Comprehensive Physiology Wiley Online Library

Microcirculation of the intestinal mucosa

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Intrinsic Regulation of Blood Flow and Oxygenation
1.1 Basic Concepts
1.2 Vascular Response to Arterial Pressure Alterations
1.3 Vascular Response to Venous Pressure Elevation
1.4 Reactive Hyperemia
1.5 Vascular Response to Alterations in Arterial Blood Gases and Hematocrit
1.6 Postprandial Intestinal Hyperemia
2 Influence of Blood Flow on Intestinal Transport
2.1 Washout of Flow‐Limited Solutes
2.2 Effects of Oxygen Delivery on Absorption
3 Countercurrent Exchange
3.1 Anatomical Basis
3.2 Theoretical Considerations
3.3 Experimental Evidence
4 Vascular Capacitance
5 Vasoactive Agents and Intestinal Oxygen Uptake
5.1 Relation Between Blood Flow and Oxygen Uptake
5.2 Oxidative Metabolism
5.3 Effective Capillary Density
5.4 Intramural Blood Flow Distribution
6 Angiotensin II and Vasopressin
7 Effects of Experimental Conditions on the Intestinal Circulation
7.1 Anesthesia and Adjuvants
7.2 Respiration and Blood Gases
7.3 Laparotomy and Visceral Manipulation
7.4 Temerature
8 Transcapillary Fluid and Solute Exchange
8.1 Starling Hypothesis
8.2 Rate of Transcapillary Fluid Movement (Lymph Flow)
8.3 Capillary Filtration Coefficient
8.4 Capillary Hydrostatic Pressure
8.5 Interstitial Hydrostatic Pressure
8.6 Osmotic Reflection Coefficient
8.7 Transcapillary Oncotic Pressure Gradient
8.8 Interaction of Capillary and Interstitial Forces
9 Small‐Solute and Macromolecule Exchange
9.1 Small Solutes
9.2 Macromolecules
9.3 Factors Influencing Permeability
9.4 Pathways for Macromolecule Exchange
10 Conclusions
Figure 1. Figure 1.

Metabolic and myogenic theories of intestinal blood flow regulation.

Figure 2. Figure 2.

Dependence of superior mesenteric blood flow (F/Fo, blood flow normalized to control) and autoregulatory closed‐loop gain (Gc) on perfusion pressure (P/Po, arterial pressure normalized to control) in fed and fasted animals.

From Norris et al. 351
Figure 3. Figure 3.

Effects of varying perfusion pressure on total intestinal blood flow (venous outflow) and villous plasma flow (plasma particles).

From Lundgren 311
Figure 4. Figure 4.

Relationships between capillary filtration coefficient, arteriovenous O2 difference, and O2 delivery‐to‐demand ratio in the canine ileum.

From Kvietys et al. 285
Figure 5. Figure 5.

Dependence of intestinal O2 uptake (Vo2), arteriovenous O2 difference (A‐VΔAO2), normalized blood flow (F/Fo), and autoregulatory closed‐loop gain (Gc) on arterial pressure (P/Po) in fed (dashed lines) and fasted (dotted lines) dogs.

From Granger and Norris 192
Figure 6. Figure 6.

Steady‐state relation between intestinal O2 consumption and arterial pressure predicted by mathematical model for a passive system (no regulation of exchange or resistance vessels), resistance vessel regulation only, exchange vessel regulation only, and regulation of both resistance and exchange vessels. Difference to inflection points of O2 consumption‐arterial pressure curves provides a measure of margin of safety against hypoxia afforded by resistance and/or exchange vessel regulation.

From Granger and Granger 152
Figure 7. Figure 7.

Relationship between capillary filtration coefficient and capillary pressure in the cat small intestine. Capillary pressure was altered by venous pressure elevation or arterial pressure reduction. The inverse correlation is believed to result from myogenic control of perfused capillary density.

From Granger and Barrowman 147
Figure 8. Figure 8.

Percentage of total intestinal blood flow in mucosa‐submucosa and muscularis at various venous pressures (Pv); Kf,c, capillary filtration coefficient.

From Granger et al. 178
Figure 9. Figure 9.

Effect of metabolic rate on total and mucosal blood flow payback‐to‐debt ratio after a 60‐s arterial occlusion in the canine intestine.

From Shepherd and Riedel 435
Figure 10. Figure 10.

Effects of arterial hypoxia [partial pressure of O2 () ≦50 mmHg] on hemodynamics and oxygenation in canine intestinal segments perfused either under constant pressure (upper panel) or constant flow (lower panel) conditions. O2 consumption (); (a‐v)O2, arteriovenous O2 difference (A‐VO2); PS, permeability‐surface area product.

From Shepherd 422
Figure 11. Figure 11.

Effects of alterations in arterial blood O2 content (CaO2) on intestinal blood flow (Qi), O2 extraction and O2 consumption () in fetal and neonatal lambs.

From Edelstone and Holzman 97
Figure 12. Figure 12.

Effects of hematocrit on canine intestinal blood flow, O2 consumption (), arterial O2 content, and arteriovenous O2 difference ().

From Shepherd and Riedel 434
Figure 13. Figure 13.

Effects of intraluminal placement of various constituents of chyme on intestinal blood flow.

Modified from Granger et al. 160
Figure 14. Figure 14.

Relationship between intestinal blood flow (upper panel), O2 uptake (lower panel), and various functional activities (absorption, secretion, motility).

From Granger et al. 160
Figure 15. Figure 15.

Changes in intestinal blood flow and O2 extraction produced by intraluminal placement of food in the small bowel. Solid circles, data obtained at a control arteriovenous O2 difference (a–v)O2 ≧ 6 vol%; open circles, data obtained at a control (a–v)O2 ≦ 5 vol%; X, control values for blood flow and O2 extraction.

From Granger and Norris 192
Figure 16. Figure 16.

Role of arteriolar feedback, precapillary sphincter feedback, and passive factors in augmenting transcapillary O2 flux after graded elevations in intestinal O2 demand.

From Granger and Granger 152
Figure 17. Figure 17.

Dependence of passive solute absorption rate on jejunal blood flow in the rat.

Modified from Winne 491
Figure 18. Figure 18.

Patterns of countercurrent exchange of blood‐borne (A) and luminally derived (B) solutes.

Modified from Lundgren 311
Figure 19. Figure 19.

A, time estimated for attainment of diffusion equilibrium between outer surface and center of cylinders of various radii (r); B, mean transit time of plasma in villous vascular loops of the cat versus total intestinal blood flow.

From Lundgren 311
Figure 20. Figure 20.

Relationship between venous pressure and blood volume in an isolated intestinal vein [data from Simon et al. 444] and in an entire intestinal loop

data from Rothe et al. 404
Figure 21. Figure 21.

Effects of venoconstriction on the intestinal pressure‐volume relationship. Vuns, unstressed volume obtained by linear extrapolation of the pressure‐volume curve to the volume at zero pressure; curve A, relationship produced by venoconstriction that causes a reduced compliance (slope of curve) without a change in unstressed volume; curve B, relationship produced by venoconstriction that causes a reduced unstressed volume (Vuns) without a change in compliance.

From Rothe 403
Figure 22. Figure 22.

Examples of blood flow–independent (A) and blood flow–dependent (B) O2 uptake curves for the small intestine. Control value indicated by closed circle.

Adapted from Kvietys et al. (285; curve A) and from Shepherd (426; curve B)
Figure 23. Figure 23.

Effects of intraluminal placement of glucose (upper panel) and reductions in luminal temperature (lower panel) on relation between ileal O2 demand and blood flow. Relations were obtained by altering blood flow with a pump. Asterisks indicate significant (P < 0.05) differences in plateau portion of curves from control values (empty lumen at 39°C).

From Kvietys et al. 285
Figure 24. Figure 24.

Relation between blood flow and O2 uptake and factors that alter this relationship. Note that alterations in tissue oxidative metabolism shift curves vertically, whereas alterations in capillary density shift curves horizontally. Dot represents control blood flow under normal conditions. Pathway A, vasodilator that increases oxidative metabolism; pathway B, vasodilator that either does not affect metabolism or increases capillary density; pathway C, vasodilator that decreases capillary density; pathway D, vasodilator that decreases metabolism; pathway E, is taken by vasoconstrictor that decreases metabolism; pathway F, vasoconstrictor that decreases capillary density; pathway G, vasoconstrictor that does not affect metabolism or capillary density; pathway H, vasoconstrictor that increases capillary density; pathway I, vasoconstrictor that increases metabolism.

From Kvietys and Granger 278
Figure 25. Figure 25.

Relationship among intestinal O2 uptake (A), arteriovenous O2 difference (B), and lumen temperature.

From Kvietys et al. 281
Figure 26. Figure 26.

Distribution of pressures in the microcirculation of the rat small intestine.

From Bohlen and Gore 31
Figure 27. Figure 27.

Steady‐state relationship among intestinal interstitial fluid volume, interstitial fluid pressure, and interstitial hydraulic conductance.

From Granger et al. 162
Figure 28. Figure 28.

Starling forces and capillary membrane parameters in the small intestine under control (nontransporting) conditions. Jv,c, rate of transcapillary fluid movement; Kf,c, capillary filtration coefficient; Pc, capillary hydrostatic pressure; Pt, interstitial hydrostatic pressure; σd, osmotic reflection coefficient; πc, plasma oncotic pressure; πt, interstitial oncotic pressure; NFP, net capillary filtration pressure.

From Granger et al. 162
Figure 29. Figure 29.

Safety factors against interstitial edema in the small intestine and the colon for an increment in capillary pressure of 12–13.2 mmHg.

From Granger and Barrowman 147
Figure 30. Figure 30.

Relations among intestinal capillary pressure, precapillary‐to‐postcapillary resistance ratio (Ra/Rv), and arterial pressure. Dotted lines in upper panel represent predicted mean values for capillary pressure, assuming Ra/Rv remained at value obtained at 125 mmHg arterial pressure. Dotted line in lower panel, Ra/Rv required for perfect autoregulation of capillary pressure. Asterisks, statistical significance at P < 0.05 (*) and P < 0.01 (**) levels as compared with values at 125 mmHg arterial pressure.

From Granger et al. 167
Figure 31. Figure 31.

Effects of changes in lymph flow, interstitial fluid pressure, and interstitial oncotic pressure on preventing interstitial dehydration in intestine during reductions in arterial and capillary pressures.

From Granger et al. 167
Figure 32. Figure 32.

Effects of sympathetic stimulation on intestinal trans‐capillary fluid exchange. Pt, interstitial fluid pressure; Δπ, transcapillary oncotic pressure difference; *, P < 0.05.

From Granger et al. 148
Figure 33. Figure 33.

Effects of net fluid absorption rate on intestinal interstitial volume, interstitial hydraulic conductivity, and the excluded volume fraction of albumin.

From Granger et al. 162
Figure 34. Figure 34.

Steady‐state relations between interstitial hydrostatic (Pt) and oncotic (πt) pressures and net fluid absorption rate.

From Granger 146
Figure 35. Figure 35.

Steady‐state relations between rate of removal of absorbed fluid by intestinal capillaries and lymphatics and net fluid absorption rate.

From Granger 146
Figure 36. Figure 36.

Effects of net fluid absorption on Starling forces and capillary membrane parameters in the small intestine. Jv,c, rate of transcapillary fluid movement; Kf,c, capillary filtration coefficient; Pc, capillary hydrostatic pressure; Pt, interstitial hydrostatic pressure; σd, osmotic reflection coefficient; πc, plasma oncotic pressure; πt, interstitial oncotic pressure; NAP, net capillary absorptive pressure.

From Granger et al. 162
Figure 37. Figure 37.

Changes in Starling forces and capillary membrane parameters that lead to filtration secretion. Jv,c, rate of transcapillary fluid movement; Kf,c, capillary filtration coefficient; Pc, capillary hydrostatic pressure; Pt, interstitial hydrostatic pressure; σd, osmotic reflection coefficient; πc, plasma oncotic pressure; πt, interstitial oncotic pressure; NFP, net capillary filtration pressure.

From Granger et al. 162
Figure 38. Figure 38.

Effects of active (solute‐coupled) fluid secretion on Starling forces and capillary membrane parameters in the small intestine. Jv,c, rate of transcapillary fluid movement; Kf,c, capillary filtration coefficient; Pc, capillary hydrostatic pressure; Pt, interstitial hydrostatic pressure; σd, osmotic reflection coefficient; πc, plasma oncotic pressure; πt, interstitial oncotic pressure; NFP, net capillary filtration pressure.

From Granger et al. 162
Figure 39. Figure 39.

Theoretical relationship between lymph‐to‐plasma protein concentration ratio (CL/CP) and lymph flow. The osmotic reflection coefficient (σd) can be estimated from relation σd = 1 – CL/CP when CL/CP is filtration rate independent.

From Granger and Taylor 184
Figure 40. Figure 40.

Experimental data from cat and rat small intestine showing relationship between lymph flow and lymph‐to‐plasma protein concentration ratio (L/P).

From Taylor and Granger 460
Figure 41. Figure 41.

Application of pore‐stripping analysis to osmotic reflection coefficient (σd); dashed lines, data acquired during neurotensin infusion; solid lines, data acquired in control animals; dot/dashed lines, data acquired during fat absorption.

From Harper et al. 218
Figure 42. Figure 42.

Steady‐state relation between intestinal lymph‐to‐plasma total protein concentration ratio (L/P) and lymph flow after cream feeding and intraluminal placement of bile‐oleic acid. Solid line represents control relationship established in fasted animals. Osmotic reflection coefficient (σd) was estimated from relation σd = 1 – L/P when L/P is filtration rate independent.

From Granger et al. 173
Figure 43. Figure 43.

Relation between intestinal transcapillary protein fluxes (net, diffusive, and convective) and transcapillary volume flow when capillaries are in an absorbing state. Positive values denote blood‐to‐interstitium movement, whereas negative values indicate interstitium‐to‐blood movement.

From Granger et al. 172


Figure 1.

Metabolic and myogenic theories of intestinal blood flow regulation.



Figure 2.

Dependence of superior mesenteric blood flow (F/Fo, blood flow normalized to control) and autoregulatory closed‐loop gain (Gc) on perfusion pressure (P/Po, arterial pressure normalized to control) in fed and fasted animals.

From Norris et al. 351


Figure 3.

Effects of varying perfusion pressure on total intestinal blood flow (venous outflow) and villous plasma flow (plasma particles).

From Lundgren 311


Figure 4.

Relationships between capillary filtration coefficient, arteriovenous O2 difference, and O2 delivery‐to‐demand ratio in the canine ileum.

From Kvietys et al. 285


Figure 5.

Dependence of intestinal O2 uptake (Vo2), arteriovenous O2 difference (A‐VΔAO2), normalized blood flow (F/Fo), and autoregulatory closed‐loop gain (Gc) on arterial pressure (P/Po) in fed (dashed lines) and fasted (dotted lines) dogs.

From Granger and Norris 192


Figure 6.

Steady‐state relation between intestinal O2 consumption and arterial pressure predicted by mathematical model for a passive system (no regulation of exchange or resistance vessels), resistance vessel regulation only, exchange vessel regulation only, and regulation of both resistance and exchange vessels. Difference to inflection points of O2 consumption‐arterial pressure curves provides a measure of margin of safety against hypoxia afforded by resistance and/or exchange vessel regulation.

From Granger and Granger 152


Figure 7.

Relationship between capillary filtration coefficient and capillary pressure in the cat small intestine. Capillary pressure was altered by venous pressure elevation or arterial pressure reduction. The inverse correlation is believed to result from myogenic control of perfused capillary density.

From Granger and Barrowman 147


Figure 8.

