Comprehensive Physiology Wiley Online Library

Exercise and Adaptation to Microgravity Environments

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Exercise Performance After Adaptation to Microgravity
1.1 Maximal Oxygen Uptake
1.2 Exercise Endurance
1.3 Oxygen Uptake and Mechanical Efficiency during Submaximal Exercise
1.4 Time Course of V.O2max Change in Microgravity
1.5 Age and Gender
1.6 Level of Aerobic Fitness
1.7 Muscle Function: Strength and Fatigability
1.8 Effects of Return to Terrestrial Gravity
2 Physiological Changes Associated with Reduced Exercise Capacity
2.1 Pulmonary Function
2.2 Blood Volume
2.3 Cardiovascular Function
2.4 Morphological Changes in Skeletal Muscle
2.5 Cellular Metabolism of Skeletal Muscle
2.6 Venous and Muscle Compliance
2.7 Changes in Thermoregulation
3 Recovery after Return to the One‐Gravity Environment
3.1 Effects of Ambulation and Exercise during Recovery
3.2 Repeated Exposures to Microgravity
4 Exercise as a Countermeasure to Microgravity Adaptation
4.1 V.O2 and Hemodynamic Responses to Exercise
4.2 Effects on Muscle Structure and Function
4.3 Orthostatic Hypotension after Microgravity Exposure
4.4 Considerations of Future Exercise Prescriptions for Microgravity
5 Summary
Figure 1. Figure 1.

Oxygen uptake () kinetics during constant‐load exercise (115 W) before (solid line) and after (broken line) bed rest.

Modified from Convertino et al. 41 with permission
Figure 2. Figure 2.

Cross‐sectional relationship between duration of bed rest and percent change (%Δ) in . Compilation of data from 19 independent investigations (see Table 2. The linear regression of best fit is %Δ = ‐0.85 [Days] + 1.4, r = 0.730.

Figure 3. Figure 3.

Time course of percent change (%Δ) in during adaptation to simulated microgravity (bed rest) from two independent studies 69,73.

Figure 4. Figure 4.

Mean (± SE) percent reductions in (open bars), blood volume (hashed bars), and plasma volume (shaded bars) after 10 days of bed rest in fit and unfit subjects.

Data from Convertino et al. 44
Figure 5. Figure 5.

Average torque‐velocity relationships before (closed circles and solid lines) and after (open circles and broken lines) exposure of the calf muscles of 12 subjects to 7 days of spaceflight (Panel A) and the knee extensors of 7 subjects to 30 days of 6° head‐down bed rest (Panel B).

Modified from Grigoryeva and Kozlovskaya 81 (Panel A) and Dudley et al. 61 (Panel B) with permission
Figure 6. Figure 6.

Cross‐sectional relationship between duration of bed rest and percent change (%Δ) in strength of handgrip (HG), elbow flexors (EF), ankle flexors (AF), ankle extensors (AE), knee flexors (KF), and knee extensors (KE). Compilation of data from 17 independent investigations (see Table 5.

Figure 7. Figure 7.

Comparison of time courses of percent change (%Δ) in plasma volume during adaptation to actual spaceflight (closed symbols and solid line) and bed rest (open circles and broken line). Spaceflight data from Gemini IV 63, Spacelab 116 and Skylab IV 93. Bed rest data from Convertino et al. 35.

Figure 8. Figure 8.

Relationships between percent changes (%Δ) in plasma volume and after adaptation to microgravity (bed rest). Panel A represents a cross‐sectional compilation of data from 12 independent investigations (%Δ = 0.82 [%Δ PV] + 0.3, r = 0.841). Panel B is generated from Convertino et al. 44 and represents longitudinal data from 10 fit (closed circles) and 10 unfit (open circles) subjects (%Δ = 0.76 [%Δ PV] ‐ 1.7, r = 0.787).

Figure 9. Figure 9.

Comparison of time courses of percent changes (%Δ) in peak and plasma volume during bed rest in subjects who underwent no exercise (open circles and broken line), resistive exercise (closed circles and solid line), and dynamic cycling exercise (closed triangles and hashed line).

Data modified from Greenleaf et al. 73,80
Figure 10. Figure 10.

Mean (± SE) left ventricular ejection fraction and stroke volume during rest and graded exercise before (closed circles and solid lines) and after (open circles and broken lines) 10 days of bed rest.

Modified from Hung et al. 89 with permission
Figure 11. Figure 11.

Mean (± SE) cardiac responses of two cosmonauts during rest and at 125 W and 175 W of exercise on a cycle ergometer before (closed circles and solid lines) and during (open circles and broken lines) a 237 day space mission.

Modified from Atkov et al. 1 with permission
Figure 12. Figure 12.

Time course of post‐spaceflight recovery of stroke volume (open circles and broken lines) and cardiac output (closed circles and solid line) for all Skylab missions. Values are mean ± SE expressed as percent of preflight values.

Modified from Buderer et al. 14 with permission
Figure 13. Figure 13.

Maximal oxygen uptakes () of three astronauts before and during an 84 day space mission. Circles and linesrepresent means ± SE and asterisks indicate that all subjects changed in the same direction.

Data plotted from Michel et al. 126


Figure 1.

Oxygen uptake () kinetics during constant‐load exercise (115 W) before (solid line) and after (broken line) bed rest.

Modified from Convertino et al. 41 with permission


Figure 2.

Cross‐sectional relationship between duration of bed rest and percent change (%Δ) in . Compilation of data from 19 independent investigations (see Table 2. The linear regression of best fit is %Δ = ‐0.85 [Days] + 1.4, r = 0.730.



Figure 3.

Time course of percent change (%Δ) in during adaptation to simulated microgravity (bed rest) from two independent studies 69,73.



Figure 4.

Mean (± SE) percent reductions in (open bars), blood volume (hashed bars), and plasma volume (shaded bars) after 10 days of bed rest in fit and unfit subjects.

Data from Convertino et al. 44


Figure 5.

Average torque‐velocity relationships before (closed circles and solid lines) and after (open circles and broken lines) exposure of the calf muscles of 12 subjects to 7 days of spaceflight (Panel A) and the knee extensors of 7 subjects to 30 days of 6° head‐down bed rest (Panel B).

Modified from Grigoryeva and Kozlovskaya 81 (Panel A) and Dudley et al. 61 (Panel B) with permission


Figure 6.

Cross‐sectional relationship between duration of bed rest and percent change (%Δ) in strength of handgrip (HG), elbow flexors (EF), ankle flexors (AF), ankle extensors (AE), knee flexors (KF), and knee extensors (KE). Compilation of data from 17 independent investigations (see Table 5.



Figure 7.

Comparison of time courses of percent change (%Δ) in plasma volume during adaptation to actual spaceflight (closed symbols and solid line) and bed rest (open circles and broken line). Spaceflight data from Gemini IV 63, Spacelab 116 and Skylab IV 93. Bed rest data from Convertino et al. 35.



