Comprehensive Physiology Wiley Online Library

Body Fluid Balance During Heat Stress in Humans

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Water Balance During Heat Stress
2 Methodological Limitations
2.1 Estimation of the Absolute Size of the Body Fluid Compartments
2.2 Estimates of Relative Changes in Body Fluid Compartments
3 Body Fluid Compartments
3.1 Effects of Acute Heat Stress
3.2 Effects of Dehydration
4 Control of Body Fluid Balance During Dehydration
4.1 Sweat Gland Function
4.2 Kidney Function
4.3 Hormonal Control of Renal Function
5 Heat Acclimatization
5.1 Expansion of Body Fluid Compartments
5.2 Mechanism of Plasma Volume Expansion
5.3 Salt Conservation in Sweat Gland
6 Summary
Figure 1. Figure 1.

Distribution of TBW between ICF and ECF compartments. The ECF compartment is divided into five main subdivisions: (1) plasma, (2) rapidly equilibrating interstitial and lymph fluid, (3) slowly equilibrating interstitial fluid of dense connective tissue and cartilage, (4) inaccessible interstitial fluid in bone, and (5) transcellular fluid as suggested by Edelman and Leibman 75. Redrawn from Edelman and Leibman 75.

Figure 2. Figure 2.

Distribution of total body sodium between the ICF and ECF compartments. Similar to Figure 1, the ECF compartment is divided into five main subdivisions: (1) plasma, (2) rapidly equilibrating interstitial‐lymph fluid, (3) slowly equilibrating interstitial fluid in dense connective tissue and cartilage, (4) inaccessible bone sodium, and (5) transcellular. In this diagram the size of each compartment reflects the water content, with their respective sodium concentrations given in mEq Na+ per kg body weight. Redrawn from Edelman and Leibman 75.

Figure 3. Figure 3.

Influence of hydration status on urinary excretion rate in humans during thermal stress. From Lee 152.

Figure 4. Figure 4.

Relationship between changes in interstitial pressure and interstitial volume of dog hindlimb skin during hypohydration and hyperhydration. From Wigg and Reed 267.

Figure 5. Figure 5.

Influence of hyperthermia on CVP‐blood volume relationship of the dog during saline infusion. Total effective vascular compliance determined from slope of pressure volume curve during infusion is reduced during hyperthermia. In this plot, y intercept reflects unstressed blood volume, which was increased following recovery from saline infusion in hyperthermic dogs. From Morimoto et al. 163,164.

Figure 6. Figure 6.

Relationship between reduction in plasma volume (ΔPV) and decrease in volume (ΔECF) following a 2.3% decrease in total body weight induced by light exercise in the heat. Dashed line represents theoretical line determined assuming water is lost from each compartment in proportion to initial volume. Solid line represents regression line determined from experimental data. Taken from Nose et al. 177.

Figure 7. Figure 7.

Increase in plasma osmolality (ΔPosm) in response to a 2.3% decrease in TBW induced by light exercise in the heat is determined by loss of free water (ΔFW) from ECF space. Free water loss represents that volume of pure water which would have to be removed from total fluid loss (sweat and urine) to make it isoosmotic to plasma. Dashed line represents theoretical line determined assuming that TBW is 65% of body weight and that plasma osmolality represents that of TBW in equilibrium. Solid line represents regression line determined from experimental data. From Nose et al. 177.

Figure 8. Figure 8.

Relationship between increase in plasma osmolality (ΔPosm) and decrease in intracellular compartment size (ΔICF) following a 2.3% reduction in TBW induced by light exercise in the heat. Dashed line represents theoretical line determined assuming that initial volume of ICF space is 38% of body weight, that potassium in urine and sweat comes from only ICF space, and that plasma osmolality represents that of ICF space in steady state. Solid line represents regression line determined from experimental data. From Nose et al. 177.

Figure 9. Figure 9.

Changes in body fluid compartments immediately following and at 30 and 60 min after a 2.3% decrease in TBW (20.3 ± 1.3 ml/kg body weight) induced by light exercise in the heat. ΔPV, ΔISF, ΔECF, and ΔICF denote changes in plasma, interstitial, extracellular, and intracellular fluid volumes, respectively. Return of plasma volume control occurs at the expense of the ISF space. From Nose et al. 177.

Figure 10. Figure 10.

Influence of [Na+] in human sweat on loss of free water (ΔFW) and extracellular fluid (ΔECF) normalized for TBW loss (ΔTW). From Nose et al. 177.

Figure 11. Figure 11.

Water losses from ICF and ISF compartments of various organs of thermally dehydrated rat. Volumes are given as % of TBW lost during dehydration. From Nose et al. 178.

Figure 12. Figure 12.

These data illustrate the inability of humans to restore water balance following sodium deprivation induced by prolonged exercise in the heat. During rehydration subjects drank deionized water ad libitum and ingested two sodium‐free meals. Despite a continued thirst drive, water balance was never regained in sodium‐depleted subjects. From Takamata et al. 248.

Figure 13. Figure 13.

Human sweating responses during exercise as a function of internal body temperature at varying levels of dehydration. From Sawka et al. 215.

Figure 14. Figure 14.

Relationship between changes in plasma volume (ΔPV), expressed as % change from control, and PRA following thermally induced dehydration (2.3% body weight loss) and following 3 h of rehydration with either water (H2O‐R) or 0.45% saline (Na‐R). From Nose et al. 175.



Figure 1.

Distribution of TBW between ICF and ECF compartments. The ECF compartment is divided into five main subdivisions: (1) plasma, (2) rapidly equilibrating interstitial and lymph fluid, (3) slowly equilibrating interstitial fluid of dense connective tissue and cartilage, (4) inaccessible interstitial fluid in bone, and (5) transcellular fluid as suggested by Edelman and Leibman 75. Redrawn from Edelman and Leibman 75.



Figure 2.

Distribution of total body sodium between the ICF and ECF compartments. Similar to Figure 1, the ECF compartment is divided into five main subdivisions: (1) plasma, (2) rapidly equilibrating interstitial‐lymph fluid, (3) slowly equilibrating interstitial fluid in dense connective tissue and cartilage, (4) inaccessible bone sodium, and (5) transcellular. In this diagram the size of each compartment reflects the water content, with their respective sodium concentrations given in mEq Na+ per kg body weight. Redrawn from Edelman and Leibman 75.



Figure 3.

Influence of hydration status on urinary excretion rate in humans during thermal stress. From Lee 152.



Figure 4.

Relationship between changes in interstitial pressure and interstitial volume of dog hindlimb skin during hypohydration and hyperhydration. From Wigg and Reed 267.



Figure 5.

Influence of hyperthermia on CVP‐blood volume relationship of the dog during saline infusion. Total effective vascular compliance determined from slope of pressure volume curve during infusion is reduced during hyperthermia. In this plot, y intercept reflects unstressed blood volume, which was increased following recovery from saline infusion in hyperthermic dogs. From Morimoto et al. 163,164.



Figure 6.

Relationship between reduction in plasma volume (ΔPV) and decrease in volume (ΔECF) following a 2.3% decrease in total body weight induced by light exercise in the heat. Dashed line represents theoretical line determined assuming water is lost from each compartment in proportion to initial volume. Solid line represents regression line determined from experimental data. Taken from Nose et al. 177.



Figure 7.

Increase in plasma osmolality (ΔPosm) in response to a 2.3% decrease in TBW induced by light exercise in the heat is determined by loss of free water (ΔFW) from ECF space. Free water loss represents that volume of pure water which would have to be removed from total fluid loss (sweat and urine) to make it isoosmotic to plasma. Dashed line represents theoretical line determined assuming that TBW is 65% of body weight and that plasma osmolality represents that of TBW in equilibrium. Solid line represents regression line determined from experimental data. From Nose et al. 177.



Figure 8.

Relationship between increase in plasma osmolality (ΔPosm) and decrease in intracellular compartment size (ΔICF) following a 2.3% reduction in TBW induced by light exercise in the heat. Dashed line represents theoretical line determined assuming that initial volume of ICF space is 38% of body weight, that potassium in urine and sweat comes from only ICF space, and that plasma osmolality represents that of ICF space in steady state. Solid line represents regression line determined from experimental data. From Nose et al. 177.



