Comprehensive Physiology Wiley Online Library

Posttranslational Processing of Gut Peptides

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Initial Events in Peptide Synthesis
2 Processing in the Endoplasmic Reticulum
3 Processing in the Golgi Complex
4 Processing in Secretory Vesicles
4.1 Acetylation
4.2 Dibasic Cleavage
4.3 Monobasic Cleavage
4.4 Amidation
5 Posttranslational Processing of Progastrin
Figure 1. Figure 1.

Signal peptide hypothesis. A: ribosome binds to mRNA and translation begins. B: signal sequence emerges from ribosome and binds to signal recognition particle (SRP), which induces translational arrest. C: SRP‐ribosome complex binds to SRP receptor or docking protein located on rough endoplasmic reticulum (RER) membrane. D: with release of SRP, translation resumes and precursor is translocated into RER cistern in aqueous environment, presumably via a protein pore. E: signal peptide is cleaved by a signal peptidase. F: translation continues until entire precursor is located within RER. G: translation ends and ribosome disassociates from mRNA.

Figure 2. Figure 2.

Intracellular location of posttranslational processing steps.

Figure 3. Figure 3.

Structure of preproinsulin. A‐chain and B‐chain are initially linked by intramolecular disulfide bonds (*), but after connecting peptide is removed by proteolytic cleavage, disulfide bonds become intermolecular.

Figure 4. Figure 4.

Thin sections of rat β‐cells stained with monoclonal antibody to proinsulin or with anticlathrin serum. A: proinsulin immunolabeling revealed by gold particles occurs on Golgi stacks (G) and in a population of secretory granules (filled arrowheads). Labeled granules are associated with Golgi area and characterized by tightly fitting cores. Proinsulin‐rich granules are also characteristically coated (inset, broken line). Other granule population (open arrowheads), characterized by a peripheral halo and lacking coats, is very weakly labeled. This population reacts intensely with anti‐insulin serum. B: clathrin immunolabeling of several secretory granules with tightly fitting cores. Arrows, gold particles revealing clathrin antigenic sites. Clathrin immunoreactivity (inset, arrows) is also detected on trans‐Golgi cisternae with condensing secretory materials. C, D: consecutive serial sections immunostained for clathrin to show the limited three‐dimensional extension of labeled (coated) segments on individual granules with tightly fitting cores (1–3). A: × 23,000; inset, × 83,000. B: × 52,000; inset, × 44,000. C, D: × 28,000.

From Orci et al. 100
Figure 5. Figure 5.

Field of β‐cell cytoplasm immunostained with anti‐insulin serum. Unlike proinsulin monoclonal antibody, insulin serum, which reveals insulin antigenic sites but cross‐reacts with proinsulin, labels all secretory granules either with tightly fitting cores (filled arrowheads) or with peripheral halos (open arrowheads). G, labeled Golgi stack. × 42,000.

From Orci et al. 97
Figure 6. Figure 6.

Endopeptidase cleavage hypothesis involves trypsin‐like cleavage on the COOH‐terminal side of a dibasic pair. This is followed by a carboxypeptidase B‐like cleavage of remaining basic residues.

Figure 7. Figure 7.

Proline‐directed arginyl cleavage and other monobasic cleavage sites in precursors of regulatory peptides. Relevant peptide product is indicated by a hatched bar, and the name is written to the left. Prolines situated adjacent to target arginines are circled. Vertical arrows, peptide bond that is suggested initially to be attacked by an endopeptidase (except in the case of dynorphin B where cleavage point is indicated by long curved arrow). Short curved arrows, following action of the carboxypeptidase B‐like enzyme. Glycine residues, which subsequently will serve as the nitrogen donor during the formation of an α‐carboxyamide group on the final bioactive peptide, have been put in separate hatched bars.

From Schwartz 115
Figure 8. Figure 8.

Peptide α‐amidation monooxygenase converts a glycine‐extended precursor into a COOH‐terminally amidated peptide and glyoxalate. Nitrogen of glycine extension becomes nitrogen in peptide amide.

Figure 9. Figure 9.

Immunohistochemical localization of gastrin, G‐Gly, and progastrin in porcine antral mucosal cells. Single sections of antral mucosa were labeled by immunofluorescence followed by immunoperoxidase techniques with two different antibodies. Panels A and B: same section labeled by immunofluorescence for gastrin (B) and by immunoperoxidase for progastrin (A). Panels C and D: labeled for G‐Gly (D) and progastrin (C). Panels E and F: labeled for gastrin (F) and G‐Gly (E). Numbers, labeled sections. Micrographs indicate that gastrin, G‐Gly, and progastrin are colocalized in antral mucosal G cells.

From Sugano et al. 129
Figure 10. Figure 10.

Pathways for posttranslational processing of gastrin.



Figure 1.

Signal peptide hypothesis. A: ribosome binds to mRNA and translation begins. B: signal sequence emerges from ribosome and binds to signal recognition particle (SRP), which induces translational arrest. C: SRP‐ribosome complex binds to SRP receptor or docking protein located on rough endoplasmic reticulum (RER) membrane. D: with release of SRP, translation resumes and precursor is translocated into RER cistern in aqueous environment, presumably via a protein pore. E: signal peptide is cleaved by a signal peptidase. F: translation continues until entire precursor is located within RER. G: translation ends and ribosome disassociates from mRNA.



