Comprehensive Physiology Wiley Online Library

Renal, Endocrine, and Hemodynamic Effects of Water Immersion in Humans

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Characterization of the “Afferent” Limb of the Immersion Model
2 Characterization of the “Efferent” Limb of the Immersion Model
2.1 Renal Water Handling
2.2 Mechanisms of the Diuresis
2.3 Renal Sodium Handling
2.4 Dissociation of Natriuresis from Diuresis
2.5 Mechanisms of the Natriuresis
2.6 Renin‐Angiotensin‐Aldosterone System
2.7 Arginine Vasopressin (AVP) or Antidiuretic Hormone
2.8 Renal Prostaglandins
2.9 Atrial Natriuretic Peptides (ANF)
2.10 Humoral Natriuretic Factor
2.11 Catecholamines and Dopa‐Dopamine Systems
3 Considerations for Selecting Water Immersion for Studies of Volume Homeostasis
4 Studies of Disorders Characterized by Deranged Volume Homeostasis
5 Conclusions
Figure 1. Figure 1.

Schematic drawing of possible mechanisms whereby immersion‐induced central hypervolemia induces diuresis. Heavy arrows indicate pathways for which evidence is available; (—) signifies inhibitory action.

From Epstein 11 with permission
Figure 2. Figure 2.

Comparison of effects of immersion on rate of sodium excretion (UNaV) in subjects in balance on low‐sodium (top) and high‐sodium (bottom) diets. Shaded areas represent mean ± SE for control studies. A significant increase in UNaV occurs within the initial hour in sodium‐replete subjects, but is delayed to the 4th hour in subjects ingesting a sodium‐restricted diet.

Data from sodium‐restricted subjects from Epstein and Saruta 32 and for sodium‐replete subjects from Epstein et al. 16; figure from Epstein 11 with permission
Figure 3. Figure 3.

Schematic drawing of possible mechanisms whereby immersion‐induced central hypervolemia induces natriuresis. Heavy arrows indicate pathways for which evidence is available. Diverse hemodynamic, renal, and hormonal effectors act in concert to promote the natriuresis.

From Epstein 11 with permission
Figure 4. Figure 4.

Effect of water immersion on plasma ANP levels in 13 normal subjects. Within 30 min, immersion induced a marked increase in ANP that was sustained throughout immersion. Recovery was associated with a prompt return to the prestudy level. Results are mean ± SE. *P < 0.05 or more compared with the level at the end of the prestudy period.

From Epstein et al. 23 with permission.


Figure 1.

Schematic drawing of possible mechanisms whereby immersion‐induced central hypervolemia induces diuresis. Heavy arrows indicate pathways for which evidence is available; (—) signifies inhibitory action.

From Epstein 11 with permission


Figure 2.

Comparison of effects of immersion on rate of sodium excretion (UNaV) in subjects in balance on low‐sodium (top) and high‐sodium (bottom) diets. Shaded areas represent mean ± SE for control studies. A significant increase in UNaV occurs within the initial hour in sodium‐replete subjects, but is delayed to the 4th hour in subjects ingesting a sodium‐restricted diet.

Data from sodium‐restricted subjects from Epstein and Saruta 32 and for sodium‐replete subjects from Epstein et al. 16; figure from Epstein 11 with permission


Figure 3.

Schematic drawing of possible mechanisms whereby immersion‐induced central hypervolemia induces natriuresis. Heavy arrows indicate pathways for which evidence is available. Diverse hemodynamic, renal, and hormonal effectors act in concert to promote the natriuresis.

From Epstein 11 with permission


Figure 4.

Effect of water immersion on plasma ANP levels in 13 normal subjects. Within 30 min, immersion induced a marked increase in ANP that was sustained throughout immersion. Recovery was associated with a prompt return to the prestudy level. Results are mean ± SE. *P < 0.05 or more compared with the level at the end of the prestudy period.

