Comprehensive Physiology Wiley Online Library

Alterations of small intestine motility by bacteria and their enterotoxins

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Historical Background and Animal Model
2 Migrating Action‐Potential Complex (Mapc)
2.1 Cholera toxin
2.2 Choleragen and Choleragenoid
2.3 Historical Background of MAPC
2.4 Association of MAPC With Prostaglandins
2.5 Relationship of Enteric Nervous System With MAPC
2.6 Mapc In Vitro
2.7 Other Substances that Stimulate MAPC
2.8 Control Mechanisms of MAPC
2.9 Questions for the Future
3 Repetitive Bursts of Action Potentials
3.1 Invasive Escherichia coli
3.2 Shigella dysenteriae 1 and Purified Enterotoxin From Strain 60R
3.3 Clostridium perfringens A Enterotoxin
3.4 Clostridium difficile
3.5 Heat‐Stable Toxins From Escherichia coli
3.6 Campylobacter jejuni
3.7 Summary
4 Bacterial Overgrowth of Small Intestine
4.1 Mechanisms of Diarrhea
4.2 Questions for the Future
5 Summary
Figure 1. Figure 1.

Schematic of 12‐cm distal ileal loop model. Four monopolar silver‐silver chloride electrodes (No. 1–4) are placed 2.5 cm apart on ileal loop. Small catheter is inserted proximally for administration of test material. Larger catheters are inserted distally for outflow of luminal contents from proximal ileum and from loop.

Adapted from Mathias et al. 138
Figure 2. Figure 2.

Control tracing from distal ileal segment. Electrode placement is illustrated on the left. Time and sensitivity calibrations are also shown. Slow‐wave rhythm is illustrated on all four electrode sites. There is brief action potential activity on lead three; it is also shown in enlarged enclosure.

From Burns et al. 24
Figure 3. Figure 3.

Migrating action‐potential complex (MAPC). Electrode placement is illustrated on the left. Time and sensitivity calibrations are also shown. Slope of line as compared with vertical reference line represents propagation velocity of MAPC. Propagation velocity of this complex was 0.85 cm/s.

From Mathias et al. 138
Figure 4. Figure 4.

Onset time of migrating action‐potential complex (MAPC) activity for 8‐h recording period. Abscissa, mean number of MAPC/h. Solid bars, controls (saline); hatched bars, cholera‐infected loops. Results are expressed as mean ± SE.

From Mathias et al. 138
Figure 5. Figure 5.

Effect of cyclooxygenase inhibitors [aspirin (acetylsalicylic acid) and indomethacin] on propagation velocity of migrating action‐potential complex. Hatched bar, cholera‐infected loops; clear bar, cholera‐infected loops treated with aspirin; and dotted bar, cholera‐infected loops treated with indomethacin. Results are expressed as mean ± SE.

Figure 6. Figure 6.

Effect of cyclooxygenase inhibitors [aspirin (acetylsalicylic acid) and indomethacin] on fluid output from distal ileal catheter. Hatched bar, cholera‐infected loops; clear bar, cholera‐infected loops treated with aspirin; dotted bar, cholera‐infected loops treated with low‐dose indomethacin; and solid bar, cholera‐infected loops treated with high‐dose indomethacin. High‐dose indomethacin inhibited all migrating action‐potential complex activity. Results are expressed as mean ± SE.

Figure 7. Figure 7.

Effect of cyclooxygenase inhibitor, indomethacin, on prostaglandin F‐infused ileal loops and on cholera‐infected ileal loops. Results are from ileal loops in three rabbits exposed to prostaglandin F (left) and three rabbits exposed to cholera toxin (right), before and after treatment with indomethacin (2.0 mg/kg IV). Results are expressed as mean ± SE.

Figure 8. Figure 8.

Theoretical cascade and feedback control of cellular functions. Cascade involves interaction of protein kinases A, G, and C with inositol phospholipids, which results in the mobilization of calcium and formation of prostinoids. This schema was developed from platelet model but may be applicable for activities occurring at epithelial cell of small intestine.

From Nishizuka 160. Copyright 1984, by the American Association for the Advancement of Science
Figure 9. Figure 9.

Schematic of possible neural reflex arcs of enteric nervous system, which may provide an explanation for secretory‐motor events of cholera toxin‐induced disease (see Table 1). Enlarged areas, enterocytes (left) and enterocytes with an enterochromaffin cell (right); small open circles, submucosal reflex arc; and small closed circles, intrinsic reflex arc involving myenteric plexus.

Figure 10. Figure 10.

Effects of specific neuroantagonists on migrating action‐potential complex (MAPC) activity. Results are from cholera‐infected loops after peak MAPC activity and are expressed as mean ± SE. Asterisk, P < 0.02 compared with choleragen.

Figure 11. Figure 11.

Effect of 6‐hydroxydopamine on activity front of migrating myoelectric complex (MMC). Electrode placement is illustrated on the left, and time and sensitivity calibrations are also indicated. Migrating action‐potential complexes (MAPC) are shown preceding activity front of MMC. Propagation velocity of MAPC (sloped line on the left) was 0.84 cm/s; propagation velocity of MMC (sloped line on the right) was 3.65 cm/min.

From Mathias et al. 141
Figure 12. Figure 12.

Migrating action‐potential complexes observed in rabbit colon secondary to deoxycholic acid. Electrode placement is shown schematically on the left: E1‐E4 are on ascending colonic loop and E5 is distal to loop. Strain gauge 1 (SG‐1) is located between E2 and E3. Respiration is indicated on bottom tracing, and time and sensitivity calibrations are also shown.

From Shiff et al. 181
Figure 13. Figure 13.

Repetitive bursts of action potentials (RBAP). Electrode placement is illustrated schematically on the left, and time and sensitivity calibrations are also shown. Action potential activity >1.5 s in duration, occurring over at least three successive slow waves on single recording site, is shown on electrode 1. RBAP activity may propagate short distances, as shown in this instance, but it usually does not.

Figure 14. Figure 14.

Effects of products from Clostridium difficile on myoelectric activity in rabbit ileum. Controls, saline; control media, brain‐heart broth; CDCF, C. difficile culture filtrate; HMW, high‐molecular‐weight fraction from C. difficile (>50,000 Mr); LMW, low‐molecular‐weight fraction from C. difficile (<50,000 Mr). Results are expressed as mean ± SE.

From Justus et al. 113. Copyright 1982 by The American Gastroenterological Association
Figure 15. Figure 15.

Effects of heat‐stable toxin (STa) from Escherichia coli. Stippled bars, repetitive bursts of action potentials (RBAP); solid bars, migrating action‐potential complexes (MAPC). mu, Mouse units; asterisk, P < 0.05. Results are expressed as mean ± SE.

From Mathias et al. 143
Figure 16. Figure 16.

Effects on repetitive bursts of action potential (RBAP) activity of STa inactivated by dithiothreitol. Stippled bars, RBAP; solid bars, migrating action‐potential complexes (MAPC). Results are of active STa (ST toxin); inactivated STa (inactivated toxin), and saline controls and are expressed as mean ± SE. Asterisk, P < 0.03.

From Mathias et al. 143
Figure 17. Figure 17.

Number of migrating action‐potential complexes (MAPC) per hour in control, self‐emptying blind loop rats (SEBL), self‐filling blind loop rats (SFBL), and SFBL rats treated with chloramphenicol (SFBL‐Chloro) in the experimental bacterial overgrowth syndrome. Results are expressed as mean ± SE. Double asterisk, P < 0.01 compared with SFBL rats.

From Justus et al. 112
Figure 18. Figure 18.

Repetitive bursts of action‐potential activity expressed as slow waves occupied by action potentials (% SW‐AP) in control rats, self‐emptying blind loop rats (SEBL), self‐filling blind loop rats (SFBL), and SFBL rats treated with chloramphenicol (SFBL‐Chloro) in experimental bacterial overgrowth syndrome. Open bar, sections proximal (afferent) to loop; stippled bar, sections distal (efferent) to loop; striped bar, blind loop itself. Results are expressed as mean ± SE. Asterisk, P < 0.05; double asterisk, P < 0.01 compared with SFBL rats.

