Comprehensive Physiology Wiley Online Library

Diffusion of Gases Across the Alveolar Membrane

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Mechanism of O2 and CO Exchange in Lung Alveoli
2 Measurement of Pulmonary Diffusing Capacity (Transfer Factor)
2.1 Measurement of Pulmonary Diffusing Capacity with CO
2.2 Measurement of Pulmonary Diffusing Capacity with O2
2.3 Calculations of Pulmonary Diffusing Capacity From Dimensions of Alveolar‐Capillary Bed
3 Measurement of Rates of CO and O2 Exchange with Red Blood Cells (θ)
3.1 Measurement of θCO
3.2 Measurement of θO2
3.3 Effects of Physiological Variables on θ
4 Factors Influencing Pulmonary Diffusing Capacity, Membrane Diffusing Capacity, and Capillary Volume
4.1 Introduction
4.2 Body Size
4.3 Alveolar Volume
4.4 Pulmonary Hemodynamics and Increased Metabolic Rate
4.5 Partial Pressure of CO2, pH, and Shifts in Hb‐O2 Equilibrium
4.6 Alveolar Partial Pressure of O2
4.7 Temperature
4.8 Blood Hemoglobin Concentration
4.9 Miscellaneous
5 Result of Diffusion: Alveolar‐End‐Capillary Partial Pressure Difference
Figure 1. Figure 1.

Graph of (DLco, CO pulmonary diffusing capacity) versus mean intracapillary partial pressure of O2 () at sea level (x), 3.5 atm (•), and 4.8 atm (▴), one subject. Dashed line, regression (r) of all points (r = 0.992).

From Nairn et al. 95
Figure 2. Figure 2.

Graph of logarithm of percent of C2H2, 18O2, and CO left in alveolar gas (1 — fraction that has disappeared) during breath holding in one subject. Alveolar elemental was 42 mmHg. Each line is a least‐mean‐squares regression. Depression of time zero intercept of C2H2 curve is caused by its solution in pulmonary tissues; depression of 18O2 intercept is considered to be caused by initial uptake of labeled O2 by pulmonary capillary blood.

From Hyde et al. 57
Figure 3. Figure 3.

Plot of 1/θCOCO, the rate of CO uptake in ml/min for 1 ml of normal whole blood for a PCO of 1 mmHg) against in mmHg for normal human red cells at 37°C measured in a continuous‐flow rapid‐mixing apparatus analyzed by a split‐beam spectrophotometer, ⊙, •: Reacting solution contained 2 mM NaHCO3, 2.2 mM CaCl, 2.2 mM KC1, and 145 mM NaC1; ⊙, experiments at pH 8.2 71; •, experiments at pH 7.8–8.0 done in 1957 108; +, experiments in 30 mM phosphate buffer plus 112 mM NaC1 at pH 7.4 71.

Figure 4. Figure 4.

Allometric plot for O2 pulmonary diffusing capacity () calculated by morphometry and maximal O2 consumption against body mass for different animal species; in ml · mmHg−1 · min−1 = ml · mbar−1 · s−1 0.0125.

From Weibel 128


Figure 1.

Graph of (DLco, CO pulmonary diffusing capacity) versus mean intracapillary partial pressure of O2 () at sea level (x), 3.5 atm (•), and 4.8 atm (▴), one subject. Dashed line, regression (r) of all points (r = 0.992).

From Nairn et al. 95


Figure 2.

Graph of logarithm of percent of C2H2, 18O2, and CO left in alveolar gas (1 — fraction that has disappeared) during breath holding in one subject. Alveolar elemental was 42 mmHg. Each line is a least‐mean‐squares regression. Depression of time zero intercept of C2H2 curve is caused by its solution in pulmonary tissues; depression of 18O2 intercept is considered to be caused by initial uptake of labeled O2 by pulmonary capillary blood.

From Hyde et al. 57


Figure 3.