Figure 8.

Relationships between percent changes (%Δ) in plasma volume and after adaptation to microgravity (bed rest). Panel A represents a cross‐sectional compilation of data from 12 independent investigations (%Δ = 0.82 [%Δ PV] + 0.3, r = 0.841). Panel B is generated from Convertino et al. 44 and represents longitudinal data from 10 fit (closed circles) and 10 unfit (open circles) subjects (%Δ = 0.76 [%Δ PV] ‐ 1.7, r = 0.787).



Figure 9.

Comparison of time courses of percent changes (%Δ) in peak and plasma volume during bed rest in subjects who underwent no exercise (open circles and broken line), resistive exercise (closed circles and solid line), and dynamic cycling exercise (closed triangles and hashed line).

Data modified from Greenleaf et al. 73,80


Figure 10.

Mean (± SE) left ventricular ejection fraction and stroke volume during rest and graded exercise before (closed circles and solid lines) and after (open circles and broken lines) 10 days of bed rest.

Modified from Hung et al. 89 with permission


Figure 11.

Mean (± SE) cardiac responses of two cosmonauts during rest and at 125 W and 175 W of exercise on a cycle ergometer before (closed circles and solid lines) and during (open circles and broken lines) a 237 day space mission.

Modified from Atkov et al. 1 with permission


Figure 12.

Time course of post‐spaceflight recovery of stroke volume (open circles and broken lines) and cardiac output (closed circles and solid line) for all Skylab missions. Values are mean ± SE expressed as percent of preflight values.

Modified from Buderer et al. 14 with permission


Figure 13.

Maximal oxygen uptakes () of three astronauts before and during an 84 day space mission. Circles and linesrepresent means ± SE and asterisks indicate that all subjects changed in the same direction.