Figure 9.

Changes in body fluid compartments immediately following and at 30 and 60 min after a 2.3% decrease in TBW (20.3 ± 1.3 ml/kg body weight) induced by light exercise in the heat. ΔPV, ΔISF, ΔECF, and ΔICF denote changes in plasma, interstitial, extracellular, and intracellular fluid volumes, respectively. Return of plasma volume control occurs at the expense of the ISF space. From Nose et al. 177.



Figure 10.

Influence of [Na+] in human sweat on loss of free water (ΔFW) and extracellular fluid (ΔECF) normalized for TBW loss (ΔTW). From Nose et al. 177.



Figure 11.

Water losses from ICF and ISF compartments of various organs of thermally dehydrated rat. Volumes are given as % of TBW lost during dehydration. From Nose et al. 178.



Figure 12.

These data illustrate the inability of humans to restore water balance following sodium deprivation induced by prolonged exercise in the heat. During rehydration subjects drank deionized water ad libitum and ingested two sodium‐free meals. Despite a continued thirst drive, water balance was never regained in sodium‐depleted subjects. From Takamata et al. 248.



Figure 13.

Human sweating responses during exercise as a function of internal body temperature at varying levels of dehydration. From Sawka et al. 215.



Figure 14.

Relationship between changes in plasma volume (ΔPV), expressed as % change from control, and PRA following thermally induced dehydration (2.3% body weight loss) and following 3 h of rehydration with either water (H2O‐R) or 0.45% saline (Na‐R). From Nose et al. 175.

