Comprehensive Physiology Wiley Online Library

Ventilation: Total, Alveolar, and Dead Space

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Alveolar Ventilation and Alveolar Gas Composition
1.1 Alveolar and Dead‐Space Ventilation
1.2 Alveolar Gas Equation and Alveolar Gas Composition
1.3 Assessment of Alveolar Gas Composition
2 Dead Space
2.1 General Considerations: Gas Mixing in Airways
2.2 Measurement of Dead Space
2.3 Factors Affecting Dead Space
Figure 1. Figure 1.

Graphic representation of Equation 22. Relationship between alveolar and alveolar when inspired gas ( = 149 mmHg; = 0 mmHg) exchanges at a variety of respiratory exchange ratio (R) values. Isopleths, gas compositions applying to gas exchanged at indicated R value.

Adapted from Rahn and Fenn 112
Figure 2. Figure 2.

Dead‐space effects on alveolar gas composition. A: isopleth, gas compositions given R = 0.8 (R, gas‐exchange ratio) and inspired gas of composition I (room air). Alveolar point (A) is indicated. Expired gas from this alveolus or lung must lie on same R isopleth; its location (E) depends on ratio of dead space to tidal volume (VDS/VT). Length AE/length AI equals VDS/VT. B: lung with R = 0.8 in which all dead space is common to all alveoli and VDS/VT is constant among alveoli. I′, composition of inspired gas, which is mean of gas of composition I weighted by VT and gas of composition A weighted by . R isopleths for inspired gas of composition I′ are shown.

Adapted from Ross and Farhi 120
Figure 3. Figure 3.

Variations of and with time. One complete respiratory cycle is shown, with phases indicated at top. “Ripples” on traces are due to pulsatile changes of capillary flow and volume.

From Hlastala 60
Figure 4. Figure 4.

Alveolar‐arterial CO2 differences in rebreathing dogs. Ordinate: () normalized for concentration. Abscissa: arterial pH. ○, Δ, •, Ranges of concentrations. In these experiments, exceeded substantially.

From Gurtner et al. 52
Figure 5. Figure 5.

Excretion of CO2 (ordinate) compared to predicted excretion of an inert gas of similar solubility (abscissa). More‐efficient CO2 excretion suggests that it differs from that of inert gases. PA, alveolar partial pressure; , mixed venous partial pressure.

From Robertson and Hlastala 115
Figure 6. Figure 6.

Nitrogen concentration in peripheral airways as function of airway generation (top abscissa) and linear distance (bottom abscissa) during a breath of 100% O2 at constant flow. Lines, N2 concentration at successive intervals of 0.4 s. During inspiration (lines 2–5), large N2 differences are present in airways, but position of front changes little with time. During expiration (lines 6–10), N2 differences disappear.

Adapted from Paiva 101
Figure 7. Figure 7.

Tracing of expired gas concentration (FE) from rapid analyzer as function of volume expired (VE,L) during single expiration after inspiration of mixture devoid of gas being analyzed. Alveolar plateau (line BC) has been extrapolated (line DE).

Adapted from Aitken and Clark‐Kennedy 1
Figure 8. Figure 8.

Single‐breath dead space (VD) in dog lungs as function of breath‐holding time (abscissa). In animals with a heartbeat, dead space falls more rapidly than in dead animals; this fall can be duplicated by manually oscillating the heart of dead animals.

Adapted from Engel et al. 31


Figure 1.

Graphic representation of Equation 22. Relationship between alveolar and alveolar when inspired gas ( = 149 mmHg; = 0 mmHg) exchanges at a variety of respiratory exchange ratio (R) values. Isopleths, gas compositions applying to gas exchanged at indicated R value.

Adapted from Rahn and Fenn 112


Figure 2.

Dead‐space effects on alveolar gas composition. A: isopleth, gas compositions given R = 0.8 (R, gas‐exchange ratio) and inspired gas of composition I (room air). Alveolar point (A) is indicated. Expired gas from this alveolus or lung must lie on same R isopleth; its location (E) depends on ratio of dead space to tidal volume (VDS/VT). Length AE/length AI equals VDS/VT. B: lung with R = 0.8 in which all dead space is common to all alveoli and VDS/VT is constant among alveoli. I′, composition of inspired gas, which is mean of gas of composition I weighted by VT and gas of composition A weighted by . R isopleths for inspired gas of composition I′ are shown.

Adapted from Ross and Farhi 120


Figure 3.

Variations of and with time. One complete respiratory cycle is shown, with phases indicated at top. “Ripples” on traces are due to pulsatile changes of capillary flow and volume.

