Comprehensive Physiology Wiley Online Library

Hypoxia, Erythropoietin Gene Expression, and Erythropoiesis

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 null
1.1 The Functional Anatomy of the Erythropoietin Molecule
2 The Erythropoietin Receptor
3 Erythropoiesis and Erythroid Differentiation
4 Modulation of Serum Erythropoietin Levels
4.1 Assays for Erythropoietin
4.2 Serum Erythropoietin Levels and Their Dependence on Oxygenation
4.3 Kinetics and Quantity of Increases in Serum Erythropoietin Levels
4.4 Disturbances in Oxygen‐Dependent Control of Serum Erythropoietin Levels
4.5 Clearance and Metabolic Fate of Erythropoietin
5 The Source of Erythropoietin
5.1 Organs Producing Erythropoietin
5.2 Relative Contribution of Liver and Kidneys to Erythropoietin Formation
5.3 Cellular Site of Erythropoietin Formation
6 Oxygen Sensing in the Control of Erythropoietin Formation
6.1 Evidence for Intrarenal Oxygen Sensing
6.2 The Role of Local Oxygenation in Hepatic Erythropoietin Formation
6.3 The Role of Local Oxygenation for Renal Erythropoietin Formation
6.4 Mechanism of Oxygen Sensing and Signal Transduction
7 Control of Erythropoietin Gene Expression
7.1 Modulation of Erythropoietin mRNA Levels
7.2 Cis‐Acting Sequences that Coordinate Gene Expression
7.3 Sequence Conservation in Erythropoietin Genes
7.4 Hypersensitive Sites in Erythropoietin Genes
7.5 The Promoter of the Erythropoietin Gene
7.6 Enhancer Elements 3′ to the Erythropoietin Gene
7.7 Operation of Distant Cis‐Acting Elements to Control Tissue Specificity of Gene Expression
7.8 Cis‐Acting Sequences in Erythropoietin mRNA
8 Relationship to other Adaptive Responses to Hypoxia
Figure 1. Figure 1.

Secondary and tertiary structure prediction for a group of GRH‐like cytokines, (a) Location of secondary structural elements in the human sequences for GRH, PRL, IL‐6, G‐CSF, and EPO. The four α helices from the GRH X‐ray structure are labeled A to D; loops between helices are appropriately named. Known disulfide bridge connections are marked in black lines. Gene exon boundaries are indicated beneath the respective protein sequences by black triangles, (b) Drawing of the GRH fold emphasizing the helix bundle core and loop connectivity. The exposed surface of helix D will play an important role in receptor binding

from ref. 11, with permission
Figure 2. Figure 2.

The relation between hemoglobin and serum erythropoietin in patients without renal disease (closed circles), patients with a functioning renal transplant (closed squares), and patients with anemia associated with renal failure managed by dialysis (nephric (open circles) and anephric (open squares) subjects)

from ref. 41, with permission
Figure 3. Figure 3.

Changes with development in the total amount of erythropoietin mRNA in rat kidney (closed symbols) and livers (open symbols). Erythropoietin mRNA was quantified by RNAse protection assays; units are arbitrary and relate values to a standard preparation of erythropoietin mRNA. Before 28 days the liver contains the majority of total‐body erythropoietin mRNA. Although renal erythropoietin mRNA increases with development and exceeds the hepatic contribution, the liver still contains approximately 33% of the total erythropoietin mRNA in severe stimulated animals. This contribution is similar whether stimulation is by normobaric hypoxia or exposure to carbon monoxide

from ref. 66, with permission
Figure 4. Figure 4.

Schematic diagram of the erythropoietin gene indicating the position of possible cis‐acting control regions. The gene consists of five exons (boxed areas) and four introns (not drawn to scale). The exonic regions contain long 5′ and 3′ untranslated region (open boxes) lying on either side of coding sequence (hatched boxes). Features indicated on the diagram are (i) the transcriptional start site, (ii) translation initiation, (iii) the stop codon, (iv) the poly A addition site, (v) the existence of distant sequence lying 5′ to the gene, which acts to control tissue specificity of expression and possibly as an inducible element in kidney (Fig. 4, (vi) the promoter region, (vii) the 1st intron, which is unusually highly conserved, (viii) the position in the 3′ untranslated region of an mRNA protein binding site (Fig. 4, (ix) the position of a transcriptional enhancer lying 3′ to the poly A addition site (Fig. 4d,e).

Northern blot analysis of expression of human erythropoietin mRNA in the organs of an anemic transgenic mouse bearing a 22 kb human erythropoietin transgene. Organs are brain (Br), heart (He), intestine (In), kidney (Ki), liver (Li), lung (Lu), spleen (Sp), testes (Te), and thymus (Th). Expression pattern mimics that of the endogenous gene in that expression is limited to the liver and kidney. Comparison of this expression pattern with that of human erythropoietin transgenes of different lengths in other lines of transgenic mice indicates the existence of a region between 6 and 14 kb 5′ to the human erythropoietin gene that is required for regulated expression in kidney

Demonstration of erythropoietin mRNA protein complexes by band‐shift assays. (A) A restriction map of the full‐length erythropoietin cDNA. Transcripts running to the indicated restriction sites were generated using SP6 RNA polymerase after linearization of the template at each of those restriction sites. (B) Autoradiograph of band‐shift assay using cytosolic lysates from normoxic Hep3B cells. The arrow designates the erythropoietin RNA band‐shifted complex, while the bracket represents free RNA. Complex formation is not observed when the transcripts stop at the Stu I or KpnI sites, indicating a binding site in the 3′ UTR

Demonstration of hypersensitive sites lying 3′ to the human erythropoietin gene. Nuclei were prepared from liver and kidney of transgenic mice containing six copies of a 10 kb human transgene lying head to tail (two are shown in the diagram). This created an internal Bgl2 restriction fragment (4.4 kb). When nuclei were treated with the indicated amounts of DNAse I (μg/ml) prior to DNA extraction and Bgl2 digestion, cleavage occurred in the liver nuclei to create the additional 0.6 and 0.5 kb fragments. The position of this site is indicated by a vertical arrow and correlates with the functional demonstration of an enhancer element

Operation of the erythropoietin 3′ enhancer in transiently transfected HepG2 cells. Portions of the mouse erythropoietin gene were coupled to a human α globin gene and tested for their ability to convey hypoxic regulation on the α globin reporter. (a) Position of the linked human α globin and mouse erythropoietin gene in the recombinant test plasmids. (b) Autoradiograph of RNAse protection assay. Alternate lanes show normoxic and hypoxic α globin expression and expression of the control plasmid containing a ferritin‐growth homrone fusion gene (FGH). The erythropoietin gene fragments for each test plasmid are indicated above each lane. The presence of the Apa1‐Pvu 2 fragment containing the active enhancer sequence is indicated below the autoradiograph, and its orientation with respect to the α globin gene is indicated as + or ‐. The element conveys oxygen‐regulated expression independently of distance or orientation with respect to the α1‐globin promoter

from ref. 240, with permissionfrom ref. 241, with permissionfrom ref. 213, with permission
Figure 5. Figure 5.

In transfected cells the oxygen‐dependent operation of the erythropoietin 3′ enhancer is more widespread than expression of the native erythropoietin gene. (a) Autoradiograph of RNAse protection assay showing oxygen‐dependent operation of the erythropoietin 3′ enhancer in transfected MRC5 and HepG2. Alternate lanes show normoxic and hypoxic expression of the test plasmids containing α globin with or without the erythropoietin 3′ enhancer. A ferritin—growth hormone fusion gene was used on the cotransfected control plasmid. A similar increase in transcription of the α globin reporter gene is observed in hypoxic cells of each type when the enhancer is present. (b) Autoradiograph of RNAse protection assay of endogenous erythropoietin gene expression in MRC5 (human lung fibroblast cell line) and HepG2 (human hepatoma cell line). Endogenous erythropoietin gene expression is seen in HepG2 but not MRC5.



Figure 1.

Secondary and tertiary structure prediction for a group of GRH‐like cytokines, (a) Location of secondary structural elements in the human sequences for GRH, PRL, IL‐6, G‐CSF, and EPO. The four α helices from the GRH X‐ray structure are labeled A to D; loops between helices are appropriately named. Known disulfide bridge connections are marked in black lines. Gene exon boundaries are indicated beneath the respective protein sequences by black triangles, (b) Drawing of the GRH fold emphasizing the helix bundle core and loop connectivity. The exposed surface of helix D will play an important role in receptor binding

from ref. 11, with permission


Figure 2.

The relation between hemoglobin and serum erythropoietin in patients without renal disease (closed circles), patients with a functioning renal transplant (closed squares), and patients with anemia associated with renal failure managed by dialysis (nephric (open circles) and anephric (open squares) subjects)

from ref. 41, with permission


Figure 3.

Changes with development in the total amount of erythropoietin mRNA in rat kidney (closed symbols) and livers (open symbols). Erythropoietin mRNA was quantified by RNAse protection assays; units are arbitrary and relate values to a standard preparation of erythropoietin mRNA. Before 28 days the liver contains the majority of total‐body erythropoietin mRNA. Although renal erythropoietin mRNA increases with development and exceeds the hepatic contribution, the liver still contains approximately 33% of the total erythropoietin mRNA in severe stimulated animals. This contribution is similar whether stimulation is by normobaric hypoxia or exposure to carbon monoxide

from ref. 66, with permission


Figure 4.