References
 1. Adolph, E. F. Blood changes in dehydration. In: Physiology of Man in the Desert, edited by E. F. Adolph et al. New York: Interscience, 1947, p. 160–171.
 2. Adolph, E. F. Urinary excretion of water and solutes. In: Physiology of Man in the Desert, edited by E. F. Aldolph et al., New York: Interscience, 1947, p. 96–109.
 3. Alexander, R. S., The peripheral venous system. In: Handbook of Physiology. Circulation, edited by W. F. Hamilton. Washington, D.C. Am. Physiol. Soc., 1963, sect. 2, vol. II, chap. 31, p. 1075–1098.
 4. Andersen, L. J., J. L. Andersen, H. J. Schutten, J. Warberg, and P. Bie. Antidiuretic effect of subnormal levels of arginine vasopressin in normal humans. Am. J. Physiol. 259 (Regulatory Integrative Comp. Physiol. 28): R53–R60, 1990.
 5. Anderson, J. V., J. Donckier, N. N. Payne, J. Beacham, J. D. H. Slater, and S. R. Bloom. Atrial natriuretic peptide: evidence of action as a natriuretic hormone at physiological plasma concentrations in man. Clin. Sci. 72: 305–312, 1987.
 6. Anderson, J. V., N. D. Millar, J. P. O'Hare, J. C. Mackenzie, J. M. Corrall, and S. R. Bloom. Atrial natriuretic peptide: physiological release associated with natriuresis during water immersion in man. Clin. Sci. 71: 319–322, 1986.
 7. Antunes‐Rodrigues, J., S. M. McCann, L. C. Rogers, and W. K. Samson. Atrial natriuretic factor inhibits dehydration and angiotensin II–induced water intake in conscious, unrestrained rat. Proc. Natl. Acad. Sci. USA 82: 8720–8723, 1985.
 8. Antunes‐Rodrigues, J., S. M. McCann, and W. K. Samson. Central administration of atrial natriuretic factor inhibits saline preference in the rat. Endocrinology 118: 1726–1728, 1985.
 9. Arad, Z., M. Horowitz, U. Eylath, and J. Marder. Osmoregulation and body fluid compartmentalization in dehydrated heat‐exposed pigeons. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R377–R382, 1989.
 10. Armstrong, L. E., D. L. Costill, and W. J. Fink. Changes in body waters and electrolytes during heat acclimatization: effects of dietary sodium. Aviat. Space Environ. Med. 58: 143–148, 1987.
 11. Armstrong, L. E., R. Hubbard, W. B. H. Jones, and J. T. Daniels. Preparing Alberto Salazar for the heat of the 1984 Olympic marathon. Physician Sportsmed. 14: 456–461, 1986.
 12. Aronson, P. S., Distribution of sodium chloride across cell membranes. In: The Regulation of Sodium and Chloride Balance, edited by D. W. Seldin, and G. Geibisch New York: Raven, 1990, p. 3–22.
 13. Aschoff, J., and R. Wever. Durchblutungsmessungan der menschlichen extremitat. Verb. Dtsch. Ges. Kreislaufforsch. 23: 375–380, 1957.
 14. Astrand, P., and B. Saltin. Plasma and red cell volume after prolonged severe exercise. J. Appl. Physiol. 19: 829–832, 1964.
 15. Aukland, K. Is extracellular fluid volume regulated? Acta Physiol. Scand. 136 (Suppl. 583): 59–67, 1989.
 16. Bailey, R. E., D. Bartos, A. Castro, R. L. Dobson, D. P. Grettie, R. Kramer, D. MacFarlane, and K. Sato. Activation of aldosterone and renin secretion by thermal stress. Experientia 28: 159–160, 1972.
 17. Baker, M. A. Effects of dehydration and rehydration on thermorulatory sweating in goats. J. Physiol. (Lond.) 417: 421–435, 1989.
 18. Baker, M. A., and P. A. Doris. Effects of dehydration on hypothalamic control of evaporation in the cat. J. Physiol. (Lond.) 322: 457–468, 1982.
 19. Baker, M. A., P. A. Doris, and M. J. Hawkins. Effect of dehydration and hyperosmolality on thermoregulatory water losses in exercising dogs. Am. J. Physiol. 244 (Regulatory Integrative Comp. Physiol. 13): R516–R521, 1983.
 20. Barbour, H. G., M. H. Dawson, and I. Neuwirth. Heat regulation and water exchange. X. Water, salt and lipoid accumulation in the serum as a preliminary to sweating. Am. J. Physiol. 74: 204–223, 1925.
 21. Barbour, H. G., N. M. Loomis, R. W. Frankman, and J. H. Warner. Heat regulation and water exchange. V. The phase of blood dilution in man. J. Physiol. (Lond.) 59: 300–305, 1924.
 22. Barcroft, J., C. A. Binger, A. V. Bock, J. H. Doggert, H. S. Forbes, G. Harrop, J. C. Meakins, and A. C. Redfield. On relations of external temperature to blood volume. Appendices I to VII. Observations upon the effect of high altitude on the physiological processes of the human body carried out in the Peruvian Andes, chiefly at Cerro de Pasco. Phil. Trans. R. Soc. (B) 211: 417–455, 1923.
 23. Bass, D. E. Thermoregulatory and circulatory adjustments during acclimatization to heat in man. In: Temperature: Its Measurement and Control in Science and Industry, edited by J. Hardy. New York: Reinhold, 1963, vol. 3. part 3, p. 299–305.
 24. Bass, D. E., E. R. Buskirk, P. F. Jampietro, and M. Mager. Comparison of blood volume during physical conditioning, heat acclimatization, and sedentary living. J. Appl. Physiol. 12: 186–188, 1958.
 25. Bass, D. E., and A. Henschel. Responses of body fluid compartments to heat and cold. Physiol. Rev. 36: 128–144, 1956.
 26. Bass, D. E., C. R. Kleeman, M. Quinn, A. Henschel, and A. H. Hegnauer. Mechanism of acclimatization to heat in man. Medicine 34: 323–380, 1953.
 27. Baylis, P. H. Osmoregulation and control of vasopressin secretion in healthy humans. Am. J. Physiol. 253 (Regulatory Integrative Comp. Physiol. 22): R671–R678, 1987.
 28. Bazett, H. C., F. W. Sunderman, J. Doupe, and J. C. Scott. Climatic effects on the volume and composition of blood in man. Am. J. Physiol. 129: 69–83, 1940.
 29. Bergström, J. Muscle electrolytes in man. Determination by neutron activation analysis on needle biopsy specimens. A study on normal subjects, kidney patients, and patients with chronic diarrhea. Scand. J. Clin. Lab. Invest. 18: 16–20, 1962.
 30. Bernard, C. An Introduction to the Study of Experimental Medicine (1859). New York: Dover, 1957.
 31. Berson, S. A., and R. S. Yalow. The use of K42 or P32 labelled erythrocytes and I131 tagged human serum albumin in simultaneous blood volume determinations. J. Clin. Invest. 31: 572–586, 1953.
 32. Bianca, W. Thermoregulation. In: Domestic Animals, edited by E. S. E. Hafez, Philadelphia: Lea and Febiger, 1968, p. 97–117.
 33. Biollaz, J., J. Nussberger, M. Porchet, F. Brunner‐Ferber, E. S. Otterbein, H. Gomez, B. Waeber, and H. R. Brunner. Four‐hour infusions of synthetic atrial natriuretic peptide in normal volunteers. Hypertension 8 (Suppl. II): 96–105, 1986.
 34. Blantz, R. C., K. S. Konnen, and B. J. Tucker. Angiotensin II effects upon the glomerular microcirculation and ultrafiltration coefficient of the rat. J. Clin. Invest. 57: 419–434, 1976.
 35. Bonner, R. M., M. H. Harrison, C. J. Hall, and R. J. Edwards. Effect of heat acclimatization on intravascular responses to acute heat stress in man. J. Appl. Physiol. 41: 708–713, 1976.
 36. Boulant, J. A., and N. L. Silva. Neuronal sensitivities in preoptic tissue slices: interaction among homeostatic systems. Brain Res. Bull. 20: 871–878, 1988.
 37. Brooks, V. L., L. C. Keil, and I. A. Reid. Role of the reninangiotensin system in the control of vasopressin secretion in conscious dogs. Circ. Res. 58: 829–838, 1986.
 38. Brown, A. H., Dehydration exhaustion. In: Physiology of Man in the Desert, edited by E. F. Adolph et al. New York: Interscience, 1947, p. 208–225.
 39. Brown, A. H., Fluid intakes in the desert. In: Physiology of Man in the Desert, edited by E. F. Adolph et al. New York: Interscience, 1947, p. 110–114.
 40. Brown, A. H., Survival without drinking water in the desert. In: Physiology of Man in the Desert, edited by E. F. Adolph et al. New York: Interscience, 1947, p. 271–279.
 41. Brown, G. M., J. D. Hatcher, and J. Page. Temperature and blood flow in the forearm of the Eskimo. J. Appl. Physiol. 5: 410–420, 1953.
 42. Candas, V., J. P. Libert, G. Brandenberger, J. C. Sagot, C. Amoros, and J. M. Kahn. Hydration during exercise: effects on thermal and cardiovascular adjustments. Eur. J. Appl. Physiol. 55: 113–122, 1986.