From Hlastala 60


Figure 4.

Alveolar‐arterial CO2 differences in rebreathing dogs. Ordinate: () normalized for concentration. Abscissa: arterial pH. ○, Δ, •, Ranges of concentrations. In these experiments, exceeded substantially.

From Gurtner et al. 52


Figure 5.

Excretion of CO2 (ordinate) compared to predicted excretion of an inert gas of similar solubility (abscissa). More‐efficient CO2 excretion suggests that it differs from that of inert gases. PA, alveolar partial pressure; , mixed venous partial pressure.

From Robertson and Hlastala 115


Figure 6.

Nitrogen concentration in peripheral airways as function of airway generation (top abscissa) and linear distance (bottom abscissa) during a breath of 100% O2 at constant flow. Lines, N2 concentration at successive intervals of 0.4 s. During inspiration (lines 2–5), large N2 differences are present in airways, but position of front changes little with time. During expiration (lines 6–10), N2 differences disappear.

Adapted from Paiva 101


Figure 7.

Tracing of expired gas concentration (FE) from rapid analyzer as function of volume expired (VE,L) during single expiration after inspiration of mixture devoid of gas being analyzed. Alveolar plateau (line BC) has been extrapolated (line DE).

Adapted from Aitken and Clark‐Kennedy 1


Figure 8.

Single‐breath dead space (VD) in dog lungs as function of breath‐holding time (abscissa). In animals with a heartbeat, dead space falls more rapidly than in dead animals; this fall can be duplicated by manually oscillating the heart of dead animals.

