Comprehensive Physiology Wiley Online Library

Adaptation to Acceleration Environments

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Physics of Acceleration
1.1 Interaction of Forces and Mass
1.2 Acceleration of Circular Motion (Physics of the Centrifuge)
1.3 Acceleration without Inducing Weight
1.4 Acceleration of Aircraft
1.5 Acceleration of Rockets
2 Research Centrifuges
2.1 Sustained‐G Centrifuges
2.2 Chronic‐G Centrifuges
3 Acceleration Nomenclature
4 Sustained G
4.1 High Sustained G (HSG)
4.2 Cardiovascular Accommodation to +Gz
4.3 Neurologic Accommodation to +Gz
4.4 Lung and Respiration Accommodation to +Gz
4.5 Physiological Accommodation to ‐Gz ±Gx and +Gy
4.6 G Tolerances
4.7 Adaptation to Sustained G
4.8 Cross Adaptation
4.9 Natural Bases for Sustained‐G Homeostasis
5 Chronic G
5.1 Adaptation Process
5.2 Structural and Functional Changes
5.3 Adaptation to Hypo‐ and Hypergravity Fields
5.4 Utilization of Gravitational G in Space
6 Conclusion
Figure 1. Figure 1.

Diagram showing physics of acceleration, r, radius of rotation (cm); V, rate of motion (cm/s; velocity); a, acceleration (dynes; centripetal) force; Gc inertial (dynes; centrifugal) force; g, Earth's gravitational constant (980 dynes); GR, resultant G vector.

Figure 2. Figure 2.

Methods of providing a weightless or microgravity environment.

Figure 3. Figure 3.

Eye‐level Pa analog recording of a human exposed to +3.2 Gz for 9 s on the left and exhibiting insufficient cardiovascular recovery. Grayout (peripheral light loss) occurred that would have been quickly followed with loss of consciousness if the centrifuge had not been stopped. The recording of +3 Gz on the right shows adequate cardiovascular recovery.

Figure 4. Figure 4.

Measured G‐level tolerances of the human compared with a curve derived from Eq. 2 23.

Figure 5. Figure 5.

The reduction in carotid arterial pressure (Pa) during +Gz exposure is integrated, correlated with the +Gz area, and compared for the dog, nonhuman primate, and the human

Modified from Pertzoff and Britton 126
Figure 6. Figure 6.

Direct eye‐level arterial blood pressure and esophageal pressure (a measure of pulmonary pressure) changes during +Gz of a subject while performing an AGSM. Mean Pa falls to near zero during the inspiratory phase.

Figure 7. Figure 7.

Relationship between the abdominal venous pressure (AVP)–central venous pressure (CVP) gradient, and venous flow (L/min) found in swine before (control) and during the 3, 5, and 7 + Gz levels, with and without AGSM. Data are shown with (WS) and without (W/OS) G‐suit inflation. Circled numbers are data at that +Gz level WS. Regression equation includes control plus no strain data.

From Burns et al. 20 with permission
Figure 8. Figure 8.

Relative (%) volume changes in the pelvis (abdominal region), thigh, and calf of the human during onset of G with and without the anti‐G suit. Volume increases are represented with changes in electrical resistance using an impedance plethysmograph.

Figure 9. Figure 9.

The maintenance of a constant arterio–venous pressure differential is shown as the arterial pressure becomes subatmospheric at head level.

Adapted from Henry et al. 72 with permission
Figure 10. Figure 10.

Oxygen and CO2 pressure gradients between alveoli (PA) and Pulmonary blood (Pa) as a function of increasing G.

Data from Burton et al. 30
Figure 11. Figure 11.

The effect of various levels of ‐Gz on group mean heart rates.

Modified from Ryan et al. 135
Figure 12. Figure 12.

Relationship between cerebrospinal fluid (CSF) pressure and venous pressure (Pv) (cm) during positive and negative radial accelerations of varying magnitudes. Increased pressures occurred under negative G.

Modified from Rushmer et al. 134
Figure 13. Figure 13.

Arterial oxygen saturations measured in subjects during exposure to ±6 Gx for 1 min.

Modified from Smedal et al. 146
Figure 14. Figure 14.

Tolerance of rats exposed to positive +Gz acceleration. Curves delineate 100% survival and 100% mortality.

Modified from Cranmore 45
Figure 15. Figure 15.

Acceleration tolerance curves for humans and monkeys. Unconsciousness end points were used for both species.

Modified from Kydd and Stoll 97
Figure 16. Figure 16.

Human tolerance times (min) at different +Gz levels using fatigue as the end point. Number of subjects is in parentheses.

Modified from Burton 26; data from Miller et al. 109
Figure 17. Figure 17.

Survival of rats at +20 Gz with prior repeated acceleration exposures of +2 Gz (closed circles) and +12 Gz (open triangles) and controls with no prior acceleration exposure.

Modified from Frazer and Reeves 57
Figure 18. Figure 18.

Effect of duration of acceleration on extensive:flexor muscle ratios. Rates of change (with time [t] in months) in the mass ratios of adductor (E) and sartorius (F) muscles have the kinetics:Data for 0G represents intercept values from observations at several fields at the exposure times indicated.

From Burton et al. 28
Figure 19. Figure 19.

Influence of the ambient acceleration field on mature body mass of chickens. Mature body mass (M) of chronically accelerated chickens decreases rectilinearly with increasing field strength G:where M is mature body mass (kg), G is a field of G‐strength, M0 is weighlessness; i.e., G = 0; and, ‐k is the proportionality coefficient. For the indicated observations 151, the constants in the above equation have the values: M0 = 2.13 kg and ‐k = ‐0.17; with a correlation coefficient r = 0.63 (P < 0.01).

From Smith and Burton 151


Figure 1.

Diagram showing physics of acceleration, r, radius of rotation (cm); V, rate of motion (cm/s; velocity); a, acceleration (dynes; centripetal) force; Gc inertial (dynes; centrifugal) force; g, Earth's gravitational constant (980 dynes); GR, resultant G vector.



Figure 2.

Methods of providing a weightless or microgravity environment.



Figure 3.

