Comprehensive Physiology Wiley Online Library

Electrophysiology of the intestinal musculature

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Properties of Single Intestinal Smooth Muscle Cells
1.1 Complement of Ionic Channels
1.2 Passive Electrical Properties
1.3 Active Properties
1.4 Responses to Receptor Activation
2 Electrical and Mechanical Activity in Vitro of Intestinal Smooth Muscle Tissues
2.1 Active and Passive Electrical Properties
2.2 Nerve‐Evoked Responses: Excitatory and Inhibitory Junction Potentials
2.3 Receptor‐Evoked Responses
3 Summary
Figure 1. Figure 1.

Electrophysiological properties of single isolated smooth muscle cell from longitudinal muscle of rabbit jejunum. Recordings of membrane potential show responses to rectangular depolarizing and hyperpolarizing current pulses (A, B); recordings of membrane current under voltage clamp (C) were obtained with a low‐resistance patch pipette filled with high‐K+ buffered‐Ca2+ solution. A: when bathed in normal solution (2.5 mM Ca2+, 6 mM K+, 137 mM Na+), the cell discharges action potentials on depolarization and an inward‐current pulse evokes an electrotonic potential; from this, cell input resistance can be calculated. B: cell input resistance is increased and larger action potentials are discharged in Ca2+‐free 20 mM Ba2+ solution. After the action potential, repolarization was to a less negative potential. C: under voltage clamp, stepping from a holding potential of −50 mV to 0 mV potential evoked, after an initial upward capacitive transient, an initial net inward current followed by outward current in normal solution (upper recording). A similar protocol in Ca2+‐free 20 mM Ba2+ solution produced a larger initial peak of inward current and outward current was very small (lower recording). Both Ba2+ and Ca2+ can carry the inward current, but in Ca2+‐free, Ba2+‐containing solution, outward K+ current or repolarization is attenuated; input resistance is increased.

From Bolton et al. 77
Figure 2. Figure 2.

Action of acetylcholine (Ach) on transient outward current evoked by a depolarizing command pulse under voltage clamp in single isolated cell from longitudinal muscle layer of rabbit jejunum. Recording was done with a low‐resistance pipette containing a high‐K+ solution in which Ca2+ was minimally buffered with ethylene glycol‐bis(β‐aminoeth‐ylether)‐N,N'‐tetraacetic acid (EGTA) (0.08 mM). A: cell was held at −50 mV and stepped to zero potential (lower trace) for 100 ms every 10 s. Initial inward current, unaffected by iontophoretic application of Ach for 1 s, is followed by outward current (upper trace); this has an initial transient component resembling a single spontaneous transient outward current (STOC) (see Fig. 2) followed by a more sustained component; Ach application abolishes this transient outward current, which recovers by 61 s. B: expanded traces of averaged records (cont, control, 3 traces; Ach, 2 traces) to show effect of Ach application (left) and net effect of Ach (right) obtained by subtraction.

From Benham and Bolton 34
Figure 3. Figure 3.

Action of acetylcholine (Ach) on a single cell from longitudinal muscle layer of rabbit jejunum. Recording of membrane potential (upper trace) or membrane current (lower trace) was made with a pipette containing a high‐K+, buffered‐Ca2+ solution. Membrane potential responses to alternate depolarizing and hyperpolarizing current pulses (middle trace) were evoked. At bar, a 2‐s pulse of Ach was iontophoretically applied; this depolarized the cell, and electrotonic potentials at this time became very small; they recovered as cell repolarized. In lower trace, cell was held at −40 mV under voltage clamp (potential trace not shown). Application of 10−5 M Ach in bathing solution evoked an inward current that reached a peak and then declined despite continuing Ach presence. Holding current also showed spontaneous transient outward currents (STOCs) that were abolished by applying Ach. Results suggest that Ach opens additional ionic channels in membrane (note increased current noise in lower trace) that allow inward current to pass, depolarizing the cell. At the same time, Ca2+ stores are discharged and STOCs abolished.

From Benham et al. 42. Reprinted by permission from Nature, copyright 1985, Macmillan Journals Limited


Figure 1.

Electrophysiological properties of single isolated smooth muscle cell from longitudinal muscle of rabbit jejunum. Recordings of membrane potential show responses to rectangular depolarizing and hyperpolarizing current pulses (A, B); recordings of membrane current under voltage clamp (C) were obtained with a low‐resistance patch pipette filled with high‐K+ buffered‐Ca2+ solution. A: when bathed in normal solution (2.5 mM Ca2+, 6 mM K+, 137 mM Na+), the cell discharges action potentials on depolarization and an inward‐current pulse evokes an electrotonic potential; from this, cell input resistance can be calculated. B: cell input resistance is increased and larger action potentials are discharged in Ca2+‐free 20 mM Ba2+ solution. After the action potential, repolarization was to a less negative potential. C: under voltage clamp, stepping from a holding potential of −50 mV to 0 mV potential evoked, after an initial upward capacitive transient, an initial net inward current followed by outward current in normal solution (upper recording). A similar protocol in Ca2+‐free 20 mM Ba2+ solution produced a larger initial peak of inward current and outward current was very small (lower recording). Both Ba2+ and Ca2+ can carry the inward current, but in Ca2+‐free, Ba2+‐containing solution, outward K+ current or repolarization is attenuated; input resistance is increased.

From Bolton et al. 77


Figure 2.

Action of acetylcholine (Ach) on transient outward current evoked by a depolarizing command pulse under voltage clamp in single isolated cell from longitudinal muscle layer of rabbit jejunum. Recording was done with a low‐resistance pipette containing a high‐K+ solution in which Ca2+ was minimally buffered with ethylene glycol‐bis(β‐aminoeth‐ylether)‐N,N'‐tetraacetic acid (EGTA) (0.08 mM). A: cell was held at −50 mV and stepped to zero potential (lower trace) for 100 ms every 10 s. Initial inward current, unaffected by iontophoretic application of Ach for 1 s, is followed by outward current (upper trace); this has an initial transient component resembling a single spontaneous transient outward current (STOC) (see Fig. 2) followed by a more sustained component; Ach application abolishes this transient outward current, which recovers by 61 s. B: expanded traces of averaged records (cont, control, 3 traces; Ach, 2 traces) to show effect of Ach application (left) and net effect of Ach (right) obtained by subtraction.

From Benham and Bolton 34


Figure 3.

Action of acetylcholine (Ach) on a single cell from longitudinal muscle layer of rabbit jejunum. Recording of membrane potential (upper trace) or membrane current (lower trace) was made with a pipette containing a high‐K+, buffered‐Ca2+ solution. Membrane potential responses to alternate depolarizing and hyperpolarizing current pulses (middle trace) were evoked. At bar, a 2‐s pulse of Ach was iontophoretically applied; this depolarized the cell, and electrotonic potentials at this time became very small; they recovered as cell repolarized. In lower trace, cell was held at −40 mV under voltage clamp (potential trace not shown). Application of 10−5 M Ach in bathing solution evoked an inward current that reached a peak and then declined despite continuing Ach presence. Holding current also showed spontaneous transient outward currents (STOCs) that were abolished by applying Ach. Results suggest that Ach opens additional ionic channels in membrane (note increased current noise in lower trace) that allow inward current to pass, depolarizing the cell. At the same time, Ca2+ stores are discharged and STOCs abolished.