Adapted from Engel et al. 31
References
 1. Aitken, R. S., and A. E. Clark‐Kennedy. On the fluctuation in the composition of the alveolar air during the respiratory cycle in muscular exercise. J. Physiol. Lond. 65: 389–411, 1928.
 2. Asmussen, E., and M. Nielsen. Physiological dead space and alveolar gas pressures at rest and during muscular exercise. Acta Physiol. Scand. 38: 1–21, 1956.
 3. Baker, L. G., J. S. Ultman, and R. A. Rhodes. Simultaneous gas flow and diffusion in a symmetric airway system: a mathematical model. Respir. Physiol. 21: 119–138, 1974.
 4. Banzett, R., K. Strohl, B. Geffroy, and J. Mead. Effect of transrespiratory pressure on PetCO2 ‐ Paco2 and ventilatory reflexes in humans. J. Appl. Physiol. 51: 660–664, 1981.
 5. Bargeton, D. Analysis of the capnogram and oxygram in man. Bull. Physio‐Pathol. Respir. 3: 503–526, 1967.
 6. Bartels, J., J. W. Severinghaus, R. E. Forster, W. A. Briscoe, and D. V. Bates. The respiratory dead space measured by single breath analysis of oxygen, carbon dioxide, nitrogen or helfum. J. Clin. Invest. 33: 41–48, 1954.
 7. Bashoff, M. A., R. H. Ingram, Jr., and D. P. Schilder. Effect of expiratory flow rate on the nitrogen concentration vs. volume relationship. J. Appl. Physiol. 23: 895–901, 1967.
 8. Bateman, J. B. Studies of lung volume and intrapulmonary mixing. Nitrogen clearance curves: apparent respiratory dead space and its significance. J. Appl. Physiol. 3: 143–160, 1950.
 9. Birath, G. Lung volume and ventilation efficiency. Changes in collapse treated and non‐collapse‐treated pulmonary tuberculosis and in pulmonectomy and lobectomy. Acta Med. Scand. Suppl. 154: 1–166, 1944.
 10. Birath, G. Respiratory dead space measurements in a model lung and healthy human subjects according to the single breath method. J. Appl. Physiol. 14: 517–520, 1959.
 11. Birath, G., R. Malmberg, M. Beck, and N. P. Bergh. The airway dead space in tracheotomized patients (Abstract). Acta Chir. Scand. Suppl. 245: 51, 1959.
 12. Bitter, H. S., and H. Rahn. Redistribution of Alveolar Blood Flow With Passive Lung Distention. Washington, DC: U.S. Dept. Commerce, Off. Tech. Serv., 1956, p. 1–20. (WADC Tech. Rep. 56–466.)
 13. Bjurstedt, H., C. M. Hesser, G. Liljestrand, and G. Matell. Effects of posture on alveolar‐arterial CO2 and O2 differences and on alveolar dead space in man. Acta Physiol. Scand. 54: 65–82, 1962.
 14. Bohn, D. J., K. Miyasaka, B. E. Marchak, W. K. Thompson, A. B. Froese, and A. C. Bryan. Ventilation by high‐frequency oscillation. J. Appl. Physiol. 48: 710–716, 1980.
 15. Bohr, C. Ueber die Lungenathmung. Skand. Arch. Physiol. 2: 236–268, 1891.
 16. Briscoe, W. A., R. E. Forster, and J. H. Comroe, Jr. Alveolar ventilation at very low tidal volumes. J. Appl. Physiol. 7: 27–30, 1954.
 17. Chang, H. K. Mechanisms of gas transport during ventilation by high‐frequency oscillation. J. Appl. Physiol. 56: 553–563, 1984.
 18. Chang, H. K., and L. E. Farhi. Ternary diffusion coefficients in alveolar spaces. Respir. Physiol. 40: 269–279, 1980.
 19. Cook, C. D., R. B. Cherry, D. O'Brien, P. Karlberg, and C. A. Smith. Studies of respiratory physiology in the newborn infant. I. Observations on normal premature and full‐term infants. J. Clin. Invest. 34: 975–982, 1955.
 20. Coon, R. L., E. J. Zuperku, and J. P. Kampine. Measurement of dead space ventilation using a pHa servo‐controlled ventilator. J. Appl. Physiol. 51: 154–159, 1981.
 21. Crandall, E. C., and J. E. O'Brasky. Direct evidence for participation of rat lung carbonic anhydrase in CO2 reactions. J. Clin. Invest. 62: 618–622, 1978.
 22. Cumming, G., J. G. Jones, and K. Horsfield. Inhaled argon boluses in man. J. Appl. Physiol. 27: 447–451, 1969.
 23. Darling, R. C., A. Cournand, and D. W. Richards, Jr. Studies on the intrapulmonary mixing of gases. V. Forms of inadequate ventilation in normal and emphysematous lungs analyzed by means of breathing pure oxygen. J. Clin. Invest. 23: 55–67, 1944.
 24. Douglas, C. G., and J. S. Haldane. The capacity of the air passages under varying physiological conditions. J. Physiol. Lond. 45: 235–238, 1912.