 43. Cannon, W. B. The Wisdom of the Body. New York: Norton, 1939.
 44. Chen, W. Y., and R. S. Elizando. Peripheral modification of thermoregulatory function during heat acclimation. J. Appl. Physiol. 37: 367–373, 1974.
 45. Collins, K., and J. Weiner. Endocrinological aspects of exposure to high environmental temperatures. Physiol. Rev. 48: 785–859, 1968.
 46. Collins, K. J. The action of exogenous aldosterone on the secretion and composition of drug‐induced sweat. Clin. Sci. 30: 207–221, 1966.
 47. Collins, K. J., K. Hellmann, R. M. Jones, and J. B. Lunnon. Aldosterone activity in the urine of men exposed to heat. J. Endocrinol. 13: 8P, 1955.
 48. Conn, J. W. The mechanism of acclimatization to heat. Adv. Intern. Med. 3: 373–393, 1949.
 49. Conn, J. W., M. W. Johnston, and L. H. Luis. Acclimatization to humid heat: a function of adrenal cortical function. J. Clin. Invest. 25: 912–913, 1946.
 50. Convertino, V. A., J. E. Greenleaf, and E. M. Bernauer. Role of thermal and exercise factors in the mechanism of hypervolemia. J. Appl. Physiol. 48: 657–664, 1980.
 51. Costill, D. L. Sweating: its composition and effects on body fluids. In: The Marathon: Physiological, Medical, Epidemiological and Psychological Studies, edited by P. Milvy. New York: NY Acad. Sci., 1977, p. 160–174.
 52. Costill, D. L., R. Cote, and W. Fink. Muscle water and electrolytes following varied levels of dehydration in man. J. Appl. Physiol. 40: 6–11, 1976.
 53. Costill, D. L., R. Cote, E. Miller, T. Miller, and S. Wynder. Water and electrolyte replacement during days of work in the heat. Aviat. Space Environ. Med. 46: 795–800, 1970.
 54. Costill, D. L., and W. J. Fink. Plasma volume changes following exercise and thermal dehydration. J. Appl. Physiol. 37: 521–525, 1974.
 55. Costill, D. L., and E. Sparks. Rapid fluid replacement following thermal dehydration. J. Appl. Physiol. 34: 299–303, 1973.
 56. Crandell, M. E., and C. M. Gregg. In vitro evidence for inhibitory effect of atrial natriuretic peptide on vasopressin release. Neuroendocrinology 44: 439–445, 1986.
 57. Cuneo, R. C., E. A. Espiner, M. G. Nichols, T. G. Yandle, S. L. Joyce, and N. I. Gilchrist. Renal hemodynamic and hormonal responses to atrial natriuretic peptide infusions in normal man and effect of sodium intake. J. Clin. Endocrinol. Metab. 63: 946–953, 1986.
 58. Czaczkes, J. W., R. Kleeman, and M. Koening. Physiologic studies of antidiuretic by its direct measurement in human plasma. J. Clin. Invest. 43: 1625–1640, 1964.
 59. Davies, J. A., M. H. Harrison, L. A. Cochrane, R. S. Edwards, and T. M. Gibson. Effect of saline loading during heat acclimatization on adrenocortical hormone levels. J. Appl. Physiol. 50: 605–612, 1981.
 60. Davis, J. O. The control of renin release. Am. J. Med. 55: 333–350, 1973.
 61. Deane, N. Intracellular water in man. J. Clin. Invest. 30: 1469–1470, 1951.
 62. De Bold, A. J., H. B. Borenstein, A. T. Veress, and H. Sonenberg. A rapid and potent natriuretic response to intreavenous injections of atrial myocardial extract in rats. Life Sci. 28: 89–94, 1981.
 63. De Wardener, H. E., and A. Herxheimer. The effect of high water intake on the kidneys ability to concentrate urine in man. J. Physiol. (Lond.) 139: 42–52, 1957.
 64. Diaz, F. J., D. R. Brandsford, K. Kobayashi, S. M. Horvath, and R. G. McMurray. Plasma volume changes during rest and exercise in different postures in a hot humid environment. J. Appl. Physiol. 47: 798–803, 1979.
 65. Dill, D. B. Life, Heat, and Altitude. Cambridge, MA: Harvard University Press, 1938.
 66. Dill, D. B., and D. L. Costill. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 37: 247–248, 1974.
 67. Dill, D. B., F. G. Hall, and H. T. Edwards. Changes in composition of sweat during acclimatization to heat. Am. J. Physiol. 123: 412–419, 1938.
 68. Dill, D. B., B. F. Jones, H. T. Edwards, and S. A. Oberg. Salt economy in extreme dry heat. J. Biol. Chem. 100: 755–767, 1933.
 69. Dill, D. B., L. F. Soholt, and I. Oddershede. Physiological adjustments of young men to five‐hour desert walks. J. Appl. Physiol. 40: 236–242, 1976.
 70. Dillingham, M. A., and R. J. Anderson. Inhibition of vasopressin action by atrial natriuretic factor. Science 231: 1537–1573, 1986.
 71. Dominquez, R., A. Corcoran, and I. H. Page. Mannitol: kinetics of distribution, excretion and utilization in human beings. J. Lab. Clin. Med. 32: 1192–1202, 1947.
 72. Doris, P. A., and M. A. Baker. Intracranial osmoreceptors control evaporation in the heat‐stressed cat. Brain Res. 239: 644–648, 1982.
 73. Durkot, M. J., O. Martinez, D. McQuade, and R. Francesconi. Simultaneous determination of fluid shift during thermal stress in a small‐animal model. J. Appl. Physiol. 61: 1031–1034, 1986
 74. Edelman, I. E. Characteristics of deuterium oxide equilibration in body water. Am. J. Physiol. 171: 279–296, 1952.
 75. Edelman, I. S., and J. Leibman. Anatomy of body water and electrolytes. Am. J. Med. 27: 256–277, 1959.
 76. Eichna, L. W., C. R. Park, N. Nelson, S. M. Horvath, and E. D. Palmes. Thermal regulation during acclimatization in a hot, dry (desert type) environment. Am. J. Physiol. 163: 585–597, 1950.
 77. Eisman, M. M., and L. B. Rowell. Renal vascular response to heat stress in baboons—role of renin‐angiotensin. J. Appl. Physiol. 43: 739–746, 1977.
 78. Elkinton, J. E., T. S. Danowski, and A. W. Winkler. Hemodynamic changes in salt depletion and in dehydration. J. Clin. Invest. 25: 120–129, 1946.
 79. Escourrou, P., P. R. Fruend, L. B. Rowell, and D. G. Johnson. Splanchnic vasoconstriction in heat‐stressed man: role of reninangiotensin system. J. Appl. Physiol. 52: 1438–1443, 1982.
 80. Fagard, R., A. Amery, T. Reybrouck, P. Lijnen, L. Billiet, M. Bogaert, and A. DeSchaepdryver. Effects of angiotensin antagonism on hemodynamics, renin and catecholamines during exercise. J. Appl. Physiol. 43: 440–444, 1977.
 81. Fitts, D. A., R. L. Thurnhorst, and J. B. Simpson. Diuresis and reduction of salt appetite by lateral ventricular infusions of atriopeptin II. Brain Res. 348: 118–124, 1985.
 82. Forbes, W. H., D. B. Dill, and F. G. Hall. The effect of climate upon the volumes of blood and tissue fluid in man. Am. J. Physiol. 130: 739–746, 1940.
 83. Foreman, H., and T. T. Trujillo. The metabolism of C14 labelled ethylenediaminetetraacetic acid in human beings. J. Lab. Clin. Med. 43: 566–571, 1954.
 84. Fortney, S. M., E. R. Nadel, C. B. Wenger, and J. R. Bove. Effect of blood volume on sweating rate and body fluids in exercising humans. J. Appl. Physiol. 51: 1594–1600, 1981.
 85. Fortney, S. M., N. B. Vroman, W. S. Beckett, S. Permutt, and N. D. LaFrance. Effect of exercise hemoconcentration and hyperosmolality on exercise responses. J. Appl. Physiol. 65: 519–524, 1988.
 86. Fortney, S. M., C. B. Wenger, J. R. Bove, and E. R. Nadel. Effect of hyperosmolality on control of blood flow and sweating. J. Appl. Physiol. 57: 1688–1695, 1984.
 87. Fried, T. A., R. N. McCoy, R. W. Osgood, and J. H. Stein. Effect of atriopeptin II on determinants of glomerular filtration rate in the in vitro perfused dog glomerulus. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1119–F1122, 1986.
 88. Fujio, N., M. Ohashi, H. Nawata, K. Kato, H. Ibayashi, K. Kangawa, and H. Matsuo. α‐Human atrial natriuretic polypeptide reduces the plasma arginine vasopressin concentration in human subjects. Clin. Endocrinol. 25: 181–187, 1986.
 89. Furman, K. I., and G. Beer. Dynamic changes in sweat electrolyte composition induced by heat stress as an indication of acclimatization and aldosterone activity. Clin. Sci. 24: 7–12, 1963.
 90. Gauer, O. H., J. P. Henry, and C. Behn. The regulation of extracellular fluid volume. Annu. Rev. Physiol. 32: 547–595, 1970.
 91. Gillen, C. M., R. Lee, G. W. Mack, C. M. Tomaselli, T. Nishiyasu, and E. R. Nadel. Plasma volume expansion in humans after a single intense exercise protocol. J. Appl. Physiol. 71: 1914–1920, 1991
