Comprehensive Physiology Wiley Online Library

Circulation of the pancreas and salivary glands

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Anatomical Considerations
1.1 Blood vessels
1.2 Lymph Vessels
1.3 Nerves
2 Basal Hemodynamics and Oxygenation
3 Intrinsic Regulation of Blood Flow and Oxygenation
3.1 Metabolic Regulation
3.2 Myogenic Regulation
3.3 Kallikrein‐Kinin Regulation
3.4 Evidence for Intrinsic Vasoregulation
4 Functional Hyperemia
4.1 Characteristics of Functional Hyperemia
4.2 Mediators of Functional Hyperemia
5 Circulatory Adjustments to Hyperplasia
6 Transcapillary Fluid and Solute Exchange
6.1 Ultrastructural Basis of Capillary Exchange
6.2 Transcapillary Fluid Exchange
6.3 Interaction of Capillary and Interstitial Forces During Stimulated Secretion
6.4 Microvascular Permeability
7 Extrinsic Regulation of Blood Flow
7.1 Sympathetic Nerve Stimulation
8 Pharmacology
9 Summary
Figure 1. Figure 1.

Schematic representation of intraglandular portal circulations of salivary gland (A) and pancreas (B).

From Ohtani et al. 168
Figure 2. Figure 2.

Effects of reducing arterial pressure on pancreatic hemodynamics and oxygenation.

From Kvietys et al. 126
Figure 3. Figure 3.

Effects of graded arterial occlusions on magnitude and duration of postocclusion hyperemic response.

From Kvietys et al. 125
Figure 4. Figure 4.

Effects of venous pressure elevation (from 2.2 to 12.4 mmHg) on pancreatic hemodynamics and oxygenation.

From Kvietys et al. 125
Figure 5. Figure 5.

Effect of chorda stimulation on salivary gland secretion rate and blood flow.

From Darke and Smaje 41
Figure 6. Figure 6.

A: relationship between steady‐state salivary blood flow and frequency of stimulation of the chorda lingual nerve with continuous mode of nerve stimulation. Solid line, before atropine; dashed line, after atropine. B: relationship between steady state salivary vascular resistance and frequency of stimulation of chorda tympani nerve with intermittent mode of nerve stimulation. Open bars, before atropine; solid bars, after atropine; n, number of observations.

A from Darke and Smaje 41; B from Andersson et al. 4
Figure 7. Figure 7.

Relationship between salivary O2 consumption and blood flow during salivary secretion.

Adapted from Terroux et al. 233
Figure 8. Figure 8.

Effects of intravenous secretin on pancreatic secretion rate and blood flow.

From Beijer et al. 16
Figure 9. Figure 9.

Effect of CCK‐OP stimulation on pancreatic growth (A) and on tissue blood flow (B). Cholecystokinin octapeptide was administered for 2, 4, 7, and 14 days. BW, body weight.

From Harper et al. 83
Figure 10. Figure 10.

Binding of cationized ferritin to endothelial surface of capillary in rabbit submandibular gland. × 148,000.

From Smaje 219
Figure 11. Figure 11.

Relationship between pancreatic capillary pressure and portal venous pressure.

From Kvietys et al. 125
Figure 12. Figure 12.

Effect of intra‐arterial saline load on pancreaticoduodenal lymph flow and intralymphatic pressure and on pancreatic interstitial fluid pressure in the dog. Solid bar, period of saline infusion.

From Papp et al. 176


Figure 1.

Schematic representation of intraglandular portal circulations of salivary gland (A) and pancreas (B).

From Ohtani et al. 168


Figure 2.

Effects of reducing arterial pressure on pancreatic hemodynamics and oxygenation.

From Kvietys et al. 126


Figure 3.

Effects of graded arterial occlusions on magnitude and duration of postocclusion hyperemic response.

From Kvietys et al. 125


Figure 4.

Effects of venous pressure elevation (from 2.2 to 12.4 mmHg) on pancreatic hemodynamics and oxygenation.

From Kvietys et al. 125


Figure 5.

Effect of chorda stimulation on salivary gland secretion rate and blood flow.

From Darke and Smaje 41


Figure 6.

A: relationship between steady‐state salivary blood flow and frequency of stimulation of the chorda lingual nerve with continuous mode of nerve stimulation. Solid line, before atropine; dashed line, after atropine. B: relationship between steady state salivary vascular resistance and frequency of stimulation of chorda tympani nerve with intermittent mode of nerve stimulation. Open bars, before atropine; solid bars, after atropine; n, number of observations.

A from Darke and Smaje 41; B from Andersson et al. 4


Figure 7.

Relationship between salivary O2 consumption and blood flow during salivary secretion.

Adapted from Terroux et al. 233


Figure 8.

Effects of intravenous secretin on pancreatic secretion rate and blood flow.

From Beijer et al. 16


Figure 9.

Effect of CCK‐OP stimulation on pancreatic growth (A) and on tissue blood flow (B). Cholecystokinin octapeptide was administered for 2, 4, 7, and 14 days. BW, body weight.

From Harper et al. 83


Figure 10.

Binding of cationized ferritin to endothelial surface of capillary in rabbit submandibular gland. × 148,000.

From Smaje 219


Figure 11.

Relationship between pancreatic capillary pressure and portal venous pressure.

From Kvietys et al. 125


Figure 12.

Effect of intra‐arterial saline load on pancreaticoduodenal lymph flow and intralymphatic pressure and on pancreatic interstitial fluid pressure in the dog. Solid bar, period of saline infusion.

