Comprehensive Physiology Wiley Online Library

Mixed‐gas Saturation Diving

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Rationale
2 High Pressure Nervous Syndrome
2.1 Signs and Symptoms
2.2 Prevention of HPNS
2.3 Mechanisms of HPNS
3 Thermoregulatory Function
3.1 Physical Characteristics of Helium Environment
3.2 Comfortable Temperature
3.3 Convective Heat Loss
3.4 Radiation
3.5 Evaporation
3.6 Respiratory Heat Loss
3.7 Possible Metabolic Effects
3.8 Physical Activity
3.9 Specific Technical Problems
4 Work Capacity
5 Cardiopulmonary Functions
5.1 Respiratory Functions
5.2 Cardiovascular Functions
6 Body Fluid Balance
6.1 Physical Characteristics of the Environment Which Affect Body Fluid Balance
6.2 Characteristics of Hyperbaric Diuresis
6.3 Mechanisms of Hyperbaric Diuresis
6.4 Effects of Immersion
7 Conclusions
Figure 1. Figure 1.

Total ascent time and bottom time/total diving time ratio as a function of bottom time. Left: Air scuba dive to 190 ft; right: He‐O2 saturation dive to 200 ft.

Figure 2. Figure 2.

Comfort temperatures for prolonged stay in hyperbaric helium atmosphere. The empirical line is drawn from various observations of saturation dives (•, ref. 162; ▪, ref. 129; Δ, ref. 131; ◯, ref.; □, ref. 167; *, refs. 153, 154). Adapted from Webb et al. 167, with permission.

Figure 3. Figure 3.

Routes of body heat loss in resting men in helium‐oxygen at pressures ranging between 1 and 49.5 ATA. Adapted from Raymond et al. 131, with permission.

Figure 4. Figure 4.

Skin‐to‐ambient gas thermal gradient for mildly active men in various ambient temperatures. Adapted from Webb 165, with permission.

Figure 5. Figure 5.

Resting heart rate in humans at sea level and at depths of up to 35.8 ATA. See Table 1 in Lin and Shida 105 for numerical values and references.

Reproduced with permission 105
Figure 6. Figure 6.

Heart rate during exercise in hyperbaric environments. Numerical values and sources are listed in Table 2 in Lin and Shida 105.

Reproduced with permission 105
Figure 7. Figure 7.

Correlations of data obtained from Alexander et al. 2, Matsuda et al. 113, Hong et al. 82, Neuman et al. 121, Leach et al. 97, Claybaugh et al. 39, Shiraki et al. 151, Raymond et al. 130, Goldinger et al. 66, Sagawa et al. 145, and Miyamoto et al. 117 were used to compile the 12 points. Leach et al. 97 was used for two pressures. Correlation coefficients and level of significance are shown. V = urine flow, UOSM = urine osmolality, UOSMV = excretion of osmotic particles.

Figure 8. Figure 8.

Urinary excretion of ADH during daytime (open bars, upward direction) and nighttime (shaded bars, downward direction) at predive, 31 ATA, decompression, and postdive. Vertical lines on histogram bars represent ± SE. Vertical arrows with *** represent P < 0.005 for day vs. night when all three predive days are considered. Horizontal lines indicate differences between that period when compared to corresponding daytime or nighttime values for days 2, 3, and 4 combined at P < 0.05 (*), P < 0.01 (**), and P < 0.005 (***).

Reproduced from Claybaugh et al. 40, with permission
Figure 9. Figure 9.

Plasma concentrations of water and electrolyte regulating hormones at predive, 31 ATA (Dive), and postdive. Antidiuretic hormone (ADH), plasma renin activity (PRA), aldosterone (ALDO), parathyroid hormone (PTH), and cortisol (CORT) were measured in plasma. Horizontal bars over histogram bars indicate significant differences compared to predive days 2 and 3 at P < 0.05 (*), P < 0.01 (**), and P < 0.005 (***).

Reproduced from Claybaugh et al. 40, with permission


Figure 1.

Total ascent time and bottom time/total diving time ratio as a function of bottom time. Left: Air scuba dive to 190 ft; right: He‐O2 saturation dive to 200 ft.



Figure 2.

Comfort temperatures for prolonged stay in hyperbaric helium atmosphere. The empirical line is drawn from various observations of saturation dives (•, ref. 162; ▪, ref. 129; Δ, ref. 131; ◯, ref.; □, ref. 167; *, refs. 153, 154). Adapted from Webb et al. 167, with permission.



Figure 3.

Routes of body heat loss in resting men in helium‐oxygen at pressures ranging between 1 and 49.5 ATA. Adapted from Raymond et al. 131, with permission.



Figure 4.

Skin‐to‐ambient gas thermal gradient for mildly active men in various ambient temperatures. Adapted from Webb 165, with permission.



Figure 5.

Resting heart rate in humans at sea level and at depths of up to 35.8 ATA. See Table 1 in Lin and Shida 105 for numerical values and references.

Reproduced with permission 105


Figure 6.

Heart rate during exercise in hyperbaric environments. Numerical values and sources are listed in Table 2 in Lin and Shida 105.

Reproduced with permission 105


Figure 7.

Correlations of data obtained from Alexander et al. 2, Matsuda et al. 113, Hong et al. 82, Neuman et al. 121, Leach et al. 97, Claybaugh et al. 39, Shiraki et al. 151, Raymond et al. 130, Goldinger et al. 66, Sagawa et al. 145, and Miyamoto et al. 117 were used to compile the 12 points. Leach et al. 97 was used for two pressures. Correlation coefficients and level of significance are shown. V = urine flow, UOSM = urine osmolality, UOSMV = excretion of osmotic particles.



Figure 8.

Urinary excretion of ADH during daytime (open bars, upward direction) and nighttime (shaded bars, downward direction) at predive, 31 ATA, decompression, and postdive. Vertical lines on histogram bars represent ± SE. Vertical arrows with *** represent P < 0.005 for day vs. night when all three predive days are considered. Horizontal lines indicate differences between that period when compared to corresponding daytime or nighttime values for days 2, 3, and 4 combined at P < 0.05 (*), P < 0.01 (**), and P < 0.005 (***).

Reproduced from Claybaugh et al. 40, with permission


Figure 9.