 25. Drazen, J. M., R. D. Kamm, and A. S. Slutsky. High‐frequency ventilation. Physiol. Rev. 64: 505–543, 1984.
 26. DuBois, A. B. Alveolar CO2 and O2 during breath holding, expiration, and inspiration. J. Appl. Physiol. 5: 1–12, 1952.
 27. Effros, R. M. Pulmonary capillary carbon dioxide gradients and the Wien effect. J. Appl. Physiol. 32: 221–222, 1972.
 28. Effros, R. M., R. S. Y. Chang, and P. Silverman. Acceleration of plasma bicarbonate conversion to carbon dioxide by pulmonary carbonic anhydrase. Science Wash. DC 199: 427–429, 1978.
 29. Engel, L. A. Gas mixing within the acinus of the lung. J. Appl. Physiol. 54: 609–618, 1983.
 30. Engel, L. A., and P. T. Macklem. Gas mixing and distribution in the lung. In: Respiratory Physiology II, edited by J. G. Widdicombe. Baltimore, MD: University Park, 1977, vol. 14, chapt. 2, p. 37–82. (Int. Rev. Physiol. Ser.)
 31. Engel, L. A., H. Menkes, L. D. H. Wood, G. Utz, J. Joubert, and P. T. Macklem. Gas mixing during breath holding studied by intrapulmonary gas sampling. J. Appl. Physiol. 35: 9–17, 1973.
 32. Engel, L. A., L. D. H. Wood, G. Utz, and P. T. Macklem. Gas mixing during inspiration. J. Appl. Physiol. 35: 18–24, 1973.
 33. Enghoff, H. Volumen inefficax. Bemerkungen zur Frage des schadlichen Raumes. Uppsala Läkarefoeren. Förh. 44: 191–218, 1938.
 34. Fenn, W. O., H. Rahn, and A. B. Otis. A theoretical study of the composition of the alveolar air at altitude. Am. J. Physiol. 146: 637–653, 1946.
 35. Flumerfelt, R. W., and E. D. Crandall. An analysis of external respiration in man. Math. Biosci. 3: 205–230, 1968.
 36. Folkow, B., and J. R. Pappenheimer. Components of the respiratory dead space and their variation with pressure breathing and with bronchoactive drugs. J. Appl. Physiol. 8: 102–110, 1955.
 37. Forster, R. E. Can alveolar Pco2 exceed pulmonary end‐capillary CO2? No. J. Appl. Physiol. 42: 323–328, 1977.
 38. Forster, R. E., and E. D. Crandall. Time course of exchanges between red cells and extracellular fluid during CO2 uptake. J. Appl. Physiol. 38: 710–718, 1975.
 39. Fortune, J. B., and P. D. Wagner. Effects of common dead space on inert gas exchange in mathematical models of the lung. J. Appl. Physiol. 47: 896–906, 1979.
 40. Fowler, W. S. Lung function studies. II. The respiratory dead space. Am. J. Physiol. 154: 405–416, 1948.
 41. Fowler, W. S. Lung function studies. V. Respiratory dead space in old age and in pulmonary emphysema. J. Clin. Invest. 28: 1439–1444, 1950.
 42. Fowler, W. S., and W. S. Blakemore. Lung function studies. VII. The effect of pneumonectomy on respiratory dead space. J. Thorac. Surg. 21: 433–437, 1951.
 43. Fowler, W. S., E. R. Cornish, and S. M. Kety. Lung function studies. VIII. Analysis of alveolar ventilation by pulmonary N2 clearance curves. J. Clin. Invest. 31: 40–50, 1952.
 44. Fredberg, J. J. Augmented diffusion in the airways can support pulmonary gas exchange. J. Appl. Physiol. 49: 232–238, 1980.
 45. Froeb, H. F., and J. Mead. Relative hysteresis of the dead space and lung in vivo. J. Appl. Physiol. 25: 244–248, 1968.
 46. Froese, A. B., and A. C. Bryan. High frequency ventilation. Am. Rev. Respir. Dis. 123: 249–250, 1981.
 47. Fukuchi, Y., C. S. Roussos, P. T. Macklem, and L. A. Engel. Convection, diffusion and cardiogenic mixing of inspired gas in the lung: an experimental approach. Respir. Physiol. 26: 77–90, 1976.
 48. Gavriely, N., J. Solway, S. Loring, R. H. Ingram, Jr., R. Brown, A. Slutsky, and J. Drazen. Airway dynamics during high frequency ventilation (HFV): a cineradiographic study (Abstract). Physiologist 25: 282, 1982.
 49. Goldstein, D., A. S. Slutsky, R. H. Ingram, Jr., P. Westerman, J. Venegas, and J. Drazen. CO2 elimination by high frequency ventilation (4 to 10 Hz) in normal subjects. Am. Rev. Respir. Dis. 123: 251–255, 1981.
 50. Gomez, D. M. A physico‐mathematical study of lung function in normal subjects and in patients with obstructive pulmonary disease. Med. Thorac. 22: 275–294, 1965.
 51. Gurtner, G. H. Can alveolar Pco2 exceed pulmonary end‐capillary CO2? Yes. J. Appl. Physiol. 42: 323–328, 1977.