From Papp et al. 176
References
 1. Adams, H. W., and F. D. Webster. A study of synthesis of DNA, RNA and oxygen uptake in segments of the rat pancreas. Dig. Dis. Sci. 22: 898–901, 1977.
 2. Ali, S. S. Angioarchitecture of the pancreas of the cat. Light‐scanning‐, and transmission‐electron microscopy. Cell Tissue Res. 235: 675–682, 1984.
 3. Alteveer, R. J., M. J. Jaffe, and J. Van Dam. Hemodynamics and metabolism of the in vivo vascularly isolated canine pancreas. Am. J. Physiol. 236 (Endocrinol. Metab. Gastrointest. Physiol. 5): E626–E632, 1979.
 4. Andersson, P.‐O., S. R. Bloom, A. V. Edwards, and J. JÄrhult. Effects of stimulation of the chorda tympani in bursts on submaxillary responses in the cat. J. Physiol. Lond. 322: 469–483, 1982.
 5. Arcidiacono, F. G., E. J. Reininger, and L. A. Sapirstein. Effect of bradykinin on total peripheral resistance and regional vascular resistance in the rat. Bibl. Anat. 9: 29–32, 1967.
 6. Augier, D., J. P. Boucard, J. P. Pascal, A. Ribet, and N. Vaysse. Relationships between blood flow and secretion in the isolated perfused canine pancreas. J. Physiol. Lond. 221: 55–69, 1972.
 7. Aune, S., and L. S. Semb. The effect of secretin and pancreozymin on pancreatic blood flow in the conscious and anesthetized dog. Acta Physiol Scand. 76: 406–414, 1969.
 8. Bainbridge, F. A. Observations on the lymph from the submaxillary gland of the dog. J. Physiol. Lond. 26: 79–91, 1900.
 9. Barlow, T. E., J. R. Greenwell, A. A. Harper, and T. Scratcherd. The effect of adrenaline and noradrenaline on the blood flow, electrical conductance and external secretion of the pancreas. J. Physiol. Lond. 217: 665–678, 1971.
 10. Barlow, T. E., J. R. Greenwell, A. A. Harper, and T. Scratcherd. The influence of the splanchnic nerves on the external secretion, blood flow, and electrical conductance of the cat pancreas. J. Physiol. Lond. 236: 421–433, 1974.
 11. Barrowman, J. A. Physiology of the Gastro‐Intestinal Lymphatic System. Cambridge, UK: Cambridge Univ. Press, 1978.
 12. Barrowman, J. A., P. Tso, P. R. Kvietys, and D. N. Granger. Gastrointestinal lymph and lymphatics. In: Experimental Biology of the Lymphatic Circulation, edited by M. G. Johnston Amsterdam: Elsevier, 1985, p. 327–354.
 13. Barton, S., C. Karpinski, C. Morivaki, and M. Schachter. Sialotonin: vasopressor substance in saliva and submandibular gland of the cat. J. Physiol. Lond. 261: 523–533, 1975.
 14. Becker, R. H. A., J. Scholtholt, B. A. Schoelkens, W. Jung, and O. Speth. A microsphere study on the effects of somatostatin and secretin on regional blood flow in anesthetized dogs. Regul. Pept. 4: 341–351, 1982.
 15. Bedran De Castro, M. T. B., H. F. Downey, G. J. Crystal, and F. A. Bashour. Effect of controlled ventilation on renal and splanchnic blood flows during nicotine. Am. J. Physiol. 248 (Heart Circ. Physiol. 17): H360–H365, 1985.
 16. Beijer, H. J. M., F. A. S. Brouwer, and G. A. Charbon. Time course and sensitivity of secretin‐stimulated pancreatic secretion and blood flow in the anesthetized dog. Scand. J. Gastroenterol. 14: 295–300, 1979.
 17. Beijer, H. J. M., A. H. J. Maas, and G. A. Charbon. Pancreatic O2 consumption and CO2 output during secretin‐induced, exocrine secretion from the pancreas in the anesthetized dog. Pfluegers Arch. 400: 318–323, 1984.
 18. Beijer, H. J. M., A. H. J. Maas, and G. A. Charbon. A vasopressin‐induced decrease in pancreatic blood flow and in pancreatic exocrine secretion in the anesthetized dog. Pfluegers Arch. 400: 324–328, 1984.
 19. Beilenson, S., M. Schacter, and L. H. Smaje. Secretion of kallikrein and its role in vasodilation in the submaxillary gland. J. Physiol. Lond. 199: 303–317, 1968.
 20. Benyo, I., A. Fazekas, E. Posch, L. Rosevalli, and G. Szabo. Circulatory effects of intraduodenal acidification in the rat. Res. Exp. Med. 177: 221–226, 1980.
 21. Berg, T., T. B. Orstavik, O. A. Carretero, and G. Scicli. Kallikrein‐kinin system in the regulation of submandibular gland blood flow. Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H1010–H1014, 1982.
 22. Bernard, C. Memoires sur le pancreas. CR Seances Acad Sci. Ser. III Sci. Vie, Suppl., 1: 379–563, 1856.
 23. Bernard, C. De l'influence de deux ordres de nerfs qui determinent les variations de couleur du sang veineux dans les organes glandulaires. CR Acad. Sci. Ser. III Sci. Vie, 47: 245–253, 1858.
 24. Bhoola, K. D., M. Lemon, and R. Mathews. Kallikrein in exocrine glands. In: Handbook of Experimental Pharmacology. Bradykinin, Kallidin and Kallikrein, edited by E. G. Erdos Berlin: Springer‐Verlag, 1979, vol. 25, p. 489–523.
 25. Bhoola, K. D., J. Morley, M. Schachter, and L. H. Smaje. Vasodilatation in the submaxillary gland of the cat. J. Physiol. Lond. 179: 172–184, 1965.
 26. Blair‐West, J. R., J. P. Coghlan, D. A. Denton, J. Nelson, R. D. Wright, and A. Yamauchi. Ionic, histological and vascular factors in the reaction of the sheep's parotid to high and low mineralocorticoid status. J. Physiol. Lond. 205: 563–579, 1969.
 27. Blitz, W., and G. A. Charbon. Regional vascular influence of vasoactive intestinal polypeptide. Scand. J. Gastroenterol. 18: 755–763, 1983.
 28. Bloom, S. R., and A. V. Edwards. Vasoactive intestinal peptide and relation to atropine resistant vasodilatation in the submaxillary gland of the cat. J. Physiol. Lond. 300: 41–53, 1980.
 29. Bonner‐Weir, S., and L. Orci. New perspectives on the microcirculature of the islets of Langerhans in the rat. Diabetes 31: 883–889, 1982.
 30. Broadie, T. A., M. Devedas, J. Rysavy, A. S. Leonard, and J. P. Delaney. The effect of hypoxia and hypercapnia on canine pancreatic blood flow. J. Surg. Res. 27: 114–118, 1979.
 31. Burgen, A. S. U., and P. Seeman. The role of the salivary duct system in the formation of saliva. Can. J. Biochem. Physiol 36: 119–143, 1958.
 32. Burnstock, G. Purinergic nerves. Pharmacol. Rev. 24: 509–581, 1972.
 33. Cadete‐Leite, A. The arteries of the pancreas of the dog. An injection‐corrosion and microangiographic study. Am. J. Anat. 137: 151–157, 1913.
 34. Case, R. M., and T. Scratcherd. Prostaglandin action on pancreatic blood flow and on electrolyte and enzyme secretion by exocrine pancreas in vivo and in vitro. J. Physiol. Lond. 226: 393–405, 1972.
 35. Chapal, J., and M.‐M. Loubatieres‐Mariani. Evidence for purinergic receptors on vascular smooth muscle in rat pancreas. Eur. J. Pharmacol. 87: 423–430, 1983.
 36. Chilvers, E. R., and N. W. Thomas. The blood supply of the islets of Langerhans in the Mongolian gerbil. J. Anat. 136: 339–347, 1983.