From Epstein et al. 23 with permission.
References
 1. Arborelius, N. Jr., U. I. Balldin, B. Lilja, and C. E. G. Lundgren. Hemodynamic changes in man during immersion with the head above water. Aerospace Med. 43: 592–598, 1972.
 2. Bartter, F. C., and D. S. Gann. On the hemodynamic regulation of the secretion of aldosterone. Circulation 21: 1016–1023, 1960.
 3. Bazett, H. C., S. Thurlow, C. Corwell, and W. Stewart. Studies on the effects of baths on man. II. The diuresis caused by warm baths together with some observations on urinary tides. Am. J. Physiol.: Respir. Environ. Exerc. Physiol. 70: 430–452, 1924.
 4. Begin, R., M. Epstein, M. A. Sackner, R. Levinson, R. Dougherty, and D. Duncan. Effects of water immersion to the neck on pulmonary circulation and tissue volume in man. J. Appl. Physiol. 40: 293–299, 1976.
 5. Behn, C., O. H. Gauer, K. Kirsch, and P. Eckert. Effects of sustained intrathoracic vascular distension on body fluid distribution and renal excretion in man. Pflugers Arch. 313: 123–135, 1969.
 6. Buckalew, V. M. Natriuretic hormone. In: The Kidney in Liver Disease (3rd ed.), edited by M. Epstein. Baltimore: Williams and Wilkins, 1988, p. 417–428.
 7. Echt, M., L. Lange, and O. H. Gauer. Changes of peripheral venous tone and central transmural venous pressure during immersion in a thermo‐neutral bath. Pflugers Arch. 352: 211–217, 1974.
 8. Epstein, M. Renal effects of head‐out water immersion in man‐implications for an understanding of volume homeostasis. Physiol. Rev. 58: 529–581, 1978.
 9. Epstein, M. Studies of volume homeostasis in man utilizing the model of head‐out water immersion. Nephron 22: 9–19, 1978.
 10. Epstein, M. Renal sodium handling in cirrhosis. In: The Kidney In Liver Disease (3rd ed.), edited by M. Epstein. Baltimore: Williams and Wilkins, 1988, p. 3–30.
 11. Epstein, M. Renal effects of head‐out water immersion in humans: a 15 year update. Physiol. Rev. 72: 563–621, 1992.
 12. Epstein, M., N. S. Bricker, and J. J. Bourgoignie. The presence of a natriuretic factor in urine of normal men undergoing water immersion. Kidney Int. 13: 152–158, 1978.
 13. Epstein, M., and A. G. De Micheli. Natriuretic effects of calcium antagonists. In: Calcium Antagonists In Clinical Medicine, edited by Epstein M. Philadelphia: Hanley and Belfus, 1992, p. 349–366.
 14. Epstein, M., A. G. DeNunzio, and R. D. Loutzenhiser. Effects of vasopressin administration on diuresis of water immersion in normal human. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 51: 1384–1387, 1981.
 15. Epstein, M., A. G. DeNunzio, and M. Ramachandran. Characterization of the renal response to prolonged immersion in normal man. Implications for an understanding of the circulatory adaptation to manned spaceflight. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 49: 184–188, 1980.
 16. Epstein, M., D. Duncan, and L. M. Fishman. Characterization of the natriuresis caused in normal man by immersion in water. Clin. Sci. 43: 275–287, 1972.
 17. Epstein, M., D. C. Duncan, and B. Meek. The role of posture in the natriuresis of water immersion in normal man. Proc. Soc. Exp. Biol. Med. 142: 124–127, 1973.
 18. Epstein, M., J. L. Katsikas, and D. C. Duncan. Role of mineral‐ocorticoids in the natriuresis of water immersion in normal man. Circ. Res. 32: 228–236, 1973.
 19. Epstein, M., R. Levinson, J. Sancho, E. Haber, and R. Re. Characterization of the renin‐aldosterone system in decompensated cirrhosis. Circ. Res. 41: 818–829, 1977.
 20. Epstein, M., and M. Lifschitz. Volume status as a determinant of the influence of renal PGE on renal function. Nephron 25: 157–159, 1980.
 21. Epstein, M., M. Lifschitz, D. S. Hoffman, and J. H. Stein. Relationship between renal prostaglandin E and renal sodium handling during water immersion in normal man. Circ. Res. 45: 71–80, 1979.
 22. Epstein, M., M. Lifschitz, R. Re, and E. Haber. Dissociation of renin‐aldosterone and renal prostaglandin E during volume expansion induced by immersion in normal man. Clin. Sci. 59: 55–62, 1980.
 23. Epstein, M., R. D. Loutzenhiser, E. Friedland, R. M. Aceto, M. J. F. Camargo, and S. A. Atlas. Relationship of increased plasma ANF and renal sodium handling during immersion‐induced central hypervolemia in normal humans. J. Clin. Invest. 79: 738–745, 1987.