Plot of 1/θCOCO, the rate of CO uptake in ml/min for 1 ml of normal whole blood for a PCO of 1 mmHg) against in mmHg for normal human red cells at 37°C measured in a continuous‐flow rapid‐mixing apparatus analyzed by a split‐beam spectrophotometer, ⊙, •: Reacting solution contained 2 mM NaHCO3, 2.2 mM CaCl, 2.2 mM KC1, and 145 mM NaC1; ⊙, experiments at pH 8.2 71; •, experiments at pH 7.8–8.0 done in 1957 108; +, experiments in 30 mM phosphate buffer plus 112 mM NaC1 at pH 7.4 71.



Figure 4.

Allometric plot for O2 pulmonary diffusing capacity () calculated by morphometry and maximal O2 consumption against body mass for different animal species; in ml · mmHg−1 · min−1 = ml · mbar−1 · s−1 0.0125.

From Weibel 128
References
 1. Adaro, F., P. Scheid, J. Teichmann, and J. Piiper. A rebreathing method for estimating pulmonary DO2: theory and measurements in dog lungs. Respir. Physiol. 18: 43–63, 1973.
 2. Adaro, F., J. Teichmann, A. Ludtke‐Hanjery, P. Scheid, and J. Piiper. Comparison of rebreathing and steady‐state pulmonary DL,O2 in dogs ventilated by body respirator. Respiration 31: 71–84, 1974.
 3. Andrew, G. M., and L. Baines. Relationship of pulmonary diffusing capacity (DL) and cardiac output (Qc) in exercise. Eur. J. Appl. Physiol. Occup. Physiol. 33: 127–137, 1974.
 4. Arndt, H., T. K. C. King, and W. A. Briscoe. Diffusing capacities and ventilation:perfusion ratios in patients with the clinical syndrome of alveolar capillary block. J. Clin. Invest. 49: 408–422, 1970.
 5. Ayash, R., A. Sybert, and G. H. Gurtner. Saturation kinetics for steady state pulmonary CO transfer in man (Abstract). Am. Rev. Respir. Dis. 173: 310, 1978.
 6. Bauer, C., R. A. Klocke, and R. E. Forster. A kinetic basis of the effect of 2,3‐diphosphoglycerate (2,3‐DPG) and pH on the oxygen affinity in hemoglobin. Pfluegers Arch. 319: R7, 1970.
 7. Bauer, C., R. A. Klocke, D. Kamp, and R. E. Forster. Effect of 2,3‐diphosphoglycerate and H+ on the reaction of O2 and hemoglobin. Am. J. Physiol. 224: 838–847, 1973.
 8. Bidani, A., E. D. Crandall, and R. E. Forster. Analysis of postcapillary pH changes in blood in vivo after gas exchange. J. Appl. Physiol. 44: 770–781, 1978.
 9. Blumenthal, W. S., R. F. Johnston, L. A. Kauttman, and P. B. Solnick. The effect of anemia on pulmonary diffusing capacity with a derivation of a correction equation. Am. Rev. Respir. Dis. 102: 965–969, 1970.
 10. Bryant, S. C., and R. M. Navari. Effect of plasma proteins on oxygen diffusion in the pulmonary capillaries. Microvasc. Res. 7: 120–130, 1974.
 11. Burgess, J. H., J. Gillespie, P. D. Graf, and J. A. Nadel. Effect of pulmonary vascular pressures on single‐breath CO diffusing capacity in dogs. J. Appl. Physiol. 24: 692–696, 1968.
 12. Burns, B., Y. N. Cha, and J. M. Purcell. A specific carrier for O2 and CO in the lung: effects of volatile anesthetics on gas transfer and drug metabolism. Chest 69: 316–320, 1976.
 13. Burns, B., and R. H. Shepard. DLO2 in exercised lungs perfused with blood containing sodium dithionite (Na2S2O4). J. Appl. Physiol. 46: 100–110, 1979.
 14. Cerretelli, P., A. Veicsteinas, J. Teichmann, H. Magnussen, and J. Piiper. Estimation by a rebreathing method of pulmonary O2 diffusing capacity in man. J. Appl. Physiol. 37: 526–532, 1974.
