Comprehensive Physiology Wiley Online Library

Molecular Biology of Gut Peptides

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Methods in Molecular Biology
1.1 Construction of a cDNA Library
1.2 Identifying Specific cDNA Clones
1.3 Construction of Genomic Libraries
1.4 Isolation of Cloned Genes
1.5 Structure of Eucaryotic Genes
2 Gene Expression
3 Gastrin/Cholecystokinin Family
3.1 Molecular Biology of Gastrin
3.2 Molecular Biology of Cholecystokinin
4 Pancreatic Polypeptide, Neuropeptide Y, and Peptide YY Family
5 Glucagon/Secretin Family
5.1 Glucagon
5.2 Growth Hormone‐Releasing Factor
6 Summary
Figure 1. Figure 1.

Sequencing end‐labeled DNA by limited, base‐specific cleavage. A: three consecutive reactions cleave one DNA molecule at one guanine. B: nested set of end‐labeled fragments generated when these reactions cleave at a guanine in all such molecules.

From Zubay 209a. In: Biochemistry. © 1983, reprinted by permission of Addison‐Wesley Publishing Company, Inc., Reading, MA, Fig. 20,21,22,23,24,25,26,27,28,29,30,31,32 33, 34
Figure 2. Figure 2.

Sanger DNA‐sequencing procedure. A: preparation of series of labeled fragments having identical starting points but of variable length. B: DNA strand to be sequenced, along with labeled primer, is split into four DNA polymerase reactions, each containing one of the four ddNTPs. Resultant labeled fragments are separated by size on acrylamide gel, autoradiography is performed, and pattern of fragments gives DNA sequence.

From Recombinant DNA: A Short Course, by James D. Watson et al. 197a. Copyright © 1983, James D. Watson, John Tooze, and David T. Kurtz. Reprinted with the permission of Scientific American Books, New York
Figure 3. Figure 3.

Diagram of the E. coli plasmid cloning vehicle pUC19. Molecule is double‐stranded DNA circle 2,686 base pairs in length. Nucleotide numbering starts at first T in sequence TCGCGCGTTT and proceeds clockwise around molecule in direction lac to Ap. Map shows restriction sites of those enzymes that cut molecule once or twice; unique sites are in bold type. Polylinker is shown below map. Map also shows position of coding sequences and origin of replication.

From New England Biolabs Catalog 1986/1987, Beverly, MA, p. 94
Figure 4. Figure 4.

Synthesis of double‐stranded cDNA from mRNA. Oligo‐dT segment serves as primer for action of reverse transcriptase, which uses mRNA as a template for synthesis of complementary DNA strand. When mRNA strand is degraded by treatment with NaOH, hairpin loop becomes primer for DNA polymerase I, which completes paired DNA strand. Loop is then cleaved by S1 nuclease to produce double‐stranded cDNA molecule.

From Recombinant DNA: A Short Course, by James D. Watson et al. 197a. Copyright © 1983, James D. Watson, John Tooze, and David T. Kurtz. Reprinted with the permission of Scientific American Books, New York
Figure 5. Figure 5.

Preparation of cDNA clone into DNA plasmid by homopolymer tailing.

From Molecular Cell Biology, by James E. Darnell et al. 31a. Copyright © 1986. Scientific American Books. Used by permission
Figure 6. Figure 6.

Preparation of probe to isolate rare cDNA. mRNA for protein α2u‐globulin represents 1% of mRNA in adult male rat liver but is absent from female rat liver. Male rat liver mRNA is reverse‐transcribed into cDNA with labeled nucleotides; cDNA is then hybridized with excess of female liver mRNA. Most mRNA sequences in male and female liver are common, so most of male cDNA hybridizes with mRNA from female liver. However, α2u cDNA remains single stranded and can be separated from cDNA‐mRNA hybrids by chromatography on hydroxyapatite, which binds double‐stranded molecules much more avidly than single‐stranded molecules. Labeled α2u cDNA can then be used to screen male rat liver cDNA library to obtain cloned copy of α2u cDNA.

From Recombinant DNA: A Short Course, by James D. Watson et al. 197a. Copyright © 1983, James D. Watson, John Tooze, and David T. Kurtz. Reprinted with the permission of Scientific American Books, New York
Figure 7. Figure 7.

Immunochemical screening of cDNA library cloned in a bacterial expression vector.

From Recombinant DNA: A Short Course, by James D. Watson et al. 197a. Copyright © 1983, James D. Watson, John Tooze, and David T. Kurtz. Reprinted with the permission of Scientific American Books, New York
Figure 8. Figure 8.

Generalized structure of eucaryotic expression vector pcD‐cDNA recombinants. Portion of hatched region containing SV40 origin of DNA replication (ori) and early and late promoters corresponds to SV40 segment between PvuII and HindIII restriction sites at map positions 0.71 to 0.65; other portion of hatched region joining first on early region promoter side derives from SV40 late region between map positions 0.75 and 0.95, with BamHI sequence replacing internal region between map positions 0.77 and 0.93. For use as linker segment, hatched fragment contains HindIII cohesive end and oligo(dG) sequence at PstI terminus. Solid dark region, cloned cDNA; stippled region, segment carrying SV40 late region polyadenylation signal.

From Okayama and Berg 145
Figure 9. Figure 9.

Identification of bacterial colonies harboring specific cDNA plasmid by hybridization with 32P‐labeled cDNA, mRNA, or oligonucleotide probe.

From Recombinant DNA: A Short Course, by James D. Watson et al. 197a. Copyright © 1983, James D. Watson, John Tooze, and David T. Kurtz. Reprinted with the permission of Scientific American Books, New York
Figure 10. Figure 10.

Identification of clones harboring somatostatin cDNA. A: electrophoresis of cDNA synthesized from rat thyroid medullary carcinoma poly(A) RNA primed with 5'‐32P‐labeled oligonucleotide, d(T‐T‐C‐C‐A‐G‐A‐A‐G‐A‐A). Arrow denotes primer‐extended cDNA used for colony hybridization. B: autoradiograph of in situ colony hybridization of bacterial transformants. Radiolabeled primer‐extended cDNA was used as hybridization probe.

From Funckes et al. 53
Figure 11. Figure 11.

Composite restriction map of pRT B1‐63, pRT 3–36, and pRT 3–81. Sequencing strategy is shown below restriction map. Boxed area represents preprohormone; dark area denotes area corresponding to somatostatin‐14.

From Funckes et al. 53
Figure 12. Figure 12.

Strategy for constructing libraries of random fragments of eukaryotic DNA. Left, preparation of vector DNA fragments; right, preparation of eukaryotic DNA fragments. Concatameric, recombinant DNA molecule is produced by action of bacteriophage T4 DNA ligase. This concatamer is substrate for in vitro packaging reaction during which a different recombinant DNA molecule is inserted into each bacteriophage particle. After amplification by growth in E. coli, lysate is obtained consisting of library of recombinant clones that in aggregate contain most sequences present in mammalian genome.

From Maniatis et al. 111a
Figure 13. Figure 13.

Map of rat somatostatin gene. Restriction sites in Λb clone were determined by combination of Southern hybridization of digested DNA and partial digestion of end‐labeled fragments. 5'‐to‐3’ Orientation of somatostatin gene within clone is indicated. Two exons of gene are indicated by solid boxes.

From Tavianini et al. 186
Figure 14. Figure 14.

Determination of transcription initiation site by nuclease protection assay.

From Lewin 102a, reprinted by permission of John Wiley & Sons, Inc. © 1986
Figure 15. Figure 15.

Introns spliced out during maturation of mRNA.

From Recombinant DNA: A Short Course, by James D. Watson et al. (197a.) Copyright © 1983, James D. Watson, John Tooze, and David T. Kurtz. Reprinted with the permission of Scientific American Books, New York
Figure 16. Figure 16.

Construction of recombinant pBXΔ‐750. Plasmid pBXΔ‐750 was constructed from pRSΛHE5, a Λ phage subclone, containing 750‐base‐pair fragment (bp) of 5’ upstream sequences and first exon of rat somatostatin gene. Unique XbaI site at +50 in pRSΛHE5 was converted to BamHI site and 800 bp HindIII‐BamHI fragment was cloned into unique BamHI, HindIII sites of promoterless pBR322 derivative CAT plasmid, resulting in plasmid pBXΔ‐750.

Figure 17. Figure 17.

Promoter for RNA polymerase II containing separate sequence components with different roles. Sequences between components are not important. Orientation of conserved sequences is indicated by direction of arrows. Transcription factors bind to the conserved sequence motifs.

From Lewin 102a, reprinted by permission of John Wiley & Sons, Inc. © 1986
Figure 18. Figure 18.

Identification of DNA binding sites by DNase I footprinting.

From Lewin 102a, reprinted by permission of John Wiley & Sons, Inc. © 1986
Figure 19. Figure 19.

Splice commitment regulatory factor model for cell‐specific alternative RNA processing of a complex transcription unit in the brain. Putative factor that commits exon splicing pattern is represented by stippled oval and is postulated to inhibit usage of calcitonin poly(A) site.

From Leff et al. 99). Copyright 1987, by permission of Cell Press
Figure 20. Figure 20.

Nucleotide and amino acid sequence alignments of rat tumor cholecystokinin (CCK) and porcine gut gastrin (GSN) preprohormones. Amino acid identities are boxed. The putative initiator methionine in each case is designated +1. Deletions are indicated by dashed line.