From Justus et al. 112
Figure 19. Figure 19.

Number of migrating action‐potential complexes (MAPC) per hour in control rats, gnotobiotic rats, self‐filling blind loop rats (SFBL), and SFBL rats 2, 7, and 21 days after the loops were surgically removed. Results are expressed as mean ± SE. Asterisk, P < 0.05 compared with SFBL rats.

From Justus et al. 112
Figure 20. Figure 20.

Repetitive bursts of action potential activity expressed as slow waves occupied by action potentials (% SW‐AP) in afferent (open bars) and efferent (stippled bars) sections of the jejunum of control rats, gnotobiotic rats, self‐filling blind loop (SFBL) rats, and SFBL rats 2, 7, and 21 days after loops were surgically removed. Results are expressed as mean ± SE.

From Justus et al. 112


Figure 1.

Schematic of 12‐cm distal ileal loop model. Four monopolar silver‐silver chloride electrodes (No. 1–4) are placed 2.5 cm apart on ileal loop. Small catheter is inserted proximally for administration of test material. Larger catheters are inserted distally for outflow of luminal contents from proximal ileum and from loop.

Adapted from Mathias et al. 138


Figure 2.

Control tracing from distal ileal segment. Electrode placement is illustrated on the left. Time and sensitivity calibrations are also shown. Slow‐wave rhythm is illustrated on all four electrode sites. There is brief action potential activity on lead three; it is also shown in enlarged enclosure.

From Burns et al. 24


Figure 3.

Migrating action‐potential complex (MAPC). Electrode placement is illustrated on the left. Time and sensitivity calibrations are also shown. Slope of line as compared with vertical reference line represents propagation velocity of MAPC. Propagation velocity of this complex was 0.85 cm/s.

From Mathias et al. 138


Figure 4.

Onset time of migrating action‐potential complex (MAPC) activity for 8‐h recording period. Abscissa, mean number of MAPC/h. Solid bars, controls (saline); hatched bars, cholera‐infected loops. Results are expressed as mean ± SE.

From Mathias et al. 138


Figure 5.

Effect of cyclooxygenase inhibitors [aspirin (acetylsalicylic acid) and indomethacin] on propagation velocity of migrating action‐potential complex. Hatched bar, cholera‐infected loops; clear bar, cholera‐infected loops treated with aspirin; and dotted bar, cholera‐infected loops treated with indomethacin. Results are expressed as mean ± SE.



Figure 6.

Effect of cyclooxygenase inhibitors [aspirin (acetylsalicylic acid) and indomethacin] on fluid output from distal ileal catheter. Hatched bar, cholera‐infected loops; clear bar, cholera‐infected loops treated with aspirin; dotted bar, cholera‐infected loops treated with low‐dose indomethacin; and solid bar, cholera‐infected loops treated with high‐dose indomethacin. High‐dose indomethacin inhibited all migrating action‐potential complex activity. Results are expressed as mean ± SE.



Figure 7.

Effect of cyclooxygenase inhibitor, indomethacin, on prostaglandin F‐infused ileal loops and on cholera‐infected ileal loops. Results are from ileal loops in three rabbits exposed to prostaglandin F (left) and three rabbits exposed to cholera toxin (right), before and after treatment with indomethacin (2.0 mg/kg IV). Results are expressed as mean ± SE.



Figure 8.

Theoretical cascade and feedback control of cellular functions. Cascade involves interaction of protein kinases A, G, and C with inositol phospholipids, which results in the mobilization of calcium and formation of prostinoids. This schema was developed from platelet model but may be applicable for activities occurring at epithelial cell of small intestine.

From Nishizuka 160. Copyright 1984, by the American Association for the Advancement of Science


Figure 9.

Schematic of possible neural reflex arcs of enteric nervous system, which may provide an explanation for secretory‐motor events of cholera toxin‐induced disease (see Table 1). Enlarged areas, enterocytes (left) and enterocytes with an enterochromaffin cell (right); small open circles, submucosal reflex arc; and small closed circles, intrinsic reflex arc involving myenteric plexus.



Figure 10.

Effects of specific neuroantagonists on migrating action‐potential complex (MAPC) activity. Results are from cholera‐infected loops after peak MAPC activity and are expressed as mean ± SE. Asterisk, P < 0.02 compared with choleragen.



Figure 11.

Effect of 6‐hydroxydopamine on activity front of migrating myoelectric complex (MMC). Electrode placement is illustrated on the left, and time and sensitivity calibrations are also indicated. Migrating action‐potential complexes (MAPC) are shown preceding activity front of MMC. Propagation velocity of MAPC (sloped line on the left) was 0.84 cm/s; propagation velocity of MMC (sloped line on the right) was 3.65 cm/min.

From Mathias et al. 141


Figure 12.

Migrating action‐potential complexes observed in rabbit colon secondary to deoxycholic acid. Electrode placement is shown schematically on the left: E1‐E4 are on ascending colonic loop and E5 is distal to loop. Strain gauge 1 (SG‐1) is located between E2 and E3. Respiration is indicated on bottom tracing, and time and sensitivity calibrations are also shown.

From Shiff et al. 181


Figure 13.

Repetitive bursts of action potentials (RBAP). Electrode placement is illustrated schematically on the left, and time and sensitivity calibrations are also shown. Action potential activity >1.5 s in duration, occurring over at least three successive slow waves on single recording site, is shown on electrode 1. RBAP activity may propagate short distances, as shown in this instance, but it usually does not.



Figure 14.

Effects of products from Clostridium difficile on myoelectric activity in rabbit ileum. Controls, saline; control media, brain‐heart broth; CDCF, C. difficile culture filtrate; HMW, high‐molecular‐weight fraction from C. difficile (>50,000 Mr); LMW, low‐molecular‐weight fraction from C. difficile (<50,000 Mr). Results are expressed as mean ± SE.

From Justus et al. 113. Copyright 1982 by The American Gastroenterological Association


Figure 15.

Effects of heat‐stable toxin (STa) from Escherichia coli. Stippled bars, repetitive bursts of action potentials (RBAP); solid bars, migrating action‐potential complexes (MAPC). mu, Mouse units; asterisk, P < 0.05. Results are expressed as mean ± SE.

From Mathias et al. 143


Figure 16.

Effects on repetitive bursts of action potential (RBAP) activity of STa inactivated by dithiothreitol. Stippled bars, RBAP; solid bars, migrating action‐potential complexes (MAPC). Results are of active STa (ST toxin); inactivated STa (inactivated toxin), and saline controls and are expressed as mean ± SE. Asterisk, P < 0.03.

From Mathias et al. 143


Figure 17.

Number of migrating action‐potential complexes (MAPC) per hour in control, self‐emptying blind loop rats (SEBL), self‐filling blind loop rats (SFBL), and SFBL rats treated with chloramphenicol (SFBL‐Chloro) in the experimental bacterial overgrowth syndrome. Results are expressed as mean ± SE. Double asterisk, P < 0.01 compared with SFBL rats.

From Justus et al. 112


Figure 18.

Repetitive bursts of action‐potential activity expressed as slow waves occupied by action potentials (% SW‐AP) in control rats, self‐emptying blind loop rats (SEBL), self‐filling blind loop rats (SFBL), and SFBL rats treated with chloramphenicol (SFBL‐Chloro) in experimental bacterial overgrowth syndrome. Open bar, sections proximal (afferent) to loop; stippled bar, sections distal (efferent) to loop; striped bar, blind loop itself. Results are expressed as mean ± SE. Asterisk, P < 0.05; double asterisk, P < 0.01 compared with SFBL rats.

From Justus et al. 112


Figure 19.