Percentage of total intestinal blood flow in mucosa‐submucosa and muscularis at various venous pressures (Pv); Kf,c, capillary filtration coefficient.

From Granger et al. 178


Figure 9.

Effect of metabolic rate on total and mucosal blood flow payback‐to‐debt ratio after a 60‐s arterial occlusion in the canine intestine.

From Shepherd and Riedel 435


Figure 10.

Effects of arterial hypoxia [partial pressure of O2 () ≦50 mmHg] on hemodynamics and oxygenation in canine intestinal segments perfused either under constant pressure (upper panel) or constant flow (lower panel) conditions. O2 consumption (); (a‐v)O2, arteriovenous O2 difference (A‐VO2); PS, permeability‐surface area product.

From Shepherd 422


Figure 11.

Effects of alterations in arterial blood O2 content (CaO2) on intestinal blood flow (Qi), O2 extraction and O2 consumption () in fetal and neonatal lambs.

From Edelstone and Holzman 97


Figure 12.

Effects of hematocrit on canine intestinal blood flow, O2 consumption (), arterial O2 content, and arteriovenous O2 difference ().

From Shepherd and Riedel 434


Figure 13.

Effects of intraluminal placement of various constituents of chyme on intestinal blood flow.

Modified from Granger et al. 160


Figure 14.

Relationship between intestinal blood flow (upper panel), O2 uptake (lower panel), and various functional activities (absorption, secretion, motility).

From Granger et al. 160


Figure 15.

Changes in intestinal blood flow and O2 extraction produced by intraluminal placement of food in the small bowel. Solid circles, data obtained at a control arteriovenous O2 difference (a–v)O2 ≧ 6 vol%; open circles, data obtained at a control (a–v)O2 ≦ 5 vol%; X, control values for blood flow and O2 extraction.

From Granger and Norris 192


Figure 16.

Role of arteriolar feedback, precapillary sphincter feedback, and passive factors in augmenting transcapillary O2 flux after graded elevations in intestinal O2 demand.

From Granger and Granger 152


Figure 17.

Dependence of passive solute absorption rate on jejunal blood flow in the rat.

Modified from Winne 491


Figure 18.

Patterns of countercurrent exchange of blood‐borne (A) and luminally derived (B) solutes.

Modified from Lundgren 311


Figure 19.

A, time estimated for attainment of diffusion equilibrium between outer surface and center of cylinders of various radii (r); B, mean transit time of plasma in villous vascular loops of the cat versus total intestinal blood flow.

From Lundgren 311


Figure 20.

Relationship between venous pressure and blood volume in an isolated intestinal vein [data from Simon et al. 444] and in an entire intestinal loop

data from Rothe et al. 404


Figure 21.

Effects of venoconstriction on the intestinal pressure‐volume relationship. Vuns, unstressed volume obtained by linear extrapolation of the pressure‐volume curve to the volume at zero pressure; curve A, relationship produced by venoconstriction that causes a reduced compliance (slope of curve) without a change in unstressed volume; curve B, relationship produced by venoconstriction that causes a reduced unstressed volume (Vuns) without a change in compliance.

From Rothe 403


Figure 22.

Examples of blood flow–independent (A) and blood flow–dependent (B) O2 uptake curves for the small intestine. Control value indicated by closed circle.

Adapted from Kvietys et al. (285; curve A) and from Shepherd (426; curve B)


Figure 23.

Effects of intraluminal placement of glucose (upper panel) and reductions in luminal temperature (lower panel) on relation between ileal O2 demand and blood flow. Relations were obtained by altering blood flow with a pump. Asterisks indicate significant (P < 0.05) differences in plateau portion of curves from control values (empty lumen at 39°C).

From Kvietys et al. 285


Figure 24.

Relation between blood flow and O2 uptake and factors that alter this relationship. Note that alterations in tissue oxidative metabolism shift curves vertically, whereas alterations in capillary density shift curves horizontally. Dot represents control blood flow under normal conditions. Pathway A, vasodilator that increases oxidative metabolism; pathway B, vasodilator that either does not affect metabolism or increases capillary density; pathway C, vasodilator that decreases capillary density; pathway D, vasodilator that decreases metabolism; pathway E, is taken by vasoconstrictor that decreases metabolism; pathway F, vasoconstrictor that decreases capillary density; pathway G, vasoconstrictor that does not affect metabolism or capillary density; pathway H, vasoconstrictor that increases capillary density; pathway I, vasoconstrictor that increases metabolism.

From Kvietys and Granger 278


Figure 25.

Relationship among intestinal O2 uptake (A), arteriovenous O2 difference (B), and lumen temperature.

From Kvietys et al. 281


Figure 26.

Distribution of pressures in the microcirculation of the rat small intestine.

From Bohlen and Gore 31


Figure 27.

Steady‐state relationship among intestinal interstitial fluid volume, interstitial fluid pressure, and interstitial hydraulic conductance.

From Granger et al. 162


Figure 28.

Starling forces and capillary membrane parameters in the small intestine under control (nontransporting) conditions. Jv,c, rate of transcapillary fluid movement; Kf,c, capillary filtration coefficient; Pc, capillary hydrostatic pressure; Pt, interstitial hydrostatic pressure; σd, osmotic reflection coefficient; πc, plasma oncotic pressure; πt, interstitial oncotic pressure; NFP, net capillary filtration pressure.

From Granger et al. 162


Figure 29.

Safety factors against interstitial edema in the small intestine and the colon for an increment in capillary pressure of 12–13.2 mmHg.

From Granger and Barrowman 147


Figure 30.

Relations among intestinal capillary pressure, precapillary‐to‐postcapillary resistance ratio (Ra/Rv), and arterial pressure. Dotted lines in upper panel represent predicted mean values for capillary pressure, assuming Ra/Rv remained at value obtained at 125 mmHg arterial pressure. Dotted line in lower panel, Ra/Rv required for perfect autoregulation of capillary pressure. Asterisks, statistical significance at P < 0.05 (*) and P < 0.01 (**) levels as compared with values at 125 mmHg arterial pressure.

From Granger et al. 167


Figure 31.

Effects of changes in lymph flow, interstitial fluid pressure, and interstitial oncotic pressure on preventing interstitial dehydration in intestine during reductions in arterial and capillary pressures.

From Granger et al. 167


Figure 32.

Effects of sympathetic stimulation on intestinal trans‐capillary fluid exchange. Pt, interstitial fluid pressure; Δπ, transcapillary oncotic pressure difference; *, P < 0.05.

From Granger et al. 148


Figure 33.

Effects of net fluid absorption rate on intestinal interstitial volume, interstitial hydraulic conductivity, and the excluded volume fraction of albumin.

From Granger et al. 162


Figure 34.

Steady‐state relations between interstitial hydrostatic (Pt) and oncotic (πt) pressures and net fluid absorption rate.

From Granger 146


Figure 35.

Steady‐state relations between rate of removal of absorbed fluid by intestinal capillaries and lymphatics and net fluid absorption rate.

From Granger 146


Figure 36.

Effects of net fluid absorption on Starling forces and capillary membrane parameters in the small intestine. Jv,c, rate of transcapillary fluid movement; Kf,c, capillary filtration coefficient; Pc, capillary hydrostatic pressure; Pt, interstitial hydrostatic pressure; σd, osmotic reflection coefficient; πc, plasma oncotic pressure; πt, interstitial oncotic pressure; NAP, net capillary absorptive pressure.

From Granger et al. 162


Figure 37.

Changes in Starling forces and capillary membrane parameters that lead to filtration secretion. Jv,c, rate of transcapillary fluid movement; Kf,c, capillary filtration coefficient; Pc, capillary hydrostatic pressure; Pt, interstitial hydrostatic pressure; σd, osmotic reflection coefficient; πc, plasma oncotic pressure; πt, interstitial oncotic pressure; NFP, net capillary filtration pressure.

From Granger et al. 162


Figure 38.

Effects of active (solute‐coupled) fluid secretion on Starling forces and capillary membrane parameters in the small intestine. Jv,c, rate of transcapillary fluid movement; Kf,c, capillary filtration coefficient; Pc, capillary hydrostatic pressure; Pt, interstitial hydrostatic pressure; σd, osmotic reflection coefficient; πc, plasma oncotic pressure; πt, interstitial oncotic pressure; NFP, net capillary filtration pressure.

From Granger et al. 162


Figure 39.

Theoretical relationship between lymph‐to‐plasma protein concentration ratio (CL/CP) and lymph flow. The osmotic reflection coefficient (σd) can be estimated from relation σd = 1 – CL/CP when CL/CP is filtration rate independent.

From Granger and Taylor 184


Figure 40.

Experimental data from cat and rat small intestine showing relationship between lymph flow and lymph‐to‐plasma protein concentration ratio (L/P).

From Taylor and Granger 460


Figure 41.

Application of pore‐stripping analysis to osmotic reflection coefficient (σd); dashed lines, data acquired during neurotensin infusion; solid lines, data acquired in control animals; dot/dashed lines, data acquired during fat absorption.

From Harper et al. 218


Figure 42.

Steady‐state relation between intestinal lymph‐to‐plasma total protein concentration ratio (L/P) and lymph flow after cream feeding and intraluminal placement of bile‐oleic acid. Solid line represents control relationship established in fasted animals. Osmotic reflection coefficient (σd) was estimated from relation σd = 1 – L/P when L/P is filtration rate independent.

From Granger et al. 173


Figure 43.

Relation between intestinal transcapillary protein fluxes (net, diffusive, and convective) and transcapillary volume flow when capillaries are in an absorbing state. Positive values denote blood‐to‐interstitium movement, whereas negative values indicate interstitium‐to‐blood movement.