 52. Gurtner, G. H., S. H. Song, and L. E. Farhi. Alveolar to mixed venous Pco2 difference under conditions of no gas exchange. Respir. Physiol. 7: 173–187, 1969.
 53. Gurtner, G. H., and R. J. Traystman. Gas‐to‐blood Pco2 differences during severe hypercapnia. J. Appl. Physiol. 47: 67–71, 1979.
 54. Guyatt, A. R., C. J. Yu, B. Lutherer, and A. B. Otis. Studies on alveolar‐mixed venous CO2 and O2 gradients in the rebreathing dog lung. Respir. Physiol. 17: 178–194, 1973.
 55. Hanson, M. A., P. C. G. Nye, and R. W. Torrance. Studies on the localization of pulmonary carbonic anhydrase in the cat. J. Physiol. Lond. 319: 93–109, 1981.
 56. Harris, E. A., E. R. Seelye, and M. L. Whitlock. Revised standards for normal resting dead space volume and venous admixture in men and women. Clin. Sci. Mol. Med. 55: 125–128, 1978.
 57. Hart, M. C., M. M. Orzalesi, and C. D. Cook. Relation between anatomic respiratory dead space and body size and lung volume. J. Appl. Physiol. 18: 519–522, 1963.
 58. Haselton, F. R., and P. W. Scherer. Bronchial bifurcations and respiratory mass transport. Science Wash. DC 208: 69–71, 1980.
 59. Hill, E. P., G. G. Power, and L. D. Longo. Mathematical simulation of pulmonary O2 and CO2 exchange. Am. J. Physiol. 224: 904–917, 1973.
 60. Hlastala, M. P. A model of fluctuating alveolar gas exchange during the respiratory cycle. Respir. Physiol. 15: 214–232, 1972.
 61. Hlastala, M. P., and H. T. Robertson. Inert gas elimination characteristics of the normal and abnormal lung. J. Appl. Physiol. 44: 258–266, 1978.
 62. Hlastala, M. P., P. Scheid, and J. Piiper. Interpretation of inert gas retention and excretion in the presence of stratified inhomogeneity. Respir. Physiol. 46: 247–259, 1981.
 63. Horsfield, K., and G. Cumming. Morphology of the bronchial tree in man. J. Appl. Physiol. 24: 373–383, 1968.
 64. Horsfield, K., and G. Cumming. Functional consequences of airway morphology. J. Appl. Physiol. 24: 384–390, 1968.
 65. Horsfield, K., I. Gabe, C. Mills, M. Buckman, and G. Cumming. Effect of heart rate and stroke volume on gas mixing in dog lung. J. Appl. Physiol. 53: 1603–1607, 1982.
 66. Hugh‐Jones, P., C. E. Barter, J. M. Hime, and M. M. Rusbridge. Dead space and tidal volume of the giraffe compared with some other mammals. Respir. Physiol. 35: 53–58, 1978.
 67. Isabey, D., A. Harf, and H. K. Chang. Alveolar ventilation during high‐frequency oscillation: core dead space concept. J. Appl. Physiol. 56: 700–707, 1984.
 68. Jennings, D. B., and C. C. Chen. Negative arterial‐mixed expired Pco2 gradient during acute and chronic hypercapnia. J. Appl. Physiol. 38: 382–388, 1975.
 69. Jones, H. A., M. K. Chakrabarti, E. E. Davis, J. M. B. Hughes, and M. K. Sykes. The contribution of heart beat to gas mixing in the lungs of dogs. Respir. Physiol. 50: 177–185, 1982.
 70. Jones, N. L., E. J. M. Campbell, G. J. R. McHardy, B. E. Higgs, and M. Clode. The estimation of carbon dioxide pressure in mixed venous blood during exercise. Clin. Sci. 32: 311–327, 1967.
 71. Kaethner, T., J. Kohl, and P. Scheid. Gas concentration profiles along airways of dog lungs during high‐frequency ventilation. J. Appl. Physiol. 56: 1491–1499, 1984.
 72. Klocke, R. A. Catalysis of CO2 reactions by lung carbonic anhydrase. J. Appl. Physiol. 44: 882–888, 1978.
 73. Klocke, R. A. Equilibrium of CO2 reactions in the pulmonary capillary. J. Appl. Physiol. 48: 972–976, 1980.
 74. Knopp, T. J., T. Kaethner, M. Meyer, K. Rehder, and P. Scheid. Gas mixing in the airways of dog lungs during high‐frequency ventilation. J. Appl. Physiol. 55: 1141–1146, 1983.
 75. Krogh, A. On the mechanism of gas exchange in the lungs. Skand. Arch. Physiol. 23: 248–278, 1910.
 76. Krogh, A., and J. Lindhard. The volume of the dead space in breathing and the mixing of gases in the lungs of man. J. Physiol. Lond. 51: 59–90, 1917.
 77. Lacquet, L. M., L. P. van der Linden, and M. Paiva. Transport of H2 and SF6 in the lung: Respir. Physiol. 25: 157–173, 1975.
 78. Langman, V. A., O. S. Bamford, and G. M. O. Maloiy. Respiration and metabolism in the giraffe. Respir. Physiol. 50: 141–152, 1982.
