Comprehensive Physiology Wiley Online Library

Central Regulation of Adaptive Responses to Heat and Cold

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 New Aspects in Neurotransmission
1.1 Central Sensors and Transmitters
1.2 Release and Action of Central Transmitters
1.3 Receptors for Neurotransmitters
1.4 Long‐Term Effects of Neurotransmitters
1.5 Consequences for Evaluation of Experiments
2 Hypothalamic Pathways and Functions
2.1 Systems Relating Brain and Body
2.2 Hypothalamic Connections within the Brain
3 Examples for Thermoadaptive Modifications of Hypothalamic Homeostatic Systems
3.1 Thermoadaptive Modifications in Heat Balance
3.2 Thermoadaptive Modifications in Water Balance
3.3 Thermoadaptive Modifications in Immune Balance
4 Conclusions
Figure 1. Figure 1.

Comparison of time courses of different adaptive mechanisms (curves) and of actions of different neuroactive substances (bars). Modified after 12 and 79.

Figure 2. Figure 2.

Schematic representation of interactions between central and peripheral signal substances. In addition to somatic nerves, the CNS influences peripheral tissues by means of signal substances released from autonomic nerves and the neuroendocrine system. In turn, the peripheral signal substances released from autonomic, endocrine, and immune systems, together with metabolic substrates and products, influence the CNS in addition to signals from sensory systems. On the parasagittal section of the guinea pig brain (top) the slightly shaded areas represent the multiple neurotransmitter systems of the medial forebrain bundle. Shaded areas represent the distribution of hypothalamic neuroendocrine cells sending axons not only to the median eminence and neurohypophysis but also to different hypothalamic and extrahypothalamic sites, such as limbic septum, amygdala, or lower brain stem. Arrows protruding from the medial panel representing circulating blood indicate the special neurohemal exchange sites in some circumventricular organs, such as the subfornical organ, the organum vasculosum of the lamina terminalis, the median eminence, and the posterior lobe of pituitary or the area postrema in the lower brain stem. A, adrenaline; A II, angiotensin II; ANF, atrial natriuretic factor; DA, dopamine; FSH, follicle‐stimulating hormone; GH, growth hormone; LH, luteinizing hormone; LPH, lipotropin; NA, noradrenaline; OT, oxytocin; PL, prolactin; PTH, parathyroid hormone; T3, triiodothyronine; T4 thyroxine.

Figure 3. Figure 3.

Parasagittal and frontal sections of the guinea pig brain showing limbic preoptic‐septal areas (LP‐SA), anterior hypothalamic (AH) areas, and posterior hypothalamic (PH) areas influenced by microinjected or microinfused drugs. Shaded areas in the lower diagram represent locations and sizes of microinjections. APO, anterior‐posterior zero; ARC, arcuate nucleus; BNST, bed nucleus of stria terminalis; DBB, dorsal band of Broca; DMN, dorsomedial hypothalamic nucleus; LHA, lateral hypothalamic area; LSN, lateral septal nucleus; MPN, medial preoptic nucleus; MSN, medial septal nucleus; oc, optic chiasm; SCN, suprachiasmatic nucleus; Th, thalamus.



Figure 1.

Comparison of time courses of different adaptive mechanisms (curves) and of actions of different neuroactive substances (bars). Modified after 12 and 79.



Figure 2.

Schematic representation of interactions between central and peripheral signal substances. In addition to somatic nerves, the CNS influences peripheral tissues by means of signal substances released from autonomic nerves and the neuroendocrine system. In turn, the peripheral signal substances released from autonomic, endocrine, and immune systems, together with metabolic substrates and products, influence the CNS in addition to signals from sensory systems. On the parasagittal section of the guinea pig brain (top) the slightly shaded areas represent the multiple neurotransmitter systems of the medial forebrain bundle. Shaded areas represent the distribution of hypothalamic neuroendocrine cells sending axons not only to the median eminence and neurohypophysis but also to different hypothalamic and extrahypothalamic sites, such as limbic septum, amygdala, or lower brain stem. Arrows protruding from the medial panel representing circulating blood indicate the special neurohemal exchange sites in some circumventricular organs, such as the subfornical organ, the organum vasculosum of the lamina terminalis, the median eminence, and the posterior lobe of pituitary or the area postrema in the lower brain stem. A, adrenaline; A II, angiotensin II; ANF, atrial natriuretic factor; DA, dopamine; FSH, follicle‐stimulating hormone; GH, growth hormone; LH, luteinizing hormone; LPH, lipotropin; NA, noradrenaline; OT, oxytocin; PL, prolactin; PTH, parathyroid hormone; T3, triiodothyronine; T4 thyroxine.