Number of migrating action‐potential complexes (MAPC) per hour in control rats, gnotobiotic rats, self‐filling blind loop rats (SFBL), and SFBL rats 2, 7, and 21 days after the loops were surgically removed. Results are expressed as mean ± SE. Asterisk, P < 0.05 compared with SFBL rats.

From Justus et al. 112


Figure 20.

Repetitive bursts of action potential activity expressed as slow waves occupied by action potentials (% SW‐AP) in afferent (open bars) and efferent (stippled bars) sections of the jejunum of control rats, gnotobiotic rats, self‐filling blind loop (SFBL) rats, and SFBL rats 2, 7, and 21 days after loops were surgically removed. Results are expressed as mean ± SE.

From Justus et al. 112
References
 1. Aeberhard, P. F., L. D. Magnenat, and W. A. Zimmermann. Nervous control of migrating myoelectric complex of the small bowel. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G102–G108, 1980.
 2. Alderete, J. F., and D. C. Robertson. Purification and chemical characterization of the heat‐stable enterotoxin produced by porcine strains of enterotoxigenic Escherichia coli. Infect. Immun. 19: 1021–1030, 1978.
 3. Allen, A. Structure and function of gastrointestinal mucus. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson New York: Raven, 1981, vol. 1, chapt. 13, p. 617–639.
 4. Alvarez, W. C., and L. J. Mahoney. Peristaltic rush in the rabbit. Am. J. Physiol. 69: 211–225, 1924.
 5. Alvarez, W. C., and F. B. Taylor. Changes in rhythmicity, irritability and tone in the purged intestine. J. Pharmacol. Exp. Ther. 10: 365–377, 1917.
 6. Ament, M. E., S. S. Shimoda, D. R. Saunders, and C. E. Rubin. Pathogenesis of steatorrhea in three cases of small intestinal stasis syndrome. Gastroenterology 63: 728–747, 1972.
 7. Ammon, H. V., and S. F. Phillips. Inhibition of ileal water absorption by intraluminal fatty acids. Influence of chain length, hydroxylation and conjugation of fatty acids. J. Clin. Invest. 53: 205–210, 1974.
 8. Ammon, H. V., P. J. Thomas, and S. F. Phillips. Effects of oleic and ricinoleic acids on net jejunal water and electrolyte movement. J. Clin. Invest. 53: 374–379, 1974.
 9. Banwell, J. G., N. F. Pierce, R. C. Mitra, K. L. Brigham, G. J. Caranasos, R. I. Keimowitz, D. S. Fedson, J. Thomas, S. L. Gorbach, R. B. Sack, and A. Mondal. Intestinal fluid and electrolyte transport in human cholera. J. Clin. Invest. 49: 183–195, 1970.
 10. Banwell, J. G., and H. Sherr. Effect of bacterial enterotoxin on the gastrointestinal tract. Gastroenterology 65: 467–497, 1973.
 11. Bartlett, J. G., N. Moon, T. W. Chang, N. Taylor, and A. B. Onderdonk. Role of Clostridium difficile in antibiotic‐associated pseudomembranous colitis. Gastroenterology 75: 778–782, 1978.
 12. Binder, H. J., G. F. Lemp, and J. D. Gardner. Receptors for vasoactive intestinal peptide and secretin on small intestinal epithelial cells. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G190–G196, 1980.
 13. Bjørneklett, A. Small bowel bacterial overgrowth syndrome. Scand. J. Gastroenterol. Suppl. 85: 83–93, 1983.
 14. Blaser, M. J., and L. B. Reller. Campylobacter enteritis. N. Engl. J. Med. 305: 1444–1452, 1981.
 15. Blaser, M. J., J. G. Wells, R. A. Feldman, R. A. Pollard, and J. R. Allen. Campylobacter enteritis in the United States. A multicenter study. Ann. Intern. Med. 98: 360–365, 1983.
 16. Bloch, R., H. Menge, H. Lorenz‐Meyer, H. G. Stockert, and E. O. Riecken. Functional, biochemical and morphological alterations in the intestines of rats with an experimental blind‐loop syndrome. Res. Exp. Med. 166: 67–78, 1975.
 17. Boldyreff, V. Periodic wave phenomena in the secretory function of the digestive tract [in Russian]. Gaz. Hop. Botkine 34: 1529–1542, 1902.
 18. Bonnycastle, D. D. Cathartics and laxatives. In: Drill's Pharmacology in Medicine, edited by J. R. DiPalma New York: McGraw‐Hill, 1971, p. 911–975.
 19. Boyle, J. M., and J. D. Gardner. Sequence of events mediating the effect of cholera toxin on rat thymocytes. J. Clin. Invest. 53: 1149–1158, 1974.
 20. Brown, W. R., D. C. Savage, R. S. Dubois, M. H. Alp, A. Mallory, and F. KernJr. Intestinal microflora of immunoglobulin‐deficient and normal human subjects. Gastroenterology 62: 1143–1152, 1972.
 21. Browning, G. G., K. A. Buchan, and C. Mackay. The effect of vagotomy and drainage on the small bowel flora. Gut 15: 139–142, 1974.
 22. Burgess, M. N., R. J. Bywater, C. M. Cowley, N. A. Mullan, and P. M. Newsome. Biological evaluation of a methanol‐soluble, heat‐stable Escherichia coli enterotoxin in infant mice, pigs, rabbits, and calves. Infect. Immunol. 21: 526–531, 1978.
 23. Burke, V., M. Gracey, J. Thomas, and A. Malajczuk. Inhibition of intestinal uptake of amino acids by unconjugated bile salt. Aust. J. Exp. Biol. Med. Sci. 54: 391–402, 1976.
 24. Burns, T. W., J. R. Mathias, G. M. Carlson, J. L. Martin, and R. P. Shields. Effect of toxigenic Escherichia coli on myoelectric activity of small intestine. Am. J. Physiol. 235 (Endocrinol. Metab. Gastrointest. Physiol. 4): E311–E315, 1978.
 25. Burns, T. W., J. R. Mathias, J. L. Martin, G. M. Carlson, and R. P. Shields. Alteration of myoelectric activity of small intestine by invasive Escherichia coli. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G57–G62, 1980.
 26. Butzler, J. P., and M. B. Skirrow. Campylobacter enteritis. Clin. Gastroenterol. 8: 737–765, 1979.
 27. Cameron, D. G., G. M. Watson, and L. J. Witts. The experimental production of macrocytic anemia by operations on the intestinal tract. Blood 4: 803–815, 1949.
 28. Carpenter, C. C. J.Jr. Cholera enterotoxin—recent investigations yield insights into transport processes. Am. J. Med. 50: 1–7, 1971.
 29. Carpenter, C. C. J.Jr., R. B. Sack, J. C. Feeley, and R. W. Steenberg. Site and characteristics of electrolyte loss and effect of intraluminal glucose in experimental canine cholera. J. Clin. Invest. 47: 1210–1220, 1968.
 30. Cassel, D., and T. Pfeuffer. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide‐binding protein of the adenylate cyclase system. Proc. Natl. Acad. Sci. USA 75: 2669–2673, 1978.
 31. Cassel, D., and Z. Selinger. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc. Natl. Acad. Sci. USA 74: 3307–3311, 1977.
 32. Cassuto, J. Nervous mechanisms in cholera secretion. An experimental study in cats and rats. Göteburg, Sweden: Univ. of Göteburg, 1981 PhD thesis.
 33. Cassuto, J., M. Jodal, and O. Lundgren. The effect of nicotinic and muscarinic receptor blockade on cholera toxin induced intestinal secretion in rats and cats. Acta Physiol. Scand. 114: 573–577, 1982.
