this plane. Axial distribution of mean concentration (right panel) decreases linearly in axial range from x = 0 to x = 2 t. B: dispersion of diffusible tracer (Taylor dispersion). Broken parabolic line (left panel), denotes radial flow distribution (equal to distribution of nondiffusible tracer, see A). Radial diffusion (open arrows) leads to net convective tracer back‐transport through moving plane (closed small arrows). Hence net convective transport through moving plane in direction of movement (closed arrow) is reduced and so is axial dispersion (right panel, thin straight line for comparison with A). C: dispersion when radial diffusion is infinitely fast and axial diffusion is significant (disregarded in B). Net diffusive transport through moving plane (left panel, open arrow) leads to axial tracer dispersion (right panel).



Figure 3.

Morphometric lung model according to Weibel 164. A: equivalent radius plotted against axial distance. Same length scale for both axes. B: details of terminal airways (acinus) resolved by expanding abscissa scale 100‐fold, retaining ordinate scale. Bottom schema shows representative path in acinus, which originates from one terminal bronchiole.

From Scheid and Piiper 133


Figure 4.

Concentration profiles during respiratory cycle in trumpet model. Linear abscissa scale for axial distance from terminal end of bronchial tree. Delimitation of generations shown on upper scale. Ordinate: O2 fraction (FO2). Single breath of O2 is inhaled into, and then exhaled from, an initially O2‐free lung with constant flow. Solid lines, concentration profiles at successive equally timed periods during inspiration (1–5) and expiration 6,7,8,9,10. Dashed‐dotted lines 1,2,3,4,5, tidal volume front (i.e., concentration front for nondiffusible tracer) during inspiration. Dashed line 6, concentration profile calculated assuming no (axial) diffusion during expiration.

Adapted from Paiva 102


Figure 5.

Branched‐trumpet model. Two trumpets branch off a common stem. By cutting off from end of second trumpet, ratio of both trumpet volumes (V2/V1) can be made to vary. S and s, cross‐sectional area of trumpet branches with and without alveoli, respectively.

From Paiva and Engel 106


Figure 6.

Profiles of O2 concentration during expiration, after single breath of O2 (see Fig. 4), calculated for branched‐trumpet model with uneven volume ratio (V2/V1 = 0.12). Abscissa: distance, x, from the terminal surface. Ordinate: fractional O2 concentration, F(x,t), as function of distance x (abscissa) and time t (parameter). Dashed lines refer to short unit; solid lines, long unit. Numbers 5–10, concentration profiles at successive equally timed periods during expiration. Inset: expirogram. Ordinate: fractional O2 concentration, F(x1v), at model exit (generation 13/14).

From Paiva and Engel 106


Figure 7.

Two‐compartment models of series and parallel inhomogeneities. Gas‐transfer conductance between compartments 1 and 2 of series model is indicated (0, finite, or ∞). Thickness of arrows in parallel models denotes magnitude of ventilation (A) and perfusion (). For inhomogeneities, a general case and 2 limiting cases, shunt [giving rise to shuntlike effects, () > (PaCO2 ‐ PACO2)] and alveolar dead space [producing alveolar dead space‐like effects, () ≈ (PaCO2 ‐ PACO2)] are shown.