From Deschenes et al. 34). Reprinted by permission of Elsevier Science Publishing Co., copyright 1985
Figure 21. Figure 21.

Schematic representation showing exon organization of human gastrin and rat cholecystokinin (CCK) genes. Second exons are aligned at putative initiator methionines, and third exons are aligned at conserved pentapeptide of preprohormones. Shaded boxes indicate translated exons, open boxes indicate nontranslated exons, and cross‐hatched boxes indicate conserved amino acids in preprohormones.

Figure 22. Figure 22.

Comparison of porcine amino acid sequence of neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PPP). Identities are underlined.

Figure 23. Figure 23.

Nucleotide sequence of pancreatic polypeptide cDNA clone. Restriction endonuclease sites for BamHI, HinfI, and AvaII, which were used for DNA sequencing, and oligonucleotide sequence corresponding to probe used for screening are indicated by solid lines. Deduced amino acid sequence is numbered from NH2‐terminal alanine of pancreatic polypeptide portion of sequence. Dashed lines, proposed leader sequence and icosapeptide portion; boxes, connecting sequence (Gly‐Lys‐Arg) and variant amino acid.

From Takeuchi and Yamada 182).
Figure 24. Figure 24.

Restriction map of human pancreatic polypeptide gene. Restriction sites in pPP4A subclone are shown. Four exons indicated as cross‐hatched boxes; repetitive DNA (Rep DNA) sequences shown as solid box and labeled; DNA sequencing strategy indicated by arrows below map; Solid arrows indicate 5'‐labeled fragments; and dashed arrows denote fragments labeled at 3’ ends base pairs (bp)

From Leiter et al. 101
Figure 25. Figure 25.

Nucleotide sequence encoding precursor to human NPY. Amino acid sequence of preproNPY numbered 1 through 97; termination codon denoted by asterisks; mature hormone is underlined; putative signal for poly(A) addition is underlined with broken line.

From Minth et al. 125
Figure 26. Figure 26.

Diagram of splicing of human neuropeptide Y (NPY) gene. Exons are represented as boxes, and dotted lines indicate how exons are spliced to produce mRNA; 5’ nontranslated sequences are located on exon 1 and shown as open box; second exon codes for signal peptide, residues 1–28, stippled box; mature NPY, residues 29–63, cross‐hatched box; third exon contains coding region for amino acid residues 64–90, solid box; fourth exon contains COOH‐terminal heptapeptide, residues 91–97, solid box; and 3’ nontranslated region, open box, including poly(A) addition site.

From Minth et al. 124
Figure 27. Figure 27.

Diagram of amino acid sequences and exon‐intron junctions of human neuropeptide Y (NPY) and human pancreatic polypeptide (PP). Boxes, identical amino acids. Splicing of gene after first two nucleotides of Arg codons depicted by splitting the three‐letter code for Arg after the first two letters (Ar‐g). Introns are represented by lines; their respective sizes are noted.

From Minth et al. 124
Figure 28. Figure 28.

Structures of two anglerfish preproglucagons 21,22 deduced from their respective cDNAs (AFG I and AFG II). Boxes, regions of protein sequence identity; arrows, prohormone processing sites.

From Lund et al. 109
Figure 29. Figure 29.

Structure of rat preproglucagon deduced from cDNA to rat preproglucagon. Circles, putative prohormone conversion sites. Identities of peptides indicated are NH2‐peptide, glicentin‐related polypeptide; IP‐I, intervening peptide‐I; IP‐II, intervening peptide‐II; GLP‐I, glucagon‐like peptide‐I; GLP‐II, glucagon‐like peptide‐II

From Heinrich et al. 72). Copyright 1984 by permission of The Endocrine Society
Figure 30. Figure 30.

Partial sequence of rat preproglucagon gene. Locations of exons indicated by capitalized bases and three‐letter code for deduced amino acids. Introns indicated by lowercase bases. Signal cleavage site (between −1 and +1) indicated by arrow, as are putative prohormone processing sites. Diagram at bottom summarizes exon‐intron structure of rat preproglucagon gene. Known or suspected bioactive peptides, solid boxes; nonhormone peptide portions, hatched boxes; signal peptide, stippled boxes; and noncoding portions of mRNA, open boxes.

From Heinrich et al. 71
Figure 31. Figure 31.

Structures of two related clones of human preproGRF. Bioactive regions enclosed by a light‐lined box; putative prohormone processing sites enclosed by dark‐lined boxes; differences between clones indicated by arrows; glycine that donates COOH‐terminal amide nitrogen indicated by asterisk; putative signal peptides underlined.

From Gubler et al. 66
Figure 32. Figure 32.

Sequence of human gene for preproGRF. Exons indicated by large characters.

From Mayo et al. 114


Figure 1.

Sequencing end‐labeled DNA by limited, base‐specific cleavage. A: three consecutive reactions cleave one DNA molecule at one guanine. B: nested set of end‐labeled fragments generated when these reactions cleave at a guanine in all such molecules.

From Zubay 209a. In: Biochemistry. © 1983, reprinted by permission of Addison‐Wesley Publishing Company, Inc., Reading, MA, Fig. 20,21,22,23,24,25,26,27,28,29,30,31,32 33, 34


Figure 2.

Sanger DNA‐sequencing procedure. A: preparation of series of labeled fragments having identical starting points but of variable length. B: DNA strand to be sequenced, along with labeled primer, is split into four DNA polymerase reactions, each containing one of the four ddNTPs. Resultant labeled fragments are separated by size on acrylamide gel, autoradiography is performed, and pattern of fragments gives DNA sequence.

From Recombinant DNA: A Short Course, by James D. Watson et al. 197a. Copyright © 1983, James D. Watson, John Tooze, and David T. Kurtz. Reprinted with the permission of Scientific American Books, New York


Figure 3.

Diagram of the E. coli plasmid cloning vehicle pUC19. Molecule is double‐stranded DNA circle 2,686 base pairs in length. Nucleotide numbering starts at first T in sequence TCGCGCGTTT and proceeds clockwise around molecule in direction lac to Ap. Map shows restriction sites of those enzymes that cut molecule once or twice; unique sites are in bold type. Polylinker is shown below map. Map also shows position of coding sequences and origin of replication.

From New England Biolabs Catalog 1986/1987, Beverly, MA, p. 94


Figure 4.

Synthesis of double‐stranded cDNA from mRNA. Oligo‐dT segment serves as primer for action of reverse transcriptase, which uses mRNA as a template for synthesis of complementary DNA strand. When mRNA strand is degraded by treatment with NaOH, hairpin loop becomes primer for DNA polymerase I, which completes paired DNA strand. Loop is then cleaved by S1 nuclease to produce double‐stranded cDNA molecule.

From Recombinant DNA: A Short Course, by James D. Watson et al. 197a. Copyright © 1983, James D. Watson, John Tooze, and David T. Kurtz. Reprinted with the permission of Scientific American Books, New York


Figure 5.

Preparation of cDNA clone into DNA plasmid by homopolymer tailing.

From Molecular Cell Biology, by James E. Darnell et al. 31a. Copyright © 1986. Scientific American Books. Used by permission


Figure 6.

Preparation of probe to isolate rare cDNA. mRNA for protein α2u‐globulin represents 1% of mRNA in adult male rat liver but is absent from female rat liver. Male rat liver mRNA is reverse‐transcribed into cDNA with labeled nucleotides; cDNA is then hybridized with excess of female liver mRNA. Most mRNA sequences in male and female liver are common, so most of male cDNA hybridizes with mRNA from female liver. However, α2u cDNA remains single stranded and can be separated from cDNA‐mRNA hybrids by chromatography on hydroxyapatite, which binds double‐stranded molecules much more avidly than single‐stranded molecules. Labeled α2u cDNA can then be used to screen male rat liver cDNA library to obtain cloned copy of α2u cDNA.

From Recombinant DNA: A Short Course, by James D. Watson et al. 197a. Copyright © 1983, James D. Watson, John Tooze, and David T. Kurtz. Reprinted with the permission of Scientific American Books, New York


Figure 7.

Immunochemical screening of cDNA library cloned in a bacterial expression vector.

From Recombinant DNA: A Short Course, by James D. Watson et al. 197a. Copyright © 1983, James D. Watson, John Tooze, and David T. Kurtz. Reprinted with the permission of Scientific American Books, New York


Figure 8.

Generalized structure of eucaryotic expression vector pcD‐cDNA recombinants. Portion of hatched region containing SV40 origin of DNA replication (ori) and early and late promoters corresponds to SV40 segment between PvuII and HindIII restriction sites at map positions 0.71 to 0.65; other portion of hatched region joining first on early region promoter side derives from SV40 late region between map positions 0.75 and 0.95, with BamHI sequence replacing internal region between map positions 0.77 and 0.93. For use as linker segment, hatched fragment contains HindIII cohesive end and oligo(dG) sequence at PstI terminus. Solid dark region, cloned cDNA; stippled region, segment carrying SV40 late region polyadenylation signal.

From Okayama and Berg 145


Figure 9.

Identification of bacterial colonies harboring specific cDNA plasmid by hybridization with 32P‐labeled cDNA, mRNA, or oligonucleotide probe.

From Recombinant DNA: A Short Course, by James D. Watson et al. 197a. Copyright © 1983, James D. Watson, John Tooze, and David T. Kurtz. Reprinted with the permission of Scientific American Books, New York


Figure 10.