Eye‐level Pa analog recording of a human exposed to +3.2 Gz for 9 s on the left and exhibiting insufficient cardiovascular recovery. Grayout (peripheral light loss) occurred that would have been quickly followed with loss of consciousness if the centrifuge had not been stopped. The recording of +3 Gz on the right shows adequate cardiovascular recovery.



Figure 4.

Measured G‐level tolerances of the human compared with a curve derived from Eq. 2 23.



Figure 5.

The reduction in carotid arterial pressure (Pa) during +Gz exposure is integrated, correlated with the +Gz area, and compared for the dog, nonhuman primate, and the human

Modified from Pertzoff and Britton 126


Figure 6.

Direct eye‐level arterial blood pressure and esophageal pressure (a measure of pulmonary pressure) changes during +Gz of a subject while performing an AGSM. Mean Pa falls to near zero during the inspiratory phase.



Figure 7.

Relationship between the abdominal venous pressure (AVP)–central venous pressure (CVP) gradient, and venous flow (L/min) found in swine before (control) and during the 3, 5, and 7 + Gz levels, with and without AGSM. Data are shown with (WS) and without (W/OS) G‐suit inflation. Circled numbers are data at that +Gz level WS. Regression equation includes control plus no strain data.

From Burns et al. 20 with permission


Figure 8.

Relative (%) volume changes in the pelvis (abdominal region), thigh, and calf of the human during onset of G with and without the anti‐G suit. Volume increases are represented with changes in electrical resistance using an impedance plethysmograph.



Figure 9.

The maintenance of a constant arterio–venous pressure differential is shown as the arterial pressure becomes subatmospheric at head level.

Adapted from Henry et al. 72 with permission


Figure 10.

Oxygen and CO2 pressure gradients between alveoli (PA) and Pulmonary blood (Pa) as a function of increasing G.

Data from Burton et al. 30


Figure 11.

The effect of various levels of ‐Gz on group mean heart rates.

Modified from Ryan et al. 135


Figure 12.

Relationship between cerebrospinal fluid (CSF) pressure and venous pressure (Pv) (cm) during positive and negative radial accelerations of varying magnitudes. Increased pressures occurred under negative G.

Modified from Rushmer et al. 134


Figure 13.

Arterial oxygen saturations measured in subjects during exposure to ±6 Gx for 1 min.

Modified from Smedal et al. 146


Figure 14.

Tolerance of rats exposed to positive +Gz acceleration. Curves delineate 100% survival and 100% mortality.

Modified from Cranmore 45


Figure 15.

Acceleration tolerance curves for humans and monkeys. Unconsciousness end points were used for both species.

Modified from Kydd and Stoll 97


Figure 16.

Human tolerance times (min) at different +Gz levels using fatigue as the end point. Number of subjects is in parentheses.

Modified from Burton 26; data from Miller et al. 109


Figure 17.

Survival of rats at +20 Gz with prior repeated acceleration exposures of +2 Gz (closed circles) and +12 Gz (open triangles) and controls with no prior acceleration exposure.

Modified from Frazer and Reeves 57


Figure 18.

Effect of duration of acceleration on extensive:flexor muscle ratios. Rates of change (with time [t] in months) in the mass ratios of adductor (E) and sartorius (F) muscles have the kinetics:Data for 0G represents intercept values from observations at several fields at the exposure times indicated.

From Burton et al. 28


Figure 19.

Influence of the ambient acceleration field on mature body mass of chickens. Mature body mass (M) of chronically accelerated chickens decreases rectilinearly with increasing field strength G:where M is mature body mass (kg), G is a field of G‐strength, M0 is weighlessness; i.e., G = 0; and, ‐k is the proportionality coefficient. For the indicated observations 151, the constants in the above equation have the values: M0 = 2.13 kg and ‐k = ‐0.17; with a correlation coefficient r = 0.63 (P < 0.01).