References
 1. Adaro, F., and L. E. Farhi. Effects of intralobular gas diffusion on alveolar gas exchange (Abstract). Federation Proc. 30: 437, 1971.
 2. Adaro, F., and J. Piiper. Limiting role of stratification in alveolar exchange of oxygen. Respir. Physiol. 26: 195–206, 1976.
 3. Adaro, F., and J. Piiper. Interpretation of simultaneous intrapulmonary equilibration of gases of differing diffusivities. Prog. Respir. Res. 16: 68–72, 1981.
 4. Andrussow, L., and B. Schramm. Transportphänomene I (Viscosität und Diffusion). In: Landoldt‐Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, edited by H. Borchers, H. Hausen, K.‐H. Hellwege, K. Schäfer, and E. Schmidt. Berlin: Springer‐Verlag, 1969.
 5. Angus, G. E., and W. M. Thurlbeck. Number of alveoli in the human lung. J. Appl. Physiol. 32: 483–485, 1972.
 6. Aris, R. On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 235: 67–77, 1956.
 7. Bartels, J., J. W. Severinghaus, R. E. Forster, W. A. Briscoe, and D. V. Bates. The respiratory dead space measured by single‐breath analysis of oxygen, carbon dioxide, nitrogen or helium. J. Clin. Invest. 33: 41–48, 1954.
 8. Ben Jebria, A., A. Mallet, J. L. Steimer, J. F. Boisvieux, and C. Hatzfeld. Quantitative analysis of gas transport in the central airways. Computer simulations and experimental results. Prog. Respir. Res. 16: 96–102, 1981.
 9. Bohn, D. J., K. Miyasaka, B. E. Marchak, W. K. Thompson, A. B. Froese, and A. C. Bryan. Ventilation by high‐frequency oscillation. J. Appl. Physiol. 48: 710–716, 1980.
 10. Chakrabarti, M. K., E. E. Davies, J. M. B. Hughes, H. A. Jones, C. Orchard, and M. K. Sykes. The effect of heart beat on the mixing of gases in the lungs of dogs (Abstract). J. Physiol. Lond. 320: 56P–57P, 1981.
 11. Chang, D. B., S. M. Lewis, and A. C. Young. A theoretical discussion of diffusion and convection in the lung. Math. Biosci. 29: 331–349, 1976.
 12. Chang, H.‐K., R. T. Cheng, and L. E. Farhi. A model study of gas diffusion in alveolar sacs. Respir. Physiol. 18: 386–397, 1973.
 13. Chang, H.‐K., and L. E. Farhi. On mathematical analysis of gas transport in the lung. Respir. Physiol. 18: 370–385, 1973.
 14. Chatwin, P. C. The approach to normality of the concentration distribution of a solute in a solvent flowing along a straight pipe. J. Fluid Mech. 43: 321–352, 1970.
 15. Chatwin, P. C. On the longitudinal dispersion of passive contaminant in oscillatory flows in tubes. J. Fluid Mech. 71: 513–527, 1975.
 16. Chinet, A., J. L. Micheli, and P. Haab. Inhomogeneity effects on O2 and CO pulmonary diffusing capacity estimates by steady‐state methods. Theory. Respir. Physiol. 13: 1–22, 1971.
 17. Comroe, J. H., R. E. Forster, A. B. DuBois, W. A. Briscoe, and E. Carlsen. The Lung (2nd ed.). Chicago, IL: Yearbook, 1962.
 18. Cormier, Y., and J. Bélanger. Contribution of gas exchange to slope of phase III of the single‐breath nitrogen test. J. Appl. Physiol. 50: 1156–1160, 1981.
 19. Cormier, Y., and J. Bélanger. The influence of active gas exchange on the slope of phase III at rest and after exercise. Am. Rev. Respir. Dis. 123: 213–216, 1981.
 20. Cumming, G. Alveolar ventilation: recent model analysis. In: Respiratory Physiology I, edited by J. G. Widdicombe. Baltimore, MD: University Park, 1974, vol. 2, p. 139–166. (Int. Rev. Physiol. Ser.)
 21. Cumming, G., J. Crank, K. Horsfield, and I. Parker. Gaseous diffusion in the airways of the human lung. Respir. Physiol. 1: 58–74, 1966.
 22. Cumming, G., K. Horsfield, J. G. Jones, and D. C. F. Muir. The influence of gaseous diffusion on the alveolar plateau at different lung volumes. Respir. Physiol. 2: 386–398, 1967.
 23. Cumming, G., K. Horsfield, and S. B. Preston. Diffusion equilibrium in the lungs examined by nodal analysis. Respir. Physiol. 12: 329–345, 1971.
 24. Davidson, M. R. Lung gas mixing during expiration following an inspiration of air. Bull. Math. Biol. 37: 113–126, 1975.
 25. Davidson, M. R. The influence of gas exchange on lung gas concentrations during air breathing. Bull. Math. Biol. 39: 73–86, 1977.
 26. Davidson, M. R. Further considerations in a theoretical description of gas transport in lung airways. Bull. Math. Biol. 43: 517–548, 1981.
