Comprehensive Physiology Wiley Online Library

Modeling Homeostatic Responses to Heat and Cold

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Steady‐State Systems Analysis
1.1 Open‐Loop Treatment
1.2 Closed‐Loop Treatment
2 Modeling Dynamic Responses to Heat and Cold
2.1 Developments toward the Real Geometry and Anatomy of the Body
2.2 Developments toward a Better Representation of Circulatory Heat Transfer
2.3 Developments toward Modeling the Regulatory Concept
2.4 Developments toward Modeling Interaction with other Regulatory Systems
2.5 Individual Differences
3 Conclusion
Figure 1. Figure 1.

Simple scheme of cold and warm defense (for the sake of simplicity, vasomotor effector taken into account by altered characteristics of the passive system, see text). Tco, core temperature; Tsk, skin temperature; fa, (integrative) afferent frequency; fe, (integrative) efferent frequency; index c, cold; index w, warm; M, metabolic heat production; E, evaporative heat loss; Ta, air temperature; and W, exercise.

Figure 2. Figure 2.

Quantitative analysis of warm defense in humans. Unbroken characteristics of passive system take into account changes of heat resistances of the body, broken lines, parallel to unbroken 30°C characteristic, do not. (Numbers indicate air temperature.) Tb = 0.8 Tco + 0.2 Tsk, where Tb is mean body temperature, Tco is core temperature, and Tsk is skin temperature. E, evaporative heat loss; faw, afferent frequencies, warm; few, efferent frequencies, warm; imp, impulses.

Figure 3. Figure 3.

Quantitative analysis of cold defense in humans. Unbroken characteristics of passive system take into account changes of heat resistances of the body, broken lines, parallel to unbroken 30°C characteristic, do not. (Numbers indicate air temperature.) Tb = 0.8 Tco + 0.2 Tsk. Where Tb is mean body temperature, Tco is core temperature, and Tsk is skin temperature. ER, respiratory evaporative heat loss; fac, afferent frequencies, cold; fec, efferent frequencies, cold; imp, impulses; M, metabolic heat production.

Figure 4. Figure 4.

Quantitative analysis of cold adaptation in the rabbit using experimental data from Werner and Graener 63. o, before adaptation; f, after functional adaptation; m, morphological adaptation; m + f, after morphological + functional adaptation; °C on the passive system's characteristics refers to air temperature; Ta, 24°C before adaptation, 10°C during adaptation; T10 and T24, body temperature at Ta = 10°C and 24°C; fac, afferent frequencies, cold; fec, efferent frequencies, cold; imp, impulses; M, metabolic heat production; Tb, mean body temperature.

Figure 5. Figure 5.

Examples of classical versions of cylindrical thermal models: (A) First version of Stolwijk model 46: lumped parameter, closed‐loop. HS, head shell; HC, head core; TS, trunk shell; TM, muscle trunk; ES, extremity shell; EC, extremity core; CB, central blood pool; ER respiratory evaporative heat loss. (B) Second version of Wissler model 67: radial dependencies, open‐loop. (C) First version of Werner model 51: radial dependencies, closed‐loop. (D) First version of Kuznetz model 28: radial and angular dependencies, closed‐loop.

Figure 6. Figure 6.

First 30 min in a sauna heated to 80°C: radial temperature profiles in trunk (A) and leg (B). (initial air temperature 30°C.) Computed from six‐cylinder model (only radial coordinate), personal computer version by Werner 60.

Figure 7. Figure 7.

Central longitudinal temperature profiles at various ambient temperatures Ta. Computed by three‐dimensional model by Werner et al. 62.

Figure 8. Figure 8.

Example of the dynamics of the central longitudinal (A) and radial (transverse) (B) temperature profiles of the human arm in response to a change of air temperature from 30°C to 12°C. Computed by three‐dimensional model 62.



Figure 1.

Simple scheme of cold and warm defense (for the sake of simplicity, vasomotor effector taken into account by altered characteristics of the passive system, see text). Tco, core temperature; Tsk, skin temperature; fa, (integrative) afferent frequency; fe, (integrative) efferent frequency; index c, cold; index w, warm; M, metabolic heat production; E, evaporative heat loss; Ta, air temperature; and W, exercise.