From Smith and Burton 151
References
 1. Akesson, S. On the blood supply to the brain during acceleration. Acta Physiol. Scand. 15: 237–244, 1948.
 2. Balldin, U. I., A. Sporrong, and P. A. Tesch. Dehydration and G tolerance, psychomotor performance and muscle function. Aviat. Space Environ. Med. 55: 467, 1984.
 3. Ballinger, E. R., and C. H. Dempsey. The effect of prolonged acceleration in the human body in the prone and supine positions. Wright Air Development Center, 1952. (WADC Report No. 52–250).
 4. Barer, A. S., G. A. Golov, V. B. Zubavin, Ye. I. Sorokina, and Ye. Tikhomirov. Oxygen balance of the body during extended accelerations. Aerosp. Med. 39: 253–257, 1968.
 5. Barr, P. O. Hypoxemia in man induced by prolonged acceleration. Acta Physiol. Scand. 54: 128–137, 1962.
 6. Beckman, E. L. Protection afforded the cerebrovascular system by the cerebrospinal fluid under the stress of negative G. J. Aviat. Med. 20: 430–438, 1949.
 7. Beckman, E. L., T. D. Duane, J. E. Ziegler, and H. N. Hunter. Some observations on human tolerance to acceleration stress: Phase IV. Human tolerance to high positive G applied at a rate of 5 to 10 G per second. J. Aviat. Med. 25: 50–66, 1954.
 8. Belay, V. Ye., P. V. Vasil'yev, G. D. Glod, and M. I. Bryuzgina. Reactivity of animals to caffeine and strychnine in the period of after‐effect to transverse accelerations. Kosm. Biol. Med. 1: 47–53, 1967.
 9. Bernard, C. An Introduction to the Study of Experimental Medicine. New York: Dover, 1957.
 10. Bernauer, E. M., and W. C. Adams. The effect of a nine day recumbency with and without exercise on the redistribution of body fluids and electrolytes, renal function and metabolism. 1968. NASA Hdq., Wash., D.C. (NASA CR‐73664).
 11. Bjurstedt, H., G. Rosenhamer, and G. Tyden. Acceleration stress and effects of propranolol on cardiovascular responses. Acta Physiol. Scand. 90: 491–500, 1974.
 12. Blaxter, R. Energy Metabolism in Animals and Man. Cambridge: Cambridge Univ. Press, 1989.
 13. Bloodwell, R. D., and J. E. Whinnery. Acceleration exposure during competitive civilian aerobatics. Alexandria, VA: Preprints, Ann. Meeting Aerosp. Med. Assoc., p. 167–168, 1982.
 14. Boutellier, U., R. Arceli, and L. E. Farhi. Ventilation and CO2 responses during +Gz acceleration. Resp. Physiol. 62: 141–151, 1985.
 15. Britton, S. W., E. L. Corey, and G. A. Stewart. Effects of high acceleration forces and their alleviation. Am. J. Physiol. 146: 35–51, 1946.
 16. Britton, S. W., V. A. Pertzoff, C. R. French, and R. F. Kline. Circulatory and cerebral change and protective aids during exposure to acceleratory forces. Am. J. Physiol. 150: 7–26, 1947.
 17. Bungo, M. W., J. B. Charles, and P. C. Johnson. Cardiovascular deconditioning during spaceflight and the use of saline as a countermeasure. Aviat. Space Environ. Med. 56: 985–90, 1985.
 18. Burns, J. W., and U. I. Balldin. Assisted positive‐pressure breathing for augmentation of acceleration tolerance time. Aviat. Space Environ. Med. 59: 225–233, 1988.
 19. Burns, J. W., M. H. Laughlin, W. M. Witt, J. T. Young, and V. P. Ellis. Pathophysiologic effects of acceleration stress in the miniature swine. Aviat. Space Environ. Med. 54: 881–893, 1983.
 20. Burns, J. W., M. J. Parnell, and R. R. Burton. Hemodynamics of miniature swine during +Gz stress with and without anti‐G support. J. Appl. Physiol: Respir. Environ. Exerc. Physiol. 60: 1628–1637, 1986.
 21. Burton, R. R. Positive (+Gz) acceleration tolerance of the miniature swine: Application as a human analog. Aerosp. Med. 44: 294–298, 1973.
 22. Burton, R. R. Human response to repeated high sustained G simulated aerial combat maneuvers. Aviat. Space Environ. Med. 51: 1185–1192, 1980.
 23. Burton, R. R. A conceptual model for predicting pilot group G tolerance for tactical fighter aircraft. Aviat. Space Environ. Med. 57: 733–744, 1986.
 24. Burton, R. R. A human‐use centrifuge for space stations: Proposed ground‐base studies. Aviat. Space Environ. Med. 59: 579–582, 1988.
 25. Burton, R. R. G‐induced loss of consciousness: definition, history, current status. Aviat. Space Environ. Med. 59: 2–5, 1988.
 26. Burton, R. R. Human physiologic limitations to G in high‐performance aircraft. In: Environmental Physiology, edited by L. E. Farhi, and C. V. Paganelli. New York: Springer‐Verlag, chapt. 10, p. 123–137, 1989.
 27. Burton, R. R. Periodic acceleration stimulation in space. In: 19th Intersoc. Conf. Environ. Systems, Soc. Auto. Engr., 1989. San Diego, CA, SAE Tech. Paper Series #891434 Warrendale, PA.
 28. Burton, R. R., E. L. Besch, S. J. Sluka and A. H. Smith. Differential effect of chronic acceleration upon skeletal muscles. J. Appl. Physiol. 23: 80–84, 1967.
 29. Burton, R. R., and J. L. Jaggars. Influence of ethyl alcohol ingestion on a target task during sustained +Gz centrifugation. Aerosp. Med. 45: 290–296, 1976.
 30. Burton, R. R., S. D. Leverett, Jr., and E. D. Michaelson. Man at high sustained +Gz. Aerosp. Med. 45: 1115–1136, 1974.
 31. Burton, R. R., and W. F. MacKenzie. Heart pathology associated with exposures to high sustained +Gz. J.C.A.P. Aviat. Space Environ. Med. 46: 1251–1253, 1975.
 32. Burton, R. R., and L. J. Meeker. Physiologic validation of a short‐arm centrifuge for space application. Aviat. Space Environ. Med. 63: 476–481, 1992.
 33. Burton, R. R., and R. M. Shaffstall. Human tolerance to aerial combat maneuvers. Aviat. Space Environ. Med. 51: 641–648, 1980.