 27. Davidson, M. R., and J. M. Fitz‐Gerald. Transport of O2 along a model pathway through the respiratory region of the lung. Bull. Math. Biol. 36: 275–303, 1974.
 28. DuBois, A. B. Alveolar CO2 and O2 during breath holding, expiration, and inspiration. J. Appl. Physiol. 5: 1–12, 1952.
 29. DuBois, A. B., A. G. Britt, and W. O. Fenn. Alveolar CO2 during the respiratory cycle. J. Appl. Physiol. 4: 535–548, 1952.
 30. DuBois, A. B., R. C. Fowler, A. Soffer, and W. O. Fenn. Alveolar CO2 measured by expiration into the rapid infrared gas analyzer. J. Appl. Physiol. 4: 526–534, 1952.
 31. Engel, L. A., and P. T. Macklem. Gas mixing and distribution in the lung. In: Respiratory Physiology II, edited by J. G. Widdicombe. Baltimore, MD: University Park, 1977, vol. 14, p. 37–82. (Int. Rev. Physiol. Ser.)
 32. Engel, L. A., H. Menkes, L. D. H. Wood, G. Utz, J. Joubert, and P. T. Macklem. Gas mixing during breath holding studied by intrapulmonary gas sampling. J. Appl. Physiol. 35: 9–17, 1973.
 33. Engel, L. A., and M. Paiva. Analyses of sequential filling and emptying of the lung. Respir. Physiol. 45: 309–321, 1981.
 34. Engel, L. A., M. Paiva, D. I. M. Siegler, and Y. Fukuchi. Dual tracer single‐breath studies of gas transport in the lung. Respir. Physiol. 36: 103–119, 1979.
 35. Engel, L. A., L. D. H. Wood, G. Utz, and P. T. Macklem. Gas mixing during inspiration. J. Appl. Physiol. 35: 18–24, 1973.
 36. Ewan, P. W., H. A. Jones, J. Nosil, J. Obdrzalek, and J. M. B. Hughes. Uneven perfusion and ventilation within lung regions studied with nitrogen‐13. Respir. Physiol. 34: 45–59, 1978.
 37. Fairbanks, D. F., and C. R. Wilke. Diffusion coefficients in multicomponent gas mixtures. Ind. Eng. Chem. 42: 471–475, 1950.
 38. Farhi, L. E. Elimination of inert gas by the lung. Respir. Physiol. 3: 1–11, 1967.
 39. Farhi, L. E. Diffusive and convective movement of gas in the lung. In: Circulatory and Respiratory Mass Transport, edited by G. E. W. Wolstenholme and J. Knight. London: Churchill, 1969, p. 277–293.
 40. Farhi, L. E., and T. Yokoyama. Effects of ventilation‐perfusion inequality on elimination of inert gases. Respir. Physiol. 3: 12–20, 1967.
 41. Flint, L. F., and P. Eisenklam. Dispersion of matter in transitional flow through straight tubes. Proc. R. Soc. Lond. A Math. Phys. Sci. 315: 519–533, 1970.
 42. Fredberg, J. J. Augmented diffusion in the airways can support pulmonary gas exchange. J. Appl. Physiol. 49: 232–238, 1980.
 43. Fukuchi, Y., M. Cosio, S. Kelly, and L. A. Engel. Influence of pericardial fluid on cardiogenic gas mixing in the lung. J. Appl. Physiol. 42: 5–12, 1977.
 44. Fukuchi, Y., M. Cosio, B. Murphy, and L. A. Engel. Intraregional basis for sequential filling and emptying of the lung. Respir. Physiol. 41: 253–266, 1980.
 45. Fukuchi, Y., C. S. Roussos, P. T. Macklem, and L. A. Engel. Convection, diffusion and cardiogenic mixing of inspired gas in the lung: an experimental approach. Respir. Physiol. 26: 77–90, 1976.
 46. Georg, J., N. A. Lassen, K. Mellemgaard, and A. Vinther. Diffusion in the gas phase of the lungs in normal and emphysematous subjects. Clin. Sci. Lond. 29: 525–532, 1965.
 47. Gill, W. N., V. Ananthakrishnan, and R. J. Nunge. Dispersion in developing velocity fields. AIChE J. 14: 939–946, 1968.
 48. Gill, W. N., and R. Sankarasubramanian. Exact analysis of unsteady convective diffusion. Proc. R. Soc. Lond. A Math. Phys. Sci. 316: 341–350, 1970.
 49. Gill, W. N., and R. Sankarasubramanian. Dispersion of a nonuniform slug in the time‐dependent flow. Proc. R. Soc. Lond. A Math. Phys. Sci. 322: 101–117, 1971.
 50. Gledhill, N., A. B. Froese, F. J. Buick, and A. C. Bryan. Va/Q inhomogeneity and AaDo2 in man during exercise: effect of SF6 breathing. J. Appl. Physiol. 45: 512–515, 1978.
 51. Grimrath, U., U. Smidt, G. von Nieding, and H. Krekeler. Respiratorischer Gasaustausch bei Atmung von 20,9% Sauerstoff in verschiedenen Inertgasen. Respiration 35: 15–21, 1978.
 52. Guénard, H., M. Chaussain, and C. Lebeau. Respiratory gas exchange under normobaric helium‐oxygen breathing at rest and during muscular exercise. Bull. Eur. Physiopathol. Respir. 14: 417–429, 1978.