Figure 2.

Quantitative analysis of warm defense in humans. Unbroken characteristics of passive system take into account changes of heat resistances of the body, broken lines, parallel to unbroken 30°C characteristic, do not. (Numbers indicate air temperature.) Tb = 0.8 Tco + 0.2 Tsk, where Tb is mean body temperature, Tco is core temperature, and Tsk is skin temperature. E, evaporative heat loss; faw, afferent frequencies, warm; few, efferent frequencies, warm; imp, impulses.



Figure 3.

Quantitative analysis of cold defense in humans. Unbroken characteristics of passive system take into account changes of heat resistances of the body, broken lines, parallel to unbroken 30°C characteristic, do not. (Numbers indicate air temperature.) Tb = 0.8 Tco + 0.2 Tsk. Where Tb is mean body temperature, Tco is core temperature, and Tsk is skin temperature. ER, respiratory evaporative heat loss; fac, afferent frequencies, cold; fec, efferent frequencies, cold; imp, impulses; M, metabolic heat production.



Figure 4.

Quantitative analysis of cold adaptation in the rabbit using experimental data from Werner and Graener 63. o, before adaptation; f, after functional adaptation; m, morphological adaptation; m + f, after morphological + functional adaptation; °C on the passive system's characteristics refers to air temperature; Ta, 24°C before adaptation, 10°C during adaptation; T10 and T24, body temperature at Ta = 10°C and 24°C; fac, afferent frequencies, cold; fec, efferent frequencies, cold; imp, impulses; M, metabolic heat production; Tb, mean body temperature.



Figure 5.

Examples of classical versions of cylindrical thermal models: (A) First version of Stolwijk model 46: lumped parameter, closed‐loop. HS, head shell; HC, head core; TS, trunk shell; TM, muscle trunk; ES, extremity shell; EC, extremity core; CB, central blood pool; ER respiratory evaporative heat loss. (B) Second version of Wissler model 67: radial dependencies, open‐loop. (C) First version of Werner model 51: radial dependencies, closed‐loop. (D) First version of Kuznetz model 28: radial and angular dependencies, closed‐loop.



Figure 6.

First 30 min in a sauna heated to 80°C: radial temperature profiles in trunk (A) and leg (B). (initial air temperature 30°C.) Computed from six‐cylinder model (only radial coordinate), personal computer version by Werner 60.



Figure 7.

Central longitudinal temperature profiles at various ambient temperatures Ta. Computed by three‐dimensional model by Werner et al. 62.



Figure 8.

Example of the dynamics of the central longitudinal (A) and radial (transverse) (B) temperature profiles of the human arm in response to a change of air temperature from 30°C to 12°C. Computed by three‐dimensional model 62.