Figure 2.

Intracellular location of posttranslational processing steps.



Figure 3.

Structure of preproinsulin. A‐chain and B‐chain are initially linked by intramolecular disulfide bonds (*), but after connecting peptide is removed by proteolytic cleavage, disulfide bonds become intermolecular.



Figure 4.

Thin sections of rat β‐cells stained with monoclonal antibody to proinsulin or with anticlathrin serum. A: proinsulin immunolabeling revealed by gold particles occurs on Golgi stacks (G) and in a population of secretory granules (filled arrowheads). Labeled granules are associated with Golgi area and characterized by tightly fitting cores. Proinsulin‐rich granules are also characteristically coated (inset, broken line). Other granule population (open arrowheads), characterized by a peripheral halo and lacking coats, is very weakly labeled. This population reacts intensely with anti‐insulin serum. B: clathrin immunolabeling of several secretory granules with tightly fitting cores. Arrows, gold particles revealing clathrin antigenic sites. Clathrin immunoreactivity (inset, arrows) is also detected on trans‐Golgi cisternae with condensing secretory materials. C, D: consecutive serial sections immunostained for clathrin to show the limited three‐dimensional extension of labeled (coated) segments on individual granules with tightly fitting cores (1–3). A: × 23,000; inset, × 83,000. B: × 52,000; inset, × 44,000. C, D: × 28,000.

From Orci et al. 100


Figure 5.

Field of β‐cell cytoplasm immunostained with anti‐insulin serum. Unlike proinsulin monoclonal antibody, insulin serum, which reveals insulin antigenic sites but cross‐reacts with proinsulin, labels all secretory granules either with tightly fitting cores (filled arrowheads) or with peripheral halos (open arrowheads). G, labeled Golgi stack. × 42,000.

From Orci et al. 97


Figure 6.

Endopeptidase cleavage hypothesis involves trypsin‐like cleavage on the COOH‐terminal side of a dibasic pair. This is followed by a carboxypeptidase B‐like cleavage of remaining basic residues.



Figure 7.

Proline‐directed arginyl cleavage and other monobasic cleavage sites in precursors of regulatory peptides. Relevant peptide product is indicated by a hatched bar, and the name is written to the left. Prolines situated adjacent to target arginines are circled. Vertical arrows, peptide bond that is suggested initially to be attacked by an endopeptidase (except in the case of dynorphin B where cleavage point is indicated by long curved arrow). Short curved arrows, following action of the carboxypeptidase B‐like enzyme. Glycine residues, which subsequently will serve as the nitrogen donor during the formation of an α‐carboxyamide group on the final bioactive peptide, have been put in separate hatched bars.

From Schwartz 115


Figure 8.

Peptide α‐amidation monooxygenase converts a glycine‐extended precursor into a COOH‐terminally amidated peptide and glyoxalate. Nitrogen of glycine extension becomes nitrogen in peptide amide.



Figure 9.

Immunohistochemical localization of gastrin, G‐Gly, and progastrin in porcine antral mucosal cells. Single sections of antral mucosa were labeled by immunofluorescence followed by immunoperoxidase techniques with two different antibodies. Panels A and B: same section labeled by immunofluorescence for gastrin (B) and by immunoperoxidase for progastrin (A). Panels C and D: labeled for G‐Gly (D) and progastrin (C). Panels E and F: labeled for gastrin (F) and G‐Gly (E). Numbers, labeled sections. Micrographs indicate that gastrin, G‐Gly, and progastrin are colocalized in antral mucosal G cells.

From Sugano et al. 129


Figure 10.

Pathways for posttranslational processing of gastrin.