 53. Hansen, J. E., and E. P. Ampaya. Lung morphometry: a fallacy in the use of the counting principle. J. Appl. Physiol. 37: 951–954, 1974.
 54. Hansen, J. E., and E. P. Ampaya. Human air space shapes, sizes, areas, and volumes. J. Appl. Physiol. 38: 990–995, 1975.
 55. Hansen, J. E., E. P. Ampaya, G. H. Bryant, and J. J. Navin. Branching pattern of airways and air spaces of a single human terminal bronchiole. J. Appl. Physiol. 38: 983–989, 1975.
 56. Haselton, F. R., and P. W. Scherer. Bronchial bifurcations and respiratory mass transport. Science Wash. DC 208: 69–71, 1980.
 57. Hayek, H. von. Die menschliche Lunge (2nd ed.). Berlin: Springer‐Verlag, 1970.
 58. Hlastala, M. P., P. Scheid, and J. Piiper. Interpretation of inert gas retention and excretion in the presence of stratified inhomogeneity. Respir. Physiol. 46: 247–259, 1981.
 59. Hogg, W., J. Brunton, M. Kryger, R. Brown, and P. Macklem. Gas diffusion across collateral channels. J. Appl. Physiol. 33: 568–575, 1972.
 60. Horsfield, K. Some mathematical properties of branching trees with application to the respiratory system. Bull. Math. Biol. 38: 305–315, 1976.
 61. Horsfield, K. Quantitative morphology and structure: functional correlations in the lung. In: The Lung. Structure, Function and Disease, edited by W. M. Thurlbeck. Baltimore, MD: Williams & Wilkins, 1978, p. 151–159.
 62. Horsfield, K. Gaseous diffusion in the lungs. Br. J. Dis. Chest 74: 99–120, 1980.
 63. Horsfield, K., and G. Cumming. Morphology of the bronchial tree in man. J. Appl. Physiol. 24: 373–383, 1968.
 64. Horsfield, K., and G. Cumming. Functional consequences of airway morphology. J. Appl. Physiol. 24: 384–390, 1968.
 65. Horsfield, K., and G. Cumming. Morphology of the bronchial tree in the dog. Respir. Physiol. 26: 173–182, 1976.
 66. Horsfield, K., G. Dart, D. E. Olson, G. F. Filley, and G. Cumming. Models of the human bronchial tree. J. Appl. Physiol. 31: 207–217, 1971.
 67. Horsfield, K., A. Davies, and G. Cumming. Role of conducting airways in partial separation of inhaled gas mixtures. J. Appl. Physiol. 43: 391–396, 1977.
 68. Horsfield, K., A. Davies, C. Mills, and G. Cumming. Effect of flow oscillations on the stationary concentration front in a hollow cast of the airways. Lung 157: 103–111, 1980.
 69. Johnson, L. R., and H. D. Van Liew. Use of arterial Po2 to study convective and diffusive gas mixing in the lungs. J. Appl. Physiol. 36: 91–97, 1974.
 70. Kawashiro, T., R. S. Sikand, F. Adaro, H. Takahashi, and J. Piiper. Study of intrapulmonary gas mixing in man by simultaneous wash‐out of helium and sulfur hexafluoride. Respir. Physiol. 28: 261–275, 1976.
 71. Kjellmer, I., L. Sandqvist, and E. Berglund. ‘Alveolar plateau’ of the single‐breath nitrogen elimination curve in normal subjects. J. Appl. Physiol. 14: 105–108, 1959.
 72. Knoblauch, A., E. G. Honig, A. Sybert, and G. H. Gurtner. Density‐dependence of steady state airway gas transport. Am. Rev. Respir. Dis., Suppl. 119: 324, 1979.
 73. Knopp, T. J., T. Kaethner, J. Kohl, M. Meyer, and P. Scheid. Pulmonary washout of He and SF6 during HFO in dogs (Abstract). Physiologist 24 (4): 7, 1981.
 74. Krogh, A., and J. Lindhard. On the average composition of the alveolar air and its variations during the respiratory cycle. J. Physiol. Lond. 47: 431–445, 1914.
 75. Krogh, A., and J. Lindhard. The volume of the dead space in breathing and the mixing of gases in the lungs of man. J. Physiol. Lond. 51: 59–90, 1917.
 76. Kvale, P. A., J. Davis, and R. C. Schroter. Effect of gas density and ventilatory pattern on steady‐state CO uptake by the lung. Respir. Physiol. 24: 385–398, 1975.
 77. Lacquet, L. M., L. P. Van Der Linden, and M. Paiva. Transport of H2 and SF6 in the lung. Respir. Physiol. 25: 157–173, 1975.
 78. La Force, R. C., and B. M. Lewis. Diffusional transport in the human lung. J. Appl. Physiol. 28: 291–298, 1970.
 79. Levenspiel, O., and W. K. Smith. Notes on the diffusion‐type model for the longitudinal mixing of fluids in flow. Chem. Eng. Sci. 6: 227–233, 1957.