 15. Chandler, C. L., D. J. Chinn, and J. E. Cotes. Effect of inhaled histamine on single breath lung transfer factor for carbon monoxide (Abstract). J. Physiol. Lond. 327: 51P, 1982.
 16. Cohen, R., E. M. Overfield, and J. A. Kylstra. Diffusion component of alveolar‐arterial oxygen pressure difference in man. J. Appl. Physiol. 31: 223–226, 1971.
 17. Coin, J. T., and J. S. Olson. The rate of oxygen uptake by human red blood cells. J. Biol. Chem. 254: 1178–1190, 1979.
 18. Cotes, J. E., J. M. Dabbs, P. C. Elwood, A. M. Hall, A. McDonald, and M. J. Saunders. Iron‐deficiency anaemia: its effect on transfer factor for the lung (diffusing capacity) and ventilation and cardiac frequency during sub‐maximal exercise. Clin. Sci. Lond. 42: 325–335, 1972.
 19. Cotes, J. E., and A. M. Hall. The transfer factor of the lung: normal values in adults. In: Normal Values in Respiratory Function in Man, edited by P. Arcangeli. Torino, Italy: Panminerva Med., 1970, p. 327–343.
 20. Cotton, D. J., J. T. Mink, and B. L. Graham. Effect of high negative inspiratory pressure on single breath CO diffusing capacity. Respir. Physiol. 54: 19–20, 1983.
 21. Cotton, D. J., C. J. L. Newth, P. M. Portner, and J. A. Nadel. Measurement of single‐breath CO diffusing capacity by continuous rapid CO analysis in man. J. Appl. Physiol. 46: 1149–1156, 1979.
 22. Crapo, J. D., and R. O. Crapo. Comparison of total lung diffusion capacity and the membrane component of diffusion capacity as determined by physiologic and morphometric techniques. Respir. Physiol. 51: 181–194, 1983.
 23. Crapo, R. O., and A. H. Morris. Standardized single breath normal values for carbon monoxide diffusing capacity. Am. Rev. Respir. Dis. 123: 185–189, 1981.
 24. Crawford, E. C., Jr., R. N. Gatz, H. Magnussen, S. F. Perry, and J. Piiper. Lung volumes, pulmonary blood flow and carbon monoxide diffusing capacity of turtles. J. Comp. Physiol. 107: 169–178, 1976.
 25. Cree, E. M., J. R. Benfield, and H. K. Rasmussen. Differential lung diffusion, capillary volume, and compliance in dogs. J. Appl. Physiol. 25: 186–190, 1968.
 26. Cross, C. E., H. Gong, Jr., C. J. Kurpershoek, J. R. Gilliespie, and R. W. Hyde. Alterations in distribution of blood flow to the lung's diffusion surfaces during exercise. J. Clin. Invest. 52: 414–421, 1973.
 27. Cuomo, A. J., G. M. Tisi, and K. M. Moser. Relationship of DLCO(SB) and Km−1 to lung volume and partition of pulmonary perfusion. J. Appl. Physiol. 35: 129–135, 1973.
 28. Ewan, P. W., H. A. Jones, C. G. Rhodes, and J. M. B. Hughes. Detection of intrapulmonary hemorrhage with carbon monoxide uptake. Application in Goodpasture's syndrome. N. Engl. J. Med. 295: 1391–1396, 1976.
 29. Filley, G. F., D. B. Bigelow, D. E. Olson, and L. M. Lacquet. Pulmonary gas transport. A mathematical model of the lung. Am. Rev. Respir. Dis. 98: 480–489, 1968.
 30. Finley, T. N., E. P. Engelman, B. Packer, A. Aronow, and A. M. Cosentino. Use of the RC time constant for CO in measurement of diffusing capacity. Am. Rev. Respir. Dis. 109: 682–684, 1974.
 31. Fisher, A. B., and R. W. Hyde. Decrease of diffusing capacity and pulmonary blood flow during passive lung inflation. J. Appl. Physiol. 27: 157–163, 1969.
 32. Fisher, A. B., R. W. Hyde, A. E. Baue, J. S. Reif, and D. F. Kelly. Effect of carbon monoxide on function and structure of the lung. J. Appl. Physiol. 26: 4–12, 1969.