 92. Gilman, A., F. S. Philips, and E. S. Koelle. The renal clearance of thiosulfate with observations on its volume distribution. Am. J. Physiol. 146: 348–357, 1943.
 93. Gilmore, J. P. Neural control of extracellular volume in humans and nonhuman primates. In: Handbook of Physiology. The Cardiovascular System. Peripheral Circulation and Organ Blood Elow, edited by J. T. Shepherd, and F. M. Abboud. Bethesda, MD: Am. Physiol. Soc., 1983, sect. 2, vol. III, chapt. 24, p. 885–916.
 94. Glickman, N., F. K. Hick, R. W. Keeton, and M. M. Montgomery. Blood volume changes in men exposed to hot environmental conditions for a few hours. Am. J. Physiol. 134: 165–176, 1941.
 95. Goetz, K. L. Physiology and pathophysiology of atrial peptides. Am. J. Physiol. 254 (Endocrinol. Metab. 17): E1–E15, 1988.
 96. Goldsmith, S. R. Baroreceptor‐mediated suppression of osmotically stimulated vasopressin in normal humans. J. Appl. Physiol. 65: 1226–1230, 1988.
 97. Goldsmith, S. R., A. W. Cowley, Jr., G. S. Francis, and J. N. Cohn. Effect of increased intracardiac and arterial pressure on plasma vasopressin in humans. Am. J. Physiol. 246 (Heart Circ. Physiol. 15): H647–H651, 1984.
 98. Gosselin, R. E. Rates of sweating in the desert. In: Physiology of Man in the Desert, edited by E. F. Adolph et al. New York: Interscience, 1947, p. 44–76.
 99. Grassi, G., C. Giannattasio, C. Cuspidi, G. B. Bolla, Cleroux, P. Ferrazzi, R. Fiocchi, and G. Mancia. Cardiopulmonary receptor regulation of renin release. Am. J. Med. 84 (Suppl. 34): 97–104, 1988.
 100. Green, H. J., J. A. Thompson, M. E. Ball, R. L. Hughson, M. E. Houston, and M. T. Sharratt. Alterations in blood volume following short‐term supramaximal exercise. J. Appl. Physiol. 56: 145–149, 1984.
 101. Greenleaf, J. E., R. J. Brock, L. C. Keil, and J. T. Morse. Drinking and water balance during exercise and heat acclimation. J. Appl. Physiol. 54: 414–419, 1983.
 102. Greenleaf, J. E., and B. L. Castle. Exercise temperature regulation in man during hypohydration and hyperhydration. J. Appl. Physiol. 30: 847–853, 1971.
 103. Greenleaf, J. E., and F. Sargent, II. Voluntary dehydration in man. J. Appl. Physiol. 20: 719–724, 1965.
 104. Gregersen, M. I. Blood volume. Annu. Rev. Physiol. 13: 397–412, 1951.
 105. Guggino, W. B. Potassium and cell volume. In: The Regulation of Potassium Balance, edited by D. W. Seldin, and G. Giebisch. New York: Raven, 1989, p. 121–137.
 106. Guyton, A. C. Interstitial fluid pressure II. Pressure‐volume curves of interstitial space. Circ. Res. 16: 452–460, 1965.
 107. Hagan, R. D., F. J. Diaz, and S. M. Horvath. Plasma volume changes with movement to supine and standing positions. J. Appl. Physiol. 45: 414–418, 1978.
 108. Hamilton, B., and R. Schwartz. The composition of tissues in dehydration. J. Biol. Chem. 109: 745–753, 1935.
 109. Hamilton, W. F., H. G. Barbour, and N. M. Loomis. Heat regulation and water exchange. VI. The mobilization of water and salt in warm environments. J. Physiol. (Lond.) 59: 306–311, 1924.
 110. Harris, P. J., D. Thomas, and T. O. Morgan. Atrial natriuretic peptide inhibits angiotenesin–stimulated proximal tubular sodium and water reabsorbtion. Nature 326: 697–698, 1987.
 111. Harrison, M. H. Plasma volume changes during acute exposure to a high environmental temperature. J. Appl. Physiol. 37: 38–42, 1974.
 112. Harrison, M. H. Effects of thermal stress and exercise on blood volume in humans. Physiol. Rev. 65: 149–209, 1985.
 113. Harrison, M. H., and R. J. Edwards. Measurement of change in plasma volume during heat exposure and exercise. Aviat. Space Environ. Med. 47: 1038–1045, 1976
 114. Harrison, M. H., R. J. Edwards, L. A. Cochrane, and M. J. Graveney. Blood volume and protein responses to skin heating and cooling in restling subjects. J. Appl. Physiol. 54: 515–523, 1983.
 115. Harrison, M. H., R. J. Edwards, M. J. Graveney, L. A. Cochrane, and J. A. Davies. Blood volume and plasma protein responses to heat acclimatization in humans. J. Appl. Physiol. 50: 597–604, 1981.
 116. Harrison, M. H., R. J. Edwards, and D. R. Leitch. Effect of exercise and thermal stress on plasma volume. J. Appl. Physiol. 39: 925–931, 1975.
 117. Hart, J. S., Rodents. In: Comparative Physiology of Thermoregulation. Mammals, edited by G. C. Whittow. New York: Academic, 1971, vol. II, p. 1–151.
 118. Hellman, K., K. J. Collins, C. H. Gray, R. M. Jones, J. B. Lunnon, and J. S. Weiner. The excretion of urinary adrenocortical steroids during heat stress. J. Endocrinol. 14: 209–216, 1956.
 119. Hellman, K., and J. Weiner. Antidiuretic substance in urine following exposure to high temperatures. J. Appl. Physiol. 6: 194–198, 1953.
 120. Hermansson, K., M. Larson, O. Kallskog, and M. Wolgast. Influence of renal nerve activity on arteriolar resistance, ultrafiltration dynamics and fluid reabsorption. Pflügers Arch. 389: 85–90, 1981.
 121. Higuchi, K., N. Nawata, K. Kato, and H. Ibayashi. α‐Human atrial natriuretic polypeptide inhibits sterioidogenesis in cultured human adrenal cells. J. Clin. Endocrinol. Metab. 62: 941–944, 1986.
 122. Horowitz, M., E. Sugimoto, T. Okuno, and T. Morimoto. Changes in blood volume and vascular compliance during body heating in rats. Pflügers Arch. 412: 354–358, 1988.
 123. Hortsman, D. H., and S. M. Horvath. Cardiovascular and temperature regulatory changes during progressive dehydration and euhydration. J. Appl. Physiol. 33: 446–450, 1972.
 124. Huxley, V. H., V. L. Tucker, K. M. Verburg, and R. H. Freeman. Increased capillary hydraulic conductivity induced by atrial natriuretic peptide. Circ. Res. 60: 304–307, 1987.
 125. Ishii, M., T. Sugimoto, H. Matsuoka, T. Ishimitsu, K. Atarashi, Y. Hirata, T. Sugmoto, K. Kangawa, and H. Matsuo. Blood pressure, renal, and endocrine responses to human atrial natriuretic polypeptide in healthy volunteers. Jpn. Heart J. 27: 777–789, 1986.
 126. Israel, A., and Y. Barbella. Diuretic and natriuretic action of rat atrial natriuretic peptide administered intracerebroven‐tricularly in rats. Brain Res. Bull. 17: 141–144, 1986.
 127. Itoh, S. The release of antidiuretic hormone from the posterior pituitary body on exposure to heat. Jpn. J. Physiol. 4: 185–190, 1954.
 128. Jackson, R. A. Treatise on the Fever of Jamaica. Philadelphia: Campbell, 1795.
 129. Januszewicz, P., G. Thibault, J. Gutkowska, G. R. C. Mercure, F. Jolicoeur, J. Genest, and M. Cantin. Atrial natriuretic factor and vasopressin during dehydration and rehydration in rats. Am. J. Physiol. 251 (Endocrinol. Metab. 14): E497–E501, 1986.
 130. Jones, R. V. H., and H. E. De Wardener. Urine concentration after deprivation or pitressin tannate in oil. Br. Med. J. 1: 271–274, 1956.
 131. Kawata, M., S. Ueda, K. Nakao, N. Moril, Y. Kiso, H. Imura, and Y. Sano. Immunohistochemical demonstration of α‐atrial natriuretic polypeptide containing neurons in the rat brain. Histochemistry 83: 1–3, 1985.
 132. Keith, N. M., and M. H. Power. The urinary excretion of sucrose and its distribution in the blood after intravenous injection into normal men. Am. J. Physiol. 120: 203–211, 1937.
 133. Keith, N. M., M. H. Power, and R. D. Petersen. The distribution and recovery of intravenously injected sucrose. Am. J. Physiol. 109: 62–63, 1934.
 134. Kenny, R. A., and D. H. Miller. The effect of environmental temperature on water output and the pattern of chloride excretion. Acta. Med. Scand. 135: 87–90, 1949.
 135. Kim, Y. D., C. R. Lake, D. E. Lees, W. H. Schuette, J. M. Bule, V. Weise, and I. J. Kopin. Hemodynamic and plasma catecholamine response to hyperthermic cancer therapy in humans. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H570–H574, 1979.
 136. Kirby, C. R., and V. A. Convertino. Plasma aldosterone and sweat sodium concentrations after exercise and heat acclimation. J. Appl. Physiol. 61: 967–970, 1986.