 37. Chou, C. C., and P. R. Kvietys. Physiological and pharmacological alterations in gastrointestinal blood flow. In: Measurement of Blood Flow: Application to the Splanchnic Circulation, edited by D. N. Granger and G. B. Bulkley. Baltimore, MD: Williams & Wilkins, 1981, p. 477–507.
 38. Chung, R. S., and S. Safaie‐Shirazi. The effect of secretin on pancreatic blood flow in the awake and anesthetized dog. Proc. Soc. Exp. Biol. Med. 173: 620–625, 1983.
 39. Clough, G., and L. H. Smaje. Exchange area and surface properties of the microvasculature of the rabbit submandibular gland following duct ligation. J. Physiol. Lond. 354: 445–456, 1984.
 40. Coddling, J. A., M. A. Ashworth, J. Hunter, and R. E. Haist. Effect on pancreatic blood flow and insulin output of infusions of aminophylline, galactose and galactose plus aminophylline. into an isolated in situ portion of pancreas. Horm. Metab. Res. 9: 261–266, 1977.
 41. Crouch, J. E. Text‐Atlas of Cat Anatomy. Philadelphia, PA: Lea & Febiger, 1969.
 42. Darke, A. C., and K. H. Smaje. Dependence of functional vasodilation in the submandibular gland upon stimulation frequency. J. Physiol. Lond. 226: 191–203, 1972.
 43. DeLaney, J. P., and E. Grim. Influence of hormones and drugs on canine pancreatic blood flow. Am. J. Physiol. 211: 1398–1402, 1966.
 44. Doertenbach, J. G., C. Hottenrott, U. Schwedes, K. H. Usadel, and A. Encke. Haemodynamic effects of somatostatin in acute gastrointestinal hemorrhage in dogs. Resuscitation 10: 57–61, 1982.
 45. Dorigotti, L., and H. Glasser. Comparative effects of caerulein, pancreoxymin and secretin on pancreatic blood flow. Experientia Basel 24: 806–807, 1968.
 46. Ebbehaj, N., L. B. Svendsen, and P. Madsen. Pancreatic tissue pressure: techniques and pathophysiological aspects. Scand. J. Gastroenterol. 19: 1066–1068, 1984.
 47. Eichelter, P., and W. G. Schenk. Hemodynamics of pancreatic secretion. Arch. Surg. 93: 200–207, 1966.
 48. Ekstrom, J., E. Brodin, R. Ekman, R. Hakanson, and F. Sundler. Vasoactive intestinal peptide and substance P in salivary glands of the rat following denervation or duct ligation. Regul. Pept. 10: 1–10, 1984.
 49. Eliassen, E., B. Folkow, and S. Hilton. Blood flow and capillary filtration capacities in salivary and pancreatic glands as compared with skeletal muscle. Acta. Physiol. Scand. 87: 11A–12A, 1973.
 50. Emmelin, N., and J. Holmberg. Impulse frequency in secretory nerves of salivary glands. J. Physiol. Lond. 191: 205–214, 1967.
 51. Ericsson, B. F. Effect of pentobarbital sodium anesthesia, as judged with aid of radioactive carbonized microspheres, on cardiac output and its fractional distribution in the dog. Acta Chir. Scand. 137: 613–620, 1971.
 52. Evans, H. E., and G. C. Christensen. Miller's Anatomy of the Dog (2nd ed.). Philadelphia, PA: Saunders, 1979.
 53. Fara, J. W., E. H. Rubinstein, and R. R. Sonnenschein. Intestinal hormones in mesenteric after intraduodenal agents. Am. J. Physiol. 223: 1058–1067, 1972.
 54. Fazekas, A., E. Posch, and T. Zelles. Pressure‐flow relations in the vascular bed of the rat submandibular gland. J. Dent. Res. 61: 66–68, 1982.
 55. Fazekas, A., E. Posch, and T. Zelles. Effect of indomethacin on the blood flow of the rat submandibular gland. J. Dent. Res. 62: 537–539, 1983.
 56. Ferreira, S. H., and L. H. Smaje. Bradykinin and functional vasodilatation in the slivary gland. Br. J. Pharmacol. 58: 201–209, 1976.
 57. Fischer, U., H. Hommel, and E. Salzsieder. Pancreatic blood flow in conscious dogs after oral administration of glucose. Diabetologia 12: 133–136, 1976.
 58. Fischer, U., H. Hommel, and E. Schmid. Continuous registration of the pancreatic blood flow after intravenous application of glucose. Experientia Basel 29: 884–885, 1973.
 59. Fischer, U., H. Hommel, and E. Schmid. Dynamics of canine pancreatic blood flow and of insulin secretion during an intravenous glucose load. Pfluegers Arch. 358: 89–100, 1975.
 60. Florey, H. W. The missing link. The structure of capillaries. Q. J. Exp. Physiol. 53: 1–5, 1968.
 61. Forsyth, R. P. Sympathetic nervous system control of distribution of cardiac output in unanesthetized monkeys. Federation Proc. 31: 1240–1244, 1972.
 62. Fransden, E. K., G. A. Krishna, and S. I. Said. Vasoactive intestinal polypeptide promotes cyclic adenosine 3',5'‐monophosphate accumulation in guinea‐pig trachea. Br. J. Pharmacol. 62: 367–369, 1978.
 63. Fraser, P. A., and J. R. Henderson. The arrangement of endocrine and exocrine pancreatic microcirculation observed in the living rabbit. Q. J. Exp. Physiol. 65: 151–158, 1980.
 64. Fraser, P. A., and L. H. Smaje. The organization of the salivary gland microcirculation. J. Physiol. Lond. 272: 121–136, 1977.
 65. Friedman, H. S., R. Lowery, E. Shaughnessy, and J. Scorza. The effects of ethanol on pancreatic blood flow in awake and anesthetized dogs. Proc. Soc. Exp. Biol. Med. 174: 377–382, 1983.
 66. Frogge, J. D., A. S. Hermreck, and A. P. Thal. Metabolic and hemodynamic effects of secretin and pancreozymin on the pancreas. Surgery 68: 498–502, 1970.
 67. Gallavan, R. H., C. C. Chou, P. R. Kvietys, and S. P. Sit. Regional blood flow during digestion in the conscious dog. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H220–H225, 1980.
 68. Gautvik, K., M. Kriz, K. Lund‐Larsen, and B. A. Waaler. Symphathetic vasodilatation, kallikrein release and adrenergic receptors in the cat submandibular salivary gland. Acta Physiol. Scand. 90: 438–444, 1974.
 69. Gautvik, K. M., K. Nustad, and J. Vystyd. Kininogenase activity in the stimulated submandibular salivary gland in cats. Acta Physiol. Scand. 85: 438–445, 1972.
 70. Gjorstrup, P. Effects of sympathetic nerve stimulation in the presence of a flow parasympathetic secretion in the parotid and submaxillary glands of the rabbit. Acta Physiol. Scand. 101: 211–218, 1977.
 71. Gjorstrup, P. Blood flow and secretion in submaxillary gland of the rabbit during stimulation of the autonomic nerves. Acta Physiol. Scand. 115: 91–95, 1982.
 72. Goodhead, B., H. S. Himal, and J. Zanbilowicz. Relationship between pancreatic secretion and pancreatic blood flow. Gut 11: 62–68, 1970.
 73. Granger, D. N., and J. A. Barrowman. Microcirculation of the alimentary tract. I. Physiology of transcapillary fluid and solute exchange. Gastroenterology 84: 846–868, 1983.
 74. Granger, D. N., and J. A. Barrowman. Gastrointestinal and liver edema. In: Edema, edited by N. C. Staub and A. E. Taylor. New York: Raven, 1984, p. 615–656.
 75. Granger, D. N., and H. J. Granger. Systems analysis of intestinal hemodynamics and oxygenation. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G786–G796, 1983.