 34. Cassuto, J., M. Jodal, R. Tuttle, and O. Lundgren. On the role of intramural nerves in the pathogenesis of cholera toxin‐induced intestinal secretion. Scand. J. Gastroenterol. 16: 377–384, 1981.
 35. Cassuto, J., M. Jodal, R. Tuttle, and O. Lundgren. 5‐Hydroxytryptamine and cholera secretion. Physiological and pharmacological studies in cats and rats. Scand. J. Gastroenterol. 17: 695–703, 1982.
 36. Cassuto, J., A. Siewert, M. Jodal, and O. Lundgren. The involvement of intramural nerves in cholera toxin induced intestinal secretion. Acta Physiol. Scand. 117: 195–202, 1983.
 37. Challacombe, D. N., J. M. Richardson, B. Rowe, and C. M. Anderson. Bacterial microflora of the upper gastrointestinal tract in infants with protracted diarrhoea. Arch. Dis. Child. 49: 270–277, 1974.
 38. Chernov, A. J., W. F. Doe, and D. Gompertz. Intrajejunal volatile fatty acids in the stagnant loop syndrome. Gut 13: 103–106, 1972.
 39. Cline, W. S., V. Lorenzsonn, L. Benz, P. Bass, and W. A. Olsen. The effects of sodium ricinoleate on small intestinal function and structure. J. Clin. Invest. 58: 380–390, 1976.
 40. Code, C. F., and J. A. Marlette. The interdigestive myoelectric complex of the stomach and small bowel of dogs. J. Physiol. Lond. 246: 289–309, 1975.
 41. Cooke, H. J. Neurobiology of the intestinal mucosa. Gastroenterology 90: 1057–1081, 1986.
 42. Coremans, G., S. Chaussade, J. Janssens, and G. Vantrappen. Migrating action‐potential complexes (MAPC), a motility pattern associated with diarrhea in man (Abstract). Dig. Dis. Sci. 30: 765, 1985.
 43. Davis, R. H., E. Y. Eaker, G. B. Bixler, M. H. Clench, and J. R. Mathias. Phorbol esters induce unique myoelectric activity in rabbit ileum (Abstract). Clin. Res. 34: 438A, 1986.
 44. Dawson, A. M., and K. J. Isselbacher. Studies on lipid metabolism in the small intestine with observations on the role of bile salts. J. Clin. Invest. 39: 730–740, 1960.
 45. Dee, S. N., and D. N. Chatterjee. An experimental study of the mechanism of action of Vibrio cholerae on the intestinal mucous membrane. J. Pathol. Bacteriol. 66: 559–562, 1953.
 46. Donaldson, R. M.Jr. Studies on the pathogenesis of steatorrhea in the blind loop syndrome. J. Clin. Invest. 44: 1815–1825, 1965.
 47. Donaldson, R. M.Jr. Small bowel bacterial overgrowth. Adv. Intern. Med. 16: 191–212, 1970.
 48. Drake, A. A., M. J. Gilchrist, J. A. Washington II, K. A. Huizenga, and R. E. Van Scoy. Diarrhea due to Campylobacter fetus subspecies jejuni: a clinical review of 63 cases. Mayo Clin. Proc. 56: 414–423, 1981.
 49. Drasar, B. S., M. Shiner, and G. M. McLeod. Studies on the intestinal flora. I. The bacterial flora of the gastrointestinal tract in healthy and achlorhydric persons. Gastroenterology 56: 71–79, 1969.
 50. DuPont, H. L., S. B. Formal, R. B. Hornick, M. J. Snyder, J. P. Libonati, D. G. Sheahan, E. H. LaBrec, and J. P. Kalas. Pathogenesis of Escherichia coli diarrhea. N. Engl. J. Med. 285: 1–9, 1971.
 51. Dutta, N. K., and M. K. Habbu. Experimental cholera in infant rabbits: a method for chemotherapeutic investigation. Br. J. Pharmacol. 10: 153–159, 1955.
 52. Ebeid, A. M., J. Escourrou, P. B. Soeters, P. Murray, and J. E. Fischer. Hepatic inactivation of vasoactive intestinal peptide in man and dog. Ann. Surg. 188: 28–33, 1978.
 53. Enders, G. L.Jr., and C. L. Duncan. Preparative polyacrylamide gel electrophoresis purification of Clostridium perfringens enterotoxin. Infect. Immun. 17: 425–429, 1977.
 54. Engley, F. B.Jr. The neurotoxin of Shigella dysenteriae (Shiga). Bacteriol Rev. 16: 153–178, 1952.
 55. Fernandez, A., C. A. Sninsky, A. D. O'Brien, M. H. Clench, and J. R. Mathias. Purified Shigella enterotoxin does not alter intestinal motility. Infect. Immun. 43: 477–481, 1984.
 56. Fernandez, H., U. F. Neto, F. Fernandes, P. M. de Almeida, and L. R. Trabulsi. Culture supernatants of Campylobacter jejuni induce a secretory response in jejunal segments of adult rats. Infect. Immun. 40: 429–431, 1983.
 57. Field, M. Intestinal secretion: effect of cyclic AMP and its role in cholera. N. Engl. J. Med. 284: 1137–1144, 1971.
 58. Field, M., L. H. Graf, Jr., W. J. Laird, and P. L. Smith. Heat‐stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc. Natl. Acad. Sci. USA 75: 2800–2804, 1978.
 59. Finck, A. D., and R. L. Katz. Prevention of cholera‐induced intestinal secretion in the cat by aspirin. Nature Lond. 238: 273–274, 1972.
 60. Fingel, E. Cathartics and laxatives. In: Pharmacological Basis of Therapeutics, edited by L. S. Goodman and A. Gilman. New York: Macmillan, 1970, p. 1020–1024.
 61. Finkelstein, R. A., K. Fujita, and J. J. LoSpalluto. Procholeragenoid: an aggrevated intermediate in the formation of choleragenoid. J. Immunol. 107: 1043–1051, 1971.
 62. Finkelstein, R. A., and J. J. LoSpalluto. Production of highly purified choleragen and choleragenoid. J. Infect. Dis. 121, Suppl.: S63–S70, 1970.
 63. Florey, H. W. The secretion and function of intestinal mucus. Gastroenterology 43: 326–329, 1962.
 64. Fostner, J. F. Intestinal mucins in health and disease. Digestion 17: 234–263, 1978.
 65. Gaginella, T. S., V. S. Chadwick, J. C. Debongnie, J. C. Lewis, and S. F. Phillips. Perfusion of rabbit colon with ricinoleic acid: dose‐related mucosal injury, fluid secretion, and increased permeability. Gastroenterology 73: 95–101, 1977.
 66. Gaginella, T. S., and S. F. Phillips. Ricinoleic acid (castor oil) alters intestinal surface structure: a scanning electronmicroscopic study. Mayo Clin. Proc. 51: 6–12, 1976.
 67. Gemski, P.Jr., A. Takeuchi, O. Washington, and S. B. Formal. Shigellosis due to Shigella dysenteriae. I. Relative importance of mucosal invasion versus toxin production in pathogenesis. J. Infect. Dis. 126: 523–530, 1972.
 68. Gershon, M. D., and S. M. Erde. The nervous system of the gut. Gastroenterology 80: 1571–1594, 1981.
 69. Gershon, M. D., D. L. Sherman, and C. F. Dreyfus. Effect of indolic neurotoxins on enteric serotonergic neurons. J. Comp. Neurol. 190: 581–596, 1980.
 70. Giannella, R. A. Suckling mouse model for detection of heat‐stable Escherichia coli exterotoxin: characteristics of the model. Infect. Immun. 14: 95–99, 1976.
 71. Giannella, R. A. Pathogenesis of acute bacterial diarrheal disorders. Annu. Rev. Med. 32: 341–357, 1981.
 72. Giannella, R. A., and K. W. Drake. Effect of purified Escherichia coli heat‐stable enterotoxin on intestinal cyclic nucleotide metabolism and fluid secretion. Infect. Immun. 24: 19–23, 1979.
 73. Giannella, R. A., W. R. Rout, and P. P. Toskes. Jejunal brush border injury and impaired sugar and amino acid uptake in the blind loop syndrome. Gastroenterology 67: 965–974, 1974.