 34. Burton, R. R., and A. H. Smith. Chronic acceleration sickness. Aerosp. Med. 36: 39–44, 1965.
 35. Burton, R. R., and A. H. Smith. Muscle size, gravity and work capacity. Presented at the XVI Int. Congr. Aviat. Space Med. Lisbon, Portugal, 1967.
 36. Burton, R. R., and A. H. Smith. Criteria for physiological stress produced by increased chronic acceleration. Proc. Soc. Exp. Biol. Med. 128: 608–611, 1968.
 37. Burton, R. R., and A. H. Smith. Hematological findings associated with chronic acceleration. Space Life Sci. 1: 501–513, 1969.
 38. Burton, R. R., and A. H. Smith. Stress and adaptation responses to repeated acute acceleration. J. Appl. Physiol. 222: 1505–1509, 1972.
 39. Calder, W. A., III. Size, Function and Life History. Cambridge: Harvard Univ. Press, 1984.
 40. Canonica, P. G. Effects of prolonged hypergravity stress on the myogenic properties of the gastrocnemius muscle. Columbia: Univ. of South Carolina, 1966. Masters dissertation.
 41. Clark, C. C. Observations of a human experiencing 2G for 24 hrs. Presented at the 31st Ann. Meeting Aerosp. Med. Assoc., 1960.
 42. Clark, C. C., I.D.R. Gardiner, A. K. McIntyre, and H. Jorgenson. The effect of positive acceleration on fluid loss from blood to tissue spaces in human subjects on the centrifuge. Federation Proc. 5: 17, 1946.
 43. Convertino, V. A. Neuromuscular aspects in development of exercise countermeasures. Physiologist 34 (Suppl. 1): S125–128, 1991.
 44. Cope, F. W., and B. D. Polis. Change in plasma transaminase activity of Rhesus monkeys after exposure to vibration, acceleration, heat or hypoxia. Aerosp. Med. 30: 90–96, 1959.
 45. Cranmore, D. Behavior, mortality and gross pathology of rats under acceleration stress. Aerosp. Med. 27: 131–140, 1956.
 46. Cranmore, D., and H. L. Ratcliffe. A study of adaptation to acceleration with rats and guinea pigs as test animals. 1956. Avia. Med. Accel. Lab., U.S. Naval Air Dev. Ctr., Johnsville, PA, p. 1–16. (N.A.D.C.‐MA‐5602).
 47. DeMarco, A. O., and I. Geller. Effects of acceleration forces on timing behavior in the white rat. Aerosp. Med. 35: 30–32, 1964.
 48. Dlusskaya, I. G., and M. N. Khomenko. Responses of subjects differing in tolerances of +Gz to tilt tests and water loading tests. Kosm. Biol. Med. 19: 22–27, 1985.
 49. Dodds, E. C. Contribution to discussion on obesity. Proc. R. Soc. Med. 43: 342–344, 1950.
 50. Donaldson, C. L., S. B. Hulley, J. M. Vogel, R. S. Hattner, J. H. Bayers, and D. E. McMillan. Effect of prolonged bed rest on bone mineral. Metabolism 19: 1071–1084, 1970.
 51. Dripps, R. O., and J. H. Comroe. The respiratory and circulatory response of normal man to inhalation of 7.6 and 10.4 percent CO2 with a comparison of the maximal ventilation produced by severe muscular exercise, inhalation of CO2, and maximal voluntary hyperventilation. Am. J. Physiol. 149: 43–51, 1947.
 52. Duling, B. R. Effects of chronic centrifugation at 3 G's on cardiovascular reflexes in the rat. Am. J. Physiol. 213: 466–472, 1967.
 53. Epperson, W. L., R. R. Burton, and E. M. Bernauer. The influence of differential physical conditioning regimens on simulated aerial combat maneuvering tolerance. Aviat. Space Environ. Med. 53: 1091–1097, 1982.
 54. Epperson, W. L., R. R. Burton, and E. M. Bernauer. The effectiveness of specific weight training regimens on simulated aerial combat maneuvering to G tolerance. Aviat. Space Environ. Med. 56: 534–539, 1985.
 55. Evans, D., and H. W. Boyes. The effects of rapid massive haemorrhage and retransfusion on various cardiovascular parameters in the dog. Can. Anaesth. Soc. J. 16: 385–394, 1969.
 56. Evans, J. W., and J. M. Boda. Glucose metabolism and chronic acceleration. Am. J. Physiol. 219: 893–896, 1970.
 57. Frazer, J. W., and E. Reeves. Adaptation to positive acceleration. 1958. Avia. Med. Accel. Lab., U.S. Naval Air Dev. Ctr., Johnsville, PA, p. 1–14. (N.A.D.C.‐MA‐5818).
 58. Fuller, C. A., J. M. Horowitz and B. A. Howitz. Effects of acceleration on the thermoregulatory response of unanesthetized rats. J. Appl. Physiol. 42: 74–77, 1977.
 59. Galileo, G. Discourses and Demonstrations Concerning Two New Sciences [Leyden: Elsevirii, 1638]. Translated by H. Crew and A. DeSalvio. New York: Macmillan, 1934; trans. by S. Drake. Madison: Univ. Wisconsin Press, 1974.
 60. Gauer, O. H., and J. P. Henry. Circulatory basis of fluid volume control. Physiol. Rev. 43: 423–481, 1963.
 61. Gauer, O. H., and J. P. Henry. Negative (‐G2) acceleration in relation to arterial oxygen saturation, subendocardial hemorrhage and venous pressure in the forehead. Aerosp. Med. 35: 533–545, 1964.
 62. Gazenko, O. G., E. A. IIyin, E. A. Savina, L. V. Serova, A. S. Kaplansky, I. A. Popova, V. S. Oganov, K. V. Smirnov and I. V. Konstantinova. Study of the initial period of adaptation to microgravity in the rat experiment on board Cosmos‐1967. Physiologist 30 (Suppl. 1): S53–S55, 1987.
 63. Glaister, D. H. The Effect of Gravity and Acceleration in the Lung. Slough, England: Technivision Services, AGARDograph 113, 1970.
 64. Glaister, D. H. Current and emerging techniques in G‐LOC detection: Noninvasive monitoring of cerebral microcirculation using near infrared. Aviat. Space Environ. Med. 59: 23–28, 1988.
 65. Goss, R. J. The Physiology of Growth. New York: Academic, 1978.