Figure 3.

Parasagittal and frontal sections of the guinea pig brain showing limbic preoptic‐septal areas (LP‐SA), anterior hypothalamic (AH) areas, and posterior hypothalamic (PH) areas influenced by microinjected or microinfused drugs. Shaded areas in the lower diagram represent locations and sizes of microinjections. APO, anterior‐posterior zero; ARC, arcuate nucleus; BNST, bed nucleus of stria terminalis; DBB, dorsal band of Broca; DMN, dorsomedial hypothalamic nucleus; LHA, lateral hypothalamic area; LSN, lateral septal nucleus; MPN, medial preoptic nucleus; MSN, medial septal nucleus; oc, optic chiasm; SCN, suprachiasmatic nucleus; Th, thalamus.

References
 1. Barbanel, G., G. Ixart, A. Chavanieu, and I. Assenmacher. Evaluation by push–pull cannulation of ACTH in the cerebrospinal fluid of intact and hypophysectomized rats. Brain Res. Bull. 21: 163–167, 1988.
 2. Barbanel, G., G. Ixart, A. Szafarczyk, F. Malaval, and I. Assenmacher. Intrahypothalamic infusion of interleukin‐1β increases the release of corticotropin‐releasing hormone (CRH 41) and adrenocorticotropic hormone (ACTH) in free‐moving rats bearing a push–pull cannula in the median eminence. Brain Res. 516: 31–36, 1990.
 3. Behr, R., E. Zeisberger, and G. Merker. Response of the guineapig (Cavia aperea porcellus) to external cooling after aminergic denervation of the anterior hypothalamus. J. Therm. Biol. 8: 125–128, 1983.
 4. Blalock, J. E., A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol. Rev. 69: 1–32, 1989.
 5. Blatteis, C. M., Neuromodulative actions of cytokines. Yale J. Biol. Med. 63: 133–146, 1990.
 6. Blatteis, C. M., S. L. Bealer, W. S. Hunter, J. Llanos‐Q, R. A. Ahokas, and T. A. Mashburn, Jr, Suppression of fever after lesions of the anteroventral third ventricle in guinea pigs. Brain Res. Bull. 11: 519–526, 1983.
 7. Bligh, J., The central neurology of mammalian thermoregulation. Neuroscience 4: 1213–1236, 1979.
 8. Boulant, J. A., and N. L. Silva. Multisensory hypothalamic neurons may explain interactions among regulatory systems. NIPS 4: 245–248, 1989.
 9. Brück, K., Neonatal thermal regulation. In: Fetal and Neonatal Physiology, edited by A. Polin and W. W. Fox. Philadelphia: Saunders, 1992, p. 488–514.
 10. Brück, K., and P. Hinckel. Thermoafferent networks and their adaptive modifications. In: Thermoregulation: Physiology and Biochemistry, edited by E. Schönbaum and P. Lomax. New York: Pergamon, 1990, p. 129–152.
 11. Brück, K., and W. Wünnenberg. Meshed control of two effector systems: non‐shivering and shivering thermogenesis. In: Physiological and Behavioral Temperature Regulation, edited by J. D. Hardy, A. P. Gagge, and J. A. Stolwijk. Springfield, IL: Thomas, 1970, p. 562–580.
 12. Brück, K., and E. Zeisberger. Adaptive changes in thermoregulation and their neuropharmacological basis. In: Thermoregulation: Physiology and Biochemistry, edited by E. Schönbaum and P. Lomax. New York: Pergamon, 1990, p. 255–307.
 13. Clark, W. G., and Y. L. Clark. Changes in body temperature after administration of adrenergic and serotonergic agents and related drugs including antidepressants. Neurosci. Biobehav. Rev. 4: 281–375, 1980.
 14. Clark, W. G., and J. M. Lipton. Brain and pituitary peptides in thermoregulation. In: Thermoregulation: Pathology, Pharmacology and Therapy, edited by E. Schönbaum, and P. Lomax. New York: Pergamon, 1991, p. 509–560.