 33. Fisher, T. R., R. F. Coburn, and R. E. Forster. Carbon monoxide diffusing capacity in the bullhead catfish. J. Appl. Physiol. 26: 161–169, 1969.
 34. Forster, R. E. Rate of gas uptake by red cells. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, vol. I, chapt. 32, 827–837.
 35. Forster, R. E. Diffusion of gases. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, vol. I, chapt. 33, p. 839–872.
 36. Forster, R. E. The single‐breath carbon monoxide transfer test 25 years on: a reappraisal. 1. Physiological considerations (Editorial). Thorax 38: 1–5, 1983.
 37. Forster, R. E., and E. D. Crandall. Pulmonary gas exchange. Annu. Rev. Physiol. 38: 69–93, 1976.
 38. Forster, R. E., and J. B. Steen. Rate limiting processes in the Bohr shift in human red cells. J. Physiol. Lond. 196: 541–562, 1968.
 39. Forster, R. E., and J. B. Steen. The rate of the ‘root shift’ in eel red cells and eel hemoglobin solution. J. Physiol. Lond. 204: 259–282, 1969.
 40. Fowler, K. T., and J. E. Maloney. A search for a pulsatile component in pulmonary capillary blood volume. J. Appl. Physiol. 20: 1173–1178, 1965.
 41. Gehr, P., C. Hugonnaud, P. E. Burri, H. Bachofen, and E. R. Weibel. Adaption of the growing lung to increased VO2. III. The effect of exposure to cold environment in rats. Respir. Physiol. 32: 345–353, 1978.
 42. Gehr, P., and E. R. Weibel. Morphometric estimation of regional differences in the dog lung. J. Appl. Physiol. 37: 648–653, 1974.
 43. Georges, R., G. Saumon, and A. Loiseau. The relationship of age to pulmonary membrane conductance and capillary blood volume. Am. Rev. Respir. Dis. 116: 1069–1078, 1978.
 44. Gibson, Q. H., and F. J. W. Roughton. The kinetics of dissociation of the first oxygen molecule from fully saturated oxyhemoglobin in sheep blood solutions. Proc. R. Soc. Lond. B. Biol. Sci. 143: 310–334, 1955.
 45. Glass, M. L., and K. Johansen. Pulmonary oxygen diffusing capacity of the lizard Tupinambis tequixin. J. Exp. Zool. 219: 385–388, 1982.
 46. Gong, H., Jr., C. J. Kurpershoek, D. H. Meyer, and C. E. Cross. Effects of cardiac output on 18O2 lung diffusion in normal resting man. Respir. Physiol. 16: 313–326, 1972.
 47. Graham, B. L., J. T. Mink, and D. J. Cotton. Dynamic measurements of CO diffusing capacity using discrete samples of alveolar gas. J. Appl. Physiol. 54: 73–79, 1983.
 48. Gurtner, G. H., and W. S. Fowler. Interrelationships of factors affecting pulmonary diffusing capacity. J. Appl. Physiol. 30: 619–624, 1971.
 49. Hallenborg, C. W., W. Holden, T. Menzel, R. Dozor, and J. A. Nadel. The clinical usefulness of a screening test to detect static pulmonary blood using a multiple‐breath analysis of diffusing capacity. Am. Rev. Respir. Dis. 119: 349–356, 1979.
 50. Hamer, N. A. J. Variations in the components of diffusing capacity as the lung expands. Clin. Sci. Lond. 24: 275–285, 1963.
 51. Hill, E. P., G. G. Power, and L. D. Longo. Mathematical simulation of pulmonary O2 and CO2 exchange. Am. J. Physiol. 224: 904–917, 1973.
 52. Holden, W. E., C. P. Hallenborg, T. E. Menzel, R. Dozor, P. D. Graf, and J. A. Nadel. Effect of static or slowly flowing blood on carbon monoxide diffusion in dog lungs. J. Appl. Physiol. 46: 992–997, 1979.
 53. Holland, R. A. B., and R. E. Forster. The effect of size of red cells on the kinetics of their oxygen uptake. J. Gen. Physiol. 49: 727–742, 1966.