Data plotted from Michel et al. 126
References
 1. Atkov, O. Y., V. S. Bednenko, and G. A. Fomina. Ultrasound techniques in space medicine. Aviat. Space Environ. Med. 58 (Suppl. 9): A69–A73, 1987.
 2. Balakhovskiy I. S., and T. A. Orlova. Dynamics of cosmonauts' blood biochemistry during space missions. Kosm. Biol. Aviakosm. Med. 12 (6): 3–8, 1978.
 3. Bassey, E. J., T. Bennett, A. T. Birmingham, P. D. Fentem, D. Fitton, and R. Goldsmith. Effects of surgical operation and bed rest on cardiovascular responses to exercise in hospital patients. Cardiovasc. Res. 7: 588–592, 1973.
 4. Beregovkin, A. V., A. S. Vodolazov, V. S. Georgiyevskiy, L. I. Kakurin, V. V. Kalinichenko, N. V. Korelin, V. M. Mikhaylov, and V. V. Shchigolev. Cardiorespiratory system reactions of cosmonauts to exercise following long‐term missions aboard the Salyut‐6 orbital station. Kosm. Biol. Aviakosm. Med. 14 (4): 8–11, 1980.
 5. Beregovkin, A. V., A. S. Vodolazov, V. S. Georgiyevskiy, V. V. Kalinichenko, N. V. Korelin, V. M. Mikhaylov, Y. D. Pometov, V. V. Shchigolev, and B. S. Katkovskiy. Reactions of the cardiorespiratory system to a dosed physical load in cosmonauts after 30‐ and 63‐day flights in the Salyut‐4 orbital station. Kosm. Biol. Aviakosm. Med. 10 (5): 24–29, 1976.
 6. Berry, C. A., W. G. Squires, and A. S. Jackson. Fitness variables and the lipid profile in United States astronauts. Aviat. Space Environ. Med. 51: 1222–1226, 1980.
 7. Bevegard, S., A. Holmgren, and B. Jonsson. The effect of body position on the circulation at rest and during exercise with special reference to the influence on the stroke volume. Acta Physiol. Scand. 49: 279–298, 1960.
 8. Birkhead, N. C., J. J. Blizzard, J. W. Daly, G. J. Haupt, B. Issekutz, R. N. Myers, and K. Rodahl. Cardiodynamic and Metabolic Effects of Prolonged Bed Rest. Wright‐Patterson Air Force Base, OH: Aerosp. Med. Res. Lab., 1963. (AMRL‐TDR‐63–37).
 9. Birkhead, N. C., J. J. Blizzard, J. W. Daly, G. J. Haupt, B. Issekutz, R. N. Myers, and K. Rodahl. Cardiodynamic and Metabolic Effects of Prolonged Bed Rest with Daily Recumbent or Sitting Exercise and with Sitting Inactivity. Wright‐Patterson Air Force Base, OH: Aerosp. Med. Res. Lab., 1964. (AMRL‐TDR‐64–61).
 10. Blamick, C. A., D. J. Goldwater, and V. A. Convertino. Leg vascular responsiveness during acute orthostasis following simulated weightlessness. Aviat. Space Environ. Med. 59: 40–43, 1988.
 11. Blomqvist, C. G., J. H. Mitchell, and B. Saltin. Effects of bed rest on the oxygen transport system. In: Hypogravic and Hypodynamic Environments, edited by R. H. Murry and M. McCally. Washington, DC: National Aeronautics and Space Administration, 1971, p. 171–176. (NASA SP‐269).
 12. Blomqvist, C. G., and H. L. Stone. Cardiovascular adjustments to gravitational stress. In: Handbook of Physiology, Peripheral Circulation and Organ Blood Flow, edited by J. T. Shepherd and F. M. Abboud. Bethesda, MD: Am. Physiol. Soc., 1983, sec. 2, vol. 3, part 2, p. 1027–1063.
 13. Buchanan, P., and V. A. Convertino. A study of the effects of prolonged microgravity on the musculature of the lower extremities in man: an introduction. Aviat. Space Environ. Med. 60: 649–652, 1989.
 14. Buderer, M. C., J. A. Rummel, E. L. Michael, D. C. Maulden, and C. F. Sawin. Exercise cardiac output following Skylab missions: the second manned Skylab mission. Aviat. Space Environ. Med. 47: 365–372, 1976.
 15. Bungo, M. W., J. B. Charles, and P. C. Johnson. Cardiovascular deconditioning during space flight and the use of saline as a countermeasure to orthostatic intolerance. Aviat. Space Environ. Med. 56: 985–990, 1985.
 16. Butusov, A. A., V. R. Lyamin, A. A. Lebedev, A. P. Polyakova, I. B. Svistunov, V. A. Tishler, and A. P. Shulenin. Results of routine medical monitoring of cosmonauts during flight on the Soyuz‐9 ship. Kosm. Biol. Med. 4 (6): 35–39, 1970.
 17. Buyanov, P. V., A. V. Beregovkin, and N. V. Pisarenko. Prevention of the adverse effect of hypkinesia on the human cardiovascular system. Kosm. Biol. Med. 1 (1): 95–99, 1967.
 18. Cardus, D. Effects of 10 days recumbency on the response to the bicycle ergometer test. Aerosp. Med. 37: 993–999, 1966.
 19. Chase, G. A., C. Grave, and L. B. Rowell. Independence of changes in functional and performance capacities attending prolonged bed rest. Aerosp. Med. 37: 1232–1238, 1966.
 20. Chekirda, I. F., and A. V. Yeremin. Dynamics of cyclic and acyclic locomotion of the Soyuz‐18 crew after a 63‐day space mission. Kosm. Biol. Aviakosm. Med. 11 (4): 9–13, 1977.
 21. Cherepakhin, M. A., and V. I. Pervushin. Space flight effect on the neuromuscular system of cosmonauts. Kosm. Biol. Med. 4 (6): 46–49, 1970.
 22. Convertino, V. A. Effect of orthostatic stress on exercise performance after bed rest: relation to inhospital rehabilitation. J. Card. Rehabil. 3: 660–663, 1983.
 23. Convertino, V. A. Exercise responses after inactivity. In: Inactivity: Physiological Effects, edited by H. Sandler and J. Vernikos‐Danellis. Orlando, FL: Academic, 1986, p. 149–191.
 24. Convertino, V. A. Aerobic fitness, endurance training and orthostatic intolerance. Exerc. Sports Sci. Rev. 15: 223–259, 1987.
 25. Convertino, V. A. Potential benefits of maximal exercise just prior to return from weightlessness. Aviat. Space Environ. Med. 58: 568–572, 1987.
 26. Convertino, V. A. Physiological adaptations to weightlessness: effects on exercise and work performance. Exerc. Sport Sci. Rev. 18: 119–165, 1990.
 27. Convertino, V. A. Blood volume: its adaptation to endurance training. Med. Sci. Sports Exerc. 12: 1338+–+1348, 1991.
 28. Convertino, V. A. Carotid‐cardiac baroreflex: relation with orthostatic hypotension following simulated microgravity and implications for development of countermeasures. Acta Astronautica 23: 9–17, 1991.
 29. Convertino, V. A. Neuromuscular aspects in development of exercise countermeasures. Physiologist 34 (Suppl.): S125–S128, 1991.
 30. Convertino, V. A. Effects of exercise and inactivity on intravascular volume and cardiovascular control mechanisms. Acta Astronautica 27: 123–129, 1992.
 31. Convertino, V. A. Adaptation of baroreflexes and orthostatic hypotension. In: Vascular Medicine, edited by H. Boccalon. Amsterdam: Elsevier Sci. Pub., 1993, p. 573–577.
 32. Convertino, V. A., and W. C. Adams. Enhanced vagal baroreflex response during 24 hours after acute exercise. Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 31): R570–R575, 1991.