 76. Granger, D. N., P. R. Kvietys, M. A. Perry, D. A. Parks, and J. N. Benoit. Metabolic, myogenic and humoral factors in local regulation of alimentary tract blood flow. In: Microcirculation of the Alimentary Tract, edited by A. Koo, S. K. Lam, and L. H. Smaje. Singapore: World Scientific, 1983, p. 131–142.
 77. Granger, D. N., M. A. Perry, and P. R. Kvietys. The microcirculation and fluid transport in digestive organs. Federation Proc. 42: 1667–1672, 1983.
 78. Granger, D. N., P. D. I. Richardson, P. R. Kvietys, and N. A. Mortillaro. Intestinal blood flow. Gastroenterology 78: 837–863, 1980.
 79. Greene, E. C. Anatomy of the Rat. New York: Hafner, 1935, vol. 27.
 80. Hamamdžic, M., and K. U. Malik. Prostaglandins in adrenergic transmission of isolated perfused rat pancreas. Am. J. Physiol. 232 (Endocrinol. Metab. Gastrointest. Physiol. 1): E201–E209, 1977.
 81. Haraldsson, B., L. Regner, R. Hultborn, L. Weiss, and B. Rippe. Transcapillary passage of albumin in mammary tumours and in normal lactating mammary glands of the rat. Acta Physiol. Scand. 122: 497–505, 1984.
 82. Haraldsson, B., B. Rippe, B. J. Moxham, and B. Folkow. Permeability of fenestrated capillaries in the isolated pig pancreas, with effects of bradykinin and histamine, as studied by simultaneous registration of filtration and diffusion capacities. Acta Physiol. Scand. 114: 67–74, 1982.
 83. Harper, S. L., D. N. Granger, J. A. Barrowman, P. R. Kvietys, and M. G. Ulrich. Relation between pancreatic growth and blood flow. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G61–G67, 1985.
 84. Harper, S. L., V. H. Pitts, D. N. Granger, and P. R. Kvietys. Pancreatic tissue oxygenation during secretory stimulation. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G316–G322, 1986.
 85. Heidenhain, R. Ueber die Wirkung einiger Gifte auf die Nerven der glandula submaxillaris. Arch. Gesamte. Physiol. Mens. Tiere Pfluegers 5: 309–318, 1872.
 86. Heins, P., and A. Tamarin. Response of the rat submaxillary gland to pilocarpine: a quantitative analysis of gross and microscopic changes. J. Dent. Res. 47: 575–579, 1968.
 87. Heisig, N. Pancreatic microcirculation under the influence of adequate secretory stimulation. Bibl. Anat. 9: 176–180, 1967.
 88. Henderson, J. R. The role of the islet of Langerhans in exocrine function of the pancreas. In: Microcirculation of the Alimentary Tract, edited by A. Koo, S. K. Lam, and L. H. Smaje. Singapore: World Scientific, 1983, p. 235–239.
 89. Henderson, J. R., and P. M. Daniel. A comparative study of the portal vessels connecting the endocrine and exocrine pancreas, with a discussion of some functional implication. Q. J. Exp. Physiol. 64: 267–275, 1979.
 90. Henderson, J. R., and P. M. Daniel. Capillary beds and portal circulations. In: Handbook of Physiology. The Cardiovascular System. Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: Am. Physiol. Soc., 1984, sect. 2, vol. IV, pt. 2, chapt. 13, p. 1035–1046.
 91. Henderson, J. R., and M. C. Moss. A morphometric study of the endocrine and exocrine capillaries of the pancreas. Q. J. Exp. Physiol. 70: 347–356, 1985.
 92. Hickson, J. C. D. The secretory and vascular response to nervous and hormonal stimulation in the pancreas of the pig. J. Physiol. Lond. 206: 299–322, 1970.
 93. Hilton, S. M., and G. P. Lewis. The cause of the vasodilatation accompanying activity in the submandibular salivary gland. J. Physiol. Lond. 128: 235–248, 1955.
 94. Hilton, S. M., and G. P. Lewis. The mechanism of the functional hyperemia in the submandibular salivary gland. J. Physiol. Lond. 129: 253–271, 1955.
 95. Hilton, S. M., and G. P. Lewis. The relationship between glandular activity, braclykinin formation and functional vasodilatation in the submandibular salivary gland. J. Physiol. Lond. 134: 471–483, 1956.
 96. Hilton, S. M., and M. Jones. Plasma kinin and functional vasodilation in the pancreas. J. Physiol. Lond. 165: 35P–36P, 1963.
 97. Hilton, S. M., and M. Jones. The role of plasma kinin in functional vasodilation in the pancreas. J. Physiol. Lond. 195: 521–533, 1968.
 98. Hoffbrand, B. I., R. P. Forsyth, and K. L. Melmon. Dose‐related effects of isoprenaline on the distribution of cardiac output and myocardial blood flow in conscious monkeys. Cardiovasc. Res. 7: 664–669, 1973.
 99. Holland, S. D., and H. E. Williamson. Acute effects of high cailing diuretics on pancreatic blood flow and function. J. Pharmacol. Exp. Ther. 229: 440–446, 1984.
 100. Homma, T., and K. U. Malik. Effect of prostaglandins on pancreatic circulation in anesthetized dogs. J. Pharmacol. Exp. Ther. 222: 623–628, 1982.
 101. Homma, T., and K. U. Malik. Effect of secretin and caerulein in canine pancreas: relation to prostaglandins. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G660–G667, 1983.
 102. Holmberg, J. Release of acetylcholine in the parotid gland of the dog during stimulation of postganglionic nerves. Acta Physiol. Scand. 86: 115–119, 1972.
 103. Holmberg, J., and J. Lundvall. Tissue hyperosmolality as a causal factor in vasodilatation following sympathetic stimulation of the submandibular gland. Acta Physiol. Scand. 98: 400–406, 1976.
 104. Howitz, L. D., and J. H. Myers. Ethanol‐induced alterations in pancreatic blood flow in conscious dogs. Circ. Res. 50: 250–256, 1982.
 105. Hulstaert, P. F., W. J. C. Geurts, F. A. S. Brouwer, H. J. M. Beijer, and G. A. Charbon. Hemodynamic actions of pentagastrin. Scand. J. Gastroenterol. 15: 7–15, 1980.
 106. Humphrey, S. J., and G. R. Zins. Whole body and regional hemodynamic effects of minoxidil in the conscious dog. J. Cardiovasc. Pharmacol. 6: 979–988, 1984.
 107. Hurley, J. V., and N. E. W. McCallum. The degree of functional significance of the escape of marker particles from small blood vessels with fenestrated endothelium. J. Pathol. 113: 183–196, 1974.
 108. Inoue, K., T. Kawano, K. Shima, T. Kim, T. Suzuki, T. Tobe, M. Takeyama, and H. Yajima. Effect of synthetic chicken vasoactive intestinal peptide on pancreatic blood flow and on exocrine and endocrine secretions of the pancreas in dogs. Dis. Dis. Sci. 28: 724–732, 1983.
 109. Iwatsuki, K., T. Homma, and K. U. Malik. Contribution of prostaglandins to dopamine actions in the pancreas of anesthetized dogs. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G110–G117, 1985.
 110. Iwatsuki, K., F. Iijima, and S. Chiba. Secretory and vascular effects of the optical isomers of nicardipine. Clin. Exp. Pharmacol. Physiol. 11: 1–5, 1984.