 15. Cooper, K. E., The neurobiology of fever: thoughts on recent developments. Annu. Rev. Neurosci. 10: 297–324, 1987.
 16. Cooper, K. E., S. Blähser, T. J. Malkinson, G. Merker, J. Roth, and E. Zeisberger. Changes in body temperature and vasopressin content of brain neurons, in pregnant and non‐pregnant guinea pigs, during fevers produced by poly I: poly C. Pflugers Arch. 412: 292–296, 1988.
 17. Cunningham, E. T., Jr., and P. E. Sawchenko. Reflex control of magnocellular vasopressin and oxytocin secretion. TINS 14: 406–411, 1991.
 18. Dantzer, R., and K. W. Kelley. Stress and immunity: an integrated view of relationships between the brain and the immune system. Life Sci 44: 1995–2008, 1989.
 19. Dascombe, M. J., The pharmacology of fever. Prog. Neurobiol. 25: 327–373, 1985.
 20. De Boer, S. F., J. L. Slangen, and J. Van Der Gugten. Adaptation of plasma catecholamine and corticosterone responses to short‐term repeated noise stress in rats. Physiol. Behav. 44: 273–280, 1988.
 21. Dermietzel, R., and D. Krause. Molecular anatomy of the blood‐brain barrier as defined by immunocytochemistry. Int. Rev. Cytol. 127: 57–109, 1991.
 22. Dreifuss, J. J., E. Tribollet, M. Goumaz, M. Dubois‐Dauphin, and M. Raggenbass. Vasopressin receptor localization and neuronal responsiveness in the rat brain. In: Vasopressin, edited by S. Jard and R. Jamison. Montrouge, France: Libbey, 1991, p. 159–166.
 23. Esterle, T. M., and E. Sanders‐Bush. From neurotransmitter to gene: identifying the missing links. TIPS 12: 375–379, 1991.
 24. Falke, N., Modulation of oxytocin and vasopressin release at the level of the neurohypophysis. Prog. Neurobiol. 36: 465–484, 1991.
 25. Feldberg, W., and R. D. Myers. A new concept of temperature regulation by amines in the hypothalamus. Nature 200: 1325, 1963.
 26. Fregly, M. J., Activity of the hypothalamic–pituitary–thyroid axis during exposure to cold. In: Thermoregulation: Physiology and Biochemistry, edited by E. Schönbaum and P. Lomax. New York: Pergamon, 1990, p. 437–494.
 27. Fregly, M. J., Water and electrolyte exchange during exposure to cold. In: Thermoregulation: Pathology, Pharmacology and Therapy, edited by E. Schönbaum and P. Lomax. New York: Pergamon, 1991, p. 455–487.
 28. Hall, A. K., and M. S. Rao. Cytokines and neurokines: related ligands and related receptors. TINS 15: 35–37, 1992.
 29. Heldmaier, G., S. Klaus, H. Wiesinger, U. Friedrichs, and M. Wenzel. Cold acclimation and thermogenesis. In: Living in the Cold II, edited by A. Malan and B. Canguilhem. Paris: Libbey, 1989, p. 347–358.
 30. Hellon, R., Y. Townsend, H. P. Laburn, and D. Mitchell. Mechanisms of fever. In: Thermoregulation: Pathology, Pharmacology and Therapy, edited by E. Schönbaum and P. Lomax. New York: Pergamon, 1991, p. 19–54.
 31. Hellon, R. F., Monoamines, pyrogens and cations: their actions on central control of body temperature. Pharmacol. Rev. 26: 289–321, 1975.
 32. Herman, J. P., S. J. Wiegand, and S. J. Watson. Regulation of basal corticotropin‐releasing hormone and arginine vasopressin messenger ribonucleic acid expression in the paraventricular nucleus: effects of selective hypothalamic deafferentations. Endocrinology 127: 2408–2417, 1990.