 33. Convertino, V. A., W. C. Adams, J. D. Shea, C. A. Thompson, and G. W. Hoffler. Impairment of the carotid‐cardiac vagal baroreflex in wheelchair‐dependent quadriplegics. Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 31): R576–R580, 1991.
 34. Convertino, V. A., R. Bisson, R. Bates, D. Goldwater, and H. Sandler. Effects of antiorthostatic bedrest on the cardiorespiratory responses to exercise. Aviat. Space Environ. Med. 52: 251–255, 1981.
 35. Convertino, V. A., D. F. Doerr, D. L. Eckberg, J. M. Fritsch, and J. Vernikos‐Danellis. Head‐down bedrest impairs vagal baroreflex responses and provokes orthostatic hypotension. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 68: 1458–1464, 1990.
 36. Convertino, V. A., D. F. Doerr, A. Guell, and J. F. Marini. Effects of acute exercise on attenuated vagal baroreflex function during bedrest. Aviat. Space Environ. Med. 63: 999–1003, 1992.
 37. Convertino, V. A., D. F. Doerr, K. L. Mathes, S. L. Stein, and P. Buchanan. Changes in volume, muscle compartment, and compliance of the lower extremities in man following 30 days of exposure to simulated microgravity. Aviat. Space Environ. Med. 60: 653–658, 1989.
 38. Convertino, V. A., D. F. Doerr, and S. F. Stein. Changes in size and compliance of the calf following 30 days of simulated microgravity. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 66: 1509–1512, 1989.
 39. Convertino, V. A., D. J. Goldwater, and H. Sandler. Effect of orthostatic stress on exercise performance after bedrest. Aviat. Space Environ. Med. 53: 652–657, 1982.
 40. Convertino, V. A., D. J. Goldwater, and H. Sandler. Oxygen uptake kinetics of constant‐load work: upright vs supine exercise. Aviat. Space Environ. Med. 55: 501–506, 1984.
 41. Convertino, V. A., D. J. Goldwater, and H. Sandler. VO2 kinetics of constant‐load exercise following bedrest‐induced deconditioning. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 57: 1545–1550, 1984.
 42. Convertino, V. A., D. J. Goldwater, and H. Sandler. Bedrest‐induced peak VO2 reduction associated with age, gender and aerobic capacity. Aviat. Space Environ. Med. 57: 17–22, 1986.
 43. Convertino, V. A., J. Hung, D. J. Goldwater, and R. F. DeBusk. Cardiovascular responses to exercise in middle‐aged men following ten days of bed rest. Circulation 65: 134–140, 1982.
 44. Convertino, V. A., G. M. Karst, S. M. Kinzer, D. A. Williams, and D. J. Goldwater. Exercise capacity following simulated weightlessness in trained and nontrained subjects (abstract). Aviat. Space Environ. Med. 56: 489, 1985.
 45. Convertino, V. A., G. M. Karst, C. R. Kirby, and D. J. Goldwater. Effect of simulated weightlessness on exercise‐induced anaerobic threshold. Aviat. Space Environ. Med. 57: 325–331, 1986.
 46. Convertino, V. A., C. R. Kirby, G. M. Karst, and D. J. Goldwater. Responses to muscular exercise following repeated simulated weightlessness. Aviat. Space Environ. Med. 56: 540–546, 1985.
 47. Convertino, V. A., G. W. Mack, and E. R. Nadel. Elevated venous pressure: a consequence of exercise training‐induced hypervolemia? Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 31): R273–R277, 1991.
 48. Convertino, V. A., H. Sandler, P. Webb, and J. F. Annis. Induced venous pooling and cardiorespiratory responses to exercise after bedrest. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 52: 1343–1348, 1982.
 49. Convertino, V. A., R. W. Stremel, E. M. Bernauer, and J. E. Greenleaf. Cardiorespiratory responses to exercise after bed rest in men and women. Acta Astronautica 4: 895–905, 1977.
 50. Convertino, V. A., C. A. Thompson, D. L. Eckberg, J. M. Fritsch, G. W. Mack, and E. R. Nadel. Baroreflex responses and LBNP tolerance following exercise training. Physiologist 33: S40–S41, 1990.
 51. Cooper, K. H., and J. W. Ord. Physical effects of seated and supine exercise with and without subatmospheric pressure applied to the lower body. Aerosp. Med. 39: 481–484, 1968.
 52. DeBusk, R. F., V. A. Convertino, J. Hung, and D. Goldwater. Exercise conditioning in middle‐aged men after 10 days of bed rest. Circulation 68: 245–250, 1983.
 53. Degtyarev, V. A., V. G. Doroshev, T. V. Batenchuk‐Tusko, Z. A. Kirillova, N. A. Lapshina, S. I. Ponamarev, and V. N. Ragozin. Studies of circulation during LBNP test aboard Salyut‐4 orbital station. Kosm. Biol. Aviakosm. Med. 11 (3): 26–31, 1977.
 54. Degtyarev, V. A., V. G. Doroshev, N. D. Kalmykova, Z. A. Kirillova, Y. A. Kukushkin, and N. A. Lapshina. Results of examination of the crew of the Salyut space station in a functional test with creation of negative pressure on the lower half of the body. Kosm. Biol. Aviakosm. Med. 8 (3): 47–52, 1974.
 55. Degtyarev, V. A., V. G. Doroshev, N. D. Kalmykova, Z. A. Kirillova, and N. A. Lapshina. Dynamics of circulatory indices in the crew of the Salyut orbital station during an examination under rest conditions. Kosm. Biol. Aviakosm. Med. 8 (2): 34–42, 1974.
 56. Degtyarev, V. A., V. G. Doroshev, N. D. Kalmykova, Z. A. Kirillova, N. A. Lapshina, A. A. Lepskiy, and V. N. Rabozin. Studies of hemodynamics and phase structure of cardiac cycle in the crew of Salyut‐4. Kosm. Biol. Aviakosm. Med. 12 (6): 9–14, 1978.
 57. Degtyarev, V. A., V. G. Doroshev, N. D. Kalmykova, Y. A. Kukushkin, Z. A. Kirillova, N. A. Lapshina, I.I. Popov, V. N. Ragozin, and V. I. Stepantsov. Dynamics of circulatory parameters of the crew of the Salyut space station in functional test with physical load. Kosm. Biol. Aviakosm. Med. 12 (3): 15–20, 1978.
 58. Deitrick, J. E., G. D. Whedon, E. Shorr, V. Toscani, and V. B. Davis. Effects of immobilization upon various metabolic and physiologic functions of normal men. Am. J. Med. 4: 3–35, 1948.
 59. Dolkas, C., and J. Greenleaf. Insulin and glucose responses during bed rest with isotonic and isometric exercise. J. Appl. Physiol. 43: 1033–1038, 1977.
 60. Doroshev, V. G., T. V. Batenchuk‐Tusko, N. A. Lapshina, Y. A. Kukushkin, N. D. Kalmykova, and V. N. Ragozin. Changes in hemodynamics and phasic structure of the cardiac cycle in the crew on the second expedition of Salyut‐4. Kosm. Biol. Aviakosm. Med. 11 (2): 26–31, 1977.
 61. Dudley, G. A., M. R. Duvoisin, V. A. Convertino, and P. Buchanan. Alterations of the in vivo torque‐velocity relationship of human skeletal muscle following 30 days exposure to simulated microgravity. Aviat. Space Environ. Med. 60: 659–663, 1989.