 80. Liese, W., K. Muysers, and J. P. Pichotka. Die Beein‐flussung der alveolär‐arteriellen O2‐Druckdifferenzen durch inerte Gase. Pfluegers Arch. 321: 316–331, 1970.
 81. Löllgen, H., and G. von Nieding. Use of isoproterenol infusion to study intrapulmonary gas mixing in man. Respiration 35: 198–203, 1978.
 82. Luijendijk, S. C. M., A. Zwart, W. R. de Vries, and W. M. Salet. The sloping alveolar plateau at synchronous ventilation. Pfluegers Arch. 384: 267–277, 1980.
 83. Lunkenheimer, P. P., I. Frank, H. Ising, H. Keller, and H. H. Dickhut. Intrapulmonaler Gaswechsel unter simulierter Apnoe durch transtrachealen, periodischen intratho‐rakalen Druckwechsel. Anaesthesist 22: 232–238, 1973.
 84. Lunkenheimer, P. P., H. Ising, I. Frank, M. Scharsich, K. Welham, and H. Dittrich. Enhancement of CO2‐elimination by intrapulmonary high frequency pressure alternation during “apnoeic oxygenation.” Adv. Exp. Med. Biol. 94: 599–603, 1977.
 85. Lunkenheimer, P. P., W. Rafflenbeul, H. Keller, I. Frank, H. H. Dickhut, and C. Fuhrmann. Application of transtracheal pressure oscillations as a modification of “diffusing respiration.” Br. J. Anaesth. 44: 627, 1972.
 86. Magnussen, H. Single breath diffusion capacity for carbon monoxide in bronchial asthma and emphysema. Prog. Respir. Res. 16: 147–151, 1981.
 87. Magnussen, H., J. P. Holle, V. Hartmann, and M. Berres. Measurement of single breath diffusion capacity for CO using inert gases of different diffusiveness. Prog. Respir. Res. 11: 297–304, 1979.
 88. Magnussen, H., J. P. Holle, V. Hartmann, and J. D. Schoenen. DCO at various breath‐holding times: comparison in patients with chronic bronchial asthma and emphysema. Respiration 37: 177–184, 1979.
 89. Martin, R. R., M. Zutter, and N. R. Anthonisen. Pulmonary gas exchange in dogs breathing SF6 at 4 Ata. J. Appl. Physiol. 33: 86–92, 1972.
 90. Mazzone, R. W., H. I. Modell, and L. E. Farhi. Interaction of convection and diffusion in pulmonary gas transport. Respir. Physiol. 28: 217–225, 1976.
 91. Meyer, M., P. Scheid, G. Riepl, H.‐J. Wagner, and J. Piiper. Pulmonary diffusing capacities for O2 and CO measured by a rebreathing technique. J. Appl. Physiol. 51: 1643–1650, 1981.
 92. Mon, E., and J. S. Ultman. Monte Carlo simulation of simultaneous gas flow and diffusion in an asymmetric distal pulmonary airway model. Bull. Math. Biol. 38: 161–192, 1976.
 93. Mundt, E., W. Schoedel, and H. Schwarz. Uber die Gleichmäßigkeit der Lungenbelüftung. Pfluegers Arch. 244: 99–106, 1940.
 94. Nieding, G. von, H. Löllgen, U. Smidt, and H. Linde. Simultaneous washout of helium and sulfur hexafluoride in healthy subjects and patients with chronic bronchitis, bronchial asthma, and emphysema. Am. Rev. Respir. Dis. 116: 649–660, 1977.
 95. Nixon, W., and A. Pack. Effect of altered gas diffusivity on alveolar gas exchange—a theoretical study. J. Appl. Physiol. 48: 147–153, 1980.
 96. Ogawa, C. The finer ramifications of the human lung. Am. J. Anat. 27: 315–332, 1920.
 97. Okubo, T., and J. Piiper. Intrapulmonary gas mixing in excised dog lung lobes studied by simultaneous wash‐out of two inert gases. Respir. Physiol. 21: 223–239, 1974.
 98. Pack, A., M. B. Hooper, W. Nixon, and J. C. Taylor. A computational model of pulmonary gas transport incorporating effective diffusion. Respir. Physiol. 29: 101–124, 1977.
 99. Paiva, M. Computation of the boundary conditions for diffusion in the human lung. Comput. Biomed. Res. 5: 585–595, 1972.
 100. Paiva, M. Méthode nouvelle de résolution de l'équation de transport de matière dans un milieu hétérogéne avec diffusion (application au transport des gaz dans le poumon humain). Biophysik 8: 280–292, 1972.
 101. Paiva, M. Gas transport in the human lung. J. Appl. Physiol. 35: 401–410, 1973.
 102. Paiva, M. Gaseous diffusion in an alveolar duct simulated by a digital computer. Comput. Biomed. Res. 7: 533–543, 1974.
 103. Paiva, M. Boundary conditions and geometry in pulmonary gas transport models. Comput. Biomed. Res. 13: 271–282, 1980.
 104. Paiva, M., and L. A. Engel. Pulmonary interdependence of gas transport. J. Appl. Physiol. 47: 296–305, 1979.