Identification of clones harboring somatostatin cDNA. A: electrophoresis of cDNA synthesized from rat thyroid medullary carcinoma poly(A) RNA primed with 5'‐32P‐labeled oligonucleotide, d(T‐T‐C‐C‐A‐G‐A‐A‐G‐A‐A). Arrow denotes primer‐extended cDNA used for colony hybridization. B: autoradiograph of in situ colony hybridization of bacterial transformants. Radiolabeled primer‐extended cDNA was used as hybridization probe.

From Funckes et al. 53


Figure 11.

Composite restriction map of pRT B1‐63, pRT 3–36, and pRT 3–81. Sequencing strategy is shown below restriction map. Boxed area represents preprohormone; dark area denotes area corresponding to somatostatin‐14.

From Funckes et al. 53


Figure 12.

Strategy for constructing libraries of random fragments of eukaryotic DNA. Left, preparation of vector DNA fragments; right, preparation of eukaryotic DNA fragments. Concatameric, recombinant DNA molecule is produced by action of bacteriophage T4 DNA ligase. This concatamer is substrate for in vitro packaging reaction during which a different recombinant DNA molecule is inserted into each bacteriophage particle. After amplification by growth in E. coli, lysate is obtained consisting of library of recombinant clones that in aggregate contain most sequences present in mammalian genome.

From Maniatis et al. 111a


Figure 13.

Map of rat somatostatin gene. Restriction sites in Λb clone were determined by combination of Southern hybridization of digested DNA and partial digestion of end‐labeled fragments. 5'‐to‐3’ Orientation of somatostatin gene within clone is indicated. Two exons of gene are indicated by solid boxes.

From Tavianini et al. 186


Figure 14.

Determination of transcription initiation site by nuclease protection assay.

From Lewin 102a, reprinted by permission of John Wiley & Sons, Inc. © 1986


Figure 15.

Introns spliced out during maturation of mRNA.

From Recombinant DNA: A Short Course, by James D. Watson et al. (197a.) Copyright © 1983, James D. Watson, John Tooze, and David T. Kurtz. Reprinted with the permission of Scientific American Books, New York


Figure 16.

Construction of recombinant pBXΔ‐750. Plasmid pBXΔ‐750 was constructed from pRSΛHE5, a Λ phage subclone, containing 750‐base‐pair fragment (bp) of 5’ upstream sequences and first exon of rat somatostatin gene. Unique XbaI site at +50 in pRSΛHE5 was converted to BamHI site and 800 bp HindIII‐BamHI fragment was cloned into unique BamHI, HindIII sites of promoterless pBR322 derivative CAT plasmid, resulting in plasmid pBXΔ‐750.



Figure 17.

Promoter for RNA polymerase II containing separate sequence components with different roles. Sequences between components are not important. Orientation of conserved sequences is indicated by direction of arrows. Transcription factors bind to the conserved sequence motifs.

From Lewin 102a, reprinted by permission of John Wiley & Sons, Inc. © 1986


Figure 18.

Identification of DNA binding sites by DNase I footprinting.

From Lewin 102a, reprinted by permission of John Wiley & Sons, Inc. © 1986


Figure 19.

Splice commitment regulatory factor model for cell‐specific alternative RNA processing of a complex transcription unit in the brain. Putative factor that commits exon splicing pattern is represented by stippled oval and is postulated to inhibit usage of calcitonin poly(A) site.

From Leff et al. 99). Copyright 1987, by permission of Cell Press


Figure 20.

Nucleotide and amino acid sequence alignments of rat tumor cholecystokinin (CCK) and porcine gut gastrin (GSN) preprohormones. Amino acid identities are boxed. The putative initiator methionine in each case is designated +1. Deletions are indicated by dashed line.

From Deschenes et al. 34). Reprinted by permission of Elsevier Science Publishing Co., copyright 1985


Figure 21.

Schematic representation showing exon organization of human gastrin and rat cholecystokinin (CCK) genes. Second exons are aligned at putative initiator methionines, and third exons are aligned at conserved pentapeptide of preprohormones. Shaded boxes indicate translated exons, open boxes indicate nontranslated exons, and cross‐hatched boxes indicate conserved amino acids in preprohormones.



Figure 22.

Comparison of porcine amino acid sequence of neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PPP). Identities are underlined.



Figure 23.

Nucleotide sequence of pancreatic polypeptide cDNA clone. Restriction endonuclease sites for BamHI, HinfI, and AvaII, which were used for DNA sequencing, and oligonucleotide sequence corresponding to probe used for screening are indicated by solid lines. Deduced amino acid sequence is numbered from NH2‐terminal alanine of pancreatic polypeptide portion of sequence. Dashed lines, proposed leader sequence and icosapeptide portion; boxes, connecting sequence (Gly‐Lys‐Arg) and variant amino acid.

From Takeuchi and Yamada 182).


Figure 24.

Restriction map of human pancreatic polypeptide gene. Restriction sites in pPP4A subclone are shown. Four exons indicated as cross‐hatched boxes; repetitive DNA (Rep DNA) sequences shown as solid box and labeled; DNA sequencing strategy indicated by arrows below map; Solid arrows indicate 5'‐labeled fragments; and dashed arrows denote fragments labeled at 3’ ends base pairs (bp)

From Leiter et al. 101


Figure 25.

Nucleotide sequence encoding precursor to human NPY. Amino acid sequence of preproNPY numbered 1 through 97; termination codon denoted by asterisks; mature hormone is underlined; putative signal for poly(A) addition is underlined with broken line.

From Minth et al. 125


Figure 26.

Diagram of splicing of human neuropeptide Y (NPY) gene. Exons are represented as boxes, and dotted lines indicate how exons are spliced to produce mRNA; 5’ nontranslated sequences are located on exon 1 and shown as open box; second exon codes for signal peptide, residues 1–28, stippled box; mature NPY, residues 29–63, cross‐hatched box; third exon contains coding region for amino acid residues 64–90, solid box; fourth exon contains COOH‐terminal heptapeptide, residues 91–97, solid box; and 3’ nontranslated region, open box, including poly(A) addition site.

From Minth et al. 124


Figure 27.

Diagram of amino acid sequences and exon‐intron junctions of human neuropeptide Y (NPY) and human pancreatic polypeptide (PP). Boxes, identical amino acids. Splicing of gene after first two nucleotides of Arg codons depicted by splitting the three‐letter code for Arg after the first two letters (Ar‐g). Introns are represented by lines; their respective sizes are noted.

From Minth et al. 124


Figure 28.

Structures of two anglerfish preproglucagons 21,22 deduced from their respective cDNAs (AFG I and AFG II). Boxes, regions of protein sequence identity; arrows, prohormone processing sites.

From Lund et al. 109


Figure 29.

Structure of rat preproglucagon deduced from cDNA to rat preproglucagon. Circles, putative prohormone conversion sites. Identities of peptides indicated are NH2‐peptide, glicentin‐related polypeptide; IP‐I, intervening peptide‐I; IP‐II, intervening peptide‐II; GLP‐I, glucagon‐like peptide‐I; GLP‐II, glucagon‐like peptide‐II

From Heinrich et al. 72). Copyright 1984 by permission of The Endocrine Society


Figure 30.

Partial sequence of rat preproglucagon gene. Locations of exons indicated by capitalized bases and three‐letter code for deduced amino acids. Introns indicated by lowercase bases. Signal cleavage site (between −1 and +1) indicated by arrow, as are putative prohormone processing sites. Diagram at bottom summarizes exon‐intron structure of rat preproglucagon gene. Known or suspected bioactive peptides, solid boxes; nonhormone peptide portions, hatched boxes; signal peptide, stippled boxes; and noncoding portions of mRNA, open boxes.

From Heinrich et al. 71


Figure 31.

Structures of two related clones of human preproGRF. Bioactive regions enclosed by a light‐lined box; putative prohormone processing sites enclosed by dark‐lined boxes; differences between clones indicated by arrows; glycine that donates COOH‐terminal amide nitrogen indicated by asterisk; putative signal peptides underlined.

From Gubler et al. 66


Figure 32.

Sequence of human gene for preproGRF. Exons indicated by large characters.