Plasma concentrations of water and electrolyte regulating hormones at predive, 31 ATA (Dive), and postdive. Antidiuretic hormone (ADH), plasma renin activity (PRA), aldosterone (ALDO), parathyroid hormone (PTH), and cortisol (CORT) were measured in plasma. Horizontal bars over histogram bars indicate significant differences compared to predive days 2 and 3 at P < 0.05 (*), P < 0.01 (**), and P < 0.005 (***).

Reproduced from Claybaugh et al. 40, with permission
References
 1. Abraini, J. H., and J. C. Rostain. Pressure induced striated dopamine release correlates with hyperlocomotor activity in rats exposed to high pressure. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 71: 638–643, 1991.
 2. Alexander, W. C., C. S. Leach, C. L. Fischer, C. J. Lambertsen, and P. C. Johnson. Hematological, biochemical, and immunological studies during a 14‐day continuous exposure to 5.2% O2 in N2 at pressure equivalent to 100 FSW (4 ata). Aerospace Med. 44: 850–854, 1973.
 3. Arita, H., Y. C. Lin, M. Sudoh, I. Kuwahira, Y. Ohta, H. Saiki, S. Tamaya, and H. Nakayama. Seadragon VI: a 7‐day dry saturation dive at 31 ATA. V. Cardiovascular responses to a 90° body tilt. Undersea Biomed Res. 14: 425–436, 1987.
 4. Ask, J. A., and I. Tyssebotn. Positive inotropic effect on the rat atrial myocardium compressed to 5, 10, and 30 bar. Acta Physiol. Scand. 134: 277–283, 1988.
 5. Behnke, A. R., and O. D. Yarborough. Physiologic studies of helium. U. S. Navy Med. Bull. 36: 542–548, 1938.
 6. Bennett, P. B. Psychometric Impairment in Men Breathing Oxygen–Helium at Increased Pressures. London: U. K. Medical Research Council, R.N. Personnel Research Committee, Underwater Physiology Subcommittee Report 251, 1965.
 7. Bennett, P. B. Performance impairment in deep diving due to nitrogen, helium, neon and oxygen. In: Proc. 3rd Symp. Underwater Physiol., edited by C. J. Lambertsen. Baltimore: William and Wilkins, 1967, p. 327–340.
 8. Bennett, P. B. A strategy for future diving. In: Proc. 8th UHMS Workshop. The Strategy for Future Diving to Depths Greater than 1000 ft. Report W.S. 6.15.75. Bethesda: Undersea Med. Soc., 1975, p. 71–86.
 9. Bennett, P. B. The high pressure nervous syndrome. In: The Physiology of Diving and Compressed Air Work, edited by P. B. Bennett and D. H. Elliott. London: Saunders, 1993, p. 194–237.
 10. Bennett, P. B. Physiological limitations to underwater exploration and work. Comp. Biochem. Physiol. 93A: 295–300, 1989.
 11. Bennett, P. B., G. D. Blenkarn, J. Roby, and D. Youngblood. Suppression of the high pressure nervous syndrome in human deep dives by He–N2–O2. Undersea Biomed. Res. 1: 221–237, 1974.
 12. Bennett, P. B., R. Coggin, and M. McLeod. Effect of compression rate on use of trimix to ameliorate HPNS in man to 686 m (2250 ft). Undersea Biomed. Res. 9: 335–351, 1982.
 13. Bennett, P. B., R. Coggin, and J. Roby. Control of HPNS in humans during rapid compression with trimix to 650 m (2132 ft). Undersea Biomed. Res. 8: 85–100, 1981.
 14. Bennett, P. B., and A. N. Dossett. Undesirable Effects of Oxygen–Helium Breathing at Great Depths. Medical Research Council, R.N. Personnel Research Committee, Underwater Physiology Subcommittee Report 260, 1967.
 15. Bennett, P. B., and S. P. Gray. Changes in human urine and blood chemistry during a simulated oxygen–helium dive to 1500 ft. Aerospace Med. 42: 868–874, 1971.
 16. Bennett, P. B., and M. McLeod. Probing the limits of human deep diving. In: Diving and Life at High Pressures, edited by W. D. M. Paton, D. H. Elliott, and E. B. Smith. London: Royal Soc., 1984, p. 105–117.
 17. Bennett, P. B., D. Papahadjopoulos, and A. D. Bangham. The effect of raised pressures of inert gases on phospholipid model membranes. Life Sci. 6: 2527–2533, 1967.
 18. Bennett, P. B., and H. Schafstall. The value of TRIMIX 5 to control HPNS. In: Man in the Sea, edited by Y. C. Lin and K. K. Shida. San Pedro, CA: Best, 1990, p. 101–115.
 19. Bennett, P. B., and H. Schafstall. Scope and design of the GUSI International Research Program. Undersea Biomed. Res. 19: 231–241, 1992.
 20. Bennett, P. B., and E. J. Towse. Performance efficiency of men breathing oxygen–helium at depths between 100 feet and 1500 feet. Aerospace Med. 42: 1147–1156, 1971.
 21. Bennett, P. B., and E. J. Towse. The High Pressure Nervous syndrome during a simulated oxygen–helium dive to 1500 ft. Electroencephalogr. Clin. Neurophysiol. 31: 383–393, 1971.
 22. Bichard, A. R., and H. J. Little. Drugs that increase gamma aminobutyric acid transmission protect against the High Pressure Nervous syndrome. Br. J. Pharmacol. 76: 447–452, 1982.
 23. Bowerd, R. W. Metabolic and thermal responses of man in various He‐O2 air environments. J. Appl. Physiol. 23: 561–565, 1967.
 24. Bowser‐Riley, F. Mechanistic studies on the high pressure neurological syndrome. Phil. Trans. R. Soc. Lond. B. 304: 31–41, 1984.
 25. Bowser‐Riley, F., J. A. Dobbie, W. D. M. Paton, and E. B. Smith. A possible role for monoaminergic inhibition in the high pressure nervous syndrome. Undersea Biomed. Res. 9 (suppl.): 32–33, 1982.