 66. Greenfield, A.D.M. Effect of acceleration on cats with and without water immersion. J. Physiol. 104: 5–6, 1945.
 67. Greenleaf, J. E. Energy and thermal regulation during bed rest and space‐flight. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 67: 507–516, 1989.
 68. Greenleaf, J. E. Importance of fluid homeostasis for optimal adaptation to exercise and environmental stress: acceleration. In: Perspectives in Exercise and Sports Medicine. Fluid Homeostasis During Exercise, edited by C. V. Gisolfi and D. R. Lamb. Dubuque, Indiana: Benchmark, vol. 3, chapt. 9, p. 307–346, 1990.
 69. Greenleaf, J. E., R. Bulbulian, E. M. Bernauer, W. L. Haskell, and T. Moore. Exercise training protocols for astronauts in microgravity. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 67: 2191–204, 1989.
 70. Hallenbeck, G. A. The response of normal dogs to prolonged exposure to centrifuge force. 1944. Nat. Res. Council, Div. Med. Sci., from: Accel. Lab., Mayo Aero Med. Unit, Rochester, Minn. p. 1–5. (N.R.C., 279).
 71. Haswell, M. S., W. A. Tacker, U. I. Balldin, and R. R. Burton. Influences of inspired oxygen concentration on acceleration atelectasis. Aviat. Space Environ. Med. 57: 432–437, 1986.
 72. Henry, J. P., O. H. Gauer, S. S. Kety, and K. Kramer. Factors maintaining cerebral circulation during gravitational stress. J. Clin. Invest. 30: 292–300, 1951.
 73. Herrick, R. M., J. L. Myers, and R. E. Burke. Discriminative behavior following repeated exposure to negative acceleration. 1957. Avia. Med. Accel. Lab. U.S. Naval Air Dev. Ctr., Johnsville, PA, p. 1–9. (N.A.D.C.‐MA‐5716).
 74. Hershgold, E. J. and S. H. Steiner. Cardiovascular changes during acceleration stress in dogs. J. Appl. Physiol. 15: 1065–1068, 1960.
 75. Hicks, J. W. and H. S. Badeer. Gravity and the circulation “open” vs. “closed” systems. Am. J. Physiol. 262: (Regulatory Integrative Comp. Physiol. 33) R725–732, 1992.
 76. Horowitz, J. M., and B. A. Horwitz. Thermoregulatory responses of unanesthetized rats exposed to gravitational fields of 1 to 4 G. COSPAR: Life Sci. Space Res. Ed. R. Holmquist and A. C. Stickland. Pergamon Press, Oxford and New York. XVI: 77–82, 1978.
 77. Horwitz, K. B., R. J. Ball, and J. P. Schmidt. Resistance to infection of mice and hamsters following short‐term acceleration stress. Aerosp. Med. 40: 1248–1251, 1969.
 78. Huygens, C. The Pendulum Clock or Geometrical Demonstration Concerning the Motion of Pendula as Applied to Clocks. [Hague, 1658]. Translated by R. J. Blackwell. Ames: Iowa State Univ. Press, p. 182, 1986.
 79. Jasper, H. H., and A. J. Cipriani. Physiological studies on animals subject ed to positive G. J. Physiol. 104: 6–7, 1945.
 80. Jasper, H., A. Cipriani, and E. Lotspeich. Physiological studies on the effects of positive acceleration in cats and monkeys. 1942. Report to Subcomit. Accel. of Comit. Avia. Med., Nat. Res. Council Wash., D.C. Proj. A.M. 14. (N.R.C., C‐2225).
 81. Johnson, R. L., G. W. Hoffler, A. E. Nicogossian, S. A. Bergman, Jr., and M. M. Jackson. Lower body negative pressure: Third manned skylab mission. In: Biomedical Results from Skylab, edited by R. S. Johnson and L. F. Dietlein. (NASA SP337) Washington DC: National Aeronatics and Space Administration, chapt. 29, p. 284–312, 1977.
 82. Katovich, M. J., and A. H. Smith. Body mass, composition and food intake in rabbits during altered acceleration fields. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 45: 51–55, 1978.
 83. Keil, L. C. Changes in growth and body composition of mice exposed to chronic centrifugation. Growth 33: 176–180, 1969.
 84. Kelly, C. F., A. H. Smith, and C. M. Winget. An animal centrifuge for prolonged operation. J. Appl. Physiol. 15: 753–757, 1960.
 85. Kleiber, M. Fire of Life. New York: Wiley, 1961.
 86. Kleiber, M. Further consideration of the relation between metabolic rate and body size. In: Energy Metabolism of Farm Animals, edited by K. L. Blaxter, J. Kielanowski, and G. Thorbek. Newcastle on Tyne: Oriel, p. 505–511, 1969.
 87. Klein, K. E., H. Bruner, D. Jovy, L. Vogt, and H. M. Wegman. Influence of stature and physical fitness in tilt‐table and acceleration tolerance. Aerosp. Med. 40: 293–297, 1969.
 88. Korneyeva, N. V., and A. S. Ushakov. Effect of transverse accelerations on the acetylcholine content and cholinesterase activity of the blood of experimental animals. Kosm. Biol. Med. 1: 34–38, 1967.
 89. Kotova, E. S. and Ye. A. Savina. Clinical and morphological characteristics of hemodynamic peculiarities in the eye vascular system of test animals exposed to accelerations. Kosm. Biol. Med. 2: 38–43, 1968.
 90. Kotovskaya, A. R. Certain problems resulting from effects of acceleration during space flight (effects of cumulation and adaptation). Presented at the 17th Mt. Astron. Cong., 9–15 Oct., 1966, Madrid, Spain. N 67–26624, NASA TT‐F10412, p. 1–18.
 91. Kotovskaya, A. R., R. A. Vartbaronov, F. V. Babchinskiy, and S. F. Simpura. The effect of adaptation to hypoxia under pressure‐chamber conditions on tolerance to transverse G‐loads. Problems of Space Biol. 8: 41–49, 1969. (NASA TT F‐580).
 92. Kotovskaya, A. R., R. A. Vartbaronov, and S. F. Simpura. Physiological reactions of man to the effect of transverse G‐loads after adaptation to high altitude conditions. Problems of Space Biol. 8: 17–41, 1969. (NASA, TT F‐580).