 105. Paiva, M., and L. A. Engel. The anatomical basis for the sloping N2 plateau. Respir. Physiol. 44: 325–337, 1981.
 106. Paiva, M., L. A. Engel, H. K. Chang, and P. Scheid. On the boundary conditions used in calculations of gas mixing in alveolar lungs. Respir. Physiol. 37: 1–3, 1979.
 107. Paiva, M., L. M. Lacquet, and L. P. van der Linden. Gas transport in a model derived from Hansen‐Ampaya anatomical data of the human lung. J. Appl. Physiol. 41: 115–119, 1976.
 108. Parker, H., K. Horsfield, and G. Cumming. Morphology of distal airways in the human lung. J. Appl. Physiol. 31: 386–391, 1971.
 109. Pedley, T. J. A theory for gas mixing in a simple model of the lung. In: Fluid Dynamics of Blood Circulation and Respiratory Flow. AGARD Conf. Proc. 65: 27, 1970.
 110. Pedley, T. J. Pulmonary fluid dynamics. Am. Rev. Fluid Mech. 9: 229–274, 1977.
 111. Pedley, T. J., R. C. Schroter, and M. F. Sudlow. Gas flow and mixing in the airways. In: Bioengineering Aspects of the Lung, edited by J. B. West. New York: Dekker, 1977, vol. 3, p. 163–265.
 112. Philip, J. R. Theory of flow and transport processes in pores and porous media. In: Circulatory and Respiratory Mass Transport, edited by G. E. W. Wolstenholme and J. Knight. London: Churchill, 1969, p. 25–44.
 113. Piiper, J. Variations of ventilation and diffusing capacity to perfusion determining the alveolar‐arterial O2 difference: theory. J. Appl. Physiol. 16: 507–510, 1961.
 114. Piiper, J. Series ventilation, diffusion in airways and stratified inhomogeneity. Federation Proc. 38: 17–21, 1979.
 115. Piiper, J., P. Dejours, P. Haab, and H. Rahn. Concepts and basic quantities in gas exchange physiology. Respir. Physiol. 13: 292–304, 1971.
 116. Piiper, J., M. Meyer, C. Marconi, and P. Scheid. Alveolar‐capillary equilibration kinetics of 13CO2 in human lungs studied by rebreathing. Respir. Physiol. 42: 29–41, 1980.
 117. Piiper, J., and P. Scheid. Respiration: alveolar gas exchange. Annu. Rev. Physiol. 33: 131–154, 1971.
 118. Piiper, J., and P. Scheid. Blood‐gas equilibration in lungs. In: Pulmonary Gas Exchange. Ventilation, Blood Flow, and Diffusion, edited by J. B. West. New York: Academic, 1980, vol. 1, p. 131–171.
 119. Piiper, J., and P. Scheid. Gas mixing and its measurement. In: Scientific Foundations of Respiratory Medicine, edited by J. G. Scadding, G. Cumming, and W. M. Thurlbeck. London: Heinemann, 1981, p. 129–138.
 120. Piiper, J., and P. Scheid. Model for capillary‐alveolar equilibration with special reference to O2 uptake in hypoxia. Respir. Physiol. 46: 193–208, 1981.
 121. Piiper, J., and R. S. Sikand. Determination of DCo by the single‐breath method in inhomogeneous lungs: theory. Respir. Physiol. 1: 75–87, 1966.
 122. Piiper, J., and H. Worth. Value and limits of Graham's law for prediction of diffusivities of gases in gas mixtures. Respir. Physiol. 41: 233–240, 1980.
 123. Power, G. G. Gaseous diffusion between airways and alveoli in the human lung. J. Appl. Physiol. 27: 701–709, 1969.
 124. Pump, K. K. The morphology of the finer branches of the bronchial tree of the human lung. Dis. Chest 46: 379–398, 1964.
 125. Pump, K. K. Morphology of the acinus of the human lung. Dis. Chest 56: 126–134, 1969.
 126. Rauwerda, P. E. Unequal Ventilation of Different Parts of the Lung and the Determination of Cardiac Output. Groningen, The Netherlands: State Univ. Groningen, 1946. Dissertation.
 127. Reid, R. C., and T. K. Sherwood. The Properties of Gases and Liquids (2nd ed.). New York: McGraw‐Hill, 1966.
 128. Robertson, J. S., W. E. Siri, and H. B. Jones. Lung ventilation patterns determined by analysis of nitrogen elimination rates; use of the mass spectrometer as a continuous gas analyzer. J. Clin. Invest. 29: 577–590, 1950.
 129. Ross, B. B. Influence of bronchial tree structure on ventilation in the dog's lung as inferred from measurements of a plastic cast. J. Appl. Physiol. 10: 1–14, 1957.
 130. Saltzman, H. A., J. V. Salzano, G. D. Blenkarn, and J. A. Kylstra. Effects of pressure on ventilation and gas exchange in man. J. Appl. Physiol. 30: 443–449, 1971.