 26. Brauer, R. W., R. W. Beaver, and H. W. Gillen. Correlation studies of individual variation in susceptibility to various components of HPNS in mice. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 50: 272–278, 1981.
 27. Brauer, R. W., R. W. Beaver, C. D. Hogue, B. Ford, S. M. Goldman, and R. T. Venters. Intra and interspecies variability of vertebrate high pressure neurological syndrome. J. Appl. Physiol. 37: 844–851, 1974.
 28. Brauer, R. W., R. W. Beaver, and M. E. Sheehan. The role of monoamine neurotransmitters in the compression rate dependence of HPNS convulsions. In: Underwater Physiology VI, edited by C. W. Shilling and M. W. Beckett. Bethesda: MD: FASEB, 1978, p. 49–59.
 29. Brauer, R. W., and R. O. Way. Relative narcotic potencies of hydrogen, helium, nitrogen and their mixtures. J. Appl. Physiol. 29: 23–31, 1970.
 30. Brauer, R. W., R. O. Way, M. R. Jordan, and D. E. Parrish. Experimental studies on the High Pressure Nervous syndrome in various mammalian species. In: Proc. 4th Symp. Underwater Physiol., edited by C. J. Lambertsen. New York: Academic, 1971, p. 487–500.
 31. Brauer, R. W., R. O. Way, and R. A. Perry. Narcotic effects of helium and hydrogen and hyperexcitability phenomena at simulated depths of 1500 to 4000 feet of sea water. In: Toxicity of Anaesthetics, edited by B. R. Fink. Baltimore, MD: Williams and Wilkins, 1968, p. 241–255.
 32. Brebner, D. F., D. McK. Kerslake, and J. L. Waddell. The effect of atmospheric humidity on the skin temperature and sweat rates of resting man at two ambient temperatures. J. Physiol. (Lond.) 144: 299–306, 1958.
 33. Bungo, M. W., and P. C. Johnson. Cardiovascular examinations and observations of deconditioning during the space shuttle orbital flight test program. Aviat. Space Environ. Med. 54: 1001–1004, 1983.
 34. Butler, B. D., and J. Katz. Vascular pressures and passage of gas emboli through the pulmonary circulation. Undersea Biomed. Res. 15: 203–209, 1988.
 35. Carlioz, M., M. C. Gardette‐Chauffour, J. C. Rostain, and B. Gardette. Hydrogen narcosis: psychometric and neurophysiological study. In: Proc. Xth Congr. Eur. Undersea Biomed. Soc., edited by T. Nome, G. Susbielle, M. Comet, M. Jaquin, and R. Sciarli. Marseille: European Undersea Medical Soc. Aberdeen, 1984, p. 97–109.
 36. Charpy, J. P., E. Murphy, and C. Lemaire. Performances psychometriques apres compressions rapides a 300 m. Med. Subaq. Hyperbare 15: 192–195, 1976.
 37. Chouteau, J. Respiratory gas exchange in animals during exposure to extreme ambient pressure. In: Underwater Physiology IV. Proc. 4th Symp. Underwater Physiol., edited by C. J. Lambertsen. New York: Academic, 1971, p. 385–397.
 38. Christopherson, S., and M. P. Hlastala. Pulmonary gas exchange during altered density gas breathing. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 52: 221–225, 1982.
 39. Claybaugh, J. R., S. K. Hong, N. Matsui, H. Nakayama, Y. S. Park, and M. Matsuda. Responses of salt‐ and water‐regulating hormones during a saturation dive to 31 ATA (Seadragon IV). Undersea Biomed. Res. 11: 65–80, 1984.
 40. Claybaugh, J. R., N. Matsui, S. K. Hong, Y. S. Park, H. Nakayama, and K. Shiraki. Seadragon VI. A 7‐day dry saturation dive at 31 ATA. III. Alterations in basal and circadian endocrinology. Undersea Biomed. Res. 14: 401–411, 1987.
 41. Daly, W. J., and S. Bondurant. Effects of oxygen breathing on the heart rate, blood pressure and cardiac index of normal men resting, with reactive hyperemia, and after atropine. J. Clin. Invest. 41: 126–132, 1962.
 42. Dressendorfer, R. H., S. K. Hong, J. F. Murlock, J. Pegg, B. Respicio, R. M. Smith, and C. Yelverton. Hana Kai II: a 17 day dry saturation dive at 18.6 ATA. V. Maximal oxygen uptake. Undersea Biomed. Res. 4: 283–296, 1977.
 43. Dwyer, J., H. A. Saltzman, and R. O'Bryan. Maximal physical‐work capacity of man at 43.4 ATA. Undersea Biomed. Res. 4: 359–372, 1977.
 44. Eckenhoff, R. G., and D. R. Knight. Cardiac arrhythmias and heart rate changes in prolonged hyperbaric air exposure. Undersea Biomed. Res. 11: 355–367, 1984.
 45. Epperson, W. L., D. G. Quigley, W. C. Robertson, V. S. Behar, and B. E. Welch. Observations on man in an oxygen–helium environment at 380 mmHg total pressure: III. Heat exchange. Aerospace Med. 37: 457–462, 1966.
 46. Fagni, L., M. Hugon, and J. C. Rostain. Facilitation des potentials evoques comesthesiques (PES) en plongee profonde a saturation. J. Physiol. Paris 76: 17A, 1980.
 47. Fagni, L., M. Weiss, J. Pellet, and M. Hugon. The possible mechanism of the pressure induced motor disturbances in the cat. Electroencephalogr. Clin. Neurophysiol. 53: 590–601, 1982.
 48. Fagni, L., F. Zinebi, and M. Hugon. Helium pressure potentiates the N‐methyl‐D‐aspartate and d,L‐homocysteate induced decreases of field potentials in the rat hippocampal slice preparation. Neurosci. Lett. 81: 285–290, 1987.
 49. Fagraeus, L. Cardiorespiratory and metabolic functions during exercise in the hyperbaric environment. Acta Physiol. Scand. Suppl. 414: 1–40, 1974.
 50. Fife, W. P. The use of nonexplosive mixtures of hydrogen and oxygen for diving. Texas A & M University Hyperbaric Lab Report TAMU‐SG‐79–201 College Station, 1979.