 93. Kotovskaya, A. R., P. V. Vasil'yev, R. A. Vartivaronov, and S. F. Simpura. The effect of preliminary acclimatization in mountains on man's endurance of transverse G‐loads. Problems of Space Biol. 8: 7–16, 1969. (NASA TT F‐180).
 94. Kravik, S. E., L. C. Keil, G. Greelen, C. E. Wade, P. R. Barnes, W. A. Spaul, C. A. Elder, and J. E. Greenleaf. Effect on antigravity suit inflation on cardiovascular, PRA and PVP response in humans. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 61: 766–774, 1986.
 95. Krutz, R. W. Effects of elevated CO2 breathing mixture on +Gz tolerance. USAFSAM AFOSR Res. Rev., Oct., 1974.
 96. Krutz, R. W., R. R. Burton, and E. M. Forster. Physiologic correlates of protection afforded by anti‐G suits. Aviat. Space Environ. Med. 61: 106–111, 1990.
 97. Kydd, G. H. and A. M. Stoll. G tolerance in primates I. Unconsciousness end point. J. Aviat. Med. 29: 413–421, 1958.
 98. Laughlin, M. H. The effects of +Gz on the coronary circulation: A review. Aviat. Space Environ. Med. 57: 5–16, 1986.
 99. Laughlin, M. H., J. W. Burns, and M. J. Parnell. Regional distribution of cardiac output in unanesthetized baboons during +Gz stress with and without an anti‐G suit. Aviat. Space Environ. Med. 53: 133–141, 1982.
 100. Laughlin, M. H., W. M. Witt, and R. N. Whittaker. Regional cerebral blood flow in conscious miniature swine during high sustained +Gz acceleration stress. Aviat. Space Environ. Med. 50: 1129–1133, 1979.
 101. Lehr, A‐K., A.R.J. Prior, G. Langewouters, B. Ullrich, H. Leipner, S. Zollner, P. Lindner, H. Pongratz, H. A. Dieterich, and K. Theisen. Previous exposure to negative Gz reduces relaxed +Gz tolerance. Aviat. Space Environ. Med. 63: 405 (Abst. 119), 1992.
 102. Lindberg, E. F., W. F. Sutterer, H. W. Marshall, R. N. Headley, and E. H. Wood. Measurement of cardiac output during headward acceleration using the dye‐dilution technique. Aerosp. Med. 31: 817–834, 1960.
 103. Ludwig, D. A., J. Vernikos, M. R. Duvoisin, and J. L. Stinn. The efficacy of periodic +IGz exposure in the prevention of bedrest induced orthostatic intolerance. Avia. Space Environ. Med. 63: 449(Abst. 635), 1992.
 104. MacKenzie, W. F., and R. R. Burton. Ventricular pathology in swine at high sustained +Gz. AGARD Conf. Proc. 189: A2–1–A2–3, 1976.
 105. Maier, A., E. Eldred, and R. R. Burton. Effects of long‐term increased gravitational load on intrafusal fibers on the avian muscle spindle. Brain Res. 112: 180–182, 1976.
 106. Matthews, B.H.C. Adaptation to centrifuge acceleration. J. Physiol. 122: 31p, 1953.
 107. McNab, B. K. Body weights and the energetics of temperature regulation. J. Exp. Biol. 53: 329–348, 1970.
 108. Menninger, R. P., R. H. Murray, and F. R. Robinson. Repeated, prolonged low intensity +Gz exposures: Anatomical studies in baboons. Aerosp. Med. 38: 337–339, 1967.
 109. Miller, H., M. B. Riley, S. Bondurant, and E. P. Hiatt. The duration of tolerance to positive acceleration. J. Aviat. Med. 30: 360–366, 1959.
 110. Mills, F. J. The endocrinology of stress. Aviat. Space Environ. Med. 56: 642–650, 1985.
 111. Mills, F. J., and V. Marks. Human endocrine responses to acceleration stress. Aviat. Space Environ. Med. 53: 537–540, 1982.
 112. Murray, R. H., J. Prine, and R. P. Menninger. Repeated, prolonged low‐intensity +Gz exposures. Anatomical studies in dogs. Aerosp. Med. 36: 972–976, 1965.
 113. Musacchia, X. J., J. M. Steffen, R. D. Fell, and M. J. Dumbrowski. Comparative morphometry of fibers and capillaries in soleus following weightlessness (SL‐3) and suspension. Physiologist 31 (Suppl. 1): S28–S29, 1988.
 114. Newton, I. Philosophia Naturalis Principia Mathematica. [London: Royal Academy, 1687.] Translated by F. Cajori. Berkeley/Los Angeles: Univ. California Press, p. 680, 1934.
 115. North, W. C., and J. A. Wells. Modification by previous trauma and temperature of tolerance to tumbling shock in rats. Federation Proc., 11: 380, 1952.
 116. Nunneley, S. A., and R. F. Stribley. Heat and acute dehydration effects on acceleration responses in man. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 47: 197–200, 1979.
 117. Ossard, G., J. M. Clere, M. Kerguelen, F. Melchior, A. Roncin, and J. Seylaz. Response of human cerebral blood flow to +Gz accelerations. J. Appl. Physiol. 76: 2114–2118, 1994.
 118. Oyama, J. Effects of altered gravitational fields on laboratory animals. In: Progress in Biometerology, edited by: S. W. Trump. J. J. Bouma, and H. D. Johnson. Amsterdam: Swets and Zeitlinger, vol. I, chapt. 9, 1976.
 119. Oyama, J., and W. T. Platt. Metabolic alterations in rats exposed to acute acceleration stress. Endocrinology 76: 203–204, 1965.
 120. Oyama, J., W. T. Platt, and V. B. Holland. Deep‐body temperature changes in rats exposed to chronic centrifugation. Am. J. Physiol. 221: 1271–1277, 1971.
 121. Pace, N., D. F. Rahlmann, A. M. Kodama, and A. H. Smith. Changes in the body composition of monkeys during long‐term exposure to high acceleration fields. COSPAR: Life Sci. Space Res., edited by R. Holmquist and A. C. Stickland. Pergamon Press, Oxford and New York. XVI: 71–76, 1978.
 122. Pace, N., D. F. Rahlmann, and A. H. Smith. Skeletal mass change as a function of gravitational loading. Physiologist 28 (Suppl. 6): S17–S20, 1985.
 123. Pace, N., and A. H. Smith. Scaling of metabolic rate on body mass in small animals at 2.0G. Physiologist 26 (Suppl. 6): S125–S126, 1983.