 54. Holland, R. A. B., W. van Hezewikj, and J. Zubzanda. Velocity of oxygen uptake by partially saturated adult and fetal human red cells. Respir. Physiol. 29: 303–314, 1977.
 55. Holmgren, A. On the variation of DLCO with increasing oxygen uptake during exercise in healthy trained young men and women. Acta Physiol. Scand. 65: 207–220, 1965.
 56. Hugonnaud, C., P. Gehr, E. R. Weibel, and P. H. Burri. Adaptation of the growing lung to increased oxygen consumption. II. Morphometric analysis. Respir. Physiol. 29: 1–10, 1977.
 57. Hyde, R. W., R. E. Forster, G. G. Power, J. Nairn, and R. Rynes. Measurement of O2 diffusing capacity of the lungs with a stable O2 isotope. J. Clin. Invest. 45: 1178–1193, 1966.
 58. Hyde, R. W., W. H. Lawson, and R. E. Forster. Influence of carbon dioxide on pulmonary vasculature. J. Appl. Physiol. 19: 734–744, 1964.
 59. Hyde, R. W., M. G. Marin, R. I. Rynes, G. Karreman, and R. E. Forster. Measurement of uneven distribution of pulmonary blood flow to CO diffusing capacity. J. Appl. Physiol. 31: 605–612, 1971.
 60. Hyde, R. W., R. Rynes, G. G. Power, and J. Nairn. Determination of distribution of diffusing capacity in relation to blood flow in the human lung. J. Clin. Invest. 46: 463–474, 1967.
 61. Johnson, R. L., Jr., and J. M. Miller. Distribution of ventilation, blood flow, and gas transfer coefficients in the lung. J. Appl. Physiol. 25: 1–15, 1968.
 62. Johnson, R. L., Jr., H. F. Taylor, and W. H. Lawson, Jr. Maximal diffusing capacity of the lung for carbon monoxide. J. Clin. Invest. 44: 349–355, 1965.
 63. Jones, H. A., P. D. Buckingham, J. C. Clark, R. E. Forster, J. D. Heather, J. M. B. Hughes, and C. G. Rhodes. Constant rate of CO uptake with variable inspired CO concentration. Prog. Respir. Res. 16: 169–171, 1981.
 64. Karp, R. B., P. D. Graf, and J. A. Nadel. Regulation of pulmonary capillary blood volume by pulmonary arterial and left atrial pressures. Circ. Res. 22: 1–10, 1968.
 65. Kindig, N. B., and D. R. Hazlett. The effects of breathing pattern in the estimation of pulmonary diffusing capacity. Q. J. Exp. Physiol. Cogn. Med. Sci. 59: 311–329, 1974.
 66. King, T. K. C., and W. A. Briscoe. Bohr integral isopleths in the study of blood gas exchange in the lung. J. Appl. Physiol. 22: 659–674, 1967.
 67. Klocke, R. A. Mechanism and kinetics of the Haldane effect in human erythrocytes. J. Appl. Physiol. 35: 673–681, 1973.
 68. Kötter, D., A. Huch, H. Stotz, and J. Piiper. Single breath CO diffusing capacity in anesthetized dogs with increased oxygen consumption. Respir. Physiol. 6: 202–208, 1969.
 69. Koyama, T., T. Furuse, T. Arai, and M. Mochizuki. A study on the oxygenation velocity factor of the red blood cell by use of the rapid flow method combined with a Pt‐electrode as the oxygenation detector. Bull. Res. Inst. Appl. Electricity 20: 144–152, 1968.
 70. Koyama, T., T. Furuse, and M. Mochizuki. A preliminary study on the oxygenation velocity of the spherocyte. Bull. Res. Inst. Appl. Electricity 20: 153–157, 1968.
 71. Krawiec, J. A., R. E. Forster, T. W. Gottliebsen, and D. Fish. Rate of CO uptake by human red blood cells (Abstract). Federation Proc. 42: 993, 1983.
 72. Krogh, A., and M. Krogh. Rate of diffusion of CO into the lungs of man. Scand. Arch. Physiol. 23: 236–247, 1909.
 73. Kutchai, H. Role of the red cell membrane in oxygen uptake. Respir. Physiol. 23: 121–132, 1975.