From Benham et al. 42. Reprinted by permission from Nature, copyright 1985, Macmillan Journals Limited
References
 1. Aaronson, P. I., C. D. Benham, T. B. Bolton, P. Hess, R. J. Lang, and R. W. Tsien. Two types of single‐channel and whole‐cell calcium or barium currents in single smooth muscle cells of rabbit ear artery and the effects or noradrenaline (Abstract). J. Physiol. Lond. 377: 36P, 1986.
 2. Aaronson, P. L., T. B. Bolton, and R. J. Lang. Membrane currents in freshly dispersed single smooth muscle cells of the rabbit ear artery (Abstract). J. Physiol. Lond. 369: 108P, 1985.
 3. Abdel‐Latif, A. A. Effects of neurotransmitters and other pharmacological agents on 32P‐Pi incorporation into phospholipids of the iris muscle of the rabbit. Life Sci. 15: 961–973, 1974.
 4. Abdel‐Latif, A. A., R. A. Akhtar, and J. N. Hawthorne. Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P] phosphate. Biochem. J. 162: 61–73, 1977.
 5. Abdel‐Latif, A. A., M. P. Owen, and J. L. Matheny. Adrenergic and cholinergic stimulation of 32P‐labelling of phospholipids in rabbit iris muscle. Biochem. Pharmacol. 25: 461–469, 1976.
 6. Adelstein, R. S., M. A. Conti, D. R. Hathaway, and C. B. Klee. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3′,5′‐monophosphate‐dependent protein kinase. J. Biol. Chem. 253: 8347–8350, 1978.
 7. Akhtar, R. A., and A. A. Abdel‐Latif. Carbachol causes rapid phosphodiesteratic cleavage of phosphatidylinositol 4,5‐bisphosphate and accumulation of inositol phosphates in rabbit iris smooth muscle; prazosin inhibits noradrenaline‐ and ionophore A23187‐stimulated accumulation of inositol phosphates. Biochem. J. 224: 291–300, 1984.
 8. Alvarez, W. C., and L. Mahoney. The myogenic nature of the rhythmic contractions of the intestine. Am. J. Physiol. 59: 421–430, 1922.
 9. Angel, F., A. L. W. Go, and J. H. Szurszewski. Innervation of the muscularis mucosae of canine proximal colon. J. Physiol. Lond. 357: 93–108, 1984.
 10. Baba, K., M. Kawanishi, T. Satake, and T. Tomita. Effects of verapamil on the contractions of guinea‐pig tracheal muscle induced by Ca, Sr and Ba. Br. J. Pharmacol. 84: 203–211, 1985.
 11. Baba, K., T. Satake, K. Takagi, and T. Tomita. Effects of verapamil on the response of the guinea‐pig tracheal muscle to carbachol. Br. J. Pharmacol. 88: 441–449, 1986.
 12. Baer, H. P., and R. Frew. Relaxation of guinea‐pig fundic strip by adenosine, adenosine triphosphate, and electrical stimulation: lack of antagonism by theophylline or ATP treatment. Br. J. Pharmacol. 67: 293–299, 1979.
 13. Bagby, R. M., A. M. Young, R. S. Dotson, B. A. Fisher, and K. Kinnon. Contraction of single smooth muscle cells from Bufo marinus stomach. Nature Lond. 234: 351–352, 1971.
 14. Baidan, L. V., S. M. Tishkin, and M. F. Shuba. Possible mechanism of adrenergic and noradrenergic inhibition in intestinal smooth muscle cells. Pfluegers Arch. 403: 429–432, 1985.
 15. Baraban, J. M., R. J. Gould, S. J. Peroutka, and S. H. Snyder. Phorbol ester effects on neurotransmission: interaction with neurotransmitters and calcium in smooth muscle. Proc. Natl. Acad. Sci. USA 82: 604–607, 1985.
 16. Baron, C. B., M. Cunningham, J. F. Strauss, and R. F. Coburn. Pharmacomechanical coupling in smooth muscle may involve phosphatidylinositol metabolism. Proc. Natl. Acad. Sci. USA 81: 6899–6903, 1984.
 17. Barr, L., and M. M. Dewey. Electrotonus and electrical transmission in smooth muscle. In: Handbook of Physiology. Alimentary Canal. Motility, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. IV, chapt. 85, p. 1733–1742.
 18. Barr, L., M. M. Dewey, and W. Berger. Action potentials can propagate along small strands of smooth muscle. Pfluegers Arch. 380: 165–170, 1979.
 19. Bartho, L., P. Holzer, F. Lembeck, and J. Szolcsanyi. Evidence that the contractile response of the guinea‐pig ileum to capsaicin is due to release of substance P. J. Physiol. Lond. 332: 157–167, 1982.
 20. Bartho, L., and J. Szolcsanyi. The site of action of capsaicin on the guinea‐pig isolated ileum. Naunyn‐Schmiedeberg's Arch. Pharmacol. 305: 75–81, 1978.
 21. Bass, P. In vivo electrical activity of the small bowel. In: Handbook of Physiology. Alimentary Canal. Motility, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. IV, chapt. 100, p. 2051–2074.
 22. Batty, I. R., S. R. Nahorski, and R. F. Irvine. Rapid formation of inositol 1,3,4,5‐tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem. J. 232: 211–215, 1985.
 23. Bauer, V. Distribution and types of adrenoceptors in the guinea‐pig ileum: the action of α‐ and β‐adrenoceptor agonists. Br. J. Pharmacol. 72: 201–210, 1981.
 24. Bauer, V. Inhibition of guinea‐pig taenia coli mediated by α‐1, β‐2 adrenoreceptors and ATP‐receptor activation. Gen. Physiol. Biophys. 1: 175–188, 1982.
 25. Bauer, V. Distribution and types of adrenoceptors in the guinea‐pig ileum: the action of α‐ and β‐adrenoceptor blocking agents. Br. J. Pharmacol. 76: 569–578, 1982.
 26. Bauer, V. Effects of 3,4‐diaminopyridine and tetraethylammonium on the pre‐ and post‐junctional α‐adrenoceptor mediated inhibitory actions of noradrenaline in the guinea‐pig ileum. Br. J. Pharmacol. 85: 171–177, 1985.
 27. Bauer, V., and H. Kuriyama. Homogenous and non‐homogenous distribution of inhibitory and excitatory adrenoceptors in the longitudinal muscle of the guinea‐pig ileum. Br. J. Pharmacol. 76: 603–611, 1982.
 28. Bauer, V., and H. Kuriyama. Evidence for non‐cholinergic, non‐adrenergic transmission in the guinea‐pig ileum. J. Physiol. Lond. 330: 95–110, 1982.
 29. Bauer, V., and H. Kuriyama. The nature of non‐cholinergic, non‐adrenergic transmission in longitudinal and circular muscles of the guinea‐pig ileum. J. Physiol. Lond. 332: 375–391, 1982.
 30. Bauer, V., and J. Rusko. TEA‐sensitive potassium conductance changes induced by α1‐adrenoceptor and ATP‐receptor activation in guinea‐pig taenia coli. Gen. Physiol. Biophys. 2: 89–102, 1982.
 31. Beani, L., C. Bianchi, and A. Crema. Vagal non‐adrenergic inhibition of guinea‐pig stomach. J. Physiol. Lond. 217: 259–279, 1971.
 32. Benham, C. D., and T. B. Bolton. Patch‐clamp studies of slow potential‐sensitive potassium channels in longitudinal smooth muscle cells of rabbit jejunum. J. Physiol. Lond. 340: 469–486, 1983.
 33. Benham, C. D., and T. B. Bolton. Comparison of the excitatory actions of substance P. carbachol, histamine and prostaglandin F2α on the smooth muscle of the taenia of the guinea‐pig caecum. Br. J. Pharmacol. 80: 409–420, 1983.
 34. Benham, C. D., and T. B. Bolton. Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of rabbit. J. Physiol. Lond. 381: 385–406, 1986.
 35. Benham, C. D., T. B. Bolton, J. S. Denbigh, and R. J. Lang. Inward rectification in freshly‐isolated single smooth muscle cells of the rabbit jejunum. J. Physiol. Lond. 383: 461–476, 1987.
 36. Benham, C. D., T. B. Bolton, and K. Kitamura. Single channel currents in collagenase dispersed smooth muscle cells of adult guinea‐pigs and rabbits (Abstract). J. Physiol. Lond. 328: 54P–55P, 1982.
 37. Benham, C. D., T. B. Bolton, and K. Kitamura. Outward and inward single channel currents in collagenase dispersed smooth muscle cells of adult rabbits (Abstract). J. Physiol. Lond. 334: 113P, 1983.
 38. Benham, C. D., T. B. Bolton, and R. J. Lang. Patch voltage‐clamp technique applied to collagenase‐dispersed smooth muscle cells of rabbit jejunum (Abstract). J. Physiol. Lond. 340: 4P, 1983.
 39. Benham, C. D., T. B. Bolton, and R. J. Lang. Patch‐clamp studies of the action of K+‐channel blockers on two types of K+ channel in dispersed smooth muscle cells of rabbit jejunum (Abstract). J. Physiol. Lond. 341: 23P–24P, 1983.
 40. Benham, C. D., T. B. Bolton, and R. J. Lang. Membrane potential and voltage‐clamp recording from single smooth muscle cells of rabbit jejunum (Abstract). J. Physiol. Lond. 353: 67P, 1984.
 41. Benham, C. D., T. B. Bolton, and R. J. Lang. The action of acetylcholine on single cells of longitudinal smooth muscle of rabbit jejunum studied by whole cell voltage‐clamp (Abstract). J. Physiol. Lond. 358: 84P, 1985.
 42. Benham, C. D., T. B. Bolton, and R. J. Lang. Acetylcholine activates an inward current in single mammalian smooth muscle cells. Nature Lond. 316: 345–346, 1985.
 43. Benham, C. D., T. B. Bolton, R. J. Lang, and T. Takewaki. The selectivity to monovalent cations of single Ca2+‐activated K+ channels in visceral and vascular smooth muscle cell membranes from guinea‐pigs and rabbits (Abstract). J. Physiol. Lond. 357: 54P, 1984.
 44. Benham, C. D., T. B. Bolton, R. J. Lang, and T. Takewaki. Calcium‐dependent K+ channels in dispersed intestinal and arterial smooth muscle cells of guinea pigs and rabbits studied by the patch‐clamp technique (Abstract). J. Physiol. Lond. 350: 51P, 1984.
 45. Benham, C. D., T. B. Bolton, R. J. Lang, and T. Takewaki. The mechanism of action of Ba2+ and TEA on single Ca2+‐activated K+‐channels in arterial and intestinal smooth muscle cell membranes. Pfluegers Arch. 403: 120–127, 1985.
 46. Benham, C. D., T. B. Bolton, R. J. Lang, and T. Takewaki. Calcium‐activated potassium channels in single smooth muscle cells of rabbit jejunum and guinea‐pig mesenteric artery. J. Physiol. Lond. 371: 45–67, 1986.
 47. Bennett, M. R. Transmission from intramural excitatory nerves to the smooth muscle cells of the guinea‐pig taenia coli. J. Physiol. Lond. 185: 132–147, 1966.
 48. Bennett, M. R. Rebound excitation of the smooth muscle cells of the guinea‐pig taenia coli after stimulation of intramural inhibitory nerves. J. Physiol. Lond. 185: 124–131, 1966.
 49. Bennett, M. R., G. Burnstock, and M. E. Holman. Transmission from perivascular inhibitory nerves to the smooth muscle of the guinea‐pig taenia coli. J. Physiol. Lond. 182: 527–540, 1966.
 50. Bennett, M. R., G. Burnstock, and M. E. Holman. Transmission from intramural inhibitory nerves to the smooth muscle of the guinea‐pig taenia coli. J. Physiol. Lond. 182: 541–558, 1966.
 51. Berger, W., R. Grygorcyk, and W. Schwarz. Single K+ channels in membrane evaginations of smooth muscle cells. Pfluegers Arch. 402: 18–23, 1984.
 52. Berridge, M. J., and R. F. Irvine. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature Lond. 312: 315–321, 1984.
 53. Best, L., and T. B. Bolton. Depolarisation of guinea‐pig visceral smooth muscle causes hydrolysis of inositol phospholipids. Naunyn‐Schmiedeberg's Arch. Pharmacol. 333: 78–82, 1986.
 54. Best, L., K. J. Brooks, and T. B. Bolton. Relationship between stimulated inositol lipid hydrolysis and contractility in guinea‐pig visceral longitudinal smooth muscle. Biochem. Pharmacol. 34: 2297–2301, 1985.