From Granger et al. 172
References
 1. Adibi, S. A., and D. W. Mercer. Protein digestion in human intestine as reflected in luminal, mucosal, and plasma amino acid concentrations after meals. J. Clin. Invest. 52: 1586–1594, 1973.
 2. Ahlman, H., L. DeMagistris, M. Zinner, and B. M. Jaffe. Release of immunoreactive serotonin into the lumen of the feline gut in response to vagal nerve stimulation. Science Wash. DC 213: 1254–1255, 1981.
 3. Akande, B., P. Reilly, I. M. Modlin, and B. M. Jaffe. Radioimmunoassay measurement of substance P release following a meat meal. Surgery St. Louis 89: 378–383, 1981.
 4. Amory, D. W., J. L. Steffenson, and R. P. Forsyth. Systemic and regional blood flow changes during halothane anesthesia in the rhesus monkey. Anesthesiology 35: 81–90, 1971.
 5. Anzueto, L., J. N. Benoit, and D. N. Granger. A rat model for studying the intestinal circulation. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G56–G61, 1984.
 6. Arfors, K. E., G. Rutili, and E. Svensjo. Microvascular transport of macromolecules in normal and inflammatory conditions. Acta Physiol. Scand. 463: 93–103, 1979.
 7. Argenzio, R. A., M. Southworth, and C. E. Stevens. Sites of organic acid production and absorption in the equine gastrointestinal tract. Am. J. Physiol. 226: 1043–1050, 1974.
 8. Arturson, G., and K. Granath. Dextrans as test molecules in studies of the functional ultrastructure of biological membranes. Clin. Chim. Acta 37: 309–322, 1972.
 9. Baca, I., U. Mittmann, G. E. Feurle, M. Haas, and T. Muller. Effect of neurotensin on regional intestinal blood flow in the dog. Res. Exp. Med. 179: 53–58, 1981.
 10. Banks, R. O., R. H. Gallavan, Jr., M. J. Zinner, G. B. Bulkley, S. L. Harper, D. N. Granger, and E. D. Jacobson. Vasoactive agents in control of the mesenteric circulation. Federation Proc. 44: 2743–2749, 1985.
 11. Barrowman, J. A. Physiology of the Gastrointestinal Lymphatic System. Cambridge, UK: Cambridge Univ. Press, 1978.
 12. Barrowman, J. A., and D. N. Granger. Effects of experimental cirrhosis on splanchnic microvascular fluid and solute exchange in the rat. Gastroenterology 87: 165–172, 1984.
 13. Barrowman, J. A., M. A. Perry, P. R. Kvietys, M. Ulrich, and D. N. Granger. Effects of bradykinin on intestinal transcapillary fluid exchange. Can. J. Physiol. Pharmacol. 59: 786–789, 1981.
 14. Barrowman, J. A., and K. B. Roberts. The role of the lymphatic system in the absorption of water from the intestine of the rat. Q. J. Exp. Physiol. Cogn. Med. Sci. 52: 19–30, 1967.
 15. Bean, J. W., and M. M. Sidky. Effects of low O2 on intestinal blood flow, tonus, and motility. Am. J. Physiol. 189: 541–547, 1957.
 16. Becker, H., A. Manganaro, H. Lazer, D. G. Mulder, G. D. Buckberg. Limitations of studying splanchnic blood flow during anesthesia. Surg. Forum 30: 347–349, 1979.
 17. Bennet, A., I. F. Stanford, and H. L. Stockley. Estimation and characterization of prostaglandins in the human gastrointestinal tract. Br. J. Pharmacol. 61: 579–586, 1977.
 18. Benoit, J. N., J. A. Barrowman, S. L. Harper, P. R. Kvietys, and D. N. Granger. Role of humoral factors in the intestinal hyperemia associated with chronic portal hypertension. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G486–G493, 1984.
 19. Benoit, J. N., W. A. Womack, R. J. Korthuis, W. A. Wilborn, and D. N. Granger. Chronic portal hypertension: effects on gastrointestinal blood flow distribution. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G535–G539, 1986.
 20. Benson, J. A., P. R. Lee, J. F. Scholer, K. S. Kim, and J. L. Bollman. Water absorption from the intestine via portal and lymphatic pathways. Am. J. Physiol. 184: 441–444, 1956.
 21. Bergstrom, J., M. Ahlberg, and A. Alvestrand. Influence of protein intake on renal hemodynamics and plasma hormone concentrations in normal subjects. Acta Med. Scand. 217: 189–196, 1985.
 22. Biber, B., J. Fara, and O. Lundgren. A pharmacological study of intestinal vasodilator mechanisms in the cat. Acta Physiol. Scand. 90: 673–683, 1974.
 23. Biber, B., O. Lundgren, and J. Svanvik. Studies on the intestinal vasodilation observed after mechanical stimulation of the mucosa of the gut. Acta Physiol. Scand. 82: 177–190, 1971.
 24. Biber, B., O. Lundgren, and J. Svanvik. Intramural blood flow and blood volume in the small intestine of the cat as analyzed by an indicator‐dilution technique. Acta Physiol. Scand. 87: 391–403, 1973.
 25. Bill, A. Effects of indomethacin on regional blood flow in conscious rabbits: a microsphere study. Acta Physiol. Scand. 105: 437–442, 1979.
 26. Black, J. W., E. W. Fisher, and A. N. Smith. The effects of precursors of 5‐hydroxytryptamine on gastric secretion in anesthetized dogs. J. Physiol. Lond. 146: 10–17, 1959.
 27. Blanchet, L., and D. Lebrec. Changes in splanchnic blood flow in portal hypertensive rats. Eur. J. Clin. Invest. 12: 327–330, 1982.
 28. Bohlen, H. G. Intestinal tissue Po2 and microvascular responses during glucose exposure. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H164–H171, 1980.
 29. Bohlen, H. G. Intestinal mucosal oxygenation influences absorptive hyperemia. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H489–H493, 1980.
 30. Bohlen, H. G. Na+‐induced intestinal interstitial hyperosmolality and vascular responses during absorptive hyperemia. Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H785–H789, 1982.
 31. Bohlen, H. G., and R. W. Gore. Comparison of microvascular pressures and diameters in the innervated and denervated rat intestine. Microvasc. Res. 14: 251–264, 1977.
 32. Bohlen, H. G., and R. W. Gore. Microvascular pressure in rat intestinal muscle during direct nerve stimulation. Microvasc. Res. 17: 27–37, 1979.
 33. Bohlen, H. G., P. M. Hutchins, C. E. Rapela, and H. D. Green. Microvascular control in intestinal mucosa of normal and hemorrhaged rats. Am. J. Physiol. 229: 1159–1164, 1975.
 34. Boley, S. J., G. P. Agarwal, A. R. Wareen, F. J. Veith, B. S. Levowitz, W. Trieber, J. Dougherty, S. S. Schwartz, and M. L. Gleidman. Pathophysiologic effects of bowel distension on intestinal blood flow. Am. J. Surg. 117: 228–234, 1969.
 35. Bond, J. H., B. E. Currier, and H. Buchwald. Colonic conservation of malabsorbed carbohydrate. Gastroenterology 78: 444–447, 1980.
 36. Bond, J. H., D. G. Levitt, and M. D. Levitt. Quantitation. of countercurrent exchange during passive absorption from the dog small intestine. J. Clin. Invest. 59: 308–318, 1977.
 37. Bond, J. H., D. G. Levitt, and M. D. Levitt. Use of inert gases and carbon monoxide to study the possible influence of countercurrent exchange on passive absorption from the small bowel. J. Clin. Invest. 54: 1259–1265, 1978.
 38. Bond, J. H., and M. D. Levitt. Fate of soluble carbohydrate in the colon of rats and man. J. Clin. Invest. 57: 1158–1164, 1976.
 39. Bond, J. H., R. A. Prentiss, and M. D. Levitt. The effects of feeding on blood flow to the stomach, small bowel, and colon of the conscious dog. J. Lab. Clin. Med. 93: 594–599, 1979.
 40. Bond, J. H., R. A. Prentiss, and M. D. Levitt. The effect of anesthesia and laparotomy on blood flow to the stomach, small bowel, and colon of dog. Surgery St. Louis 87: 313–318, 1980.
 41. Borgstrom, B., A. Dahlquist, G. Lundh, and J. Sjovall. Studies of intestinal digestion and absorption in the human. J. Clin. Invest. 36: 1521–1536, 1958.
 42. Borgstrom, B., and C. B. Laurell. Studies on lymph and lymph‐proteins during absorption of fat and saline by rats. Acta Physiol. Scand. 29: 264–280, 1953.
 43. Bosch, J. P., A. Saccagi, A. Lauer, M. Belledonne, and S. Glabman. Effect of diet on glomerular filtration rate (GFR): functional reserve (FR) of the normal kidney (Abstract). Kidney Int. 23: 118, 1983.
 44. Bowen, J. C., D. K. Garg, P. D. Salvato, and E. D. Jacobson. Differential oxygen utilization in the stomach during vasopressin and tourniquet ischemia. J. Surg. Res. 25: 15–20, 1978.
 45. Bowen, J. C., W. Pawlik, W. F. Fang, and E. D. Jacobson. Pharmacologic effects of gastrointestinal hormones on intestinal oxygen consumption and blood flow. Surgery St. Louis 78: 515–519, 1975.
 46. Brandt, J., L. Castleman, H. Ruskin, J. Greenwald, and J. Kelley. The oral protein and glucose feeding on splanchnic blood flow and oxygen utilization in normal and cirrhotic subjects. J. Clin. Invest. 34: 1017–1025, 1955.
 47. Bresler, E. H., and L. J. Groome. On equations for combined convective and diffusive transport of neutral solute across porous membranes. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F469–F476, 1981.
 48. Brodie, T. G., W. Cullis, and W. Halliburton. The gaseous metabolism of the small intestine. II. The gaseous exchanges during the absorption of Witte's peptone. J. Physiol. Lond. 40: 173–189, 1910.
 49. Brunsson, I., S. Eklund, M. Jodal, O. Lundgren, and H. Sjovall. The effect of vasodilation and sympathetic nerve activation on net water absorption in the cat's small intestine. Acta. Physiol. Scand. 106: 61–68, 1979.
 50. Buckley, N. M., P. Brazeau, and I. D. Frasier. Postnatal development of autoregulation of blood flow to the small intestine (Abstract). Federation Proc. 43: 1011, 1984.
 51. Buckley, N. M., M. Jarenwattananon, P. M. Gootman, and I. D. Frasier. Autoregulatory escape from neural control of intestinal circulation in developing swine. Physiologist 28: 289, 1985.
 52. Bulkley, G. B., P. R. Kvietys, M. A. Perry, and D. N. Granger. Effects of cardiac tamponade on colonic hemodynamics and oxygen uptake. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G604–G612, 1983.
 53. Burns, G. P., and W. G. Schenk. Intestinal blood flow in the conscious dog. Surg. Forum 18: 313–315, 1967.
 54. Burns, G. P., and W. G. Schenk. Effect of digestion and exercise on intestinal blood flow and cardiac output. Arch. Surg. 98: 790–794, 1969.
 55. Butterworth, C. E.Jr. General discussion. In: Intestinal Biopsy, edited by G. E. W. Wolstenholme and M. P. Cameron. Boston, MA: Little, Brown, 1962, p. 109–112.
 56. Butterworth, C. E.Jr. The bayonet tube and the intestinal villus. In: Malabsorption Syndromes. Basel: Karger, 1963, p. 80–83. 1962.
 57. Casley‐Smith, J. R. The identification of chylomicra and lipoproteins in tissue sections and their passage into jejunal lacteals. J. Cell Biol. 15: 259–277, 1962.
 58. Casley‐Smith, J. R. Endothelial fenestrae in intestinal villi: differences between the arterial and venous ends of the capillary. Microvasc. Res. 3: 49–68, 1971.
 59. Casley‐Smith, J. R. The functioning and interrelationships of blood capillaries and lymphatics. Experientia 32: 1–12, 1976.
 60. Casley‐Smith, J. R., and B. J. Gannon. Intestinal microcirculation: spatial organization and fine structure. In: Physiology of the Intestinal Circulation, edited by A. P. Shepherd and D. N. Granger. New York: Raven, 1984, p. 9–33.
 61. Casley‐Smith, J. R., P. J. O'Donoghue, and K. W. J. Crocker. The quantitative relationship between fenestrae in jejunal capillaries and connective tissue channels: proof of “tunnel capillaries.” Microvasc. Res. 9: 78–100, 1975.
 62. Cedgard, S., D. A. Hallback, M. Jodal, O. Lundgren, and S. Redfors. The effects of cholera toxin on intramural blood flow distribution and capillary hydraulic conductivity in the cat small intestine. Acta Physiol. Scand. 102: 148–158, 1978.
 63. Charbon, G. A., H. A. A. Brouwers, and A. Sala. Histamine H1‐ and H2‐receptors in the gastrointestinal circulation. Naunyn‐Schmiedebergs Arch. Pharmacol. 312: 123–129, 1980.
 64. Chen, H. I., F. C. Yeh, and W. Ho. Direct effects of nitroglycerin on the resistance, exchange and capacitance functions of canine intestinal vasculature. J. Pharmacol. Exp. Ther. 218: 497–503, 1981.
 65. Chen, W. T. Blood Flow in the Canine Ileum as Affected by Luminal Isosmotic and Hypertonic Solutions. East Lansing: Michigan State Univ., 1970 Master's thesis.
 66. Chou, C. C. Effect of potassium chloride on intestinal blood flow. J. Lab. Clin. Med. 75: 729–741, 1970.
 67. Chou, C. C. Splanchnic and overall cardiovascular hemodynamics during eating and digestion. Federation Proc. 42: 1548–1551, 1983.
 68. Chou, C. C., T. D. Burns, C. P. Hsieh, and J. M. Dabney. Mechanism of local vasodilation with hypertonic glucose in the jejunum. Surgery St. Louis 71: 380–387, 1972.
 69. Chou, C. C., and J. M. Dabney. Interrelation of ileal wall compliance and vascular resistance. Am. J. Dig. Dis. 12: 1198–1208, 1967.
 70. Chou, C. C., and B. Grassmick. Motility and blood flow distribution within the wall of the gastrointestinal tract. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H34–H39, 1978.
 71. Chou, C. C., C. P. Hsieh, T. D. Burns, and J. M. Dabney. Effects of lumen pH and osmolarity on duodenal blood flow and motility (Abstract). Gastroenterology 60: 648, 1971.
 72. Chou, C. C., C. P. Hsieh, and J. M. Dabney. Comparison of vascular effects of gastrointestinal hormones on various organs. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H103–H109, 1977.
 73. Chou, C. C., C. P. Hsieh, Y. M. Yu, P. Kvietys, L. C. Yu, R. Pittman, and J. M. Dabney. Localization of mesenteric hyperemia during digestion in dogs. Am. J. Physiol. 230: 583–589, 1976.
 74. Chou, C. C., and P. R. Kvietys. Physiological and pharmacological alterations in gastrointestinal blood flow. In: The Measurement of Splanchnic Blood Flow, edited by D. N. Granger and G. B. Bulkley. Baltimore, MD: Williams & Wilkins, 1981, p. 475–509.
 75. Chou, C. C., P. Kvietys, R. Gallavan, and R. Nyhof. Blood flow, oxygen consumption and absorption of glucose and oleic acid in the canine jejunum (Abstract). Gastroenterology 76: 1114, 1979.
 76. Chou, C. C., P. Kvietys, J. Post, and S. P. Sit. Constituents of chyme responsible for postprandial intestinal hyperemia. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H677–H682, 1978.
 77. Chou, C. C., M. J. Mangino, and D. R. Sawmiller. Gastrointestinal hormones and intestinal blood flow. In: Physiology of the Intestinal Circulation, edited by A. P. Shepherd and D. N. Granger. New York: Raven, 1984, p. 121–130.
 78. Chou, C. C., and H. Siregar. Role of histamine H1‐ and H2‐receptors in postprandial intestinal hyperemia. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G248–G252, 1982.
 79. Clementi, F., and G. E. Palade. Intestinal capillaries. I. Permeability to peroxidase and ferritin. J. Cell Biol. 41: 33–58, 1969.
 80. Clementi, F., and G. E. Palade. Intestinal capillaries. II. Structural effects of EDTA and histamine. J. Cell Biol. 42: 706–724, 1969.
 81. Collan, Y., and T. V. Kalima. Topographic relations of lymphatic endothelial cells in the initial lymphatic of the intestinal villus. Lymphology 7: 175–184, 1974.
 82. Cooperman, L. H. Effects of anaesthetics on the splanchnic circulation. Br. J. Anaesth. 44: 967–970, 1972.
 83. Dabney, J. M., J. B. Scott, and C. C. Chou. Effects of cations on ileal wall compliance and blood flow. Am. J. Physiol. 212: 835–839, 1967.