 74. Kylstra, J. A., W. H. Schoenfisch, J. M. Herron, and G. D. Blenkarn. Gas exchange in saline‐filled lungs of man. J. Appl. Physiol. 35: 136–142, 1973.
 75. Lawson, W. H., Jr. Rebreathing measurements of pulmonary diffusing capacity for CO during exercise. J. Appl. Physiol. 29: 896–900, 1970.
 76. Lawson, W. H., Jr. Effect of anemia, species, and temperature on CO kinetics with red blood cells. J. Appl. Physiol. 31: 447–457, 1971.
 77. Lawson, W. H., Jr. Effect of drugs, hypoxia, and ventilatory maneuvers on lung diffusion for CO in man. J. Appl. Physiol. 32: 788–794, 1972.
 78. Lawson, W. H., Jr., and R. E. Forster. Oxygen tension gradients in peripheral capillary blood. J. Appl. Physiol. 22: 970–973, 1967.
 79. Lawson, W. H., Jr., R. A. B. Holland, and R. E. Forster. Effect of temperature on deoxygenation rate of human red cells. J. Appl. Physiol. 20: 912–918, 1965.
 80. Lewis, S. M., D. Z. Rubin, and C. Mittman. Distribution of ventilation and diffusing capacity in the normal and diseased lung. J. Appl. Physiol. 51: 1463–1470, 1981.
 81. Lipscomb, D. J., K. Patel, and J. M. B. Hughes. Interpretation of increases in the transfer coefficient for carbon monoxide (Tlco/Va or Kco). Thorax 33: 728–733, 1978.
 82. Mendoza, C., H. Peavy, B. Burns, and G. Gurtner. Saturation kinetics for steady‐state pulmonary CO transfer. J. Appl. Physiol. 43: 880–884, 1977.
 83. Menkes, H. A., K. Sera, R. M. Rogers, R. Hyde, R. E. Forster, and A. B. DuBois. Pulsatile uptake of CO in the human lung. J. Clin. Invest. 49: 335–345, 1970.
 84. Meyer, M., P. Scheid, and J. Piiper. No evidence for facilitated pulmonary transfer of carbon monoxide. Prog. Respir. Res. 16: 168, 1981.
 85. Michaelson, E. D., M. A. Sackner, and R. L. Johnson, Jr. Vertical distributions of pulmonary diffusing capacity and capillary blood flow in man. J. Clin. Invest. 45: 493–500, 1966.
 86. Micheli, J. L., and P. Haab. Estimation de la capacité de diffusion pulmonaire pour l'oxygène chez l'homme au repos par la méthode du rebreathing hypoxique. J. Physiol. Paris 62, Suppl. 1: 194–195, 1970.
 87. Miller, J. M., and R. J. Johnson. Effect of lung inflation on pulmonary diffusing capacity at rest and exercise. J. Clin. Invest. 45: 493–500, 1966.
 88. Miyamoto, Y., and W. Moll. Measurements of dimensions and pathway of red cells in rapidly frozen lungs in situ. Respir. Physiol. 12: 141–156, 1971.
 89. Mochizuki, M. Study on the oxygenation velocity of the human red cell. Jpn. J. Physiol. 16: 635–648, 1966.
 90. Mochizuki, M. On the velocity of oxygen dissociation of human hemoglobin and red cell. Jpn. J. Physiol. 16: 649–657, 1966.
 91. Mochizuki, M. A theoretical study on the velocity factor of oxygenation of the red cell. Jpn. J. Physiol. 16: 658–666, 1966.
 92. Mochizuki, M. The relationship between O2 diffusing capacity and the oxygenation velocity of the red cell. Jpn. Circ. J. 33: 1817–1820, 1968.
 93. Moll, W. The influence of hemoglobin diffusion on oxygen uptake and release by red cells. Respir. Physiol. 6: 1–15, 1969.
 94. Morris, A. H., and R. O. Crapo. Standardization of computation of single‐breath diffusing capacity (transfer factor). Clin. Respir. Physiol. In press.
 95. Nairn, J. R., G. G. Power, R. W. Hyde, R. E. Forster, J. Lambertsen, and J. Dickson. Diffusing capacity and pulmonary capillary blood flow at hyperbaric pressures. J. Clin. Invest. 44: 1591–1599, 1965.