 62. Duvoisin, M. R., V. A. Convertino, P. Buchanan, P. D. Gollnick, and G. A. Dudley. Characteristics and preliminary observations of the influence of electromyostimulation on the size and function of human skeletal muscle during 30 days of simulated microgravity. Aviat. Space Environ. Med. 60: 671–678, 1989.
 63. Fischer, C. L., P. C. Johnson, and C. A. Berry. Red blood cell and plasma volume changes in manned spaceflight. J. A. M. A. 200: 579–583, 1967.
 64. Friden, J., P. N. Sfakianos, and A. R. Hargens. Muscle soreness and intramuscular fluid pressure: comparison between eccentric and concentric load. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 61: 2175–2179, 1986.
 65. Friman, G. Effect of clinical bedrest for seven days on physical performance. Acta Med. Scand. 205: 389–393, 1979.
 66. Fritsch, J. M., J. B. Charles, B. S. Bennett, M. M. Jones, and D. L. Eckberg. Short‐duration spaceflight impairs human carotid baroreceptor‐cardiac reflex responses. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 73: 664–671, 1992.
 67. Gazenko, O. G., A. M. Genin, and A. D. Yegorov. Summary of medical investigations in the USSR manned space missions. Acta Astronautica 8: 907–917, 1981.
 68. Gazenko, O. G., N. N. Gurovsky, A. M. Genin, I. I. Bryanov, A. V. Eryomin, and A. D. Egorov. Results of medical investigations carried out on board the Salyut orbital stations. Life Sci. Space Res. 14: 145–152, 1976.
 69. Georgiyevskiy, V. S., L. I. Kakurin, B. S. Katkovskii, and Y. A. Senkevich. Maximum oxygen consumption and functional state of the circulation in simulated zero gravity. In: The Oxygen Regime of the Organism and its Regulation, edited by N. V. Lauer and A. Z. Kilchinskaya, Kiev: Naukova Dumka, 1966, p. 181–184.
 70. Georgiyevskiy, V. S., N. A. Lapshina, L. Y. Andriyako, L. V. Umnova, V. G. Doroshev, I. V. Alferova, V. N. Ragozin, and Y. A. Kobzev. Circulation in exercising crew members of the first main expedition aboard Salyut‐6. Kosm. Biol. Aviakosm. Med. 14 (3): 15–18, 1980.
 71. Gillen, C. M., R. Lee, G. W. Mack, C. M. Tomaselli, T. Nishiyasu, and E. R. Nadel. Plasma volume expansion in humans after a single intense exercise protocol. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 71: 1914–1920, 1991.
 72. Gogia, P. P., V. S. Schneider, A. D. LeBlanc, J. Krebs, C. Kasson, and C. Pientok. Bed rest effect on extremity muscle torque in healthy men. Arch. Phys. Med. Rehabil. 69: 1030–1032, 1988.
 73. Greenleaf, J. E., E. M. Bernauer, A. C. Ertl, T. S. Trowbridge, and C. E. Wade. Work capacity during 30‐days of bed rest with isotonic and isokinetic exercise training. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 67: 1820–1826, 1989.
 74. Greenleaf, J. E., E. M. Bernauer, L. T. Juhos, H. L. Young, R. W. Staley, and W. van Beaumont. Fluid and electrolyte shifts during bed rest with isometric and isotonic exercise. J. Appl. Physiol. 42: 59–66, 1977.
 75. Greenleaf, J. E., R. Bulbulian, E. M. Bernauer, W. L. Haskell, and T. Moore. Exercise‐training protocols for astronauts in microgravity. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 67: 2191–2204, 1989.
 76. Greenleaf, J. E., and S. Kozlowski. Physiological consequences of reduced physical activity during bed rest. Exerc. Sport Sci. Rev. 10: 83–119, 1982.
 77. Greenleaf, J. E., and S. Kozlowski. Reduction in peak oxygen uptake after prolonged bed rest. Med. Sci. Sports Exerc. 14: 477–480, 1982.
 78. Greenleaf, J. E., and R. D. Reese. Exercise thermoregulation after 14 days of bed rest. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 48: 72–78, 1980.
 79. Greenleaf, J. E., W. van Beaumont, V. A. Convertino, and J. C. Starr. Handgrip and general muscular strength and endurance during prolonged bedrest with isometric and isotonic leg exercise training. Aviat. Space Environ. Med. 54: 696–700, 1983.
 80. Greenleaf, J. E., C. E. Wade, and G. Leftheriotis. Orthostatic responses following 30‐day bed rest deconditioning with isotonic and isokinetic exercise training. Aviat. Space Environ. Med. 60: 537–542, 1989.
 81. Grigoryeva, L. S., and I. B. Kozlovskaya. Effect of weightlessness and hypokinesia on velocity and strength properties of human muscles. Kosm. Biol. Aviakosm. Med. 21 (1): 27–30, 1987.
 82. Gurovskiy, N. N., A. V. Yeremin, O. G. Gazenko, A. D. Yegorov, I.I. Bryanov, and A. M. Genin. Medical investigations during flights of the spaceships Soyuz‐12, Soyuz‐13, Soyuz‐14 and the Salyut‐3 orbital station. Kosm. Biol. Aviakosm. Med. 9 (2): 48–54, 1975.
 83. Hargens, A. R., C. M. Tipton, P. D. Gollnick, S. J. Mubarak, B. J. Tucker, and W. H. Akeson. Fluid shifts and muscle function in humans during acute simulated weightlessness. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 54: 1003–1009, 1983.
 84. Heath, G. W., J. R. Gavin, J. M. Hinderliter, J. M. Hagberg, S. A. Bloomfield, and J. O. Holloszy. Effects of exercise and lack of exercise on glucose tolerance and insulin sensitivity. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 54: 512–517, 1983.
 85. Henry, W. L., S. E. Epstein, J. M. Griffith, R. E. Goldstein, and D. R. Redwood. Effect of prolonged space flight on cardiac function and dimensions. In: Biomedical Results from Skylab, edited by R. S. Johnston and L. F. Dietlein. Washington, DC: National Aeronautics and Space Administration, 1977, p. 366–371. (NASA SP‐377).
 86. Hikida, R. S., P. D. Gollnick, G. A. Dudley, V. A. Convertino, and P. Buchanan. Structural and metabolic characteristics of human skeletal muscle following 30 days of simulated microgravity. Aviat. Space Environ. Med. 60: 664–670, 1989.
 87. Hoche, J., and A. Graybiel. Value of exercise at one‐half earth gravity in preventing the deconditioning effects of simulated weightlessness. Aerosp. Med. 45: 386–392, 1974.
 88. Hoffler, G. W. Cardiovascular studies of U.S. space crews: an overview and perspective. In: Cardiovascular Flow Dynamics and Measurements, edited by N. H. C. Hwang and N. A. Normann. Baltimore: University Park Press, 1977, pp. 335–363.
 89. Hung, J., D. Goldwater, V. A. Convertino, J. H. McKillop, M. L. Goris, and R. F. DeBusk. Mechanisms for decreased exercise capacity following bedrest in normal middle‐aged men. Am. J. Cardiol. 51: 344–348, 1983.
 90. Hyatt, K. H., and D. A. West. Reversal of bedrest‐induced orthostatic intolerance by lower body negative pressure and saline. Aviat. Space Environ. Med. 48: 120–124, 1977.