 84. Davis, M. J., and R. W. Gore. Capillary pressures in rat intestinal muscle and mucosal villi during venous pressure elevation. Am. J. Physiol. 249 (Heart Circ. Physiol. 18): H174–H187, 1985.
 85. Dhasmana, K. M., O. Prakash, and P. R. Saxema. Effects of fentanyl, and the antagonism by naloxane, on regional blood flow and biochemical variables in conscious rabbits. Arch. Int. Pharmacodyn. Ther. 260: 115–129, 1982.
 86. Dhasmana, K. M., P. R. Saxena, O. Prakash, and H. T. Van Zee. A study on the influence of ketamine on systemic and regional hemodynamics in conscious rabbits. Arch. Int. Pharmacodyn. Ther. 269: 323–334, 1984.
 87. Diana, J. N., S. C. Long, and H. Yao. Effect of histamine on equivalent pore radius in capillaries of isolated dog hindlimb. Microvasc. Res. 4: 413–437, 1972.
 88. Dobbins, W. O., and E. L. Rollins. Intestinal mucosal lymphatic permeability: an electron microscopic study of endothelial vesicles and cell junctions. J. Ultrastruct. Res. 33: 29–59, 1970.
 89. Doherty, J. U., and C. S. Liang. Arterial hypoxemia in awake dogs. J. Lab. Clin. Med. 104: 665–677, 1984.
 90. Donald, D. E., and L. L. Aarhus. Active and passive release of blood from canine spleen and small intestine. Am. J. Physiol. 227: 1166–1172, 1974.
 91. Dragstedt, C. A., V. F. Lang, and R. F. Millet. The relative effects of distension on different portions of the intestine. Arch. Surg. 18: 2257–2286, 1929.
 92. Duffy, P. A., D. N. Granger, and A. E. Taylor. Intestinal secretion induced by volume expansion in the dogs. Gastroenterology 75: 413–418, 1978.
 93. Dupont, J., S. Meydani, G. L. Case, R. V. Phillips, and L. D. Lewis. Prostaglandins and their metabolites in the gastrointestinal tract of Yucatan miniature swine. Am. J. Clin. Nutr. 34: 2048–2053, 1981.
 94. Durbin, T. J., N. A. Mortillaro, and W. H. Wilborn. Effects of endogenous histamine on capillary permeability in the feline ileum (Abstract). Federation Proc. 41: 1742, 1982.
 95. Eade, M. N., and R. W. Ginn. The distribution of blood flow along the small intestine of the dog. Proc. Soc. Exp. Biol. Med. 157: 390–392, 1978.
 96. Edelstone, D. I., and I. R. Holzman. Fetal intestinal oxygen consumption at various levels of oxygenation. Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H50–H54, 1982.
 97. Edelstone, D. I., and I. R. Holzman. Fetal and neonatal circulations. In: Physiology of the Intestinal Circulation, edited by A. P. Shepherd and D. N. Granger. New York: Raven, 1984, p. 179–190.
 98. Edelstone, D. I., D. R. Lattanzi, M. E. Paulone, and I. R. Holzman. Neonatal intestinal oxygen consumption during arterial hypoxemia. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G278–G283, 1983.
 99. Eklund, S., J. Fahrenkrug, M. Jodal, O. Lundgren, O. B. Schaffalitzky de Muckadell, and A. Sjoquist. Vasoactive intestinal polypeptide, 5‐hydroxytryptamine, and reflex hyperemia in the small intestine of the cat. J. Physiol. Lond. 302: 549–557, 1980.
 100. Eklund, S., M. Jodal, O. Lundgren, and A. Sjoquist. Effects of vasoactive intestinal polypeptide on blood flow, motility, and fluid transport in the gastrointestinal tract of the cat. Acta Physiol. Scand. 105: 461–468, 1979.
 101. Essex, H. E., J. R. Herrick, E. J. Baldes, and E. J. Mann. Blood flow on the circumflex branch of the left coronary artery of the intact dog. Am. J. Physiol. 117: 271–279, 1936.
 102. Fahrenkrug, J., U. Haglund, M. Jodal, O. Lundgren, L. Olbe, and O. B. Schaffalitzky de Muckadell. Nervous release of vasoactive intestinal polypeptide in the gastrointestinal tract of cats: possible physiological implications. J. Physiol. Lond. 284: 291–305, 1978.
 103. Fara, J. W. Postprandial mesenteric hyperemia. In: Physiology of the Intestinal Circulation, edited by A. P. Shepherd and D. N. Granger. New York: Raven, 1984, p. 99–106.
 104. Fara, J. W., and K. S. Madden. Effect of secretin and cholecystokinin on small intestinal blood flow distribution. Am. J. Physiol. 229: 1365–1370, 1975.
 105. Fara, J. W., E. H. Rubinstein, and R. R. Sonnenschein. Intestinal hormones in mesenteric vasodilation after introduodenal agents. Am. J. Physiol. 223: 1058–1067, 1972.
 106. Ferreira, S. H., A. G. Herman, and J. R. Vane. Prostaglandin production by rabbit isolated jejunum and its relationship to the inherent tone of the preparation. Br. J. Pharmacol. 56: 469–477, 1976.
 107. Feruglio, F. S., F. Greco, and L. Cesano. Effect of drug infusion on the systemic and splanchnic circulation. I. Bradykinin infusion in normal subjects. Clin. Sci. 26: 487–491, 1964.
 108. Flynn, S. B., and D. A. A. Owens. Histamine receptors in peripheral vascular beds in the cat. Br. J. Pharmacol. 55: 181–188, 1975.
 109. Folkow, B. Intravascular pressure as a factor regulating the tone of small vessels. Acta Physiol. Scand. 17: 289–310, 1949.
 110. Folkow, B. The vasodilator action of adenosine triphosphate. Acta Physiol. Scand. 17: 311–317, 1949.
 111. Folkow, B., and M. I. L. Hallback. Physiopathology of spontaneous hypertension in rats. In: Hypertension: Physiopathology and Treatment, edited by J. Genest, E. Koiw, and O. Kuchel. New York: McGraw‐Hill, 1977, p. 507–529.
 112. Folkow, B., D. H. Lewis, O. Lundgren, S. Mellander, and I. Wallentin. The effect of graded vasoconstrictor fiber stimulation on intestinal resistance and capacitance vessels. Acta Physiol. Scand. 61: 445–457, 1964.
 113. Folkow, B., D. H. Lewis, O. Lundgren, S. Mellander, and I. Wallentin. The effect of sympathetic vasoconstrictor fibers on the distribution of capillary flow in the intestine. Acta Physiol. Scand. 61: 458–466, 1964.
 114. Folkow, B., O. Lundgren, and I. Wallentin. Studies on the relationship between flow resistance, capillary filtration coefficient and regional blood volume in the intestine of the cat. Acta Physiol. Scand. 57: 270–283, 1963.
 115. Fondacaro, J. D., and E. D. Jacobson. The role of prostacyclin (PGI2) in metabolic hyperemia. Prostaglandins 21, Suppl. V: 25–32, 1981.
 116. Fondacaro, J. D., M. M. Schwaiger, and E. D. Jacobson. Effects of prostacyclin (PGI2) and prostaglandin D2 (PGD2) on the ischemic canine mesenteric circulation (Abstract). Gastroenterology 76: 1134, 1979.
 117. Fondacaro, J. D., K. M. Walus, M. Schwaiger, and E. D. Jacobson. Vasodilation of the normal and ischemic canine mesenteric circulation. Gastroenterology 80: 1542–1549, 1981.
 118. Fordtran, J. S., and T. W. Locklear. Ionic constituents and osmolality of gastric and small‐intestinal fluids after eating. Am. J. Dig. Dis. 11: 503–521, 1966.
 119. Fordtran, J. S., F. C. Rector, M. F. Ewton, N. Soter and J. Kinney. Permeability characteristics of the human small intestine. J. Clin. Invest. 44: 1935–1944, 1965.
 120. Frigerio, B., M. Ravazola, S. Ito, R. Buffa, C. Capella, E. Solcia, and L. Orci. Histochemical and ultrastructural identification of neurotensin cells in the dog ileum. Histochemistry 54: 123–131, 1977.
 121. Frizzell, R. A., L. Markscheid‐Kaspi, and S. G. Schultz. Oxidative metabolism of rabbit ileal mucosa. Am. J. Physiol. 226: 1142–1148, 1974.
 122. Fromm, D., and N. Halpern. Effects of histamine receptor antagonists on ion transport by isolated ileum of the rabbit. Gastroenterology 77: 1034–1038, 1979.
 123. Fronek, K., and A. Fronek. Combined effect of exercise and digestion on hemodynamics in conscious dogs. Am. J. Physiol. 218: 555–559, 1970.
 124. Fronek, K., and L. H. Stahlgren. Systemic and regional hemodynamic changes during food intake and digestion in non‐anesthetized dogs. Circ. Res. 23: 687–692, 1968.
 125. Fumia, F. D., D. I. Edelstone, and I. R. Holzman. Blood flow and oxygen delivery to fetal organs as functions of fetal hematocrit. Am. J. Obstet. Gynecol. 150: 274–282, 1984.
 126. Gaffney, G. R., and H. E. Williamson. Effect of indomethacin and meclofenamate on canine mesenteric and celiac blood flow. Res. Commun. Chem. Pathol. Pharmacol. 25: 165–168, 1979.
 127. Gallavan, R. H.Jr., M. H. Chen, S. N. Joffe, and E. D. Jacobson. Vasoactive intestinal polypeptide, cholecystokinin, glucagon, and bile‐oleate‐induced jejunal hyperemia. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G208–G215, 1985.
 128. Gallavan, R. H.Jr., and C. C. Chou. Carbohydrate metabolism during the postprandial intestinal hyperemia. Proc. Soc. Exp. Biol. Med. 171: 214–220, 1982.
 129. Gallavan, R. H.Jr., and C. C. Chou. Prostaglandin synthesis inhibition and postprandial intestinal hyperemia. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G140–G146, 1982.
 130. Gallavan, R. H.Jr., and C. C. Chou. Possible mechanisms for the initiation and maintenance of postprandial intestinal hyperemia. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G301–G308, 1985.
 131. Gallavan, R. H.Jr., C. C. Chou, P. R. Kvietys, and S. P. Sit. Regional blood flow during digestion in the conscious dog. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H220–H225, 1980.
 132. Gallavan, R. H.Jr., J. D. Fondacaro, and E. D. Jacobson. Intestinal blood flow and oxygen consumption. Proc. Soc. Exp. Biol. Med. 174: 74–78, 1983.
 133. Gallavan, R. H.Jr., and E. D. Jacobson. Prostaglandins and the splanchnic circulation. Proc. Soc. Exp. Biol. Med. 170: 391–397, 1982.
 134. Gallavan, R. H.Jr., C. Shaw, R. F. Murphy, S. V. Joffe, and E. D. Jacobson. The lipid‐induced jejunal hyperemia and neurotensin release (Abstract). Dig. Dis. Sci. 29: 295, 1984.
 135. Gannon, B. The coexistence of fountain and tuft patterns of blood supply in individual intestinal villi of rabbit and man: resolution of an old controversy. Bibl. Anat. 20: 130–133, 1981.
 136. Gannon, B., J. Browning, P. Rogers, and B. Harper. Microvascular organization in the intestine. In: Microcirculation of the Alimentary Tract‐Physiology and Pathology, edited by A. Koo, S. K. Lam, and L. H. Smaje. Singapore: World Scientific Publ., 1983, p. 39–52. (Proc. Symp. Hong Kong, March 28–30, 1983).
 137. Gannon, B., R. W. Gore, and P. A. W. Rogers. Is there an anatomical basis for a vascular countercurrent mechanism in rabbit and human intestinal villi? Biomed. Res. 2: 235–241, 1981.
 138. Ganrot, P. O., C. B. Laurell, and K. Ohlsson. Concentration of trypsin inhibitors of different molecular size and of albumin and haptoglobulin in blood and lymph of various organs in the dog. Acta Physiol. Scand. 79: 280–286, 1970.
 139. Garlick, D. G. Factors affecting the transport of extracellular molecules in skeletal muscle. In: Capillary Permeability, edited by C. Crone and N. A. Lassen. Copenhagen: Munksgaard, 1970, p. 228–238. (Alfred Benzoin Symp., 2nd., 1969).
 140. Gelman, S. Effects of anesthetics on splanchnic circulation. In: Cardiovascular Action of Anesthetics and Drugs Used in Anesthesia, edited by B. M. Altura and S. Halevy. New York: Karger, 1987.
 141. Gelman, S., K. C. Fowler, and L. R. Smith. Regional blood flow during isoflurane and halothane anesthesia. Anesth. Analg. 63: 557–565, 1984.
 142. Giraud, G. D., and K. L. MacCannell. Decreased nutrient blood flow during dopamine‐ and epinephrine‐induced intestinal vasodilation. J. Pharmacol. Exp. Ther. 230: 214–220, 1984.
 143. Gore, R. W. Fluid exchange across single capillaries in rat intestinal muscle. Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H268–H287, 1982.
 144. Gore, R. W., and H. G. Bohlen. Microvascular pressures in rat intestinal muscle and mucosal villi. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H685–H693, 1977.
 145. Gore, R. W., W. Schoknecht, and H. G. Bohlen. Filtration coefficients of single capillaries in rat intestinal muscle. In: Microcirculation, edited by J. Grayson and W. Zingg. New York: Plenum, 1976, p. 331–332.
 146. Granger, D. N. Intestinal microcirculation and transmucosal fluid transport. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G343–G349, 1981.
 147. Granger, D. N., and J. A. Barrowman. Microcirculation of the alimentary tract. I. Physiology of transcapillary fluid and solute exchange. Gastroenterology 84: 846–868, 1983.
 148. Granger, D. N., J. A. Barrowman, S. L. Harper, P. R. Kvietys, and R. J. Korthuis. Sympathetic stimulation and intestinal capillary fluid exchange. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G279–G283, 1984.
 149. Granger, D. N., B. H. Cook, H. J. Granger, and A. E. Taylor. Histochemistry of microvascular smooth muscle in the gastrointestinal tract. Microvasc. Res. 12: 157–167, 1976.
 150. Granger, D. N., B. H. Cook, and A. E. Taylor. Structural locus of transmucosal albumin efflux in canine ileum: a fluorescence study. Gastroenterology 71: 1023–1027, 1976.
 151. Granger, D. N., R. Cross, and J. A. Barrowman. Effects of various secretagogues and human carcinoid serum or lymph flow in the cat ileum. Gastroenterology 83: 896–901, 1982.
 152. Granger, D. N., and H. J. Granger. Systems analysis of intestinal hemodynamics and oxygenation. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G786–G796, 1983.
 153. Granger, D. N., J. P. Granger, R. A. Brace, R. E. Parker, and A. E. Taylor. Analysis of the permeability characteristics of intestinal capillaries. Circ. Res. 44: 335–344, 1979.
 154. Granger, D. N., S. L. Harper, R. J. Korthuis, H. G. Bohlen, and P. R. Kvietys. Intestinal vasoregulation in spontaneously hypertensive rats. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G786–G791, 1985.
 155. Granger, D. N., and P. R. Kvietys. The splanchnic circulation: intrinsic regulation. Annu. Rev. Physiol. 43: 409–418, 1981.
 156. Granger, D. N., and P. R. Kvietys. Digestive system: small and large intestines. F. Lymphatic system. In: Blood Vessels and Lymphatics in Organ Systems, edited by D. I. Abramson and P. B. Dorbin. Orlando, FL: Academic, 1984, chapt. 13, p. 450–455.
 157. Granger, D. N., P. R. Kvietys, D. Mailman, and P. D. I. Richardson. Intrinsic regulation of functional blood flow and water absorption in canine colon. J. Physiol. Lond. 307: 443–451, 1980.
 158. Granger, D. N., P. R. Kvietys, N. A. Mortillaro, and A. E. Taylor. Effect of luminal distension on intestinal transcapillary fluid exchange. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G516–G523, 1980.
 159. Granger, D. N., P. R. Kvietys, D. A. Parks, and J. N. Benoit. Intestinal blood flow: relations to function. Surv. Dig. Dis. 1: 217–228, 1983.
 160. Granger, D. N., P. R. Kvietys, and M. A. Perry. Role of exchange vessels in the regulation of intestinal oxygenation. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G570–G574, 1982.
 161. Granger, D. N., P. R. Kvietys, M. A. Perry, J. A. Barrowman. The microcirculation and intestinal transport. In: Physiology of the Gastrointestinal Tract (2nd ed.), edited by L. R. Johnson New York: Raven, 1987, vol. 2, chapt. 13, p. 1671–1697.
 162. Granger, D. N., P. R. Kvietys, M. A. Perry, and A. E. Taylor. Relationship between intestinal volume secretion and oxygen uptake. Dig. Dis. Sci. 27: 42–48, 1982.
 163. Granger, D. N., P. R. Kvietys, W. H. Wilborn, N. A. Mortillaro, and A. E. Taylor. Mechanism of glucagon‐induced intestinal secretion. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G30–G38, 1980.