References
 1. Abdo, Y., J., Rousseaux, and M. Dautrevaux. Proalbumin Lille, a new variant of human serum albumin. FEBS Lett. 131: 286–288, 1981.
 2. Anfinsen, C. B. The formation and stabilization of protein structure. Biochem. J. 128: 737–749, 1972.
 3. Anfinsen, C. B., and E. Haber. Studies in the reduction and reformation of protein disulfide bonds. J. Biol. Chem. 236: 1361–1363, 1961.
 4. Bankaitis, V. A., B. A., Rasmussen, and P. J. Bassford, JR., Intragenic suppressor mutations that restore export of maltose binding protein with a truncated signal peptide. Cell 37: 243–252, 1984.
 5. Bergman, L. W., and W. M. Kuehl. Formation of intermolecular disulfide bonds on nascent immunoglobulin polypeptides. J. Biol. Chem. 254: 5690–5694, 1979.
 6. Bergman, L. W., and W. M. Kuehl. Formation of an intra‐chain disulfide bond on nascent immunoglobulin light chains. J. Biol. Chem. 254: 8869–8876, 1979.
 7. Blobel, G., and B. Dobberstein. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane‐bound ribosomes of murine myeloma. J. Cell Biol. 67: 835–851, 1975.
 8. Blobel, G., and B. Dobberstein. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J. Cell Biol. 67: 852–862, 1975.
 9. Boel, E., T. W., Schwartz, K. E. Norris, and N. P. Fiil. A cDNA encoding a small common precursor for human pancreatic polypeptide and pacreatic icosapeptide. EMBO J. 3: 909–912, 1984.
 10. Bradbury, A., M., Finnie, and D. Smyth. Mechanism of C‐terminal amide formation by pituitary enzymes. Nature Lond. 298: 686–688, 1982.
 11. Bradbury, A., and D. G. Smyth. Substrate specificity of an amidating enzyme in porcine pituitary. Biochem. Biophys. Res. Commun. 112: 372–377, 1983.
 12. Brand, S. J., B. N., Andersen, and J. F. Rehfeld. Complete tyrosine‐O‐sulphation of gastrin in neonatal rat pancreas. Nature Lond. 309: 456–458, 1984.
 13. Brand, S. J., J., Klarlund, T. W. Schwartz, and J. F. Rehfeld. Biosynthesis of tyrosine‐O‐sulfated gastrins in rat antral mucosa. J. Biol. Chem. 259: 13246–13252, 1984.
 14. Brennan, S. O., and R. W. Carrell. A circulating variant of human proalbumin. Nature Lond. 274: 908–909, 1978.
 15. Brockway, B. E., and R. B. Freedman. Protein disulphideisomerase of chick‐embryo tendon. Biochem. J. 219: 51–59, 1984.
 16. Chang, C. N., G. Blobel, and P. Model. Detection of pro‐karyotic signal peptidase in an Escherichia coli membrane fraction: endoproteolytic cleavage of nascent f1 pre‐coat protein. Proc. Natl. Acad. Sci. USA 75: 361–365, 1978.
 17. Chowdhury, J. R., J. M., Berkowitz, M. Praissman, and J. W. Fara. Effect of sulfated and non‐sulfated gastrin and octapeptide‐cholecystokinin on cat gall bladder in vitro. Experientia Basel 32: 1173–1175, 1976.
 18. Conway, R. G., B. S., Tsai, G. M. Butchko, R. F. Bauer, and F. M. Radzialowski. Peptidyl‐glycine α‐amidation monooxygenases: comparison of stomach and pituitary enzymes (Abstract). Federation Proc. 44: 1217, 1985.
 19. Copolov, D. L. Opioid biology: the next set of questions. Aust. NZ J. Med. 15: 98–106, 1985.
 20. Creighton, T. E. Disulfide bond formation in proteins. Methods Enzymol. 107: 305–329, 1984.
 21. Deschenes, R. J., L. J., Lorenz, R. S. Haun, B. A. Roos, K. J. Collier, and J. E. Dlxon. Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin. Proc. Natl. Acad. Sci. USA 81: 726–730, 1984.
 22. Dev, I. K., and P. H. Ray. Rapid assay and purification of a unique signal peptidase that processes the prolipoprotein from Escherichia coli B. J. Biol. Chem. 259: 11114–11120, 1984.
 23. Dickinson, C. J., and T. Yamada. Characterization of the carboxyl‐terminal amidating enzyme in the gastrointestinal tract: comparison with the pituitary (Abstract). Can. J. Physiol. Pharmacol. Suppl. 64: 81–82, 1986.
 24. Dixon, J. E., and T. A. Woodford. Rat pituitary N α‐acetyltransferase. Methods Enzymol. 106: 170–179, 1984.
 25. Docherty, K., R. J., Carroll, and D. F. Steiner. Conversion of proinsulin to insulin: involvement of a 31,500 molecular weight thiol protease. Proc. Natl. Acad. Sci. USA 79: 4613–4617, 1982.
 26. Docherty, K., R. J., Carroll, and D. F. Steiner. Identification of a 31,500 molecular weight islet cell protease as cathepsin B. Proc. Natl. Acad. Sci. USA 80: 3245–3249, 1983.
 27. Docherty, K., and J. C. Hutton. Carboxypeptidase activity in the insulin secretory granule. FEBS Lett. 162: 137–141, 1983.
 28. Docherty, K., and D. F. Steiner. Post‐translational proteolysis in polypeptide hormone biosynthesis. Annu. Rev. Physiol. 44: 625–638, 1982.
 29. Dockray, G. J. The action of gastrin and cholecyostokinin‐related peptides on pancreatic secretion in the rat. Q. J. Exp. Physiol. Cogn. Med. Sci. 58: 163–169, 1973.