Schematic diagram of the erythropoietin gene indicating the position of possible cis‐acting control regions. The gene consists of five exons (boxed areas) and four introns (not drawn to scale). The exonic regions contain long 5′ and 3′ untranslated region (open boxes) lying on either side of coding sequence (hatched boxes). Features indicated on the diagram are (i) the transcriptional start site, (ii) translation initiation, (iii) the stop codon, (iv) the poly A addition site, (v) the existence of distant sequence lying 5′ to the gene, which acts to control tissue specificity of expression and possibly as an inducible element in kidney (Fig. 4, (vi) the promoter region, (vii) the 1st intron, which is unusually highly conserved, (viii) the position in the 3′ untranslated region of an mRNA protein binding site (Fig. 4, (ix) the position of a transcriptional enhancer lying 3′ to the poly A addition site (Fig. 4d,e).

Northern blot analysis of expression of human erythropoietin mRNA in the organs of an anemic transgenic mouse bearing a 22 kb human erythropoietin transgene. Organs are brain (Br), heart (He), intestine (In), kidney (Ki), liver (Li), lung (Lu), spleen (Sp), testes (Te), and thymus (Th). Expression pattern mimics that of the endogenous gene in that expression is limited to the liver and kidney. Comparison of this expression pattern with that of human erythropoietin transgenes of different lengths in other lines of transgenic mice indicates the existence of a region between 6 and 14 kb 5′ to the human erythropoietin gene that is required for regulated expression in kidney

Demonstration of erythropoietin mRNA protein complexes by band‐shift assays. (A) A restriction map of the full‐length erythropoietin cDNA. Transcripts running to the indicated restriction sites were generated using SP6 RNA polymerase after linearization of the template at each of those restriction sites. (B) Autoradiograph of band‐shift assay using cytosolic lysates from normoxic Hep3B cells. The arrow designates the erythropoietin RNA band‐shifted complex, while the bracket represents free RNA. Complex formation is not observed when the transcripts stop at the Stu I or KpnI sites, indicating a binding site in the 3′ UTR

Demonstration of hypersensitive sites lying 3′ to the human erythropoietin gene. Nuclei were prepared from liver and kidney of transgenic mice containing six copies of a 10 kb human transgene lying head to tail (two are shown in the diagram). This created an internal Bgl2 restriction fragment (4.4 kb). When nuclei were treated with the indicated amounts of DNAse I (μg/ml) prior to DNA extraction and Bgl2 digestion, cleavage occurred in the liver nuclei to create the additional 0.6 and 0.5 kb fragments. The position of this site is indicated by a vertical arrow and correlates with the functional demonstration of an enhancer element

Operation of the erythropoietin 3′ enhancer in transiently transfected HepG2 cells. Portions of the mouse erythropoietin gene were coupled to a human α globin gene and tested for their ability to convey hypoxic regulation on the α globin reporter. (a) Position of the linked human α globin and mouse erythropoietin gene in the recombinant test plasmids. (b) Autoradiograph of RNAse protection assay. Alternate lanes show normoxic and hypoxic α globin expression and expression of the control plasmid containing a ferritin‐growth homrone fusion gene (FGH). The erythropoietin gene fragments for each test plasmid are indicated above each lane. The presence of the Apa1‐Pvu 2 fragment containing the active enhancer sequence is indicated below the autoradiograph, and its orientation with respect to the α globin gene is indicated as + or ‐. The element conveys oxygen‐regulated expression independently of distance or orientation with respect to the α1‐globin promoter

from ref. 240, with permissionfrom ref. 241, with permissionfrom ref. 213, with permission


Figure 5.

In transfected cells the oxygen‐dependent operation of the erythropoietin 3′ enhancer is more widespread than expression of the native erythropoietin gene. (a) Autoradiograph of RNAse protection assay showing oxygen‐dependent operation of the erythropoietin 3′ enhancer in transfected MRC5 and HepG2. Alternate lanes show normoxic and hypoxic expression of the test plasmids containing α globin with or without the erythropoietin 3′ enhancer. A ferritin—growth hormone fusion gene was used on the cotransfected control plasmid. A similar increase in transcription of the α globin reporter gene is observed in hypoxic cells of each type when the enhancer is present. (b) Autoradiograph of RNAse protection assay of endogenous erythropoietin gene expression in MRC5 (human lung fibroblast cell line) and HepG2 (human hepatoma cell line). Endogenous erythropoietin gene expression is seen in HepG2 but not MRC5.