 164. Granger, D. N., N. A. Mortillaro, P. R. Kvietys, G. Rutili, J. C. Parker, and A. E. Taylor. Role of the interstitial matrix during intestinal volume absorption. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G183–G189, 1980.
 165. Granger, D. N., N. A. Mortillaro, P. R. Kvietys, and A. E. Taylor. Regulation of interstitial fluid volume in the small bowel. In: Tissue Fluid Pressure and Composition, edited by A. R. Hargens Baltimore, MD: Williams & Wilkins, 1981, p. 171–183.
 166. Granger, D. N., N. A. Mortillaro, M. A. Perry, and P. R. Kvietys. Autoregulation of intestinal capillary filtration rate. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G475–G483, 1982.
 167. Granger, D. N., N. A. Mortillaro, and A. E. Taylor. Interactions of intestinal lymph flow and secretion. Am. J. Physiol. 232 (Endocrinol. Metab. Gastrointest. Physiol. 1): E13–E18, 1977.
 168. Granger, D. N., N. A. Mortillaro, and A. E. Taylor. Effects of various secretagogues on ileal lymph flow (Abstract). Gastroenterology 76: 123, 1979.
 169. Granger, D. N., R. E. Parker, E. W. Quillen, R. A. Brace, and A. E. Taylor. Lymph flow transients. In: Lymphology, edited by P. Malek Stuttgart, FRG: Thieme, 1977, p. 61–63.
 170. Granger, D. N., M. A. Perry, P. R. Kvietys, D. A. Parks, and J. N. Benoit. Metabolic, myogenic and hormonal factors in local regulation of alimentary tract blood flow. In: Microcirculation of the Alimentary Tract‐Physiology and Pathology. Singapore: World Scientific Publ., 1983, p. 131–142. 1983).
 171. Granger, D. N., M. A. Perry, P. R. Kvietys, and A. E. Taylor. Interstitium‐to‐blood movement of macromolecules in the absorbing small intestine. Am. J. Physiol. 241 (Gastrointest. Liver Physiol. 4): G31–G36, 1981.
 172. Granger, D. N., M. A. Perry, P. R. Kvietys, and A. E. Taylor. Permeability of intestinal capillaries: effects of fat absorption and gastrointestinal hormones. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G194–G201, 1982.
 173. Granger, D. N., M. A. Perry, P. R. Kvietys, and A. E. Taylor. A new method for estimating intestinal capillary pressure. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G341–G344, 1983.
 174. Granger, D. N., M. A. Perry, P. R. Kvietys, and A. E. Taylor. Capillary and interstitial forces during fluid absorption in the cat small intestine. Gastroenterology 86: 262–273, 1984.
 175. Granger, D. N., A. J. Premen, and P. R. Kvietys. Effects of intestinal hormones on jejunal blood flow (Abstract). Federation Proc. 44: 445, 1985.
 176. Granger, D. N., P. D. I. Richardson, P. R. Kvietys, and N. A. Mortillaro. Intestinal blood flow. Gastroenterology 78: 837–863, 1980.
 177. Granger, D. N., P. D. I. Richardson, and A. E. Taylor. The effects of isoprenaline and bradykinin on capillary filtration in the cat small intestine. Br. J. Pharmacol. 67: 361–366, 1979.
 178. Granger, D. N., P. D. I. Richardson, and A. E. Taylor. Volumetric assessment of the capillary filtration coefficient in the cat small intestine. Pfluegers Arch. 381: 25–33, 1979.
 179. Granger, D. N., G. Rutili, and J. M. McCord. Superoxide radicals in feline intestinal ischemia. Gastroenterology 81: 22–29, 1981.
 180. Granger, D. N., M. Sennett, P. McElearney, and A. E. Taylor. Effect of local arterial hypotension on cat intestinal capillary permeability. Gastroenterology 79: 474–480, 1980.
 181. Granger, D. N., J. S. Shackleford, and A. E. Taylor. Prostaglandin E1‐induced filtration secretion in the feline ileum. Am. J. Physiol. 236 (Endocrinol. Metab. Gastrointest. Physiol. 5): E788–E798, 1979.
 182. Granger, D. N., and A. E. Taylor. Effects of solute‐coupled transport on lymph flow and oncotic pressures in cat ileum. Am. J. Physiol. 235 (Endocrinol. Metab. Gastrointest. Physiol. 4): E429–E436, 1978.
 183. Granger, D. N., and A. E. Taylor. Intestinal secretagogues: effects on in vivo and in vitro oxygen consumption (Abstract). Federation Proc. 38: 952, 1979.
 184. Granger, D. N., and A. E. Taylor. Permeability of intestinal capillaries to endogenous macromolecules. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H457–H464, 1980.
 185. Granger, D. N., and A. E. Taylor. Permselectivity of intestinal capillaries. Physiologist 23: 47–52, 1980.
 186. Granger, D. N., M. Ulrich, D. A. Parks, and S. L. Harper. Transcapillary exchange during intestinal fluid absorption. In: Physiology of the Intestinal Circulation, edited by A. P. Shepherd and D. N. Granger. New York: Raven, 1984, p. 211–221.
 187. Granger, D. N., J. Valleau, R. Parker, R. Lane, and A. Taylor. Effects of adenosine on intestinal hemodynamics, oxygen delivery, and capillary fluid exchange. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H707–H719, 1978.
 188. Granger, H. J. Role of the interstitial matrix and lymphatic pump in regulation of transcapillary fluid balance. Microvasc. Res. 18: 209–216, 1979.
 189. Granger, H. J. Physicochemical properties of the extracellular matrix. In: Tissue Fluid Pressure and Composition, edited by A. R. Hargens Baltimore, MD: Williams & Wilkins, p. 51–61.
 190. Granger, H. J., J. L. Borders, G. A. Meninger, A. H. Goodman, and G. E. Barnes. Microcirculatory control systems. In: The Physiology and Pharmacology of the Microcirculation, edited by N. A. Mortillaro Orlando, FL: Academic, 1983, vol. 1, chapt. 13, p. 209–236.
 191. Granger, H. J., A. H. Goodman, and D. N. Granger. Role of resistance and exchange vessels in local microvascular control of skeletal muscle oxygenation in the dog. Circ. Res. 38: 379–385, 1976.
 192. Granger, H. J., and C. P. Norris. Intrinsic regulation of intestinal oxygenation in the anesthetized dog. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H836–H843, 1980.
 193. Granger, H. J., and C. P. Norris. Role of adenosine in local control of intestinal circulation in the dog. Circ. Res. 46: 764–770, 1980.
 194. Granger, H. J., and R. A. Nyhof. Dynamics of intestinal oxygenation: interactions between oxygen supply and uptake. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G91–G96, 1982.
 195. Granger, H. J., and A. P. Shepherd. Dynamics and control of the microcirculation. In: Advances in Biomedical Engineering, edited by J. Brown New York: Academic, 1979, vol. 7, p. 1–63.
 196. Gray, G. M., and H. L. Cooper. Protein digestion and absorption. Gastroenterology 61: 535–544, 1971.
 197. Grayson, J. The gastrointestinal circulation. In: Gastrointestinal Physiology, edited by E. D. Jacobson and L. L. Shanbour. Baltimore, MD: University Park, 1974, vol. 4, p. 105–138.
 198. Groszmann, R. J., A. T. Blei, E. H. Storer, and H. O. Conn. Intestinal O2 consumption during mechanical and pharmacological reduction in portal pressure. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G502–G508, 1980.
 199. Guth, P. H., and E. Smith. Histamine receptors in mesenteric circulation of the cat and rat. Am. J. Physiol. 234 (Endocrinol. Metab. Gastrointest. Physiol. 3): E370–E374, 1978.
 200. Guyton, A. C., K. Scheel, and D. Murphies. Interstitial fluid pressure. III. Its effect in resistance to tissue fluid mobility. Circ. Res. 19: 412–419, 1966.
 201. Guyton, A. C., A. E. Taylor, and H. J. Granger. Circulatory Physiology II. Dynamics and Control of the Body Fluids. Philadelphia, PA: Saunders, 1975.
 202. Haddy, F. J., C. C. Chou, J. B. Scott, and J. M. Dabney. Intestinal vascular responses to naturally occurring vasoactive substances. Gastroenterology 52: 444–451, 1967.
 203. Haddy, F. J., and J. B. Scott. Metabolically linked vasoactive chemicals in local regulation of blood flow. Physiol. Rev. 48: 688–707, 1968.
 204. Haddy, F. J., and J. B. Scott. Metabolic factors in peripheral circulatory regulation. Federation Proc. 34: 2006–2011, 1975.
 205. Hainsworth, R., and R. J. Linden. Reflex control of vascular capacitance. In: Cardiovascular Physiology III, edited by A. C. Guyton and D. B. Young. Baltimore, MD: University Park, 1979, p. 67–124.
 206. Hakim, A. A., and N. Lifson. Effects of pressure on water and solute transport by dog intestinal mucosa in vitro. Am. J. Physiol. 216: 276–286, 1969.
 207. Haljamae, H., M. Jodal, and O. Lundgren. Countercurrent multiplication of sodium in intestinal villi during absorption of sodium chloride. Acta Physiol. Scand. 89: 580–593, 1973.
 208. Hallback, D. A., L. Hulten, M. Jodal, J. Lindhagen, and O. Lundgren. Evidence for the existence of a countercurrent exchanger in the small intestine in man. Gastroenterology 74: 683–690, 1978.
 209. Hallback, D. A., M. Jodal, and O. Lundgren. Importance of sodium and glucose for the establishment of a villous tissue hyperosmolality by the intestinal countercurrent multiplier. Acta Physiol. Scand. 107: 89–96, 1979.
 210. Hallback, D. A., M. Jodal, and O. Lundgren. Effects of cholera toxin on villous tissue osmolality and fluid and electrolyte transport in the small intestine of the cat. Acta Physiol. Scand. 107: 239–249, 1979.
 211. Hanson, K. M. Hemodynamic effects of distension of the dog small intestine. Am. J. Physiol. 225: 456–460, 1973.
 212. Hanson, K. M. Splanchnic vascular response to infusion of prostaglandins A1, A2, and B2. Pharmacology 14: 166–172, 1976.
 213. Hanson, K. M., and P. C. Johnson. Evidence for local arteriovenous reflex in intestine. J. Appl. Physiol. 17: 509–513, 1962.
 214. Hanson, K. M., and P. C. Johnson. Pressure‐flow relationships in isolated dog colon. Am. J. Physiol. 212: 574–579, 1967.
 215. Hanson, K. M., and F. T. Moore. Effects of intraluminal pressure in the colon on its vascular pressure‐flow relationships. Proc. Soc. Exp. Biol. Med. 131: 373–376, 1969.
 216. Hardy, J. D., and P. Bard. Body temperature regulation. In: Medical Physiology, edited by V. B. Mountcastle. St. Louis, MO: Mosby, 1974, vol. II, p. 1305–1342.
 217. Hargens, A. R., and B. W. Zweifach. Contractile stimuli in collecting lymph vessels. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H57–H65, 1977.
 218. Harper, S. L., J. A. Barrowman, P. R. Kvietys, and D. N. Granger. Effect of neurotensin on intestinal capillary permeability and blood flow. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G161–G166, 1984.
 219. Hernandez, L. A., P. R. Kvietys, and D. N. Granger. Postprandial hemodynamics in the conscious rat. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14): G117–G123, 1986.
 220. Herrick, J. F., H. E. Essex, F. C. Mann, and E. J. Baldes. The effect of digestion on blood flow on certain blood vessels of the dog. Am. J. Physiol. 108: 621–628, 1934.
 221. Hinshaw, L. B. Arterial and venous pressure‐resistance relationships in perfused leg and intestine. Am. J. Physiol. 203: 271–274, 1962.
 222. Hoffman, W. E., D. J. Miletich, and R. F. Albrecht. Cardiovascular and regional blood flow changes during halothane anesthesia in the aged rat. Anesthesiology 56: 444–448, 1982.
 223. Hofmann, A. F., and B. Borgstrom. The intraluminal phase of fat digestion in man: the lipid content of the micellar and oil phases of intestinal content obtained during fat digestion and absorption. J. Clin. Invest. 43: 247–257, 1964.
 224. Holzman, I. R., B. Tabata, and D. I. Edelstone. Effects of varying hematocrit on intestinal oxygen uptake in neonatal lambs. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G432–G436, 1985.
 225. Howland, R. D., and S. Spector. Disposition of histamine in mammalian blood vessels. J. Pharmacol. Exp. Ther. 182: 239–245, 1972.
 226. Hsieh, C. P., and C. C. Chou. Role of humoral substances in increasing the duodenal blood flow and motility when the acid of food stuff is in the lumen (Abstract). Federation Proc. 31: 391, 1972.
 227. Hsieh, C. P., J. M. Dabney, W. T. Chen, and C. C. Chou. Effect of lumen acidity and osmolarity on duodenal blood flow and motility (Abstract). Physiologist 13: 227, 1970.
 228. Idvall, J., K. F. Aronsen, and P. Stenberg. Tissue perfusion and distribution of cardiac output during ketamine anesthesia in normovolemic rats. Acta Anaesthesiol. Scand. 24: 257–263, 1980.
 229. Inberg, M. V., T. Havia, and M. Arola. Effect of oxygen breathing on jejunal tissue gas tensions during superior mesenteric arterial occlusion. Scand. J. Gastroenterol. 9: 337–342, 1974.
 230. Jacobson, E. D., R. H. Gallavan, Jr., and J. D. Fondacaro. A model of the mesenteric circulation. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G541–G546, 1982.
 231. Jöbsis, F. F. Basic processes in cellular respiration. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. 1, chapt. 13, p. 63–124.
 232. Jodal, M. The Significance of the Intestinal Countercurrent Exchanger for the Absorption of Sodium and Fatty Acids. Goteborg, Sweden: Gotab, 1973.
 233. Jodal, M. An autoradiographic study of the intestinal absorption of 22Na. Acta Physiol. Scand. 90: 79–85, 1974.
 234. Jodal, M., U. Haglund, and O. Lundgren. Countercurrent exchange mechanisms in the small intestine. In: Physiology of the Intestinal Circulation, edited by A. P. Shepherd and D. N. Granger. New York: Raven, 1984, p. 83–98.
 235. Jodal, M., D. A. Hallback, and O. Lundgren. Tissue osmolality in intestinal villi during luminal perfusion with isotonic electrolyte solutions. Acta Physiol. Scand. 102: 94–107, 1978.
 236. Jodal, M., and O. Lundgren. The distribution of absorbed 3H‐palmitic acid in the intestinal villi of the cat during various circulatory conditions. Acta Physiol. Scand. 89: 318–326, 1973.
 237. Jodal, M., and O. Lundgren. Studies on the in vivo absorption of butyric acid in the small intestine of the cat. Acta Physiol. Scand. 89: 327–333, 1973.
 238. Jodal, M., J. Svanvik, and O. Lundgren. The importance of the intestinal countercurrent exchanger for 85Kr absorption from the feline gut. Acta Physiol. Scand. 100: 412–423, 1977.
 239. Johns, B. L., and C. F. Rothe. Delayed vascular compliance and fluid exchange in the canine intestine. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H660–H669, 1978.
 240. Johnson, P. C. Myogenic nature of increase in intestinal vascular resistance with venous pressure elevation. Circ. Res. 6: 992–999, 1959.
 241. Johnson, P. C. Autoregulation of intestinal blood flow. Am. J. Physiol. 199: 311–318, 1960.
 242. Johnson, P. C. Origin, localization, and homeostatic significance of autoregulation in the intestine. Circ. Res. 14/15, Suppl.: 225–233, 1964.
 243. Johnson, P. C. Effect of venous pressure on mean capillary pressure and vascular resistance in the intestine. Circ. Res. 16: 294–300, 1965.
 244. Johnson, P. C. The myogenic response. In: Handbook of Physiology. The Cardiovascular System. Vascular Smooth Muscle, edited by D. F. Bohr, A. P. Somlyo, and H. V. Sparks, Jr.. Bethesda, MD: Am. Physiol. Soc., 1980, sect. 2, vol. II, chapt. 13, p. 409–442.
 245. Johnson, P. C. Myogenic and venous‐arteriolar responses in intestinal circulation. In: Physiology of the Intestinal Circulation, edited by A. P. Shepherd and D. N. Granger. New York: Raven, 1984, chapt. 13, p. 49–60.