 30. Dockray, G. J., C., Vaillant, and C. R. Hopkins. Biosynthetic relationships of big and little gastrins. Nature Lond. 273: 770–772, 1978.
 31. Duffel, M. W., and W. B. Jakoby. On the mechanism of aryl sulfotransferase. J. Biol. Chem. 256: 11123–11127, 1981.
 32. Dunphy, W. G., and J. E. Rothman. Compartmental organization of the Golgi stack. Cell 42: 13–21, 1985.
 33. Eipper, B. A., R. E., Mains, and C. C. Glembotski. Identification in pituitary tissue of a peptide α‐amidation activity that acts on glycine‐extended peptides and requires molecular oxygen, copper, and ascorbic acid. Proc. Natl. Acad. Sci. USA 80: 5144–5148, 1983.
 34. Eipper, B. A., A. C., Meyers, and R. E. Mains. Peptidyl‐glycine α‐amidation activity in tissues and serum of the adult rat. Endocrinology 116: 2497–2504, 1985.
 35. Eng, J., U., Gubler, J.‐P. Raufman, M. Chang, J. D. Holmes, Y.‐C. E. Pan, and R. S. Yalow. Cholecystokinin‐associated COOH‐terminal peptides are fully sulfated in pig brain. Proc. Natl. Acad. Sci. USA 83: 2832–2835, 1986.
 36. Evans, E. A., R., Gilmore, and G. Blobel. Purification of microsomal signal peptidase as a complex. Proc. Natl. Acad. Sci. USA 83: 581–585, 1986.
 37. Freedman, R. B., B. E., Brockway, and N. Lambert. Protein disulphide‐isomerase and the formation of native disulphide bonds. Biochem. Soc. Trans. 12: 929–932, 1984.
 38. Fricker, L. D., and S. H. Snyder. Enkephalin convertase: purification and characterization of a specific enkephalin‐synthesizing carboxypeptidase localized to adrenal chromaffin granules. Proc. Natl. Acad. Sci. USA 79: 3886–3890, 1982.
 39. Fricker, L. D., and S. H. Snyder. Purification and characterization of enkephalin convertase, an enkephalin‐synthesizing carboxypeptidase. J. Biol. Chem. 258: 10950–10955, 1983.
 40. Fricker, L. D., S., Supattapone, and S. H. Snyder. Enkephalin convertase: a specific enkephalin synthesizing carboxypeptidase in adrenal chromaffin granules, brain, and pituitary gland. Life Sci. 31: 1841–1844, 1982.
 41. Gainer, H., J. T., Russell, and Y. P. Loh. An aminopeptidase activity in bovine pituitary secretory vesicles that cleaves the N‐terminal arginine from β‐lipotropin(60–65). FEBS Lett. 175: 135–139, 1984.
 42. Gainer, H., J. T., Russell, and Y. P. Loh. The enzymology and intracellular organization of peptide precursor processing: the secretory vesicle hypothesis. Neuroendocrinology 40: 171–184, 1985.
 43. Gibson, T. R., and C. C. Glembotski. Acetylation of α‐MSH and β‐endorphin by rat neurointermediate pituitary secretory granule‐associated acetyltransferase. Peptides Fayetteville 6: 615–620, 1985.
 44. Gilmore, R., and G. Blobel. Translocation of secretory proteins across the microsomal membrane occurs through an environment accesible to aqueous perturbants. Cell 42: 497–505, 1985.
 45. Gilmore, R., G., Blobel, and P. Walter. Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J. Cell Biol. 95: 463–469, 1982.
 46. Gilmore, R., P., Walter, and G. Blobel. Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J. Cell Biol. 95: 470–477, 1982.
 47. Glembotski, C. C. Subcellular fractionation studies in the post‐translational processing of pro‐adrenocorticotropic hormone endorphin in rat intermediate pituitary. J. Biol. Chem. 256: 7433–7439, 1981.
 48. Glembotski, C. C. Acetylation of α‐melanotropin and β‐endorphin in the rat intermediate pituitary. J. Biol. Chem. 257: 10493–10500, 1982.
 49. Glembotski, C. C. Characterization of the peptide acetyl‐transferase activity in bovine and rat intermediate pituitaries responsible for the acetylation of β‐endorphin and α‐melanotropin. J. Biol. Chem. 257: 10501–10509, 1982.
 50. Glembotski, C. C. The characterization of the ascorbic acid‐mediated α‐amidation of α‐melanotropin in cultured intermediate pituitary lobe cells. Endocrinology 118: 1461–1468, 1986.
 51. Gregory, R. A., and H. J. Tracy. The constitution and properties of two gastrins extracted from hog antral mucosa. Gut 5: 103–114, 1964.
 52. Gregory, R. A., and H. J. Tracy. Isolation of two “big gastrins” from Zollinger‐Ellison tumour tissue. Lancet 2: 797–799, 1972.
 53. Gregory, R. A., and H. J. Tracy. The chemistry of the gastrins: some recent advances. In: Gastrointestinal Hormones, edited by J. C. Thompson. Austin: Univ. of Texas Press, 1975, p. 13–24.
 54. Gregory, R. A., H. J., Tracy, K. L. Agarwal, and M. I. Grossman. Amino acid constitution of two gastrins isolated from Zollinger‐Ellison tumour tissue. Gut 10: 603–608, 1969.