 74. Gill, D. M. Multiple roles of erythrocyte supernatant in the activation of adenylate cyclase by Vibrio cholerae toxin in vitro. J. Infect. Dis. 133, Suppl: S55–S63, 1976.
 75. Gill, D. M. Mechanism of action of cholera toxin. In: Advances in Cyclic Nucleotide Research, edited by P. Greengard and G. A. Robison. New York: Raven, 1977, vol. 8, p. 85–118.
 76. Gill, D. M., and C. A. King. The mechanism of action of cholera toxin in pigeon erythrocyte lysates. J. Biol. Chem. 250: 6424–6432, 1975.
 77. Goldstein, F., C. W. Wirts, and O. D. Kowlessar. Diabetic diarrhea and steatorrhea. Microbiologic and clinical observations. Ann. Intern. Med. 72: 215–218, 1970.
 78. Gorbach, S. L. Intestinal microflora. Gastroenterology 60: 1110–1129, 1971.
 79. Gorbach, S. L., G. Neale, R. Levitan, and G. W. Hepner. Alterations in human intestinal microflora during experimental diarrhoea. Gut 11: 1–6, 1970.
 80. Gorbach, S. L., A. G. Plaut, L. Nahas, L. Weinstein, G. Spanknebel, and R. Levitan. Studies of intestinal microflora. II. Microorganisms of the small intestine and their relations to oral and fecal flora. Gastroenterology 53: 856–867, 1967.
 81. Gracey, M. Intestinal absorption in the “contaminated small‐bowel syndrome.” Gut 12: 403–410, 1971.
 82. Gracey, M., V. Burke, and A. Oshin. Reversible inhibition of intestinal active sugar transport by deconjugated bile salts in vitro. Biochim. Biophys. Acta 225: 308–314, 1971.
 83. Gracey, M., J. Papadimitriou, and G. Bower. Ultrastructural changes in the small intestines of rats with self‐filling blind loops. Gastroenterology 67: 646–651, 1974.
 84. Gracey, M., Suharjono, Sunoto, and D. E. Stone. Microbial contamination of the gut: another feature of malnutrition. Am. J. Clin. Nutr. 26: 1170–1174, 1973.
 85. Grady, G. F., and G. T. Keusch. Pathogenesis of bacterial diarrheas. N. Engl. J. Med. 285: 831–841, 891–900, 1971.
 86. Gray, J. D., and M. Shiner. Influence of gastric pH on gastric and jejunal flora. Gut 8: 74–81, 1967.
 87. Greenberg, R. N., and R. L. Guerrant. E. coli heat‐stable enterotoxin. Pharmacol. Ther. 13: 507–531, 1981.
 88. Greenlee, H. B., S. M. Gelbart, A. J. DeOrio, D. S. Francescatti, J. Paez, and G. F. Reinhardt. The influence of gastric surgery on the intestinal flora. Am. J. Clin. Nutr. 30: 1826–1833, 1977.
 89. Greenlee, H. B., R. Vivit, J. Paez, and A. Dietz. Bacterial flora of the jejunum following peptic ulcer surgery. Arch. Surg. 102: 260–265, 1971.
 90. Guerrant, R. L. Pathophysiology of the enterotoxic and viral diseases. In: Diarrhea and Malnutrition, edited by L. C. Chen and N. S. Scrimshaw. New York: Plenum, 1983, p. 23–43.
 91. Guerrant, R. L. Microbial toxins and diarrhoeal diseases: introduction and overview. In: Microbial Toxins and Diarrhoeal Disease, edited by D. Evered and J. Whelan. London: Pitman, 1985, p. 1–13. (CIBA Found. Symp. 112.).
 92. Guerrant, R. L., C. C. Carpenter, and N. F. Pierce. Experimental E. coli diarrhea: effects of viable bacteria and enterotoxin. Trans. Assoc. Am. Physicians 86: 111–120, 1973.
 93. Guerrant, R. L., U. Ganguly, A. G. P. Casper, E. J. Moore, N. F. Pierce, and C. C. J. Carpenter. Effect of Escherichia coli on fluid transport across canine small bowel. Mechanism and time‐course with enterotoxin and whole bacterial cells. J. Clin. Invest. 52: 1707–1714, 1973.
 94. Guerrant, R. L., J. M. Hughes, B. Chang, D. C. Robertson, and F. Murad. Activation of intestinal guanylate cyclase by heat‐stable enterotoxin of Escherichia coli: studies of tissue specificity, potential receptors and intermediates. J. Infect. Dis. 142: 220–228, 1980.
 95. Guerrant, R. L., L. V. Kirchoff, D. S. Shields, M. K. Nations, J. Leslie, M. A. de Sousa, J. G. Araujo, L. L. Correia, K. T. Saver, K. E. McClelland, F. L. Trowbridge, and J. M. Hughes. Prospective study of diarrheal illness in northeastern Brazil: patterns of disease, nutritional impact, etiologies and risk factors. J. Infect. Dis. 148: 986–987, 1983.
 96. Hajjar, J. J., R. N. Khuri, and A. B. Bikhazi. Effect of bile salts on amino acid transport by rabbit intestine. Am. J. Physiol. 299: 518–523, 1975.
 97. Hamilton, J. D., N. H. Dyer, A. M. Dawson, F. W. O'Grady, A. Vince, J. C. B. Fenton, and D. L. Mollin. Assessment and significance of bacterial overgrowth in the small bowel. Q. J. Med. 39: 265–285, 1970.
 98. Hawkey, C. J., and D. S. Rampton. Prostaglandins and the gastrointestinal mucosa: are they important in its function, disease or treatment? Gastroenterology 89: 1162–1188, 1985.
 99. Hewlett, E. L., R. L. Guerrant, D. J. Evans, Jr., and W. G. Greenough III. Toxins of Vibrio cholerae and Escherichia coli stimulate adenylate in rat fat cells. Nature Lond. 249: 371–373, 1974.
 100. Hofmann, A. F., and J. R. Poley. Role of bile acid malabsorption in pathogenesis of diarrhea and steatorrhea in patients with ileal resection. I. Response to cholestyramine or replacement of dietary long chain triglyceride by medium chain triglyceride. Gastroenterology 62: 918–934, 1972.
 101. Holden, R. J., P. Mills, L. Craig, J. D. Sleigh, I. Mackenzie, W. Watson, G. Watkinson, and G. Crean. Bacterial contamination of the small bowel in the elderly (Letter to the editor). Lancet 1: 502–503, 1978.
 102. Holmgren, J. Comparison of the tissue receptors for Vibrio cholerae and Escherichia coli enterotoxins by means of gangliosides and natural cholera toxoid. Infect. Immun. 8: 851–859, 1973.
 103. Holmgren, J., and I. Lönnroth. Structure and function of enterotoxins and their receptors. In: Cholera and Related Diarrheas, edited by O. Ouchterlony and J. Holmgren. Basel: Karger, 1980, p. 88–109. (Proc. 43rd Nobel Symp.).
 104. Holmgren, J., I. Lönnroth, J. Månsson, and L. Svennerholm. Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proc. Natl. Acad. Sci. USA 72: 2520–2524, 1975.
 105. Houckgeest, van B. Untersuchungen über Peristaltik des Magens und Darmkanals. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 6: 266–302, 1872.
 106. Hubel, K. A. The effects of electrical field stimulation and tetrodotoxin on ion transport by the isolated rabbit ileum. J. Clin. Invest. 62: 1039–1047, 1978.
 107. Hughes, J. M., F. Murad, B. Chang, and R. L. Guerrant. Role of cyclic GMP in the action of heat‐stable enterotoxin of Eschericia coli. Nature Lond. 271: 755–756, 1978.
 108. Isaacs, P. E., and Y. S. Kim. The contaminated small bowel syndrome. Am. J. Med. 67: 1049–1057, 1979.
 109. Jacks, T. M., and B. J. Wu. Biochemical properties of Escherichia coli low‐molecular‐weight, heat‐stable enterotoxin. Infect. Immun. 9: 342–347, 1974.