 55. Bingham Smith, J., L. Smith, and B. L. Higgins. Temperature and nucleotide dependence of calcium release by myoinositol 1,4,5‐trisphosphate in cultured vascular smooth muscle cells. J. Biol. Chem. 260: 14413–14416, 1985.
 56. Björkroth, U. Inhibition of smooth muscle contractions induced by capsaicin and electrical transmural stimulation by a substance P antagonist. Acta Physiol. Scand. Suppl. 515: 11–16, 1983.
 57. Bolton, T. B. On the nature of the oscillations of the membrane potential (slow waves) produced by acetylcholine or carbachol in intestinal smooth muscle. J. Physiol. Lond. 216: 403–418, 1971.
 58. Bolton, T. B. The effects of varying the concentrations of ions in the external solution on the oscillations of the membrane potential (slow waves) produced by carbachol in longitudinal ileal muscle. Pfluegers Arch. 335: 85–96, 1972.
 59. Bolton, T. B. The depolarising action of acetylcholine or carbachol in intestinal smooth muscle. J. Physiol. Lond. 220: 647–671, 1972.
 60. Bolton, T. B. Effects of electrogenic sodium pumping on the membrane potential of longitudinal smooth muscle from terminal ileum of guinea‐pig. J. Physiol. Lond. 228: 693–712, 1973.
 61. Bolton, T. B. The permeability change produced by acetylcholine in smooth muscle. In: Drug Receptors, edited by H. P. Rang. London: Macmillan, 1973, p. 87–104.
 62. Bolton, T. B. The role of electrogenic sodium pumping in the response of smooth muscle to acetylcholine. J. Physiol. Lond. 228: 713–731, 1973.
 63. Bolton, T. B. Effects of stimulating the acetylcholine receptor on the current‐voltage relationships of the smooth muscle membrane studied by voltage‐clamp of potential recorded by microelectrode. J. Physiol. Lond. 250: 175–202, 1975.
 64. Bolton, T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 59: 606–718, 1979.
 65. Bolton, T. B. Cholinergic mechanisms in smooth muscle. Br. Med. Bull. 35: 275–283, 1979.
 66. Bolton, T. B. Action of acetylcholine on the smooth muscle membrane. In: Smooth Muscle: An Assessment of Current Knowledge, edited by E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita. London: Arnold, 1981, p. 199–217.
 67. Bolton, T. B. Membrane mechanisms linking neurohumoral receptors to the effects they produce in vascular and other smooth muscle. In: The Role of Salt in Cardiovascular Hypertension, edited by M. J. Fregly and M. R. Kare. New York: Academic, 1982, p. 359–370.
 68. Bolton, T. B. Mechanism of action of transmitters and other substances on vascular and nonvascular smooth muscle. In: Vascular Neuroeffector Mechanisms, edited by J. A. Bevan, M. Fujiwara, R. A. Maxwell, K. Mohri, S. Shibata, and N. Toda. New York: Raven, 1983, p. 47–55.
 69. Bolton, T. B. Calcium exchange in smooth muscle. In: Control and Manipulation of Calcium Movement, edited by J. R. Parratt. New York: Raven, 1985, p. 147–168.
 70. Bolton, T. B. Calcium metabolism in vascular smooth muscle. Br. Med. Bull. 42: 421–429, 1986.
 71. Bolton, T. B., C. D. Benham, J. P. Clark, K. Kitamura, and R. J. Lang. Common mechanisms in the action of stimulants on smooth muscle. In: Advances in Pharmacology and Therapeutics, edited by H. Yoshida, Y. Hagihara, and S. Ebashi. Oxford, UK: Pergamon, 1982, p. 43–53.
 72. Bolton, T. B., and J. P. Clark. Effects of histamine, high potassium and carbachol on 42K efflux from longitudinal muscle of guinea‐pig intestine. J. Physiol. Lond. 320: 347–361, 1981.
 73. Bolton, T. B., and J. P. Clark. Actions of various muscarinic agonists on membrane potential, potassium‐efflux and contraction of longitudinal muscle of guinea‐pig intestine. Br. J. Pharmacol. 72: 319–334, 1981.
 74. Bolton, T. B., J. P. Clark, K. Kitamura, and R. J. Lang. Evidence that histamine and carbachol may open the same ion channels in longitudinal smooth muscle of guinea‐pig ileum. J. Physiol. Lond. 320: 363–379, 1981.
 75. Bolton, T. B., and K. Kitamura. Evidence that the ionic channels associated with the muscarinic receptor of smooth muscle may admit calcium. Br. J. Pharmacol. 78: 405–416, 1983.
 76. Bolton, T. B., R. J. Lang, C. D. Benham, T. Takewaki, and L. H. Clapp. Single channel currents in dispersed mammalian smooth muscle cells. Colloq. INSERM 124: 33–42, 1984.
 77. Bolton, T. B., R. J. Lang, T. Takewaki, and C. D. Benham. Patch and whole‐cell voltage clamp of single mammalian visceral and vascular smooth muscle cells. Experientia Basel 41: 887–894, 1985.
 78. Bolton, T. B., R. J. Lang, T. Takewaki, and L. H. Clapp. Autonomic receptors and cell membrane potential. In: Vasodilator Mechanisms, edited by P. M. Vanhoutte and S. F. S. Vatner. Basel: Karger, 1984, p. 108–114.
 79. Bolton, T. B., and W. A. Large. Are junction potentials essential? Dual mechanism of smooth muscle cell activation by transmitter released from autonomic nerves. Q. J. Exp. Physiol. Cogn. Med. Sci. 71: 1–28, 1986.
 80. Bolton, T. B., and R. S. E. Mallows. Effects of stimulants on phosphatidic acid levels in longitudinal smooth muscle from rabbit and guinea‐pig small intestine (Abstract). Br. J. Pharmacol. 87, Suppl.: 64P, 1986.
 81. Bortoff, A. Slow potential variations of small intestine. Am. J. Physiol. 201: 203–208, 1961.
 82. Bortoff, A. Electrical transmission of slow waves from longitudinal to circular intestinal muscle. Am. J. Physiol. 209: 1254–1260, 1965.
 83. Bortoff, A. Configuration of intestinal slow waves obtained by monopolar recording techniques. Am. J. Physiol. 213: 157–162, 1967.
 84. Bortoff, A. Digestion: motility. Annu. Rev. Physiol. 34: 261–290, 1972.
 85. Bortoff, A., and E. Ghalib. Temporal relationship between electrical and mechanical activity of longitudinal and circular muscle during intestinal peristalsis. Am. J. Dig. Dis. 17: 317–325, 1972.
 86. Bortoff, A., D. Michaels, and P. Mistretta. Dominance of longitudinal muscle in propagation of intestinal slow waves. Am. J. Physiol. 240 (Cell Physiol. 9): C135–C147, 1981.
 87. Bortoff, A., and F. Sachs. Electronic spread of slow waves in circular muscle of small intestine. Am. J. Physiol. 218: 576–581, 1970.
 88. Bowman, A., and A. H. Drummond. Cyclic GMP mediates neurogenic relaxation in the bovine retractor penis muscle. Br. J. Pharmacol. 81: 665–674, 1984.
 89. Bowman, W. C., and M. T. Hall. Inhibition of rabbit intestine mediated by α‐ and β‐adrenoceptors. Br. J. Pharmacol. 38: 399–415, 1970.
 90. Brading, A. F., and P. Sneddon. Evidence for multiple sources of calcium for activation of the contractile mechanism of guinea‐pig taenia coli on stimulation with carbachol. Br. J. Pharmacol. 70: 229–240, 1980.
 91. Bregestovski, P. D., V. L. Zamoyski, V. N. Serebryakov, A. Y. Toptygin, and A. C. Antonov. Calcium‐activated potassium channel with high conductance in cultured smooth muscle cell membrane of human aorta. Biol. Membr. 2: 487–498, 1985.
 92. Brock, T. A., S. E. Rittenhouse, C. W. Powers, L. S. Ekstein, M. A. Gimbrone, Jr., and R. W. Alexander. Phorbol ester and 1‐oleoyl‐2‐acetylglycerol inhibit angiotensin activation of phospholipase C in cultured vascular smooth muscle cells. J. Biol. Chem. 260: 14158–14162, 1985.
 93. Bülbring, E. Correlation between membrane potential, spike discharge and tension in smooth muscle. J. Physiol. Lond. 128: 200–221, 1955.
 94. Bülbring, E., and A. den Hertog. The action of isoprenaline on the smooth muscle of the guinea‐pig taenia coli. J. Physiol. Lond. 304: 277–296, 1980.
 95. Bülbring, E., and T. Tomita. Properties of the inhibitory potential of smooth muscle as observed in the response to field stimulation of the guinea‐pig taenia coli. J. Physiol. Lond. 189: 299–315, 1967.
 96. Bülbring, E., and T. Tomita. Suppression of spontaneous spike generation by catecholamines in the smooth muscle of the guinea‐pig taenia coli. Proc. R. Soc. Lond. B Biol. Sci. 172: 103–119, 1969.
 97. Bülbring, E., and T. Tomita. Increase of membrane conductance by adrenaline in the smooth muscle of guinea‐pig taenia coli. Proc. R. Soc. Lond. B Biol. Sci. 172: 89–102, 1969.
 98. Bülbring, E., and T. Tomita. Effect of Ca removal on the smooth muscle of the guinea‐pig taenia coli. J. Physiol. Lond. 136: 569–584, 1970.
 99. Bülbring, E., and T. Tomita. Calcium requirement for the α‐action of catecholamines on guinea‐pig taenia coli. Proc. R. Soc. Lond. B Biol. Sci. 197: 271–284, 1977.
 100. Burgen, A. S. V., and L. Spero. The action of acetylcholine and other drugs on the efflux of potassium and rubidium from smooth muscle of the guinea‐pig intestine. Br. J. Pharmacol. 34: 99–115, 1968.
 101. Burnstock, G. Purinergic transmission. In: Handbook of Psychopharmacology, edited by L. I. Iversen, S. D. Iversen, and S. H. Snyder. New York: Plenum, 1975, vol. 5, p. 131–194.
 102. Burnstock, G. Eurotransmitters and trophic factors in the autonomic nervous system. J. Physiol. Lond. 313: 1–35, 1980.
 103. Burnstock, G., G. Campbell, M. Bennett, and M. E. Holman. Inhibition of the smooth muscle of the taenia coli. Nature Lond. 200: 581–582, 1963.
 104. Burnstock, G., G. Campbell, and M. J. Rand. The inhibitory innervation of the taenia of the guinea‐pig caecum. J. Physiol. Lond. 182: 504–526, 1966.
 105. Burnstock, G., G. Campbell, D. Satchell, and A. Smyth. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non‐adrenergic inhibitory nerves in gut. Br. J. Pharmacol. 40: 668–688, 1970.
 106. Burnstock, G., T. Cocks, B. Paddle, and K. J. Stasz‐ewska‐Barcza. Evidence that prostaglandin is responsible for the “rebound contraction” following stimulation of nonadrenergic, non‐cholinergic (“purinergic”) inhibitory nerves. Eur. J. Pharmacol. 31: 360–362, 1975.
 107. Bywater, R. A. R., M. E. Holman, and G. S. Taylor. Atropine‐resistant depolarization of the guinea‐pig small intestine. J. Physiol. Lond. 316: 369–378, 1981.
 108. Bywater, R. A. R., and G. S. Taylor. Non‐cholinergic fast and slow post‐stimulus depolarization in the guinea‐pig ileum. J. Physiol. Lond. 340: 47–56, 1983.
 109. Bywater, R. A. R., and G. S. Taylor. Non‐cholinergic excitatory and inhibitory junction potentials in the circular smooth muscle of the guinea‐pig ileum. J. Physiol. Lond. 374: 153–164, 1986.
 110. Caffrey, J. M., N. C. Anderson, and J. W. Moore. Voltage clamp of single isolated smooth muscle cells (Abstract). Federation Proc. 39: 2077, 1980.
 111. Caffrey, J. M., I. R. Josephson, and A. M. Brown. Calcium channels in smooth muscle: dihydropyridine action (Abstract). Biophys. J. 47: 265a, 1985.
 112. Caffrey, J. M., I. R. Josephson, and A. M. Brown. Calcium channels of amphibian stomach and mammalian aorta smooth muscle cells. Biophys. J. 49: 1237–1242, 1986.