 55. Hall, M. N., J., Gabay, and M. Schwartz. Evidence for a coupling of synthesis and export of an outer membrane protein in Escherichia coli. EMBO J. 2: 15–19, 1983.
 56. Hille, A., P., Rosa, and W. B. Huttner. Tyrosine sulfation: a post‐translational modification of proteins destined for secretion? FEBS Lett. 177: 129–134, 1984.
 57. Hillson, D. A., N., Lambert, and R. B. Freedman. Formation and isomerization of disulfide bonds in proteins: protein di‐sulfide‐isomerase. Methods Enzymol. 107: 281–294, 1984.
 58. Hilsted, L., T. F., Rehfeld, and T. W. Schwartz. Impaired α‐carboxyamidation of gastrin in vitamin C deficient guinea pigs. FEBS Lett. 196: 151–154, 1986.
 59. Hook, V. Y. H., L. E., Eiden, and R. M. Pruss. Selective regulation of carboxypeptidase hormone‐processing enzyme during enkephalin biosynthesis in cultured bovine adrenomedullary chromaffin cells. J. Biol. Chem. 260: 5991–5997, 1985.
 60. Hornig, D. Distribution of ascorbic acid, metabolites and analogues in man and animals. Ann. NY Acad. Sci. 258: 103–117, 1973.
 61. Hortin, G., and I. Boime. Inhibition of preprotein processing in ascites tumor lysates by incorporation of a leucine analog. Proc. Natl. Acad. Sci. USA 77: 1356–1360, 1980.
 62. Howell, S. L. Role of ATP in the intracellular translocation of proinsulin and insulin in the rat pancreatic B cell. Nature Lond. 235: 85–86, 1972.
 63. Inouye, S., G. P., Vlasuk, H. Hsiung, and M. Inouye. Effects of mutations at glycine residues in the hydrophobic region of the Escherichia coli prolipoprotein signal peptide on the secretion across the membrane. J. Biol. Chem. 259: 3729–3733, 1984.
 64. Jackson, R. C., and W. R. White. Phospholipid is required for the processing of presecretory proteins by detergent‐solubilized canine pancreatic signal peptidase. J. Biol. Chem. 256: 2545–2550, 1981.
 65. Jamieson, J. D., and G. E. Palade. Intracellular transport of secretory proteins in the pancreatic exocrine cell. IV. Metabolic requirements. J. Cell Biol. 39: 589–603, 1968.
 66. Jones, P. M., T., Saermark, and I. C. A. F. Robinson. Conversion and release of an intermediate in vasopressin‐neurophysin biosynthesis in the guinea‐pig. J. Endocrinol. 103: 347–354, 1984.
 67. Julius, D., A., Brake, L. Blair, R. Kunisawa, and J. Thorner. Isolation of the putative structural gene to the lysine‐arginine‐cleaving endopeptidase required for processing of yeast prepro‐α‐factor. Cell 37: 1075–1089, 1984.
 68. Kangawa, K., N., Minamino, N. Chino, S. Sakakibara, and H. Matsuo. The complete amino acid sequence of α‐neo‐endorphin. Biochem. Biophys. Res. Commun. 99: 871–878, 1981.
 69. Kemmler, W., J. D., Peterson, and D. F. Steiner. Studies in the conversion of proinsulin to insulin. I. Conversion in vitro with trypsin and carboxypeptidase B. J. Biol. Chem. 246: 6786–6791, 1971.
 70. Kizer, J. S., R. C., Bateman, C. R. Miller, J. Humm, W. H. Busby, and W. W. Youngblood. Purification and characterization of a peptidyl glycine monooxygenase from porcine pituitary. Endocrinology 118: 2262–2267, 1986.
 71. Kornfeld, R., and S. Kornfeld. Assembly of asparagine‐linked oligosaccharides. Annu. Rev. Biochem. 54: 631–664, 1985.
 72. Kreil, G., G., Suchanek, and I. Kindås‐Mügge. Biosynthesis of a secretory peptide in honeybee venom glands: intermediates detected in vivo and in vitro. Federation Proc. 36: 2081–2086, 1977.
 73. Lambert, N., and R. B. Freedman. Structural properties of homogeneous protein disulphide‐isomerase from bovine liver purified by a rapid high‐yielding procedure. Biochem. J. 213: 225–234, 1983.
 74. Lambert, N., and R. B. Freedman. Kinetics and specificity of homogeneous disulphide‐isomerase in protein disulfide isomerization and in thiol‐protein‐disulphide oxidoreduction. Biochem. J. 213: 235–243, 1983.
 75. Landymore‐Lim, A. E. N., A. F., Bradbury, and D. G. Smyth. The amidating enzyme in pituitary will accept a peptide with C‐terminal D‐alanine as substrate. Biochem. Biophys. Res. Commun. 117: 289–293, 1983.
 76. Lee, R. W. H., and W. B. Huttner. Tyrosine‐O‐sulfated proteins of PC 12 pheochromocytoma cells and their sulfation by a tyrosylprotein sulfotransferase. J. Biol. Chem. 258: 11326–11334, 1983.
 77. Lee, R. W. H., and W. B. Huttner. (Glu62, Ala30, Tyr8)n serves as high‐affinity substrate for tyrosylprotein sulfotransferase: Golgi enzyme. Proc. Natl. Acad. Sci. USA 82: 6143–6147, 1985.
 78. Lingappa, V. R., J., Chaidez, C. S. Yost, and J. Hedgpeth. Determinants to protein localization: β‐lactamase signal sequence directs globin across microsomal membranes. Proc. Natl. Acad. Sci. USA 81: 456–460, 1984.