 79. Larson, C. P., Jr., and J. W. Severinghaus. Postural variations in dead space and CO2 gradients breathing air and O2. J. Appl. Physiol. 17: 417–420, 1962.
 80. Lee, J., and J. Read. Effect of oxygen breathing on distribution of pulmonary blood flow in chronic obstructive lung disease. Am. Rev. Respir. Dis. 96: 1173–1180, 1967.
 81. Lehr, J., J. M. Drazen, P. A. Westerman, and S. C. Zatz. Regional expansion of excised dog lungs during high frequency ventilation (Abstract). Federation Proc. 41: 1747, 1982.
 82. Lenfant, C. Arterial‐alveolar difference in Pco2 during air and oxygen breathing. J. Appl. Physiol. 21: 1356–1362, 1966.
 83. Loewy, A. Ueber die Bestimmung der Grosse des “Schadlichen Luftraumes” im Thorax und der alveolaren Sauerstoffspannung. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 58: 416–427, 1894.
 84. Lewis, S., and C. J. Martin. Characteristics of the washout dead space. Respir. Physiol. 36: 51–63, 1979.
 85. Lifshay, A., C. W. Fast, and J. B. Glazier. Effects of changes in respiratory pattern on physiological dead space. J. Appl. Physiol. 31: 478–483, 1971.
 86. Lin, K. H., and G. Cumming. A time varying model of gas exchange in the human lung during a respiratory cycle at rest. Respir. Physiol. 17: 93–112, 1973.
 87. Luft, U. C., J. A. Loeppky, and E. M. Mostyn. Mean alveolar gases and alveolar‐arterial gradients in pulmonary patients. J. Appl. Physiol. 46: 534–540, 1979.
 88. Martin, C. J., S. Das, and A. C. Young. Measurements of the dead space volume. J. Appl. Physiol. 47: 319–324, 1979.
 89. Martin, R. R., M. Zutter, and N. R. Anthonisen. Pulmonary gas exchange in dogs breathing SF6 at 4 Ata. J. Appl. Physiol. 33: 86–92, 1972.
 90. McIlroy, M. B., J. Butler, and T. N. Finley. Effects of chest compression on reflex ventilatory drive and pulmonary function. J. Appl. Physiol. 17: 701–705, 1962.
 91. Mills, R. J., and P. Harris. Factors influencing the concentrations of expired nitrogen after a breath of oxygen. J. Appl. Physiol. 20: 103–109, 1965.
 92. Mortola, J. P. Dysanaptic lung growth: an experimental and allometric approach. J. Appl. Physiol. 54: 1236–1241, 1983.
 93. Muir, D. C. F. Distribution of aerosol particles in exhaled air. J. Appl. Physiol. 23: 210–214, 1967.
 94. Mundt, E., W. Schoedel, and H. Schwarz. Über den effektiven schädlichen Raum der Atmung. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 244: 107–119, 1941.
 95. Ngeow, Y. K., and W. Mitzner. A new system for ventilating with high‐frequency oscillation. J. Appl. Physiol. 53: 1638–1642, 1982.
 96. Nixon, W., and A. Pack. Effect of altered gas diffusivity on alveolar gas exchange—a theoretical study. J. Appl. Physiol. 48: 147–153, 1980.
 97. Nunn, J. F., E. J. M. Campbell, and B. W. Peckett. Anatomical subdivisions of the volume of respiratory dead space and effect of position of the jaw. J. Appl. Physiol. 14: 174–176, 1959.
 98. Nye, R. E. Influence of the cyclical pattern of ventilatory flow on pulmonary gas exchange. Respir. Physiol. 10: 321–337, 1970.
 99. Otis, A. B. Quantitative relationships in steady‐state gas exchange. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 27, p. 681–698.
 100. Pack, A., M. B. Hooper, W. Nixon, and J. C. Taylor. A computational model of pulmonary gas transport incorporating effective diffusion. Respir. Physiol. 29: 101–124, 1977.
 101. Paiva, M. Gas transport in the human lung. J. Appl. Physiol. 35: 401–410, 1973.
 102. Paiva, M., and L. A. Engel. Influence of bronchial asymmetry on cardiogenic gas mixing in the lung. Respir. Physiol. 49: 325–338, 1982.
 103. Paiva, M., L. M. Lacquet, and L. P. van der Linden. Gas transport in a model derived from Hansen‐Ampaya anatomical data of the human lung. J. Appl. Physiol. 41: 115–119, 1976.
 104. Pappenheimer, J. R. Standardization of definitions and symbols in respiratory physiology. Federation Proc. 9: 602–605, 1950.
 105. Pappenheimer, J. R., A. P. Fishman, and L. M. Borrero. New experimental methods for determination of effective alveolar gas composition and respiratory dead space, in the anesthetized dog and in man. J. Appl. Physiol. 4: 855–867, 1952.