 111. Iwatsuki, K., K. Ikeda, F. Iijima, and S. Chiba. Secretory and vascular responses to 1,1‐dimethyl‐4‐phenylpiperazinium (DMPP) of the blood‐perfused canine pancreas. Arch. Int. Pharmacodyn. 256: 283–291, 1982.
 112. Jacobson, E. D. Secretion and blood flow in the gastrointestinal tract. In: Handbook of Physiology. Alimentary Canal. Secretion, edited by C F. Code Washington, DC: Am. Physiol. Soc., 1967, sect. 6, vol. II, chapt. 13, p. 1043–1062.
 113. Jakeuchi, O., S. Satoh, and K. Hashimoto. Secretory and vascular response to various biogenic and foreign substances of the perfused canine pancreas. Jpn. J. Pharmacol. 24: 57–73, 1974.
 114. JÄrhult, J., and A. Thulin. Hyperosmolality and pancreatic blood flow. Pfluegers Arch. 370: 127–130, 1977.
 115. Johnson, P. C. The myogenic response. In: Handbook of Physiology. Cardiovascular System. Vascular Smooth Muscle, edited by D. F. Bohr, A. T. Somlyo, and H. V. Sparks, Jr. Bethesda, MD: Am. Physiol. Soc, 1980, section 2, vol. II, chapt. 13, 409–442.
 116. Jones, C. J. Perivascular nerves in the rat submandibular salivary gland. Neurosci. Lett. 13: 19–23, 1979.
 117. Jones, C. J., and G. E. Mann. A possible role for adenosine 3':5'‐cyclic monophosphate in nerve‐mediated vasodilatation. Biochem. Soc. Trans. 5: 428–430, 1977.
 118. Jones, C. J., G. E. Mann, and L. H. Smaje. The role of cyclic nucleotides and related compounds in nerve‐mediated vasodilation in the cat submandibular gland. Br. J. Pharmacol. 68: 485–497, 1980.
 119. Karpinski, E., S. Barton, D. Longridge, and M. Schachter. A study of vasoactive intestinal peptide and acetylcholine as possible mediators of vasodilation in the cat submandibular gland. Can. J. Physiol. Pharmacol. 62: 650–653, 1984.
 120. Karpinski, C., S. Barton, and M. Schachter. Vasodilator nerve fibers to the submaxillary gland of the cat. Nature Lond. 232: 122–124, 1971.
 121. Kitani, K., Y. Suzuki, and R. Miura. Differences in the effects of secretin and glucagon on the blood circulation of unanesthetized rats. Acta Hepato‐Gastroenterol. 25: 470–473, 1978.
 122. Konturek, S. J., J. Jaworek, M. Cieszkowski, W. Pawlik, J. Kania, and S. R. Bloom. Comparison of effects of neurotensin and fat on pancreatic stimulation in dogs. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G590–G598, 1983.
 123. Koo, A., L. H. Smaje, and P. D. Spencer. Low permeability to macromolecules of the fenestrated capillaries in the cat submandibular gland. Bibl. Anat. 20: 301–304, 1981.
 124. Kullmann, R., W. R. Breull, J. Reinsberg, K. Wassermann, and A. Konopatzki. Dopamine produces vasodilation in specific regions and layers of the rabbit gastrointestinal tract. Life Sci. 32: 2115–2122, 1983.
 125. Kuznetsova, E. K. Characteristics of blood supply of the pancreas during different phases of its activity. Fiziol. Z. Kiev 48: T99–T104, 1962.
 126. Kvietys, P. R., J. M. McLendon, G. B. Bulkley, M. A. Perry, and D. N. Granger. Pancreatic circulation: intrinsic regulation. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G596–G602, 1982.
 127. Kvietys, P. R., W. G. Patterson, and D. N. Granger. Intrinsic and extrinsic regulation of the pancreatic microcirculation. In: Progress in Microcirculation Research II, edited by F. C. Courtice, D. G. Garlick, and M. A. Perry. Sydney, Australia: Univ. of New South Wales Press, 1984, p. 243–252.
 128. Kvietys, P. R., M. A. Perry, and D. N. Granger. Permeability of pancreatic capillaries to small molecules. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G519–G524, 1983.
 129. Laborsky, G. J., and J. W. Ensinck. Contribution of the pancreas to circulating somatostatin‐like immunoreactivity in the normal dog. J. Clin. Invest. 73: 216–223, 1984.
 130. Langesen, L. P., J. O. D. Nielsen, and J. H. Poulsen. Partial dissociation between salivary secretion and active potassium transport in the perfused cat submandibular gland. Pfluegers Arch. 364: 167–173, 1976.
 131. Larsson, L.‐I., J. Fahrenkrug, J. J. Holst, and O. B. Schaffalitzky de Muckadell. Innervation of the pancreas by vasoactive intestinal polypeptide (VIP) immunoreactive nerves. Life Sci. 22: 773–780, 1978.
 132. Leeson, C. R. Structure of salivary glands. In: Handbook of Physiology. Alimentary Canal. Secretion, edited by C. F. Code Washington, DC: Am. Physiol. Soc., 1967, sect. 6, vol. II, chapt. 13, p. 463–495.
 133. Lembeck, F., and R. Heittich. Comparative study of the effects of substance P on blood pressure, salivatory functions and intestinal motility. Naunyn‐Schmiedebergs Arch. Pharmacol. 265: 216–224, 1969.
 134. Lenninger, S. Effects of acetylcholine and papaverine on the secretion and blood flow from the pancreas of the cat. Acta Physiol. Scand. 89: 260–268, 1973.
 135. Lenninger, S. The autonomic innervation of the exocrine pancreas. Med. Clin. North Am. 58: 1310–1318, 1974.
 136. Lewis, G. P. The role of plasma kinins as mediator of functional vasodilation. Gastroenterology 52: 406–413, 1967.
 137. Lewis, G. P. Role of kinins and prostaglandins as mediators of functional hyperemia. Proc. R. Soc. Med. 64: 6–9, 1971.
 138. Lifson, N., K. G. Kramlinger, R. R. Mayrand, and E. J. Lender. Blood flow is the rabbit pancreas with special reference to the islets of langerhans. Gastroenterology 79: 466–473, 1980.
 139. Lifson, N., and C. U. Lassa. Note on the blood supply of the ducts of the rabbit pancreas. Microvasc. Res. 22: 171–176, 1981.
 140. Lundberg, J. M. Evidence for coexistence of vasoactive intestinal polypeptide and acetylcholine in neurons of cat exocrine glands. Morphological, biochemical and functional studies. Acta. Physiol. Scand. Suppl. 496: 1–57, 1981.
 141. Lundberg, J. M., A. Anggård, and J. Fahrenkrug. Complementary role of vasoactive intestinal polypeptide (VIP) and acetylcholine for cat submandibular gland blood flow and secretion. I. VIP release. Acta Physiol. Scand. 113: 317–327, 1981.
 142. Lundberg, J. M., A. Anggård, and J. Fahrenkrug. Complementary role of vasoactive intestinal polypeptide (VIP) and acetylcholine by cat submandibular gland blood flow and secretion. II. Effects of cholinergic antagonists and VIP antiserum. Acta Physiol. Scand. 113: 329–336, 1981.
 143. Lundberg, J. M., A. Anggård, and J. Fahrenkrug. Complementary role of vasoactive intestinal polypeptide (VIP) and acetylcholine for cat submandibular gland blood flow and secretion. III. Effects of local infusions. Acta Physiol. Scand. 114: 329–337, 1982.
 144. Lundberg, J. M., A. Anggård, J. Fahrenkrug, T. Hokfelt, and V. Mutt. Vasoactive intestinal polypeptide in cholinergic neurons of exocrine glands: functional significance of coexisting transmitters for vasodilation and secretion. Proc. Natl. Acad. Sci. USA 77: 1651–1655, 1980.