 79. Loh, Y. P. Proteolysis in neuropeptide processing and other neural functions. Annu. Rev. Neurosci. 7: 189–222, 1984.
 80. Loh, Y. P. Kinetic studies on the processing of human β‐lipotropin by bovine pituitary intermediate lobe pro‐opiomelanocortin‐converting enzyme. J. Biol. Chem. 261: 11949–11955, 1986.
 81. Loh, Y. P., D. C., Parish, and R. Tuteja. Purification and characterization of a paired basic residue‐specific pro‐opiomelanocortin converting enzyme from bovine pituitary intermediate lobe secretory vesicles. J. Biol. Chem. 260: 7194–7205, 1985.
 82. Loh, Y. P., W. W. H., Tam, and J. T. Russell. Measurement of Δ pH and membrane potential in secretory vesicles isolated from bovine pituitary intermediate lobe. J. Biol. Chem. 259: 8238–8245, 1984.
 83. Lowry, P. J., R. E., Silman, and J. Hope. Structure and biosynthesis of peptides related to corticotropins and α‐melanotropins. Ann. NY Acad. Sci. 297: 49–62, 1977.
 84. Mains, R. E., B. A., Eipper, C. C. Glembotski, and R. M. Dores. Strategies for the biosynthesis of bioactive peptides. Trends Neurosci. 6: 229–235, 1983.
 85. Mains, R. E., C. C., Glembotski, and B. A. Eipper. Peptide α‐amidation in mouse anterior pituitary AtT‐20 cell granules: properties and secretion. Endocrinology 114: 1522–1530, 1984.
 86. Mains, R. E., A. C., Meyers, and B. A. Eipper. Hormonal, drug, and dietary factors affecting peptidyl glycine α‐amidating monooxygenase activity in various tissues of the adult male rat. Endocrinology 116: 2505–2515, 1985.
 87. Mains, R. E., L. P., Park, and B. A. Eipper. Inhibition of peptide amidation by disulfiram and diethyldithiocarbamate. J. Biol. Chem. 261: 11938–11941, 1986.
 88. Marino, L. R., B. H., Muglia, and T. Yamada. Effect of copper chelation on gastrin α‐amidation: age and organ specificity (Abstract). Can. J. Physiol. Pharmacol. Suppl. 64: 82, 1986.
 89. Marino, L., K., Sugano, and T. Yamada. Gastrin content and post‐translational processing in developing rat stomach (Abstract). Gastroenterology 88: 1489, 1985.
 90. Matsumoto, M., J., Park, K. Sugano, and T. Yamada. Biological activity of progastrin post‐translational processing intermediate. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G315–G319, 1987.
 91. May, V., and B. A. Eipper. Regulation of peptide amidation in cultured pituitary cells. J. Biol. Chem. 260: 16224–16231, 1985.
 92. Meyer, D. I., E., Krause, and B. Dobberstein. Secretory protein translocation across membranes—the role of the docking protein. Nature Lond. 297: 647–650, 1982.
 93. Murthy, A. S. N., R. E., Mains, and B. A. Eipper. Purification and characterization of peptidylglycine α‐amidating monooxygenase from bovine neurointermediate pituitary. J. Biol. Chem. 261: 1815–1822, 1986.
 94. Nawa, H., T., Hirose, H. Takashima, S. Inayama, and S. Nakanishi. Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor. Nature Lond. 306: 32–36, 1984.
 95. Noe, B. D. Inhibition of islet prohormone to hormone conversion by incorporation of arginine and lysine analogs. J. Biol. Chem. 256: 4940–4946, 1981.
 96. O'Donohue, T. L. Identification of endorphin acetyltransferase in rat brain and pituitary gland. J. Biol. Chem. 258: 2163–2167, 1983.
 97. Orci, L. Macro‐ and micro‐domains in the endocrine pancreas. Diabetes 31: 538–565, 1982.
 98. Orci, L., P., Halban, M. Amherdt, M. Ravazzola, J.‐D. Vassalli, and A. Perrelet. A clathrin‐coated Golgi‐related compartment of the insulin secreting cell accumulates proinsulin in the presence of monensin. Cell 39: 39–47, 1984.
 99. Orci, L., P., Halban, M. Amherdt, M. Ravazzola, J.‐D. Vassalli, and A. Perrelet. Non‐converted, amino acid analog‐modified proinsulin stays in a Golgi‐derived clathrin‐coated membrane compartment. J. Cell Biol. 99: 2187–2192, 1984.
 100. Orci, L., M., Ravazzola, M. Amherdt, O. Madsen, J. Vassalli, and A. Perrelet. Direct identification of prohormone conversion site in insulin‐secreting cells. Cell 42: 671–681, 1985.
 101. Ouafik, L. H., A., Dutour, P. Salers, P. Giraud, F. Boudouresque, F. Castanas, and C. Oliver. Evidence for high peptide α‐amidation activity in the neonatal rat pancreas. Biochem Biophys. Res. Commun. 138: 179–184, 1986.
 102. Perlman, D., and H. O. Halvorson. A putative signal peptidase recognition site and sequence in eukaryotic and pro‐karyotic signal peptides. J. Mol. Biol. 167: 391–409, 1983.
 103. Reeve, J. R., J. H., Walsh, P. Chew, B. Clark, D. Hawke, and J. E. Shively. Amino acid sequences of three bombesin‐like peptides from canine intestine extracts. J. Biol. Chem. 258: 5582–5588, 1983.