From Mayo et al. 114
References
 1. Adrian, T. E., G., Terenghi, M. J. Brown, J. M. Allen, A. J. Bacarese‐Hamilton, J. M. Polak, and S. R. Bloom. Neuropeptide Y in phaeochromocytomas and ganglioneuroblastomas. Lancet 2: 540–542, 1983.
 2. Agarwal, K. L., J., Brunstedt, and B. E. Noyes. A general method for detection and characterization of an mRNA using an oligonucleotide probe. J. Biol. Chem. 256: 1023–1028, 1981.
 3. Amara, S. G., R. M., Evans, and M. G. Rosenfeld. Calcitonin/calcitonin gene‐related peptide transcription unit: tissue specific expression involves selective use of alternative polyadenylation sites. Mol. Cell. Biol. 4: 2151–2160, 1984.
 4. Amara, S. G., V., Jonas, M. G. Rosenfeld, E. S. Ong, and R. M. Evans. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature Lond. 298: 240–244, 1982.
 5. Anderson, S., and I. B. Kingston. Isolation of a genomic clone for bovine pancreatic trypsin inhibitor by using a unique‐sequence synthetic DNA probe. Proc. Natl. Acad. Sci. USA 80: 6838–6842, 1983.
 6. Andrews, P. C., D. H., Hawke, T. D. Lee, K. Legesse, B. D. Noe, and J. E. Shively. Isolation and structure of the principal products of preproglucagon processing, including an amidated glucagon‐like peptide. J. Biol. Chem. 261: 8128–8133, 1986.
 7. Andrews, P. C., and P. Ronner. Isolation and structures of glucagon and glucagon‐like peptide from catfish pancreas. J. Biol. Chem. 260: 3910–3914, 1985.
 8. Andrisani, O. M., T. E., Hayes, B. Roos, and J. E. Dixon. Identification of the promoter sequences involved in the cell specific expression of the rat somatostatin gene. Nucleic Acids Res. 15: 5715–5728, 1987.
 9. Aviv, H., and P. Leder. Purification of biologically active globin messenger RNA by chromotography on oligothymidylic acid‐cellulose. Proc. Natl. Acad. Sci. USA 69: 1408–1412, 1972.
 10. Bai, D. H., M. E., Pape, F. Löaez‐Casillas, X. C. Luo, J. E. Dixon, and K‐H. Kim. Molecular cloning of cDNA for acetyl‐coenzyme A carboxylase. J. Biol. Chem. 261: 12395–12399, 1986.
 11. Banerji, J., L., Olson, and W. Schaffner. A lymphocyte‐specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33: 729–740, 1983.
 12. Banerji, J., S., Rusconi, and W. Schaffner. Expression of a β‐globin gene is enhanced by remote SV40 DNA sequences. Cell 27: 299–308, 1981.
 13. Bataille, D., C., Gespach, K. Tatemoto, J. C. Marie, A. M. Coudray, G. Rosselin, and V. Mutt. Bioactive enteroglucagon (oxyntomodulin): present knowledge on its chemical structure and its biological activities. Peptides Fayetteville 2, Suppl. 2: 41–44, 1981.
 14. Bayliss, W. M., and E. H. Starling. The mechanism of pancreatic secretion. J. Physiol. Lond., 28: 325–353, 1902.
 15. Bell, G. I., R., Sanchez‐Pescador, P. J. Laybourn, and R. C. Najarian. Exon duplication and divergence in the human preproglucagon gene. Nature Lond. 304: 368–371, 1983.
 16. Bell, G. I., R. F., Santerre, and G. T. Mullenbach. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature Lond. 302: 716–718, 1983.
 17. Benoist, C., K., O'Hare, R. Breathnach, and P. Chambon. The ovalbumin gene—sequence of putative control regions. Nucleic Acids Res. 8: 127–142, 1980.
 18. Benton, W. D., and R. W. Davis. Screening λgt recombinant clones by hybridization to single plaques in situ. Science Wash. DC 196: 180–182, 1977.
 19. Berk, A. J., and P. A. Sharp. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease‐digested hybrids. Cell 12: 721–732, 1977.
 20. Birnbaum, R. S., M., Muszynski, and B. A. Roos. Tumor and plasma somatostatin‐like immunoreactivity in transplantable rat medullary thyroid carcinoma. Cancer Res. 40: 4192–4196, 1980.
 21. Blake, C. Exons—present from the beginning? [news.] Nature Lond. 306: 535–537, 1983.
 22. Blattner, F. R., A. E., Blechl, K. Denniston‐Thompson, H. E. Faber, J. E. Richards, J. L. Slightom, P. W. Tucker, and O. Smithies. Cloning human fetal γ globin and mouse α‐type globin DNA: preparation and screening of shotgun collections. Science Wash. DC 202: 1279–1284, 1978.
 23. Boel, E., T. W., Schwartz, K. E. Norris, and N. P. Fiil. A cDNA encoding a small common precursor for human pancreatic polypeptide and pancreatic icosapeptide. Eur. Mol. Biol. Organ. J. 3: 909–912, 1984.
 24. Boel, E., J., Vuust, F. Norris, K. Norris, A. Wind, J. F. Rehfeld, and K. A. Marcker. Molecular cloning of human gastrin cDNA: evidence for evolution of gastrin by gene duplication. Proc. Natl. Acad. Sci. USA 80: 2866–2869, 1983.
 25. Böhlen, P., F., Esch, P. Brazeau, N. Ling, and R. Guillemin. Isolation and characterization of the porcine hypothalamic growth hormone releasing factor. Biochem. Biophys. Res. Comm. 116: 726–734, 1983.
 26. Bramer, W. W., L. G., Sinn, A. Staub, and O. K. Behrens. The amino acid sequence of glucagon. Am. Chem. Soc. J. 78: 3858–3859, 1956.
 27. Breathnach, R., and P. Chambon. Organization and expression of eucaryotic split genes coding for proteins. Annu. Rev. Biochem. 50: 349–383, 1981.
 28. Brown, J. C., and J. R. Dryburgh. A gastric inhibitory polypeptide. II. The complete amino acid sequence. Can. J. Biochem. 49: 867–872, 1971.
 29. Chance, R. E., and W. E. Jones. Polypeptide from bovine, ovine, human, and porcine pancreas. US patent 3,842,063. 1974 Oct. 15. (Cl. 260–112.5; A61k, C07c).
 30. Chirgwin, J. M., A. E., Przybyla, R. J. Macdonald, and W. J. Rutter. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299, 1979.
 31. Conlon, J. M., R. F., Murphy, and K. D. Buchanan. Physiochemical and biological properties of glucagon‐like polypeptides from porcine colon. Biochim. Biophys. Acta 577: 229–240, 1979.
 32. Darnell, J., H. Lodish, and D. Baltimore. Molecular Cell Biology New York: Scientific American, 1986.
 33. Deschenes, R. J., R. S., Haun, C. L. Funckes, and J. E. Dixon. A gene encoding rat cholecystokinin: isolation, nucleotide sequence, and promoter activity. J. Biol. Chem. 260: 1280–1286, 1985.
 34. Deschenes, R. J., L. J., Lorenz, R. S. Haun, B. A. Roos, K. J. Collier, and J. E. Dixon. Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin. Proc. Natl. Acad. Sci. USA 81: 726–730, 1984.
 35. Deschenes, R. J., S. V. L., Narayana, P. Argos, and J. E. Dixon. Primary structural comparison of the preprohormones cholecystokinin and gastrin. FEBS Lett. 182: 135–138, 1985.
 36. Dockray, G. J. Immunochemical evidence of cholecystokinin‐like peptides in brain. Nature Lond. 264: 568–570, 1976.
 37. Dorn, A., H.‐G., Bernstein, A. Rinne, H.‐J. Hahn, and M. Ziegler. Polypeptides in the human brain. Acta Histochem. 71: 11–14, 1982.
 38. Drucker, D. J., S., Mojsov, and J. F. Habener. Cell‐specific posttranslational processing of preproglucagon expressed from a metallothionein‐glucagon fusion gene. J. Biol. Chem. 261: 9637–9643, 1986.
 39. Dush, M. K., J. M., Sikela, S. A. Khan, J. A. Tischfield, and P. J. Sambrook. Nucleotide sequence and organization of the mouse adenine phosphoribosyltransferase gene: presence of a coding region common to animal and bacterial phosphoribosyltransferases that has a variable intron/exon arrangement. Proc. Natl. Acad. Sci. USA 82: 2731–2735, 1985.
 40. Dynan, W. S., S., Sazer, R. Tjian, and R. T. Schimke. Transcription factor Sp1 recognizes a DNA sequence in the mouse dihydrofolate reductase promoter. Nature Lond. 319: 246–248, 1986.
 41. Dynan, W. S., and R. Tjian. Isolation of transcription factors that discriminate between different promoters recognized by RNA polymerase II. Cell 32: 669–680, 1983.
 42. Dynan, W. S., and R. Tjian. The promoter‐specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35: 79–87, 1983.
 43. Eberwine, J. H., J. D., Barchas, W. A. Hewlett, and C. J. Evans. Isolation of enzyme cDNA clones by enzyme immunodetection assay: isolation of a peptide acetyltransferase. Proc. Natl. Acad. Sci. USA 84: 1449–1453, 1987.
 44. Edlund, T., M. D., Walker, P. J. Barr, and W. J. Rutter. Cell‐specific expression of the rat insulin gene: evidence for role of two distinct 5’ flanking elements. Science Wash. DC 230: 912–916, 1985.