 51. Fife, W. P. The toxic effects of hydrogen–oxygen breathing mixture. In: Hydrogen as a Diving Gas, edited by R. W. Brauer. Bethesda, MD: Undersea Hyperbaric Med. Soc., 1987, p. 13–23.
 52. Flynn, E. T., T. E. Berghage, and E. F. Coil. Influence of increased ambient pressure and gas density on cardiac rate in man. Washington, DC: U. S. Navy Exp. Diving Unit Report 4–72, 1972.
 53. Fox, E. L., H. S. Wiss, R. L. Bartels, and E. P. Hiatt. Thermal responses of man during rest and exercise in a helium oxygen environment. Arch. Environ. Health 13: 23–28, 1966.
 54. Fructus, X. Hydrogen pressure and HPNS. In: Hydrogen as a Diving Gas, edited by R. B. Brauer. Bethesda, MD: Undersea Hyperbaric Med. Soc., 1987, p. 125–140.
 55. Fructus, X. R. Down below the great depths. In: Proc. 3rd Int. Conf. Hyperbaric Underwater Physiol. Paris: Doin, 1972, p. 13–22.
 56. Fructus, X. R., C. Agarate, R. Naquet, and J. C. Rostain. Postponing the High Pressure Nervous syndrome (HPNS) to 1640 feet and beyond. In: Proc. 7th Symp. Underwater Physiol., edited by C. J. Lambertsen. Bethesda, MD: FASEB, 1976, p. 21–33.
 57. Fructus, X. R., R. W. Brauer, and R. Naquet. Physiological effects observed in the course of simulated deep chamber dives to a maximum of 36.5 atm in helium–oxygen atm. In: Proc. 4th Symp. Underwater Physiol., edited by C. J. Lambertsen. New York: Academic, 1971, p. 545–550.
 58. Fructus, X. R., and J. P. Charpy. Etude psychometrique de 2 sujets lors dune plongee fictive jusqua 52.42 ATA. Bull. Medsubhyp. 7: 3–12, 1972.
 59. Fructus, X. R., and J. C. Rostain. HPNS: a clinical study of 30 cases. In: Proc. 6th Symp. Underwater Physiol., edited by C. W. Shilling and M. W. Beckett. Bethesda, MD: FASEB, 1978, p. 1–8.
 60. Gagge, A. P., and Y. Nishi. Heat exchange between human skin surface and thermal environment. In: Handbook of Physiology. Reactions to Environmental Agents. Bethesda, MD: Am. Physiol. Soc., 1977, sect. 9, p. 69–92.
 61. Gardette, B. Human deep hydrogen dives 1983–1985. In: Hydrogen as a Diving Gas, edited by R. W. Brauer. Bethesda, MD: Undersea Hyperbaric Med. Soc., 1987, p. 109–118.
 62. Gardette, B. Compression procedures for mice and human hydrogen deep diving. COMEX HYDRA program. In: High Pressure Nervous Syndrome 20 Years Later, edited by J. C. Rostain, E. Martinez, and C. Lemaire. Marseille: ARAS‐SNHP, 1989, p. 217–231.
 63. Gelfand, R. Concepts of ventilatory and respiratory gas homeostasis in simulated undersea exposure. In: Underwater Physiology VIII, edited by A. J. Bachrach and M. M. Matzen. Bethesda, MD: Undersea Med. Soc., 1984, p. 515–533.
 64. Gelfand, R., C. J. Lambertsen, and R. E. Peterson. Human respiratory control at high ambient pressures and inspired gas densities. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 48: 528–539, 1980.
 65. Giry, P., A. Battesti, R. Hyaclinte, and H. Burnet. Ventilatory tolerance to exercise during a hydrogen–helium–oxygen saturation dive (HYDRA V). In: Hydrogen as a Diving Gas, edited by R. W. Brauer. Bethesda, MD: Undersea Hyperbaric Med. Soc., 1987, p. 179–198.
 66. Goldinger, J. M., S. K. Hong, J. R. Claybaugh, A. K. C. Niu, S. I. Gutman, R. G. Moon, and P. B. Bennett. Undersea Biomed. Res. 19: 287–294, 1992.
 67. Goldinger, J. M., B. S. Kang, Y. E. Choo, C. V. Paganelli, and S. K. Hong. Effect of hydrostatic pressure on ion transport and metabolism in human erythrocytes. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 49: 224–231, 1980.
 68. Halsey, M. J. Effects of high pressure on the central nervous system. Physiol. Rev. 62: 1341–1377, 1982.
 69. Halsey, M. J., E. I. Eger, D. W. Kent, and J. P. Warne. High pressure studies of anesthesia. In: Molecular Mechanisms of Anesthesia (Progress in Anesthesiology), edited by B. R. Fink. New York: Raven, 1975, p. 353–361.
 70. Halsey, M. J., C. J. Green, and B. Wardley‐Smith. Renaissance of nonunitary molecular mechanisms of general anesthesia. In: Molecular Mechanisms of Anesthesia, edited by B. R. Fink. New York: Raven, 1980, p. 273–283.
 71. Halsey, M. J., and B. Wardley‐Smith. High pressure neurological syndrome: do anticonvulsants prevent it. Br. J. Pharmacol. 72: 502–503, 1981.
 72. Halsey, M. J., B. Wardley‐Smith, and C. J. Green. The pressure reversal of general anesthesia—a multi site expansion hypothesis. Br. J. Anaesth. 50: 1091–1097, 1978.
 73. Hamilton, R. W., Jr. Physiological responses at rest and in exercise during saturation at 20 atmospheres of He–O2. In: Underwater Physiology. Proc. Third Symp. Underwater Physiol., edited by C. J. Lambertsen. Baltimore, MD: Williams and Wilkins, 1967, p. 361–374.
 74. Harris, D. J. Hyperbaric hyperreflexia: tendon jerk and Hoffman reflexes in man at 43 bar. Electroencephalogr. Clin. Neurophysiol. 47: 680–692, 1979.
 75. Harris, D. J. Observations on the knee‐jerk on oxy‐helium at 31 and 43 bar. Undersea Biomed. Res. 6: 55–74, 1979.
 76. Harris, D. J., and P. B. Bennett. Force and duration of muscle twitch contractions in humans at pressures up to 70 bar. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 54: 1209–1215, 1983.
 77. Hebden, R. A., B. J. Freund, J. R. Claybaugh, W. M. Ichimura, and G. M. Hashiro. Effect of inspiratory‐phase negative pressure breathing on urine flow in man. Undersea Biomed. Res. 19: 21–29, 1992.