 104. Rehfeld, J. F. Gastrins in serum. A review of gastrin radioimmunoanalysis and the discovery of gastrin heterogeneity in serum. Scand. J. Gastroenterol. 8: 577–583, 1973.
 105. Rehfeld, J. F. Four basic characteristics of the gastrin‐cholecystokinin system. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G255–G266, 1981.
 106. Rehfeld, J. Accumulation of non‐amidated preprogastrin and preprocholecystokinin products in porcine pituitary corticotrophs. J. Biol. Chem. 261: 5841–5847, 1986.
 107. Robbins, D. C., P. M., Blix, A. H. Rubinstein, Y. Kanazawa, K. Kosaka, and H. S. Tager. A human proinsulin variant at arginine 65. Nature Lond. 291: 679–681, 1981.
 108. Rosenquist, G. L., K., Maruthainar, and D. G. Smyth. β‐Endorphin is present in active and inactive forms in rat gastric antrum. Biochem. Biophys. Res. Commun. 134: 14–20, 1986.
 109. Rothman, J. E., F. N., Katz, and H. F. Lodish. Glycosylation of a membrane protein is restricted to the growing polypeptide chain but is not necessary for insertion as a transmembrane protein. Cell 15: 1447–1454, 1978.
 110. Rubinstein, A. H., D. F., Steiner, D. L. Horwitz, M. E. Mako, M. B. Block, J. L. Starr, H. Kuzuya, and F. Melani. Clinical significance of circulating proinsulin and C‐peptide. Recent Prog. Horm. Res. 33: 435–470, 1977.
 111. Russell, J. T. Δ pH, H+ diffusion potentials, and Mg++ ATPase in neurosecretory vesicles isolated from bovine neurohypophyses. J. Biol. Chem. 259: 9496–9507, 1984.
 112. Russell, J. T., and R. W. Holz. Measurement of Δ pH and membrane potential in isolated neurosecretory vesicles from bovine neurohypophyses. J. Biol. Chem. 256: 5950–5953, 1981.
 113. Sabatini, D. D., G., Kreibich, T. Morimoto, and M. Adesnik. Mechanisms for the incorportation of proteins in membranes and organelles. J. Cell Biol. 92: 1–22, 1982.
 114. Scherman, D., J., Nordmann, and J. P. Henry. Existence of an adenosine‐5'‐triphosphate dependent proton translocase in bovine neurosecretory granule membrane. Biochemistry 21: 687–694, 1982.
 115. Schwartz, T. W. The processing of peptide precursors Pro‐line‐directed arginyl cleavage and other monobasic processing mechanisms. FEBS Lett. 200: 1–10, 1986.
 116. Schwartz, T. W., and H. S. Tager. Isolation and biogenesis of a new peptide from pancreatic islets. Nature Lond. 294: 589–591, 1981.
 117. Sekura, R. D., and W. B. Jakoby. Aryl sulfotransferase IV from rat liver. Arch. Biochem. Biophys. 211: 352–359, 1981.
 118. Shields, P. P., T. R., Gibson, and C. C. Glembotski. Ascorbate transport by AtT20 mouse pituitary corticotropic tumor cells: uptake and secretion studies. Endocrinology 118: 1452–1460, 1986.
 119. Smyth, D. G. β‐Endorphin and related peptides in pituitary, brain, pancreas, and antrum. Br. Med. Bull. 39: 25–30, 1983.
 120. Smyth, D. G., D. E., Massey, S. Zakarian, and M. D. Finnie. Endorphins are stored in biologically active and inactive forms: isolation of α‐N‐acetyl peptides. Nature Lond. 279: 252–254, 1979.
 121. Soll, A. H., T., Yamada, J. Park, and L. P. Thomas. Release of somatostatin‐like immunoreactivity from canine fundic mucosal cells in primary culture. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 3): G558–G566, 1984.
 122. Steiner, D. F. Proinsulin and the biosynthesis of insulin. N. Engl. J. Med. 280: 1106–1113, 1969.
 123. Steiner, D. F., and J. L. Clark. The spontaneous reoxidation of reduced beef and rat proinsulins. Proc. Natl. Acad. Sci. USA 60: 622–629, 1968.
 124. Steiner, D. F., K., Docherty, and R. Carroll. Golgi/granule processing of peptide hormone and neuropeptide precursors: a minireview. J. Cell Biochem. 24: 121–130, 1984.
 125. Steiner, D. F., W., Kemmler, H. S. Tager, and J. D. Peterson. Proteolytic processing in the biosynthesis of insulin and other proteins. Federation Proc. 33: 2105–2115, 1974.
 126. Steiner, D. F., and P. E. Oyer. The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proc. Natl. Acad. Sci. USA 57: 473–480, 1967.
 127. Strauss, A. W., M., Zimmerman, I. Boime, B. Ashe, R. A. Mumford, and A. W. Alberts. Characterization of an endopeptidase involved in pre‐protein processing. Proc. Natl. Acad. Sci. USA 76: 4225–4229, 1979.
 128. Suchanek, G., and G. Kreil. Translation of melittin messenger RNA in vitro yields a product terminating with glutaminylglycine rather than glutaminamide. Proc. Natl. Acad. Sci. USA 74: 975–978, 1977.
 129. Sugano, K., G. W., Aponte, and T. Yamada. Identification and characterization of glycine‐extended post‐translational processing intermediates of progastrin in porcine stomach. J. Biol. Chem. 260: 11724–11729, 1985.