References
 1. Bligh, J., Possible temperature‐sensitive elements in or near the vena cava of sheep. J. Physiol. 159: 85–86, 1961.
 2. Bligh, J., Neuronal models of mammalian temperature regulation. In: Essays on Temperature Regulation, edited by J. Bligh and R. E. Moore. Amsterdam: North Holland, 1972, p. 105–120.
 3. Brengelmann, G. L., Circulatory adjustments to exercise and heat stress. Annu. Rev. Physiol. 45: 191–212, 1983.
 4. Brack, K., Basic mechanisms in thermal long‐term and short‐term adaptations. J. Therm. Biol. 11: 73–77, 1986.
 5. Brack, K., and P. Hinckel. Thermoregulatory noradrenergic and serotonergic pathways to hypothalamic units. J. Physiol. 304: 193–202, 1980.
 6. Brück, K., and P. Hinckel. Thermoafferent systems and their adaptive modifications. Pharmacol. Ther. 17: 357–381, 1982.
 7. Bullard, R. W., M. R. Banerjee, F. Chien, R. Elizondo, and B. A. McIntyre. Skin temperature and thermoregulatory sweating: a control systems approach. In: Physiological and Behavioral Temperature Regulation, edited by J. D. Hardy, A. P. Gagge, and J. A. J. Stolwijk. Springfield, IL: Thomas, 1970, p. 581–596.
 8. Burton, A. C., The application of the theory of heat flow to the study of energy metabolism. J. Nutr. 7: 497–533, 1934.
 9. Buse, M., and J. Werner. Heat‐balance of the human body: influence of variations of locally distributed parameters. J. Theor. Biol. 114: 34–51, 1985.
 10. Chen, M. M., and K. R. Holmes. Microvascular contributions in tissue heat transfer. Ann. N. Y. Acad. Sci. 355: 137–150, 1980.
 11. Givoni, B., and R. F. Goldman. Predicting rectal temperature response to work, environment, and clothing. J. Appl. Physiol. 32: 812–822, 1972.
 12. Gonzales, R. R., M. J. Kluger, and J. D. Hardy. Partitional calorimetry of the New Zealand white rabbit at temperatures 5–35°C. J. Appl. Physiol. 31: 728–734, 1971.
 13. Gordon, R. G., R. B. Roemer, and S. M. Horvath. A mathematical model of the human temperature regulatory system—transient cold exposure response. IEEE Trans. Biomed. Eng. 23: 434–444, 1976.
 14. Graener, R., J. Werner, and M. Buse. Properties of central control of body temperature in the rabbit. Biol. Cybern. 50: 437–445, 1984.
 15. Gregor, M., W. Jänig, and W. Riedel. Response pattern of cutaneous postganglionic neurones to the hindlimb on spinal cord heating and cooling in the cat. Pflugers Arch. 363: 135–140, 1976.
 16. Hales, J. R. S., C. Jessen, A. A. Fawcett, and R. B. King. Skin AVA and capillary dilatation and constriction induced by local skin heating. Pflugers Arch. 404: 203–207, 1985.
 17. Hardy, J. D., Models of temperature regulation—a review. In: Essays on Temperature Regulation, edited by J. Bligh and R. Moore. Amsterdam: North‐Holland, 1972, p. 163–186.
 18. Heising, M., and J. Werner. Control of sweating in man after work‐induced thermal load and symmetrically applied cooling. Eur. J. Appl. Physiol. 56: 608–614, 1987.
 19. Heising, M., and J. Werner. Influences of the overall thermal balance on local inputs for the drive of evaporation in man. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 62: 926–931, 1987.
 20. Hellon, R. F., Y. Townsend, and W. I. Cranston. A search for thermal receptors in central vasculature. In: New Trends in Thermal Physiology, edited by Y. Houdas and J. D. Guieu. Paris: Masson, 1978, p. 101.
 21. Hensel, H., and D. R. Kenshalo. Warm receptors in the nasal region of cats. J. Physiol. 204: 99–112, 1969.
 22. Jessen, C., Independent clamps of peripheral and central temperatures in thermoregulation of the goat. J. Physiol. 264: 585–606, 1981.
 23. Jessen, C., Thermal afferents in control of body temperature. Pharmacol. Ther. 28: 107–134, 1985.
 24. Jessen, C., G. Feistkorn, and A. Nagel. Temperature sensitivity of skeletal muscle in the conscious goat. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 54: 880–886, 1983.