 246. Johnson, P. C., and K. M. Hanson. Effect of arterial pressure on arterial and venous resistance of intestine. J. Appl. Physiol. 17: 503–508, 1962.
 247. Johnson, P. C., and K. M. Hanson. Relation between venous pressure and blood volume in the intestine. Am. J. Physiol. 204: 31–34, 1963.
 248. Johnson, P. C., and K. M. Hanson. Capillary filtration in the small intestine of the dog. Circ. Res. 19: 766–773, 1966.
 249. Jolliffe, N., and H. W. Smith. The excretion of urine in the dog. II. The urea and creatinine clearance on cracker meal diet. Am. J. Physiol. 99: 101–107, 1931.
 250. Kampp, M., and O. Lundgren. Evidence for countercurrent exchange in intestinal villi. Acta. Physiol. Scand. 68: 103–112, 1966.
 251. Kampp, M., and O. Lundgren. Blood flow and flow distribution in the small intestine of the cat as analysed by the Kr85 washout technique. Acta. Physiol. Scand. 72: 282–297, 1968.
 252. Kampp, M., O. Lundgren, and N. J. Nilsson. Extravascular shunting of oxygen in the small intestine of the cat. Acta Physiol. Scand. 72: 396–403, 1968.
 253. Kampp, M., O. Lundgren, and J. Sjostrand. On the components of the Kr85 washout curves from the small intestine of the cat. Acta Physiol. Scand. 72: 257–281, 1968.
 254. Kampp, M., O. Lundgren, and J. Sjostrand. The distribution of intravascularly administered lipid soluble and lipid insoluble substances in the mucosa and the submucosa of the small intestine of the cat. Acta Physiol. Scand. 72: 469–480, 1968.
 255. Karnovsky, M. J. The ultrastructural basis of transcapillary exchanges. J. Gen. Physiol. 52: 641–696, 1968.
 256. Katz, J. A., L. Sellers, G. Banoris, and S. Golden. Studies on the extravascular albumin of rats. In: Plasma Protein Metabolism, edited by M. Rothschild and P. Waldmonn. New York: Academic, 1970, chapt. 13, p. 129–154.
 257. Kauffman, G. L.Jr., D. Aures, and M. I. Grossman. Intravenous indomethacin and aspirin reduce basal gastric mucosal blood flow in dogs. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G131–G134, 1980.
 258. Kawaue, Y., and J. Iriuchijima. Changes in cardiac output and peripheral flows in pentobarbital anesthesia in the rat. Jpn. J. Physiol. 34: 283–294, 1984.
 259. Kellum, J. M., and B. M. Jaffe. Release of immunoreactive serotonin following acid perfusion of the duodenum. Ann. Surg. 184: 633–636, 1976.
 260. Kellum, J. M., and B. M. Jaffe. Validation and application of a radioimmunoassay for serotonin. Gastroenterology 70: 516–522, 1976.
 261. Keusch, G. T., J. J. Rahal, Jr., L. Weinstein, and G. F. Grady. Biochemical effects of cholera enterotoxin: oxidative metabolism in the infant rabbit. Am. J. Physiol. 218: 703–707, 1970.
 262. Kiel, J. W., V. Pitts, J. N. Benoit, D. N. Granger, and A. P. Shepherd. Reduced vascular sensitivity to norepinephrine in portal‐hypertensive rats. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G192–G195, 1985.
 263. Knapp, H. R., O. Oswald, B. J. Sweetman, and J. A. Oates. Synthesis and metabolism of prostaglandins E2, F2α, and D2 by the rat gastrointestinal tract. Stimulation by a hypertonic environment in vitro. Prostaglandins 15: 751–757, 1978.
 264. Koehler, R. C., B. W. McDonald, and J. A. Krasney. Influence of CO2 on cardiovascular response to hypoxia in conscious dogs. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H545–H558, 1980.
 265. Kokko, J. P. Countercurrent exchanger in the small intestine of man: is there evidence for its existence? Gastroenterology 74: 791–793, 1978.
 266. Konturek, S. J., J. Jaworek, M. Cieszkowski, W. Pawlik, J. Kania, and S. R. Bloom. Comparison of effects of neurotensin and fat on pancreatic stimulation in dogs. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G590–G598, 1983.
 267. Konturek, S. J., and R. Siebers. Role of histamine H1‐ and H2‐receptors in myoelectric activity of small bowel in the dog. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G50–G56, 1980.
 268. Koo, A., S. K. Lam, and L. H. Smaje Microcirculation of the Alimentary Tract. Singapore: World Scientific Publ. 1983.
 269. Kvietys, P. R.. Microcirculation of the large intestine. In: The Physiology and Pharmacology of the Microcirculation, edited by N. A. Mortillaro Orlando, FL: Academic, 1984, p. 77–94.
 270. Kvietys, P. R., J. A. Barrowman, and D. N. Granger. Effects of anesthetics and other experimental conditions on splanchnic blood flow. In: The Measurement of Splanchnic Blood Flow, edited by D. N. Granger and G. B. Bulkley. Baltimore, MD: Williams & Wilkins, 1981, p. 59–65.
 271. Kvietys, P. R., J. A. Barrowman, S. L. Harper, and D. N. Granger. Relations between canine intestinal motility, blood flow and oxygenation (Abstract). Federation Proc. 43: 1010, 1985.
 272. Kvietys, P. R., R. H. Gallavan, and C. C. Chou. Contribution of bile to postprandial intestinal hyperemia. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G284–G288, 1980.
 273. Kvietys, P. R., and D. N. Granger. Effect of volatile fatty acids on blood flow and oxygen uptake by the dog colon. Gastroenterology 80: 962–969, 1981.
 274. Kvietys, P. R., and D. N. Granger. Effects of solute‐coupled fluid absorption on blood flow and oxygen uptake in dog colon. Gastroenterology 81: 450–457, 1981.
 275. Kvietys, P. R., and D. N. Granger. The colonic circulation. Federation Proc. 41: 2106–2110, 1982.
 276. Kvietys, P. R., and D. N. Granger. Relation between intestinal blood flow and oxygen uptake. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G202–G208, 1982.
 277. Kvietys, P. R., and D. N. Granger. Vasoactive agents and splanchnic oxygen uptake. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G1–G9, 1982.
 278. Kvietys, P. R., and D. N. Granger. Physiology, pharmacology and pathology of the colonic circulation. In: Physiology of the Intestinal Circulation, edited by A. P. Shepherd and D. N. Granger. New York: Raven, 1984, p. 131–142.
 279. Kvietys, P. R., S. L. Harper, R. J. Korthuis, and D. N. Granger. Effects of temperature on ileal blood flow and oxygenation. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G246–G249, 1985.
 280. Kvietys, P. R., J. M. McLendon, and D. N. Granger. Postprandial intestinal hyperemia: role of bile salts in the ileum. Am. J. Physiol. 241 (Gastrointest. Liver Physiol. 4): G469–G477, 1981.
 281. Kvietys, P. R., T. Miller, and D. N. Granger. Intrinsic control of colonic blood flow and oxygenation. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G478–G484, 1980.
 282. Kvietys, P. R., C. A. Navia, A. J. Premen, and D. N. Granger. Quantitative assessment of the two‐component model of intestinal circulation. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14): G446–G452, 1986.
 283. Kvietys, P. R., M. A. Perry, and D. N. Granger. Intestinal capillary exchange capacity and oxygen delivery‐to‐demand ratio. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G635–G640, 1983.
 284. Kvietys, P. R., R. Pittman, and C. C. Chou. Contribution of luminal concentration of nutrients and osmolality to postprandial hyperemia in dogs. Proc. Soc. Exp. Biol. Med. 152: 659–663, 1976.
 285. Kvietys, P. R., W. H. Wilborn, and D. N. Granger. Effect of atropine on bile‐oleic acid‐induced alterations in dog jejunal hemodynamics, oxygenation, and net transmucosal water movement. Gastroenterology 80: 31–38, 1981.
 286. Kvietys, P. R., W. H. Wilborn, and D. N. Granger. Effects of net transmucosal volume flux on lymph flow in the canine colon: structural‐functional relationship. Gastroenterology 81: 1080–1090, 1981.
 287. Laine, G. A., and H. J. Granger. Permeability of intestinal capillaries in chronic arterial hypertension. Hypertension Dallas 5: 722–727, 1983.
 288. Larsson, L. I., J. Fahrenkrug, O. Schaffalitzky de Muckadell, F. Sundler, R. Hakanson, and J. F. Rehfeld. Localization of vasocative intestinal polypeptide (VIP) to central and peripheral neurons. Proc. Natl. Acad. Sci. USA 73: 3197–3200, 1976.
 289. Lawrence, J. A., D. Bryan, K. B. Roberts, and J. A. Barrowman. Effect of secretin on intestinal lymph flow and composition in rat. Q. J. Exp. Physiol. Cogn. Med. Sci. 66: 297–305, 1981.
 290. Leak, L. V., and J. F. Burke. Ultrastructure studies on the lymphatic anchoring filaments. J. Cell Biol. 36: 129–149, 1968.
 291. Lee, J. S. A micropuncture study of water transport by dog jejunal villi in vitro. Am. J. Physiol. 217: 1528–1533, 1969.
 292. Lee, J. S. Contraction of villi and fluid transport in dog jejunal mucosa in vitro. Am. J. Physiol. 221: 488–495, 1971.
 293. Lee, J. S. Lymph capillary pressure of rat intestinal villi during fluid absorption. Am. J. Physiol. 237 (Endocrinol. Metab. Gastrointest. Physiol. 6): E301–E307.
 294. Lee, J. S. Lymph flow during fluid absorption from rat jejunum. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G312–G316, 1981.
 295. Lee, J. S. Lymph pressure in intestinal villi and lymph flow during fluid secretion. In: Tissue Fluid Pressure and Composition, edited by A. R. Hargens Baltimore, MD: Williams & Wilkins, 1981, p. 165–172.
 296. Lee, J. S. Lymphatic contractility. In: Physiology of the Intestinal Circulation, edited by A. P. Shepherd and D. N. Granger. New York: Raven, 1984, p. 201–210.
 297. Lee, J. S., and K. M. Duncan. Lymphatic and venous transport of water from rat jejunum: a vascular perfusion study. Gastroenterology 54: 559–567, 1968.
 298. Lee, K. E., and R. A. Summerill. Glomerular filtration rate following administration of individual amino acids in conscious dogs. Q. J. Exp. Physiol. Cogn. Med. Sci. 67: 459–465, 1982.
 299. Lees, M. H., J. Hill, A. J. Ochsner, and C. Thomas. Regional blood flows of the rhesus monkey during halothane anesthesia. Anesth. Analg. 50: 270–281, 1971.
 300. Lehninger, A. L. Biochemistry. The Molecular Basis of Cell Structure and Function (2nd ed.). New York: Worth, 1975.
 301. Levine, G. W. Anticoagulant, antithrombotic and thrombolytic drugs. In: The Pharmacological Basis of Therapeutics, edited by L. S. Goodman and A. Gilman. New York: Macmillan, 1975.
 302. Levine, S. E., D. N. Granger, R. A. Brace, and A. E. Taylor. Effect of hyperosmolality on vascular resistance and lymph flow in the cat ileum. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H14–H20, 1978.
 303. Levitt, D. G., J. H. Bond, and M. D. Levitt. Use of a model of small bowel mucosa to predict passive absorption. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G23–G29, 1980.
 304. Levitt, M. D., and D. G. Levitt. Use of inert gases to study the interaction of blood flow and diffusion during passive absorption from gastrointestinal tract of the rat. J. Clin. Invest. 52: 1852–1862, 1973.
 305. Lundeen, G., M. Manohar, and C. Parks. Systemic distribution of blood flow in swine while awake and during 1.0 and 1.5 MAC isoflurane anesthesia with or without 50% nitrous oxide. Anesth. Analg. 62: 499–512, 1983.
 306. Lundgren, O. Studies on blood flow distribution and countercurrent exchange in the small intestine. Acta Physiol. Scand. Suppl. 303: 1–42, 1967.
 307. Lundgren. O. The alimentary canal. In: Peripheral Circulation, edited by P. C. Johnson New York: Wiley, 1978, p. 255–283.
 308. Lundgren, O. Role of splanchnic resistance vessels in overall cardiovascular homeostasis. Federation Proc. 42: 1673–1677, 1983.
 309. Lundgren. O. Countercurrent exchange mechanisms in the small intestine. In: Physiology of the Intestinal Circulation, edited by A. P. Shepherd and D. N. Granger. New York: Raven, 1984, p. 83–97.
 310. Lundgren, O. Microcirculation of the gastrointestinal tract and pancreas. In: Handbook of Physiology. The Cardiovascular System. Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: Am. Physiol. Soc., 1984, sect. 2, vol. IV, pt. 2, chapt. 13, p. 799–863.
 311. Lundgren, O., and U. Haglund. The pathophysiology of the intestinal countercurrent exchanger. Life Sci. 23: 1411–1422, 1978.
 312. Lundgren, O., and J. Svanvik. Mucosal hemodynamics in the small intestine of the cat during reduced perfusion pressure. Acta Physiol. Scand. 88: 551–563, 1973.
 313. Lundgren, O., and J. Svanvik. Gastrointestinal circulation. In: Gastrointestinal Physiology II, edited by R. K. Crane Baltimore, MD: University Park, 1976, vol. 12, p. 1–33.
 314. MacDonald, J. M., M. M. Webster, Jr., and C. H. Tennyson. Serotonin and bradykinin in the dumping syndrome. Am. J. Surg. 117: 204–211, 1969.
 315. MacFerran, S. N., and D. Mailman. Effects of glucagon on canine intestinal sodium and water fluxes and regional blood flow. J. Physiol. Lond. 266: 1–12, 1977.
 316. Mailman, D. Effects of vasoactive intestinal polypeptide on intestinal absorption and blood flow. J. Physiol. Lond. 279: 121–132, 1978.
 317. Mailman, D. Effects of pentagastrin on intestinal absorption and blood flow in the anesthetized dog. J. Physiol. Lond. 307: 429–442, 1980.
 318. Mailman, D. Blood flow and intestinal absorption. Federation Proc. 41: 2096–2100, 1982.
 319. Mailman, D. Relationships between intestinal absorption and hemodynamics. Annu. Rev. Physiol. 44: 43–55, 1982.
 320. Mailman, D. Morphine‐neural interactions on canine intestinal absorption and blood flow. Br. J. Pharmacol. 81: 263–270, 1984.
 321. Mailman, D. Tritiated water clearance as a measure of intestinal absorptive site and total blood flow. In: Measurement of Blood Flow: Applications to the Splanchnic Circulation, edited by D. N. Granger and G. B. Bulkley. Baltimore, MD: Williams & Wilkins, 1981, p. 338–361.
 322. Mailman, D., and K. Jordan. The effect of saline and hyperoncotic dextran infusion on canine ileal salt and water absorption and regional blood flow. J. Physiol. Lond. 252: 97–113, 1975.
 323. Mailman, D., W. Pawlik, A. P. Shepherd, L. L. Tague, and E. D. Jacobson. Cyclic nucleotide metabolism and vasodilation in canine mesenteric artery. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H191–H196, 1977.
 324. Mall, J. P. Die Blut‐und Lymphwege im Dunndarm des Hundes. Abh. Sachs. Ges. Wiss. 14: 153–189, 1888.
 325. Manders, W. T., and S. F. Vatner. Effects of sodium pentobarbital anesthesia on left ventricular function and distribution of cardiac output in dogs, with particular reference to the mechanism for tachycardia. Circ. Res. 39: 512–517, 1976.
 326. Mangino, M. J., and C. C. Chou. Arachidonic acid and postprandial intestinal hyperemia. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G521–G527, 1984.
 327. Maton, P. N., A. C. Seldon, and V. S. Chadwick. Large and small forms of cholecystokinin in human plasma: measurement using high pressure liquid chromatography and radioimmunoassay. Regul. Pept. 4: 251–260, 1982.
 328. Maton, P. N., A. C. Seldon, M. L. Fitzpatrick, and V. S. Chadwick. Infusion of cholecystokinin octapeptide in man: relation between plasma cholecystokinin concentrations and gallbladder emptying rates. Eur. J. Clin. Invest. 14: 37–41, 1984.
 329. Mayerson, H. S., C. G. Wolfram, H. H. Shirley, Jr., and K. Wasserman. Regional differences in capillary permeability. Am. J. Physiol. 198: 155–160, 1960.