 91. Iseyev, L. R., and B. S. Katkovskiy. Unidirectional changes in the human oxygen balance caused by bed confinement and restriction to an isolation chamber. Kosm. Biol. Med. 2 (4): 117–124, 1968.
 92. Iseyev, L. R., and Y. G. Nefedov. Human tolerance to physical stress during four months isolation in a closed space. Kosm. Biol. Med. 2 (1): 60–65, 1968.
 93. Johnson, P. C., T. B. Driscoll, and A. D. LeBlanc. Blood volume changes. In: Biomedical Results from Skylab, edited by R. S. Johnston and L. F. Dietlein. Washington, DC: National Aeronautics and Space Administration, 1977, p. 235–241. (NASA SP‐377).
 94. Johnson, P. C., S. L. Kimzey, and T. B. Driscoll. Postmission plasma volume and red‐cell mass changes in the crews of the first two Skylab missions. Acta Astronautica 2: 311–317, 1975.
 95. Johnson, R. L., G. W. Hoffler, A. Nicogossian, and S. A. Bergman. Skylab experiment M‐092: results of the first manned mission. Acta Astronautica 2: 265–296, 1975.
 96. Johnson, R. L., G. W. Hoffler, A. Nicogossian, S. A. Bergman, and M. M. Jackson. Lower body negative pressure: third manned Skylab mission. In: Biomedical Results from Skylab, edited by R. S. Johnson and L. F. Dietlein. Washington, DC: National Aeronautics and Space Administration, 1977, p. 284–312. (NASA SP‐377).
 97. Kakurin, L. I., R. M. Akhrem‐Adhremovich, Y. V. Vanyushina, R. A. Varbaronov, V. S. Georgiyevskii, B. S. Kotkovskiy, A. R. Kotovskaya, N. M. Mukharlyamov, N. Y. Panferova, Y. T. Pushkar, Y. A. Senkevich, S. F. Simpura, M. A. Cherpakhin, and P. G. Shamrov. The influence of restricted muscular activity on man's endurance of physical stress, accelerations and orthostatics. In: Soviet Conference on Space Biology and Medicine, Moscow, 1966, p. 110–117.
 98. Kakurin, L. I., M. A. Cherepakhin, and V. I. Pervushin. Effect of spaceflight factors on human muscle tone. Kosm. Biol. Med. 5 (2): 63–68, 1971.
 99. Kakurin, L. I., M. A. Cherepakhin, and V. I. Pervushin. Effect of brief space flights on the human neuromuscular system. Kosm. Biol. Med. 5 (6): 53–56, 1971.
 100. Kakurin, L. I., B. S. Kamkovskiy, V. S. Giorgiyevskiy, Yu. N. Purakhan, M. A. Cherenikhin, B. M. Mikhalylov, B. N. Pimukhov, and Ye. N. Buryikov. Functional disturbances during hypokinesia in man. Vopr. Kurotol. Fizioter. Lech. Fizich. Kult. 35: 19–24, 1970.
 101. Kakurin, L. I., V. I. Lobachik, V. M. Mikhailov, and Yu. A. Senkevich. Antiorthostatic hypokinesia as a method of weightlessness simulation. Aviat. Space Environ. Med. 47: 1083–1086, 1976.
 102. Kalinichenko, V. V. Dynamics of orthostatic stability of cosmonauts following 2 to 63‐day missions. Kosm. Biol. Aviakosm. Med. 11 (3): 31–37, 1977.
 103. Kasyan, I. I., and G. F. Makarov. External respiration, gas exchange and energy expenditures of man in weightlessness. Kosm. Biol. Aviakosm. Med. 18 (6): 4–9, 1984.
 104. Katkov, V. Y., and L. I. Kakurin. The role of skeletal muscle tone in regulation of orthostatic circulation. Kosm. Biol. Aviakosm. Med. 12 (1): 75–78, 1978.
 105. Katkovskiy, B. S., G. V. Machinskiy, P. S. Toman, V. I. Danilova, and B. F. Demida. Man's physical performance after thirty‐day hypokinesia with countermeasures. Kosm. Biol. Med. 8 (4): 43–47, 1974.
 106. Katkovskiy, B. S., O. A. Pilysvskiy, and G. I. Smirnova. Effect of long‐term hypokinesia on human tolerance to physical stress. Kosm. Biol. Med. 3 (2): 49–54, 1969.
 107. Katkovskiy, B. S., and Y. D. Pometov. Cardiac output during physical exercises following real and simulated space flight. In: Symposium on Gravitational Physiology. Berlin: Akademie‐Verlag, 1976, p. 301–305.
 108. Kirsch, K. A., L. Rocker, O. H. Gauer, and R. Krause. Venous pressure in man during weightlessness. Science 225: 218–219, 1984.
 109. Kozlovskaya, I. B., L. S. Grigoryeva, and G. I. Gevlich. Comparative analysis of effects of weightlessness and its models on velocity and strength properties and tone of human skeletal muscles. Kosm. Biol. Aviakosm. Med. 18 (6): 22–26, 1984.
 110. Krupina, T. N., and A. Y. Tizul. Changes in the nervous system during a 120‐day clinostatic hypokinesia and the prophylaxis of hypokinetic disorders. Z. Neuropatol. Psikhiatr. 71: 1611–1617, 1971.
 111. LaFevers, E. V., C. R. Booher, W. N. Crozier, and J. Donaldson. Effects of 28 days of bedrest immobilization on the responses of skeletal muscle to isometric stress. In: JSC/Methodist Hospital 28‐day Bedrest Study. Vol. II, edited by P. C. Johnson and C. Mitchell. Houston, TX: Lyndon B. Johnson Space Center, 1977. (NASA 9–14578).
 112. LaFevers, E. V., A. E. Nicogossian, and W. N. Hursta. Electromyographic Analysis of Skeletal Muscle Changes Arising from 9 Days of Weightlessness in the Apollo‐Soyuz Space Mission. Washington, DC: National Aeronautics and Space Administration, 1976. (NASA TM X‐58177).
 113. Lamb, L. E., R. L. Johnson, P. M. Stevens, and B. E. Welch. Cardiovascular deconditioning from space cabin simulator confinement. Aerosp. Med. 35: 420–428, 1964.
 114. Lamb, L. E., P. M. Stevens, and R. L. Johnson. Hypokinesia secondary to chair rest from 4 to 10 days. Aerosp. Med. 36: 755–763, 1965.
 115. Leach, C. S., S. I. Altchuler, and N. M. Cintron‐Trevino. The endocrine and metabolic responses to space flight. Med. Sci. Sports Exerc. 15: 432–440, 1983.
 116. Leach, C. S., and P. C. Johnson. Influence of spaceflight on erythrokinetics in man. Science 225: 216–218, 1984.
 117. Leach, C. S., J. I. Leonard, P. C. Rambaut, and P. C. Johnson. Evaporative water loss in man in a gravity‐free environment. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 45: 430–436, 1978.
 118. Leach, C. S., and P. C. Rambaut. Endocrine responses in long‐duration manned space flight. Acta Astronautica 2: 115–127, 1975.
 119. LeBlanc, A., P. Gorgio, V. Schneider, J. Krebs, E. Schonfeld, and H. Evans. Calf muscle area and strength changes after five weeks of horizontal bed rest. Am. J. Sports Med. 16: 624–629, 1988.
 120. Legenkov, V. I., I. S. Balskhovskiy, A. V. Beregovkin, Z. S. Moshkalo, and G. V. Sorokina. Changes in composition of the peripheral blood during 18‐ and 24‐day space flights. Kosm. Biol. Med. 7 (1): 39–45, 1973.
 121. Legenkov, V. I., R. K. Kiselev, V. I. Gudim, and G. P. Moskaleva. Changes in peripheral blood of crew members of the Salyut‐4 orbital station. Kosm. Biol. Aviakosm. Med. 11 (6): 3–12, 1977.