 25. Jiji, L. M., S. Weinbaum, and D. E. Lemons. Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer. Part II: Model formulation and solution. Am. Soc. Mech. Eng. J. Biomech. Eng. 106: 331–341, 1984.
 26. Kelterbaum, J., J. Werner, and H. Schön. Makroskopische Topographic des menschlichen Körpers: Gewinnung der Rohdaten und deren EDV‐gerechte Aufarbeitung in einer Datenbank. EDV Med. Biol. 4: 123–129, 1977.
 27. Konz, S., C. Hwang, B. Dhiman, J. Duncan, and A. Masud. An experimental validation of mathematical simulation of human thermoregulation. Comput. Biol. Med. 7: 71–82, 1977.
 28. Kuznetz, L. H., A two dimensional transient mathematical model of human thermoregulation. Am. J. Physiol. 237: 266–277, 1979.
 29. Lemons, D. E., S. Chien, L. I. Crawshaw, and S. Weinbaum. Significance of vessel size and type in vascular heat transfer. Am. J. Physiol. 253: 128–135, 1987.
 30. McCook, R. D., W. C. Randall, C. R. Hassler, N. Mihaldzig, and R. E. Wurster. The role of cutaneous thermal receptors in sudo‐motor control. In: Physiological and Behavioural Temperature Regulation, edited by J. D. Hardy, A. P. Gagge, and J. A. J. Stolwijk. Springfield, IL: Thomas, 1970, p. 627–633.
 31. Montgomery, L. D., A model of heat transfer in immersed man. Ann. Biomed. Eng. 2: 19–46, 1974.
 32. Nadel, E. R., R. W. Bullard, and J. A. J. Stolwijk. Importance of skin temperature in the regulation of sweating. J. Appl. Physiol. 31: 80–87, 1971.
 33. Nadel, E. R., J. W. Mitchell, B. Saltin, and J. A. J. Stolwijk. Peripheral modifications to the central drive for sweating. J. Appl. Physiol. 31: 828–833, 1971.
 34. Rawson, R. O., and K. P. Quick. Evidence of deep‐body thermoreceptor response to intra‐abdominal heating of the ewe. J. Appl. Physiol. 28: 813–820, 1970.
 35. Reaves, T. A., and J. N. Hayward. Hypothalamic and extrahy‐pothalamic thermoregulatory centers. In: Body Temperature, edited P. Lomax and E. Schönbaum. New York: Dekker, 1979, p. 39–70.
 36. Riedel, W., G. Siaplauras, and E. Simon. Intraabdominal thermosensitivity in the rabbit as compared with spinal cord thermosensitivity. Pflugers Arch. 340: 559–570, 1973.
 37. Sato, F., M. Owen, R. Matthes, K. Sato, and C. V. Gisolfi. Functional and morphological changes in the eccrine sweat gland with heat acclimation. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 69: 232–236, 1990.
 38. Schingnitz, G., and J. Werner. Significance of scrotal afferents within the general thermoafferent system. J. Therm. Biol. 11: 181–189, 1986.
 39. Simon, E., Temperature regulation: the spinal cord as a site of extrahypothalamic thermoregulatory functions. Rev. Physiol. Biochem. Pharmacol. 71: 1–76, 1974.
 40. Simon, E., and M. Iriki. Ascending neurons of the spinal cord activated by cold. Experientia 26: 620–622, 1970.
 41. Simon, E., F. K. Pierau, and D. C. M. Taylor. Central and peripheral thermal control of efforts in homeothermic temperature regulation. Physiol. Rev. 66: 235–300, 1986.
 42. Smith, P., and E. H. Twizell. A transient model of thermoregulation in a clothed human. Appl. Math. Model. 211–216, 1984.
 43. Song, W. J., S. Weinbaum, and L. M. Jiji. A theoretical model for peripheral tissue heat transfer using the bioheat equation of Weinbaum and Jiji. Am. Soc. Mech. Eng. J. Biomech. Eng. 109: 72–78, 1987.
 44. Stitt, J. T., Variable open‐loop gain in the control of thermogenesis in cold exposed rabbits. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 48: 495–499, 1980.
 45. Stolwijk, J. A. J., Mathematical model of thermoregulation. In: Physiological and Behavioural Temperature Regulation, edited by J. D. Hardy, A. P. Gagge, and J. A. J. Stolwijk. Springfield, IL: Thomas, 1970.
 46. Stolwijk, J. A. J., and J. D. Hardy. Temperature regulation in man—a theoretical study. Pflugers Arch. 291: 129–162, 1966.