 106. Permutt, S., W. Mitzner, and G. Weinmann. Model of gas transport during high‐frequency ventilation. J. Appl. Physiol. 58: 1956–1970, 1985.
 107. Petrini, M. F., H. T. Robertson, and M. P. Hlastala. Interaction of series and parallel dead space in the lung. Respir. Physiol. 54: 121–136, 1983.
 108. Power, G. G. Gaseous diffusion between airways and alveoli in the human lung. J. Appl. Physiol. 27: 701–709, 1969.
 109. Radford, E. P., Jr. Ventilation standards for use in artificial respiration. J. Appl. Physiol. 7: 451–460, 1955.
 110. Rahn, H. A concept of mean aveolar air and the ventilation‐bloodflow relationships during pulmonary gas exchange. Am. J. Physiol. 158: 21–30, 1949.
 111. Rahn, H., and L. E. Farhi. Ventilation, perfusion, and gas exchange—the Va/Q concept. In Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 30, p. 735–766.
 112. Rahn, H., and W. O. Fenn. A Graphical Analysis of the Respiratory Gas Exchange. Washington, DC: Am. Physiol. Soc., 1955, 38 p.
 113. Rea, H. H., S. J. Withy, E. R. Seelye, and E. A. Harris. The effect of posture on venous admixture and respiratory dead space in health. Am. Rev. Respir. Dis. 115: 571–580, 1977.
 114. Riley, R. L., J. L. Lilienthal, Jr., D. D. Proemmel, and R. E. Franke. On the determination of the physiologically effective pressures of oxygen and carbon dioxide in alveolar air. Am. J. Physiol. 147: 191–198, 1946.
 115. Robertson, H. T., and M. P. Hlastala. Elevated alveolar Pco2 relative to predicted values during normal gas exchange. J. Appl. Physiol. 43: 357–364, 1977.
 116. Robin, E. D., J. M. Corson, and G. J. Dammin. The respiratory dead space of the giraffe. Nature Lond. 186: 24–26, 1960.
 117. Rohrer, F. Der Strömungswiderstand in den menschlichen Atemwegen und der Einfluss der unregelmässigen Verzweigung des Bronchialsystems auf den Atmungsverlauf in verschiedenen Lungenbezirken. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 162: 225–299, 1915.
 118. Roos, A., H. Dahlstrom, and J. P. Murphy. Distribution of inspired air in the lungs. J. Appl. Physiol. 7: 645–659, 1955.
 119. Ross, B. B. Influence of bronchial tree structure on ventilation in the dog's lung as inferred from measurements of a plastic cast. J. Appl. Physiol. 10: 1–14, 1957.
 120. Ross, B. B., and L. E. Farhi. Dead‐space ventilation as a determinant in the ventilation‐perfusion concept. J. Appl. Physiol. 15: 363–371, 1960.
 121. Scheid, P., and J. Piiper. Blood/gas equilibrium of carbon dioxide in lungs. A critical review. Respir. Physiol. 39: 1–31, 1980.
 122. Scheid, P., J. Teichmann, F. Adaro, and J. Piiper. Gas‐blood CO2 equilibration in dog lungs during rebreathing. J. Appl. Physiol. 33: 582–588, 1972.
 123. Scherer, P. W., L. H. Shendalman, N. M. Greene, and A. Bouhuys. Measurement of axial diffusivities in a model of the bronchial airways. J. Appl. Physiol. 38: 719–723, 1975.
 124. Schmid, E. R., T. J. Knopp, and K. Rehder. Intrapulmonary gas transport and perfusion during high‐frequency oscillation. J. Appl. Physiol. 51: 1507–1514, 1981.
 125. Scholander, P. F. Experimental investigations on the respiration in diving mammals and birds. Hvabaadets. Skr. Nr. Nor. Vidensk. Akad. 22: 1–131, 1940.
 126. Severinghaus, J. W., and M. Stupfel. Alveolar dead space as an index of distribution of blood flow in pulmonary capillaries. J. Appl. Physiol. 10: 335–348, 1957.
 127. Shepard, R. H., E. J. M. Campbell, H. B. Martin, and T. Enns. Factors affecting the pulmonary dead space as determined by single breath analysis. J. Appl. Physiol. 11: 241–244, 1957.
 128. Sikand, R. S., H. Magnussen, P. Scheid, and J. Piiper. Convective and diffusive gas mixing in human lungs: experiments and model analysis. J. Appl. Physiol. 40: 362–371, 1976.
 129. Singleton, G. J., C. R. Olsen, and R. L. Smith. Correction for mechanical dead space in the calculation of physiological dead space. J. Clin. Invest. 51: 2769–2772, 1972.
 130. Slutsky, A. S. Gas mixing by cardiogenic oscillations: a theoretical quantitative analysis. J. Appl. Physiol. 51: 1287–1293, 1981.