 131. Scheid, P., M. P. Hlastala, and J. Piiper. Inert gas elimination from lungs with stratified inhomogeneity: theory. Respir. Physiol. 44: 299–309, 1981.
 132. Scheid, P., and J. Piiper. Intrapulmonary gas mixing and stratification. In: Pulmonary Gas Exchange. Ventilation, Blood Flow, and Diffusion, edited by J. B. West. New York: Academic, 1980, vol. 1, p. 87–130.
 133. Scherer, P. W., and F. R. Haselton. Convective exchange in oscillatory flow through bronchial tree models. J. Appl. Physiol. 53: 1023–1033, 1982.
 134. Scherer, P. W., L. H. Shendalman, and N. M. Greene. Simultaneous diffusion and convection in single breath lung washout. Bull. Math. Biophys. 34: 393–412, 1972.
 135. Scherer, P. W., L. H. Shendalman, N. M. Greene, and A. Bouhuys. Measurement of axial diffusivities in a model of the bronchial airways. J. Appl. Physiol. 38: 719–723, 1975.
 136. Schoedel, W. Alveolarluft. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 39: 450–488, 1937.
 137. Schroter, R. C., and M. F. Sudlow. Flow patterns in models of the human bronchial airways. Respir. Physiol. 7: 341–355, 1969.
 138. Scrimshire, D. A., R. J. Joughnane, and T. J. Jones. A reappraisal of boundary conditions assumed in pulmonary gas transport models. Respir. Physiol. 35: 317–334, 1978.
 139. Sikand, R., P. Cerretelli, and L. E. Farhi. Effects of VA and VA/Q distribution and of time on the alveolar plateau. J. Appl. Physiol. 21: 1331–1337, 1966.
 140. Sikand, R. S., H. Magnussen, P. Scheid, and J. Piiper. Convective and diffusive gas mixing in human lungs: experiments and model analysis. J. Appl. Physiol. 40: 362–371, 1976.
 141. Slutsky, A. S. Gas mixing by cardiogenic oscillations: a theoretical quantitative analysis. J. Appl. Physiol. 51: 1287–1293, 1981.
 142. Slutsky, A. S., G. G. Berdine, and J. M. Drazen. Oscillatory flow and quasi‐steady behavior in a model of human central airways. J. Appl. Physiol. 50: 1293–1299, 1981.
 143. Slutsky, A. S., J. M. Drazen, R. H. Ingram, Jr., R. D. Kamm, A. H. Shapiro, J. J. Fredberg, S. H. Loring, and J. Lehr. Effective pulmonary ventilation with small‐volume oscillations at high frequency. Science Wash. DC 209: 609–611, 1980.
 144. Smidt, U., and G. von Nieding. Experimental demonstration of stratification by simultaneous wash‐in of three inert gases. Bull. Physio‐Pathol. Respir. 9: 508–509, 1973.
 145. Soong, T. T., P. Nicolaides, C. P. Yu, and S. C. Soong. A statistical description of the human tracheobronchial tree geometry. Respir. Physiol. 37: 161–172, 1979.
 146. Strieder, D. J., B. A. Barnes, B. W. Levine, and H. Kazemi. Stratified dead space in excised perfused lungs. J. Appl. Physiol. 29: 486–492, 1970.
 147. Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 219: 186–203, 1953.
 148. Taylor, G. The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. A Math. Phys. Sci. 223: 446–468, 1954.
 149. Thiriet, M., D. Douguet, J. C. Bonnet, C. Canonne, and C. Hatzfeld. Influence du melange He‐O2 sur la mixique dans les bronchopneumopathies obstructives chroniques. Bull. Eur. Physiopathol. Respir. 15: 1053–1068, 1979.
 150. Truog, W. E., M. P. Hlastala, T. A. Standaert, H. P. McKenna, and W. A. Hodson. Oxygen‐induced alteration of ventilation‐perfusion relationships in rats. J. Appl. Physiol. 47: 1112–1117, 1979.
 151. Ultman, J. S., and H. S. Blatman. A compartmental dispersion model for the analysis of mixing in tube networks. AIChE J. 23: 169–176, 1977.
 152. Ultman, J. S., and H. S. Blatman. Longitudinal mixing in pulmonary airways. Analysis of inert gas dispersion in symmetric tube network models. Respir. Physiol. 30: 349–367, 1977.
 153. Ultman, J. S., B. E. Doll, R. Spiegel, and M. W. Thomas. Longitudinal mixing in pulmonary airways—normal subjects respiring at a constant flow. J. Appl. Physiol. 44: 297–303, 1978.
 154. Ultman, J. S., and M. W. Thomas. Longitudinal mixing in pulmonary airways: comparison of inspiration and expiration. J. Appl. Physiol. 46: 799–805, 1979.
 155. Van Liew, H. D., and R. Arieli. Exchanges of oxygen and carbon dioxide alter inert gas pattern in single‐breath tests. J. Appl. Physiol. 50: 487–492, 1981.