 33. Hermus, A. R. M. M., and C. G. J. Sweep. Cytokines and the hypothalamic‐pituitary‐adrenal axis. J. Steroid Biochem. Mol. Biol. 37: 867–871, 1990.
 34. Himms‐Hagen, J., Brown adipose tissue thermogenesis: role in thermoregulation, energy regulation and obesity. In: Thermoregulation: Physiology and Biochemistry, edited by E. Schönbaum and P. Lomax. New York: Pergamon, 1990, p. 327–414.
 35. Hori, T., T. Nakashima, H. Koga, T. Kiyohara, and T. Inoue. Convergence of thermal, osmotic and cardiovascular signals on preoptic and anterior hypothalamic neurons in the rat. Brain Res. Bull. 20: 879–885, 1988.
 36. Hori, T., T. Nakashima, S. Take, Y. Kaizuka, T. Mori, and T. Katafuchi. Immune cytokines and regulation of body temperature, food intake and cellular immunity. Brain Res. Bull. 27: 309–313, 1991.
 37. Imura, H., J. Fukata, and T. Mori. Cytokines and endocrine function: an interaction between the immune and neuroendocrine systems. Clin. Endocrinol. (Oxf.) 35: 107–115, 1991.
 38. Iriki, M., Fever and fever syndrome—current problems. Jpn. J. Physiol. 38: 233–250, 1988.
 39. Jessen, C., Thermal afferents in the control of body temperature. In: Thermoregulation: Physiology and Biochemistry, edited by E. Schönbaum and P. Lomax. New York: Pergamon, 1990, p. 153–183.
 40. Johansson, B. B., The physiology of the blood–brain barrier. Adv. Exp. Med. Biol. 274: 25–40, 1990.
 41. Johnson, A. K., and A. D. Loewy. Circumventricular organs and their role in visceral functions. In: Central Regulation of Autonomic Functions, edited by A. D. Loewy and K. Spyer. New York: Oxford University Press, 1990, p. 247–267.
 42. Julius, D., Molecular biology of serotonin receptors. Annu. Rev. Neurosci. 14: 335–360, 1991.
 43. Kaltenbach, J. C., Endocrine aspects of homeostasis. Am. Zool. 28: 761–773, 1988.
 44. Kasting, N. W., Criteria for establishing a physiological role for brain peptides. A case in point: the role of vasopressin in thermoregulation during fever and antipyresis. Brain Res. Rev. 14: 143–153, 1989.
 45. Kasting, N. W., A rationale for centuries of therapeutic bloodlettings; antipyretic therapy for febrile diseases. Perspect. Biol. Med. 33: 509–516, 1990.
 46. Katsuura, G., P. E. Gottschall, and A. Arimura. Identification of a high‐affinity receptor for interleukin‐1 β in rat brain. Biochem. Biophys. Res. Commun. 156: 61–67, 1988.
 47. Katsuura, G., P. E. Gottschall, R. R. Dahl, and A. Arimura. Interleukin‐1 β increases prostaglandin E2 in rat astrocyte cultures: modulatory effect of neuropeptides. Endocrinology 124: 3125–3127, 1989.
 48. Kiss, J. Z., Dynamism of chemoarchitecture in the hypothalamic paraventricular nucleus. Brain Res. Bull. 20: 699–708, 1988.
 49. Kleinebeckel, D., and F. W. Klussman. Shivering. In: Thermoregulation: Physiology and Biochemistry, edited by E. Schönbaum and P. Lomax. New York: Pergamon, 1990, p. 235–253.
 50. Kluger, M. J., Fever: role of pyrogens and cryogens. Physiol. Rev. 71: 93–127, 1991.
 51. Lachuer, J., S. Gaillet, B. Barbagli, M. Buda, and M. Tappaz. Differential early time course activation of the brainstem catecholaminergic groups in response to various stresses. Neuroen‐docrinology 53: 589–596, 1991.
 52. Levi‐Montalcini, R., L. Aloe, and E. Alleva. A role for nerve growth factor in nervous, endocrine and immune systems. Prog Neuroendocrinimmunol 3: 1–10, 1990.