 122. Luft, U. C., L. G. Myhre, J. A. Loeppky, and M. D. Venters. A study of factors affecting tolerance of gravitational stress simulated by lower body negative pressure. In: Research Report on Specialized Physiology Studies in Support of Manned Space Flight. Albuquerque, NM: Lovelace Foundation, 1976. (NASA 9–14472).
 123. Martin, T. P., V. R. Edgerton, and R. E. Grindeland. Influence of spaceflight on rat skeletal muscle. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 65: 2318–2325, 1988.
 124. Meehan, J. P., J. P. Henry, S. Brunjes, and H. de Vries. Investigation to Determine the Effects of Long‐term Bed Rest on Gtolerance and on Psychomotor Performance. Los Angeles, CA: Dept. of Physiology, University of Southern California, 1966. (NASA‐CR‐62073).
 125. Michel, E. L., J. A. Rummel, and C. F. Sawin. Skylab experiment M‐171 “metabolic activity”—results of the first manned mission. Acta Astronautica 2: 351–365, 1975.
 126. Michel, E. L., J. A. Rummel, C. F. Sawin, M. C. Buderer, and J. D. Lem. Results of Skylab medical experiment M171—metabolic activity. In: Biomedical Results from Skylab, edited by R. S. Johnson and L. F. Dietlein. Washington, DC: National Aeronautics and Space Administration, 1977, p. 372–287. (NASA SP‐377).
 127. Miller, P. B., R. L. Johnson, and L. E. Lamb. Effects of moderate physical exercise during four weeks of bed rest on circulatory functions in man. Aerosp. Med. 36: 1077–1082, 1965.
 128. Nicogossian, A. E., J. B. Charles, M. W. Bungo, and C. S. Leach‐Huntoon. Cardiovascular function in space flight. Acta Astronautica 24: 323–328, 1991.
 129. Nicogossian, A. E., C. F. Sawin, and P. J. Bartelloni. Results of pulmonary function tests. In: The Apollo‐Soyuz Test Project Medical Report, edited by A. E. Nicogossian. Washington, DC: National Aeronautics and Space Administration, 1977, p. 25–28. (NASA SP‐411).
 130. Orlee, H. D., B. Corbin, G. Dugger, and C. Smith. An Evaluation of the Effects of Bed Rest, Sleep Deprivation and Discontinuance of Training on the Physical Fitness of Highly Trained Young Men. Searcy, AR: Harding College, 1973. (NASA‐CR‐134044).
 131. Panov, A. G., and V. S. Lobzin. Some neurological problems in space medicine. Kosm. Biol. Med. 2: 59–67, 1968.
 132. Poliner, L. R., G. J. Dehmer, S. E. Lewis, R. W. Parkey, C. G. Blomqvist, and J. T. Willerson. Left ventricular performance in normal subjects: a comparison of the responses to exercise in the upright and supine positions. Circulation 62: 528–534, 1980.
 133. Riley, D. A., S. Ellis, G. R. Slocum, T. Satyanarayana, J. L. W. Bain, and F. R. Sedlak. Hypogravity‐induced atrophy of rat soleus and extensor digitorum longus muscles. Muscle Nerve 10: 560–568, 1987.
 134. Robinson, B. F., S. E. Epstein, R. L. Kahler, and E. Braunwald. Circulatory effects of acute expansion of blood. Circ. Res. 19: 26–32, 1966.
 135. Rodahl, K., N. C. Birkhead, J. J. Blizzard, B. Issekutz, Jr., and E. D. R. Pruett. Physiological changes during prolonged bed rest. In: Nutrition and Physical Activity, edited by G. Blix. Uppsala: Almqvist and Wiksells, 1967, p. 107–113.
 136. Rudnyy, N. M., O. G. Gazenko, S. A. Gozulov, I. D. Pestov, P. V. Vasilyev, A. V. Yeremin, V. A. Degtyarev, I. S. Balakhovskiy, R. M. Bayevskiy, and G. D. Syrykh. Main results of medical research conducted during the flight of two crews on the Salyut‐5 orbital station. Kosm. Biol. Aviakosm. Med. 11 (5): 33–41, 1977.
 137. Rummel, J. A., E. L. Michel, and C. A. Berry. Physiological responses to exercise after space flight—Apollo 7 to Apollo 11. Aviat. Space Environ. Med. 44: 235–238, 1973.
 138. Rummel, J. A., E. L. Michel, C. F. Sawin, and M. C. Buderer. Medical experiment M‐171: Results from the second manned skylab mission. Aviat. Space Environ. Med. 47: 1056–1060, 1976.
 139. Rummel, J. A., C. F. Sawin, M. C. Buderer, D. G. Mauldin, and E. L. Michel. Physiological responses to exercise after space flight—Apollo 14 through Apollo 17. Aviat. Space Environ. Med. 46: 679–683, 1975.
 140. Rummel, J. A., C. F. Sawin, and E. L. Michel. Exercise response. In: Biomedical Results of Apollo, edited by R. S. Johnson, L. F. Dietlein and C. A. Berry. Washington, DC: National Aeronautics and Space Administration, 1975, p. 265–275. (NASA SP‐368).
 141. Saltin, B., G. Blomqvist, J. H. Mitchell, R. L. Johnson, K. Wildenthal, and C. B. Chapman. Response to exercise after bed rest and after training. Circulation 38 (Suppl. 7): 1–78, 1968.
 142. Saltin, B., and L. B. Rowell. Functional adaptations to physical activity and inactivity. Federation Proc. 39: 1506–1513, 1980.
 143. Sandler, H. Cardiovascular effects of inactivity. In: Inactivity: Physiological Effects, edited by H. Sandler and J. Vernikos. Orlando, FL: Academic, 1986, p. 1–9.
 144. Sawin, C. F., A. E. Nicogossian, A. P. Schachter, J. A. Rummel, and E. L. Michel. Pulmonary function evaluation during and following Skylab space flights. In: Biomedical Results from Skylab, edited by R. S. Johnson, L. F. Dietlein and C. A. Berry. Washington, DC: National Aeronautics and Space Administration, 1977, p. 388–394. (NASA SP‐368).
 145. Seals, D. R., and P. B. Chase. Influence of physical training on heart rate variability and baroreflex circulatory control. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 66: 1886–1895, 1989.
 146. Siminov, P. V., and I. I. Kasyan. Physiological Investigations in Weightlessness. Moscow: Medicine Publishers, 1983.
 147. Sivarajan, E. S., R. A. Bruce, M. J. Almes, B. Green, L. Belanger, B. D. Lindskog, K. M. Newton, and L. W. Mansfield. In‐hospital exercise after myocardial infarction does not improve treadmill performance. N. Engl. J. Med. 305: 357–362, 1981.
 148. Somers, V. K., J. Conway, M. LeWinter, and P. Sleight. The role of baroreflex sensitivity in post‐exercise hypotension. J. Hypertens. 3: S129–S130, 1985.
 149. Stegemann, J., D. Essfeld, and U. Hoffman. Effects of a 7‐day head‐down tilt (‐6°) on the dynamics of oxygen uptake and heart rate adjustment in upright exercise. Aviat. Space Environ. Med. 56: 410–414, 1985.
 150. Stegemann, J., U. Meier, W. Skipka, W. Hartlieb, B. Hemme, and U. Tibes. Effects of multi‐hour immersion with intermittent exercise on urinary excretion and tilt table tolerance in athletes and nonathletes. Aviat. Space Environ. Med. 46: 26–29, 1975.