 124. Parin, V. V., R. M. Baevskii, and M. D. Emelyanov. Monographs on Space Physiology. Moscow: Meditsina, 1968.
 125. Parkhurst, M. J., S. D. Leverett, Jr., and S. J. Shubrooks, Jr. Human tolerance to high sustained +Gz acceleration. Aerosp. Med. 43: 708–712, 1972.
 126. Pertzoff, V. A., and S. W. Britton. Force and time elements in circulating changes under acceleration: carotid arterial pressure deficiency area. Am. J. Physiol. 512: 492–498, 1948.
 127. Peters, R. H. The Ecological Implications of Body Size. Cambridge: Cambridge Univ. Press, 1983.
 128. Petruklin, V. G. The effect of preliminary interrupted stay in a rarefied atmosphere on the tolerance of rats to transverse G‐loads. Problems of Space Biol. 8: 112–118, 1969. (NASA TTF‐580).
 129. Piemme, T. E., A. S. Hyde, M. McCally, and G. Potos, Jr. Human tolerance to +Gz 100 percent gradient spin. Aerosp. Med. 37: 16–21, 1966.
 130. Pitts, G. C., L. S. Bull, and J. Oyama. Effect of chronic centrifugation on body composition in the rat. Am. J. Physiol. 223: 1044–48, 1972.
 131. Polis, B. D., A. Zella, and J. D. Hardy. Hormonal factors in the resistance to acceleration stress. Aerosp. Med. 28: 214, 1957.
 132. Prives, M. D. The effect of G‐force on the structure of the vascular system. Arkh. Anat., Gistol. i Embriol. (Moscow), 45: 3–13, 1963.
 133. Rushmer, R. F. A roentgenographic study of the effects of a pneumatic anti‐blackout suit on the hydrostatic columns in man exposed to positive radial acceleration. Am. J. Physiol. 151: 459–468, 1947.
 134. Rushmer, R. F., E. L. Beckman, and D. Lee. Protection of the cerebral circulation by the cerebrospinal fluid under the influence of radial acceleration. Am. J. Physiol. 151: 355–365, 1947.
 135. Ryan, E. A., W. K. Kerr, and W. R. Franks. Some physiologic findings on normal men subjected to negative G. J. Aviat. Med. 21: 173–194, 1950.
 136. Salzman, E. W., and S. D. Leverett, Jr. Peripheral venoconstriction during acceleration and orthostasis. Circul. Res. 4: 540–545, 1956.
 137. Schmidt‐Nielsen, K. Scaling, Cambridge: Cambridge Univ. Press, 1984.
 138. Selye, H. Stress. Montreal: Acta, 1950.
 139. Shaffstall, R. M., and R. R. Burton. Evaluation of assisted positive pressure breathing on +Gz tolerance. Aviat. Space Envion. Med. 50: 820–824, 1979.
 140. Shen, X., Y. Sun, Q. Xiang, J. Meng, L. Xu, X. Yan, H. Yu, and X. Zhuang. The study of baroreceptor reflex function before and after bed rest. Physiologist 31 (Suppl. 1): S22–S23, 1988.
 141. Shubrooks, S. J., Jr. Changes in cardiac rhythm during sustained high levels of positive (+Gz) acceleration. Aerosp. Med. 43: 1200–1206, 1972.
 142. Shubrooks, S. J., Jr. Relationship of sodium deprivation to +Gz acceleration tolerance. Aerosp. Med. 43: 954–956, 1972.
 143. Shulzhenko, E. B., and I. F. Vil‐Viliams. Short radius centrifuge as a method in long term space flights. Physiologist 35: (Suppl.): S122–S125, 1992.
 144. Silvette, H. and S. W. Britton. Acceleratory effects on renal functions. Am. J. Physiol. 155: 195–202, 1948.
 145. Smedal, H. A., G. R. Holden, and J. R. Smith. Cardiovascular responses to transversely applied acceleration. Aerosp. Med. 34: 749–752, 1963.
 146. Smedal, H. A., T. A. Rogers, T. D. Duane, G. R. Holden, and J. R. Smith. The physiological limitations of performance during acceleration. Aerosp. Med. 34: 48–55, 1963.
 147. Smith, A. H. Principles of gravitational biology. In: Foundations of Space Biology and Medicine, edited by M. Calvin and O. G. Gazenko. Washington, D.C.: U.S. Government Printing Office, USA (NASA) and USSR (Acad. Sci.), vol. II, book I, chapt. 4, p. 129–162, 1975.
 148. Smith, A. H. The study of high‐g effects in animals. Physiologist 22 (Suppl. 6): 7–10, 1979.
 149. Smith, A. H. Enhancement of chronic acceleration tolerance by selection. Physiologist 26 (Suppl. 6): S85–S86, 1982.
 150. Smith, A. H. Some genetic aspects of adaptation to hyperdynamic environments. Physiologist 36 (Suppl. 1) S‐28–S‐30, 1993.
 151. Smith, A. H., and R. R. Burton. The influence of the ambient accelerative force on mature body size. Growth 31: 317–29, 1967.
 152. Smith, A. H., and R. R. Burton. Gravitational adaptation of animals. Physiologist 23 (Suppl.): 113–114, 1980.
 153. Smith, A. H., R. R. Burton, and C. F. Kelly. Influence of gravity on the maintenance feed requirements of chickens. J. Nutr. 101: 13–24, 1971.
 154. Smith, A. H., and M. J. Katovich. Gravitational influences upon the maintenance requirements of rabbits. COSPAR Life Sci. Space Res. Eds. R. Holmquist and A. C. Strickland, Pergamon Press, Oxford and New York. XV: 257–61, 1977.
 155. Smith, A. H., D. F. Rahlman, A. M. Kodama, and N. Pace. Metabolic responses of monkeys to increased gravitational fields. COSPAR Life Sci. Space Res. Ed. P.H.A. Sneath, Akademie‐Verlag, Berlin. XII: 129–32, 1974.
 156. Smith, A. H., O. Sanchez P., and R. R. Burton. Gravitational effects on body composition in birds. COSPAR Life Sci. Space Res. Ed. P. H. A. Sneath, Akademie‐Verlag, Berlin. XIII: 21–27, 1975.
 157. Smith, A. H., W. L. Spangler, R. R. Burton, and E. A. Rhode. Responses of domestic fowl to repeated +Gz acceleration. Aviat. Space Environ. Med. 50: 1134–1138, 1979.
 158. Smith, A. H., W. L. Spangler, B. Carlisle, and G. Kinder. Effects of brief exposure of domestic fowl to very intense acceleration fields. Aviat. Space Environ. Med. 50: 126–133, 1979.