 137. Kosunen, K. J., A. J. Pakarinen, K. Kuoppasalmi, and H. Aldercreutz. Plasma renin activity, angiotensin II and aldosterone during intense heat stress. J. Appl. Physiol. 41: 323–327, 1976.
 138. Kozlowski, S., and K. Drzewiecki. The role of osmoreceptors in portal circulation in control of water intake in dogs. Acta. Physiologica Polonica 24: 325–330, 1973.
 139. Kozlowski, S., and B. Saltin. Effect of sweat loss on body fluids. J. Appl. Physiol. 19: 1119–1124, 1964.
 140. Kuno, Y. Human Perspiration. Springfield, IL: Thomas, 1956.
 141. Ladell, W. S. S. The effect of desoxycorticosterone acetate on the chloride content of sweat. J. Physiol. (Lond.) 104: 13P–14P, 1945.
 142. Ladell, W. S. S., and R. J. Shephard. Aldosterone inhibition and acclimatization to heat. J. Physiol. (Lond.) 160: 19P–20P, 1962.
 143. Ladell, W. S. S., and H. W. Whitcher. Effect of pituitrin on sweating. J. Physiol. (Lond.) 154: 44P–45P, 1960.
 144. Landis, E. M., and J. H. Gibbon. The effects of temperature and of tissue pressure on the movement of fluid through the human capillary wall. J. Clin. Invest. 12: 105–138, 1933.
 145. Lang, R. E., H. Tholken, D. Ganten, F. C. Luft, H. Ruskoaho, and T. Unger. Atrial natriuretic factor—a circulating hormone stimulated by volume loading. Nature 314: 264–266, 1985.
 146. Lanne, T., and J. Lundvall. Very rapid net transcapillary fluid absorption from skeletal muscle and skin in man during pronounced hypovolaemic circulatory street. Acta Physiol. Scand. 136: 1–6, 1989.
 147. Lappe, R. W., J. L. Dinish, F. Bex, K. Michalak, and R. L. Wendt. Effects of atrial natriuretic factor on drinking responses to central angiotensin II. Pharmacol. Biochem. Behav. 24: 1573–1576, 1986.
 148. Laragh, J. H., M. Angers, W. G. Kelley, and S. Lieberman. Hypotensive agents and pressor substances: effects of epinephrine, norepinephrine, angiotension II, and on the secretory rate of aldosterone in man. JAMA 174: 234–240, 1960.
 149. Lassiter, W. E. Regulation of sodium chloride distribution within the extracellular space. In: The Regulation of Sodium and Chloride Balance, edited by D. W. Seldin, and G. Geibisch. New York: Raven, 1990, p. 3–22.
 150. Lavietes, P. H., J. Bourdillon, and K. A. Klinghoffer. The volume of the extracellular fluids of the body. J. Clin. Invest. 15: 261–268, 1936.
 151. Lee, D. H. K., and A. G. Mulder. Some immediate effects of reduced cooling powers upon the water balance and related effects in the human subject. J. Physiol. (Lond.) 84: 410–432, 1935.
 152. Lee, D. K. Terrestrial animals in dry heat: man in the desert. In: Handbook of Physiology. Adaptation to the Environment, edited by D. B. Dill. Washington, DC: Am. Physiol. Soc., 1964, sect. 4, chapt. 35, p. 551–582.
 153. Lemon, P. W. R., K. E. Yarasheski, and D. G. Dohny. Validity/reliability of sweat analysis by whole body wash down vs. regional collection. J. Appl. Physiol. 61: 1967–1971, 1986
 154. Lind, A. R. A physiological criterion for setting thermal environmental limits for everyday work. J. Appl. Physiol. 18: 51–56, 1963.
 155. MacFarlane, W., and R. Robinson. Seasonal changes in plasma antidiuretic activity produced by a standard heat stimulus. J. Physiol. (Lond.) 135: 111, 1957.
 156. May, C. D. Electrolyte excretion by sweat glands and kidneys. Am. J. Dis. Children 109: 2–8, 1965.
 157. McCarty, R., and L. M. Plunkett. Forebrain binding sites for atrial natriuretic factor: alterations in spontaneously hypertensive (SHR) rates. Neurochem. Int. 9: 177–183, 1986.
 158. Miki, K., T. Morimoto, H. Nose, T. Itoh, and S. Yamada. Canine blood volume and cardiovascular function during hyperthermia. J. Appl. Physiol. 55: 300–306, 1983.
 159. Miki, K. T., H. Nose, Y. Tanaka, and T. Morimoto. Transcapillary protein flux following blood volume modification in dog. Jpn. J. Physiol. 34: 985–994, 1984.
 160. Mitchell, J. W., E. R. Nadel, and J. A. Stolwijk. Respiratory weight losses during exercise. J. Appl. Physiol. 32: 474–476, 1972.
 161. Moreira, M., R. E. Johnson, A. P. Forbes, and F. Consolazio. Adrenal cortex and work in the heat. Am. J. Physiol. 143: 169–176, 1945.
 162. Morimoto, T. Thermoregulation and body fluids: role of blood volume and central venous pressure. Jpn. J. Physiol. 40: 165–179, 1990.
 163. Morimoto, T., K. Miki, H. Nose, T. Itoh, and S. Yamada. Changes in vascular compliance during hyperthermia. J. Therm. Biol. 9: 149–151, 1984.
 164. Morimoto, T., K. Miki, H. Nose, Y. Tanaka, and S. Yamada. Transvascular fluid shifts after blood volume modification in relation to compliance of the total vascular and the interstitial fluid space. Jpn. J. Physiol. 31: 869–878, 1981.
 165. Morimoto, T., K. Miki, H. Nose, S. Yamada, K. Hirakawa, and C. Matsubara. Changes in body fluid volume and its composition during heavy sweating and the effect of fluid electrolyte replacement. Jpn. J. Biometeorol. 18: 31–39, 1981.
 166. Morimoto, T., K. Shiraki, K. Miki, and Y. Tanaka. Effect of exercise and thermal stress on subcutaneous protein transport. Jpn. J. Physiol. 29: 559–567, 1979.
 167. Myhre, L. G., H. Hartung, and D. M. Tucker. Plasma volume and blood metabolites in middle‐aged runners during a warm‐weather marathon. Eur. J. Appl. Physiol. 48: 227–240, 1982.
 168. Myhre, L. G., and S. Robinson. Fluid shifts during thermal stress with and without fluid replacement. J. Appl. Physiol. 42: 252–256, 1977.
 169. Nadel, E. R., C. B. Wenger, M. F. Roberts, J. A. J. Stolwijk, and E. Cafarelli. Physiological defenses against hyperthermia of exercise. In: The Marathon: Physiological, Medical, Epidemiological and Psychological Studies, edited by P. Milvy. New York: N. Y. Acad. Sci., 1977, p. 98–109.
 170. Nakamura, M., G. Katsura, K. Naskao, and H. Imura. Antidipsogenic action of α‐human atrial natriuretic polypeptide administered intracerebroventricularly in rats. Heurosci. Lett. 58: 1–6, 1985.
 171. Nichols Jr., G., N. Nichols, W. B. Weil, and W. M. Wallace. The direct measurement of the extracellular phase of tissues. J. Clin. Invest. 32: 1299–1308, 1953.
 172. Nielsen, B., J. R. Hales, S. Strange, N. J. Christensen, J. Warberg, and B. Saltin. Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J. Physiol. (Lond.) 460: 467–485, 1993.
 173. Nielsen, B., G. Hansen, S. O. Jorgensen, and E. Nielsen. Thermoregulation in exercising man during dehydration and hyperhydration with water and saline. Int. J. Biometeorol. 15: 195–200, 1971.
 174. Nielsen, M. Die Regulation der korpertemperatur bei muskelarbeit. Scand. Arch. Physiol. 79: 193–230, 1938.
 175. Nose, H., G. W. Mack, X. Shi, and E. R. Nadel. Involvement of sodium retention hormones during rehydration in humans. J. Appl. Physiol. 65: 332–336, 1988.
 176. Nose, H., G. W. Mack, X. Shi, and E. R. Nadel. Role of osmolality and plasma volume during rehydration in humans. J. Appl. Physiol. 65: 325–331, 1988.
 177. Nose, H., G. W. Mack, X. Shi, and E. R. Nadel. Shift in body fluid compartments after dehydration in humans. J. Appl. Physiol. 65: 318–324, 1988.
 178. Nose, H., T. Morimoto, and K. Ogura. Distribution of water losses among fluid compartments of tissues under thermal dehydration in the rat. Jpn. J. Physiol. 33: 1019–1029, 1983
 179. Nose, H., M. Morita, T. Yawata, and T. Morimoto. Recovery of blood volume and osmolality after thermal dehydration in rats. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 20): R492–R498, 1986.
 180. Nose, H., T. Yawata, and T. Morimoto. Osmotic factors in restitution from thermal dehydration in rats. Am. J. Physiol. 249 (Regulatory Integrative Comp. Physiol. 18): R166–R171, 1985.
 181. Olszewski, W., A. Engeset, P. M. Jaeger, J. Sokolowski, and L. Theodorsen. Flow and composition of leg lymph in normal men during venous stasis, muscular activity, and local hyperthermia. Acta. Physiol. Scand. 99: 149–155, 1977.