 110. Jacoby, H. I., and C. H. Marshall. Antagonism of cholera enterotoxin by anti‐inflammatory agents in the rat. Nature Lond. 235: 163–165, 1972.
 111. Juorio, A. V., and G. Gabella. Noradrenaline in the guinea pig alimentary canal: regional distribution and sensitivity to denervation and reserpine. J. Neurochem. 22: 851–858, 1974.
 112. Justus, P. G., A. Fernandez, J. L. Martin, C. E. King, P. P. Toskes, and J. R. Mathias. Altered myoelectric activity in the experimental blind loop syndrome. J. Clin. Invest. 72: 1064–1071, 1983.
 113. Justus, P. G., J. L. Martin, D. A. Goldberg, N. S. Taylor, J. G. Bartlett, R. W. Alexander, and J. R. Mathias. Myoelectric effects of Clostridium difficile: motility‐altering factors distinct from its cytotoxin and enterotoxin in rabbits. Gastroenterology 83: 836–843, 1982.
 114. Justus, P. G., J. R. Mathias, J. L. Martin, G. M. Carlson, R. P. Shields, and S. B. Formal. Myoelectric activity in the small intestine in response to Clostridium perfringens A enterotoxin: correlation with histologic findings in an in vivo rabbit model. Gastroenterology 80: 902–906, 1981.
 115. Justus, P. G., L. E. McHerron, and T. T. Ward. Altered motility and duration of bacterial overgrowth in experimental blind loop syndrome. Dig. Dis. Sci. 29: 643–648, 1984.
 116. Kahn, R. A., and A. G. Gilman. Purification of a protein cofactor required for ADP‐ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J. Biol. Chem. 259: 6228–6234, 1984.
 117. Kalser, M. H., R. Cohen, I. Arteaga, E. Yawn, L. Mayoral, W. R. Hoffert, and D. Frazier. Normal viral and bacterial flora of the human small and large intestine. N. Engl. J. Med. 274: 500–505, 558–563, 1966.
 118. Kennedy, D. J., R. N. Greenberg, J. A. Dunn, R. Abernathy, J. S. Ryerse, and R. L. Guerrant. Effects of Escherichia coli heat‐stable enterotoxin STb on intestines of mice, rats, rabbits and piglets. Infect. Immun. 46: 639–643, 1984.
 119. Keusch, G. T., and S. T. Donta. Classification of enterotoxins on the basis of activity in cell culture. J. Infect. Dis. 131: 58–63, 1975.
 120. Kim, Y. S., and W. Spritz. Metabolism of hydroxy‐fatty acids in dogs with steatorrhea secondary to experimentally produced intestinal blind loops. J. Lipid Res. 9: 487–491, 1968.
 121. Kimberg, D. V., M. Field, J. Johnson, A. Henderson, and E. Gershon. Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins. J. Clin. Invest. 50: 1218–1230, 1971.
 122. King, C. E., and P. P. Toskes. Malabsorption following gastric resection. In: Postgastrectomy Syndromes, edited by F. L. Bushkin and E. R. Woodward. Philadelphia, PA: Saunders, 1976, p. 129–146. (Major Problems in Clinical Surgery, vol. 20.).
 123. King, C. E., and P. P. Toskes. Small intestine bacterial overgrowth. Gastroenterology 76: 1035–1055, 1979.
 124. Koch, K. L., J. L. Martin, and J. R. Mathias. Migrating action‐potential complexes in vitro in cholera‐exposed rabbit ileum. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G291–G294, 1983.
 125. Krejs, G. J., R. M. Barkley, N. W. Read, and J. S. Fordtran. Intestinal secretion induced by vasoactive intestinal polypeptide. A comparison with cholera toxin in the canine jejunum in vivo. J. Clin. Invest. 61: 1337–1345, 1978.
 126. Laburthe, M., J. C. Prieto, B. Amiranoff, C. Dupont, D. Hoa, and G. Rosselin. Interaction of vasoactive intestinal peptide with isolated intestinal epithelial cells from rat. 2. Characterization and structural requirements of the stimulatory effect of vasoactive intestinal peptide on production of adenosine 3':5'‐monophosphate. Eur. J. Biochem. 96: 239–248, 1979.
 127. LaMont, J. T. Structure and function of gastrointestinal mucus. Viewpoints Gastrointest. Dis. 17: 1–4, 1985.
 128. LaMont, J. T., B. S. Turner, D. DiBenedetto, R. Handin, and A. I. Schafer. Arachidonic acid stimulates mucin secretion in prairie dog gallbladder. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G92–G98, 1983.
 129. LaMont, J. T., and A. Ventola. Stimulation of colonic glycoprotein synthesis by dibutyryl cyclic AMP and theophylline. Gastroenterology 72: 82–86, 1977.
 130. Lind, C. D., R. H. Davis, R. L. Guerrant, J. B. Kaper, and J. R. Mathias. Effects of Vibrio cholerae, with and without enterotoxin production, on myoelectric activity of rabbit ileum in vivo (Abstract). Dig. Dis. Sci. 32: 918, 1988.
 131. Loewenstein, M. Epidemiology of Clostridium perfringens food poisoning. N. Engl. J. Med. 286: 1026–1028, 1972.
 132. Low‐Beer, T. S., R. E. Schneider, and W. O. Dobbins. Morphological changes of the small intestinal mucosa of guinea pig and hamster following incubation in vitro and perfusion in vivo with unconjugated bile salts. Gut 11: 486–492, 1970.
 133. Maffei, H. V., and F. J. Nóbrega. Gastric pH and microflora of normal and diarrhoeic infants. Gut 16: 719–726, 1975.
 134. Manninen, K. I., J. F. Prescott, and I. R. Dohoo. Pathogenecity of Campylobacter jejuni isolates from animals and humans. Infect. Immun. 38: 46–52, 1982.
 135. Martin, J. L., P. G. Justus, and J. R. Mathias. Altered motility of the small intestine in response to ethanol (ETOH): an explanation for the diarrhea associated with consumption of alcohol (Abstract). Gastroenterology 78: 1218, 1980.
 136. Mathias, J. R., G. M. Carlson, G. Bertiger, J. L. Martin, and S. Cohen. Migrating action potential complex of cholera: a possible prostaglandin‐induced response. Am. J. Physiol. 232 (Endocrinol. Metab. Gastrointest. Physiol. 1): E529–E534, 1977.
 137. Mathias, J. R., G. M. Carlson, A. J. DiMarino, G. Bertiger, and S. Cohen. The effect of cholera toxin on ileal myoelectric activity: a neural‐hormonal mechanism. In: Proc. Fifth Int. Symp. Gastrointest. Motil., edited by G. Vantrappen Herentals, Belgium: Typoff, 1976, p. 219–226.
 138. Mathias, J. R., G. M. Carlson, A. J. DiMarino, G. Bertiger, H. E. Morton, and S. Cohen. Intestinal myoelectric activity in response to live Vibrio cholerae and cholera enterotoxin. J. Clin. Invest. 58: 91–96, 1976.
 139. Mathias, J. R., G. M. Carlson, J. L. Martin, R. P. Shields, and S. Formal. Shigella dysenteriae I enterotoxin: proposed role in pathogenesis of shigellosis. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G382–G386, 1980.
 140. Mathias, J. R., and M. H. Clench. Review: pathophysiology of diarrhea caused by bacterial overgrowth of the small intestine. Am. J. Med. Sci. 289: 243–248, 1985.
 141. Mathias, J. R., M. H. Clench, R. H. Davis, C. A. Sninsky, and V. M. Piñeiro‐Carrero. Migrating action potential complex: unmasked by 6‐hydroxydopamine. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G416–G421, 1985.