 45. Efstratiadis, A., F. C., Kafatos, A. M. Maxam, and T. Maniatis. Enzymatic in vitro synthesis of globin genes. Cell 7: 279–288, 1976.
 46. Eng, J., Y., Shiina, E. Straus, and R. S. Yalow. Post‐translational processing of cholecystokinin in pig brain and gut. Proc. Natl. Acad. Sci. USA 79: 6060–6064, 1982.
 47. Esch, F., P., Böhlen, N. Ling, P. Brazeau, W. B. Wehrenberg, M. O. Thorner, M. J. Gronin, and R. Guillemin. Characterization of a 40 residue peptide from a human pancreatic tumor with growth hormone releasing activity. Biochem. Biophys. Res. Comm. 109: 152–158, 1982.
 48. Eysselein, V. E., J. R. Reeve, JR., J. E. Shively, D. Hawke, and J. H. Walsh. Partial structure of a large canine cholecystokinin (CCK58): amino acid sequence. Peptides Fayetteville 3: 687–691, 1982.
 49. Fiddes, J. C., and H. M. Goodman. Isolation, cloning and sequence analysis of the cDNA for the α‐subunit of human chorionic gonadotropin. Nature Lond. 281: 351–356, 1979.
 50. Freidman, J., B. S., Sneider, and D. Powell. Differential expression of the mouse cholecystokinin gene during brain and gut development. Proc. Natl. Acad. Sci. USA 82: 5593–5597, 1985.
 51. Fromm, M., and P. Berg. Deletion mapping of DNA regions required for SV40 early region promoter function in vivo. J. Mol. Appl. Genet. 1: 457–481, 1982.
 52. Fukushige, S., T., Murotsu, and K. Matsubara. Chromosomal assignment of human genes for gastrin, thyrotropin (TSH)‐β subunit and C‐erbB‐2 by chromosome sorting combined with velocity sedimentation and Southern hybridization. Biochem. Biophys. Res. Commun. 134: 477–483, 1986.
 53. Funckes, C. L., C. D., Minth, R. Deschenes, M. Magazin, M. A. Tavianini, M. Sheets, K. Collier, H. L. Weith, D. C. Aron, B. A. Roos, and J. E. Dixon. Cloning and characterization of a mRNA‐encoding rat preprosomatostatin. J. Biol. Chem. 258: 8781–8787, 1983.
 54. Galas, D., and A. Schmitz. DNase footprinting: a simple method for the detection of protein‐DNA binding specificity. Nucleic Acid Res. 5: 3157–3170, 1978.
 55. Gidoni, D., W. S., Dynan, and R. Tjian. Multiple specific contacts between a mammalian transcription factor and its cognate promoters. Nature Lond. 312: 409–413, 1984.
 56. Gilles, S. D., S. L., Morrison, V. T. Oi, and S. Tonegawa. A tissue‐specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33: 717–728, 1983.
 57. Goodman, R. H., D. C., Aron, and B. A. Roos. Rat pre‐prosomatostatin: structure and processing by microsomal membranes. J. Biol. Chem. 258: 5570–5573, 1983.
 58. Gorman, C. M., L. F., Moffat, and B. H. Howard. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2: 1044–1051, 1982.
 59. Graves, B. J., P. F., Johnson, and S. L. Mcknight. Homologous recognition of a promoter domain common to the MSV LTR and the HSV tk gene. Cell 44: 565–576, 1986.
 60. Gregory, H., P. M., Hardy, D. S. Jones, G. W. Kenner, and R. C. Sheppard. The antral hormone gastrin. Nature Lond. 204: 931–933, 1964.
 61. Gregory, R. A., and H. J. Tracy. The constitution and properties of two gastrins extracted from hog antral mucosa. Gut 5: 103–117, 1964.
 62. Gregory, R. A., and H. J. Tracy. Isolation of two minigastrins from Zollinger‐Ellison tumour tissue. Gut 15: 683–685, 1974.
 63. Grunstein, M., and D. S. Hogness. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. USA 72: 3961–3965, 1975.
 64. Gubler, U., A. O., Chua, B. J. Hoffman, K. J. Collier, and J. Eng. Cloned cDNA to cholecystokinin mRNA predicts an identical preprocholecystokinin in pig brain and gut. Proc. Natl. Acad. Sci. USA 81: 4307–4310, 1984.
 65. Gubler, U., and B. J. Hoffman. A simple and very efficient method for generating cDNA libraries. Gene 25: 263–269, 1983.
 66. Gubler, U., J. J., Monahan, P. T. Lomedico, R. S. Bhatt, K. J. Collier, B. J. Hoffman, P. Böhlen, F. Esch, N. Ling, F. Zeytin, P. Brazeau, M. S. Poonian, and L. P. Gage. Cloning and sequence analysis of cDNA for the precursor of human growth hormone‐releasing factor, somatocrinin. Proc. Natl. Acad. Sci. USA 80: 4311–4314, 1983.
 67. Guillemin, R., P., Brazeau, P. Böhlen, F. Esch, N. Ling, and W. B. Wehrenberg. Growth hormone‐releasing factor from a human pancreatic tumor that caused acromegaly. Science Wash. DC 218: 585–587, 1982.
 68. Han, V. K. M., M. A., Hynes, C. Jin, A. C. Towle, J. M. Lauder, and P. K. Lund. Cellular localization of proglucagon/glucagon‐like peptide I messenger RNAs in rat brain. J. Neurosci. Res. 16: 97–107, 1986.
 69. Hanahan, D. Heritable formation of pancreatic β‐cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature Lond. 315: 115–122, 1985.
 70. Hedrick, S. M., D. I., Cohen, E. A. Nielsen, and M. M. Davis. Isolation of cDNA clones encoding T cell‐specific membrane‐associated proteins. Nature Lond. 308: 149–153, 1984.
 71. Heinrich, G., P., Gros, and J. F. Habener. Glucagon gene sequence: four of six exons encode separate functional domains of rat preproglucagon. J. Biol. Chem. 259: 14082–14087, 1984.
 72. Heinrich, G., P., Gros, P. K. Lund, R. C. Bentley, and J. F. Habener. Preproglucagon messenger ribonucleic acid: nucleotide and encoded amino acid sequences of the rat pancreatic complementary deoxyribonucleic acid. Endocrinology 115: 2176–2181, 1984.
 73. Helfman, D. M., J. R., Feramisco, J. C. Fiddes, G. P. Thomas, and S. Hughes. Identification of clones that encode chicken tropomyosin by direct immunological screening of a cDNA expression library. Proc. Natl. Acad. Sci. USA 80: 31–35, 1983.
 74. Hernandez, N., and W. Keller. Splicing of in vitro synthesized messenger RNA precursors in HeLa cell extracts. Cell 35: 89–99, 1983.
 75. Hobart, P., R., Crawford, L.‐P. Shen, R. Pictet, and W. J. Rutter. Cloning and sequence analysis of cDNAs encoding two distinct somatostatin precursors found in the endocrine pancreas of anglerfish. Nature Lond. 288: 137–141, 1980.
 76. Hollenberg, S. M., J. S., Lai, J. L. Weickmann, and T. Date. Primer‐directed mutagenesis of linearized plasmids. Anal. Biochem. 143: 341–349, 1984.
 77. Holst, J. J. Evidence that glicentin contains the entire sequence of glucagon. Biochem. J. 187: 337–343, 1980.
 78. Holst, J. J., C. Ørskov, T. W. Schwartz, T. Buhl, and F. G. A. Baldissera. Proglucagon 78–107, a potent insulinotropic hormone from lower small intestine. Abstract to the 22nd Meeting of the European Association for the Study of Diabetes. Diabetologia 28: A549, 1986.
 79. Hoosein, N. M., and R. S. Gurd. Human glucagon‐like peptides 1 and 2 activate rat brain adenylate cyclase. FEBS Lett. 178: 83–86, 1984.
 80. Hoosein, N. M., A. M., Mahrenholz, P. C. Andrews, and R. S. Gurd. Biological activities of catfish glucagon and glucagon‐like peptide. Biochem. Biophys. Res. Commun. 143: 87–92, 1987.
 81. Huynh, T. V., R. A., Young, and R. W. Davis. Constructing and screening cDNA libraries in λgt10 and λgt11. In: DNA Cloning, edited by D. M. Glover. Oxford, UK: IRL Press, 1985, vol. 1, p. 49–78. (Practical Approach Ser.)
 82. Ito, R., K., Sato, T. Helmer, G. Jay, and K. Agarwal. Structural analysis of the gene encoding human gastrin: the large intron contains an Alu sequence. Proc. Natl. Acad. Sci. USA 81: 4662–4666, 1984.
 83. Ivy, A. C., and E. Oldberg. A hormone mechanism for gallbladder contraction and evacuation. Am. J. Physiol. 86: 599–613, 1928.
 84. Jacobsen, H., A., Demandt, A. J. Moody, and F. Sundby. Sequence analysis of porcine gut GLI‐1. Biochim. Biophys. Acta 493: 452–459, 1977.
 85. Jones, K. A., K. R., Yamamoto, and R. Tjian. Two distinct transcription factors bind to the HSV thymidine kinase promoter in vitro. Cell 42: 559–572, 1985.
 86. Kato, K., Y., Hayashizaki, Y. Takahashi, S. Himeno, and K. Matsubara. Molecular cloning of the human gastrin gene. Nucleic Acid Res. 11: 8197–8203, 1983.
 87. Kato, K., S., Himeno, Y. Takahashi, T. Wakabayashi, S. Tarui, and K. Matsubara. Molecular cloning of human gastrin precursor cDNA. Gene 26: 53–57, 1983.