 182. Owen, M. D., R. D. Matthes, and C. V. Gisolfi. Effect of cerebrospinal fluid hyperosmolality on sweating in the heat‐stressed patas monkey. J. Appl. Physiol. 67: 128–133, 1989.
 183. Owen, M. D., R. D. Matthes, and C. V. Gisolfi. Effect CSF ANG II and AVP on sweating in the heat‐stressed patas monkey. J. Appl. Physiol. 67: 134–140, 1989.
 184. Pace, N., L. Kline, H. K. Schachman, and M. Harfenist. Studies on body composition. IV. Use of radioactive hydrogen for measurement in vivo of total body water. J. Biol. Chem. 168: 459–469, 1947.
 185. Pappenheimer, J. R. Passage of molecules through capillary walls. Physiol. Rev. 33: 387–423, 1953.
 186. Pearcy, M. S., S. Robinson, D. I. Miller, J. T. Thomas, and J. DeBrota. Effects of dehydration, salt depletion, and pitressin on sweat rate and urine flow. J. Appl. Physiol. 8: 621–626, 1956.
 187. Pitts, G. C., R. E. Johnson, and F. C. Consolazio. Work in the heat as affected by intake of water, salt and glucose. Am. J. Physiol. 142: 253–259, 1944.
 188. Pitts, R. F. Physiology of the Kidney and Body Fluids (3rd ed.). Chicago: Year Book, 1974.
 189. Prentice, T. C., W. Siri, N. I. Berlin, G. M. Hyde, R. J. Parsons, E. E. Joiner, and J. H. Lawrence. Studies of total body water with tritium. J. Clin. Invest. 31: 412–418, 1952.
 190. Proppe, D. W. Effect of sodium depletion on peripheral vascular responses to heat stress in baboons. J. Appl. Physiol. 62: 1538–1543, 1987.
 191. Pugh, L. G., J. L. Corbett, and R. H. Johnson. Rectal temperatures, weight losses and sweat rates in marathon running. J. Appl. Physiol. 23: 347–352, 1967.
 192. Radigan, L. R., and S. Robinson. Effects of environmental heat stress and exercise on renal blood flow and filtration rate. J. Appl. Physiol. 2: 185–191, 1949.
 193. Reeves, E. B. Methods of estimating plasma and total red cell volume. Nutri. Abst. Rev. 17: 811–834, 1948.
 194. Robertshaw, D. Central and peripheral osmoreceptors. Acta. Physiol. Scand. 136 (Suppl. 583): 151–156, 1989.
 195. Robinson, S., R. K. Kincaid, and R. K. Rhamy. Effects of desoxycorticosterone acetate on acclimatization of men to heat. J. Appl. Physiol. 2: 399–406, 1950.
 196. Robinson, S., and A. H. Robinson. Chemical composition of sweat. Physiol. Rev. 34: 202–220, 1954.
 197. Rocker, L., K. Kirsch, and B. Agrawal. Long‐term observations on plasma anti‐diuretic hormone levels during and after heat stress. J. Appl. Physiol. 49: 59–62, 1982.
 198. Rothstein, A., E. F. Adolph, and J. H. Wills. Voluntary dehydration. In: Physiology of Man in the Desert, edited by E. F. Adolph et al. New York: Interscience, 1947, p. 254–270.
 199. Rothstein, A., and E. J. Towbin. Blood circulation and temperature of men dehydrating in the heat. In: Physiology of Man in the Desert, edited by E. F. Adolph et al. New York: Interscience, 1947, p. 172–196.
 200. Rowell, L. B. Human cardiovascular adjustments to thermal stress. In: Handbook of Physiology. The Cardiovascular System. Peripheral Circulation and Organ Blood Plow, edited by J. T. Shepherd, and F. M. Abboud. Bethesda, MD: Am. Physiol. Soc., 1983, sect. 2, vol. III, p. 967–1023.
 201. Rowell, L. B., G. L. Brengelmann, J. M. R. Detry, and C. Wyss. Venomotor responses to rapid changes in skin temperature in exercising man. J. Appl. Physiol. 30: 64–71, 1971.
 202. Rowell, L. B., K. K. Kraning, J. W. Kennedy, and T. O. Evans. Central circulatory responses to work in dry heat before and after acclimatization. J. Appl. Physiol. 22: 509–518, 1967.
 203. Ruch, T. C., and H. D. Patton. Physiology and Biophysics (20th Ed.). Philadelphia: Saunders, 1974.
 204. Rydin, H., and E. B. Verney. The inhibition of water diuresis by emotional stress and by muscular exercise. Q. J. Exp. Physiol. 27: 343–374, 1938.
 205. Saltin, B. Circulatory response to submaximal and maximal exercise after thermal dehydration. J. Appl. Physiol. 19: 1125–1132, 1964.
 206. Saltin, B., and J. Stenberg. Circulatory response to prolonged severe exercise. J. Appl. Physiol. 19: 833–838, 1964.
 207. Samson, W. K. Atrial natriuretic factor inhibits dehydration and hemorrhage‐induced vasopressin release. Neuroendocrinology 40: 277–279, 1985.
 208. Samson, W. K. Dehydration‐induced alterations in rat brain vasopressin and atrial natriuretic factor immunoreactivity. Endocrinology 117: 1279–1281, 1985.
 209. Sato, K., W. H. Kang, and K. T. Sato. Biology of sweat glands and their disorders. I. Normal sweat gland function. J. Am. Acad. Dermatol 20: 537–563, 1989.
 210. Sawka, M., R. P. Francesconi, N. A. Pimental, and K. B. Pandolf. Hydration and vascular fluid shifts during exercise in the heat. J. Appl. Physiol. 56: 91–96, 1984.
 211. Sawka, M. N. Body fluid responses and hypohydration during exercise‐heat stress. In: Human Performance Physiology and Environmental Medicine at Terrestrial Extremes, edited by K. B. Pandolf. Indianapolis, IN: Benchmark, Inc. 1988, p. 227–266.
 212. Sawka, M. N., R. P. Francesconi, A. J. Young, and K. B. Pandolf. Influence of hydration level and body fluids on exercise performance in the heat. JAMA 252: 1165–1169, 1984.
 213. Sawka, M. N., and K. B. Pandolf. Effects of body water loss on physiological function and exercise performance. In: Perspectives in Exercise Science and Sports Medicine. Fluid Homeostatis During Exercise, edited by C. V. Gisolfi, and D. R. Lamb. Indiana, IN: Benchmark, 1990, vol. 3, p. 1–38.
 214. Sawka, M. N., M. M. Toner, R. P. Francesconi, and K. B. Pandolf. Hypohydration and exercise: effects of heat acclimation, gender, and environment. J. Appl. Physiol. 55: 1147–1153, 1983.
 215. Sawka, M. N., A. J. Young, R. P. Francesconi, S. R. Muza, and K. B. Pandolf. Thermoregulatory and blood responses during exercise at graded hypohydration levels. J. Appl. Physiol. 59: 1394–1401, 1985.
 216. Schmidt‐Nielsen, K. Animal Physiology: Adaption and Environment (3rd ed.). Cambridge: Cambridge University Press, 1983.
 217. Schmidt‐Nielsen, K., B. Schmidt‐Nielsen, S. A. Jarnum, and T. R. Houpt. Body temperature of the camel and its relation to water economy. Am. J. Physiol. 188: 103–112, 1967.
 218. Schrier, R. W., T. Beri, and R. J. Anderson. Osmotic and non‐osmotic control of vasopressin release. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F321–F332, 1979.
 219. Schiitten, H. J., A. C. Johannessen, C. Torp‐Pedersen, K. Sander‐Jensen, P. Bie, and J. Warbert. Central venous pressure—a physiological stimulus from secretion of atrial natriuretic peptide in humans? Acta Physiol. Scand. 131: 265–272, 1987.
 220. Schütten, H. J., M. Kamp‐Jensen, L. K. Olesen, V. Bach, and A. Engquist. Time relationship between changes in central venous pressure and the secretion of atrial natriuetic peptide in humans. Acta Physiol. Scand. 134: 449–450, 1988.
 221. Senay Jr., L. C. Relationship of evaporative rates to serum [Na+], [K+] and osmolarity in acute heat stress. J. Appl. Physiol. 25: 149–152, 1968.
 222. Senay, Jr., L. C. Movement of water, protein and crystalloids between vascular and extravascular compartments in heat‐exposed men during dehydration and following limited relief of dehydration. J. Physiol. (Land.) 210: 617–635, 1970.
 223. Senay, Jr., L. C. Changes in plasma volume and protein content during exposures of working men to various temperatures before and after acclimatization to heat: separation of the role of cutaneous and skeletal muscle circulation. J. Physiol. (Lond.) 224: 61–81, 1972.
 224. Senay, Jr., L. C. Body fluids and temperature responses of heat‐exposed women before and after ovulation with and without rehydration. J. Physiol. (Lond.) 232: 209–219, 1973.
 225. Senay, Jr., L. C. Plasma volumes and constituents of heatexposed men before and after acclimatization. J. Appl. Physiol. 38: 570–575, 1975.
 226. Senay, Jr., L. C. Early response of plasma contents on exposure of working men to heat. J. Appl. Physiol. 44: 166–170, 1978.