 78. Hesse, B., I. L. Kanstrup, N. J. Christensen, T. Ingemann‐Hasen, J. F. Hansen, J. Halkjaer‐Kristensen, and F. B. Peterson. Reduced norepinephrine responses to dynamic exercise in human subjects. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 51: 176–178, 1981.
 79. Hlastala, M. P., H. T. Robertson, and B. K. Rose. Gas exchange abnormalities produced by venous gas emboli. Respir. Physiol. 36: 1–17, 1972.
 80. Hogan, P. M. The response of cardiac muscle cells to elevated hydrostatic pressure. In: Hyperbaric Medicine and Physiology, edited by Y. C. Lin and A. K. C. Niu. San Pedro, CA: Best, 1988, p. 27–36.
 81. Hong, S. K., and J. R. Claybaugh. Hormonal and renal responses to hyperbaria. In: Hormonal Regulation of Fluid and Electrolytes: Environmental Effects, edited by J. R. Claybaugh and C. E. Wade. New York: Plenum, 1989, p. 117–146.
 82. Hong, S. K., J. R. Claybaugh, V. Frattali, R. Johnson, F. Kurata, M. Matsuda, A. A. McDonough, C. V. Paganelli, R. M. Smith, and P. Webb. Hana Kai II: a 17‐day dry saturation dive at 18.6 ATA. III. Body fluid balance. Undersea Biomed. Res. 4: 247–265, 1977.
 83. Hong, S. K., M. E. Duffey, and J. M. Goldinger. Effect of high hydrostatic pressure on sodium transport across the toad skin. Undersea Biomed. Res. 11: 37–47, 1984.
 84. Hong, S. K., and C. V. Paganelli. Water exchange in hyperbaria. In: Physiological Function in Special Environments, edited by C. V. Paganelli and L. Farhi. New York: Springer‐Verlag, 1989, p. 82–94.
 85. Hugon, M., L. Fagni, and J. C. Rostain. Cycle d'excitabilité des reflexes monosyneptiques et mechanismes cholinergic. Observations de physiologie hyperbare chez les primates. J. Physiol. Paris 76: 19A, 1980.
 86. Hugon, M., L. Fagni, J. C. Rostain, and K. Seki. Somatic evoked potentials and reflexes in monkey during saturation dives in dry chamber. In: Underwater Physiology, VII, edited by A. J. Bachrach and M. M. Matzen. Bethesda, MD: Undersea Med. Soc., 1981, p. 381–390.
 87. Hunter, W. L., and P. B. Bennett. The causes, mechanisms and prevention of the high pressure nervous syndrome. Undersea Biomed. Res. 1: 1–28, 1974.
 88. Johnson, F. H., and E. A. Flagler. Hydrostatic pressure reversal of narcosis in tadpoles. Science 112: 91–92, 1950.
 89. Kaufmann, P. G., P. B. Bennett, and J. C. Farmer. Effect of cerebellar ablation on the high pressure nervous syndrome in rats. Undersea Biomed. Res. 5: 63–70, 1978.
 90. Kaufmann, P. G., C. C. Finley, P. B. Bennett, and J. C. Farmer. Spinal cord seizures elicited by high pressures of helium. Electroencephalogr. Clin. Neurophysiol. 47: 31–40, 1979.
 91. Kendig, J. J., and Y. Grossman. How can hyperbaric pressure increase central nervous system excitability? In: Current Perspectives in High Pressure Biology, edited by H. W. Jannash, R. E. Marquis, and A. M. Zimmerman. New York: Academic, 1987, p. 159–169.
 92. Koblin, D. D., H. J. Little, A. R. Green, S. Daniels, E. G. Smith, and W. D. M. Paton. Brain monoamines and the high pressure neurological syndrome. Neuropharmacology 19: 1031–1038, 1980.
 93. Konda, N., K. Shiraki, H. Takeuchi, H. Nakayama, and S. K. Hong. Seadragon VI: a 7‐day dry saturation dive at 31 ATA. IV. Circadian analysis of body temperature and renal functions. Undersea Biomed. Res. 14: 413–423, 1987.
 94. Lambertsen, C. J., R. Gelfand, R. Peterson, R. Strauss, W. B. Wright, J. G. Dickson, Jr., C. Puglia, and R. W. Hamilton, Jr. Human tolerance to He, Ne, and N2 at respiratory gas densities equivalent to He–O2 breathing at depths to 1200, 2000, 3000, 4000, and 5000 feet of sea water (predictive studies III). Aviat. Space Environ. Med. 48: 843–855, 1977.
 95. Lanphier, E. H. Influence of increased ambient pressure upon alveolar ventilation. In: Underwater Physiology II, edited by C. J. Lambertsen and L. J. Greenbaum, Jr. Washington, DC: Nat. Res. Council, Publ. 1181, 1963, p. 124–133.
 96. Lanphier, E. H., and E. M. Camporesi. Respiration and exercise. In: The Physiology of Medicine of Diving (3rd ed.), edited by P. B. Bennett and D. H. Elliott. San Pedro, CA: Best, 1982, p. 99–156.
 97. Leach, C. S., J. R. M. Cowley, M. T. Troell, J. M. Clark, and C. J. Lambertsen. Biochemical, endocrinological, and hematological studies. In: Predictive Studies IV: Work Capacity and Physiological Effects in He–O2 Excursions to Pressures of 400–800–1200 and 1600 Feet of Seawater, edited by C. J. Lambertsen, R. Gelfand, and J. M. Clark. Univ. Pennsylvania, Philadelphia, Inst. Environ. Med. Report 78–1, 1978, p. 1–59.
 98. Lemaire, C. Hydrogen narcosis, nitrogen narcosis and HPNS: a performance study. In: IX Int. Symp. Underwater Hyperbaric Physiol., edited by A. A. Bove, A. J. Bachrach, and L. T. Greenbaum. Bethesda, MD: Undersea Hyperbaric Med. Soc., 1987, p. 579–582.
 99. Lemaire, C., and J. C. Rostain. The High Pressure Nervous Syndrome and Performance. Marseille: Octares, 1988.
 100. Leon, H. A., and S. F. Cook. A mechanism by which helium increases metabolism in small animals. Am. J. Physiol. 199: 243–245, 1960.