 113. Campbell, G. Nerve‐mediated excitation of the taenia of the guinea‐pig caecum. J. Physiol. Lond. 185: 148–159, 1966.
 114. Carsten, M. E., and J. D. Miller. Ca2+ release by inositol trisphosphate from Ca2+‐transporting microsomes derived from uterine sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 130: 1027–1031, 1985.
 115. Casteels, R., and L. Raeymaekers. The action of acetylcholine and catecholamines on an intracellular calcium store in the smooth muscle cells of the guinea‐pig taenia coli. J. Physiol. Lond. 294: 51–68, 1979.
 116. Cecchi, W., D. Wolff, O. Alvarez, and R. Latorre. Incorporation of Ca2+‐activated K+ channels from rabbit intestinal smooth muscle sarcolemma into planar bilayers (Abstract). Biophys. J. 45: 38a, 1984.
 117. Chahl, L. A. Effects of substance P antagonists on the atropine‐sensitive and atropine‐resistant responses of guinea‐pig ileum to substance P. Neurosci. Lett. 55: 35–40, 1985.
 118. Cheung, D. W., and E. E. Daniel. Comparative study of the smooth muscle layers of the rabbit duodenum. J. Physiol. Lond. 309: 13–27, 1980.
 119. Christensen, J., S. Anuras, and R. L. Hauser. Migrating spike bursts and electrical slow waves in the cat colon: effect of sectioning. Gastroenterology 66: 240–247, 1974.
 120. Code, C. F., J. H. Szurszewski, K. A. Kelly, and I. B. Smith. A concept of control of gastrointestinal motility. In: Handbook of Physiology. Alimentary Canal. Bile; Digestion; Ruminal Physiology, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. V, chapt. 139, p. 2881–2896.
 121. Colucci, W. S., M. A. Gimbrone, and R. W. Alexander. Phorbol diester modulates α‐adrenergic receptor‐coupled calcium efflux and α‐adrenergic receptor number in cultured vascular smooth muscle cells. Circ. Res. 58: 393–398, 1986.
 122. Connor, C., and C. L. Prosser. Comparison of ionic effects on longitudinal and circular muscle of cat jejunum. Am. J. Physiol. 226: 1212–1218, 1974.
 123. Connor, J. A., D. L. Kreulen, and C. L. Prosser. Relation between oxidative metabolism and slow rhythmic potentials in mammalian intestinal muscle. Proc. Natl. Acad. Sci. USA 73: 4239–4234, 1976.
 124. Connor, J. A., D. Kreulen, C. L. Prosser, and R. Weigel. Interaction between longitudinal and circular muscle in intestine of cat. J. Physiol. Lond. 273: 665–689, 1977.
 125. Connor, J. A., A. W. Mangel, and B. Nelson. Propagation and entrainment of slow waves in cat small intestine. Am. J. Physiol. 237 (Cell Physiol. 6): C237–C246, 1979.
 126. Connor, J. A., C. L. Prosser, and W. A. Weems. A study of pacemaker activity in intestinal smooth muscle. J. Physiol. Lond. 240: 671–701, 1974.
 127. Costa, M., and J. B. Furness. Nervous control of intestinal motility. In: Mediators and Drugs in Gastrointestinal Motility, edited by G. Bertaccini. Berlin: Springer‐Verlag, 1982, p. 279–382.
 128. Costa, M., J. B. Furness, and C. M. S. Humphreys. Apamin distinguishes two types of relaxation mediated by enteric nerves in the guinea‐pig gastrointestinal tract. Naunyn‐Schmiedeberg's Arch. Pharmacol. 332: 79–88, 1986.
 129. Costa, M., J. B. Furness, C. O. Pullin, and J. Bornstein. Substance P enteric neurons mediate non‐cholinergic transmission to the circular muscle of the guinea‐pig intestine. Naunyn‐Schmiedeberg's Arch. Pharmacol. 328: 446–453, 1985.
 130. Costa, M., and G. Gabella. Adrenergic innervation of the alimentary canal. Z. Zellforsch. Mikrosk. Anat. 122: 357–377, 1971.
 131. Crema, A., L. D'Angelo, G. M. Frigo, S. Lecchini, L. Onori, and M. Tonini. Effect of desensitization to adenosine 5′‐trisphosphate and adenosine on non‐adrenergic responses in the circular muscle of rabbit colon. Br. J. Pharmacol. 75: 311–318, 1982.
 132. Daniel, E. E. Pharmacology of the gastrointestinal tract. In: Handbook of Physiology. Alimentary Canal. Motility, edited by C. F. Code. Washington, DC: Am. Physiol. Soc, 1968, sect. 6, vol. IV, chapt. 108, p. 2267–2324.
 133. Daniel, E. E. Cellular calcium mobilization. J. Cardiovasc. Pharmacol. 6: S622–S629, 1984.
 134. Daniel, E. E., V. P. Daniel, G. Duchon, R. E. Garfield, M. Nichols, S. K. Malhotra, and M. Oki. Is the nexus necessary for cell‐to‐cell coupling of smooth muscle? J. Membr. Biol. 28: 207–239, 1976.
 135. Daniel, E. E., A. J. Honour, and A. Bogoch. Electrical activity of the longitudinal muscle of dog small intestine studied in vivo using microelectrodes. Am. J. Physiol. 198: 113–118, 1960.
 136. Daniel, E. E., and S. Sarna. The generation and conduction of activity in smooth muscle. Annu. Rev. Pharmacol. Toxicol. 18: 145–166, 1978.
 137. Danthuluri, N. R., and R. C. Deth. Phorbol ester‐induced contraction of arterial smooth muscle and inhibition of α‐adrenergic response. Biochem. Biophys. Res. Commun. 125: 1103–1109, 1984.
 138. Den Hertog, A. Calcium and the α‐action of catecholamines on guinea‐pig taenia caeci. J. Physiol. Lond. 316: 109–125, 1981.
 139. Den Hertog, A. Calcium and the action of adrenaline, adenosine triphosphate and carbachol on guinea‐pig taenia caeci. J. Physiol. Lond. 325: 423–439, 1982.
 140. Den Hertog, A., and J. Van Den Akker. The action of prostaglandin E‐2 on the smooth muscle cell of the guinea‐pig taenia coli. Eur. J. Pharmacol. 58: 225–234, 1979.
 141. Dewey, M. H., and L. Barr. Intercellular connection between smooth muscle cells: the nexus. Science Wash. DC 137: 670–672, 1962.
 142. Diamant, N. E., and A. Bortoff. Nature of the intestinal slow‐wave frequency gradient. Am. J. Physiol. 216: 301–307, 1969.
 143. Diamond, J., and T. G. Holmes. Effects of potassium chloride and smooth muscle relaxants on tension and cyclic nucleotide levels in rat myometrium. Can. J. Physiol. Pharmacol. 53: 1099–1107, 1975.
 144. Doyle, V. M., and U. T. Ruegg. Vasopressin induced production of inositol trisphosphate and calcium efflux in a smooth muscle cell line. Biochem. Biophys. Res. Commun. 131: 469–476, 1985.
 145. Droogmans, G., and G. Callewaert. Ca2+‐channel current and its modification by the dihydropyridine agonist BAY K 8644 in isolated smooth muscle cells. Pfluegers Arch. 406: 259–265, 1986.
 146. Durbin, R. P., and D. H. Jenkinson. The effect of carbachol on the permeability of depolarized smooth muscle to inorganic ions. J. Physiol. Lond. 157: 74–89, 1961.
 147. Elden, L., and A. Bortoff. Electrical coupling of longitudinal and circular intestinal muscle. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G618–G626, 1984.
 148. Ellis, S., and H. Rasmussen. The atropine‐fast nicotine stimulation of the rabbit's intestine and of the muscularis mucosae of the dog's intestine. J. Pharmacol. Exp. Ther. 103: 259–268, 1951.
 149. El‐Sharkawy, T. Y., and E. E. Daniel. Ionic mechanisms of intestinal electrical control activity. Am. J. Physiol. 229: 1287–1298, 1975.
 150. El‐Sharkawy, T. Y., and E. E. Daniel. Electrogenic sodium pumping in rabbit small intestinal smooth muscle. Am. J. Physiol. 229: 1277–1286, 1975.
 151. El‐Sharkawy, T. Y., and E. E. Daniel. Electrical activity of small intestinal smooth muscle and its temperature dependence. Am. J. Physiol. 229: 1268–1276, 1975.
 152. El‐Sharkawy, T. Y., and E. E. Daniel. The electrophysiological basis of the motor inhibitory effect of adrenaline on rabbit small intestinal smooth muscle. Can. J. Physiol. Pharmacol. 54: 446–456, 1976.
 153. El‐Sharkawy, T. Y., K. G. Morgan, and J. H. Szurszewski. Intracellular electrical activity of canine and human gastric smooth muscle. J. Physiol. Lond. 279: 291–307, 1978.
 154. Fay, F. S. Isometric contractile properties of single isolated smooth muscle cells. Nature Lond. 265: 553–556, 1977.
 155. Fay, F. S., and C. M. Delise. Contraction of isolated smooth muscle cells—structural changes. Proc. Natl. Acad. Sci. USA 70: 641–645, 1973.
 156. Fay, F. S., H. H. Shlevin, W. C. Granger, and S. R. Taylor. Aequorin luminescence during activation of single isolated smooth muscle cells. Nature Lond. 280: 506–508, 1979.
 157. Featherstone, R. L., P. Fosbraey, and I. K. M. Morton. A comparison of the effects of three substance P antagonists on tachykinin‐stimulated [3H]‐acetylcholine release in the guinea‐pig ileum. Br. J. Pharmacol. 87: 73–77, 1986.
 158. Forder, J., A. Scriabine, and H. Rasmussen. Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction. J. Pharmacol. Exp. Ther. 235: 267–273, 1985.
 159. Franco, R., M. Costa, and J. B. Furness. Evidence for the release of endogenous substance P from intestinal nerves. Naunyn‐Schmiedeberg's Arch. Pharmacol. 306: 195–201, 1979.
 160. Frandsen, E. F., G. A. Krishna, and S. I. Said. Vasoactive intestinal polypeptide promotes cyclic 3′,5′‐monophosphate accumulation in guinea‐pig trachea. Br. J. Pharmacol. 62: 367–369, 1978.
 161. Frigo, G. M., A. Torsoli, S. Lecchini, C. F. Falaschi, and A. Crema. Recent advances in the pharmacology of peristalsis. Arch. Int. Pharmacodyn. Ther. 196: 9–24, 1972.
 162. Fujisawa, K., and Y. Ito. The effects of substance P on smooth muscle cells and on neuro‐effector transmission in the guinea‐pig ileum. Br. J. Pharmacol. 76: 279–290, 1982.
 163. Furness, J. B. An electrophysiological study of the innervation of the smooth muscle of the colon. J. Physiol. Lond. 205: 549–562, 1969.
 164. Furness, J. B., and M. Costa. The adrenergic innervation of the gastrointestinal tract. Ergeb. Physiol. 69: 2–51, 1974.
 165. Furness, J. B., and M. Costa. Identification of gastrointestinal neurotransmitter. In: Mediators and Drugs in Gastrointestinal Motility, edited by G. Bertaccini. Berlin: Springer‐Verlag, 1982, p. 383–468.
 166. Gabella, G. Intercellular junctions between circular and longitudinal intestinal muscle layers. Z. Zellforsch. Mikrosk. Anat. 125: 191–199, 1972.
 167. Gabella, G. The force generated by a visceral smooth muscle. J. Physiol. Lond. 263: 199–213, 1976.
 168. Gabella, G. Innervation of the gastrointestinal tract. Int. Rev. Cytol. 59: 129–193, 1979.
 169. Gabella, G. Structural apparatus for force transmission in smooth muscles. Physiol. Rev. 64: 455–477, 1984.
 170. Gabella, G., and A. Yamey. Synthesis of collagen by smooth muscle in the hypertrophic intestine. Q. J. Exp. Physiol. Cogn. Med. Sci. 62: 257–264, 1977.
 171. Ganitkevich, V. Y., M. F. Shuba, and S. V. Smirnov. Potential‐dependent calcium inward current in single isolated smooth muscle cell of the guinea‐pig taenia coli. J. Physiol. Lond. 380: 1–16, 1986.
 172. Gill, D. L., T. Ueda, S. H. Chueh, and M. W. Noel. Ca2+ release from endoplasmic reticulum is mediated by guanine nucleotide regulatory mechanism. Nature Lond. 320: 461–464, 1986.