 53. Mathison, R., A. Hogan, D. Helmer, L. Bauce, J. Woolner, J. S. Davidson, G. Schultz, and D. Befus. Role for the submandibular gland in modulating pulmonary inflammation following induction of systemic anaphylaxis. Brain Behav Immun 6: 117–129, 1992.
 54. McKinley, M. J., R. M. McAllen, F. A. O. Mendelsohn, A. M. Allen, S. Y. Chai, and B. J. Oldfield. Circumventricular organs: neuroendocrine interfaces between the brain and the hemal milieu. Front. Neuroendocrinol. 11: 91–127, 1990.
 55. Merker, G., J. Roth, and E. Zeisberger. Thermoadaptive influence on reactivity pattern of vasopressinergic neurons in the guinea pig. Experientia 45: 722–726, 1989.
 56. Morgan, J. J., and T. Curran. Stimulus–transcription coupling in the nervous system: involvement of the inducible proto‐oncogenes fos and jun. Annu. Rev. Neurosci. 14: 421–451, 1991.
 57. Nagai, M., Participation of monoaminergic systems in body temperature regulation. In: New Trends In Autonomic Nervous System Research, edited by M. Yoshikawa, M. Uono, H. Tanabe, and S. Ishikawa. Amsterdam: Elsevier, 1991, p. 71–74.
 58. Nieuwenhuys, R., Chemoarchitecture of the Brain. New York: Springer‐Verlag, 1985.
 59. Nijland, M. J. M., and M. A. Baker. Effects of hydration state on exercise thermoregulation in goats. Am. J. Physiol. 263 (Regulatory Integrative Comp. Physiol. 32): R201–R205, 1992.
 60. Nordmann, J. J., and G. Dayanithi. Release of neuropeptides does not only occur at nerve terminals. Biosci. Rep. 8: 471–484, 1988.
 61. Pierau, F.‐K., H. Schmid, and L. Jansky. Recruitment of warm sensitive hypothalamic neurones by peptides and changes of extracellular calcium. In: Living in the Cold, edited by A. Malan and B. Canguilhem. Montrouge, France: Libbey, 1989, p. 255–264.
 62. Pittman, Q. J., and R. Landgraf. Vasopressin in thermoregulation and blood pressure control. In: Vasopressin, edited by S. Jard and R. Jamison. Montrouge, France: Libbey, 1991, p. 177–184.
 63. Plata‐Salaman, C. R., Immunoregulators in the nervous system. Neurosci. Biobehav. Rev. 15: 185–215, 1991.
 64. Provinciali, M., and N. Fabris. Modulation of lymphoid cell sensitivity to interferon by thyroid hormones. J. Endocrinol. Invest. 13: 187–191, 1990.
 65. Rabin, B. S., S. Cohen, R. Ganguli, D. T. Lysle, and J. E. Cunnick. Bidirectional interaction between the central nervous system and the immune system. CRC Crit. Rev. Immunol. 9: 279–312, 1989.
 66. Rautenberg, W., Shivering thermogenesis and its interaction with other autonomic controlled systems. In: Living in the Cold II, edited by A. Malan and B. Canguilhem. Montrouge, France: Libbey, 1989, p. 409–418.
 67. Rehorek, A., J. Lachuer, P. Brun, F. Gonon, and M. Tappaz. Stimulation of catecholaminergic neurons in the ventral medulla by various stressors monitored with in vivo electrochemistry. Brain Res. 543: 170–174, 1991.
 68. Renaud, L. P., J. T. Cunningham, C. Jarvis, R. Nissen, M. Sullivan, E. Van Vulpen, and C. R. Yang. Neural afferent connections to magnocellular vasopressin‐secreting neurons. In: Vasopressin, edited by S. Jard and R. Jamison. Montrouge, France: Libbey, 1991, p. 223–230.
 69. Rial, E., and D. G. Nicholls. The mitochondrial uncoupling protein from guinea‐pig brown adipose tissue. Biochem. J. 222: 685–693, 1984.