 227. Senay, Jr., L. C. Temperature regulation and hypohydration: a singular view. J. Appl. Physiol. 47: 1–7, 1979.
 228. Senay, Jr., L. C., and M. L. Christensen. Changes in blood plasma during progressive dehydration. J. Appl. Physiol. 20: 1136–1140, 1965.
 229. Senay, Jr., L. C., and M. L. Christensen. Variations of certain blood constituents during acute heat exposure. J. Appl. Physiol. 24: 302–309, 1968.
 230. Senay, Jr., L. C., D. Mitchell, and C. H. Wyndham. Acclimatization in a hot, humid environment: body fluid adjustments. J. Appl. Physiol. 40: 786–796, 1976.
 231. Senay, Jr., L. C., G. Rogers, and P. Jooste. Changes in blood plasma during progressive treadmill and cycle exercise. J. Appl. Physiol. 49: 59–65, 1980.
 232. Shapiro, Y., R. Hubbard, M. Kimbrough, and K. B. Pandolf. Physiological and hematological responses to summer and winter dry‐heat acclimation. J. Appl. Physiol. 50: 792–798, 1981.
 233. Shapiro, Y., K. B. Pandolf, and R. F. Goldman. Predicting sweat loss response to exercise, environment, and clothing. Eur. J. Appl. Physiol. 48: 83–96, 1982.
 234. Share, L., and J. Claybaugh. Regulation of body fluids. Ann. Rev. Physiol. 34: 235–260, 1972.
 235. Shore, A. C., N. D. Markandu, G. Sagnella, A. D. R. J. Singer, M. L. Forsling, M. G. Buckley, A. L. Sugden, and G. A. MacGregor. Endocrine and renal response to water loading and water restriction in normal man. Clin. Sci. 75: 171–177, 1988.
 236. Simon, E., and W. Riedel. Diversity of regional sympathetic outflow in integrative cardiovascular control: patterns and mechanisms. Brain Res. 87: 323–333, 1975.
 237. Sjostrand, T. Volume and distribution of blood and their significance in regulating the circulation. Physiol. Rev. 33: 202–228, 1953.
 238. Smiles, K. A., and S. Robinson. Sodium ion conservation during acclimatization of men to work in the heat. J. Appl. Physiol. 31: 63–69, 1971.
 239. Smith, J. H., S. Robinson, and M. Pearcy. Renal responses to exercise, heat and dehydration. J. Appl. Physiol. 4: 659–665, 1952.
 240. Smith, W. W., N. Finkelstein, and H. W. Smith. Renal excretion of hesitols (sorbitol, mannitol, and dulcitol) and their derivatives (sorbitan, isomannide and sorbide) and exogenous creatine‐like chromogen in dogs and man. J. Biol. Chem. 135: 231–250, 1940.
 241. Soberman, R. J., B. B. Brtodie, B. B. Levy, J. Axelrod, V. Hollander, and J. M. Steele. The use of antipyrine in the measurement of total body water in man. J. Biol. Chem. 179: 31–42, 1949.
 242. Spector, S. W. Handbook of Biological Data. Philadelphia: Saunders, 1956.
 243. Starling, E. H. The influence of mechanical factors on lymph production. J. Physiol. (Lond.) 16: 224–267, 1894
 244. Starling, E. H. On the absorption of fluids from the connective tissue spaces. J. Physiol. (Lond.) 19: 312–326, 1896
 245. Steiner, M., and M. I. Phillips. Renal tubular vasopressin receptors downregulated by dehydration. Am. J. Physiol. 254 (Cell Physiol. 23): C404–C410, 1988.
 246. Sugimoto, E., K. Shigemi, T. Okuno, T. Yawata, and T. Morimoto. Effect of ANP on circulating blood volume. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R127–R131, 1989.
 247. Sunderstroem, E. S. The physiologcial effects of tropical climate. Physiol. Rev. 7: 320–362, 1927.
 248. Takamata, A., G. W. Mack, C. M. Gillen, and E. R. Nadel. Sodium appetite and thirst in humans during rehydration without sodium replacement. Am. J. Physiol. 266 (Regulatory Integrative Comp. Physiol. 35): R1493–R1502, 1994.
 249. Thompson, C. J., J. Bland, J. Burd, and P. H. Baylis. The osmotic thresholds for thirst and vasopressin release are similar in healthy man. Clin. Sci. 71: 651–656, 1986.
 250. Thorton, R. M., and D. W. Proppe. Attenuation of hindlimb vasodilation in heat stressed baboons during dehydration. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 19): R30–R35, 1986.
 251. Thrasher, T. N. Role of forebrain circumventricular organs in body fluid balance. Acta Physiol. Scand. 136 (Suppl. 583): 141–150, 1989.
 252. Tripathi, A., X. Shi, C. B. Wenger, and E. R. Nadel. Effect of temperature and baroreceptor stimulation on reflex venomotor responses. J. Appl. Physiol. 57: 1384–1392, 1984.
 253. Trippodo, N. C., F. E. Cole, E. D. Frohlich, and A. A. Macphee. Atrial natriuretic peptide decreases circulatory capacitance in areflexic rats. Circ. Res. 59: 291–296, 1986.
 254. Turlejska, E., and M. A. Baker. Elevated CSF osmolality inhibits thermoregulatory heat loss responses. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 20): R749–R754, 1986.
 255. van Beaumont, W. Evaluation of hemoconcentration from hematocrit measurements. Am. J. Physiol. 32: 712–713, 1972.
 256. van Beaumont, W., S. Underkofler, and S. van Beaumont. Erythrocyte volume, plasma volume, and acid‐base changes in exercise and heat dehydration. J. Appl. Physiol. 50: 1255–1262, 1981.
 257. van Beaumont, W., H. L. Young, and J. E. Greenleaf. Plasma fluid and blood constituent shifts during heat exposure in resting men. Aerospace Med. 45: 176–181, 1974.
 258. Verney, E. B. The antidiuretic hormone and the factors which determine its release. Proc. R. Soc. Lond. B. Biol. Sci. 135: 25–106, 1947.
 259. Wade, C. E., S. R. Ramee, M. M. Hunt, and C. J. White. Hormonal and renal responses to converting enzyme inhibition during maximal exercise. J. Appl. Physiol. 63: 1796–1800, 1987.
 260. Wallace, W. M., K. Goldstein, A. Taylor, and T. M. Teree. Thermal dehydration of the rat: distribution of losses among tissues. Am. J. Physiol. 219: 1544–1548, 1970.
 261. Waterfield, R. L. The effects of posture on the circulating blood volume. J. Physiol. (Lond.) 72: 110–120, 1931.
 262. Webb‐Peploe, M. M., and J. T. Shepherd. Responses of superficial limb veins of the dog to changes in temperature. Circ. Res. 22: 737–746, 1968.
 263. Weiner, J. S. The diuretic response of men working in hot and humid conditions. J. Appl. Physiol. (Lond.) 103: 36P, 1944.
 264. Weiner, J. S. Human adaptability to hot conditions of deserts. In: Biology of Deserts, edited by J. L. Cloudsley‐Thompson. London: Inst. Biol., 1954, p. 193–199.
 265. Wenger, C. B., L. A. Stephenson, and M. A. Durkin. Effects of nerve block on response of forearm to local temperature. J. Appl. Physiol. 61: 227–232, 1986.
 266. White, H. L., and D. Rolf. Whole tissue electrolye analysis in normal and adrenalectomized rats. Am. J. Physiol. 180: 287–295, 1955.
 267. Wigg, H., and R. K. Reed. Volume‐pressure relationship (compliance) of interstitium in dog skin and muscle. Am. J. Physiol. 253 (Heart Circ. Physiol. 22): H291–H298, 1987.
 268. Williams, M. E., and F. H. Epstein. Internal exchanges of potassium. In: The Regulation of Potassium Balance, edited by D. W. Seldin, and G. Giebisch. New York: Raven, 1989.
 269. Winslow, C., L. P. Herrington, and A. P. Gagge. Physiological reactions of the human body to varying environmental temperatures. Am. J. Physiol. 120: 1–22, 1937.
 270. Wyndham, C. H., A. J. A. Benade, C. G. Williams, N. B. Strydom, A. Goldin, and A. J. A. Heyns. Changes in central circulation and body fluid spaces during acclimatization to heat. J. Appl. Physiol. 25: 586–593, 1968.
 271. Yamashita, H. J., H. Kannan, K. Inenaga, and K. Koisumi. Influence of muscle receptors on neurons of the supraoptic nucleus. In: Advances in Physiological Science, edited by E. Stark, G. B. Makara, Z. Acs, and E. Endroczi. New York: Pergammon, 1981, vol. 113, p. 335–340.
 272. Zweens, J., H. Frankena, P. Rispens, and W. G. Zijlstra. Determination of extracellular fluid volume in the dog with ferrocyanide. Pflügers Arch. 357: 275–290, 1975.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Gary W. Mack, Ethan R. Nadel. Body Fluid Balance During Heat Stress in Humans. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 187-214. First published in print 1996. doi: 10.1002/cphy.cp040110