References
 1. Abbrecht, P. H., and J. K. Littell. Plasma erythropoietin in men and mice during acclimatization to different altitudes. J. Appl. Physiol. 32: 54–58, 1972.
 2. Adair, T. H., W. J. Gay, and J.‐P. Montani. Growth regulation of the vascular system: evidence for a metabolic hypothesis. Am. J. Physiol. 259 (Regulatory Integrative Comp Physiol. 28): R393–R404, 1990.
 3. Adamson, J. W., and J. W. Eschbach. Treatment of the anemia of chronic renal failure with recombinant human erythropoietin. Annu. Rev. Med. 41: 349–360, 1990.
 4. Adamson, J. W., B. Torok‐Storb, and N. Lin. Analysis of erythropoiesis by erythroid colony formation in culture. Blood Cells 4: 89–103, 1978.
 5. Bachmann, S., M. LeHir, and K.‐U. Eckardt. Colocalization of erythropoietin mRNA and ecto‐5'‐nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J. Histochem. Cytochem. 41: 335–341, 1993.
 6. Baer, A. N., E. N. Dessypris, E. Goldwasser, and S. B. Krantz. Blunted erythropoietin response to anaemia in rheumatoid arthritis. Br. J. Haematol. 66: 559–564, 1987.
 7. Bailey, S. C., R. Spangler and A. J. Sytkowski. Erythropoietin induces cytosolic protein phosphorylation and dephosphorylation in erythroid cells. J. Biol. Chem. 226: 24121–24125, 1991.
 8. Baker, R., J. R. Zucali, B. J. Baker, and J. Strauss. Erythropoietin and intrarenal oxygenation in hypercapnic versus normocapnic hypoxemia. Adv. Exp. Med. Biol. 69: 597–609, 1984.
 9. Bauer, C., and A. Kurtz. Oxygen sensing in the kidney and its relation to erythropoietin production. Annu. Rev. Physiol. 51: 845–856, 1989.
 10. Bazan, J. F. Haemopoietic receptors and helical cytokines. Immunol. Today 11: 350–354, 1990.
 11. Bazan, J. F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. USA 87: 6934–6938, 1990.
 12. Beato, M. Gene regulation by steroid hormones. Cell 56: 335–344, 1989.
 13. Beaupain, D., J. F. Eleouet and P. H. Romeo. Initiation of transcription of the erythroid promoter of the porphobilinogen deaminase gene is regulated by a cis‐acting sequence around the cap site. Nucleic Acids Res. 18: 6509–6515, 1990.
 14. Beck, I., S. Ramirez, R. Weinmann, and J. Caro. Enhancer element at the 3'‐flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J. Biol. Chem. 266: 15563–15566, 1991.
 15. Beru, N., D. Smith, and E. Goldwasser. Evidence suggesting negative regulation of the erythropoietin gene by ribonucleo‐protein. J. Biol. Chem. 265: 14100–14104, 1990.
 16. Beynon, G. The influence of the autonomic nervous system in the control of erythropoietin secretion in the hypoxic rat. J. Physiol. (London) 266: 347–360, 1977.
 17. Birgegard, G., O. Miller, J. Caro, and A. J. Erslev. Serum erythropoietin levels by radioimmunoassay in polycythemia. Scand. J. Haematol. 29: 161–167, 1982.
 18. Birgegard, G., L. Wide, and B. Simonsson. Marked erythropoietin increase before fall in Hb after treatment with cytostatic drugs suggests mechanism other than anaemia for stimulation. Br. J. Haematol. 72: 462–466, 1989.
 19. Bjarnason, I., P. M. Cotes, S. Knowles, C. Reid, R. Wilkins, and T. J. Peters. Giant lymph node hyperplasia (Castelman's syndrome) of the mesentery. Observations on the associated anemia. Gastroenterology 87: 216–223, 1984.
 20. Blanchard, K. L., A. M. Acquaviva, D. L. Galson, and H. F. Bunn. Hypoxic induction of the human erythropoietin gene: cooperation between the promoter and enhancer, each of which contains steroid receptor response elements. Mol. Cell. Biol. 12: 5373–5385, 1992.
 21. Blumberg, A., H. Keller, and H. R. Marti. Effect of altitude on erythropoiesis and oxygen affinity in anaemic patients on maintenance dialysis. Eur. J. Clin. Invest. 3: 93–97, 1973.
 22. Boissel, J.‐P., and H. F. Bunn. Erythropoietin structure‐function relationships. In: The Biology of Hematopoiesis, edited by N. Dainiak, E. P. Cronkite, R. McCaffrey, and R. D. Shadduck. New York: Wiley‐Liss, 1990, p. 227–232.
 23. Bondurant, M. C., and M. J. Koury. Anemia induces accumulation of erythropoietin mRNA in the kidney and liver. Mol. Cell. Biol. 6: 2731–2733, 1986.
 24. Breathnach, R., and P. Chambon. Organization and expression of eukaryotic split genes coding for proteins. Annu. Rev. Biochem. 50: 349–383, 1981.
 25. Brezis, M., P. Shanley, P. Silva, K. Spokes, S. Lear, F. H. Epstein, and S. Rosen. Disparate mechanisms for hypoxic cell injury in different nephron segments. J. Clin. Invest. 76: 1796–1806, 1985.
 26. Broudy, V. C., N. Lin, M. Brice, B. Nakamoto, and T. Papayannopoulou. Erythropoietin receptor characteristics on primary human erythroid cells. Blood 77: 2583–2590, 1991.
 27. Broudy, V. C., J. F. Tait, and J. S. Powell. Recombinant human erythropoietin: purification and analysis of carbohydrate linkage. Arch. Biochem. Biophys. 265: 329–336, 1988.
 28. Cahan, C., P. L. Hoekje, E. Goldwasser, M. J. Decker, and K. P. Strohl. Assessing the characteristic between length of hypoxic exposure and serum erythropoietin levels. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 27): R1016–1021, 1990.
 29. Carmena, A. O., D. Howard and F. Stohlman. Regulation of erythropoiesis. XXII. Erythropoietin production in the newborn animal. Blood 332: 376–382, 1968.
 30. Carnot, P., and C. Deflandre. Sur l'activite hemopoietique du serum au cours de la regeneration du sang. C.R. Acad. Sci. Paris 143: 384–386, 1906.
 31. Caro, J., S. Brown, O. Miller, T. Murray, and A. J. Erslev. Erythropoietin levels in uremic nephric and anephric patients. J. Lab. Clin. Med. 93: 449–458, 1979.
 32. Caro, J., and A. J. Erslev. Biologic and immunologic erythropoietin in extracts from hypoxic whole rat kidneys and in their glomerular and tubular fractions. J. Lab. Clin. Med. 103: 922–931, 1984.
 33. Chandra, M., G. K. Clemons, and M. I. McVicar. Relation of serum erythropoietin levels to renal excretory function. Evidence for lowered set point for erythropoietin production in chronic renal failure. J. Pediatr. 113: 1015–1021, 1988.
 34. Chern, Y., T. Chung, and A. J. Sytkowski. Structural role of amino acids 99–110 in recombinant human erythropoietin. Eur. J. Biochem. 202: 225–229, 1991.
 35. Chiba, T., H. Amanuma, and K. Todokoro. Tryptophan residue of TRP‐SER‐X‐TRP‐SER motif in extracellular domains of erythropoietin receptor is essential for signal transduction. Biochem. Biophys. Res. Commun. 184: 485–490, 1992.
 36. Chiba, T., Y. Ikawa, and K. Todokoro. GATA‐1 transactivates erythropoietin receptor gene, and erythropoietin receptor‐mediated signals enhance GATA‐1 gene expression. Nucleic Acids Res. 19: 3843–3848, 1991.
 37. Cohen, J. J. Relationship between energy requirements for Na+ reabsorption and other renal functions. Kidney Int. 29: 32–40, 1986.
 38. Cohen, R. A., M. E. Miller, J. F. Garcia, G. Moccia, and E. P. Cronkite. Regulatory mechanism of erythropoietin production: Effects of hypoxemia and hypercarbia. Exp. Hematol. 9: 513–521, 1981.
 39. Costa‐Giomi, P., J. Caro, and R. Weinmann. Enhancement by hypoxia of human erythropoietin gene transcription in vitro. J. Biol. Chem. 265: 19185–10188, 1990.
 40. Cotes, P. M. Immunoreactive erythropoietin in serum. Br. J. Haematol. 50: 427–438, 1982.
 41. Cotes, P. M. Physiological studies of erythropoietin in plasma. In: Erythropoietin, edited by W. Jelkmann and A. J. Gross. Berlin: Springer‐Verlag, 1989, p. 57–79.
 42. Cotes, P. M., and D. R. Bangham. Bioassay of erythropoietin in mice made polycythaemic by exposure to air at a reduced pressure. Nature 191: 1065–1067, 1961.
 43. Cotes, P. M., C. J. Dore, J. A. Liu Yin, M. Lewis, M. Messinezy, T. C. Pearson, and C. Reid. Determination of serum immunoreactive erythropoietin in the investigation of erythrocytosis. N. Engl. J. Med. 315: 283–287, 1986.
 44. Cotes, P. M., M. J. Pippard, C. D. L. Reid, C. G. Winearls, D. O. Oliver, and J. P. Royston. Characterization of the anaemia of chronic renal failure and the mode of its correction by a preparation of human erythropoietin. Q. J. Med. 70: 113–137, 1989.
 45. Cotes, P. M., R. C. Tam, P. Reed, and M. Hellebostad. An immunological cross‐reactant of erythropoietin in serum which may invalidate EPO radioimmunoassay. Br. J. Haematol. 73: 265–268, 1989.
 46. D'Andrea, A. D., P. J. Szklut, H. F. Lodish, and E. M. Alderman. Inhibition of receptor binding and neutralization of bioactivity by anti‐erythropoietin monoclonal antibodies. Blood 75: 874–880, 1990.
 47. D'Andrea, A. D., and L. I. Zon. Erythropoietin receptor. J. Clin. Invest. 86: 681–687, 1990.
 48. David, M., M.‐L. Daveran, J. Batut, A. Dedieu, O. Domergue, J. Ghai, C. Hertig, P. Boistard, and D. Kahn. Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 54: 671–683, 1988.