 173. Gillespie, J. S. Spontaneous mechanical and electrical activity of stretched and unstretched intestinal smooth muscle cells and their response to sympathetic nerve stimulation. J. Physiol. Lond. 162: 54–75, 1962.
 174. Gillespie, J. S. The electrical and mechanical responses of intestinal smooth muscle cells to stimulation of their extrinsic parasympathetic nerves. J. Physiol. Lond. 162: 76–92, 1962.
 175. Gillespie, J. S. Electrical activity in the colon. In: Handbook of Physiology. Alimentary Canal. Motility, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. IV, chapt. 102, p. 2093–2120.
 176. Gillespie, J. S., and B. R. MacKenna. The inhibitory action of the sympathetic nerves on the smooth muscle of the rabbit gut, its reversal by reserpine and restoration by catechol amines and by dopa. J. Physiol. Lond. 156: 17–34, 1961.
 177. Gintzler, A. R., and D. Hyde. A specific substance P antagonist attenuates non‐cholinergic electrically induced contractures of the guinea‐pig isolated ileum. Neurosci. Lett. 40: 75–79, 1983.
 178. Gintzler, A. R., and J. A. Scalisi. Effects of opioids on noncholinergic excitatory responses of the guinea‐pig isolated ileum: inhibition of release of enteric substance P. Br. J. Pharmacol. 75: 199–205, 1982.
 179. Godfraind, T. Calcium influx and receptor‐response coupling. In: New Perspectives on Calcium Antagonists, edited by G. B. Weiss. Baltimore, MD: Am. Physiol. Soc., 1981, p. 95–106.
 180. Gonella, J. Etude del' activité electrique de la couche musculaire longitudinale du duodenum de lapin. J. Physiol. Paris 62: 447–476, 1970.
 181. Gonella, J. Etude électromyographique des contractions segmentaires et peristaltiques du duodenum de lapin. Pfluegers Arch. 322: 217–234, 1971.
 182. Gonella, J. Modifications of electrical activity of the rabbit duodenum longitudinal muscle after contractions of the circular muscle. Am. J. Dig. Dis. 17: 327–332, 1972.
 183. Goodford, P. J., and K. Hermansen. Sodium and potassium movements in the unstriated muscle of the guinea‐pig taenia coli. J. Physiol. Lond. 158: 426–448, 1961.
 184. Grassby, P. F., and K. J. Broadley. Characterization of β‐adrenoceptors mediating relaxation of the guinea‐pig ileum. J. Pharm. Pharmacol. 36: 602–607, 1984.
 185. Griendling, K. K., S. E. Rittenhouse, T. A. Brock, L. S. Ekstein, M. A. Gimbrone, and R. W. Alexander. Sustained diacylglycerol formation from inositol phospholipids in angiotensin II‐stimulated vascular smooth muscle cells. J. Biol. Chem. 261: 5901–5906, 1986.
 186. Gunn, J. A., and S. W. F. Underhill. Experiments on the surviving mammalian intestine. Q. J. Physiol. 8: 275–296, 1914.
 187. Hall, J. M., and I. K. M. Morton. Different receptor systems in intestinal smooth muscle vary in their ability to translocate calcium (Abstract). Br. J. Pharmacol. 87: 206P, 1986.
 188. Hara, Y., M. Kubota, and J. H. Szurszewski. Electrophysiology of smooth muscle of the small intestine of some mammals. J. Physiol. Lond. 372: 501–520, 1986.
 189. Hara, Y., and J. H. Szurszewski. Effect of potassium and acetylcholine on canine intestinal smooth muscle. J. Physiol. Lond. 372: 521–537, 1986.
 190. Harry, J. Effect of cooling, local anaesthetic compounds, and botulinum toxin on the responses of and the acetylcholine output from the electrically stimulated isolated guinea‐pig ileum. Br. J. Pharmacol. 19: 42–55, 1962.
 191. Harry, J. The action of drugs on the circular muscle strip from the guinea‐pig isolated ileum. Br. J. Pharmacol. 20: 399–417, 1963.
 192. Hashimoto, T., M. Hirata, and Y. Ito. A role for inositol 1,4,5‐trisphosphate in the initiation of agonist‐induced contractions of dog tracheal smooth muscle. Br. J. Pharmacol. 191–199, 1985.
 193. Henderson, R. M., G. Duchon, and E. E. Daniel. Cell contacts in duodenal smooth muscle layers. Am. J. Physiol. 221: 564–574, 1971.
 194. Hess, P., and R. W. Tsien. Mechanism of ion permeation through calcium channels. Nature Lond. 309: 453–456, 1984.
 195. Hidaka, T., and H. Kuriyama. Responses of the smooth muscle membrane of guinea‐pig jejunum elicited by field stimulation. J. Gen. hysiol. 53: 471–486, 1969.
 196. Hightower, N. C., Jr. Motor action of the small bowel. In: Handbook of Physiology. Alimentary Canal. Motility, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. IV, chapt. 98, p. 2001–2024.
 197. Hirst, G. D. S. Mechanisms of peristalsis. Br. Med. Bull. 35: 263–268, 1979.
 198. Hirst, G. D. S., M. E. Holman, and H. C. McKirdy. Two descending nerve pathways activated by distension of guinea‐pig small intestine. J. Physiol. Lond. 244: 113–127, 1975.
 199. Hirst, G. D. S., M. E. Holman, and I. Spence. Two types of neurones in the myenteric plexus of duodenum in the guinea‐pig. J. Physiol. Lond. 236: 303–326, 1974.
 200. Hirst, G. D. S., and H. C. McKirdy. A nervous mechanism for descending inhibition in guinea‐pig small intestine. J. Physiol. Lond. 238: 129–143, 1974.
 201. Hirst, G. D. S., and H. C. McKirdy. Presynaptic inhibition of mammalian peripheral synapse. Nature Lond. 250: 430–431, 1974.
 202. Hokin, L. E., and M. R. Hokin. Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim. Biophys. Acta 18: 102–110, 1955.
 203. Holman, M. E. The effects of changes in sodium chloride concentration on the smooth muscle of the guinea‐pig's taenia coli. J. Physiol. Lond. 136: 569–584, 1958.
 204. Holman, M. E. Nerve‐muscle preparations of the small intestine. In: Methods in Pharmacology, edited by E. E. Daniel and D. M. Paton. London: Plenum, 1975, vol. 3, p. 361–383.
 205. Holman, M. E. The intrinsic innervation and peristaltic reflex of the small intestine. In: Smooth Muscle: An Assessment of Current Knowledge, edited by E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita. London: Arnold, 1981, p. 311–338.
 206. Holman, M. E., and J. P. Weinrich. The effects of the calcium and magnesium on inhibitory junctional transmission in smooth muscle of guinea‐pig intestine. Pfluegers Arch. 360: 109–119, 1975.
 207. Holzer, P. An enquiry into the mechanism by which substance P facilitates the phasic longitudinal contractions of the rabbit ileum. J. Physiol. Lond. 325: 377–392, 1982.
 208. Holzer, P., S. J. Bailey, and I. T. Lippe. Effect of tachykinins on polyphosphoinositide turnover in intestinal smooth muscle. In: Tachykinin Antagonists, edited by R. Hakånson and F. Sundler. Amsterdam: Elsevier, 1985, p. 231–240.
 209. Holzer, P. I., and F. Lembeck. Neurally mediated contraction of ileal longitudinal muscle by substance P. Neurosci. Lett. 17: 101–105, 1980.
 210. Holzer, P. I., and I. T. Lippe. Substance P can contract the longitudinal muscle of the guinea‐pig small intestine by releasing intracellular calcium. Br. J. Pharmacol. 82: 259–267, 1984.
 211. Holzer, P. I., and I. T. Lippe. Substance P action on phosphoinositides in guinea‐pig intestinal muscle: a possible transduction mechanism? Naunyn‐Schmiedeberg's Arch. Pharmacol. 329: 50–55, 1985.
 212. Holzer, P., and U. Petsche. On the mechanism of contraction and desensitisation induced by substance P in the intestinal muscle of the guinea‐pig. J. Physiol. Lond. 342: 549–568, 1983.
 213. Hukuhara, T., and H. Fukuda. The electrical activity of guinea‐pig small intestine with special reference to the slow wave. Jpn. J. Physiol. 18: 71–86, 1968.
 214. Hwang, K. S., and C. Van Breeman. Effects of the Ca agonist BAY K 8644 on 45Ca influx and net Ca uptake into rabbit aortic smooth muscle. Eur. J. Pharmacol. 116: 299–305, 1985.
 215. Inomata, H., and C. Y. Kao. Ionic mechanisms of repolarization in the guinea‐pig taenia coli as revealed by the actions of Sr++. J. Physiol. Lond. 297: 443–462, 1979.
 216. Inomata, H., and C. Y. Kao. Actions of Ba++ on ionic currents of the guinea‐pig taenia coli. J. Pharmacol. Exp. Ther. 233: 112–124, 1985.
 217. Inoue, R., K. Kitamura, and H. Kuriyama. Two Ca‐dependent K‐channels classified by the application of tetraeth‐ylammonium distribute to smooth muscle membranes of the rabbit portal vein. Pfluegers Arch. 405: 173–179, 1985.
 218. Inoue, R., K. Okabe, K. Kitamura, and H. Kuriyama. A newly identified Ca2+ dependent K+ channel in the smooth muscle membrane of single cells dispersed from the rabbit portal vein. Pfluegers Arch. 406: 138–143, 1986.
 219. Irvine, R. F., E. E. Anggård, A. J. Letcher, and C. P. Downes. Metabolism of inositol 1,4,5‐trisphosphate and inositol 1,3,4‐trisphosphate in rat parotid glands. Biochem. J. 229: 505–511, 1985.
 220. Irvine, R. F., A. J. Letcher, J. P. Heslop, and M. J. Berridge. The inositol tris/tetrakisphosphate pathway—demonstration of Ins(1,4,5)P3 3‐kinase activity in animal tissues. Nature Lond. 320: 631–634, 1986.
 221. Isenberg, G., and U. Klockner. Elementary currents through single Ca‐activated potassium channels (smooth muscle cells isolated from trachea or urinary bladder) (Abstract). Pfluegers Arch. 4, Suppl. 2: R62, 1985.
 222. Ito, Y., and H. Kuriyama. Caffeine and excitation‐contraction coupling in the guinea‐pig taenia coli. J. Gen. Physiol. 57: 448–463, 1971.
 223. Ito, Y., T. Osa, and H. Kuriyama. Topical differences of caffeine action on the smooth muscle cells of the guinea pig alimentary canal. Jpn. J. Physiol. 24: 217–232, 1973.
 224. Itoh, T., H. Izumi, and H. Kuriyama. Mechanisms of relaxation induced by activation of α‐adrenoreceptors in smooth muscle cells of the guinea‐pig mesenteric artery. J. Physiol. Lond. 326: 475–493, 1982.
 225. Jafferji, S. S., and R. H. Michell. Investigation of the relationship between cell‐surface calcium‐ion gating and phosphatidylinositol turnover by comparison of the effects of elevated extracellular potassium ion concentration on ileum smooth muscle and pancreas. Biochem. J. 160: 397–399, 1976.
 226. Jager, L. P. The effect of catecholamines and ATP on the smooth muscle cell membrane of the guinea‐pig taenia coli. Eur. J. Pharmacol. 25: 372–382, 1974.
 227. Jenkinson, D. H., and I. K. M. Morton. The effect of noradrenaline on the permeability of depolarized intestinal smooth muscle to inorganic ions. J. Physiol. Lond. 188: 373–386, 1967.
 228. Job, D. D. Ionic basis of intestinal electrical activity. Am. J. Physiol. 217: 1534–1541, 1969.
 229. Job, D. D., and W. E. Bloomquist. Correlations between ionic contents in different regions and layers of intestinal muscle. Am. J. Physiol. 226: 1496–1501, 1974.
 230. Job, D. D., W. E. Bloomquist, and J. Bridgeforth. Correlations between electrolyte content and spontaneous electrical activity in intestinal muscle. Am. J. Physiol. 226: 1502–1509, 1974.