 142. Mathias, J. R., J. L. Martin, T. W. Burns, G. M. Carlson, and R. P. Shields. Ricinoleic acid effect on the electrical activity of the small intestine in rabbits. J. Clin. Invest. 61: 640–644, 1978.
 143. Mathias, J. R., J. Nogueira, J. L. Martin, G. M. Carlson, and R. A. Giannella. Escherichia coli heat‐stable toxin: its effect on motility of the small intestine. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G360–G363, 1982.
 144. Mathias, J. R., and C. A. Sninsky. Motor effects of enterotoxins and laxatives. In: Intestinal Absorption and Secretion, edited by E. Skadhauge and K. Heintze. Lancaster, UK: MTP, 1984, p. 161–169.
 145. Mathias, J. R., and C. A. Sninsky. Motility of the small intestine: a look ahead. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G495–G500, 1985.
 146. Mathias, J. R., C. A. Sninsky, J. L. Martin, and A. Fernandez. The migrating action potential complex in a human subject: a case of surreptitious laxative abuse diagnosed by recording probe (Abstract). Clin. Res. 31: 286A, 1983.
 147. Mathias, J. R., C. A. Sninsky, H. D. Millar, M. H. Clench, and R. H. Davis. Development of an improved multi‐pressure‐sensor probe for recording muscle contraction in human intestine. Dig. Dis. Sci. 30: 119–123, 1985.
 148. McCoy, E. J., and R. D. Baker. Effect of feeding on electrical activity of dog's small intestine. Am. J. Physiol. 214: 1291–1295, 1968.
 149. McCoy, E. J., and P. Bass. Chronic electrical activity of gastroduodenal area: effects of food and certain catecholamines. Am. J. Physiol. 205: 439–445, 1963.
 150. McDonel, J. L., and C. L. Duncan. Histopathological effect of Clostridium perfringens enterotoxin in the rabbit ileum. Infect. Immun. 12: 1214–1218, 1975.
 151. McEvoy, A., J. Dutton, and O. F. James. Bacterial contamination of the small intestine is an important cause of occult malabsorption in the elderly. Br. Med. J. 287: 789–793, 1983.
 152. McGowen, K., A. Kane, N. Asarkof, J. Wicks, V. Guerina, J. Kellum, S. Baron, A. R. Gintzler, and M. Donowitz. Entamoeba histolytica causes intestinal secretion: role of serotonin. Science Wash. DC 221: 760–764, 1983.
 153. Meltzer, S. J., and J. Auer. Peristaltic rush. Am. J. Physiol. 20: 259–281, 1907.
 154. Metchnikoff, E. Recherches sur le choléra et les vibrions. Mem. 4th. Sur l'immunité et la réceptivité vis‐à‐vis de choléra intestinal. Ann. Inst. Pasteur Paris 8: 529–589, 1894.
 155. Miller, L. J., and V. L. W. Go. Radioimmunoassay of cholecystokinin and gastric inhibitory peptide. In: Gastrointestinal Hormones, edited by G. B. J. Glass New York: Raven, 1980, p. 863–864.
 156. Moriarty, K. J., N. B. Higgs, M. Woodford, and L. A. Turnberg. Is cholera toxin‐induced intestinal secretion mediated via a neurogenic mechanism (Abstract). Gut 26: A111, 1985.
 157. Moss, J., D. L. Burns, J. A. Hsia, E. L. Hewlett, R. L. Guerrant, and M. Vaughan. Cyclic nucleotides: mediators of bacterial toxin action in disease. Ann. Intern. Med. 101: 653–666, 1984.
 158. Moss, J., P. H. Fishman, R. L. Richards, C. R. Alving, M. Vaughan, and R. O. Brady. Choleragen‐mediated release of trapped glucose from liposomes containing ganglioside GM1. Proc. Natl. Acad. Sci. USA 73: 3480–3483, 1976.
 159. Moss, J., and M. Vaughan. Activation of adenylate cyclase by choleragen. Annu. Rev. Biochem. 48: 581–600, 1979.
 160. Nishizuka, V. Turnover of inositol phospholipids and signal transduction. Science Wash. DC 225: 1365–1370, 1984.
 161. O'Brien, A. D., G. D. LaVeck, D. E. Griffin, and M. R. Thompson. Characterization of Shigella dysenteriae 1 (Shiga) toxin purified by anti‐Shiga toxin affinity chromatography. Infect. Immun. 30: 170–179, 1980.
 162. Ouyang, A., W. J. Snape, Jr., and S. Cohen. Myoelectric properties of the cat ileocecal sphincter. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G450–G458, 1981.
 163. Pearson, A. J., A. Brzechya‐Ajdukiewicz, and C. F. McCarthy. Intestinal pseudo‐obstruction with bacterial over‐growth in the small intestine. Am. J. Dig. Dis. 14: 200–205, 1969.
 164. Percy, W. H., and J. Christensen. Antibiotic depression of evoked and spontaneous responses of opossum distal colonic muscularis mucosae in vitro: a factor in antibiotic‐associated colitis? Gastroenterology 88: 964–970, 1985.
 165. Pierce, N. F., W. B. Greenough III, and C. C. CarpenterJr. Vibrio cholerae enterotoxin and its mode of action. Bacterial Rev. 35: 1–13, 1971.
 166. Piñeiro‐Carrero, V. M., M. H. Clench, R. H. Davis, J. M. Andres, and J. R. Mathias. Alterations of the migrating myoelectric complex after destruction of enteric serotonergic neurons by 5,7,‐dihydroxytryptamine (Abstract). Gastroenterology 88: 1540, 1985.
 167. Piñeiro‐Carrero, V. M., M. H. Clench, R. H. Davis, J. M. Andres, and J. R. Mathias. Myoelectric activity of the small intestine: depletion of catecholamines and serotonin within the myenteric plexus by reserpine (Abstract). Gastroenterology 88: 1540, 1985.
 168. Pope, J. L., T. M. Parkinson, and J. A. Olson. Action of bile salts on the metabolism and transport of water‐soluble nutrients by perfused rat jejunum in vitro. Biochim. Biophys. Acta 130: 218–232, 1966.
 169. Prizont, R., J. S. Whitehead, and Y. S. Kim. Short chain fatty acids in rats with jejunal blind loops. I. Analysis of SCFA in small intestine, cecum, feces, and plasma. Gastroenterology 69: 1254–1264, 1975.
 170. Roberts, S. H., O. James, and E. H. Jarvis. Bacterial overgrowth syndrome without “blind loop”; a cause for malnutrition in the elderly. Lancet 2: 1193–1195, 1977.
 171. Ruiz‐Palacios, G. M., J. Torres, N. I. Torres, E. Escamilla, B. R. Ruiz‐Palacios, and J. Tamayo. Cholera‐like enterotoxin produced by Campylobacter jejuni. Characterization and clinical significance. Lancet 2: 250–253, 1983.
 172. Sack, R. B. Human diarrheal disease caused by enterotoxigenic Escherichia coli. Annu. Rev. Microbiol. 29: 333–353, 1975.
 173. Sack, R. B., and C. C. Carpenter. Experimental canine cholera. I. Development of the model. J. Infect. Dis. 119: 138–149, 1969.
 174. Sack, R. B., S. L. Gorbach, J. G. Banwell, B. Jacobs, B. D. Chatterjee, and R. C. Mitra. Enterotoxigenic Escherichia coli isolated from patients with severe cholera‐like disease. J. Infect. Dis. 123: 378–385, 1971.
 175. Salen, G., F. Goldstein, and C. W. Wirts. Malabsorption in intestinal scleroderma. Relation to bacterial flora and treatment with antibiotics. Ann. Intern. Med. 64: 834–841, 1966.
 176. Sanarelli, G. De la pathogénie du choléra. Le “choléra intestinal” des jeunes animaux. Ann. Inst. Pasteur Paris 35: 745–796, 1921.
 177. Sarr, M. G., and K. A. Kelly. Myoelectric activity of the autotransplanted canine jejunum. Gastroenterology 81: 303–310, 1981.