 330. McCuskey, R. S., S. G. McClugage, T. J. Moore, and M. L. Miller. Responses of the fetal mesenteric microvascular system to maternal hypoxia. Proc. Soc. Exp. Biol. Med. 132: 636–639, 1969.
 331. McDonald, G. B., D. R. Saunders, M. Weidman, and L. Fisher. Portal venous transport of long‐chain fatty acids absorbed from rat intestine. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G141–G150, 1980.
 332. McNeill, J. R. Intestinal vasoconstriction following diureticinduced volume depletion: role of angiotensin and vasopressin. Can. J. Physiol. Pharmacol. 52: 829–839, 1974.
 333. McNeill, J. R. Redundant nature of the vasopressin and renin‐angiotensin systems in the control of mesenteric resistance vessels of the conscious, fasted cat. Can. J. Physiol. Pharmacol. 61: 770–773, 1983.
 334. McNeill, J. R. Role of vasopressin in the control of arterial pressure. Can. J. Physiol. Pharmacol. 61: 1226–1235, 1983.
 335. McNeill, J. R., and C. C. Y. Pang. Effect of pentobarbital anesthesia and surgery on the control of arterial pressure and mesenteric resistance in cats: role of vasopressin and angiotensin. Can. J. Physiol. Pharmacol. 60: 363–368, 1982.
 336. McNeill, J. R., R. D. Stark, and C. V. Greenway. Intestinal vasoconstriction after hemorrhage: roles of vasopressin and angiotensin. Am. J. Physiol. 219: 1342–1347, 1970.
 337. McNeill, J. R., W. C. Wilcox, and C. C. Y. Pang. Vasopressin and angiotensin: reciprocal mechanisms controlling mesenteric conductance. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H260–H266, 1977.
 338. Meininger, G. A., L. K. Routh, and H. J. Granger. Auto‐regulation and vasoconstriction in the intestine during acute renal hypertension. Hypertension Dallas 7: 364–373, 1985.
 339. Michel, C. C. Measurement of permeability in single capillaries. Arch. Int. Physiol. Biochim. 86: 657–667, 1978.
 340. Mizonishi, T., and T. Semb. Effects of distension on mesenteric blood flow and O2 saturation of venous blood in the dog intestinal loop. Jpn. J. Physiol. 29: 627–633, 1979.
 341. Mortillaro, N. A., and R. Allen. Effects of venous pressure on intestinal metabolism (Abstract). Federation Proc. 39: 705, 1980.
 342. Mortillaro, N. A., D. N. Granger, P. R. Kvietys, G. Rutili, and A. E. Taylor. Effects of histamine and histamine antagonists on intestinal capillary permeability. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G381–G386, 1981.
 343. Mortillaro, N. A., and H. J. Granger. Reactive hyperemia and oxygen extraction in the feline small intestine. Circ. Res. 41: 859–865, 1977.
 344. Mortillaro, N. A., and S. J. Mustafa. Possible role of adenosine in intestinal reactive hyperemia (Abstract). Federation Proc. 37: 874, 1978.
 345. Mortillaro, N. A., and A. E. Taylor. Interaction of capillary and tissue forces in the cat small intestine. Circ. Res. 39: 348–358, 1976.
 346. Nicoll, P. A., and A. E. Taylor. Lymph formation and flow. Annu. Rev. Physiol. 39: 73–95, 1977.
 347. Nixon, S. E., and G. E. Mawer. The digestion and absorption of protein in man. II. The form in which digested protein is absorbed. Br. J. Nutr. 24: 241–258, 1970.
 348. Norris, C. P., G. E. Barnes, E. E. Smith, and H. J. Granger. Autoregulation of superior mesenteric flow in fasted and fed dogs. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H174–H177, 1979.
 349. Nowak, J., and A. Wennonalm. Influence of indomethacin and of prostaglandin E1 on total and regional blood flow in man. Acta Physiol. Scand. 102: 484–491, 1978.
 350. Nyhof, R. A., and C. C. Chou. Absence of cholinergic or serotonergic mediation in food‐induced intestinal hyperemia (Abstract). Federation Proc. 40: 491, 1981.
 351. Nyhof, R. A., and C. C. Chou. Evidence against local neural mechanism for intestinal postprandial hyperemia. Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H437–H446, 1983.
 352. Nyhof, R. A., and H. J. Granger. Acute local effects of angiotensin II on the intestinal vasculature. Hypertension Dallas 6: 13–19, 1984.
 353. O'Connor, W. J., and R. A. Summerill. The effect of a meal of meat on glomerular filtration rate in dogs at normal urine flows. J. Physiol. Lond. 256: 81–91, 1976.
 354. Ohman, U. Blood flow and oxygen consumption in the feline small intestine: responses to artificial distention and intestinal obstruction. Acta Chir. Scand. 142: 329–333, 1976.
 355. Olmstead, W. W., E. S. Nassett, and M. I. KelleyJr. Amino acids in postprandial gut contents of man. J. Nutr. 90: 291–294, 1966.
 356. Ormsbee, H. S., and J. D. Fondacaro. Minireview: action of serotonin on the gastrointestinal tract. Proc. Soc. Exp. Biol. Med. 178: 333–338, 1985.
 357. Ostman, M., B. Biber, J. Martiner, and S. Reiz. Effects of isoflurane on vascular tone and circulatory autoregulation. Acta Physiol. Scand. 29: 389–394, 1985.
 358. Palade, G. E., and R. R. Bruns. Structural modulations of plasmalemmal vesicles. J. Cell Biol. 37: 633–649, 1968.
 359. Palade, G. E., M. Simionescu, and N. Simionescu. Structural aspects of the permeability of the microvascular endothelium. Acta. Physiol. Scand. Suppl. 463: 11–32, 1979.
 360. Pals, D. T., and F. R. Steggerda. Relation of intraintestinal carbon dioxide to intestinal blood flow. Am. J. Physiol. 210: 893–896, 1966.
 361. Pang, C. C. Y. Effect of vasopressin antagonist and saralasin on regional blood flow following hemorrhage. Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H749–H755, 1983.
 362. Pang, C. C. Y. Vasopressin and angiotensin in the control of arterial pressure and regional blood flow in anesthetized, surgically stressed rats. Can. J. Physiol. Pharmacol. 61: 1494–1500, 1983.
 363. Pappenheimer, J. R., and A. Soto‐Rivera. Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimbs of cats and dogs. Am. J. Physiol. 152: 471–480, 1948.
 364. Parker, R. E., and D. N. Granger. Effect of graded arterial occlusion on ileal blood flow distribution. Proc. Soc. Exp. Biol. Med. 162: 146–149, 1979.
 365. Pawlik, W. W., J. D. Fondacaro, and E. D. Jacobson. Metabolic hyperemia in the canine gut. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G12–G17, 1980.
 366. Pawlik, W., and E. D. Jacobson. Effects of digoxin on the mesenteric circulation. Cardiovasc. Res. Cent. Bull. Houston 12: 80–84, 1974.
 367. Pawlik, W., A. P. Shepherd, and E. D. Jacobson. Effects of vasoactive agents on intestinal oxygen consumption and blood flow in dogs. J. Clin. Invest. 56: 484–490, 1975.
 368. Pawlik, W., L. L. Tague, B. L. Tepperman, T. A. Miller, and E. D. Jacobson. Histamine H1‐ and H2‐receptor vasodilation of canine intestinal circulation. Am. J. Physiol. 233 (Endocrinol. Metab. Gastrointest. Physiol. 2): E219–E224, 1977.
 369. Peeters, L. L., R. E. Sheldon, M. D. Jones, E. L. Makowski, and G. Meschia. Blood flow to fetal organs as a function of arterial oxygen content. Am. J. Obstet. Gynecol. 135: 637–646, 1979.
 370. Pernow, B. Substance P. Pharmacol. Rev. 35: 85–141, 1983.
 371. Perry, M. A., J. N. Benoit, P. R. Kvietys, and D. N. Granger. Restricted transport of cationic macromolecules across intestinal capillaries. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G568–G572, 1983.
 372. Perry, M. A., and D. N. Granger. Permeability of intestinal capillaries to small molecules. Am. J. Physiol. 241 (Gastrointest. Liver Physiol. 4): G24–G30, 1981.
 373. Perry, M. A., A. P. Shepherd, P. R. Kvietys, and D. N. Granger. Effect of hypoxia on feline intestinal capillary permeability. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G272–G276, 1985.
 374. Pitts, R. F. The effect of protein and amino acid metabolism on the urea and xylose clearance. J. Nutr. 9: 657–666, 1935.
 375. Pitts, R. F. The effects of infusing glycine and of varying the dietary protein intake on renal hemodynamics in the dog. Am. J. Physiol. 142: 355–365, 1944.
 376. Polak, J., S. Sullivan, S. Bloom, A. Buchan, P. Facer, M. Brown, and A. Pearse. Specific localisation of neurotensin to the N‐cell in human intestine by radioimmunoassay and immunocytochemistry. Nature Lond. 270: 183–184, 1977.
 377. Post, J. A., C. C. Chou, and P. R. Kvietys. Possible mechanisms of postprandial intestinal hyperemia (Abstract). Federation Proc. 34: 459, 1975.
 378. Premen, A. J. Importance of the liver during glucagon‐mediated increases in canine renal hemodynamics. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F319–F322, 1985.
 379. Premen, A. J., D. E. Dobbins, C. Y. Soika, and J. M. Dabney. Relationship between substance P, intestinal wall compliance, and vascular resistance in the canine ileum. Regul. Pept. 9: 119–127, 1984.
 380. Premen, A. J., J. E. Hall, and M. J. SmithJr. Postprandial regulation of renal hemodynaimcs: role of pancreatic glucagon. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F656–F662, 1985.
 381. Premen, A. J., P. R. Kvietys, and D. N. Granger. Postprandial regulation of intestinal blood flow: role of gastrointestinal hormones. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G250–G255, 1985.
 382. Premen, A. J., C. Y. Soika, J. M. Dabney, and D. E. Dobbins. Effects of gastrointestinal hormones on ileal vascular and visceral smooth muscle. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G1–G7, 1984.
 383. Priano, L. L., and S. F. Vatner. Generalized cardiovascular and regional hemodynamic effects on meperidine in conscious dogs. Anesth. Analg. 60: 649–654, 1981.
 384. Priano, L. L., and S. F. Vatner. Morphine effects on cardiac output and regional blood flow distribution in conscious dogs. Anesthesiology 55: 236–243, 1981.
 385. Proctor, K. G. Contribution of hyperosmolality to glucose‐induced intestinal hyperemia. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G521–G525, 1985.
 386. Proctor, K. G. Differential effect of cyclooxygenase inhibitors on absorptive hyperemia. Am. J. Physiol. 249 (Heart Circ. Physiol. 18): H755–H762, 1985.
 387. Proctor, K. G. Possible role for adenosine on local regulation of absorptive hyperemia in rat intestine. Circ. Res. 59: 474–481, 1986.
 388. Pullman, T. N., A. S. Alving, R. J. Dern, and M. Landowne. The influence of dietary protein intake on specific renal functions in normal man. J. Lab. Clin. Med. 44: 320–332, 1954.
 389. Quillen, E. W., D. N. Granger, and A. E. Taylor. Effects of arginine vasopressin on capillary filtration in the cat ileum. Gastroenterology 73: 1290–1295, 1977.
 390. Reinhardt, H. W., G. Kaczmarczyk, K. Farhrenhorst, I. Blendinger, M. Gatzka, U. Kuhl, and J. Riedel. Postprandial changes of renal blood flow: studies on conscious dogs on a high and low sodium intake. Pfluegers Arch. 354: 287–297, 1975.
 391. Renkin, E. M. Multiple pathways of capillary permeability. Circ. Res. 41: 735–743, 1977.
 392. Renkin, E. M. Relation of capillary morphology to transport of fluid and large molecules: a review. Acta Physiol. Scand. Suppl. 463: 81–91, 1979.
 393. Renkin, E. M., P. D. Watson, C. H. Sloop, W. L. Joyner, and F. E. Curry. Transport pathways for fluid and large molecules in microvascular endothelium of the dog's paw. Microvasc. Res. 14: 205–214, 1977.
 394. Richardson, P. D. I., and D. N. Granger. Capillary filtration coefficient as a measure of perfused capillary density. In: Measurement of Blood Flow: Applications to the Splanchnic Circulation, edited by D. N. Granger and G. B. Bulkley. Baltimore, MD: Williams & Wilkins, 1981, p. 319–335.
 395. Richardson, P. D. I., D. N. Granger, D. Mailman, and P. R. Kvietys. Permeability characteristics of colonic capillaries. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G300–G305, 1980.
 396. Richardson, P. D. I., D. N. Granger, and A. E. Taylor. Capillary filtration coefficient: the technique and its application to the small intestine. Cardiovasc. Res. 13: 547–561, 1979.
 397. Rippe, B., A. Kamiya, and B. Folkow. Transcapillary passage of albumin, effects of tissue cooling and of increases in filtration and plasma colloid osmotic pressure. Acta Physiol. Scand. 105: 171–187, 1979.
 398. Ross, G. The regional circulation. Annu. Rev. Physiol. 33: 445–478, 1971.
 399. Rothe, C. F. Venous system: physiology of the capacitance vessels. In: Handbook of Physiology. The Cardiovascular System. Peripheral Circulation and Organ Blood Flow, edited by J. T. Shepherd and F. M. Abboud. Bethesda, MD: Am. Physiol. Soc., 1983, sect. 2, vol. III, pt. 1, chapt. 13, p. 397–452.
 400. Rothe, C. F. Control of capacitance vessels. In: Physiology of the Intestinal Circulation, edited by A. P. Shepherd and D. N. Granger. New York: Raven, 1984, p. 73–81.
 401. Rothe, C. F., T. D. Bennett, and B. L. Johns. Linearity of the vascular pressure‐volume relationship of the canine intestine. Circ. Res. 47: 551–558, 1980.
 402. Rothe, C. F., B. L. Johns, and T. D. Bennett. Vascular capacitance of dog intestine using mean transit time of indicator. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H7–H13, 1978.
 403. Ruf, W., G. T. Suehiro, A. Suehiro, V. Pressler, and J. J. McNamara. Intestinal blood flow at various intraluminal pressures in the piglet with closed abdomen. Ann. Surg. 191: 157–163, 1980.
 404. Rusznyak, I., M. Foldi, and G. Szabo. Lymphatics and Lymph Circulation (2nd ed.). Oxford, UK: Pergamon, 1967.
 405. Ryu, K. H., and E. Grim. Countercurrent exchange of water in canine jejunum. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G377–G381, 1985.
 406. Sabesin, S. M., and S. Frase. Electron microscopic studies of the assembly, intracellular transport, and secretion of chylomicrons by rat intestine. J. Lipid. Res. 18: 496–511, 1977.
 407. Sanders, K. M., and G. Ross. Effects of endogenous prostaglandin E on intestinal motility. Am. J. Physiol. 234 (Endocrinol. Metab. Gastrointest. Physiol. 3): E204–E208, 1978.
 408. Savolainen, V. P. Splanchnic blood flow during anesthesia. Int. Anesthesiol. Clin. 7: 369–391, 1969.
 409. Schayer, R. W., and A. C. Ivy. Release of C14‐histamine from stomach and intestine on feeding. Am. J. Physiol. 193: 400–402, 1958.
 410. Schehadeh, Z., W. E. Price, and E. D. Jacobson. Effects of vasoactive agents on intestinal blood flow and motility on the dog. Am. J. Physiol. 216: 386–392, 1969.
 411. Schmitt, S. L., K. Taylor, R. Schmidt, D. Van Orden, and H. E. Williamson. The role of volume depletion, antidiuretic hormone and angiotensin II in the furosemide‐induced decrease in mesenteric conductance in the dog. J. Pharmacol. Exp. Ther. 219: 407–414, 1981.
 412. Schrauwen, E., and A. Houvenaghel. A comparison of the threshold doses of various vasodilators in the pig mesenteric vascular bed. Physiology 8: 107, 1980.
 413. Schwaiger, M., J. D. Fondacaro, and E. D. Jacobson. Effects of glucagon, histamine, and perhexiline on the ischemic canine mesenteric circulation. Gastroenterology 77: 730–735, 1979.
 414. Scott, J. B., and J. M. Dabney. Relation of gut motility to blood flow in the ileum of the dog. Circ. Res. 14: 234–239, 1964.
 415. Selkurt, E. E., C. F. Rothe, and D. Richardson. Characteristics of reactive hyperemia in the canine intestine. Circ. Res. 15: 532–544, 1964.