 49. Davis, J. M., T. Arakawa, T. W. Strickland, and D. A. Yphantis. Characterization of recombinant human erythropoietin produced in Chinese hamster ovary cells. Biochemistry 26: 2633–2638, 1987.
 50. De Wet, J. R., K. V. Wood, M. De Luca, D. R. Helinski, and S. Subramani. Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7: 725–737, 1987.
 51. Deetjen, P., and K. Kramer. Die Abhangigkeit des O2‐Verbrauches der Niere von der Na‐Ruckresorption. Pflugers Arch. 273: 636–650, 1961.
 52. Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. Accurate transcription initiation by RNA polymerase II in a soluble extract of isolated mammalian nuclei. Nucleic Acids Res. 11: 1475–1489, 1983.
 53. Dordal, M. S., F. F. Wang, and E. Goldwasser. The role of carbohydrate in erythropoietin action. Endocrinology 116: 2293–2299, 1985.
 54. Dunn, C. D. R., J. H. Jarvis, and J. M. Greenman. A quantitative bioassay for erythropoietin using mouse fetal liver cells. Exp. Hematol. 3: 65–78, 1975.
 55. Dusanter‐Fourt, I., N. Casadevall, C. Lacombe, O. Muller, C. Billat, S. Fischer, and P. Mayeux. Erythropoietin induces the tyrosine phosphorylation of its own receptor in human erythropoietin‐responsive cells. J. Biol. Chem. 267: 10670–10675, 1992.
 56. Dynan, W. S. Modularity in promoters and enhancers. Cell 58: 1–4, 1989.
 57. Dynan, W. S., and R. Tjian. Control of eukaryotic messenger RNA synthesis by sequence‐specific DNA‐binding proteins. Nature 316: 774–778, 1985.
 58. Eckhardt, K., J. Dittmer, R. Neumann, C. Bauer, and A. Kurtz. Decline of erythropoietin formation at continuous hypoxia is not due to feedback inhibition. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F1432–F1437, 1990.
 59. Eckardt, K., A. Kurtz, and C. Bauer. Regulation of erythropoietin production is related to proximal tubular function. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F942–F947, 1989.
 60. Eckardt, K.‐U., W. Hartmann, U. Vetter, F. Pohlandt, R. Burghardt and A. Kurtz. Serum immunoreactive erythropoietin of children in health and disease. Eur. J. Pediatr. 149: 459–464, 1990.
 61. Eckardt, K.‐U., S. T. Koury, C. C. Tan, S. J. Schuster, P. J. Ratcliffe, B. Kaissling, and A. Kurtz. Distribution of erythropoietin producing cells in rat kidneys during hypoxic hypoxia. Kidney Int. 43: 815–823, 1993.
 62. Eckardt, K.‐U., A. Kurtz, and C. Bauer. Triggering of erythropoietin formation by hypoxia is inhibited by respiratory and metabolic acidosis. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 27): R678–R683, 1990.
 63. Eckardt, K.‐U., M. Le Hir, C. C. Tan, P. J. Ratcliffe, B. Kaissling, and A. Kurtz. Renal innervation plays no role in oxygen dependent control of erythropoietin mRNA levels. Am. J. Physiol. (Renal Fluid Electrolyte Physiol. 32): F925–F930, 1992.
 64. Eckardt, K.‐U., M. Möllmann, R. Neumann, R. Brunkhorst, H.‐U. Burger, G. Lonnemann, H. Scholz, G. Keusch, B. Buchholz, U. Frei, C. Bauer, and A. Kurtz. Erythropoietin in polycystic kidneys. J. Clin. Invest. 84: 1160–1166, 1989.
 65. Eckardt, K.‐U., C. W. Pugh, P. J. Ratcliffe, and A. Kurtz. Oxygen dependent modulation of erythropoietin mRNA in rat hepatocytes in vitro. Pflugers Arch. 1993, in press.
 66. Eckardt, K.‐U., P. J. Ratcliffe, C. C. Tan, C. Bauer, and A. Kurtz. Age dependent expression of the erythropoietin gene in rat liver and kidneys. J. Clin. Invest. 89: 753–760, 1992.
 67. Egrie, J. C., P. M. Cotes, J. Lane, R. E. Graines Das, and R. C. Tam. Development of radioimmunoassays for human erythropoietin using recombinant erythropoietin as tracer and immunogen. J. Immunol. Methods 99: 235–241, 1987.
 68. Egrie, J. C., T. W. Strickland, J. Lane, K. Aoki, A. M. Cohen, R. Smalling, G. Trail, F. K. Lin, J. K. Browne, and D. K. Hines. Characterization and biological effects of recombinant human erythropoietin. Immunobiology 172: 213–224, 1986.
 69. Erslev, A. J. Humoral regulation of red cell production. Blood 8: 349–357, 1953.
 70. Erslev, A. J. In vitro production of erythropoietin by kidneys perfused with a serum‐free solution. Blood 44: 77–85, 1974.
 71. Erslev, A. J., and J. Caro. Pure erythrocytosis classified according to erythropoietin titers. Am. J. Med. 76: 57–61, 1984.
 72. Erslev, A. J., J. Caro, and A. Besarab. Why the kidney? Nephron 41: 213–216, 1985.
 73. Erslev, A. J., J. Caro, E. Kansu, and R. Silver. Renal and extrarenal erythropoietin production in anaemic rats. Br. J. Haematol. 45: 65–72, 1980.
 74. Erslev, A. J., J. Wilson, and J. Caro. Erythropoietin titers in anemic, nonuremeic patients. J. Lab. Clin. Med. 109: 429–433, 1987.
 75. Eschbach, J. W. The anemia of chronic renal failure: Pathophysiology and the effects of recombinant erythropoietin. Kidney Int. 35: 134–148, 1989.
 76. Eschbach, J. W., M. H. Abdulhadi, J. K. Browne, B. G. Delano, M. R. Downing, J. C. Egrie, R. W. Evans, E. A. Friedman, S. E. Graber, and N. R. Haley. Recombination human erythropoietin in anemic patients with end‐stage renal disease. Ann. Intern. Med. 111: 992–1000, 1989.
 77. Fandrey, J., W. Jelkmann, and C. P. Seigers. Control of the production of erythropoietin in hepatoma cell cultures (HepG2). Funktionsanal Biol. Syst. 33: 165–177, 1991.
 78. Fandrey, J., F. P. Seydel, C.‐P. Siegers, and W. Jelkmann. Role of cytochrome P450 in the control of the production of erythropoietin. Life Sci. 47: 127–134, 1990.
 79. Faquin, W. C., T. J. Schneider, and M. A. Goldberg. Effect of inflammatory cytokines on hypoxia‐induced erythropoietin production. Blood 79: 1987–1994, 1992.
 80. Felsenfeld, G. Chromatin as an essential part of the transcriptional mechanism. Nature 355: 219, 1992.
 81. Fink, G. D., and J. W. Fisher. Erythropoietin production after renal denervation or beta‐adrenergic blockage. Am. J. Physiol. 230: 508–513, 1976.
 82. Fink, G. D., and J. W. Fisher. Stimulation of erythropoiesis by beta adrenergic agonists. I: Characterization of activity in polycythaemic mice. J. Pharmacol. Exp. Ther. 202: 192–198, 1977.
 83. Finne, P. H., R. Skoglund, and S. Wetterhus. Urinary erythropoietin during initial treatment of pernicious anaemia. Scand. J. Haematol. 10: 62–68, 1973.
 84. Firth, J. D., B. L. Ebert, C. W. Pugh, and P. J. Ratcliffe. Oxygen‐regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: Similarities with the erythropoietin 3′ enhancer. Proc. Natl. Acad. Sci. USA 91: 6496–6500, 1994.
 85. Fisher, J. W. Pharmacologic modulation of erythropoietin production. Annu. Rev. Pharmacol. Toxicol. 28: 101–122, 1988.
 86. Fisher, J. W., and B. J. Birdwell. The production of an erythropoietic factor by the in situ perfused kidney. Acta Haematol. (Basel) 26: 224–232, 1961.
 87. Fisher, J. W., D. B. Knight, and C. Couch. The influence of several diuretic drugs on erythropoietin formation. J. Pharmacol Exp. Ther. 141: 113–121, 1963.
 88. Fisher, J. W., G. Taylor, and D. D. Porteous. Localisation of erythropoietin in glomeruli of sheep kidney by fluorescent antibody technique. Nature 205: 611–612, 1965.
 89. Fogh, J. A sensitive erythropoietin assay on mice exposed to CO‐hypoxia. Scand. J. Clin. Lab. Invest. 18: 33–44, 1966.
 90. Fried, W. The liver as a source of extrarenal Epo production. Blood 40: 671–677, 1972.
 91. Fried, W., J. Barone‐Varelas, and M. Berman. Detection of high erythropoietin titres in renal extracts of hypoxic rats. J. Lab. Clin. Med. 97: 82–96, 1981.
 92. Fried, W., C. Johnson, and P. Heller. Observations on regulation of erythropoiesis during prolonged periods of hypoxia. Blood 38: 607–616, 1970.
 93. Fried, W., L. Plazk, L. O. Jacobson, and E. Goldwasser. Erythropoiesis II: Assay of erythropoietin in hypophysectomized rats. Proc. Soc. Exp. Biol. Med 92: 203–207, 1956.
 94. Fukuda, M. N., H. Sasaki, L. Lopez, and M. Fukuda. Survival of recombinant epo in the circulation: The role of carbohydrates. Blood 73: 84–89, 1989.
 95. Gallo, R. C., W. Fraimow, R. T. Cathcart, and A. J. Erslev. Erythropoietic response in chronic pulmonary disease. Arch. Intern. Med. 113: 559–568, 1964.
 96. Garcia, J. F., and G. K. Clemons. The radioimmunoassay of erythropoietin. In: Recent Advances in Nuclear Medicine, edited by J. H. Lawrence and S. Winchell. New York: Grune and Stratton, 1983, p. 19–40.
 97. Garcia, J. F., S. N. Ebbe, L. Hollander, H. O. Cutting, M. E. Miller, and E. Cronkite. Radioimmunoassay of erythropoietin: circulating levels in normal and polycythemic human beings. J. Lab. Clin. Med. 99: 624–635, 1982.
 98. Gilles‐Gonzalez, M. A., G. S. Ditta, and D. R. Helinski. A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature 350: 170–172, 1991.