 159. Smith, A. H., W. L. Spangler, J. M. Goldberg, and E. A. Rhode. Tolerance of domestic fowl to high sustained +Gz. Aviat. Space Environ. Med. 50: 120–125, 1979.
 160. Smith, A. H., W. L. Spangler, E. A. Rhode, and R. R. Burton. Influence of the ambient acceleration field upon acute acceleration tolerance in chickens. COSPAR Life Sci. Space Rev. Ed. R. Holmquist, Pergamon Press, Oxford and New York. XVII: 235–239, 1979.
 161. Smith, M. C., Jr., P. C. Rambaut, J. M. Vogel, and M. W. Whittle. Bone mineral measurement‐experiment MO78. In: Biomedical Results from Skylab, edited by R. S. Johnson and L. F. Dietlein. Washington, DC: National Aeronautics and Space Administration, chapt. 20, p. 183–190, 1977. (NASA SP‐337).
 162. Spence, D. W., M. J. Parnell, and R. R. Burton. Abdominal muscle conditioning as a means of increasing tolerance to +Gz stress. Preprints, Ann. Meeting Aerosp. Med. Assoc., p. 148–149, 1981.
 163. Stegmann, B. J., R. W. Krutz, R. R. Burton, C. F. Sawin. Comparisons of three anti‐G suit configurations during long duration, low onset, +Gz. Avia. Space Environ. Med. 63: 209, 1992.
 164. Stepantsov, V. I., and A. V. Yeremin. Basic principles for development of acceleration training schedules. Kosm. Biol. Med. Moscow, 1969.
 165. Stiehm, E. R. Acceleration protection by means of stimulation of reticuloendothelial system. J. Appl. Physiol. 17: 293–298, 1962.
 166. Stupakov, G. P. Biomechanical changes of bone structure: Changes following real and simulated weightlessness. Physiologist 31 (Suppl. 1): S4–S7, 1988.
 167. Tamir, A., R. R. Burton, and E. M. Forster. Optimum sampling times for maximum blood lactate levels after exposures to sustained +Gz. Aviat. Space Environ. Med. 59: 54–56, 1988.
 168. Thornton, W. E., and J. A. Rummel. Muscular deconditioning and its prevention in spaceflight. In: Biomedical Results from Skylab, edited by R. S. Johnson and L. F. Dietline. (NASA SP337) Washington, DC: National Aeronautics and Space Administration, chapt. 21, p. 191–197, 1977.
 169. Uglova, N. M. The effect of prolonged stay under conditions of lowered barometric pressure on tolerance of G‐loads. Problems of Space Biol. 8: 105–109, 1969. (NASA TTF‐58).
 170. Uglova, N. M., B. Z. Zaripov, and I. A. Mamatakhunov. The regularities of relationships between structure and function under different functional loads (homeostasis and homeomorphosus). Physiologist 26 (Suppl. 6): S53–S54, 1983.
 171. Vasil'yev, P. V., and N. M. Uglova. The effect of adaptation to conditions of a changed gaseous environment on tolerance to G‐loads. Problems of Space Biol. 8: 119–133, 1969. (NASA TTF‐580).
 172. Vico, L., D. Chappard, A. V., Balukin, V. E. Novikov, and C. Alexandre. Effects of 7‐day spaceflight on weight‐bearing and non‐weight‐bearing bones in rats (COSMOS 1667). Physiologist 30 (Suppl. 1): S45–S46, 1987.
 173. Walters, G. R., C. C. Wunder, and L. Smith. Multi‐field centrifuge for life‐long exposure of small mammals. J. Appl. Physiol. 15: 307–308, 1960.
 174. Weidner, W. J., L. F. Hoffman, and S. D. Clark. Regional blood flow in the domestic fowl immediately following chronic acceleration. Aviat. Space Environ. Med. 53: 666–669, 1982.
 175. Werchan, P. M. Physiologic bases of G‐induced loss of consciousness (G‐LOC). Aviat. Space Environ. Med. 62: 612–614, 1991.
 176. Whinnery, J. E. +Gz tolerance correlation with clinical parameters. Aviat. Space Environ. Med. 50: 736–741, 1979.
 177. Whinnery, J. E. The G‐LOC syndrome. 1990. Naval Air Dev. Ctr., Warminster, PA, p. 1–9. (NADC‐91042–60).
 178. Whittle, M. W., R. Herron, and J. Cuzzi. Biostereometric analysis of body form. In: Biomedial Results from Skylab, edited by R. S. Johnson and L. F. Dietlein. Washington, DC: National Aeronautics and Space Administration, chapt. 22, p. 198–202, 1977. (NASA SP337).
 179. Winget, C. M. and A. H. Smith. Quantitative measurement of labyrinthine function in the fowl by nystagmography. J. Appl. Physiol. 17: 712–718, 1962.
 180. Winget, C. M., A. H. Smith, and C. F. Kelly. Effects of chronic acceleration on induced nystagmus in the fowl. J. Appl. Physiol. 17: 709–711, 1962.
 181. Wojtkowiak, M. Human centrifuge training of men with lowered +Gz acceleration tolerance. Physiologist 34 (Suppl.): S80–S81, 1991.
 182. Wood, E. H. Potential hazards of high anti‐Gz suit protection. Aviat. Space Environ. Med. 63: 1024–1026, 1992.
 183. Wood, E. H., E. H. Lambert, E. J. Baldes, and C. F. Code. Effects of acceleration in relation to avaiation. Federation Proc. 5: 327–344, 1946.
 184. Wood, E. H., W. F. Sutterer, H. W. Marshall, E. F. Lindberg, and R. N. Headley. Effect of headward and forward acceleration on the cardiovascular system. Wright‐Patterson Air Force Base, OH, p. 1–48, 1961. Wright Air Dev. Div (WADD) (WADD‐TR‐60–634).
 185. Wunder, C. C., and L. O. Lutherer. Influence of chronic exposure to increased gravity upon growth and form of animals. Int. Rev. Gen. Exp. Zool. 1: 344–416, 1964.
 186. Zavadovskiy, A. F., M. M. Korotayev, S. V. Kopanev, I. A. Plyasovabakunina, and Y. N. Vavakin. The effect of active training in a head‐down position on tolerance of cranial fluid shift. Kosm. Biol. Med. 19: 83–85, 1985.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Russell R. Burton, Arthur H. Smith. Adaptation to Acceleration Environments. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 943-970. First published in print 1996. doi: 10.1002/cphy.cp040240