 145. Lundberg, J. M., A. Anggård, J. Fahrenkrug, G. Lundgren, and B. Holmstedt. Corelease of VIP and acetylcholine in relation to blood flow and salivary secretion in cat submandibular salivary gland. Acta Physiol. Scand. 115: 525–528, 1982.
 146. Lundberg, J. M., A. Anggård, T. Hokfelt, and J. Kimmel. Avian pancreatic polypeptide (APP) inhibits atropine resistant vasodilation in cat submandibular salivary gland and nasal mucosa: possible interaction with VIP. Acta Physiol. Scand. 110: 199–201, 1980.
 147. Lundberg, J. M., J. Fahrenkrug, O. Larsson, and A. Anggård. Corelease of vasoactive intestinal polypeptide and peptide histidine isoleucine in relation to atropine‐resistant vasodilation in cat submandibular salivary gland. Neurosci. Lett. 52: 34–42, 1984.
 148. Lundberg, J. M., and K. Tatemoto. Pancreatic polypeptide family (APP, BPP, NPY and PYY) in relation to sympathetic vasoconstriction resistant to α‐adrenoceptor blockade. Acta Physiol. Scand. 116: 393–402, 1981.
 149. Lundgren, O. The alimentary canal. In: Peripheral Circulation, edited by P. C. Johnson New York: Wiley, 1978, p. 255–283.
 150. Lundgren, O. Microcirculation of the gastrointestinal tract and pancreas. In: Handbook of Physiology. The Cardiovascular System. Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: Am. Physiol. Soc., 1984, sect. 2, vol. IV, pt. 2, chapt. 13, p. 799–863.
 151. Lundvall, J., and J. Holmberg. Role of tissue hyperosmolality in functional vasodilatation in the submandibular gland. Acta Physiol. Scand 92: 165–174, 1974.
 152. Lundvall, J., and J. Holmberg. Mechanisms involved in transcapillary fluid movement into the secreting cat submandibular (Abstract). Acta Physiol. Scand. 102: 16A, 1978.
 153. Lundvall, J., and J. Holmberg. Dynamics of saliva secretion and tissue volume changes during parasympathetic stimulation in the constant flow perfused cat submandibular gland. Acta Physiol. Scand. 102: 382–384, 1978.
 154. Mann, G. E., L. H. Smaje, and D. L. Yudilevich. Permeability of the fenestrated capillaries of the cat submandibular gland to lipid‐insoluble molecules. J. Physiol. Lond. 297: 335–354, 1979.
 155. Mann, G. E., L. H. Smaje, and D. L. Yudilevich. Transcapillary exchange in the cat salivary gland during secretion, bradykinin infusion and after chronic duct ligation. J. Physiol. Lond. 297: 355–367, 1979.
 156. McCuskey, R. S., and T. M. Chapman. Microscopy of the living pancreas in situ. Am. J. Anat. 126: 395–407, 1969.
 157. Mia, M. A., and R. F. Sis. The arterial supply to the salivary glands of the cat. Arch. Oral Biol. 15: 1–10, 1970.
 158. Mohamed, A. H. Ultrastructural permeability studies in capillaries of rabbit oral mucosa and salivary glands. Microvasc. Res. 9: 287–303, 1975.
 159. Moreno, M., E. Martínez de Victoria, and M. A. López. Effect of sympathetic stimulation on salivary secretion in submandibular gland in the rabbit stimulated by pilocarpine. Rev. Esp. Fisiol. 40: 15–18, 1984.
 160. Muresan, V., and M. C. Constantinescu. Distribution of sialoglycoconjugates on the luminal surface of the endothelial cell in the fenestrated capillaries of the pancreas. J. Histochem. Cytochem. 33: 474–476, 1985.
 161. Oates, P. S., N. W. Bruce, and R. G. H. Morgan. Pancreatic blood flow in the rat during enlargement, involution, and cholecystokinin treatment. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G457–G462, 1984.
 162. Ohneda, A., K. Horigome, S. Ishii, Y. Kai, and M. Chiba. Effect of caerulein upon insulin and glucagon secretion in dogs. Horm. Metab. Res. 10: 7–11, 1978.
 163. Ohneda, A., S. Ishii, K. Horigome, M. Chiba, T. Sakai, Y. Kai, K. Wantanabe, and S. Yamagata. Effect of intrapancreatic. administration of vasoactive intestinal peptide upon the release of insulin and glucagon in dogs. Horm. Metab. Res. 9: 447–452, 1977.
 164. Ohtani, O. Microcirculation of the pancreas: a correlative study of intravital microscopy with scanning electron microscopy of vascular corrosion casts. Arch. Histol. Jpn. 46: 315–325, 1983.
 165. Ohtani, O. Microvascular organization of the salivary glands as visualized by scanning electron microscopy of microvascular corrosion casts. In: Microcirculation of the Alimentary Tract, edited by A. Koo, S. K. Lam, and L. H. Smaje. Singapore: World Scientific, 1983, p. 11–16.
 166. Ohtani, O. Review of scanning electron and light microscopic methods in microcirculation research and their application in pancreatic studies. Scanning Electron Micros. 2: 653–661, 1984.
 167. Ohtani, O., and T. Fujita. Microcirculation of the pancreas with special reference to periductular circulation. A scanning electron microscope study of vascular casts. Biomed. Res. 1: 130–140, 1980.
 168. Ohtani, O., and T. Fujita. Insulo‐acinar portal system of the pancreas. A scanning electron microscope study of corrosion casts. In: Progress in Clinical Biological Research. Advances in the Morphoiogy of Cells and Tissues, edited by E. A. Vidrio and M. A. Galina. New York: Liss, 1981, vol. 59B, p. 111–120.
 169. Ohtani, O., A. Kikuta, A. Ohtsuka, T. Taguchi, and T. Murakami. Microvasculature as studied by the microvascular corrosion casting/scanning electron microscope method. I. Endocrine and digestive system. Arch. Histol. Jpn. 46: 1–42, 1983.
 170. Ohtani, O., A. Ohtsuka, J. Lipsett, and B. Gannon. The microvasculature of rat salivary glands. A scanning electron microscopic study. Acta. Anat. 115: 345–356, 1983.
 171. Ohtani, O., A. Ohtsuka, and T. Murakami. Microvascular organization of the pancreas. In: Microcirculation of the Alimentary Tract, edited by A. Koo, S. K. Lam, and L. H. Smaje. Singapore: World Scientific, 1983, p. 29–38.
 172. Berg, T., Orstavik, T. B., O. A. Carretero, and G. Scicli. Kallikrein‐kinin system in the regulation of submandibular gland blood flow. Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H1010–H1014, 1982.
 173. Palade, G. E., M. Simionescu, and N. Simionescu. Structural aspects of the permeability of the microvascular endothelium. Acta. Physiol Scand. Suppl. 463: 11–32, 1979.
 174. Palade, G. E., M. Simionescu, and N. Simionescu. Differentiated microdomains on the luminal surface of the capillary endothelium. Biorheology 17: 563–568, 1981.
 175. Papp, M. Role of the circulation in acute pancreatitis. In: Pathophysiology of the Splanchnic Circulation, edited by P. R. Kvietys, J. A. Barrowman, and D. N. Granger. Boca Raton, FL: CRC, 1987, vol. 2, p. 119–135.