 231. Job, D. D., W. J. Griffing, and B. E. Rodda. A possible origin of intestinal gradients and their relation to motility. Am. J. Physiol. 226: 1510–1515, 1974.
 232. Jury, J., L. P. Jager, and E. E. Daniel. Unusual potassium channels mediate nonadrenergic noncholinergic nerve‐mediated inhibition in opossum esophagus. Can. J. Physiol. 63: 107–112, 1985.
 233. Kadlec, O., and R. Radomirov. Effects of prostaglandins F2α and E‐1 on the longitudinal and circular smooth muscle of the guinea‐pig caecum in relation to the concentration of extracellular calcium. Naunyn‐Schmiedeberg's Arch. Pharmacol. 288: 335–343, 1975.
 234. Kadlec, O., I. Seferna, K. Masek, G. T. Somogyi, and J. Knoll. The analysis of post‐tetanic potentiation in guinea‐pig ileum longitudinal muscle strip. Eur. J. Pharmacol. 79: 245–255, 1982.
 235. Kamm, K. E., and J. T. Stull. The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu. Rev. Pharmacol. Toxicol. 25: 593–620, 1985.
 236. Kawamoto, S., and H. Hidaka. Ca2+‐activated, phospho‐lipid‐dependent protein kinase catalyses the phosphorylation of actin‐binding proteins. Biochem. Biophys. Res. Commun. 118: 736–742, 1984.
 237. Kazic, T. Action of methylxanthines and imidazole on the contractility of the terminal ileum of the guinea pig. Eur. J. Pharmacol. 41: 103–111, 1977.
 238. Kerrick, W. G. L., and P. E. Hoar. Inhibition of smooth muscle tension by cyclic AMP‐dependent protein kinase. Nature Lond. 292: 253–255, 1981.
 239. King, C. E., and J. G. Church. The motor reaction of the muscularis mucosae to some drugs. Am. J. Physiol. 66: 228–236, 1923.
 240. King, C. E., L. C. Glass, and S. E. Townsend. The circular components of the muscularis mucosae of the small intestine of the dog. Am. J. Physiol. 148: 667–674, 1947.
 241. Kirk, C. J., E. A. Bone, S. Palmer, and R. H. Mitchell. The role of phosphatidylinositol 4,5‐bisphosphate breakdown in cell‐surface receptor activation. J. Recept. Res. 4: 489–504, 1984.
 242. Kitabgi, P., and P. Freychet. Neurotensin contracts the guinea‐pig longitudinal ileal smooth muscle by inducing acetylcholine release. Eur. J. Pharmacol. 56: 4403–4406, 1979.
 243. Kitamura, K. Comparative aspects of membrane properties and innervation of longitudinal and circular muscle layers of rabbit jejunum. Jpn. J. Physiol. 28: 583–601, 1978.
 244. Klöckner, U., and G. Isenberg. Calcium activated potassium currents as an indicator for intracellular (i.c.) Ca‐transients (single smooth muscle cells from trachea and urinary bladder) (Abstract). Pfluegers Arch. 4, Suppl. 2: R61, 1985.
 245. Klöckner, U., and G. Isenberg. Calcium currents of cesium loaded isolated smooth muscle cells (urinary bladder of the guinea‐pig). Pfluegers Arch. 405: 340–348, 1985.
 246. Klöckner, U., and G. Isenberg. Action potentials and membrane currents of isolated smooth muscle cells (urinary bladder of the guinea‐pig). Pfluegers Arch. 405: 329–339, 1985.
 247. Kobayashi, M., T. Nagai, and C. L. Prosser. Electrical interaction between muscle layers of cat intestine. Am. J. Physiol. 211: 1281–1291, 1966.
 248. Kobayashi, M., C. L. Prosser, and T. Nagai. Electrical properties of intestinal muscle as measured intracellularly and extracellularly. Am. J. Physiol. 213: 275–286, 1967.
 249. Kobayashi, S., H. Kanaide, and M. Nakamura. K+‐depolarization induces a direct release of Ca2+ from intracellular storage sites in cultured vascular smooth muscle cells from rat aorta. Biochem. Biophys. Res. Commun. 129: 877–884, 1985.
 250. Kokas, E., and H. A. Gordon. Adrenergic and cholinergic receptors of intestinal villi in dogs. J. Pharmacol. Exp. Ther. 180: 56–61, 1971.
 251. Kosterlitz, H. W., and G. M. Lees. Pharmacological analysis of intrinsic intestinal reflexes. Pharmacol. Rev. 16: 301–339, 1977.
 252. Kottegoda, S. R. Are the excitatory fibres to the circular muscle of the guinea‐pig ileum cholinergic (Abstract)? J. Physiol. Lond. 197: 17P–18P, 1968.
 253. Kottegoda, S. R. An analysis of possible nervous mechanisms involved in the peristaltic reflex. J. Physiol. Lond. 200: 687–712, 1969.
 254. Kottegoda, S. R. Peristalsis of the small intestine. In: Smooth Muscle, edited by E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita. London: Arnold, 1970, p. 525–541.
 255. Kuriyama, H. Ionic basis of smooth muscle action potentials. In: Handbook of Physiology. Alimentary Canal. Motility, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. IV, chapt. 87, p. 1767–1791.
 256. Kuriyama, H. Effects of ions and drugs on the electrical activity of smooth muscle. In: Smooth Muscle, edited by E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita. London: Arnold, 1970, p. 366–395.
 257. Kuriyama, H. Excitation‐contraction coupling in various visceral smooth muscles. In: Smooth Muscle: An Assessment of Current Knowledge, edited by E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita. London: Arnold, 1981.
 258. Kuriyama, H., Y. Ito, H. Suzuki, K. Kitamura, and T. Itoh. Factors modifying contraction‐relaxation cycle in vascular smooth muscles. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H641–H662, 1982.
 259. Kuriyama, H., T. Osa, Y. Ito, and H. Suzuki. Excitation‐concentration coupling mechanism in visceral smooth muscle. Adv. Biophys. 8: 115–190, 1975.
 260. Kuriyama, H., T. Osa, and N. Toida. Effect of tetrodotoxin on smooth muscle cells of the guinea‐pig taenia coli. Br. J. Pharmacol. Chemother. 27: 366–376, 1966.
 261. Kuriyama, H., T. Osa, and N. Toida. Nervous factors influencing the membrane activity of intestinal smooth muscle. J. Physiol. Lond. 191: 257–270, 1967.
 262. Kuriyama, H., T. Osa, and N. Toida. Electrophysiological study of the intestinal smooth muscle of the guinea‐pig. J. Physiol. Lond. 191: 239–255, 1967.
 263. Kuriyama, H., and T. Tomita. The responses of single smooth muscle cells of guinea‐pig taenia coli to intracellularly applied currents, and their effect on the spontaneous electrical activity. J. Physiol. Lond. 178: 270–289, 1965.
 264. Lang, R. J. The effects of calcium and magnesium ions, temperature and repetitive stimulation on inhibitory junctional transmission in smooth muscle of guinea‐pig intestine. Br. J. Pharmacol. 67: 39–49, 1979.
 265. Lang, R. J. Temperature and inhibitory junctional transmission in guinea‐pig ileum. Br. J. Pharmacol. 66: 355–357, 1979.
 266. Liles, W. C., D. D. Hunter, K. E. Meier, and N. M. Nathanson. Activation of protein kinase C induces rapid internalization and subsequent degradation of muscarinic acetylcholine receptors in neuroblastoma cells. J. Biol. Chem. 261: 5307–5313, 1986.
 267. Liu, J., C. L. Prosser, and D. D. Job. Ionic dependence of slow waves and spikes in intestinal muscle. Am. J. Physiol. 217: 1542–1547, 1969.
 268. Maas, A. J. J., A. Den Hertog, R. Ras, and J. Van den Akker. The action of apamin on guinea‐pig taenia caeci. Eur. J. Pharmacol. 67: 265–274, 1980.
 269. Magaribuchi, T., and H. Kuriyama. Effects of noradrenaline and isoprenaline on the electrical and mechanical activities of guinea‐pig depolarized taenia coli. Jpn. J. Physiol. 22: 253–270, 1972.
 270. Mangel, A. W., J. A. Connor, and C. L. Prosser. Effects of alterations in calcium levels on cat small intestinal slow waves. Am. J. Physiol. 243 (Cell Physiol. 12): C7–C13, 1982.
 271. Manzini, S., C. A. Maggi, and A. Meli. Pharmacological evidence that at least two different non‐adrenergic non‐cholinergic inhibitory systems are present in the rat small intestine. Eur. J. Pharmacol. 123: 229–236, 1986.
 272. Marshall, J. M., and E. A. Kroeger. Adrenergic influences on uterine smooth muscle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 265: 135–148, 1973.
 273. McCann, J. D., and M. J. Welsh. Voltage‐gated Ca‐activated K channels in isolated canine airway smooth muscle cells (Abstract). Biophys. J. 47: 135a, 1985.
 274. McCann, J. D., and M. J. Welsh. Calcium‐activated potassium channels in airway smooth muscle cells. J. Physiol. Lond. 372: 113–127, 1986.
 275. McKirdy, H. C. Functional relationship of longitudinal and circular layers of the muscularis externa of the rabbit large intestine. J. Physiol. Lond. 227: 839–853, 1972.
 276. Meisheri, K. D., J. Diamond, and J. H. McNeill. High‐K+‐induced inhibition of cAMP accumulation in smooth muscle. Eur. J. Pharmacol. 73: 81–83, 1981.
 277. Meisheri, K. D., O. Hwang, and C. van Breeman. Evidence for two separate Ca2+ pathways in smooth muscle preparations. J. Membr. Biol. 59: 19–25, 1981.
 278. Mian, M. A., E. Malta, and C. Raper. An homogeneous population of α1‐adrenoceptors subserves inhibitory responses in guinea‐pig ileal preparations. J. Pharm. Pharmacol. 36: 698–699, 1984.
 279. Miller, J. R., P. J. Silver, and J. T. Stull. The role of myosin light chain kinase phosphorylation in β‐adrenergic relaxation of tracheal smooth muscle. Mol. Pharmacol. 24: 235–242, 1983.
 280. Mills, R. G., and G. S. Taylor. Studies of intestinal slow wave activity with a double sucrose gap apparatus. Life Sci. 10: 347–353, 1971.
 281. Mironneau, J., D. Eugene, and C. Mironneau. Sodium action potentials induced by calcium chelation in rat uterine smooth muscle. Pfluegers Arch. 395: 232–238, 1982.
 282. Mitra, R. L., and M. Morad. Gastric smooth muscle cells have only Ca2+ and Ca2+‐activated K+ channels (Abstract). Biophys. J. 47: 66a, 1985.
 283. Mitra, R., and M. Morad. Ca2+ and Ca2+‐activated K+ currents in mammalian gastric smooth muscle cells. Science Wash. DC 229: 269–272, 1985.
 284. Mollard, P., J. Mironneau, T. Amédée, and C. Mironneau. Action potential and Ca2+ inward current in isolated pregnant rat myometrial cells. Colloq. INSERM 124: 43–54, 1984.
 285. Mollard, P., J. Mironneau, T. Amédée, and C. Mironneau. Electrophysiological characterization of single pregnant rat myometrial cells in short‐term primary culture. Am. J. Physiol. 250 (Cell Physiol. 19): C47–C54, 1986.
 286. Momose, K., and Y. Gomi. Studies on isolated smooth muscle cells. VI. Dispersion procedures for acetylcholine‐sensitive smooth muscle cells of guinea‐pig. Jpn. J. Smooth Muscle Res. 16: 29–36, 1980.
 287. Morgan, J. P., and K. G. Morgan. Calcium and cardiovascular function. Am. J. Med. 5: 33–46, 1984.
 288. Morgan, J. P., and K. G. Morgan. Alteration of cytoplasmic ionized calcium levels in smooth muscle by vasodilators in the ferret. J. Physiol. Lond. 357: 539–557, 1984.
 289. Morgan, K. G., and M. J. Jiang. Measurement of cytoplasmic Ca2+ during tonic and phasic contraction of mammalian smooth muscle. In: Proc. 10th Int. Congr. Gastroenterol., edited by J. H. Szurszewski. Amsterdam: Elsevier, 1987, p. 109–124.