 88. Kimmel, J. R., L. J., Hayden, and H. G. Polak. Isolation and characterization of a new pancreatic polypeptide hormone. J. Biol. Chem. 250: 9369–9376, 1975.
 89. Kimura, A., A., Israël, O. Le Bail, and P. Kourilsky. Detailed analysis of the mouse H‐2Kb promoter: enhancer‐like sequences and their role in the regulation of class I gene expression. Cell 44: 261–272, 1986.
 90. Kohno, K., M., Sullivan, and Y. Yamada. Structure of the promoter of the rat type II procollagen gene. J. Biol. Chem. 260: 4441–4447, 1985.
 91. Kurtz, D. T., and C. F. Nicodemus. Cloning of α2u globulin cDNA using a high‐efficiency technique for the cloning of trace messenger RNAs. Gene 13: 145–152, 1981.
 92. Kuwano, R., K., Araki, H. Usui, T. Fukui, E. Ohtsuka, M. Ikehara, and Y. Takahashi. Molecular cloning and nucleotide sequence of cDNA coding for rat brain cholecystokinin precursor. J. Biochem. Tokyo 96: 923–926, 1984.
 93. Larsson, L.‐I., and J. F. Rehfeld. Evidence for a common evolutionary origin of gastrin and cholecystokinin. Nature Lond. 269: 335–338, 1977.
 94. Lathe, R. Synthetic oligonucleotide probes deduced from amino acid sequence data: theoretical and practical considerations. J. Mol. Biol. 183: 1–12, 1985.
 95. Lechan, R. M., R. H., Goodman, M. Rosenblatt, S. Reichlin, and J. F. Habener. Prosomatostatin‐specific antigen in rat brain: localization by immunocytochemical staining with an antiserum to a synthetic sequence of preprosomatostatin. Proc. Natl. Acad. Sci. USA 80: 2780–2784, 1983.
 96. Lee, D. C., T. M., Rose, N. R. Webb, and G. J. Todaro. Cloning and sequence analysis of a cDNA for rat transforming growth factor‐α. Nature Lond. 313: 489–491, 1985.
 97. Lee, F., T., Yokota, T. Otsuka, P. Meyerson, D. Villaret, R. Coffman, T. Mosmann, D. Rennick, N. Roehm, C. Smith, A. Zlotnik, and K. Arai. Isolation and characterization of a mouse interleukin cDNA clone that expresses B‐cell stimulatory factor 1 activities and T‐cell‐ and mast‐cell‐stimulating activities. Proc. Natl. Acad. Sci. USA 83: 2061–2065, 1986.
 98. Lee, K‐H., R. G., Wells, and R. R. Reed. Isolation of an olfactory cDNA: similarity to retinol‐binding protein suggests a role in olfaction. Science Wash. DC 235: 1053–1056, 1987.
 99. Leff, S. E., R. M., Evans, and M. G. Rosenfeld. Splice commitment dictates neuron‐specific alternative RNA processing in calcitonin/CGRP gene expression. Cell 48: 517–524, 1987.
 100. Leiter, A. B., H. T., Keutmann, and R. H. Goodman. Structure of a precursor to human pancreatic polypeptide. J. Biol. Chem. 259: 14702–14705, 1984.
 101. Leiter, A. B., M. R., Montminy, E. Jamieson, and R. H. Goodman. Exons of the human pancreatic polypeptide gene define functional domains of the precursor. J. Biol. Chem. 260: 13013–13017, 1985.
 102. Lemischka, I. R., S., Farmer, V. R. Racaniello, and P. A. Sharp. Nucleotide sequence and evolution of a mammalian α‐tubulin messenger RNA. J. Mol. Biol. 151: 101–120, 1981.
 103. Lewin, B. Gene III New York: Wiley, 1986, p. 193.
 104. Lewis, V. A., T., Koch, H. Plutner, and I. Mellman. A complementary DNA clone for a macrophage‐lymphocyte Fc receptor. Nature Lond. 324: 372–375, 1986.
 105. Ling, N., F., Esch, P. Böhlen, P. Brazeau, W. B. Wehrenberg, and R. Guillemin. Isolation, primary structure, and synthesis of human hypothalamic somatocrinin: growth hormone‐releasing factor. Proc. Natl. Acad. Sci. USA 81: 4302–4306, 1984.
 106. Lo, K.‐M., S. S., Jones, N. R. Hackett, and H. G. Khorana. Specific amino acid substitutions in bacterioopsin: replacement of a restriction fragment in the structural gene by synthetic DNA fragments containing altered codons. Proc. Natl. Acad. Sci. USA 81: 2285–2289, 1984.
 107. Lopez, L. C., M. L., Frazier, C.‐J. Su, A. Kumar, and G. F. Saunders. Mammalian pancreatic preproglucagon contains three glucagon‐related peptides. Proc. Natl. Acad. Sci. USA 80: 5485–5489, 1983.
 108. Lund, P. K., R. H., Goodman, P. C. Dee, and J. F. Habener. Pancreatic preproglucagon cDNA contains two glucagon‐related coding sequences arranged in tandem. Proc. Natl. Acad. Sci. USA 79: 345–349, 1982.
 109. Lund, P. K., R. H., Goodman, J. W. Jacobs, and J. F. Habener. Glucagon precursors identified by immunoprecipitation of products of cell‐free translation of messenger RNA. Diabetes 29: 583–586, 1980.
 110. Lund, P. K., R. H., Goodman, M. R. Montminy, P. C. Dee, and J. F. Habener. Anglerfish islet pre‐proglucagon II: nucleotide and corresponding amino acid sequence of the cDNA. J. Biol. Chem. 258: 3280–3284, 1983.
 111. Lund, T., A. H. M. Geurts Van, Kessel, R. S. Haun, and J. E. Dixon. The genes for human gastrin and cholecystokinin are located on different chromosomes. Hum. Genet. 73: 77–80, 1986.
 112. Mandel, M., and A. Higa. Calcium‐dependent bacteriophage DNA infection. J. Mol. Biol. 53: 159–162, 1970.
 113. Maniatis, R., E. F. Fritsch, and J. Sambrook. Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor, 1982, p. 272.
 114. Maniatis, T., R. C., Hardison, E. Lacy, J. Lauer, C. O'connell, D. Quon, G. K. Sim, and A. Efstratiadis. The isolation of structural genes from libraries of eucaryotic DNA. Cell 15: 687–701, 1978.
 115. Maxam, A. M., and W. Gilbert. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74: 560–564, 1977.
 116. Mayo, K. E., G. M., Cerelli, R. V. Lebo, B. D. Bruce, M. G. Rosenfeld, and R. M. Evans. Gene encoding human growth hormone‐releasing factor precursor: structure, sequence, and chromosomal assignment. Proc. Natl. Acad. Sci. USA 82: 63–67, 1985.
 117. Mayo, K. E., G. M., Cerelli, M. G. Rosenfeld, and R. M. Evans. Characterization of cDNA and genomic clones encoding the precursor to rat hypothalamic growth hormone‐releasing factor. Nature Lond. 314: 464–467, 1985.
 118. Mayo, K. E., W., Vale, J. Rivier, M. G. Rosenfeld, and R. M. Evans. Expression‐cloning and sequence of a cDNA encoding human growth hormone‐releasing factor. Nature Lond. 306: 86–88, 1983.
 119. Mccarty, K. S., D., Stafford, and O. Brown. Resolution and fractionation of macromolecules by isokinetic sucrose density gradient sedimentation. Anal. Biochem. 24: 314–329, 1968.
 120. Mcdonnell, D. P., D. J., Mangelsdorf, J. W. Pike, M. R. Haussler, and B. W. O'Malley. Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science Wash. DC 235: 1214–1217, 1987.
 121. Mcknight, S. L., E. R., Gavis, R. Kingsbury, and R. Axel. Analysis of transcriptional regulatory signals of the HSV thymidine kinase gene: identification of an upstream control region. Cell 25: 385–398, 1981.
 122. Mcknight, S. L., and R. Kingsbury. Transcriptional control signals of a eucaryotic protein‐coding gene. Science Wash. DC 217: 316–324, 1982.
 123. Melton, D. W., D. S., Konecki, J. Brennand, and C. T. Caskey. Structure, expression, and mutation of the hypoxanthine phosphoribosyltransferase gene. Proc. Natl. Acad. Sci. USA 81: 2147–2151, 1984.
 124. Melton, D. W., C., Mcewan, A. B. Mckie, and A. M. Reid. Expression of the mouse HPRT gene: deletional analysis of the promoter region of an X‐chromosome linked housekeeping gene. Cell 44: 319–328, 1986.
 125. Melvin, K. E. W., A. H. Tashjian, JR., and H. H. Miller. Studies in familial (medullary) thyroid carcinoma. Recent Prog. Horm. Res. 28: 399–470, 1972.
 126. Minth, C. D., P. C., Andrews, and J. E. Dixon. Characterization, sequence, and expression of the cloned human neuropeptide Y gene. J. Biol. Chem. 261: 11974–11979, 1986.
 127. Minth, C. D., S. R., Bloom, J. M. Polak, and J. E. Dixon. Cloning, characterization, and DNA sequence of a human cDNA encoding neuropeptide tyrosine. Proc. Natl. Acad. Sci. USA 81: 4577–4581, 1984.
 128. Minth, C. D., W. L., Taylor, M. Magazin, M. A. Tavianini, K. Collier, H. L. Weith, and J. E. Dixon. The structure of cloned DNA complementary to catfish pancreatic somatostatin‐14 messenger RNA. J. Biol. Chem. 257: 10372–10377, 1982.
 129. Miskimins, W. K., M. P., Roberts, A. Mcclelland, and F. H. Ruddle. Use of a protein‐blotting procedure and a specific DNA probe to identify nuclear proteins that recognize the promoter region of the transferrin receptor gene. Proc. Natl. Acad. Sci. USA 82: 6741–6744, 1985.