 99. Goldberg, M. A., S. P. Dunning, and H. F. Bunn. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242: 1412–1415, 1988.
 100. Goldberg, M. A., C. C. Gaut, and H. F. Bunn. Epo mRNA levels are governed by both the rate of gene transcription and posttranscriptional events. Blood 77: 271–277, 1991.
 101. Goldberg, M. A., G. A. Glass, J. M. Cunningham, and H. F. Bunn. The regulated expression of epo by two human hepatoma cell lines. Proc. Natl. Acad. Sci. USA 84: 7972–7976, 1987.
 102. Goldwasser, E., J. F. Eliason, and D. Sikkema. An assay for epo in vitro at the milliunit level. Endocrinology 97: 315–323, 1974.
 103. Gorman, C. High efficiency gene transfer into mammalian cells. In: DNA Cloning, edited by D. M. Glover. Oxford: IRL Press, 1985, p. 143–190.
 104. Green, M. R. Pre‐mRNA processing and mRNA nuclear export. Curr. Opin. Cell Biol. 1: 519–525, 1989.
 105. Greenblatt, J. Roles of TFIID in transcriptional initiation by RNA polymerase II. Cell 66: 1067–1070, 1991.
 106. Gregory, C. J., and A. C. Eaves. Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biologic properties. Blood 51: 527–537, 1978.
 107. Gross, D. S., and W. T. Garrard. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 57: 159–197, 1988.
 108. Grosveld, F., G. B. Van Assendelft, D. R. Greaves, and G. Kollias. Position independent, high‐level expression of the human β‐globin gene in transgenic mice. Cell 51: 975–985, 1987.
 109. Gruber, D. F., J. R. Zucali, and E. A. Mirand. Identification of erythropoietin producing cells in fetal mouse liver cultures. Exp. Hematol. 5: 392–398, 1977.
 110. Gruber, D. F., J. R. Zucali, J. Wleklinski, V. LaRussa, and E. A. Mirand. Temporal transition in the site of rat erythropoietin production. Exp. Hematol. 5: 399–407, 1977.
 111. Hagiwara, M., K. Nagakura, M. Ueno, and J. W. Fuisher. Inhibitory effects of tetradecanoylphorbol acetate and diacylglycerol on erythropoietin production in human renal carcinoma cell cultures. Exp. Cell Res. 173: 129–136, 1987.
 112. Halvorsen, S. Plasma erythropoietin levels following hypothalamic stimulation in the rabbit. Scand. J. Clin. Lab. Invest. 13: 564–575, 1961.
 113. Halvorsen, S., B. L. Roh, and J. W. Fisher. Erythropoietin production in nephrectomized and hypophysectomized animals. Am. J. Physiol. 215: 349–352, 1968.
 114. Heberlein, C., K.‐D. Fischer, M. Stoffel, J. Nowock, A. Ford, U. Tessmer, and C. Stocking. The gene for erythropoietin receptor is expressed in multipotential hematopoietic and embryonal stem cells: Evidence for differentiation stage‐specific regulation. Mol. Cell. Biol. 12: 1815–1826, 1992.
 115. Hellebostad, M., P. Haga, and P. M. Cotes. Serum immuno‐reactive erythropoietin in healthy normal children. Br. J. Haematol. 70: 247–250, 1988.
 116. Hillman, R. S., and C. A. Finch. Erythropoietin: normal and abnormal. Semin. Hematol. 4: 327–336, 1967.
 117. Hjort, E. Reticulocyte increase after injection of anemic serum. Norsk Mag. F. Laegevidensk 97: 270–277, 1936.
 118. Hochberg, M. C., C. M. Arnold, B. B. Hogans, and J. L. Spivak. Serum immunoreactive erythropoietin in rheumatoid arthritis: impaired response to anemia. Arthritis Rheum. 31: 1318–1321, 1988.
 119. Hodge, M. R., G. Kim. K. Singh, and M. G. Cumsky. Inverse regulation of the yeast COX5 genes by oxygen and heme. Mol. Cell. Biol. 9: 1958–1964, 1989.
 120. Imagawa, S., M. A. Goldberg, J. Doweiko, and H. F. Bunn. Regulatory elements of the erythropoieting gene. Blood 77: 278–285, 1991.
 121. Imai, N., A. Kawamura, M. Higuchi, M. Oh‐Eda, T. Orita, T. Kawaguchi, and N. Ochi. Physicochemical and biological comparison of recombinant human erythropoietin with human urinary erythropoietin. J. Biochem. (Tokyo) 107: 352–359, 1990.
 122. Iscove, N. N. The role of erythropoietin in regulation of population size and cell cycling of early and late erythroid precursors in mouse bone marrow. Cell Tissue Kinet. 10: 323–334, 1977.
 123. Jacobs, K., C. Shoemaker, R. Rudersdorf, S. D. Neill, R. J. Kaufman, A. Mufson, J. Seehra, S. S. Jones, R. Hewick, E. F. Fritsch, M. Kawakita, T. Shimizu, and T. Miyake. Isolation and characterization of genomic and cDNA clones of human epo. Nature 313: 806–810, 1985.
 124. Jacobson, L. O., E. Goldwasser, W. Fried, and L. Pizak. Role of the kidney in erythropoiesis. Nature 179: 633–634, 1957.
 125. Jelkmann, W. Temporal pattern of erythropoietin titers in kidney tissue during hypoxic hypoxia. Pflügers Arch. 393: 88–91, 1982.
 126. Jelkmann, W. Erythropoietin: Structure, control of production, and function. Physiol. Rev. 72: 449–489, 1992.
 127. Jelkmann, W., and C. Bauer. Demonstration of high levels of erythropoietin in rat kidneys following hypoxic hypoxia. Pflügers Arch. 392: 34–39, 1981.
 128. Jelkmann, W., A. Huwiler, J. Fandrey, and J. Pfeilschifter. Inhibition of erythropoietin production by phorbol ester is associated with down regulation of protein kinase C‐α isoenzyme in hepatoma cells. Biochem. Biophys. Res. Commun. 179: 1441–1448, 1991.
 129. Jelkmann, W., H. Pagel, M. Wolff, and J. Fandrey. Monokines inhibiting erythropoietin production in human hepatoma cultures and in isolated perfused rat kidneys. Life Sci. 50: 301–308, 1992.
 130. Jelkmann, W., and J. Seidl. Dependence of erythropoietin production on blood oxygen affinity and hemoglobin concentration in rats. Biomed. Biochim. Acta 46: S304–S308, 1987.
 131. Jelkmann, W., and G. Wiedemann. Serum erythropoietin level: relationship to blood hemoglobin concentration and erythrocytic activity of the bone marrow. Klin. Wochenschr. 68: 403–407, 1990.
 132. John, J., R. McKendry, S. Pellegrini, D. Flavell, I. M. Kerr, and G. R. Stark. Isolation and characterisation of a new mutant human cell line unresponsive to alpha and beta interferons. Mol. Cell. Biol. 11: 4189–4195, 1991.
 133. Johnson, P. F., and S. L. McKnight. Eukaryotic transcriptional regulatory proteins. Annu. Rev. Biochem. 58: 799–839, 1989.
 134. Jones, D. P. Intracellular diffusion gradients of O2 and ATP. Am. J. Physiol. 250 (Cell Physiol. 19): C663–C675, 1986.
 135. Jones, S. S., A. D. D'Andrea, L. L. Haines, and G. G. Wong. Human erythropoietin receptor: Cloning, expression and biological characterization. Blood 76: 31–35, 1990.
 136. Jungermann, K., and N. Katz. Functional specialization of different hepatocyte populations. Physiol Rev. 69: 708–764, 1989.
 137. Kadonaga, J. R., and R. Tjian. Affinity purification of sequence‐specific DNA binding proteins. Proc. Natl. Acad. Sci. USA 83: 5889–5893, 1986.
 138. Kiil, F., K. Aukland, and H. E. Refsum. Renal sodium transport and oxygen consumption. Am. J. Physiol. 201: 511–516, 1961.
 139. Kindler, J., K.‐U. Eckardt, K. Jandeleit, A. Kurtz, A. Schreiber, P. Scigalla, and H.‐G. Sieberth. Single dose pharmacokinetics of recombinant human erythropoietin (rHuEPO) in patients with various degrees of renal failure. Nephrol. Dial. Transplant 4: 345–349, 1989.
 140. Koeffler, H. P., and E. Goldwasser. Erythropoietin radioimmunoassay in evaluating patients with polycythemia. Ann. Intern. Med. 94: 44–47, 1981.
 141. Kourembanas, S., R. L. Hannan, and D. V. Fuller. Oxygen tension regulates the expression of the platelet‐derived growth factor‐β chain gene in human endothelial cells. J. Clin. Invest. 86: 670–674, 1990.
 142. Koury, M. J., and M. C. Bondurant. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cells. J. Cell. Physiol. 137: 65–74, 1988.
 143. Koury, M. J., and M. C. Bondurant. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248: 378–381, 1990.
 144. Koury, M. J., M. C. Bondurant, S. E. Graber, and S. T. Sawyer. Epo messenger RNA levels in developing mice and transfer of 125I‐epo by the placenta. J. Clin. Invest. 82: 154–159, 1988.
 145. Koury, M. J., S. T. Sawyer, and M. C. Bondurant. Splenic erythroblasts in anemia‐inducing Friend disease: a source of cells for studies of erythropoietin mediated differentiation. J. Cell. Physiol. 121: 526–532, 1984.
 146. Koury, S. T., M. C. Bondurant, and M. J. Koury. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood 71: 524–527, 1988.
 147. Koury, S. T., M. C. Bondurant, M. J. Koury, and G. L. Semenza. Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood 77: 2497–2503, 1991.
 148. Koury, S. T., M. J. Koury, M. C. Bondurant, J. Caro, and S. E. Graber. Quantitation of epo‐producing cells in kidneys of mice by in situ hybridization: correlation with hematocrit, renal epo mRNA and serum epo concentration. Blood 74: 645–651, 1989.
 149. Krantz, S. B. Erythropoietin. Blood 77: 419–434, 1991.