 176. Papp, M., S. Feher, B. Varga, and G. Folly. Humoral influences on local blood flow and external secretion of the resting dog pancreas. Acta Med. Acad. Sci. Hung. 34: 185–198, 1977.
 177. Papp, M., G. B. Makara, and G. Folly. Impeded interstitial fluid movement: a factor in pancreatic edema. Lymphology 8: 148–153, 1975.
 178. Papp, M., B. Varga, Z. S. Acs, I. Krasznai, and J. Foeldes. Pharmacological effects on pancreatic blood flow. Arch. Int. Pharmacodyn. 161: 61–67, 1966.
 179. Papp, M., B. Varga, and G. Folly. Effects of secretin, pancreozymin, histamine and decholin and canine pancreatic blood flow. Pfluegers Arch. 340: 349–360, 1973.
 180. Papp, M., B. Varga, G. Varga, and G. Folly. Pancreatic Secretion: I. Effects of vasopressin and glucagon on pancreatic blood flow and secretion. Mt. Sinai J. Med. 50: 439–440, 1983.
 181. Pascal, J. P., P. Roux, N. Vaysse, A. Lacroix, C. Martinel, and A. Ribet. Respiratory exchanges and acid‐base balance during perfusion of ex vivo isolated pancreas. Dig. Dis. Sci. 21: 381–388, 1976.
 182. Pernow, B. Substance P: its distribution, pharmacological actions and possible physiological role in sensory neurons. Clin. Physiol. 1: 235–251, 1981.
 183. Perry, M. A., and D. N. Granger. Permeability of intestinal capillaries to small molecules. Am. J. Physiol. 241 (Gastrointest. Liver Physiol. 4): G24–G30, 1981.
 184. Perry, M. A., and D. N. Granger. Permeability of intestinal capillaries to small solutes and to plasma proteins. In: Microcirculation of the Alimentary Tract, edited by A. Koo, S. K. Lam, and L. H. Smaje. Singapore: World Scientific, 1983, p. 179–196.
 185. Pissas, A. Anatomoclinical and anatomosurgical essay on the lymphatic circulation of the pancreas. Anat. Clin. 6: 255–280, 1984.
 186. Pissiotis, C. A., R. E. Condon, and L. M. Nyhus. Effect of vasopressin on pancreatic blood flow in acute hemorrhagic pancreatitis. Am. J. Surg. 123: 203–208, 1972.
 187. Polansky, D. B., and S. Safaie‐Shirazi. Simultaneous measurements of pancreatic blood flow, endocrine, and exocrine secretion in conscious dogs. Surg. Forum 28: 91–93, 1977.
 188. Poulsen, J. H. Two phases of chorda‐lingual induced vasodilation in the cat's submandibular gland during prolonged perfusion with Locke solution. J. Physiol. Lond. 253: 79–94, 1975.
 189. Premen, A. J., P. R. Kvietys, and D. N. Granger. Postprandial regulation of intestinal blood flow: role of gastrointestinal hormones. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G250–G255, 1985.
 190. Price, B. A., B. M. Jaffe, and M. J. Zinner. Effect of exogenous somatostatin infusion on gastrointestinal blood flow and hormones in the conscious dog. Gastroenterology 88: 80–85, 1985.
 191. Rabito, S. F., T. B. Orstavik, A. G. Scicli, A. Schork, and O. A. Carretero. Role of the autonomic nervous system in the release of rat submandibular gland kallikrein into the circulation. Circ. Res. 52: 635–641, 1983.
 192. Rappaport, A. M., T. Kawamura, J. K. Davidson, B. J. Lin, S. Ohira, M. Zeigler, J. A. Coddling, J. Henderson, and R. E. Haist. Effects of hormones and of blood flow on insulin output of isolated pancreas in situ. Am. J. Physiol. 221: 343–348, 1971.
 193. Rappaport, A. M., S. Ohira, J. A. Coddling, G. Empey, A. Kalnins, B. J. Lin, and R. E. Haist. Effects on insulin output and on pancreatic blood flow of exogenous insulin infusion into an in situ isolated portion of the pancreas. Endocrinology 91: 168–176, 1972.
 194. Regan, T. J. Regional circulatory responses to alcohol and its congeners. Federation Proc. 41: 2438–2442, 1982.
 195. Renkin, E. M., and F. E. Curry. Transport of water and solutes across capillary endothelium. Membrane Transport in Biology. Transport Organs, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Berlin: Springer‐Verlag, 1978, vol 4, p. 1–45.
 196. Ribes, G., E. R. Srimble, J. Blayac, C. B. Wollheim, and M. Loubatieres‐Mariani. In vivo stimulation of pancreatic hormone secretion by norepinephrine infusion in the dog. Am. J. Physiol. 246 (Endocrinol. Metab. 9): E339–E343, 1984.
 197. Richardson, P. D. I., and D. N. Granger. Capillary filtration coefficient as a measure of perfused capillary density. In: Measurement of Blood Flow: Applications to the Splanchnic Circulation, edited by D. N. Granger and G. B. Bulkley. Baltimore, MD: Williams & Wilkins, 1981, p. 321–336.
 198. Richardson, P. D. I., D. N. Granger, and A. E. Taylor. Capillary filtration coefficient: The technique and its application to the small intestine. Cardiovasc. Res. 13: 547–561, 1979.
 199. Robie, N. W., and J. L. McNay. Comparative splanchnic blood flow effects of various vasodilator compounds. Circ. Shock 4: 69–78, 1977.
 200. Romanes, G. J. Cunningham's Textbook of Anatomy (12th ed.). London: Oxford Univ. Press, 1972.
 201. Rossini, R. B., A. B. Machado, and C. R. S. Machado. A histochemical study of catecholamines and cholinesterases in the autonomib nerves of the human minor salivary glands. Histochem. J. 11: 661–668, 1979.
 202. Rusznyak, I., M. Foldi, and G. Szabo. Lymphatics and Lymph Circulation. Physiology and Pathology. Oxford, UK: Pergamon, 1967 [Transl. by A. Deak and J. Fesus.].
 203. Rutberg, U. Ultrastructure and secretory mechanisms of the parotid gland. Acta Odontol. Scand. 19, Suppl. 30: 7–69, 1961.
 204. Satoh, S., N. Taira, and K. Hashimoto. Absence of a neurally‐mediated process in salivation and vasodilation caused by McN‐A‐343 in the dog submaxillary gland. Jpn. J. Pharmacol. 23: 581, 1973.
 205. Satoh, S., O. Takeuchi, and K. Hashimoto. Pharmacological behavior of the submaxillary gland and its vasculature of the dog. Tohoku J. Exp. Med. 108: 377–388, 1972.
 206. Schachter, M., S. Barton, and E. Karpinski. Sympathetic vasodilatation in the submaxillary gland and its enhancement after chronic parasympathetic denervation. Experientia Basel 29: 1498–1499, 1973.
 207. Schacter, M., and S. Beilenson. Kallikrein and vasodilation in the submaxillary gland. Gastroenterology 52: 401–405, 1967.
 208. Seelig, R. F., J. C. Kerr, R. W. Hobson II, and G. W. Machiedo. Prostacyclin (epoprostenol): its effect on canine splanchnic blood flow during hemorrhagic shock. Arch. Surg. 116: 428–430, 1981.
 209. Shapiro, H., and L. G. Britt. The action of vasopressin on the gastrointestinal tract. Dig. Dis. Sci. 17: 649–667, 1972.
 210. Shimizu, T., K. Nunoki, and N. Taira. Characterization of neuronal and vascular histamine receptors mediating the salivary and vasodilator responses to histamine of the dog submandibular gland. Tohoku J. Exp. Med. 134: 1–8, 1981.