 101. Lever, M. J., K. W. Miller, W. D. M. Paton, W. B. Street, and E. B. Smith. Effects of hydrostatic pressure on mammals. In: Proc. 6th Underwater Physiol. Symp., edited by C. J. Lambertsen. New York: Academic, 1971, p. 101–108.
 102. Lin, Y. C. Cardiovascular deconditioning in hyperbaric environments. In: Man in Stressful Environments. Diving, Hyper‐ and Hypobaric Physiology, edited by K. Shiraki and M. K. Yousef. Springfield, IL: Thomas, 1987, p. 72–92.
 103. LIn, Y. C., J. R. Claybaugh, J. Holthaus, H. G. Schafstall, and P. B. Bennett. Orthostatic intolerance during GUSI‐18 dive, a simulated trimix saturation dive at 46 ATA. Undersea Biomed. Res. 18 (suppl.): 97–98, 1991.
 104. Lin, Y. C., and E. N. Kato. Effects of helium gas on heart rate and oxygen consumption in unanesthetized rats. Undersea Biomed. Res. 1: 281–290, 1974.
 105. Lin, Y. C. and K. K. Shida. Brief review: Mechanisms of hyperbaric bradycardia. Chin. J. Physiol. 31: 1–22, 1988.
 106. Linnarsson, D., and L. Fagraeus. Maximal work performances in hyperbaric air. In: Underwater Physiology V, edited by C. J. Lambertsen. Bethesda, MD: FASEB, 1976, p. 55–60.
 107. Lorenz, J., G. Athanassenas, P. Hampe, K. Muller, G. Plath, and J. Wenzel. Human brainstem auditory evoked potentials (BAEP) in deep saturation diving. In: Proc. XVII Annual Meeting EUBS. Heraklion, Greece, Sept.–Oct., 1991, p. 25–48.
 108. Maio, D. A., and L. E. Farhi. Effect of gas density on mechanics of breathing. J. Appl. Physiol. 23: 687–693, 1967.
 109. Barsden, C. A. Functional aspects of S. hydroxtryptamine neurons. Application of electrochemical monitoring in vivo. Trends Neurosci. 5: 1–16, 1979.
 110. Matsuda, M., S. K. Hong, H. Nakayama, H. Arita, Y. C. Lin, J. R. Claybaugh, R. M. Smith, and C. E. G. Lundgren. Physiological responses to immersion at 31 ATA (Seadragon IV). In: Underwater Physiology VII, Proc. Seventh Symp. Underwater Physiol., edited by A. J. Bachrach and M. M. Matzen. Bethesda, MD: Undersea Med. Soc., 1981, p. 283–296.
 111. Matsuda, M., H. Nakayama, H. Arita, J. F. Morlock, J. R. Claybaugh, R. M. Smith, and S. K. Hong. Physiological responses to head‐out immersion in water at 11 ATA. Undersea Biomed. Res. 5: 37–52, 1978.
 112. Matsuda, M., H. Nakayama, A. Itoh, N. Kirigaya, F. K. Kurata, R. H. Strauss, and S. K. Hong. Physiology of man during a 10‐day dry heliox saturation dive (SEATOPIA) to 7 ATA. I. Cardiovascular and thermoregulatory functions. Undersea Biomed. Res. 2: 101–118, 1975.
 113. Matsuda, M., H. Nakayama, F. K. Kurata, J. R. Claybaugh, and S. K. Hong. Physiology of man during a 10‐day dry heliox saturation dive (Seatopia) to 7 ATA. II. Urinary water, electrolytes, ADH, and aldosterone. Undersea Biomed. Res. 2: 119–131, 1975.
 114. Matsui, N., J. R. Claybaugh, Y. Tamura, H. Seo, Y. Murata, K. Shiraki, H. Nakayama, Y. C. Lin, and S. K. Hong. Seadragon VI. A 7‐day dry saturation dive at 31 ATA. VI. Hyperbaria enhances renin but eliminates ADH responses to head‐up tilt. Undersea Biomed. Res. 14: 437–447, 1987.
 115. McLeod, J., P. B. Bennett, and R. L. Cooper. Rat brain catecholamine release at 1, 10, 20 and 100 ATA heliox, nitrox and trimix. Undersea Biomed. Res. 15: 211–221, 1988.
 116. Michaud, A., J. Parc, L. Barthelemy, J. Lechutton, J. Corriol, J. Chouteau, and F. Lebougher. Premieres données sur une limitation de l'utilisation du melange oxygen–hydrogene pour la plongee profonde à saturation. C. R. Acad. Sci. III 269: 497–499, 1969.
 117. Miyamoto, N., N. Matsui, I. Inoue, H. Seo, K. Nakabayashi, and H. Oiwa. Hyperbaric diuresis is associated with decreased antidiuretic hormone and decreased atrial natriuretic polypeptide in human divers. Jpn. J. Physiol. 41: 85–99, 1991.
 118. Moon, R. E., E. M. Comporesi, T. Xuan, J. Holthaus, P. R. Michell, and W. D. Watkins. ANF and diuresis during compression to 450 and 600 MSW. Undersea Biomed. Res. 14 (suppl.): 43–44, 1987.
 119. Moore, T. O., J. F. Morlock, D. A. Lally, and S. K. Hong. Thermal cost of saturation diving: respiratory and whole body heat loss at 16.1 ATA. In: Underwater Physiology, Proc. Fifth Symp. Underwater Physiol., edited by C. J. Lambertsen. Bethesda, MD: FASEB, 1976, p. 741–754.
 120. Morrison, J. B., and J. T. Florio. Respiratory function during a simulated dive to 1500 ft. J. Appl. Physiol. 30: 724–732, 1971.
 121. Neuman, T. S., R. F. Goad, D. Hall, R. M. Smith, J. R. Claybaugh, and S. K. Hong. Urinary excretion of water and electrolytes during open‐sea saturation diving to 850 FSW. Undersea Biomed. Res. 6: 291–302, 1979.
 122. Niu, A. K. C., S. K. Hong, J. R. Claybaugh, J. M. Goldinger, O. Kwon, M. Li, E. Randall, and C. E. G. Lundgren. Absence of diuresis during a 7‐day saturation dive at 2.5 ATA N2–O2. Undersea Biomed. Res. 17: 189–199, 1990.
 123. Ohta, Y., H. Arita, H. Nakayama, S. Tamaya, C. E. G. Lundgren, Y. C. Lin, R. M. Smith, R. Morin, L. E. Farhi, and M. Matsuda. Cardiopulmonary functions and maximal aerobic power during a 14‐day saturation dive at 31 ATA (Seadragon IV). In: Underwater Physiology VII, edited by A. J. Bachrach and M. M. Matzen. Bethesda, MD: Undersea Med. Soc., 1981, p. 209–221.