 416. Seyde, W. C., L. McGowan, N. Lund, B. Duling, and D. E. Longnecker. Effects of anesthetics on regional hemodynamics in normovolemic and hemorrhaged rats. Am. J. Physiol. 249 (Heart Circ. Physiol. 18): H164–H173, 1985.
 417. Shannon, J. A., N. Jolliffe, and H. W. Smith. The excretion of urine in the dog. IV. The effect of maintenance diet, etc., upon the quantity of glomerular filtrate. Am. J. Physiol. 101: 625–638, 1932.
 418. Shepherd, A. P. Myogenic responses of intestinal resistance and exchange vessels. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H547–H554, 1977.
 419. Shepherd, A. P. Intestinal O2 consumption and 86Rb extraction during arterial hypoxia. Am. J. Physiol. 234 (Endocrinol. Metab. Gastrointest. Physiol. 3): E248–E251, 1978.
 420. Shepherd, A. P. Effect of arterial pulse pressure and hypoxia on myogenic responses in the gut. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H157–H161, 1978.
 421. Shepherd, A. P. Intestinal O2 uptake during sympathetic stimulation and partial arterial occlusion. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H731–H735, 1979.
 422. Shepherd, A. P. Intestinal capillary blood flow during metabolic hyperemia. Am. J. Physiol. 237 (Endocrinol. Metab. Gastrointest. Physiol. 6): E548–E554, 1979.
 423. Shepherd, A. P. Intestinal blood flow autoregulation during foodstuff absorption. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H156–H162, 1980.
 424. Shepherd, A. P. Metabolic control of intestinal oxygenation and blood flow. Federation Proc. 41: 2084–2089, 1982.
 425. Shepherd, A. P. Role of capillary recruitment in the regulation of intestinal oxygenation. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G435–G441, 1982.
 426. Shepherd, A. P., and D. N. Granger Physiology of the Intestinal Circulation. New York: Raven, 1984.
 427. Shepherd, A. P., and H. J. Granger. Autoregulatory escape in the gut: a systems analysis. Gastroenterology 65: 77–91, 1973.
 428. Shepherd, A. P., W. Pawlik, D. Mailman, T. F. Burks, and E. D. Jacobson. Effects of vasoconstrictors on intestinal vascular resistance and oxygen extraction. Am. J. Physiol. 230: 298–305, 1976.
 429. Shepherd, A. P., and G. L. Riedel. Intestinal oxygen uptake versus blood flow relationship and optimal hematocrit for O2 transport (Abstract). Federation Proc. 40: 491, 1981.
 430. Shepherd, A. P., and G. L. Riedel. Effects of pulsatile pressure and metabolic rate on intestinal autoregulation. Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H769–H775, 1982.
 431. Shepherd, A. P., and G. L. Riedel. Optimal hematocrit for oxygenation of canine intestine. Circ. Res. 51: 233–240, 1982.
 432. Shepherd, A. P., and G. L. Riedel. Differences in reactive hyperemia between the intestinal mucosa and muscularis. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G617–G622, 1984.
 433. Shepherd, A. P., and G. L. Riedel. Laser‐Doppler blood flowmetry of intestinal mucosal hyperemia induced by glucose and bile. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G393–G397, 1985.
 434. Shepherd, A. P., G. L. Riedel, L. C. Maxwell, and J. W. Kiel. Selective vasodilators redistribute intestinal blood flow and depress oxygen uptake. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G377–G384, 1984.
 435. Shikata, J.‐I., T. Shida, K. Amino, and K. Ishioka. Experimental studies on the hemodynamics of the small intestine following increased intraluminal pressure. Surg. Gynecol. Obstet. 156: 155–160, 1983.
 436. Sidky, M. M., and J. W. Bean. Local and general alterations of blood CO2 and influence of intestinal motility in regulation of intestinal blood flow. Am. J. Physiol. 167: 413–425, 1951.
 437. Siepler, J. K., H. J. Ahlman, H. N. Bhargava, P. E. Donahue, and L. M. Nyhus. A pharmacokinetic analysis of the vagal release of 5‐hydroxytryptamine in the cat. J. Neural Transm. 47: 99–105, 1980.
 438. Simionescu. N., M. Simionescu, and G. Palade. Permeability of intestinal capillaries. Pathway followed by dextrans and glycogens. J. Cell Biol. 53: 365–392, 1972.
 439. Simionescu, N., M. Simionescu, and G. E. Palade. Structural‐functional correlates in the transendothelial exchange of water soluble macromolecules. Thromb. Res. 8: 257–269, 1976.
 440. Simionescu, N., M. Simionescu, and G. E. Palade. Differentiated microdomains on the luminal surface of the capillary endothelium. I. Preferential distribution of anionic sites. J. Cell Biol. 90: 605–613, 1981.
 441. Simon, G., M. B. Pamnani, J. F. Dunkel, and H. W. Overbeck. Mesenteric hemodynamics in early experimental renal hypertension in dogs. Circ. Res. 36: 791–798, 1975.
 442. Siregar, H., and C. C. Chou. Relative contribution of fat, protein, carbohydrate, and ethanol to intestinal hyperemia. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G27–G31, 1982.
 443. Sit, S. P., and C. C. Chou. Time course of jejunal blood flow, O2 uptake, and O2 extraction during nutrient absorption. Am. J. Physiol. 247 (Heart Circ. Physiol. 16): H395–H402, 1984.
 444. Sit, S. P., P. Kvietys, R. Gallavan, and C. C. Chou. Postprandial intestinal hyperemia and oxygen consumption in dogs (Abstract). Federation Proc. 37: 653, 1978.
 445. Sit, S. P., P. Kvietys, R. Gallavan, C. C. Chou, and D. Collings. Vascular effects of local i.a. infusion of micellar fatty acids and taurocholate (TCA) in the canine small intestine (Abstract). Physiologist 20: 88, 1977.
 446. Sit, S. P., P. Nyhof, R. Gallavan, Jr., and C. C. Chou. Mechanisms of glucose‐induced hyperemia in the jejunum. Proc. Soc. Exp. Biol. Med. 163: 273–277, 1980.
 447. Sjostrom, B., and K. E. Wulff. Influence of long‐term anesthesia on regional blood flow distribution and hemodynamics in the dog. Eur. Surg. Res. 7: 1–9, 1975.
 448. Sjövall, H., S. Redfors, B. Biber, J. Martner, and O. Winsö. Evidence for cardiac volume‐receptor regulation of feline jejunal blood flow and fluid transport. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G401–G410, 1984.
 449. Smaje, L. H., and J. R. Henderson. Microcirculation of the exocrine glands. In: The Physiology and Pharmacology of the Microcirculation, edited by N. A. Mortillaro Orlando, FL: Academic, 1984, p. 325–385.
 450. Snape, W. J.Jr., S. H. Wright, W. M. Battle, and S. Cohen. The gastrocolic response: evidence for a neural mechanism. Gastroenterology 77: 1235–1240, 1979.
 451. Solomon, A. K. Characterization of biological membranes by equivalent pores. J. Gen. Physiol. 51: 335–364, 1968.
 452. Starling, E. H. On the absorption of fluids from the connective tissue spaces. J. Physiol. Lond. 19: 312–326, 1896.
 453. Stevens, C. E. Physiological implications of microbial digestion in the large intestine of mammals: relation to dietary factors. Am. J. Clin. Nutr. 31: 5161–5168, 1978.
 454. Svanvik, J., J. Tyllstrom, and J. Wallentin. The effects of hypercapnia and hypoxia on the distribution of capillary blood flow in the denervated intestinal vascular bed. Acta Physiol. Scand. 74: 543–551, 1968.
 455. Szwed, J. J., D. R. Maxwell, R. Elliott, and L. R. Redlich. Diuretics and small intestinal lymph flow in the dog. J. Pharmacol. Exp. Ther. 200: 88–94, 1977.
 456. Taylor, A. E. Capillary fluid filtration. Starling forces and lymph flow. Circ. Res. 49: 557–575, 1981.
 457. Taylor, A. E., and D. N. Granger. Exchange of macromolecules across the microcirculation. In: Handbook of Physiology The Cardiovascular System. Microcirculation, edited by E. M. Renkin and C. C. Michel. Washington, DC: Am. Physiol. Soc., 1984, sect. 2, vol. IV, pt. 1, chapt. 13, p. 467–520.
 458. Tepperman, B. L., and E. D. Jacobson. Mesenteric circulation. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson. New York: Raven, 1981, p. 1317–1336.
 459. Texter, E. C.Jr., H. C. Laureta, E. D. Frohlich, and C.‐C. Chou. Effects of major cations on gastric and mesenteric vascular resistances. Am. J. Physiol. 212: 569–573, 1967.
 460. Texter, E. C.Jr., S. Merrill, M. Schwartz, G. Van Derstappen, and F. J. Haddy. Relationship of blood flow to pressure in the intestinal vascular bed of the dog. Am. J. Physiol. 202: 253–256, 1962.
 461. Torok, J. Influence of extravascular pressure on changes induced in vascular resistance in the small intestine by elevated venous pressure. Physiol. Bohemoslov. 29: 63–71, 1980.
 462. Tranquilli, W. J., M. Manohar, C. M. Parks, J. C. Thurman, M. C. Theodorakis, and J. Benson. Systemic and regional blood flow distribution in unanesthetized swine and swine anesthetized with halothane and nitrous oxide, halothane, or enflurane. Anesthesiology 56: 369–379, 1982.
 463. Turner, S. G., and J. A. Barrowman. Intestinal lymph flow and lymphatic transport of protein during fat absorption. Q. J. Exp. Physiol. Cogn. Med. Sci. 62: 175–180, 1977.
 464. Uddman, R., J. Alumets, L. Edvinsson, R. Hakanson, and F. Sundler. VIP nerve fibers around peripheral blood vessels. Acta Physiol. Scand. 112: 65–70, 1981.
 465. Valleau, J. D., D. N. Granger, and A. E. Taylor. Effect of solute‐coupled volume absorption on oxygen consumption in cat ileum. Am. J. Physiol. 236 (Endocrinol. Metab. Gastrointest. Physiol. 5): E198–E203, 1979.
 466. Van Heerden, P. D., H. N. Wagner, Jr., and S. Kaihara. Intestinal blood flow during perfusion of the jejunum with hypertonic glucose in dogs. Am. J. Physiol. 215: 30–33, 1968.
 467. Vargas, F., and J. A. Johnson. An estimate of reflection coefficient from rabbit heart capillaries. J. Gen. Physiol. 47: 667–677, 1964.
 468. Varro, V., G. Blaho, L. Cserney, J. Jung, and F. Szarvas. Effect of decreased local circulation on the absorptive capacity of the small intestine in the dog. Am. J. Dig. Dis. 10: 170–177, 1965.
 469. Varro, V., L. Csernay, F. Szarvas, and G. Blaho. Effect of glucose and glycine solution on the circulation of the isolated jejunal loop in the dog. Am. J. Dig. Dis. 12: 60–64, 1967.
 470. Vatner, S. F. Effects of exercise and excitement on mesenteric and renal dynamics in conscious, unrestrained baboons. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H210–H214, 1978.
 471. Vatner, S. F., and E. Braunwald. Cardiovascular control mechanisms in the conscious state. N. Engl. J. Med. 293: 970–976, 1975.
 472. Vatner, S. F., D. Franklin, and R. L. Van Citters. Mesenteric vasoactivity associated with eating and digestion in the conscious dog. Am. J. Physiol. 219: 170–174, 1970.
 473. Vatner, S. F., D. Franklin, and R. L. Van Citters. Coronary and visceral vasoactivity associated with eating and digestion in the conscious dog. Am. J. Physiol. 219: 1380–1385, 1970.
 474. Vatner, S. F., T. A. Patrick, C. B. Higgins, and D. Franklin. Regional circulatory adjustments to eating and digestion in conscious unrestrained primates. J. Appl. Physiol. 36: 524–529, 1974.
 475. Vogel, G., and I. Martensen. The permeability of the plasma‐lymph barrier of the small intestine of various species to macromolecules. Lymphology 15: 36–39, 1982.
 476. Vorobioff, J., J. E. Bredfeldt, and R. J. Groszmann. Hyperdynamic circulation in portal‐hypertensive rat model: a primary factor for maintenance of chronic portal hypertension. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G52–G57, 1983.
 477. Wallentin, I. Importance of tissue pressure for the fluid equilibrium between the vascular and interstitial compartments in the small intestine. Acta Physiol. Scand. 68: 304–315, 1966.
 478. Walus, K. M., J. D. Fondacaro, and E. D. Jacobson. Hemodynamic and metabolic changes during stimulation of ileal motility. Dig. Dis. Sci. 26: 1069–1077, 1981.
 479. Walus, K. M., J. D. Fondacaro, and E. D. Jacobson. Effects of adenosine and its derivatives on the canine intestinal vasculature. Gastroenterology 81: 327–334, 1981.
 480. Winne, D. The influence of blood flow and water net flux on the absorption of tritiated water from the jejunum of the rat. Naunyn‐Schmiedeberg's Arch. Pharmacol. 272: 417–436, 1972.
 481. Winne, D. The influence of blood flow and water net flux on the blood‐to‐lumen flux of tritiated water in the jejunum of the rat. Naunyn‐Schmiedeberg's Arch. Pharmacol. 274: 357–374, 1972.
 482. Winne, D. The influence of blood flow on the absorption of l‐ and d‐phenylalanine from the jejunum of the rat. Naunyn‐Schmiedeberg's Arch. Pharmacol. 277: 113–138, 1973.
 483. Winne, D. The influence of villous countercurrent exchange on intestinal absorption. J. Theor. Biol. 53: 145–176, 1975.
 484. Winne, D. The vasculature of the jejunal villus. In: Intestinal Permeation, edited by M. Hoechst, D. Kramer, and F. Lauterbach. Amsterdam: Excerpta Med., 1975, p. 56–57. (Proc. 4th Workshop Conf., 19–22 October, 1975).
 485. Winne, D. Influence of blood flow on intestinal absorption of drugs and nutrients. Pharmacol. Ther. 6: 333–393, 1979.
 486. Winne. D. Rat jejunum perfused in situ: effect of perfusion rate and intraluminal radius on absorption rate and effective unstirred layer thickness. Naunyn‐Schmiedeberg's Arch. Pharmacol. 307: 265–274, 1979.
 487. Winne, D. Role of blood flow in intestinal permeation. In: Handbook of Experimental Pharmacology, edited by T. Z. Czaky. Berlin: Springer‐Verlag, 1984, vol. 70, chapt. 13, p. 301–347.
 488. Winne, D. Models of the relationship between drug absorption and intestinal blood flow. In: Physiology of Intestinal Circulation, edited by A. P. Shepherd and D. N. Granger. New York: Raven, 1984, p. 289–304.
 489. Winne, D., and J. Remischovsky. Intestinal blood flow and absorption of non‐dissociable substances. J. Pharm. Pharmacol. 22: 640–641, 1970.
 490. Witte, M. H., C. L. Witte, and A. E. Dumont. Estimates of net transcapillary water and protein flux in the liver and intestine of patients with portal hypertension from hepatic cirrhosis. Gastroenterology 80: 265–273, 1983.
 491. Wollin, A., and L. B. Jacques. Plasma protein escape from the intestinal circulation to the lymphatics during fat absorption. Proc. Soc. Exp. Biol. Med. 142: 114–117, 1973.
 492. Wollin, A., and L. B. Jaques. Blocking of olive oil induced plasma protein escape from the intestinal circulation by histamine antagonists and by a diamine oxidase releasing agent. Agents Actions 6: 589–592, 1976.
 493. Yablonski, M. E., and N. Lifson. Mechanism of production of intestinal secretion by elevated venous pressure. J. Clin. Invest. 57: 904–915, 1976.
 494. Yoffey, J. M., and F. C. Courtice. Lymphatics, Lymph and the Lymphomyeloid Complex New York: Academic, 1970.
 495. Yu, Y. M., L. C. Yu, and C. C. Chou. Distribution of blood flow in the intestine with hypertonic glucose in the lumen. Surgery St. Louis 78: 520–525, 1975.
 496. Zawieja, D., and B. J. Barber. A comparison of protein concentration in villi and collecting lymphatics of rats. Microvasc. Res. 29: 262–263, 1985.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

D. Neil Granger, Peter R. Kvietys, Ronald J. Korthuis, Andre J. Premen. Microcirculation of the intestinal mucosa. Compr Physiol 2011, Supplement 16: Handbook of Physiology, The Gastrointestinal System, Motility and Circulation: 1405-1474. First published in print 1989. doi: 10.1002/cphy.cp060139