 130. Montminy, M. R., R. H., Goodman, S. J. Horovitch, and J. F. Habener. Primary structure of the gene encoding rat pre‐prosomatostatin. Proc. Natl. Acad. Sci. USA 81: 3337–3340, 1984.
 131. Montminy, M. R., K. A., Sevarino, J. A. Wagner, G. Mandel, and R. H. Goodman. Identification of a cyclic‐AMP‐responsive element within the rat somatostatin gene. Proc. Natl. Acad. Sci. USA 83: 6682–6686, 1986.
 132. Moreau, P., R., Hen, B. Wasylyk, R. Everett, M. P. Gaub, and P. Chambon. The SV40 72 base pair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucleic Acid Res. 9: 6047–6068, 1981.
 133. Morrison, D. A. Transformation and preservation of competent bacterial cells by freezing. Methods Enzymol. 68: 326–331, 1979.
 134. Mutt, V. Further investigations on intestinal hormonal polypeptides. Clin. Endocrinol. Suppl. 5: 175s–183s, 1976.
 135. Mutt, V., and E. Jorpes. Hormonal polypeptides of the upper intestine. Biochem. J. 125: 57P–58P, 1971.
 136. Mutt, V., and S. I. Said. Structure of the porcine vasoactive intestinal octacosapeptide. Eur. J. Biochem. 42: 581–589, 1974.
 137. Nawa, H., H., Kotani, and S. Nakanishi. Tissue specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature Lond. 312: 729–734, 1984.
 138. Noda, M., Y., Teranishi, H. Takahashi, M. Toyosato, M. Notake, S. Nakanishi, and S. Numa. Isolation and structural organization of the human preproenkephalin gene. Nature Lond. 297: 431–434, 1982.
 139. Noe, B. D. Biosynthesis of glucagon. Metabolism 25: 1339–1341, 1976.
 140. Noe, B. D., and P. C. Andrews. Specific glucagon‐related peptides isolated from anglerfish islets are metabolic cleavage products of (pre)proglucagon‐II. Peptides Fayetteville 7: 331–336, 1986.
 141. Noll, H. Characterization of macromolecules by constant velocity sedimentation. Nature Lond. 215: 360–363, 1967.
 142. Noma, Y., P., Sideras, T. Naito, S. Bergstedt‐Lindquist, C. Azuma, E. Severinson, T. Tanabe, T. Kinashi, F. Matsuda, Y. Yaoita, and T. Honjo. Cloning of cDNA encoding the murine IgG1 induction factor by a novel strategy using SP6 promoter. Nature Lond. 319: 640–646, 1986.
 143. Noyes, B. E., M., Mevareck, R. Stein, and K. L. Agarwal. Detection and partial sequence analysis of gastrin mRNA by using an oligodeoxynucleotide probe. Proc. Natl. Acad. Sci. USA 76: 1770–1774, 1979.
 144. Ohlsson, H., and T. Edlund. Sequence‐specific interactions of nuclear factors with the insulin gene enhancer. Cell 45: 35–44, 1986.
 145. Ohtsuka, E., S., Matsuki, M. Ikehara, Y. Takahashi, and K. Matsubara. An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions. J. Biol. Chem. 260: 2605–2608, 1985.
 146. Okayama, H., and P. Berg. High‐efficiency cloning of full‐length cDNA. Mol. Cell. Biol. 2: 161–170, 1982.
 147. Okayama, H., and P. Berg. A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells. Mol. Cell. Biol. 3: 280–289, 1983.
 148. Ørskov, C., J. J. Holst, S. Knuhtsen, F. G. A. Baldissera, S. S. Poulsen, and O. V. Nielsen. Glucagon‐like peptides GLP‐1 and GLP‐2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 119: 1467–1475, 1986.
 149. Patzelt, C., and E. Schiltz. Conversion of proglucagon in pancreatic alpha cells: the major endproducts are glucagon and a single peptide, the major proglucagon fragment, that contains two glucagon‐like sequences. Proc. Natl. Acad. Sci. USA 81: 5007–5011, 1984.
 150. Patzelt, C., H. S., Tager, R. J. Carroll, and D. F. Steiner. Identification and processing of proglucagon in pancreatic islets. Nature Lond. 282: 260–266, 1979.
 151. Plisetskaya, E., H. G., Pollock, J. B. Rouse, J. W. Hamilton, J. R. Kimmel, and A. Gorbman. Isolation and structures of coho salmon (Oncorhynchus kisutch) glucagon and glucagon‐like peptide. Regul. Pept. 14: 57–67, 1986.
 152. Proudfoot, N. J., and G. G. Brownlee. 3’ Non‐coding region sequences in eukaryotic messenger RNA. Nature Lond. 263: 211–214, 1976.
 153. Radeke, M. J., T. P., Misko, C. Hsu, L. A. Herzenberg, and E. M. Shooter. Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature Lond. 325: 593–597, 1987.
 154. Rajavashisth, T. B., R., Eng, R. K. Shadduck, A. Waheed, C. M. Ben‐Avram, J. E. Shively, and A. J. Lusis. Cloning and tissue‐specific expression of mouse macrophage colony‐stimulating factor mRNA. Proc. Natl. Acad. Sci. USA 84: 1157–1161, 1987.
 155. Rehfeld, J. F. Localisation of gastrins to neuro‐ and adenohypophysis. Nature Lond. 271: 771–773, 1978.
 156. Riddell, D. C., R., Mallonee, J. A. Phillips, J. S. Parks, L. A. Sexton, and J. L. Hamerton. Chromosomal assignment of human sequences encoding arginine vasopressin‐neurophysin II and growth hormone releasing factor. Somatic Cell Mol. Genet. 11: 189–195, 1985.
 157. Rigby, P. W. J., M., Dieckmann, C. Rhodes, and P. Berg. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase. I. J. Mol. Biol. 113: 237–251, 1977.
 158. Rivier, J., J., Spiess, M. Thorner, and W. Vale. Characterization of a growth hormone‐releasing factor from a human pancreatic islet tumour. Nature Lond. 300: 276–278, 1982.
 159. Roos, B. A., M. J., Yoon, A. L. Frelinger, A. E. Pensky, R. S. Birnbaum, and P. W. Lambert. Tumor growth and calcitonin during serial transplantation of rat medullary thyroid carcinoma. Endocrinology 105: 27–32, 1979.
 160. Rosenfeld, M. G., J‐J., Mermod, S. G. Amara, L. W. Swanson, P. E. Sawchenko, J. Rivier, W. W. Vale, and R. M. Evans. Production of a novel neuropeptide encoded by the calcitonin gene via tissue‐specific RNA processing. Nature Lond. 304: 129–135, 1983.
 161. Roychoudbury, R., E., Jay, and R. Wu. Terminal labeling and addition of homopolymer tracts to duplex DNA fragments by terminal deoxynucleotidyl transferase. Nucleic Acid Res. 3: 101–116, 1976.
 162. Ryder, S. W., J., Eng, E. Straus, and R. S. Yalow. Extraction and immunochemical characterization of cholecystokinin‐like peptides from pig and rat brain. Proc. Natl. Acad. Sci. USA 78: 3892–3896, 1981.
 163. Sabate, M. I., L. S., Stolarsky, J. M. Polak, S. R. Bloom, I. M. Varndell, M. A. Ghatei, R. M. Evans, and M. G. Rosenfeld. Regulation of neuroendocrine gene expression by alternative RNA processing. Colocalization of calcitonin and calcitonin gene‐related peptide in thyroid C‐cells. J. Biol. Chem. 260: 2589–2592, 1985.
 164. Sanger, F., S., Nicklen, and A. R. Coulson. DNA sequencing with chain‐terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467, 1977.
 165. Sargent, T. D., J.‐R., Wu, J. M. Sala‐Trepat, R. B. Wallace, A. A. Reyes, and J. Bonner. The rat serum albumin gene: analysis of cloned sequences. Proc. Natl. Acad. Sci. USA 76: 3256–3260, 1979.
 166. Schaefer, M., M. R., Picciotto, T. Kreiner, R.‐R. Kaldany, R. Taussig, and R. H. Scheller. Aplysia neurons express a gene encoding multiple FMRFamide neuropeptides. Cell 41: 457–467, 1985.
 167. Scheller, R. H., R.‐R., Kaldany, T. Kreiner, A. C. Mahon, J. R. Nambu, M. Schaefer, and R. Taussig. Neuropeptides: mediators of behavior in Aplysia. Science Wash. DC 225: 1300–1308, 1984.
 168. Schmidt, W. E., E. G., Siegel, and W. Creutzfeldt. Glucagon‐like peptide‐1 but not glucagon‐like peptide‐2 stimulates insulin release from isolated rat pancreatic islets. Diabetologia 28: 704–707, 1985.
 169. Schwartz, T. W., H. F., Hansen, R. Håkanson, F. Sundler, and H. S. Tager. Human pancreatic icosapeptide: isolation, sequence and immunocytochemical localization of the COOH‐terminal fragment of the pancreatic polypeptide precursor. Proc. Natl. Acad. Sci. USA 81: 708–712, 1984.
 170. Shen, L.‐P., R. L., Pictet, and W. J. Rutter. Human somatostatin I: sequence of the cDNA. Proc. Natl. Acad. Sci. USA 79: 4575–4579, 1982.
 171. Shen, L.‐P., and W. J. Rutter. Sequence of the human somatostatin I gene. Science Wash. DC 224: 168–171, 1984.
 172. Shields, D., T. G., Warren, S. E. Roth, and M. J. Brenner. Cell‐free synthesis and processing of multiple precursors to glucagon. Nature Lond. 289: 511–514, 1981.