 24. Epstein, M., R. Loutzenhiser, and R. Levinson. Spectrum of deranged sodium homeostasis in essential hypertension. Hypertension 8: 422–432, 1986.
 25. Epstein, M., M. Miller, and N. S. Schneider. Depth of immersion as a determination of the natriuresis of water immersion. Proc. Soc. Exp. Biol. Med. 146: 562–566, 1974.
 26. Epstein, M., D. S. Pins, and M. Miller. Suppression of ADH during water immersion in normal man. J. Appl. Physiol. 38: 1038–1044, 1975.
 27. Epstein, M., D. S. Pins, J. Sancho, and E. Haber. Suppression of plasma renin and plasma aldosterone during water immersion in normal man. J. Clin. Endocrinol. Metab. 41: 618–625, 1975.
 28. Epstein, M., D. S. Pins, N. Schneider, and R. Levinson. Determinants of deranged sodium and water homeostasis in decompensated cirrhosis. J. Lab. Clin. Med. 87: 822–839, 1976.
 29. Epstein, M., S. Preston, and R. E. Weitzman. Iso‐osmotic central blood volume expansion suppresses plasma arginine vasopressin in normal man. J. Clin. Endocrinol. Metab. 52: 256–262, 1981.
 30. Epstein, M., R. Re, S. Preston, and E. Haber. Comparison of suppressive effects of water immersion and saline administration on renin‐aldosterone in normal man. J. Clin. Endocrinol. Metab. 49: 358–363, 1979.
 31. Epstein, M., J. Sancho, G. Perez, E. Haber, R. Re, and R. Loutzenhiser. Volume as a determinant of plasma aldosterone in anephric man. J. Clin. Endocrinol. Metab. 46: 309–316, 1978.
 32. Epstein, M., and T. Saruta. Effect of water immersion on renin‐aldosterone and renal sodium handling in normal man. J. Appl. Physiol. 31: 368–374, 1971.
 33. Gauer, O. H. Mechanoreceptors in the intrathoracic circulation and plasma volume control. In: The Kidney in Liver Disease (1st ed.), edited by M. Epstein. New York: Elsevier, 1978, p. 3–17.
 34. Gauer, O. H., J. P. Henry, and C. Behn. The regulation of extracellular fluid volume. Annu. Rev. Physiol. 32: 547–595, 1970.
 35. Goodall, McC, M. McCally, and D. E. Graveline. Urinary adrenaline and noradrenaline response to simulated weightless state. Am. J. Physiol. 206: 431–436, 1964.
 36. Grossman, E., D. S. Goldstein, A. Hoffman, I. R. Wacks, and M. Epstein. The effects of water immersion on the sympathoadrenal and dopa‐dopamine systems in humans. Am. J. Physiol. 262 (Regulatory Integrative Comp. Physiol. 33): R993–R999, 1992.
 37. Hamlyn, J. M., M. P. Blaustein, S. Bova, D. W. DuCharme, D. W. Harris, F. Mandel, W. R. Mathews, and J. H. Ludens. Identification and characterization of a ouabain‐like compound from human plasma. Proc. Natl. Acad. Sci. 88: 6259–6263, 1991.
 38. Krishna, G. G., and G. M. Danovitch. Effects of water immersion on renal function in the nephrotic syndrome. Kidney Int. 21: 393–401, 1982.
 39. Lange, L., S. Lange, M. Echt, and O. H. Gauer. Heart volume in relation to body posture and immersion in a thermo‐neutral bath. A roentgenometric study. Pflugers Arch. 352: 219–226, 1974.
 40. Levinson, R., M. Epstein, M. A. Sackner, and R. Begin. Comparison of the effects of water immersion and saline infusion on central haemodynamics in man. Clin. Sci. Mol. Med. 52: 343–350, 1977.
 41. Maack, T., M. J. F. Camargo, H. D. Kleinert, J. N. Laragh, and S. A. Atlas. Atrial natriuretic factor: structure end function properties. Kidney Int. 27: 607–615, 1985.
 42. Needleman, P., S. P. Adams, B. R. Cole, M. G. Currie, D. M. Geller, M. L. Michener, C. B. Saper, D. Schwartz, and D. G. Standaert. Atriopeptins as cardiac hormones. Hypertension 7: 469–482, 1985.
 43. Norsk, P., and M. Epstein. Manned space flight and the kidney. Am. J. Nephrol. 11: 81–97, 1991.
 44. Peterson, C., B. Madsen, A. Perlman, A. Y. M. Chan, and B. D. Myers. Atrial natriuretic peptide and the renal response to hypervolemia in nephrotic man. Kidney Int. 34: 825–831, 1988.
 45. Skipka, W. K., A. Deck, and D. Bonning. Effect of physical fitness on vanillylmandelic acid excretion during immersion. Eur. J. Appl. Physiol. 35: 271–276, 1976.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Murray Epstein. Renal, Endocrine, and Hemodynamic Effects of Water Immersion in Humans. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 845-853. First published in print 1996. doi: 10.1002/cphy.cp040237