 211. Shimizu, T., and N. Taira. Assessment of the effects of vasoactive intestinal peptide (VIP) on blood flow through and salivation of the dog salivary gland in comparison with those of secretin, glucagon, and acetylcholine. Br. J. Pharmacol. 65: 683–687, 1979.
 212. Shimizu, T., and N. Taira. Pharmacological analysis of salivary and blood flow responses to histamine of the submandibular gland of the dog. Br. J. Pharmacol. 68: 651–661, 1980.
 213. Shulin, A. Blood flow changes in the submaxillary gland of the rat on parasympathetic and sympathetic nerve stimulation. Acta Physiol. Scand. 97: 104–109, 1976.
 214. Simionescu, M., N. Simionescu, and G. E. Palade. Morphometry data on the endothelium of blood capillaries. J. Cell Biol. 60: 128–152, 1974.
 215. Simionescu, M., N. Simionescu, and G. E. Palade. Preferential distribution of anionic sites on the basement membrane and the abluminal aspect of the endothelium in fenestrated capillaries. J. Cell Biol. 95: 425–434, 1982.
 216. Simionescu, M., N. Simionescu, and G. E. Palade. Partial chemical characterization of the anionic sites in the basal lamina of fenestrated capillaries. Microvasc. Res. 28: 352–367, 1984.
 217. Simionescu, N., M. Simionescu, and G. E. Palade. Differentiated microdomains on the luminal surface of the capillary endothelium. I. Preferential distribution of anionic sites. J. Cell Biol. 90: 605–613, 1981.
 218. Skinner, N. S.Jr., J. C. Costin, and M. E. Webster. Acetylcholine and functional vasodilation in the submaxillary gland of the cat. Eur. J. Pharmacol. 12: 271–275, 1970.
 219. Skinner, N. S.Jr., and M. E. Webster. Kinins, beta‐adrenergic receptors and functional vasodilatation in the submaxillary gland of the cat. J. Physiol. Land. 195: 505–519, 1968.
 220. Smaje, L. H. Permeability of salivary gland capillaries. In: Microcirculation of the Alimentary Tract, edited by A. Koo, S. K. Lam, and L. H. Smaje. Singapore: World Scientific, 1983, p. 167–177.
 221. Smaje, L. H., and J. R. Henderson. Microcirculation of the exocrine glands. In: The Physiology and Pharmacology of the Microcirculation, edited by N. A. Mortillaro Orlando, FL: Academic, 1984, vol. 2, p. 325–385.
 222. Sparks, H. V.Jr. Effects of local metabolic factors on vascular smooth muscle. In: Handbook of Physiology. Cardiovascular System. Vascular Smooth Muscle, edited by D. F. Bohr, A. T. Somlyo, and H. V. Sparks, Jr. Bethesda, MD. Am. Physiol. Soc., 1980, sect. 2, vol. II, chapt. 13, p. 475–513.
 223. Stanek, K. A., J. J. Neil, W. B. Sawyer, and A. D. Loewy. Changes in regional blood flow and cardiac output after L‐glutamate stimulation of A5 cell group. Am. J. Physiol. 246 (Heart Circ. Physiol. 15): H44–H51, 1984.
 224. Stanovnik, L., and F. Erjavec. The inhibition of salivary secretion by histamine H2‐antagonists: a study on the cat submandibular gland. Agents Actions 13: 196–199, 1983.
 225. Starling, E. H. On the absorption of fluid from the connective tissue spaces. J. Physiol. Lond. 19: 312–326, 1896.
 226. Stromblad, B. C. R. Gaserous metabolism of the normal and denervated submaxillary gland of the cat. J. Physiol. Lond. 145: 551–561, 1959.
 227. Stromblad, B. C. R., and P. E. Dressel. Experiments on atropine‐resistant vasodilation in salivary glands. Can. J. Biochem. Physiol. 41: 519–524, 1963.
 228. Studley, J. G. N., J. B. Lee, and W. G. SchenkJr. Effects of indomethacin on blood flow in the normal pancreas in conscious dogs. J. Surg. Res. 37: 464–466, 1984.
 229. Taira, N., A. Narimatsu, and S. Satoh. Differential block by 1‐hyoscyamine of the salivary and vascular responses of the dog mandibular gland to prostaglandin F2α. Life Sci. 17: 1869–1875, 1975.
 230. Takada, M. Fenestrated venules of the large salivary glands. Anat. Rec. 166: 605–610, 1970.
 231. Taylor, A. E. Capillary fluid filtration: Starling forces and lymph flow. Circ. Res. 49: 557–575, 1981.
 232. Taylor, A. E., and D. N. Granger. Exchange of macromolecules across the circulation. In: Handbook of Physiology. The Cardiovascular System. Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: Am. Physiol. Soc. 1984, sect. 2, vol. IV, pt. 1, chapt. 13, p. 467–520.
 233. Templeton, D., and A. Thulin. Secretory, motor and vascular effects in sublingual gland of the rat caused by autonomic nerve stimulation. Q. J. Exp. Physiol. 63: 59–66, 1978.
 234. Terroux, K. G., P. Sekelj, and A. S. V. Burgen. Oxygen consumption and blood flow in the submaxillary gland of the dog. Can. J. Biochem. Physiol. 37: 5–15, 1959.
 235. Tetsuo, S., K. Nunoki, and N. Taira. Characterization of neuronal and vascular histamine receptors mediating the salivary and vasodilator responses to histamine of the dog submandibular gland. Tohoku J. Exp. Med. 134: 1–8, 1981.
 236. Thulin, L., and P. Olsson. Effects of pure natural cholecystokinin on splanchnic circulation in the dog. Acta Chir. Scand. 139: 681–686, 1973.
 237. Vaysse, N., M. J. Bastie, J. P. Pascal, C. Martinel, G. Fourtanier, and A. Ribet. Effects of catecholamines and their inhibitors on the isolated canine pancreas. I. Noradrenaline and isoprenaline. Gastroenterology 72: 711–718, 1977.
 238. Wallach, S., G. A. Charbon, H. J. M. Beijer, H. J. Endeman, J. O. O. Hoeke, J. Schrijver, and A. Struyvenberg. Effects of furosemide on biliary secretion, pancreatic blood flow, and pancreatic exocrine secretion. J. Clin. Pharmacol. 23: 401–413, 1983.
 239. Walters, M. N., J. M. Papadimitrioce, T. A. Robertson, and J. M. Archer. Permeability of pancreatic endothelium to horseradish peroxidase. J. Pathol. 100: 31–37, 1970.
 240. Warner, N. E. Blood vessels and lymphatics of the pancreas. In: Blood Vessels and Lymphatics in Organ Systems, edited by D. I. Abramson and P. B. Dobrin, Orlando, FL: Academic, 1984, p. 296–304.
 241. Wheaton, L. G., M. G. Saar, L. Schlossberg, and G. B. Bulkley. Gross anatomy of the splanchnic vasculature. In: Measurement of Blood Flow: Applications to the Splanchnic Circulation, edited by D. N. Granger and G. B. Bulkley. Baltimore, MD: Williams & Wilkins, 1981, p. 9–45.
 242. Williams, P. L., and R. Warwick. Gray's Anatomy (36th ed.). Philadelphia, PA: Saunders, 1980.
 243. Zinner, M. J., F. Kasher, I. M. Modlin, and B. M. Jaffe. Effect of xenopsin on blood flow, hormone release, and acid secretion. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G195–G199, 1982.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Peter R. Kvietys, D. Neil Granger, Scot L. Harper. Circulation of the pancreas and salivary glands. Compr Physiol 2011, Supplement 16: Handbook of Physiology, The Gastrointestinal System, Motility and Circulation: 1565-1595. First published in print 1989. doi: 10.1002/cphy.cp060142