 156. Van Liew, H. D., E. D. Thalmann, and D. K. Sponholtz. Diffusion‐dependence of pulmonary gas mixing at 5.5 and 9.5 ATA. Undersea Biomed. Res. 6: 251–258, 1979.
 157. Van Liew, H. D., E. D. Thalmann, and D. K. Sponholtz. Hindrance to diffusive gas mixing in the lung in hyperbaric environments. J. Appl. Physiol. 51: 243–247, 1981.
 158. Vries, W. R. de, S. C. M. Luijendijk, and A. Zwart. Helium and sulfur hexafluoride washout in asymmetric lung models. J. Appl. Physiol. 51: 1122–1130, 1981.
 159. Wagner, P. D., and J. W. Evans. Conditions for equivalence of gas exchange in series and parallel models of the lung. Respir. Physiol. 31: 117–138, 1977.
 160. Wagner, P., J. McRae, and J. Read. Stratified distribution of blood flow in secondary lobule of the rat lung. J. Appl. Physiol. 22: 1115–1123, 1967.
 161. Wagner, P. D., H. A. Saltzman, and J. B. West. Measurement of continuous distributions of ventilation‐perfusion ratios: theory. J. Appl. Physiol. 36: 588–599, 1974.
 162. Weaver, D. W., and J. S. Ultman. Axial dispersion through tube constrictions. AIChE J. 26: 9–15, 1980.
 163. Weibel, E. R. Morphometry of the Human Lung. Berlin: Springer‐Verlag, 1963.
 164. Weibel, E. R., C. R. Taylor, P. Gehr, H. Hoppeler, O. Mathieu, and G. M. O. Maloiy. Design of the mammalian respiratory system. IX. Functional and structural limits for oxygen flow. Respir. Physiol. 44: 151–164, 1981.
 165. West, J. B. Gas exchange when one lung region inspires from another. J. Appl. Physiol. 30: 479–487, 1971.
 166. West, J. B., K. T. Fowler, P. Hugh‐Jones, and T. V. O'Donnell. Measurement of the ventilation‐perfusion ratio inequality in the lung by the analysis of a single expirate. Clin. Sci. Lond. 16: 529–547, 1957.
 167. West, J. B., and P. Hugh‐Jones. Pulsatile gas flow in bronchi caused by the heart beat. J. Appl. Physiol. 16: 697–702, 1961.
 168. West, J. B., J. E. Maloney, and B. L. Castle. Effect of stratified inequality of blood flow on gas exchange in liquid‐filled lungs. J. Appl. Physiol. 32: 357–361, 1972.
 169. Wilke, C. R. Diffusional properties of multicomponent gases. Chem. Eng. Prog. 46: 95–104, 1950.
 170. Wilson, T. A., and K.‐H. Lin. Convection and diffusion in the airways and the design of the bronchial tree. In: Airway Dynamics: Physiology and Pharmacology, edited by A. Bouhuys. Springfield, IL: Thomas, 1970, p. 5–19.
 171. Wood, L. D. H., A. C. Bryan, S. K. Bau, T. R. Weng, and H. Levison. Effect of increased gas density on pulmonary gas exchange in man. J. Appl. Physiol. 41: 206–210, 1976.
 172. Worth, H. Diffusionskapazität der Lunge für CO bei Atmung von Inertgasgemischen mit unterschiedlichen physikalischen Eigenschaften. Respiration 32: 436–444, 1975.
 173. Worth, H., F. Adaro, and J. Piiper. Penetration of inhaled He and SF6 into alveolar space at low tidal volumes. J. Appl. Physiol. 43: 403–408, 1977.
 174. Worth, H., G. von Nieding, H. Löllgen, and U. Smidt. Intrapulmonary gas mixing in man during infusion of isoproterenol studied by simultaneous wash‐out of He and SF6. Lung 158: 241–250, 1980.
 175. Worth, H., W. Nüsse, and J. Piiper. Determination of binary diffusion coefficients of various gas species used in respiratory physiology. Respir. Physiol. 32: 15–26, 1978.
 176. Worth, H., and J. Piiper. Diffusion of helium, carbon monoxide and sulfur hexafluoride in gas mixtures similar to alveolar gas. Respir. Physiol. 32: 155–166, 1978.
 177. Worth, H., and J. Piiper. Model experiments on diffusional equilibration of oxygen and carbon dioxide between inspired and alveolar gas. Respir. Physiol. 35: 1–7, 1978.
 178. Worth, H., H. Takahashi, H. Willmer, and J. Piiper. Pulmonary gas exchange in dogs ventilated with mixtures of oxygen with various inert gases. Respir. Physiol. 28: 1–15, 1976.
 179. Yeates, D. B., and N. Aspin. A mathematical description of the airways of the human lungs. Respir. Physiol. 32: 91–104, 1978.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Johannes Piiper, Peter Scheid. Diffusion and Convection in Intrapulmonary Gas Mixing. Compr Physiol 2011, Supplement 13: Handbook of Physiology, The Respiratory System, Gas Exchange: 51-69. First published in print 1987. doi: 10.1002/cphy.cp030404