 151. Stegemann, J., H.‐D. Von Framing, and M. Schiefeling. The effect of a six‐hour immersion in thermodifferent water on circulatory control and work capacity in trained and untrained subjects. Pflugers Arch. 312: 129–138, 1969.
 152. Stevens, P. M., P. B. Miller, C. A. Gilbert, T. N. Lynch, R. L. Johnson, and L. E. Lamb. Influence of long‐term lower body negative pressure on the circulatory function of man during prolonged bed rest. Aerosp. Med. 37: 357–367, 1966.
 153. Stevens, P. M., P. B. Miller, and T. N. Lynch. Effects of lower body negative pressure on physiologic changes due to four weeks of hypoxic bed rest. Aerosp. Med. 37: 466–474, 1966.
 154. Stremel, R. W., V. A. Convertino, E. M. Bernauer, and J. E. Greenleaf. Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest. J. Appl. Physiol. 41: 905–909, 1976.
 155. Syzrantsev, Y. K. Effect of hypodynamia on nitrogen metabolism and importance of graded physical exercises for maintenance of the nitrogen balance. In: Problems of Space Biology, edited by V. N. Chernigovskiy. Moscow: Nauka Press, 1967, vol. 7, p. 317–322.
 156. Tatro, D. L., G. A. Dudley, and V. A. Convertino. Carotid‐cardiac baroreflex response and LBNP tolerance following resistance training. Med. Sci. Sports Exerc. 24: 789–796, 1992.
 157. Taylor, H. L., A. Henschel, J. Brozek, and A. Keys. Effects of bed rest on cardiovascular function and work performance. J. Appl. Physiol. 2: 223–239, 1949.
 158. Tesch, P. A., P. Buchanan, and G. A. Dudley. An approach to counteracting long‐term microgravity‐induced muscle atrophy. Physiologist 33: S77–S79, 1990.
 159. Tesch, P. A., and E. B. Colliander. Effects of eccentric and concentric resistance training on muscular strength (abstract). Med. Sci. Sports Exer. 21 (Suppl.): S88, 1989.
 160. Tesch, P. A., G. A. Dudley, M. R. Duvoisin, B. M. Hather, and R. T. Harris. Force and EMG signal patterns during repeated bouts of concentric or eccentric muscle actions. Acta Physiol. Scand. 138: 263–271, 1990.
 161. Thompson, C. A., D. L. Tatro, D. A. Ludwig, and V. A. Convertino. Baroreflex responses to acute changes in blood volume in humans. Am. J. Physiol. 259 (Regulatory Integrative Comp. Physiol. 30): R792–R798, 1990.
 162. Thornton, W. E., and G. W. Hoffler. Hemodynamic studies of the legs under weightlessness. In: Biomedical Results from Skylab, edited by R. S. Johnson and L. F. Dietlein. Washington, DC: National Aeronautics and Space Administration, 1977, p. 324–329. (NASA SP‐377).
 163. Thornton, W. E., G. W. Hoffler, and J. A. Rummel. Anthropometric changes and fluid shifts. In: Biomedical Results from Skylab, edited by R. S. Johnson and L. F. Dietlein. Washington, DC: National Aeronautics and Space Administration, 1977, p. 330–338. (NASA SP‐377).
 164. Thornton, W. E., and J. A. Rummel. Muscular deconditioning and its prevention in space flight. In: Biomedical Results from Skylab, edited by R. S. Johnson and L. F. Dietlein. Washington, DC: National Aeronautics and Space Administration, 1977, p. 191–197. (NASA SP‐377).
 165. Tigranyan, R. A., I. A. Popova, M. I. Belyakova, N. F. Kalita, Y. G. Tuzova, L. B. Sochilina, and N. A. Davydova. Results of metabolic studies on the crew of the second expedition of the Salyut‐4 orbital station. Kosm. Biol. Aviakosm. Med. 11 (2): 48–53, 1977.
 166. Tishler, V. A., A. V. Yeremin, V. I. Stepantsov, and I.I. Funtova. Evaluation of physical work capacity of cosmonauts aboard Salyut‐6 station. Kosm. Biol. Aviakosm. Med. 20 (3): 31–35, 1986.
 167. Trimble, R. W., and C. S. Lessard. Performance Decrement as a function of Seven Days of Bedrest. Brooks Air Force Base, TX: School Aerosp. Med., 1970. (SAM‐TR‐70–56).
 168. Vorobyov, E. I., O. G. Gazenko, A. M. Genin, and A. D. Egorov. Medical results of Salyut‐6 manned space flights. Aviat. Space Environ. Med. 54: S31–S40, 1983.
 169. Vorobyev, Y. I., O. G. Gazenko, N. N. Gurovskiy, Y. G. Nefedov, B. B. Yegorov, R. M. Bayevskiy, I.I. Bryanov, A. M. Genin, V. A. Degtyarev, A. D. Yegorov, A. V. Yeremin, and I. D. Pestov. Preliminary results of medical investigations carried out during flight of the second expedition of the Soyuz‐4 orbital station. Kosm. Biol. Aviakosm. Med. 10 (5): 3–18, 1976.
 170. Vorobyev, Y. I., O. G. Gazenko, N. N. Gurovskiy, Y. G. Nefedov, B. B. Yegorov, I. I. Spitsa, Y. N. Biryukov, I. I. Bryanov, A. V. Yeremin, and A. D. Yegorov. Experimental Soyuz‐Apollo flight. Preliminary results of biomedical investigations carried out during flight of the Soyuz‐19 ship. Kosm. Biol. Aviakosm. Med. 10 (1): 15–22, 1976.
 171. Vorobyev, Y. I., O. G. Gazenko, Y. B. Shulzhenko, A. I. Grigoryev, A. S. Barer, A. D. Yegorov, and A. I. Skiba. Preliminary results of medical investigations during 5–month spaceflight aboard Salyut‐7‐Soyuz‐T orbital complex. Kosm. Biol. Aviakosm. Med. 20 (2): 27–34, 1986.
 172. Wasserman, K., B. J. Whipp, S. N. Koyal, and W. L. Beaver. Anaerobic threshold and respiratory gas exchange during exercise. J. Appl. Physiol. 35: 236–243, 1973.
 173. White, P. D., J. W. Nyberg, and W. J. White. A comparative study of the physiological effects of immersion and recombency. In: Proc. 2nd Ann. Biomed. Res. Conf. Houston, TX, 1966, p. 117–166.
 174. Williams, D. A., and V. A. Convertino. Circulating lactate and FFA during exercise: Effect of reduction in plasma volume following simulated microgravity. Aviat. Space Environ. Med. 59: 1042–1046, 1988.
 175. Yegorov, A. D., and O. G. Itsekhovskiy. Study of cardiovascular system during long‐term spaceflights. Kosm. Biol. Aviakosm. Med. 17 (5): 4–6, 1983.
 176. Yegorov, A. D., O. G. Itsekhovskiy, A. P. Polyakova, V. F. Turchaninova, I. V. Alferova, V. G. Savelyeva, M. V. Domracheva, T. V. Batenchuk‐Tusko, V. G. Doroshev, and Y. A. Kobzev. Results of studies of hemodynamics and phase structure of the cardiac cycle during functional test with graded exercise during 140‐day flight aboard the Salyut‐6 station. Kosm. Biol. Aviakosm. Med. 15 (3): 18–22, 1981.
 177. Yeremin, A. V., V. V. Bazhanaov, V. L. Marishchuk, V. I. Stepantsov, and T. T. Dzhamgarov. Physical conditioning for man under conditions of prolonged hypodynamia. In: Problems of Space Biology, edited by A. M. Genin and P. A. Sorokin. Moscow: Nauka, 1969, p. 192–199.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Victor A. Convertino. Exercise and Adaptation to Microgravity Environments. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 815-843. First published in print 1996. doi: 10.1002/cphy.cp040236