 47. Tikuisis, P., R. R. Gonzalez, and B. P. Kent. Thermoregulatory model for immersion of humans in cold water. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 64: 719–727, 1988.
 48. Tikuisis, P., R. R. Gonzalez, R. A. Oster, and K. B. Pandolf. Role of body fat in the prediction of the metabolic response for immersion in cold water. Undersea Biomed. Res. 15: 123–134, 1988.
 49. Weinbaum, S., and L. M. Jiji. A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. Am. Soc. Mech. Eng. J. Biomech. Eng. 107: 131–139, 1985.
 50. Weinbaum, S., L. M. Jiji, and D. E. Lemons. Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer—part I: anatomical foundation and model conceptualization. Am. Soc. Mech. Eng. J. Biomech. Eng. 106: 321–330, 1984.
 51. Werner, J., Zur Temperaturregelung des menschlichen Körpers. Ein mathematisches Modell mit verteilten Parametern und ort‐sabhängigen Variablen. Biol. Cybern. 17: 53–63, 1975.
 52. Werner, J., Mathematical treatment of structure and function of the human thermoregulatory system. Biol. Cybern. 25: 93–101, 1977.
 53. Werner, J., The concept of regulation for human body temperature. J. Therm. Biol. 5: 75–82, 1980.
 54. Werner, J., Control aspects of human temperature regulation. Automatica 17: 351–362, 1981.
 55. Werner, J., Regelung der menschlichen Körpertemperatur. Berlin: de Gruyter, 1984.
 56. Werner, J., Contribution of system‐theoretical models to the analysis of thermoregulation. Yale J. Biol. Med. 59: 335–348, 1986.
 57. Werner, J., Thermoregulatory mechanisms: adaptations to thermal loads. In: Adaptive Physiology to Stressful Environments, edited by S. Samueloff and M. K. Yousef. Boca Raton, FL: CRC, 1987, p. 17–25.
 58. Werner, J., Thermoregulatory models: recent research, current applications and further development. Scand. J. Work Environ. Health 15: 13–46, 1989.
 59. Werner, J., Functional mechanisms of temperature regulation, adaptation and fever: complementary system theoretical and experimental evidence. In: Thermoregulation: Physiology and Biochemistry, edited by E. Schönbaum and P. Lomax. New York: Pergamon, 1990, p. 703–725.
 60. Werner, J., Man in extreme thermal environment—predictions based on a PC‐model. In: Human‐Environment System, edited by Y. Tochihara. Tokyo: Pergamon, 1991, p. 173–176.
 61. Werner, J., and M. Buse. Temperature profiles with respect to inhomogeneity and geometry of the human body. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 65: 1110–1118, 1988.
 62. Werner, J., M. Buse, and A. Foegen. Lumped versus distributed thermoregulatory control: results from a three‐dimensional dynamic model. Biol. Cybern. 62: 63–73, 1989.
 63. Werner, J., and R. Graener. Thermoregulatory responses to cold during a 7 week acclimatization process in rabbits. Pflugers Arch. 406: 547–551, 1986.
 64. Werner, J., and M. Heising. Consequences of partial body warming and cooling to the drives of local sweat rates. Eur. J. Appl. Physiol. 60: 300–304, 1990.
 65. Werner, J., G. Schingnitz, and H. Hensel. Influence of cold adaptation on the activity of thermoresponsive neurons in thalamus and midbrain of the rat. Pflugers Arch. 391: 327–330, 1981.
 66. Wissler, E. H., Steady state temperature distribution in man. J. Appl. Physiol. 16: 734–740, 1961.
 67. Wissler, E. H., A mathematical model of human thermal system. Bull. Math. Biophys. 26: 147–166, 1964.
 68. Wissler, E. H., Mathematical simulation of human thermal behaviour using whole body models. In: Heat Transfer in Medicine and Biology, edited by A. Shitzer and C. Eberhart. New York: Plenum, 1985, p. 325–373.
 69. Wissler, E. H., Comments on the new bioheat equation proposed by Weinbaum and Jiji. Am. Soc. Mech. Eng. J. Biomech. Eng. 109: 226–233, 1987.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jürgen Werner. Modeling Homeostatic Responses to Heat and Cold. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 613-626. First published in print 1996. doi: 10.1002/cphy.cp040128