 150. Krantz, S. B., O. Gallien‐Lartigue, and E. Goldwasser. The effect of epo upon heme synthesis by marrow cells in vitro. J. Biol. Chem. 238: 4085–4092, 1963.
 151. Kriz, W. Structural organization of the renal medulla: comparative and functional aspects. Am. J. Physiol. 241 (Regulatory Integrative Comp. Physiol. 12): R3–R16, 1981.
 152. Kuramochi, S., T. Chiba, H. Amanuma, A. Tojo, and K. Todokoro. Growth signal erythropoietin activates the same tyrosine kinases as interleukin 3, but activates only one tyrosine kinase as differentiation signal. Biochem. Biophys. Res. Commun. 181: 1103–1109, 1991.
 153. Kuratowska, Z., B. Lewartowski, and E. Michalak. Studies on the production of erythropoietin by isolated perfused organs. Blood 18: 527–534, 1961.
 154. Kurtz, A., K.‐U. Eckardt, R. Neumann, R. Kaissling, M. Le Hir, and C. Bauer. Site of epo formation. Contr. Nephrol. 76: 14–23, 1989.
 155. Kurtz, A., K.‐U. Eckardt, P. J. Ratcliffe, C. W. Pugh, and P. Corvol. Requirement of protein kinase C activity for regulation of erythropoietin production in human hepatoma cells (HepG2). Am. J. Physiol. 262 (Cell Physiol. 31): C1204–1210, 1992.
 156. Kurtz, A., K.‐U. Eckardt, L. Tannahill, and C. Bauer. Regulation of epo production. Contrib. Nephrol. 66: 1–16, 1988.
 157. Kurtz, A., W. Jelkmann, A. Pfuhl, K. Malmstrom, and C. Bauer. Erythropoietin production by fetal mouse liver cells in response to hypoxia and adenylate cyclase stimulation. Endocrinology 118: 567–572, 1986.
 158. Kurtz, A., W. Jelkmann, F. Sinowatz, and C. Bauer. Renal mesangial cell cultures as a model for study of erythropoietin production. Proc. Natl. Acad. Sci. USA 80: 4008–4011, 1983.
 159. Kurtz, A., J. Zapf, K.‐U. Eckardt, G. K. Clemons, E. R. Froesch, and C. Bauer. Insulin‐like growth factor I stimulates erythropoiesis in hypophysectomized rats. Proc. Natl. Acad. Sci. USA 85: 7825–7829, 1988.
 160. Lacombe, C., C. Chesne, and P. Varlet. Expression of the epo gene in the hypoxic mouse liver. Blood 72: 92a, 1988.
 161. Lai, P. H., R. Everett, F. F. Wang, T. Arakawa, and E. Goldwasser. Structural characterization of human epo. J. Biol. Chem. 261: 3116–3121, 1986.
 162. Lassen, N. A., O. Munck, and J. H. Thaysen. Oxygen consumption and sodium reabsorption in the kidney. Acta Physiol. Scand. 51: 371–384, 1961.
 163. Lechermann, B., and W. Jelkmann. Epo production in normoxic and hypoxic rats with increased blood oxygen affinity. Respir. Physiol. 60: 1–8, 1985.
 164. Leichtweiss, H.‐P., D. W. Lubbers, C. Weiss, N. Baumgartl, and W. Reschke. The oxygen supply of the rat kidney: measurements of intrarenal pO2. Pflugers Arch. 309: 328–349, 1969.
 165. Lemley, K. V., and W. Kriz. Anatomy of the renal interstitium. Kidney Int. 39: 370–381, 1991.
 166. Levy, M. N., and G. Sauceda. Diffusion of oxygen from arterial to venous segments of renal capillaries. Am. J. Physiol. 196: 1336–1339, 1959.
 167. Lin, F. K., C. H. Lin, P. H. Lai, K. Jeffrey, J. K. Browne, J. C. Egrie, R. Smalling, G. M. Fox, K. K. Chen, M. Castro, and S. Suggs. Monkey erythropoietin gene: cloning, expression and comparison with the human erythropoietin gene. Gene 44: 201–209, 1986.
 168. Lin, F. K., S. Suggs, C. H. Lin, J. K. Browne, R. Smalling, J. C. Egrie, K. K. Chen, G. M. Foox, F. Martin, Z. Stabinsky, S. M. Badrawi, P. H. Lai and E. Goldwasser. Cloning and expression of the human erythropoietin gene. Proc. Natl. Acad. Sci. USA 82: 7580–7584, 1985.
 169. Lowry, C. V., and R. S. Zitomer. ROX1 encodes a heme‐induced repression factor regulating ANB1 and CYC7 of Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 4651–4658, 1988.
 170. Maniatis, T., S. Goodbourn, and J. A. Fischer. Regulation of inducible and tissue‐specific gene expression. Science 236: 1237–1245, 1987.
 171. Maples, P. B., D. H. Smith, N. Beru, and E. Goldwasser. Identification of erythropoietin‐producing cells in mammalian tissues by in situ hybridization. Blood 68: 170, 1986.
 172. Martin, D. I. K., L. I. Zon, G. Mutter, and S. H. Orkin. Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages. Nature 344: 444–447, 1990.
 173. Mason‐Garcia, M., B. S. Beckman, J. W. Brookins, J. S. Powell, W. Lanham, S. Blaisdell, L. Keay, S.‐C. Li, and J. W. Fisher. Development of a new radioimmunoassay for erythropoietin using recombinant erythropoietin. Kidney Int. 38: 969–975, 1990.
 174. Mattaj, I. W. Splicing stories and poly (A) tales: an update on RNA processing and transport. Curr. Opin. Cell Biol. 2: 528–538, 1990.
 175. Maxwell, P. H., D. J. P. Ferguson, M. K. Osmond, C. W. Pugh, A. Heryet, B. G. Doe, M. H. Johnson, and P. J. Ratcliffe. Expression of a homologously recombined erythropoietin‐SV40 T antigen fusion gene in mouse liver: Evidence for erythropoietin production by Ito cells. Blood 84: 1823–1830, 1994.
 176. Maxwell, A. P., T. R. J. Lappin, C. F. Johnston, J. M. Bridges, and M. G. McGeown. Erythropoietin production in kidney tubular cells. Br. J. Haematol. 74: 535–539, 1990.
 177. Maxwell, P. H., C. W. Pugh, M. Osmond, A. Herryet, L. G. Nicholls, B. Doe, D. Ferguson, M. Johnson, and P. J. Ratcliffe. Identification of the renal erythropoietin producing cells using transgenic mice expressing SV40 large T antigen directed by erythropoietin control sequences (abstract) Kidney Int. 44: 1149–1162, 1993.
 178. Maxwell, P. H., C. W. Pugh, and P. J. Ratcliffe. Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: evidence for a widespread oxygen sensing system. Proc. Natl. Acad. Sci. USA 90: 2423–2427, 1993.
 179. McDonald, J. D., F. K. Lin, and E. Goldwasser. Cloning, sequencing and evolutionary analysis of the mouse erythropoietin gene. Mol. Cell. Biol. 6: 842–848, 1986.
 180. McGhee, J. D., and G. Felsenfeld. Nucleosome structure. Annu. Rev. Biochem. 49: 1115–1156, 1980.
 181. McGonigle, R. J. S., J. D. Wallin, R. K. Shadduck, and J. W. Fisher. Erythropoietin deficiency and inhibition of erythropoiesis in renal insufficiency. Kidney Int. 25: 437–444, 1984.
 182. McLeod, D. L., M. M. Shreeve, and A. A. Axelrad. Improved plasma culture system for production of erythrocytic colonies in vitro: quantitative assay method for CFU‐E. Blood 44: 517–534, 1974.
 183. Means, R. T., and S. B. Krantz. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood 80: 1639–1647, 1992.
 184. Meineke, A., and R. C. Crafts. Further observations on the mechanism by which androgens and growth hormone influence erythropoiesis. Ann. N.Y. Acad. Sci. 149: 298–307, 1968.
 185. Migliaccio, A. R., G. Migliaccio, A. D. 'Andrea, M. Baiocchi, S. Crotta, S. Nicolis, S. Ottolenghi, and J. W. Adamson. Response to erythropoietin in erythroid subclones of the factor‐dependent cell line 32D is determined by translocation of the erythropoietin receptor to the cell surface. Proc. Natl. Acad. Sci. USA 88: 11086–11090, 1991.
 186. Milledge, J. S., and P. M. Cotes. Serum erythropoietin in humans at high altitude and its relation to plasma renin. J. Appl. Physiol. 59: 360–364, 1985.
 187. Miller, C. B., R. J. Jones, S. Piantadosi, M. D. Abeldoff, and J. L. Spivak. Decreased erythropoietin response in patients with the anemia of cancer. N. Engl. J. Med. 322: 1689–1692, 1990.
 188. Miller, M. E., and D. Howard. Modulation of epo concentrations by manipulation of hypercarbia. Blood Cells 5: 389–403, 1979.
 189. Miller, M. E., M. Rorth, H. H. Parving, D. Howard, I. Reddington, C. R. Valeri, and F. Stohlman. pH effect on erythropoietin response to hypoxia. N. Engl. J. Med. 288: 706–710, 1973.
 190. Miura, O., A. D'Andrea, D. Kabat, and J. N. Ihle. Induction of tyrosine phosphorylation by the erythropoietin receptor correlates with mitogenesis. Mol. Cell. Biol. 11: 4895–4902, 1991.
 191. Miyake, T., K. H. Kung, and E. Goldwasser. Purification of human erythropoietin. J. Biol. Chem. 252: 5558–5564, 1977.
 192. Mueller, P. R., and B. Wold. In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246: 780–786, 1989.
 193. Mullner, E. W., and L. C. Kuhn. A stem‐loop structure in the 3′ untranslated region mediates iron‐dependent regulation of transferrin receptor mRNA stability in the cytoplasm. Cell 53: 815–825, 1988.
 194. Nakamura, Y., N. Komatsu, and H. Nakauchi. A truncated erythropoietin receptor that fails to prevent programmed cell death of erythroid cells. Science 257: 1138–1141, 1992.
 195. Narhi, L. O., T. Arakawa, K. H. Aoki, R. Elmore, M. F. Rohde, T. Boone, and T. W. Strickland. The effect of carbohydrate on the structure and stability of erythropoietin. J. Biol. Chem. 266: 23022–23026, 1991.
 196. Necas, E., and E. B. Thorling. Unresponsiveness of erythropoietin‐producing cells to cyanide. Am. J. Physiol. 222: 1187–1190, 1972.