 96. Newth, C. J. L., D. J. Cotton, and J. A. Nadel. Pulmonary diffusing capacity measured at multiple intervals during a single exhalation in man. J. Appl. Physiol. 43: 617–625, 1977.
 97. Ogilvie, C. The single‐breath carbon monoxide transfer test 25 years on: a reappraisal. 2. Clinical observations (Editorial). Thorax 38: 5–9, 1983.
 98. Ogilvie, C. M., R. E. Forster, W. S. Blakemore, and J. W. Morton. A standardized breath holding technique for the clinical measurement of the diffusing capacity of the lung for carbon monoxide. J. Clin. Invest. 36: 1–17, 1957.
 99. Ono, T., and H. Tazawa. Microphotometric method for measuring the oxygenation and deoxygenation rate in a single red blood cell. Jpn. J. Physiol. 25: 93–107, 1975.
 100. Piiper, J. Apparent increase of the O2 diffusing capacity with increased O2 uptake in inhomogenous lungs: theory. Respir. Physiol. 6: 209–218, 1969.
 101. Piiper, J., P. Cerretelli, D. W. Rennie, and P. E. Di Prampero. Estimation of the pulmonary diffusing capacity for O2 by a rebreathing procedure. Respir. Physiol. 12: 157–162, 1971.
 102. Piiper, J., A. Huch, D. Kotter, and R. Herbst. Pulmonary diffusing capacity at basal and increased O2 uptake levels in anesthetized dogs. Respir. Physiol. 6: 219–232, 1969.
 103. Piiper, J., and P. Scheid. Maximum gas transfer efficacy of models for fish gills, avian lungs and mammalian lungs. Respir. Physiol. 14: 115–124, 1972.
 104. Power, G. G., V. S. Aoki, W. H. Lawson, Jr., and J. B. Gregg. Diffusion characteristics of pulmonary blood‐gas barrier at low temperatures. J. Appl. Physiol. 31: 438–446, 1971.
 105. Power, G. G., Jr., R. W. Hyde, R. J. Sever, F. G. Hoppin, Jr., and J. R. Nairn. Pulmonary diffusing capacity and capillary blood flow during forward acceleration. J. Appl. Physiol. 20: 1199–1204, 1965.
 106. Rankin, J., R. S. McNeiL, and R. E. Forster. Influence of increased alveolar CO2 tension on pulmonary diffusing capacity for CO in man. J. Appl. Physiol. 15: 543–549, 1960.
 107. Riley, R. L., and S. Permutt. Venous admixture component of the AaPo2 gradient. J. Appl. Physiol. 35: 430–431, 1973.
 108. Rothman, H. H., R. A. Klocke, K. K. Anderson, L. D'Alecy, and R. E. Forster. Kinetics of oxygenation and deoxygenation of erythrocytes containing hemoglobin S. Respir. Physiol. 21: 9–17, 1974.
 109. Roughton, F. J. W., and R. E. Forster. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J. Appl. Physiol. 11: 290–302, 1957.
 110. Sackner, M. A., D. Greeneltch, M. S. Heiman, L. S. Epstein, and N. Atkins. Diffusing capacity, membrane diffusing capacity, capillary blood volume, pulmonary tissue and cardiac output measured by a rebreathing technique. Am. Rev. Respir. Dis. 111: 157–165, 1975.
 111. Scheid, P., F. Adaro, J. Teichmann, and J. Piiper. Rebreathing and steady state pulmonary Do2 in the dog and in inhomogeneous lung models. Respir. Physiol. 18: 258–272, 1973.
 112. Shporer, M., R. E. Forster, and M. M. Civan. Kinetics of CO2 exchange in human erythrocytes analyzed by 13C‐NMR. Am. J. Physiol. 246 (Cell Physiol. 15): C231–C234, 1984.
 113. Siegwart, B. P., P. Gehr, J. Gil, and E. R. Weibel. Morphometric estimation of pulminary diffusion capacity. IV. The normal dog lung. Respir. Physiol. 13: 141–159, 1971.
 114. Staub, N. C., J. M. Bishop, and R. E. Forster. Velocity of O2 uptake by human red blood cells. J. Appl. Physiol. 16: 511–516, 1961.