 124. Overfeld, E. M., H. A. Saltzman, J. V. Salzano, and J. A. Kylstra. Respiratory gas exchange in normal men breathing 0.9 oxygen in helium at 31.1 ats. J. Appl. Physiol. 27: 471–475, 1969.
 125. Paganelli, C. V., and F. Kurata. Diffusion of water vapor in binary and ternary gas mixtures at increased pressure. Respir. Physiol. 30: 15–26, 1977.
 126. Pearce, P. C., D. Clarke, C. J. Dore, M. J. Halsey, N. P. Luff, and C. J. Maclean. Sodium valproate interactions with the HPNS: EEG and behavioral observations. Undersea Biomed. Res. 16: 99–113, 1989.
 127. Piantadosi, C. A., and E. D. Thalmann. Thermal responses in humans exposed to cold hyperbaric helium–oxygen. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 49: 1099–1106, 1980.
 128. Raoul, Y., J. L. Meliet, and B. Broussole. Troubles psychiatriques et plongee profonde. Med. Arm. 16: 269–270, 1988.
 129. Raymond, L. W., W. H. Bell, II, K. R. Bondi, and C. R. Lindberg. Body temperature and metabolism in hyperbaric helium atmospheres. J. Appl. Physiol. 24: 678–684, 1968.
 130. Raymond, L. W., N. S. Raymond, V. P. Frattali, J. Sode, C. S. Leach, and W. H. Spaur. Is the weight loss of hyperbaric habituation a disorder of osmoregulation? Aviat. Space Environ. Med. 51: 397–401, 1980.
 131. Raymond, L. W., E. Thalmann, G. Lindgren, H. C. Langworthy, W. H. Spauer, J. Crothers, W. Braithwaite, and T. Berghage. Thermal homeostasis of resting man in helium–oxygen at 1–50 atmospheres absolute. Undersea Biomed. Res. 2: 51–67, 1975.
 132. Rostain, J. C., and S. Dimov. Potentials evoques visuels et cycle d'excitabilité au cours d'une plongée simulée à 610 m en atmosphere helium–oxygen (physalie VI). Electroencephalogr. Clin. Neurophysiol. 41: 287–300, 1976.
 133. Rostain, J. C., B. Gardette, M. C. Gardette‐Chauffour, and C. Forni. HPNS of baboons during helium–nitrogen–oxygen slow exponential compression. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 59: 341–350, 1984.
 134. Rostain, J. C., M. C. Gardette‐Chauffour, J. P. Gourret, and R. Naquet. Sleep disturbances in man during different compression profiles up to 62 bars in helium oxygen mixture. Electroencephalogr. Clin. Neurophysiol. 69: 127–135, 1988.
 135. Rostain, J. C., M. C. Gardette‐Chauffour, and R. Naquet. Studies of neurophysiological effects of hydrogen–oxygen mixture in man up to 30 bars. Undersea Biomed. Res. 17: 159, 1990.
 136. Rostain, J. C., C. Lemaire, M. C. Gardette‐Chauffour, J. Doucet, and R. Naquet. Criteria analysis of selection for deep diving (EEG and performance). In: Underwater Physiology VII, edited by A. J. Bachrach and M. M. Matzen. Bethesda, MD: Undersea Med. Soc., 1981, p. 435–443.
 137. Rostain, J. C., C. Lemaire, M. C. Gardette‐Chauffour, J. Doucet, and R. Naquet. Estimation of human susceptibility to the high pressure nervous syndrome. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 54: 1063–1070, 1983.
 138. Rostain, J. C., and R. Naquet. Resultats preliminaires d'une etude comparative de l'effet des melanges oxygene–helium et oxygene–hydrogene et de hautes pressions sur de babouin Papio papio. In: Proc. Troisiemes Journées Int. d'Hyperbarie et de Physiol. Subaquatique, edited by X. Fructus. Marseille: Doin, 1970, p. 44–49.
 139. Rostain, J. C., and R. Naquet. Le syndrome nerveux des hautes pressions: characteristiques et evolution en fonction de divers modes de compression. Rev. EEG Neurophysiol. 4: 107–124, 1974.
 140. Rostain, J. C., and R. Naquet. Human neurophysiological data obtained from two simulated dives to a depth of 610 meters. In: Underwater Physiology VI, edited by C. W. Shilling and M. W. Beckett. Bethesda, MD: FASEB, 1978, p. 9–19.
 141. Rostain, J. C., G. Regesta, M. C. Gardette‐Chauffour, and R. Naquet. Sleep organization in man during long stays in helium–oxygen mixture at 30–40 bars. Undersea Biomed. Res. 18: 21–36, 1991.
 142. Rostain, J. C., B. Wardley‐Smith, C. Forni, and M. J. Hasley. Gamma amino butyric acid and the high pressure neurological syndrome. Neuropharmacology 25: 545–554, 1986.
 143. Rostain, J. C., B. Wardley‐Smith, and M. J. Hasley. Effects of sodium valproate on HPNS in rats: the probable role of GABA. In: Underwater Physiology VIII, edited by A. J. Bachrach and M. M. Matzen. Bethesda, MD: Undersea Med. Soc., 1984, p. 601–605.
 144. Rowland‐James, P., M. W. Wilson, and K. W. Miller. Pharmacological evidence for multiple sites of action of pressure in mice. Undersea Biomed. Res. 8: 1–11, 1981.
 145. Sagawa, S., J. R. Claybaugh, K. Shiraki, Y. S. Park, M. Mohri, and S. K. Hong. Characteristics of increased urine flow during a dry saturation dive at 31 ATA. Undersea Biomed. Res. 17: 13–22, 1990.
 146. Salzano, J. V., E. M. Camporesi, B. W. Stolp, and R. E. Moon. Physiological responses to exercise at 47 and 66 ATA. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 57: 1055–1068, 1984.
 147. Salzano, J., D. C. Rausch, and H. A. Saltzman. Cardiorespiratory responses to exercise at simulated seawater depth of 1000 ft. J. Appl. Physiol. 28: 34–41, 1970.
 148. Schaefer, K. E. Circulatory adaptation to the requirements of life under more than one atmosphere of pressure. In: Handbook of Physiology Circulation, edited by W. F. Hamilton. Washington, DC: Am. Physiol. Soc., 1965, sect. 2, p. 1843–1873.