 197. O'Malley, B. W. Steroid hormone action in eucaryotic cells. J. Clin. Invest. 74: 307–312, 1984.
 198. Pabo, C. O., and R. T. Sauer. Transcription factors: Structural families and principles of DNA recognition. Annu. Rev. Biochem. 61: 1053–1095, 1992.
 199. Pagel, H., W. Jelkmann, and C. Weiss. A comparison of the effects of renal artery constriction and anemia on the production of erythropoietin. Pflugers Arch. 413: 62–66, 1988.
 200. Pagel, H., W. Jelkmann, and C. Weiss. Isolated serum‐free perfused rat kidneys release immunoreactive erythropoietin in response to hypoxia. Endocrinology 128: 2633–2638, 1991.
 201. Paul, P., S. A. Rothmann, J. T. McMahon, and A. S. Gordon. Epo secretion by isolated rat Kupffer cells. Exp. Hematol. 12: 825–830, 1984.
 202. Peschle, C., C. Cillo, I. A. Pappaport, M. C. Magli, G. Migliaccio, F. Pizzella, and G. Mastroberardino. Early fluctuations of BFU‐E pool size after transfusion or erythropoietin treatment. Exp. Hematol. 7: 87–93, 1979.
 203. Peschle, C., G. Marone, A. Genovese, C. Cillo, C. Magli, and M. Condorelli. Erythropoietin production by the liver in fetal‐neonatal life. Life Sci. 17: 1325–1330, 1975.
 204. Peschle, C., I. A. Rappaport, M. C. Magli, G. Marone, F. Lettieri, C. Cillo, and A. S. Gordon. Role of the hypophysis in erythropoietin production during hypoxia. Blood 51: 1117–1124, 1978.
 205. Peschle, C., I. A. Rappaport, G. F. Sasso, A. S. Gordon, and M. Condorelli. Mechanism of growth hormone (GH) action on erythropoiesis. Endocrinology 91: 511–517, 1972.
 206. Peschle, C., G. F. Sasso, G. Mastroberardino, and M. Condorelli. The mechanism of endocrine influences on erythropoiesis. J. Lab. Clin. Med. 78: 20–29, 1971.
 207. Peschle, C., E. D. Zanjani, A. S. Gidari, W. D. McLaurin, and A. S. Gordon. Mechanism of thyroxine action on erythropoiesis. Endocrinology 89: 609–612, 1971.
 208. Pevny, L., M. C. Simon, E. Robertson, W. H. Klein, S. F. Tsai, V. D'Agati, S. H. Orkin, and F. Costantini. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA‐1. Nature 349: 257–260, 1991.
 209. Pfeifer, K., K.‐S. Kim, S. Kogan, and L. Guarente. Functional dissection and sequence of yeast HAP1 activator. Cell 56: 291–301, 1989.
 210. Piroso, E., A. J. Erslev, and J. Caro. Inappropriate increase in erythropoietin titers during chemotherapy. Am. J. Hematol. 32: 248–254, 1989.
 211. Piroso, E., A. J. Erslev, K. K. Flaharty, and J. Caro. Erythropoieting life span in rats with hypoplastic and hyperplastic bone marrows. Am. J. Hematol. 36: 105–110, 1991.
 212. Plzak, L., W. Fried, L. O. Jacobson, and W. F. Bethard. Demonstration of stimulation of erythropoiesis by plasma from anemic rats using Fe59. J. Lab. Clin. Med. 46: 671–678, 1955.
 213. Powell, J. S., K. L. Berkner, R. V. Lebo, and J. W. Adamson. Human erythropoietin gene: high level expression in stably transfected mammalian cells and chromosome localization. Proc. Natl. Acad. Sci. USA 83: 6465–6469, 1986.
 214. Ptashne, M. and A. A. F. Gann. Activators and targets. Nature 346: 329–331, 1990.
 215. Pugh, C., C. C. Tan, R. W. Jones, and P. J. Ratcliffe. Functional analysis of an oxygen‐related transcriptional enhancer lying 3′ to the mouse Epo gene. Proc. Natl. Acad. Sci. USA 88: 10553–10557, 1991.
 216. Pugh, C. W., B. L. Ebert, O. Ebrahim, and P. J. Ratcliffe. Characterisation of functional domains within the mouse erythropoietin 3′ enhancer conveying oxygen‐regulated responses in different cell lines. Biochem. Biophys. Acta 1217: 297–306, 1994.
 217. Quelle, F. W., and D. M. Wojchowski. Proliferative action of erythropoietin is assocaited with rapid protein tyrosine phosphorylation in responsive B6SUt.EP cells. J. Biol. Chem. 266: 609–614, 1991.
 218. Ratcliffe, P. J., R. W. Jones, R. E. Phillips, L. G. Nicholls, and J. I. Bell. Oxygen‐dependent modulation of erythropoietin mRNA levels in isolated rat kidneys studied by RNAase protection. J. Exp. Med. 172: 657–660, 1990.
 219. Recny, M. A., H. A. Scoble, and Y. Kim. Structural characterization of natural human urinary and recombinant DNA‐derived erythropoietin. J. Biol. Chem. 262: 17156–17163, 1987.
 220. Rege, A. B., J. Brookins, and J. W. Fisher. A radioimmunoassay for erythropoietin: serum levels in normal human subjects and patients with hemopoietic disorders. J. Lab. Clin. Med. 100: 829–843, 1982.
 221. Reissmann, K. R., T. Nomura, R. W. Gunn, and F. Brosius. Erythropoietic response to anaemia or Epo injection in uraemic rats with or without functioning renal tissue. Blood 16: 1411–1422, 1960.
 222. Rennie, D. W., R. B. Reeves, and J. R. Pappenheimer. Oxygen tension in urine and its relation to intrarenal blood flow. Am. J. Physiol. 195: 120–132, 1958.
 223. Roesler, W. J., G. R. Vandenbark, and R. W. Hanson. Cyclic AMP and the induction of eukaryotic gene transcription. J. Biol. Chem. 263: 9063–9066, 1988.
 224. Romeo, P.‐H., M.‐H. Prandini, V. Joulin, V. Mignotte, M. Prenant, W. Vainchenker, G. Marguerie, and G. Uzan. Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature 344: 447–449, 1990.
 225. Rondon, I. J., L. A. MacMillan, B. S. Beckman, M. A. Goldberg, T. Schneider, H. F. Bunn, and J. S. Malter. Hypoxia upregulates the activity of a novel erythropoietin mRNA binding protein. J. Biol. Chem. 266: 16594–16598, 1991.
 226. Sasaki, H., B. Bothner, A. Dell, and M. Fukuda. Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J. Biol. Chem. 262: 12059–12076, 1987.
 227. Sawada, K., S. B. Krantz, C.‐H. Dai, S. T. Koury, S. T. Horn, A. D. Glick, and C. I. Civin. Purification of human blood burst‐forming units‐erythroid and demonstration of the evolution of erythropoietin receptors. J. Cell. Physiol. 142: 219–230, 1990.
 228. Sawada, K., S. B. Krantz, J. S. Kans, E. N. Dessypris, S. Sawyer, A. D. Glick, and C. I. Civin. Purification of human erythroid colony‐forming units and demonstration of specific binding of erythropoietin. J. Clin. Invest. 80: 357–366, 1987.
 229. Sawada, K., S. B. Krantz, S. T. Sawyer, and C. I. Civin. Quantitation of specific binding of erythropoietin to human erythroid colony‐forming cells. J. Cell Physiol. 137: 337–345, 1988.
 230. Sawyer, S. T., S. B. Krantz, and K. Sawada. Receptors for erythropoietin in mouse and human erythroid cells and placenta. Blood 74: 103–109, 1989.
 231. Scaro, J. L., M. A. Carrera, A. R. A. P. De Tombolesi, and C. Miranda. Carbon monoxide and erythropoietin production in mice. Acta Physiol. Pharmacol. Ther. Latinoam. 25: 204–210, 1975.
 232. Schatt, M. D., S. Rusconi, and W. Schaffner. A single DNA‐binding transcription factor is sufficient for activation from a distant enhancer and/or from a promoter position. EMBO J. 9: 481–487, 1990.
 233. Scholz, H., H.‐J. Schurek, K.‐U. Eckardt. A. Kurtz, and C. Bauer. Oxygen‐dependent erythropoietin production by the isolated perfused rat kidney. Pflugers Arch. 417: 1–6, 1991.
 234. Schooley, J. C., and L. J. Mahlmann. Erythropoietin production in the anephric rat. I. Relationship between nephrectomy, time of hypoxic exposure and erythropoietin production. Blood 39: 31–38, 1972.
 235. Schooley, J. C., and L. J. Mahlmann. Evidence for the de novo synthesis of erythropoietin in hypoxic rats. Blood 40: 662–670, 1972.
 236. Schooley, J. C., and L. J. Mahlmann. Hypoxia and the initiation of Epo production. Blood Cells 1: 429–448, 1975.
 237. Schurek, H. J., U. Jost, H. Baumgartl, H. Bertram, and U. Heckmann. Evidence for a preglomerular oxygen diffusion shunt in rat renal cortex. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F910–F915, 1990.
 238. Schuster, S. J., E. V. Badiavas, P. Costa‐Giomi, R. Weinmann, A. J. Erslev, and J. Caro. Stimulation of erythropoietin gene transcription during hypoxia and cobalt exposure. Blood 73: 13–16, 1989.
 239. Schuster, S. J., S. T. Koury, M. Bohrer, S. Salceda, and J. Caro. Cellular sites of extrarenal and renal erythropoietin production in anemic rats. Br. J. Haematol. 81: 153–159, 1992.
 240. Schuster, S. J., J. H. Wilson, A. J. Erslev, and J. Caro. Physiologic regulation and tissue localization of renal erythropoietin messenger RNA. Blood 70: 316–318, 1987.
 241. Semenza, G. L., R. C. Dureza, M. D. Traystman, J. D. Gearhart, and S. E. Antonarakis. Human erythropoietin gene expression in transgenic mice: multiple transcription initiation sites and cis‐acting regulatory elements. Mol. Cell. Biol. 10: 930–938, 1990.
 242. Semenza, G. L., S. T. Loury, M. K. Nejfelt, J. D. Gearhart, and S. E. Antonarakis. Cell type‐specific and hypoxia‐inducible expression of the human epo gene in transgenic mice. Proc. Natl. Acad. Sci. USA 88: 8725–8729, 1991.