 290. Moritoki, H., M. Morita, and T. Kanbe. Effects of methylxanthines and imidazole on the contractions of guinea‐pig ileum induced by transmural stimulation. Eur. J. Pharmacol. 35: 185–198, 1976.
 291. Mueller, E., and C. van Breeman. Role of intracellular Ca2+ sequestration in β‐adrenergic relaxation of a smooth muscle. Nature Lond. 281: 682–683, 1979.
 292. Munro, A. F. The effect of adrenaline on the guinea‐pig intestine. J. Physiol. Lond. 112: 84–94, 1951.
 293. Munro, A. F. Potentiation and reversal of the adrenaline motor response in the guinea‐pig ileum by autonomic drugs. J. Physiol. Lond. 118: 171–181, 1952.
 294. Munro, A. F. Effect of autonomic drugs on the responses of isolated preparations from the guinea‐pig intestine to electrical stimulation. J. Physiol. Lond. 120: 41–52, 1953.
 295. Murad, F., R. M. Rapoport, and R. Fiscus. Role of cyclic‐GMP in relaxations of vascular smooth muscle. J. Cardiovasc. Pharmacol. 7: S111–S118, 1985.
 296. Nagai, T., and C. L. Prosser. Electrical parameters of smooth muscle cells. Am. J. Physiol. 204: 915–924, 1963.
 297. Nakao, K., R. Inoue, K. Yamanaka, and K. Kitamura. Actions of quinine and apamin on after‐hyperpolarization of the spike in circular smooth muscle cells of the guinea‐pig ileum. Naunyn‐Schmiedeberg's Arch. Pharmacol. 334: 508–573, 1986.
 298. Neering, I. R., and K. G. Morgan. Use of aequorin to study excitation‐contraction coupling in mammalian smooth muscle. Nature Lond. 288: 585–588, 1980.
 299. Nelsen, T. S., and J. C. Becker. Stimulation of the electrical and mechanical gradient of the small intestine. Am. J. Physiol. 214: 749–757, 1968.
 300. Niel, J. P., R. A. R. Bywater, and G. S. Taylor. Effect of substance P on non‐cholinergic fast and slow post‐stimulus depolarization in the guinea‐pig ileum. J. Auton. Nerv. Syst. 9: 573–584, 1983.
 301. Niel, J. P., R. A. R. Bywater, and G. S. Taylor. Apaminresistant post‐stimulus hyperpolarization in the circular muscle of the guinea‐pig ileum. J. Auton. Nerv. Syst. 9: 565–569, 1983.
 302. Nishikawa, M., J. R. Sellers, R. S. Adelstein, and H. Hidaka. Protein kinase modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase. J. Biol. Chem. 259: 8808–8814, 1984.
 303. Nishizuka, Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature Lond. 308: 693–698, 1984.
 304. Nonomura, Y., Y. Hotta, and H. Ohashi. Tetrodotoxin and manganese ions: effects on electrical activity and tension in taenia coli of guinea pig. Science Wash. DC 152: 97–98, 1966.
 305. Norberg, K. Adrenergic innervation of the intestinal wall studied by fluorescence microscopy. Neuropharmacology 3: 379–382, 1964.
 306. Obara, K. Isolation and contractile properties of single smooth muscle cells from guinea pig taenia caeci. Jpn. J. Physiol. 34: 41–54, 1984.
 307. Ohba, M., Y. Sakamoto, and T. Tomita. The slow wave in the circular muscle of the guinea‐pig stomach. J. Physiol. Lond. 253: 505–516, 1975.
 308. Osa, T. The inhibitory action of caffeine on the smooth muscles of mouse myometrium and guinea pig ileum. Jpn. J. Physiol. 23: 199–216, 1973.
 309. Owen, N. E. Effect of TPA on ion fluxes and DNA synthesis in vascular smooth muscle cells. J. Cell Biol. 101: 454–459, 1985.
 310. Paton, W. D. M. The response of the guinea‐pig ileum to electrical stimulation by coaxial electrodes (Abstract). J. Physiol. Lond. 127: 40P–41P, 1955.
 311. Paton, W. D. M., and M. Aboo Zar. The origin of acetylcholine released from guinea‐pig intestine and longitudinal muscle strips. J. Physiol. Lond. 194: 13–33, 1968.
 312. Percy, W. H., and J. Christensen. Pharmacological characterization of opossum distal colonic muscularis mucosae in vitro. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G98–G102, 1986.
 313. Prosser, C. L. Smooth muscle. Annu. Rev. Physiol. 36: 503–538, 1974.
 314. Prosser, C. L. Rhythmic potentials in intestinal muscle. Federation Proc. 37: 2153–2157, 1977.
 315. Prosser, C. L., and A. Bortoff. Electrical activity of intestinal muscle under in vitro conditions. In: Handbook of Physiology. Alimentary Canal. Motility, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. IV, chapt. 99, p. 2025–2050.
 316. Prosser, C. L., D. L. Kreulen, R. J. Weigel, and W. Yau. Prolonged potentials in gastrointestinal muscles induced by calcium chelation. Am. J. Physiol. 233 (Cell Physiol. 2): C19–C24, 1977.
 317. Radomirov, R. The stimulant effect of prostaglandin F‐2α on the longitudinal muscle of guinea‐pig caecum. Pharmacol. Res. Commun. 12: 667–674, 1980.
 318. Radomirov, R., T. Kirov, Z. Jurukova, and M. Papasova. Effects of prostaglandin E‐1 on 45Ca‐incorporation and spike activity in longitudinal smooth muscle of cat jejunum. Experienta Basel 36: 1411–1412, 1980.
 319. Rapoport, R. M., and F. Murad. Endothelium‐dependent and nitrovasodilator‐induced relaxation of vascular smooth muscle: role of cyclic GMP. J. Cyclic Nucleotide Protein Phosphorylation Res. 9: 281–296, 1983.
 320. Ruffner, J. A., N. Sperelakis, and J. E. Mann. Application of the Hodgkin‐Huxley equations to an electric field model for interaction between excitable cells. J. Theor. Biol. 87: 129–152, 1980.
 321. Salmon, D. M. W., R. S. E. Mallows, D. J. Mellor, and T. B. Bolton. Are diacylglycerols involved in the response of smooth muscle to neurotransmitters? Biochem. Soc. Trans. 14: 1150–1151, 1986.
 322. Sancholuz, A. G., T. E. Croley II, J. Christensen, E. O. Macagno, and J. R. Glover. Phase lock of electrical slow waves and spike bursts in cat duodenum. Am. J. Physiol. 229: 608–612, 1975.
 323. Sanders, K. M. Excitation‐contraction coupling without Ca2+ action potentials in small intestine. Am. J. Physiol. 244 (Cell Physiol. 13): C356–C361, 1983.
 324. Sanger, G. J., and A. Bennett. In vitro techniques for the study of gastrointestinal motility. In: Mediators and Drugs in Gastrointestinal Motility. Morphological Basis and Neurophysiological Control, edited by G. Bertaccini. Berlin: Springer‐Verlag, 1982, p. 205–222.
 325. Sarna, S. K., E. E. Daniel, and Y. J. Kingma. Simulation of slow‐wave electrical activity of small intestine. Am. J. Physiol. 221: 166–175, 1971.
 326. Scheid, C. R., and F. S. Fay. β‐Adrenergic stimulation of 42K influx in isolated smooth muscle cells. Am. J. Physiol. 246 (Cell Physiol. 15): C415–C421, 1984.
 327. Scheid, C. R., T. W. Honeyman, and F. S. Fay. Mechanism of β‐adrenergic relaxation of smooth muscle. Nature Lond. 277: 32–36, 1979.
 328. Sekar, M. C., and B. D. Roufogalis. Muscarinic‐receptor stimulation enhances polyphosphoinositide breakdown in guinea‐pig ileum smooth muscle. Biochem. J. 223: 527–531, 1984.
 329. Sekar, M. C., and B. D. Roufogalis. Differential effects of phenylmethanesulfonyl fluoride (PMSF) on carbachol and potassium stimulated phosphoinositide turnover and contraction in longitudinal smooth muscle of guinea‐pig ileum. Cell Calcium 5: 191–203, 1984.
 330. Shoemaker, R., J. Naftel, and J. Farley. Measurement of K+ and Cl− channels in rat cultured vascular smooth muscle cells (Abstract). Biophys. J. 47: 465a, 1985.
 331. Shuba, M. F., A. V. Gurkovskaya, M. J. Klevetz, N. G. Kochemasova, and V. M. Taranenko. Mechanism of the excitatory and inhibitory actions of catecholamines on the membrane of smooth muscle cells. In: Physiology of Smooth Muscle, edited by E. Bülbring and M. F. Shuba. New York: Raven, 1976, p. 347–355.
 332. Shuba, M. F., and I. A. Vladimirova. Effect of apamin on the electrical responses of smooth muscle to adenosine 5′‐triphosphate and to non‐adrenergic, non‐cholinergic nerve stimulation. Neuroscience 5: 853–859, 1980.
 333. Shuba, M. F., and I. A. Vladimirova. Action of apamin on nerve‐muscle transmission and the effects of ATP and noradrenaline in smooth muscles. In: Advances in Physiological Sciences. Molecular and Cellular Aspects of Muscle Function, edited by E. Varga, A. Kover, T. Kovacs, and L. Kovacs. Oxford, UK: Pergamon, 1981, vol. 5, p. 111–126.
 334. Sims, S. M., J. J. Singer, and J. V. Walsh, Jr. Cholinergic stimulation of single vertebrate smooth muscle cells is associated with a conductance decrease. Soc. Neurosci. Abstr. 9: 732, 1983.
 335. Sims, S. M., J. J. Singer, and J. V. Walsh, Jr. Cholinergic agonists suppress a potassium current in freshly isolated smooth muscle cells of the toad. J. Physiol. Lond. 367: 503–529, 1985.
 336. Sims, S. M., J. J. Singer, and J. V. Walsh, Jr. A mechanism of muscarinic excitation in dissociated smooth muscle cells. Subtypes of muscarinic receptor II. Trends Pharmacol. Sci. Suppl. 28–32, 1986.
 337. Sinback, C. N., and W. Shain. Electrophysiological properties of human oviduct smooth muscle cells in dissociated cell culture. J. Cell Physiol. 98: 377–394, 1979.
 338. Sinback, C. N., and W. Shain. Chemosensitivity of single smooth muscle cells to acetylcholine, noradrenaline and histamine in vitro. J. Cell. Physiol. 102: 99–112, 1980.
 339. Singer, J. J., and J. V. Walsh, Jr. Rectifying properties of the membrane of single freshly isolated smooth muscle cells. Am. J. Physiol. 239 (Cell Physiol. 8): C175–C181, 1980.
 340. Singer, J. J., and J. V. Walsh, Jr. Passive properties of the membrane of single freshly isolated smooth muscle cells. Am. J. Physiol. 239 (Cell Physiol. 8): C153–C161, 1980.
 341. Singer, J. J., and J. V. Walsh. Membrane currents of single freshly isolated smooth muscle cells studied with voltage clamp. Soc. Neurosci. Abstr. 6: 837, 1980.
 342. Singer, J. J., and J. V. Walsh. Four ionic currents in single, freshly isolated smooth muscle cells studied with voltage clamp and microperfusion (Abstract). Biophys. J. 33: 37a, 1981.
 343. Singer, J. J., and J. V. Walsh. Single‐channel currents recorded in freshly dissociated vertebrate smooth muscle cells using the patch‐clamp technique (Abstract). J. Gen. Physiol. 80: 23a, 1982.
 344. Singer, J. J., and J. V. Walsh. Large conductance Ca++‐activated K+ channels in smooth muscle cell membrane. Biophys. J. 45: 68–70, 1984.
 345. Small, R. C., and A. H. Weston. The spontaneous electrical and mechanical activity of the longitudinal smooth muscle of the rabbit duodenum and its modification by drugs and temperature changes. J. Pharm. Pharmacol. 23: 280–287, 1971.
 346. Small, R. C., and A. H. Weston. Intramural inhibition in rabbit and guinea pig intestine. In: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, edited by H. P. Baer and G. I. Drummond. New York: Raven, 1979, p. 45–60.
 347. Somlyo, A. P. Excitation‐contraction coupling and the ultra‐structure of smooth muscle. Circ. Res. 57: 497–507, 1985.