 149. Seals, D. R., D. G. Johnson, and R. F. Fregosi. Hyperoxia lowers sympathetic activity at rest but not during exercise in humans. Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 31): R873–R878, 1991.
 150. Shida, K. K., and Y. C. Lin. Contribution of environmental factors in development of hyperbaric bradycardia. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 50: 731–735, 1981.
 151. Shiraki, K., S. K. Hong, Y. S. Park, S. Sagawa, N. Konda, J. R. Claybaugh, H. Takeuchi, N. Matsui, and H. Nakayama. Sea‐dragon VI: a 7‐day dry saturation dive at 31 ATA. II. Characteristics of diuresis and nocturia. Undersea Biomed. Res. 14: 387–400, 1987.
 152. Shiraki, K., N. Konda, S. Sagawa, and K. Miki. Changes in cutaneous circulation at various atmospheric pressures in modifying temperature regulation of man. In: Thermal Physiology, edited by R. S. Hales. New York: Raven, 1984, p. 263–266.
 153. Shiraki, K., N. Konda, S. Sagawa, H. Nakayama, and M. Matsuda. Body heat balance and urine excretion during a 4‐day saturation dive at 4 ATA. Undersea Biomed. Res. 9: 321–333, 1982.
 154. Shiraki, K., S. Sagawa, N. Konda, H. Nakayama, and M. Matsuda. Hyperbaric diuresis at a thermoneutral 31 ATA He–O2 environment. Undersea Biomed. Res. 11: 341–353, 1984.
 155. Smith, R. M., S. K. Hong, R. H. Dressendorfer, J. H. Dwyer, E. Hayashi, and C. Yelverton. Hana Kai II: a 17‐day dry saturation dive at 18.6 ATA. IV. Cardiopulmonary functions. Undersea Biomed. Res. 4: 267–281, 1977.
 156. Spaur, W. H., L. W. Raymond, M. M. Knott, J. C. Crothers, W. R. Braithwaite, E. D. Thalmann, and D. F. Uddin. Dyspnea in divers at 49.5 ATA: mechanical, not chemical in origin. Undersea Biomed. Res. 4: 183–198, 1977.
 157. Stetzner, L. C., and B. Deboer. Thermal balance in the rat during exposure to helium–oxygen from 1 to 141 atmospheres. Aerospace Med. 43: 306–309, 1972.
 158. Stuhr, L. E. B., J. A. Ask, and I. Tyssebotn. Cardiovascular changes in anesthetized rats during exposure to 30 bar. Undersea Biomed. Res. 17: 383–393, 1990.
 159. Summit, J. K., J. S. Kelly, J. M. Herron, and H. A. Saltzman. 1000 foot helium saturation exposure. In: Proc. 4th Symp. Underwater Physiol., edited by C. J. Lambertsen. New York: Academic, 1971, p. 519–527.
 160. Tanaka, H., S. Sagawa, K. Miki, F. Tajima, J. R. Claybaugh, and K. Shiraki. Sympathetic nerve activity and urinary responses during continuous negative pressure breathing in humans. Am. J. Physiol. 261 (Regulatory Integrative Comp. Physiol. 32): R276–R282, 1991.
 161. Thorsen, E. T., J. Hjelle, K. Segadal, and A. Golsoik. Exercise tolerance and pulmonary gas exchange after deep saturation dives. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 68: 1809–1814, 1990.
 162. Timbal, J., H. Vieillefond, H. Guenard, and P. Varene. Metabolism and heat losses of resting man in a hyperbaric helium atmosphere. J. Appl. Physiol. 36: 444–448, 1974.
 163. Torok, Z. The compression strategy in the Alverstoke deep dives series. In: Man in the Sea, edited by Y. C. Lin and K. K. Shida. San Pedro, CA: Best, 1990, vol. 1, p. 23–41.
 164. Vorosmarti, J., M. E. Bradley, and N. R. Anthonisen. The effects of increased gas density on pulmonary mechanics. Undersea Biomed. Res. 2: 1–10, 1975.
 165. Vorosmarti, J., R. de G. Hansen, and E. E. P. Barnard. Further studies in decompression from steady state exposure to 250 meters. In: Underwater Physiology VI, edited by C. W. Shilling and M. W. Beckett. Bethesda, MD: FASEB, 1978, p. 438–445.
 166. Webb, P. Body heat loss in undersea gaseous environments. Aerospace Med. 41: 1282–1288, 1970.
 167. Webb, P. The thermal drain of comfortable hyperbaric environments. Nav. Res. Rev. 26: 1–7, 1973.
 168. Webb, P., S. J. Troutman, Jr., V. Frattalli, R. H. Dressendorfer, J. Dwyer, T. O. Moore, J. F. Morlock, R. M. Smith, Y. Ohta, and S. K. Hong. Hana Kai II: a 17‐day dry saturation dive at 18.6. II. Energy balance. Undersea Biomed. Res. 4: 221–246, 1977.
 169. Whalen, R. E., H. A. Saltzman, D. H. Lolloway, R. H. D. McIntosh, H. O. Sieker, and I. W. Brown, Jr. Cardiovascular and blood gas responses to hyperbaric oxygen. Am. J. Cardiol. 15: 638–646, 1965.
 170. Wilson, J. M., P. D. Kligfield, G. M. Adams, C. Harvey, and K. E. Schaefer. Human ECG changes during prolonged hyperbaric exposure breathing N2–O2 mixtures. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 42: 614–623, 1977.
 171. Wood, L. D. H., A. C. Bryan, S. K. Bau, T. R. Weng, and H. Levison. Effect of increased gas density on pulmonary gas exchange in man. J. Appl. Physiol. 41: 206–210, 1976.
 172. Zinebi, F., L. Fagni, and M. Hugon. Excitatory and inhibitory amino‐acidergic determinants of the pressure induced neuronal hyperexcitability in rat hippocampal slices. Undersea Biomed. Res. 17: 487–493, 1990.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Suk Ki Hong, Peter B. Bennett, Keizo Shiraki, Yu‐Chong Lin, John R. Claybaugh. Mixed‐gas Saturation Diving. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 1023-1045. First published in print 1996. doi: 10.1002/cphy.cp040244