 178. Schafer, D. E., W. D. Lust, B. Sircar, and N. D. Goldberg. Elevated concentration of adenosine 3':5'‐cyclic monophosphate in intestinal mucosa after treatment with cholera toxin. Proc. Natl. Acad. Sci. USA 67: 851–856, 1970.
 179. Sharp, G. W., and S. Hynie. Stimulation of intestinal adenyl cyclase by cholera toxin. Nature Lond. 229: 266–269, 1971.
 180. Sherwood, W. C., F. Goldstein, F. I. Haurani, and C. W. Wirts. Studies on the small‐intestinal bacterial flora and of intestinal absorption in pernicious anemia. Am. J. Dig. Dis. 9: 416–425, 1964.
 181. Shiff, S. J., R. D. Soloway, and W. J. SnapeJr. Mechanism of deoxycholic acid stimulation of the rabbit colon. J. Clin. Invest. 69: 985–992, 1982.
 182. Shimoda, S. S., T. K. O'Brien, and D. R. Saunders. Fat absorption after infusing bile salts into the human small intestine. Gastroenterology 67: 7–18, 1974.
 183. Sinar, D. R., L. G. Charles, and T. W. Burns. Migrating action‐potential complex activity in absence of fluid production is produced by B subunit of cholera enterotoxin. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G47–G51, 1982.
 184. Skirrow, M. B. Campylobacter enteritis: a ‘new’ disease. Br. Med. J. 2: 9–11, 1977.
 185. Smith, G. S., G. Warburst, and L. A. Turnberg. Synthesis and degradation of prostaglandin E2 in the epithelium and subepithelial layers of the rat intestine. Biochim. Biophys. Acta 713: 684–687, 1982.
 186. Smyth, P. M. Changes in intestinal bacterial flora and role of infection in kwashiorkor. Lancet 2: 724–727, 1958.
 187. Snape, W. J.Jr., S. Shiff, and S. Cohen. Effect of deoxycholic acid on colonic motility in the rabbit. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G321–G325, 1980.
 188. Sninsky, C. A., R. Ramphal, D. J. Gaskins, D. A. Goldberg, and J. R. Mathias. Alterations of myoelectric activity associated with Campylobacter jejuni and its cell‐free filtrate in the small intestine of rabbits. Gastroenterology 89: 337–344, 1985.
 189. Sninsky, C. A., M. M. Wolfe, J. L. Martin, B. A. Howe, T. M. O'Dorisio, J. E. McGuigan, and J. R. Mathias. Myoelectric effects of vasoactive intestinal peptide on rabbit small intestine. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G46–G51, 1983.
 190. Snyder, J. D., and M. H. Merson. The magnitude of the global problem of acute diarrhoeal disease: a review of active surveillance data. Bull. WHO 60: 605–613, 1982.
 191. Staples, S. J., S. E. Asher, and R. A. Giannella. Purification and characterization of heat‐stable enterotoxin produced by a strain of E. coli pathogenic for man. J. Biol. Chem. 255: 4716–4721, 1980.
 192. Stark, L., and C. L. Duncan. Biologic characteristics of Clostridium perfringens type A enterotoxin. Infect. Immun. 4: 89–96, 1971.
 193. Starkey, B. J., D. Snary, and A. Allen. Characterization of gastric mucoproteins isolated by equilibrium density‐gradient centrifugation in caesium chloride. Biochem. J. 141: 633–639, 1974.
 194. Strombeck, D. R., and D. Harrold. Binding of cholera toxin to mucins and inhibition by gastric mucin. Infect. Immun. 10: 1266–1272, 1974.
 195. Strong, D. H., C. L. Duncan, and G. Perra. Clostridium perfringens type A food poisoning. II. Response of the rabbit ileum as an indication of enteropathogenicity of strains of Clostridium perfringens in human beings. Infect. Immun. 3: 171–178, 1971.
 196. Szurszewski, J. H. A migrating electric complex of the canine small intestine. Am. J. Physiol. 217: 1757–1763, 1969.
 197. Tabaqchali, S. The pathophysiological role of small intestinal bacterial flora. Scand. J. Gastroenterol. Suppl. 6: 139–163, 1970.
 198. Taylor, N. S., and J. G. Bartlett. Partial purification and characterization of a cytotoxin from Clostridium difficile. Rev. Infect. Dis. 1: 379–385, 1979.
 199. Taylor, N. S., G. M. Thorne, and J. G. Bartlett. Comparison of two toxins produced by Clostridium difficile. Infect. Immun. 34: 1036–1043, 1981.
 200. Tien, X. Y., R. Wahawisan, L. J. Wallace, and T. S. Gaginella. Intestinal epithelial cells and musculature contain different muscarinic binding sites. Life Sci. 36: 1949–1955, 1985.
 201. Toskes, P. P., R. A. Giannella, H. R. Jervis, W. R. Rout, and A. Takeuchi. Small intestinal mucosal injury in the experimental blind loop syndrome. Light‐ and electron‐microscopic and histochemical studies. Gastroenterology 68: 1193–1203, 1975.
 202. Vane, J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin‐like drugs. Nature New Biol. 231: 232–235, 1971.
 203. Van Heyningen, W. E., C. C. J. Carpenter, N. F. Pierce, and W. B. Greenough III. Deactivation of cholera toxin by ganglioside. J. Infect. Dis. 124: 415–418, 1971.
 204. Van Heyningen, W. E., and G. P. Gladstone. The neurotoxin of Shigella shigae; production, purification and properties of the toxin. Br. J. Exp. Pathol. 34: 202–216, 1953.
 205. Vantrappen, G., J. Janssens, J. Hellmans, and Y. Choos. The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. J. Clin. Invest. 59: 1158–1166, 1977.
 206. Vicari, G., A. L. Olitzki, and Z. Olitzki. The action of the thermolabile toxin of Shigella dysenteriae on cells cultivated in vitro. Br. J. Exp. Pathol. 41: 179–189, 1960.
 207. Wahawisan, R., L. J. Wallace, and T. S. Gaginella. Muscarinic receptors on rat ileal villus and crypt cells. J. Pharm. Pharmacol. 38: 150–153, 1986.
 208. Walsh, J. A., and K. S. Warren. Selective primary health care. N. Engl. J. Med. 301: 967–974, 1979.
 209. Wanitschke, R., and H. V. Ammon. Effects of dihydroxy bile acids and hydroxy fatty acids on the absorption of oleic acid in the human jejunum. J. Clin. Invest. 61: 178–186, 1978.
 210. Weikel, C. S., J. J. Sando, and R. L. Guerrant. C‐kinase activators stimulate intestinal secretion in vivo (Abstract). Clin. Res. 33: 327A, 1985.
 211. Weisberg, P. B., G. M. Carlson, and S. Cohen. Effect of Salmonella typhimurium on myoelectrical activity in the rabbit ileum. Gastroenterology 74: 47–51, 1978.
 212. Wood, J. D., and C. J. Mayer. Serotonergic activation of tonic‐type enteric neurons in guinea pig small bowel. J. Neurophysiol. 42: 582–593, 1979.
 213. Wu, Z. C., S. D. Kisslinger, and T. S. Gaginella. Functional evidence for the presence of cholinergic nerve endings in the colonic mucosa of the rat. J. Pharmacol. Exp. Ther. 221: 664–669, 1981.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

John R. Mathias, Mary H. Clench. Alterations of small intestine motility by bacteria and their enterotoxins. Compr Physiol 2011, Supplement 16: Handbook of Physiology, The Gastrointestinal System, Motility and Circulation: 1153-1177. First published in print 1989. doi: 10.1002/cphy.cp060131