 348. Somlyo, A. V., M. Bond, A. P. Somlyo, and A. Scarpa. Inositol trisphosphate‐induced calcium release and contraction in vascular smooth muscle. Proc. Natl. Acad. Sci. USA 82: 5231–5235, 1985.
 349. Specht, P. C. Propagation of stimulated slow waves in cat intestinal muscle. Am. J. Physiol. 231: 228–233, 1976.
 350. Specht, P. C., and A. Bortoff. Propagation and electrical entrainment of intestine slow waves. Am. J. Dig. Dis. 17: 311–316, 1972.
 351. Spedding, M. The mechanism of the contractile effects of phorbol esters in smooth muscle is not primarily via Ca2+ channel activation (Abstract). Br. J. Pharmacol. Proc. Suppl. 87: 62P, 1986.
 352. Sperelakis, N. Propagation mechanisms in heart. Annu. Rev. Physiol. 41: 441–457, 1979.
 353. Sperelakis, N., and M. Tarr. Weak electrotonic interaction between neighbouring visceral smooth muscle cells. J. Physiol. Lond. 208: 737–747, 1965.
 354. Stull, J. T., D. K. Blumenthal, and R. Cooke. Regulation of contraction by myosin phosphorylation: a comparison between smooth and skeletal muscles. Biochem. Pharmacol. 29: 2537–2543, 1980.
 355. Suematsu, E., M. Hirata, T. Hashimoto, and H. Kuriyama. Inositol 1,4,5‐trisphosphate releases Ca2+ from intracellular storage sites in skinned single cells of porcine coronary artery. Biochem. Biophys. Res. Commun. 120: 481–485, 1984.
 356. Sunano, S., and E. Miyazaki. Effects of caffeine on electrical and mechanical activities of guinea pig taenia coli. Am. J. Physiol. 225: 335–339, 1973.
 357. Suzuki, H., and H. Kuriyama. Electrical and mechanical properties of longitudinal and circular muscles of the guinea pig ileum. Jpn. J. Physiol. 25: 759–773, 1975.
 358. Suzuki, N., C. L. Prosser, and V. Dahms. Boundary cells between longitudinal and circular layers: essential for electrical slow waves in cat intestine. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G287–G294, 1986.
 359. Szolcsanyi, J., and L. Bartho. New type of nerve‐mediated cholinergic contractions of the guinea‐pig small intestine and its selective blockade by capsaicin. Naunyn‐Schmiedeberg's Arch. Pharmacol. 305: 83–90, 1978.
 360. Szurszewski, J. H. Mechanism of action of pentagastrin and acetylcholine on the longitudinal muscle of the canine antrum. J. Physiol. Lond. 252: 335–361, 1975.
 361. Szurszewski, J. H. Electrical basis for gastrointestinal motility. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson. New York: Raven, 1981, p. 1436–1466.
 362. Takenawa, T. Inositol phospholipids in stimulated smooth muscles. Cell. Calcium 3: 359–368, 1982.
 363. Tamai, T., and C. L. Prosser. Differentiation of slow potentials and spikes in longitudinal muscle of cat intestine. Am. J. Physiol. 210: 452–458, 1966.
 364. Taylor, A. B., D. Kreulen, and C. L. Prosser. Electron microscopy of the connective tissues between longitudinal and circular muscle of small intestine of cat. Am. J. Anat. 150: 427–442, 1977.
 365. Taylor, G. S. Transmission of inhibition at autonomic nerve terminals. Proc. Aust. Physiol Pharmacol. Soc. 12: 72–76, 1981.
 366. Taylor, G. S., and R. A. R. Bywater. Antagonism of non‐cholinergic excitatory junction potentials in the guinea‐pig ileum by a substance P analogue antagonist. Neurosci. Lett. 63: 23–26, 1986.
 367. Taylor, G. S., E. E. Daniel, and T. Tomita. Origin and mechanism of intestinal slow waves. In: Proc. 5th Int. Symp. Gastrointest. Motil, edited by G. Vantrappen. Herentals, Belgium: Typoff, 1975, p. 102–106.
 368. Tomita, T. Electrical responses of smooth muscle to external stimulation in hypertonic solution. J. Physiol. Lond. 183: 450–468, 1966.
 369. Tomita, T. Electrical properties of mammalian smooth muscle. In: Smooth Muscle, edited by E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita. London: Arnold, 1970, p. 197–243.
 370. Tomita, T. Conductance change during the inhibitory potential in the guinea‐pig taenia coli. J. Physiol. Lond. 225: 693–703, 1972.
 371. Tomita, T. A comparison of the effects of adenosine triphosphate with noradrenaline and with the inhibitory potential of the guinea‐pig taenia coli. J. Physiol. Lond. 231: 167–177, 1973.
 372. Tomita, T. Electrophysiology of mammalian smooth muscle. Prog. Biophys. Mol. Biol. 30: 185–203, 1975.
 373. Tomita, T. Electrical activity (spikes and slow waves) in gastrointestinal smooth muscle. In: Smooth Muscle: An Assessment of Current Knowledge, edited by E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita. London: Arnold, 1981, p. 127–156.
 374. Tomita, T. Ionic basis of smooth muscle action potentials. In: Mediators and Drugs in Gastrointestinal Motility I. Morphological Basis & Neurophysiological Control, edited by G. Bertaccini. Berlin: Springer‐Verlag, 1982, p. 79–115.
 375. Van Breeman, C., P. Aaronson, and R. Loutzenhiser. Sodium‐calcium interactions in mammalian smooth muscle. Pharmacol. Rev. 30: 167–207, 1979.
 376. Van Breeman, C., P. Aaronson, R. Loutzenhiser, and K. Meisheri. Calcium fluxes in isolated rabbit aorta and guinea‐pig taenia coli. Federation Proc. 41: 2891–2897, 1982.
 377. Breeman, C., A. Mangel, M. Fahim, and K. Meisheri. Selectivity of calcium antagonistic action in vascular smooth muscle. Am. J. Cardiol. 49: 507–511, 1982.
 378. Vandijk, A. M., P. A. Wieringa, M. Van der Meer, and J. D. Laird. Mechanics of resting isolated single vascular smooth muscle cells from bovine coronary artery. Am. J. Physiol. 246 (Cell Physiol. 15): C277–C287, 1984.
 379. Verma, S. C., and J. H. McNeill. Isoproterenol‐induced relaxation, phosphorylase activation and cyclic adenosine monophosphate levels in the polarized and depolarized rat uterus. J. Pharmacol. Exp. Ther. 198: 539–547, 1976.
 380. Vladimirova, I. A., and M. F. Shuba. Synaptic processes in smooth muscles. Neurophysiology 16: 239–248, 1984.
 381. Walsh, J. V., Jr., and J. J. Singer. Calcium action potentials in single freshly isolated smooth muscle cells. Am. J. Physiol. 239 (Cell Physiol. 8): C162–C174, 1980.
 382. Walsh, J. V., Jr., and J. J. Singer. Slow cholinergic (muscarinic) depolarization associated with a conductance decrease in freshly isolated smooth muscle cells (Abstract). Physiologist 23 (4): 111, 1980.
 383. Walsh, J. V., Jr., and J. J. Singer. Penetration‐induced hyperpolarization as evidence for Ca2+ activation of K+ conductance in isolated smooth muscle cells. Am. J. Physiol. 239 (Cell Physiol. 8): C182–C189, 1980.
 384. Walsh, J. V., Jr., and J. J. Singer. Voltage clamp of single freshly dissociated smooth muscle cells: current‐voltage relationships for three currents. Pfluegers Arch. 390: 207–210, 1981.
 385. Walsh, J. V., Jr., and J. J. Singer. Ca++‐activated k+ channels in vertebrate smooth muscle cells. Cell Calcium 4: 321–330, 1983.
 386. Walsh, J. V., Jr., and J. J. Singer. Identification and characterization of a Ca++‐activated K+ channel in freshly dissociated vertebrate smooth muscle cells using the patch‐clamp technique (Abstract). Biophys. J. 41: 56a, 1983.
 387. Warshaw, D. M., and F. S. Fay. Tension transients in single isolated smooth muscle cells. Science Wash. DC 219: 1438–1441, 1983.
 388. Watson, S. P. The action of substance P on contraction, inositol phospholipids and adenylate cyclase in rat small intestine. Biochem. Pharmacol. 33: 3733–3737, 1984.
 389. Watson, S. P., and C. P. Downes. Substance P induced hydrolysis of inositol phospholipids in guinea‐pig ileum and rat hypothalamus. Eur. J. Pharmacol. 93: 245–253, 1983.
 390. Weigel, R. J., J. A. Connor, and C. L. Prosser. Two roles of calcium during the spike in circular muscle of small intestine in cat. Am. J. Physiol. 237 (Cell Physiol. 6): C247–C256, 1979.
 391. Weston, A. H. Nerve‐mediated inhibition of mechanical activity in rabbit duodenum and the effects of desensitization to adenosine and several of its derivatives. Br. J. Pharmacol. 48: 302–308, 1973.
 392. Wienbeck, M., and J. Christensen. Cationic requirements of colon slow waves in the cat. Am. J. Physiol. 220: 513–519, 1971.
 393. Wikberg, J. Localization of adrenergic receptors in guinea‐pig ileum and rabbit jejunum to cholinergic nerves and to smooth muscle cells. Acta Physiol. Scand. 99: 190–207, 1977.
 394. Wilson, D. B., T. E. Bross, W. R. Sherman, R. A. Berger, and P. W. Majerus. Inositol cyclic phosphates are produced by cleavage of phosphatidylphosphoinositols (polyphosphoinositides) with purified sheep seminal vesicle phospholipase C enzymes. Proc. Natl. Acad. Sci. USA 82: 4013–4017, 1985.
 395. Wong, B. S. Single calcium‐dependent potassium channels from amphibian stomach smooth muscle cells (Abstract). Biophys. J. 47: 136a, 1985.
 396. Wood, J. D., and D. R. Marsh. Effects of atropine, tetrodotoxin and lidocaine on rebound excitation of guinea‐pig small intestine. J. Pharmacol. Exp. Ther. 184: 590–598, 1973.
 397. Yagasaki, O., H. Nabata, and I. Yanagiya. Effects of desensitization to adenosine 5′‐triphosphate and vasoactive intestinal polypeptide on non‐adrenergic inhibitory responses of longitudinal and circular muscle in the rat ileum. J. Pharm. Pharmacol. 35: 818–820, 1983.
 398. Yamamoto, H., O. Hwang, and C. van Breemen. BAY k 8644 differentiates between potential and receptor operated Ca2+ channels. Eur. J. Pharmacol. 102: 555–557, 1984.
 399. Yamamoto, H., and C. van Breemen. Inositol‐1,4,5‐trisphosphate releases calcium from skinned cultured smooth muscle cells. Biochem. Biophys. Res. Commun. 130: 270–274, 1985.
 400. Yamanaka, K., K. Furukawa, and K. Kitamura. The different mechanisms of action of nicorandil and adenosine triphosphate on potassium channels of circular smooth muscle of the guinea‐pig small intestine. Naunyn‐Schmiedeberg's Arch. Pharmacol. 331: 96–103, 1985.
 401. Yau, W. M., and M. L. Youther. Direct evidence for a release of acetylcholine from the myenteric plexus of guinea pig small intestine by substance P. Eur. J. Pharmacol. 81: 665–668, 1982.
 402. Yokoyama, S., and R. A. North. Electrical activity of longitudinal and circular muscle during peristalsis. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G83–G88, 1983.
 403. Yoshino, M., and H. Yabu. Single Ca channel currents in mammalian visceral smooth muscle cells. Pfluegers Arch. 404: 285–286, 1985.
 404. Zelcer, E., and E. E. Daniel. Electrical coupling in the circular muscles of dog jejunum. J. Physiol. Pharmacol. 57: 578–580, 1979.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

T. B. Bolton. Electrophysiology of the intestinal musculature. Compr Physiol 2011, Supplement 16: Handbook of Physiology, The Gastrointestinal System, Motility and Circulation: 217-250. First published in print 1989. doi: 10.1002/cphy.cp060106