 173. Singh, H., R., Sen, D. Baltimore, and P. A. Sharp. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature Lond. 319: 154–158, 1986.
 174. Smith, H. O., and K. W. Wilcox. A restriction enzyme from Hemophilus influenzae. I. Purification and general properties. J. Mol. Biol. 51: 379–391, 1970.
 175. Spiess, J., J., Rivier, and W. Vale. Characterization of rat hypothalamic growth hormone‐releasing factor. Nature Lond. 303: 532–535, 1983.
 176. Strauss, F., and A. Varshavsky. A protein binds to a satellite DNA repeat at three specific sites that would be brought into mutual proximity by DNA folding in the nucleosome. Cell 37: 889–901, 1984.
 177. Sundby, F., H., Jacobsen, and A. J. Moody. Purification and characterization of a protein from porcine gut with glucagon‐like immunoreactivity. Horm. Metab. Res. 8: 366–371, 1976.
 178. Tager, H., M., Hohenboken, J. Markese, and R. J. Dinerstein. Identification and localization of glucagon‐related peptides in rat brain. Proc. Natl. Acad. Sci. USA 77: 6229–6233, 1980.
 179. Tager, H. S., and J. Markese. Immunoreactive “glucagons” in pancreatic islets. Metabolism 25: 1343–1346, 1976.
 180. Tager, H. S., and D. F. Steiner. Isolation of a glucagon‐containing peptide: primary structure of a possible fragment of proglucagon. Proc. Natl. Acad. Sci. USA 70: 2321–2325, 1973.
 181. Takahashi, Y., S., Fukushige, T. Murotsu, and K. Matsubara. Structure of human cholecystokinin gene and its chromosomal location. Gene 50: 353–360, 1986.
 182. Takahashi, Y., K., Kato, Y. Hayashizaki, T. Wakabayashi, E. Ohtsuka, S. Matsuki, M. Ikehara, and K. Matsubara. Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyinosine. Proc. Natl. Acad. Sci. USA 82: 1931–1935, 1985.
 183. Takeuchi, T., D. L., Gumucio, T. Yamada, M. H. Meisler, C. D. Minth, J. E. Dixon, R. E. Eddy, and T. B. Shows. Genes encoding pancreatic polypeptide and neuropeptide Y are on human chromosome 17 and 7. J. Clin. Invest. 77: 1038–1041, 1986.
 184. Takeuchi, T., and T. Yamada. Isolation of a cDNA clone encoding pancreatic polypeptide. Proc. Natl. Acad. Sci. USA 82: 1536–1539, 1985.
 185. Tatemoto, K. Systemic role of regulatory peptides. In: Symposia Medica Heochst 18, edited by S. R. Bloom, J. M. Polak and E. Lindenlaub. Stuttgart, FRG: Schattauer, 1982, p. 507–531.
 186. Tatemoto, K., H., Jörnvall, S. Siimesmaa, G. Hallden, and V. Mutt. Isolation and characterization of cholecystokinin‐58 (CCK‐58) from porcine brain. FEBS Lett. 174: 289–293, 1984.
 187. Tatemoto, K., and V. Mutt. Isolation and characterization of the intestinal peptide porcine PHI (PHI‐27), a new member of the glucagon‐secretin family. Proc. Natl. Acad. Sci. USA 78: 6603–6607, 1981.
 188. Tavianini, M. A., T. E., Hayes, M. D. Magazin, C. D. Minth, and J. E. Dixon. Isolation, characterization, and DNA sequence of the rat somatostatin gene. J. Biol. Chem. 259: 11798–11803, 1984.
 189. Thim, L., and A. J. Moody. The primary structure of porcine glicentin (proglucagon). Regul. Pept. 2: 139–150, 1981.
 190. Trakatellis, A. C., K., Tada, K. Yamaji, and P. Gardiki‐Kouidou. Isolation and partial characterization of anglerfish proglucagon. Biochemistry 14: 1508–1512, 1975.
 191. Ullrich, A., J. R., Bell, E. Y. Chen, R. Herrera, L. M. Petruzzelli, T. J. Dull, A. Gray, L. Coussens, Y.‐C. Liao, M. Tsubokawa, A. Mason, P. H. Seeburg, C. Grunfeld, O. M. Rosen, and J. Ramachandran. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature Lond. 313: 756–761, 1985.
 192. Ullrich, A., L., Coussens, J. S. Hayflick, T. J. Dull, A. Gray, A. W. Tam, J. Lee, Y. Yarden, T. A. Libermann, J. Schlessinger, J. Downward, E. L. V. Mayes, N. Whittle, M. D. Waterfield, and P. H. Seeburg. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature Lond. 309: 418–425, 1984.
 193. Uttenthal, L. O., M., Ghiglione, S. K. George, A. E. Bishop, J. M. Polak, and S. R. Bloom. Molecular forms of glucagon‐like peptide‐1 in human pancreas and glucagonomas. J. Clin. Endocrinol. Metab. 61: 472–479, 1985.
 194. Vanderhaeghen, J. J., J. C., Signeau, and W. Gepts. New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature Lond. 257: 604–605, 1975.
 195. Vasicek, T. J., B. E., Mcdevitt, M. W. Freeman, B. J. Fennick, G. N. Hendy, J. T. Potts, JR., A. Rich, and H. M. Kronenberg. Nucleotide sequence of the human parathyroid hormone gene. Proc. Natl. Acad. Sci. USA 80: 2127–2131, 1983.
 196. Vieira, J., and J. Messing. The pUC plasmids, and M13mp7‐derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268, 1982.
 197. Villa‐Komaroff, L., A., Efstratiadis, S. Broome, P. Lomedico, R. Tizard, S. P. Naber, W. L. Chick, and W. Gilbert. A bacterial clone synthesizing proinsulin. Proc. Natl. Acad. Sci. USA 75: 3727–3731, 1978.
 198. Walker, M. D., T., Edlund, A. M. Boulet, and W. J. Rutter. Cell‐specific expression controlled by the 5'‐flanking region of insulin and chymotrypsin genes. Nature Lond. 306: 557–561, 1983.
 199. Walsh, J. H., and M. I. Grossman. Gastrin. N. Engl. J. Med. 292: 1377–1384, 1975.
 200. Watson, J. D., J. Tooze, and D. T. Kurtz. Recombinant DNA: A Short Course New York: Freeman, 1983.
 201. Weaver, R. F., and C. Weissmann. Mapping of RNA by a modification of the Berk‐Sharp procedure: the 5’ termini of 15S β‐globin mRNA precursor and mature 10S β‐globin mRNA have identical map coordinates. Nucleic Acid Res. 7: 1175–1193, 1979.
 202. Whitfeld, P. L., P. H., Seeburg, and J. Shine. The human proopiomelanocortin gene: organization, sequence, and interspersion with repetitive DNA. DNA NY 1: 133–143, 1982.
 203. Wiborg, O., L., Berglund, E. Boel, F. Norris, K. Norris, J. F. Rehfeld, K. A. Marcker, and J. Vuust. Structure of a human gastrin gene. Proc. Natl. Acad. Sci. USA 81: 1067–1069, 1984.
 204. Wood, W. I., D. J., Capon, C. C. Simonsen, D. L. Eaton, J. Gitschier, B. Keyt, P. H. Seeburg, D. H. Smith, P. Hollingshead, K. L. Wion, E. Delwart, E. G. D. Tuddenham, G. A. Vehar, and R. M. Lawn. Expression of active human factor VIII from recombinant DNA clones. Nature Lond. 312: 330–337, 1984.
 205. Wu, C., and W. Gilbert. Tissue‐specific exposure of chromatin structure at the 5’ terminus of the rat preproinsulin II gene. Proc. Natl. Acad. Sci. USA 78: 1577–1580, 1981.
 206. Yalow, R. S., and S. A. Berson. Size and charge distinctions between endogenous human plasma gastrin in peripheral blood and heptadecapeptide gastrins. Gastroenterology 58: 609–615, 1970.
 207. Yanisch‐Perron, C., J., Vieira, and J. Messing. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119, 1985.
 208. Yokota, T., T., Otsuka, T. Mosmann, J. Banchereau, T. Defrance, D. Blanchard, J. E. Vries, F. Lee, and K. Arai. Isolation and characterization of a human interleukin cDNA clone, homologous to mouse B‐cell stimulatory factor 1, that expresses B‐cell‐ and T‐cell‐stimulating activities. Proc. Natl. Acad. Sci. USA 83: 5894–5898, 1986.
 209. Yoo, O. J., C. T., Powell, and K. L. Agarwal. Molecular cloning and nucleotide sequence of full‐length cDNA coding for porcine gastrin. Proc. Natl. Acad. Sci. USA 79: 1049–1053, 1982.
 210. Young, R. A., and R. W. Davis. Efficient isolation of genes by using antibody probes. Proc. Natl. Acad. Sci. USA 80: 1194–1198, 1983.
 211. Zimmermann, C. R., W. C., Orr, R. F. Leclerc, E. C. Barnard, and W. E. Timberlake. Molecular cloning and selection of genes regulated in Aspergillus development. Cell 21: 709–715, 1980.
 212. Zoller, M. J., and M. Smith. Oligonucleotide‐directed mutagenesis: a simple method using two oligonucleotide primers and a single‐stranded DNA template. DNA NY 3: 479–488, 1984.
 213. Zubay, G. Biochemistry, Menlo Park, CA: Addison‐Wesley, 1983, p. 777.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Randy S. Haun, Carolyn D. Minth, Philip C. Andrews, Jack E. Dixon. Molecular Biology of Gut Peptides. Compr Physiol 2011, Supplement 17: Handbook of Physiology, The Gastrointestinal System, Neural and Endocrine Biology: 1-43. First published in print 1989. doi: 10.1002/cphy.cp060201