 115. Stokes, D. L., N. R. MacIntyre, and J. A. Nadel. Non‐linear increases in diffusing capacity during exercise by seated and supine subjects. J. Appl. Physiol. 51: 858–863, 1981.
 116. Tazawa, H., and M. Mochizuki. Rates of oxygenation and Bohr shift of capillary blood in chick embryos. Nature Lond. 261: 509–511, 1976.
 117. Tazawa, H., T. Ono, and M. Mochizuki. Oxygenation and deoxygenation velocity factors of chorioallantoic capillary blood. J. Appl. Physiol. 40: 399–403, 1976.
 118. Turek, Z., A. Frans, and F. Kreuzer. Hypoxic pulmonary steady‐state diffusing capacity for CO and alveolar‐arterial O2 pressure differences in growing rats after adaption to a simulated altitude of 3,500 m. Pfluegers Arch. 335: 1–9, 1972.
 119. Vreim, C. E., and N. C. Staub. Indirect and direct pulmonary capillary blood volume in anesthetized open‐thorax cats. J. Appl. Physiol. 34: 452–459, 1973.
 120. Wagner, P. D., R. W. Mazzone, and J. B. West. Diffusing capacity and anatomic dead space for carbon monoxide (C18O). J. Appl. Physiol. 31: 847–852, 1971.
 121. Wagner, P. D., and J. B. West. Effects of diffusion impairment on O2 and CO2 time courses in pulmonary capillaries. J. Appl. Physiol. 33: 62–71, 1972.
 122. Wagner, W. W., Jr., L. P. Latham, P. D. Brinkman, and G. F. Filley. Pulmonary gas transport time: larynx to alveolus. Science Wash. DC 163: 1210–1211, 1969.
 123. Weibel, E. R. Morphometric estimation of pulmonary diffusion capacity. I. Model and method. Respir. Physiol. 11: 54–75, 1970.
 124. Weibel, E. R. Morphometric estimation of pulmonary diffusion capacity. II. Effect of PO2 on the growing lung. Respir. Physiol. 11: 247–264, 1971.
 125. Weibel, E. R. Morphometric estimation of pulmonary diffusion capacity. III. The effect of increased oxygen consumption in Japanese waltzing mice. Respir. Physiol. 11: 354–366, 1971.
 126. Weibel, E. R. Comparative analysis of mammalian lungs. Respir. Physiol. 14: 26–43, 1972.
 127. Weibel, E. R. Morphological basis of alveolar‐capillary gas exchange. Physiol. Rev. 53: 419–495, 1973.
 128. Weibel, E. R. Oxygen demand and the size of respiratory structures in mammals. In: Lung Biology in Health and Disease. Evolution of Respiratory Process, edited by S. C. Wood and C. Lenfant. New York: Dekker, 1979, vol. 13, chapt. 7, p. 289–346.
 129. Weibel, E. R. The Pathway for Oxygen. Cambridge, MA: Harvard Univ. Press, 1984.
 130. Weibél, E. R., C. R. Taylor, J. O'Neil, D. E. Leith, P. Gehr, H. Hoppeler, V. Langman, and R. V. Baudinette. Maximal oxygen consumption and pulmonary diffusing capacity: a direct comparison of physiologic and morphometric measurements in canids. Respir. Physiol. 54: 173–188, 1983.
 131. Weibel, E. R., P. Untersee, J. Gil, and M. Zulaut. Morphometric estimation of pulmonary diffusion capacity. VI. Effect of varying positive pressure inflation of air spaces. Respir. Physiol. 18: 285–308, 1973.
 132. Weiskopf, R. B., and J. W. Severinghaus. Diffusing capacity of the lung for CO in man during acute acclimatization to 14,246 ft. J. Appl. Physiol. 32: 285–289, 1972.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Robert E. Forster. Diffusion of Gases Across the Alveolar Membrane. Compr Physiol 2011, Supplement 13: Handbook of Physiology, The Respiratory System, Gas Exchange: 71-88. First published in print 1987. doi: 10.1002/cphy.cp030405