 70. Riedel, W., Mechanics of fever. J. Basic Clin. Physiol. Pharmacol. 1: 291–322, 1990.
 71. Rivier, C., and S. Rivest. Effect of stress on the activity of the hypothalamic–pituitary–gonadal axis: peripheral and central mechanisms. Biol. Reprod. 45: 523–532, 1991.
 72. Roth, J., C. Conn, M. J. Kluger, and E. Zeisberger. Kinetics of systemic and hypothalamic interleukin 6 and tumor necrosis factor during endotoxin fever in the guinea pig. Am. J. Physiol. 265 (Regulatory Integrative Comp. Physiol. 34): R653–R658, 1993.
 73. Roth, J., C. Conn, M. J. Kluger, and E. Zeisberger. Release of interleukin‐6 and tumor necrosis factor during lipopolysaccharide induced fever in guinea pigs. In: Thermoregulation: The Pathophysiological Basis of Clinical Disorders, edited by P. Lomax and E. Schönbaum. Basel: Karger, 1992, p. 28–32.
 74. Roth, J., K. Schulze, E. Simon, and E. Zeisberger. Alteration of endotoxin fever and release of arginine vasopressin by dehydration in the guinea pig. Neuroendocrinology 56: 680–686, 1992.
 75. Roth, J., E. Zeisberger, and H. J. Schwandt. Influence of increased catecholamine levels in blood plasma during cold‐adaptation and intramuscular infusion on thresholds of thermoregulatory reactions in guinea‐pigs. J. Comp. Physiol. [B] 157: 855–863, 1988.
 76. Schönbaum, E., and P. Lomax (Eds)., Thermoregulation: Physiology and Biochemistry. New York: Pergamon, 1990.
 77. Schönbaum, E., and P. Lomax (Eds)., Thermoregulation: Pathology, Pharmacology and Therapy. New York: Pergamon, 1991.
 78. Sharp, N. C. C., and Y. Koutedakis. Sport and the overtraining syndrome: immunological aspects. Br. Med. Bull. 48: 518–533, 1992.
 79. Shepherd, G. M., Neurobiology. New York: Oxford University Press, 1988.
 80. Shibata, M., and C. M. Blatteis. Differential effects of cytokines on thermosensitive neurons in guinea pig preoptic area slices. Am. J. Physiol. 261 (Regulatory Integrative Comp. Physiol. 32): R1096–R1103, 1991.
 81. Shimizu, N., Y. Oomura, and K. Aoyagi. Electrochemical analysis of hypothalamic serotonin metabolism accompanied by immobilisation stress in rats. Physiol. Behav. 46: 829–834, 1989.
 82. Simon, E., F. K. Pierau, and D. C. M. Taylor. Central and peripheral thermal control of effectors in homeothermic temperature regulation. Physiol. Rev. 66: 235–300, 1986.
 83. Simon‐Oppermann, C., D. Gray, E. Szcapanska‐Sadowska, and E. Simon. Vasopressin in blood and third ventricle CSF of dogs in chronic experiments. Am. J. Physiol. 245 (Regulatory Integrative Comp. Physiol. 16): R541–R548, 1983.
 84. Sirko, S., I. Bishai, and F. Coceani. Prostaglandin formation in the hypothalamus in vivo: effect of pyrogens. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 27): R616–R624, 1989.
 85. Slaunwhite, W. R., Jr, Fundamentals of Endocrinology. New York: Dekker, 1988.
 86. Staiger, J. F., and F. Nürnberger. The efferent connections of the lateral septal nucleus in the guinea pig: projections to the diencephalon and brainstem. Cell Tissue Res. 264: 391–413, 1991.
 87. Stitt, J. T., Evidence for the involvement of the organum vasculosum laminae terminalis in the febrile response of rabbits and rats. J. Physiol. 368: 501–511, 1985.
 88. Szelenyi, Z., and P. Hinckel. Changes in cold‐ and heat‐defense following electrolytic lesions of raphe nuclei in the guinea pig. Pflugers Arch. 409: 175–181, 1987.