 243. Semenza, G. L., M. K. Nejfelt, S. M. Chi, and S. E. Antonarakis. Hypoxia‐inducible nuclear factors bind to an enhancer element located 3′ to the human epo gene. Proc. Natl. Acad. Sci. USA 88: 5680–5684, 1991.
 244. Semenza, G. L., M. D. Traystman, J. D. Gearhart, and S. E. Antonarakis. Polycythaemia in transgenic mice expressing the human erythropoietin gene. Proc. Natl. Acad. Sci. USA 86: 2301–2305, 1989.
 245. Semenza, G. L., and G. L. Wang. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12: 5447–5454, 1992.
 246. Sherwood, J. B., E. R. Burns, and D. Shouval. Stimulation of cAMP of erythropoietin secretion by an established human renal carcinoma cell line. Blood 69: 1053–1057, 1987.
 247. Sherwood, J. B., L. D. Carmichael, and E. Goldwasser. The heterogeneity of circulating human serum epo. Endocrinology 122: 1472–1477, 1988.
 248. Sherwood, J. B., and E. Goldwasser. A radioimmunoassay for epo. Blood 54: 885–893, 1979.
 249. Shoemaker, C. B., and L. D. Mitsock. Murine erythropoietin gene: cloning, expression and human gene homology. Mol. Cell Biol. 6: 849–858, 1986.
 250. Shyu, A.‐B., M. E. Greenberg, and J. G. Belasco. The c‐fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Dev. 3: 60–72, 1989.
 251. Silva, P., R. Hallac, K. Spokes, and F. H. Epstein. Relationship among gluconeogenesis, QO2 and Na+ transport in the perfused rat kidney. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 13): F508–F513, 1982.
 252. Singh, H., R. Sen, D. Baltimore, and P. A. Sharp. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 319: 154–158, 1986.
 253. Smale, S. T., and D. Baltimore. The ‘initiator’ as a transcription control element. Cell 57, 1989.
 254. Spiro, S., and J. R. Guest. FNR and its role in oxygen‐regulated gene expression in Escherichia coli. FEMS Microbiol. Rev. 75: 399–428, 1990.
 255. Spivak, J. L., D. C. Barnes, E. Fuchs, and T. C. Quinn. Serum immunoreactive erythropoietin in HIV‐infected patients. JAMA 261: 3104–3107, 1989.
 256. Spivak, J. L., and P. M. Cotes. The pharmacokinetics and metabolism of erythropoietin. In: Erythropoietin—Molecular, Cellular and Clinical Biology, edited by A. J. Erslev, J. W. Adamson, J. W. Eschbach, and C. G. Winearls. Baltimore and London: The Johns Hopkins University Press, 1991, p. 162–183.
 257. Spivak, J. L., and B. B. Hogans. The in vivo metabolism of recombinant human epo in the rat. Blood 73: 90–99, 1989.
 258. Steinberg, S. E., J. F. Garcia, G. R. Matzke, and J. Mladenovic. Erythropoietin kinetics in rats: generation and clearance. Blood 67: 646–649, 1986.
 259. Stohlman, F., and G. Brecher. Humoral regulation of erythropoiesis V. Relationship of plasma erythropoietin level to bone marrow activity. Proc. Soc. Exp. Biol. Med. 100: 40–43, 1959.
 260. Sytkowski, A. J., and K. A. Donahue. Immunochemical studies of human erythropoietin using site‐specific anti‐peptide antibodies. J. Biol. Chem. 262: 1161–1165, 1987.
 261. Syvertsen, G. R., and J. A. Harris. Epo production in dogs exposed to high altitude and carbon monoxide. Am. J. Physiol. 225: 293–299, 1973.
 262. Takeuchi, M., N. Inoue, T. W. Strickland, M. Kubota, M. Wada, R. Shimizu, S. Hoshi, H. Kozutsumi, S. Takasaki, and A. Kobata. Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 86: 7819–7822, 1989.
 263. Tan, C. C., K.‐U. Eckhardt, J. D. Firth, and P. J. Ratcliffe. Feedback modulation of renal and hepatic erythropoietin mRNA in response to graded anemia and hypoxia. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 32): F474–F481, 1992.
 264. Tan, C. C., K.‐U. Eckhardt, and P. J. Ratcliffe. Organ distribution of erythropoietin messenger RNA in normal and uremic rats. Kidney Int. 40: 69–76, 1991.
 265. Tan, C. C., and P. J. Ratcliffe. Effects of inhibitors of oxidative phosphorylation on erythropoietin mRNA in isolated perfused rat kidneys. Am. J. Physiol. 261 (Renal Fluid Electrolyte Physiol. 30): F982–F987, 1991.
 266. Tan, C. C., and P. J. Ratcliffe. Oxygen sensing and Epo mRNA production in isolated perfused rat kidneys. In: Pathophysiology and Pharmacology of Erythropoietin, edited by H. Pagel, C. Weiss, and W. Jelkmann. Berlin, Heidelberg: Springer‐Verlag, 1992a, p. 57–68.
 267. Tan, C. C., and P. J. Ratcliffe. Rapid oxygen‐dependent changes in Epo mRNA in isolated perfused rat kidneys: evidence against mediation by cAMP. Kidney Int. 41: 1581–1587, 1992.
 268. Trainor, C. D., T. Evans, G. Felsenfeld, and M. S. Boguski. Structure and evolution of a human erythroid transcription factor. Nature 343: 92–96, 1990.
 269. Tsai, S.‐F., D. I. K. Martin, L. I. Zon, A. D. D'Andrea, G. G. Wong, and S. H. Orkin. Cloning of cDNA for the major DNA‐binding protein of the erythroid lineage through expression in mammalian cells. Nature 339: 446–451, 1989.
 270. Tsuchiya, T., H. Ochiai, S. Imajob‐Ohmi, M. Ueda, T. Suda, M. Nakamura, and S. Kanegasaki. In vitro reconsitution of an erythropoietin gene transcription system using its 5'‐flanking sequence and a nuclear extract from anemic kidney. Biochem. Biophys. Res. Commun. 182: 137–143, 1992.
 271. Tsuda, E., G. Kawanishi, M. Ueda, S. Masuda, and R. Sasaki. The role of carbohydrate in recombinant human erythropoietin. Eur. J. Biochem. 188: 405–411, 1990.
 272. Ueno, M., I. Seferynska, B. Beckman, J. Brookins, J. Nakashima, and J. W. Fisher. Enhanced erythropoietin secretion in hepatoblastoma cells in response to hypoxia. Am. J. Physiol. 257 (Cell Physiol. 26): C743–749, 1989.
 273. Vogt, C., S. Pentz, and I. N. Rich. A role for the macrophage in normal hemopoiesis. III. In vitro and in vivo Epo gene expression in macrophages detected in situ hybridisation. Exp. Hematol. 17: 391–397, 1989.
 274. Walle, A. J., and W. Niedermayer. Are erythropoietin levels in uremic patients on hemodialysis dependent on the kidney disease and the duration of hemodialysis treatment? Proc. EDTA 16: 481–486, 1979.
 275. Wang, F., and W. Fried. Renal and extrarenal epo production male and female rats of various ages. J. Lab. Clin. Med. 79: 181–186, 1972.
 276. Wang, F. F., C. K. H. Kung, and E. Goldwasser. Some chemical properties of human epo. Endocrinology 116: 2286–2292, 1985.
 277. Weintraub, H. Assembly and propagation of repressed and derepressed chromosomal states. Cell 42: 705–711, 1985.
 278. Westerveld, A., R. P. L. S. Visser, P. M. Khan, and D. Bootsma. Loss of human genetic markers in man‐Chinese hamster somatic cell hybrids. Nature [New Biol.] 234: 20–24, 1971.
 279. Winkelmann, J. C., L. A. Penny, L. L. Deaven, B. G. Forget, and R. B. Jenkins. The gene for the human erythropoietin receptor: analysis of the coding sequence and assignment to chromosome 19p. Blood 76: 24–30, 1990.
 280. Wognum, A. W., P. M. Lansdorp, A. C. Eaves, and G. Krystal. An enzyme‐linked immunosorbent assay for erythropoietin using monoclonal antibodies, tetrameric immune complexes, and substrate amplification. Blood 74: 622–629, 1989.
 281. Yoshimura, A., T. Zimmers, D. Neumann, G. Longmore, Y. Yoshimura, and H. F. Lodish. Mutations in the Trp‐Ser‐X‐Trp‐Ser motif of the erythropoietin receptor abolish processing, ligand binding and activation of the receptor. J. Biol. Chem. 267: 11619–11625, 1992.
 282. Zanjani, E. D., J. I. Acensao, P. B. McGlave, M. Banisadre, and R. C. Ash. Studies on the liver to kidney switch of Epo production. Clin. Invest. 67: 1183–1188, 1981.
 283. Zanjani, E. D., E. N. Peterson, A. S. Gordon, and L. R. Wasserman. Erythropoietin production in the fetus: role of the kidney and maternal anemia. J. Lab Clin. Med. 83: 281–287, 1974.
 284. Zanjani, E. D., J. Poster, H. Burlington, L. I. Mann, and L. R. Wasserman. Liver as the primary site of epo formation in the fetus. J. Lab. Clin. Med. 89: 640–644, 1977.
 285. Zenke, M., T. Grundstrom, H. Matthes, M. Wintzerith, C. Schatz, A. Wildeman, and P. Chambon. Multiple sequence motifs are involved in SV40 enhancer function. EMBO J. 5: 387–397, 1986.
 286. Zitomer, R. S., and C. V. Lowry. Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol. Rev. 56: 1–11, 1992.
 287. Zon, L. I., H. Youssoufian, C. Mather, H. F. Lodish, and S. H. Orkin. Activation of the erythropoietin receptor promoter by transcription factor GATA‐1. Proc. Natl. Acad. Sci. USA 88: 10638–10641, 1991.
 288. Zucali, J. R., V. Stevens, and E. A. Mirand. In vitro production of erythropoietin by mouse fetal liver. Blood 46: 85–90, 1975.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Peter J. Ratcliffe, Kai‐Uwe Eckardt, Christian Bauer. Hypoxia, Erythropoietin Gene Expression, and Erythropoiesis. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 1125-1153. First published in print 1996. doi: 10.1002/cphy.cp040249