 131. Slutsky, A. S., G. G. Berdine, and J. M. Drazen. Oscillatory flow and quasi‐steady behavior in a model of human central airways. J. Appl. Physiol. 50: 1293–1299, 1981.
 132. Slutsky, A. S., J. M. Drazen, R. H. Ingram, Jr., R. D. Kamm, A. H. Shapiro, J. J. Fredberg, S. H. Loring, and J. Lehr. Effective pulmonary ventilation with small‐volume oscillation at high frequency. Science Wash. DC 209: 609–611, 1980.
 133. Slutsky, A. S., R. D. Kamm, and J. M. Drazen. Alveolar ventilation at high frequencies using tidal volumes smaller than the anatomical dead space. In: Lung Biology in Health and Disease. Gas Mixing and Distribution in the Lung, edited by L. A. Engel and M. Pavia. New York: Dekker, 1985, vol. 25, chapt. 4, p. 137–176.
 134. Slutsky, A. S., R. D. Kamm, T. H. Rossing, S. H. Loring, J. Lehr, A. H. Shapiro, R. H. Ingram, Jr., and J. M. Drazen. Effects of frequency, tidal volume, and lung volume on CO2 elimination in dogs by high frequency (2–30 Hz), low tidal volume ventilation. J. Clin. Invest. 68: 1475–1484, 1981.
 135. Steinbrook, R. A., V. Fencl, R. A. Gabel, D. E. Leith, and S. E. Weinberger. Reversal of arterial‐to‐expired CO2 partial pressure differences during rebreathing in goats. J. Appl. Physiol. 55: 736–741, 1983.
 136. Suwa, K., and H. H. Bendixen. Change in Paco2 with mechanical dead space during artificial ventilation. J. Appl. Physiol. 24: 556–562, 1968.
 137. Tai, R. C., H. K. Chang, and L. E. Farhi. Non‐equimolar counter‐diffusion in ternary gas systems. Respir. Physiol. 40: 253–267, 1980.
 138. Taylor, G. I. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A Math. Phys. Sci. 219: 186–203, 1953.
 139. Taylor, G. I. The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. A Math. Phys. Sci. 223: 446, 1954.
 140. Tenney, S. M. Some aspects of the comparative physiology of muscular exercise in mammals. Circ. Res. 20/21: 1–7, 1967.
 141. Tenney, S. M., and D. Bartlett, Jr. Comparative quantitative morphology of the mammalian lung: trachea. Respir. Physiol. 3: 130–135, 1967.
 142. Tenney, S. M., and R. M. Miller. Dead space ventilation in old age. J. Appl. Physiol. 9: 321–327, 1956.
 143. Ward, H. E., J. T. Power, and T. E. Nicholas. High‐frequency oscillations via the pleural surface: an alternative mode of ventilation? J. Appl. Physiol. 54: 427–433, 1983.
 144. Weibel, R. R. Morphometry of the Human Lung. Berlin: Springer‐Verlag, 1963.
 145. Widdicombe, J. G. The regulation of bronchial caliber. In: Advances in Respiratory Physiology, edited by C. G. Caro. Baltimore, MD: Williams & Wilkins, 1966, p. 48–82.
 146. Wilson, T. A., and K. H. Lin. Convection and diffusion in the airways and the design of the bronchial tree. In: Airway Dynamics: Physiology and Pharmacology, edited by A. Bouhuys. Springfield, IL: Thomas, 1970, p. 5–19.
 147. Wood, L. D. H., S. Prichard, T. R. Weng, K. Kruger, A. C. Bryan, and H. Levison. Relationship between anatomic dead space and body size in health, asthma, and cystic fibrosis. Am. Rev. Respir. Dis. 104: 215–222, 1971.
 148. Worth, H., F. Adaro, and J. Piiper. Penetration of inhaled He and SF6 into alveolar space at low tidal volumes. J. Appl. Physiol. 43: 403–408, 1977.
 149. Worth, H., and J. Piiper. Model experiments on diffusional equilibration of oxygen and carbon dioxide between inspired and alveolar gas. Respir. Physiol. 35: 1–7, 1978.
 150. Wright, K., R. K. Lyrene, W. E. Truog, T. A. Standaert, J. Murphy, and D. E. Woodrum. Ventilation by high‐frequency oscillation in rabbits with oleic acid lung disease. J. Appl. Physiol., 50: 1056–1060, 1981.
 151. Young, A. C. Dead space at rest and during exercise. J. Appl. Physiol. 8: 91–94, 1955.
 152. Zidulka, A., D. Gross, H. Minami, V. Vartian, and H. K. Chang. Ventilation by high frequency chest wall compression in dogs with normal lungs. Am. Rev. Respir. Dis. 127: 709–713, 1983.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

N. R. Anthonisen, J. A. Fleetham. Ventilation: Total, Alveolar, and Dead Space. Compr Physiol 2011, Supplement 13: Handbook of Physiology, The Respiratory System, Gas Exchange: 113-129. First published in print 1987. doi: 10.1002/cphy.cp030407