 130. Sugano, K., J., Park, W. O. Dobbins, and T. Yamada. Glycine‐extended progastrin processing intermediates: accumulation in cultured G‐cells and cosecretion with gastrin. Am. J. Physiol. 253 (Gastrointest. Liver Physiol. 9): G502–G507, 1987.
 131. Sugano, K., J., Park, A. H. Soll, and T. Yamada. Stimulation of gastrin release by bombesin and canine releasing peptides: studies with isolated canine G‐cells in primary culture. J. Clin. Invest. 79: 935–942, 1987.
 132. Sugano, K., J., Park, and T. Yamada. Biosynthesis of gastrin: studies with isolated enriched canine antral G‐cells in primary culture (Abstract). Dig. Dis. Sci. 29, Suppl.: 835, 1984.
 133. Sugano, K., and T. Yamada. Progastrin‐like immunoreactivity in porcine antrum: identification and characterization with region‐specific antisera. Biochem. Biophys. Res. Commun. 126: 72–77, 1985.
 134. Tartakoff, A. M. Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell 32: 1026–1028, 1983.
 135. Tatemoto, K., M., Carlquist, and V. Mutt. Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature Lond. 296: 659–660, 1982.
 136. Unsworth, C. D., J., Hughes, and J. S. Morley. O‐sulphated Leu‐enkephalin in brain. Nature Lond. 295: 519–522, 1982.
 137. Vlasuk, G. P., S., Inouye, H. Ito, K. Itakura, and M. Inouye. Effects of the complete removal of basic amino acid residues from the signal peptide on secretion of lipoprotein in Escherichia coli. J. Biol. Chem. 258: 7141–7148, 1983.
 138. Von Heijne, G. Patterns of amino acids near signal‐sequence cleavage sites. Eur. J. Biochem. 133: 17–21, 1983.
 139. Von Heijne, G. Ribosome‐SRP‐signal sequence interactions. The relay helix hypothesis. FEBS Lett. 190: 1–4, 1985.
 140. Von Heijne, G. Signal sequences. The limits of variation. J. Mol. Biol. 184: 99–105, 1985.
 141. Von Zastrow, M., T. R. Tritton, and J. D. Castle. Exocrine secretion granules certain peptide amidation activity. Proc. Natl. Acad. Sci. USA 83: 3297–3301, 1986.
 142. Walsh, J. H., and M. I. Grossman. Gastrin. N. Engl. J. Med. 292: 1324–1334, and 1377–1384, 1975.
 143. Walter, P., and G. Blobel. Purification of a membrane‐associated protein complex required for protein translocation across the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 77: 7112–7116, 1980.
 144. Walter, P., and G. Blobel. Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in‐vitro‐assembled polysomes synthesizing secretory protein. J. Cell Biol. 91: 551–556, 1981.
 145. Walter, P., and G. Blobel. Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein (SRP) causes signal sequence‐dependent and site‐specific arrest of chain elongation that is released by microsomal membranes. J. Cell Biol. 91: 557–561, 1981.
 146. Walter, P., and G. Blobel. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature Lond. 299: 691–698, 1982.
 147. Walter, P., R., Gilmore, and G. Blobel. Protein translocation across the endoplasmic reticulum. Cell 38: 5–8, 1984.
 148. Walter, P., I., Ibrahimi, and G. Blobel. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in‐vitro‐assembled polysomes synthesizing secretory protein. J. Cell Biol. 91: 545–550, 1981.
 149. Wand, G. S., R. L., Ney, S. Baylin, B. Eipper, and R. E. Mains. Characterization of a peptide α‐amidation activity in human plasma and tissues. Metabolism 34: 1044–1052, 1985.
 150. Wand, G. S., R. L., Ney, R. E. Mains, and B. A. Eipper. Characterization of peptide α‐amidation activity in human cerbrospinal fluid and central nervous system tissue. Neuroendocrinology 41: 482–489, 1985.
 151. Waters, M. G., and G. Blobel. Secretory protein translocation in a yeast cell‐free system can occur posttranslationally and requires ATP hydrolysis. J. Cell Biol. 102: 1543–1550, 1986.
 152. Wetlaufer, D. B. Nonenzymatic formation and isomerization of protein disulfides. Methods Enzymol. 107: 301–304, 1984.
 153. Wolfe, P. B., W., Wickner, and J. M. Goodman. Sequence of the leader peptidase gene of Escherichia coli and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258: 12073–12080, 1983.
 154. Yalow, R. S., and S. A. Berson. Size and charge distinctions between endogenous human plasma gastrin in peripheral blood and heptadecapeptide gastrins. Gastroenterology 58: 609–615, 1970.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Chris Dickinson, Tadataka Yamada. Posttranslational Processing of Gut Peptides. Compr Physiol 2011, Supplement 17: Handbook of Physiology, The Gastrointestinal System, Neural and Endocrine Biology: 63-77. First published in print 1989. doi: 10.1002/cphy.cp060203