 89. Taylor, A. L., and L. M. Fishman. Corticotropin‐releasing hormone. N. Engl. J. Med. 319: 213–222, 1988.
 90. Vybiral, S., L. Cerny, and L. Jansky. Mode of ACTH antipyretic action. Brain Res. Bull. 21: 557–562, 1988.
 91. Werner, J., Functional mechanisms of temperature regulation, adaptation and fever: complementary system theoretical and experimental evidence. In: Thermoregulation: Physiology and Biochemistry, edited by E. Schönbaum and P. Lomax. New York: Pergamon, 1990, p. 185–208.
 92. Werner, J., Models of cold and warm adaptation. In: Thermoreception and Temperature Regulation, edited by J. Bligh and K. Voigt. Berlin: Springer‐Verlag, 1990, p. 224–234.
 93. Zeisberger, E., Comparison of antipyretic actions of different neuropeptides in the same site of brain septum in the guinea pig. In: Thermal Physiology 1989, edited by J. B. Mercer. Amsterdam: Elsevier, 1989, p. 117–122.
 94. Zeisberger, E., Central modulators of thermoregulation. J. Basic Clin. Physiol. Pharmacol. 1: 277–289, 1990.
 95. Zeisberger, E., The role of septal peptides in thermoregulation and fever. In: Thermoreception and Temperature Regulation, edited by J. Bligh and K. Voigt. Berlin: Springer‐Verlag, 1990, p. 273–283.
 96. Zeisberger, E., Peptides and amines as putative factors in endogenous antipyresis. In: New Trends in Autonomic Nervous System Research, edited by M. Yoshikawa, M. Uono, H. Tanabe, and S. Ishikawa. Amsterdam: Elsevier, 1991, p. 86–89.
 97. Zeisberger, E., R. Behr, K. Ewen, and G. Merker. Threshold changes for heat production and dissipation after intrahypothalamic administration of 6‐hydroxydopamine. In: Environment, Drugs and Thermoregulation, edited by P. Lomax and E. Schönbaum. Basel: Karger, 1983, p. 58–61.
 98. Zeisberger, E., and G. Merker. The role of OVLT in fever and antipyresis. Prog. Brain Res. 91: 403–408, 1992.
 99. Zeisberger, E., G. Merker, and S. Blähser. Fever response in the guinea pig before and after parturition. Brain Res. 212: 379–392, 1981.
 100. Zeisberger, E., G. Merker, S. Blähser, and M. Krannig. Role of vasopressin in fever regulation. In: Pharmacology of Thermoregulation Homeostasis and Thermal Stress: Experimental and Therapeutic Advances, edited by K. E. Cooper, P. Lomax, E. Schönbaum, and W. L. Veale. Basel: Karger, 1986, p. 62–65.
 101. Zeisberger, E., and J. Roth. Role of catecholamines in thermoregulation of cold‐adapted and newborn guinea pigs. In: The Endocrine Control of the Fetus, edited by W. Künzel and A. Jensen. Berlin: Springer‐Verlag, 1988, p. 288–299.
 102. Zeisberger, E., and J. Roth. Changes in peripheral and central release of hormones during thermal adaptation in the guinea pig. In: Living in the Cold II, edited by A. Malan and B. Canguilhem. Paris: Libbey, 1989, p. 435–444.
 103. Zeisberger, E., J. Roth, and E. Simon. Changes in water balance and in release of arginine vasopressin during thermal adaptation in guinea‐pigs. Pflugers Arch. 412: 285–291, 1988.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Eugen Zeisberger, Joachim Roth. Central Regulation of Adaptive Responses to Heat and Cold. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 579-595. First published in print 1996. doi: 10.1002/cphy.cp040126