Comprehensive Physiology Wiley Online Library

Distribution of Gut Peptides

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Distribution of Neuropeptides in the Gastrointestinal Tract
1.1 Vasoactive Intestinal Polypeptide
1.2 Substance P
1.3 Methionine5‐Enkephalin
1.4 Bombesin‐like Immunoreactive Peptides
1.5 Peptide Histidine Isoleucine
1.6 Other Neuropeptides
2 Distribution of Endocrine Peptides in the Gastrointestinal Tract
2.1 Gastrin
2.2 Cholecystokinin
2.3 Secretin
2.4 Gastric Inhibitory Peptide
2.5 Motilin
2.6 Neurotensin
2.7 Enteroglucagon
2.8 Peptide YY
2.9 Somatostatin
3 Distribution of Neuropeptides in the Brain
3.1 Vasoactive Intestinal Polypeptide
3.2 Cholecystokinin
3.3 Neurotensin
3.4 Substance P
4 Distribution of Neuropeptides in the Spinal Cord
4.1 Neurotensin
4.2 Substance P
4.3 Vasoactive Intestinal Polypeptide
4.4 Cholecystokinin
5 Distribution of Neuropeptides in Other Tissues
5.1 Vasoactive Intestinal Polypeptide in Coronary Arteries
5.2 Substance P in Coronary Arteries
6 Summary
Figure 1. Figure 1.

Distribution of vasoactive intestinal polypeptide (VIP) in human gut (mean ± SE). In stomach and small intestine, VIP concentrations are higher in muscularis externa (ME) than those in mucosal‐submucosal (M‐S) layer. Note highest mean concentrations of VIP in M‐S layers of the colon.

Figure 2. Figure 2.

Distribution of vasoactive intestinal polypeptide (VIP) in canine gut (n = 10; mean ± SE). In small intestine, VIP concentrations are highest in mucosa. Note highest mean concentration of VIP in muscular layer of proximal colon. L. of Treitz, ligament of Treitz; IC junction, ileocolic junction.

Figure 3. Figure 3.

Distribution of immunoreactive neuropeptides in murine gut (n = 9; mean ± SE). Vasoactive intestinal polypeptide (VIP) and Met5‐enkephalin are present in higher concentrations in colon than in proximal gut. Substance P and bombesin‐like immunoreactive peptides (BLI) are present in highest concentrations in proximal colon.

Figure 4. Figure 4.

Distribution of substance Pin human gut (mean ± SE). Concentrations of substance P in mucosal‐submucosal (M‐S) layer are similar to those in muscularis externa (ME). Note highest mean concentration of substance P in duodenum.

Figure 5. Figure 5.

Distribution of substance P in canine gut (n = 10; mean ± SE). Intestinal concentrations of substance P are higher in mucosal layer than in muscular layer. Highest mean concentrations of substance P are in proximal small intestine. L. of Treitz, ligament of Treitz; IC junction, ileocolic junction.

Figure 6. Figure 6.

Distribution of Met5‐enkephalin in human gut (mean ± SE). Concentrations of Met5‐enkephalin are consistently higher in muscularis externa (ME) than in mucosal‐submucosal (M‐S) layer. Highest mean concentration of Met5‐enkephalin is in muscularis externa of descending colon.

Figure 7. Figure 7.

Distribution of Met5‐enkephalin (Met‐Enk) in canine gut (n = 10; mean ± SE). Concentrations of Met‐Enk are consistently higher in muscular layer than in mucosal or submucosal layers. Highest mean concentration of Met‐Enk is in muscular layer of jejunum. L. of Treitz, ligament of Treitz; IC junction, ileocolic junction.

Figure 8. Figure 8.

Distribution of bombesin‐like immunoreactive (BLI) peptides in human gut (mean ± SE). Concentrations of BLI peptides are highest in stomach, probably because of cross‐reactivity with human gastrin‐releasing peptide. In small and large intestine, concentrations of BLI peptides are consistently higher in muscularis externa (ME) than in mucosal‐submucosal (M‐S) layer, with highest mean concentration of intestinal BLI peptides in muscularis externa of ileum.

Figure 9. Figure 9.

Regional distribution of endocrine peptides in pancreas and in mucosa of gastrointestinal tract. There are distinct regional differences in concentrations of different endocrine peptides. GIP, gastric inhibitory peptide; GLI, glucagon‐like immunoreactivity; HPP, human pancreatic polypeptide; CCK, cholecystokinin.

Figure 10. Figure 10.

Mucosal concentrations of gastrin, gastric inhibitory peptide (GIP), and neurotensin in canine gut (n = 10; mean ± SE). Highest mean concentration of gastrin is in gastric antrum, and highest mean concentration of neurotensin is in ileum. High concentrations of GIP are present throughout small intestine. L. of Treitz, ligament of Treitz; IC junction, ileocolic junction.



Figure 1.

Distribution of vasoactive intestinal polypeptide (VIP) in human gut (mean ± SE). In stomach and small intestine, VIP concentrations are higher in muscularis externa (ME) than those in mucosal‐submucosal (M‐S) layer. Note highest mean concentrations of VIP in M‐S layers of the colon.



Figure 2.

Distribution of vasoactive intestinal polypeptide (VIP) in canine gut (n = 10; mean ± SE). In small intestine, VIP concentrations are highest in mucosa. Note highest mean concentration of VIP in muscular layer of proximal colon. L. of Treitz, ligament of Treitz; IC junction, ileocolic junction.



Figure 3.

Distribution of immunoreactive neuropeptides in murine gut (n = 9; mean ± SE). Vasoactive intestinal polypeptide (VIP) and Met5‐enkephalin are present in higher concentrations in colon than in proximal gut. Substance P and bombesin‐like immunoreactive peptides (BLI) are present in highest concentrations in proximal colon.



Figure 4.

Distribution of substance Pin human gut (mean ± SE). Concentrations of substance P in mucosal‐submucosal (M‐S) layer are similar to those in muscularis externa (ME). Note highest mean concentration of substance P in duodenum.



Figure 5.

Distribution of substance P in canine gut (n = 10; mean ± SE). Intestinal concentrations of substance P are higher in mucosal layer than in muscular layer. Highest mean concentrations of substance P are in proximal small intestine. L. of Treitz, ligament of Treitz; IC junction, ileocolic junction.



Figure 6.

Distribution of Met5‐enkephalin in human gut (mean ± SE). Concentrations of Met5‐enkephalin are consistently higher in muscularis externa (ME) than in mucosal‐submucosal (M‐S) layer. Highest mean concentration of Met5‐enkephalin is in muscularis externa of descending colon.



Figure 7.

Distribution of Met5‐enkephalin (Met‐Enk) in canine gut (n = 10; mean ± SE). Concentrations of Met‐Enk are consistently higher in muscular layer than in mucosal or submucosal layers. Highest mean concentration of Met‐Enk is in muscular layer of jejunum. L. of Treitz, ligament of Treitz; IC junction, ileocolic junction.



Figure 8.

Distribution of bombesin‐like immunoreactive (BLI) peptides in human gut (mean ± SE). Concentrations of BLI peptides are highest in stomach, probably because of cross‐reactivity with human gastrin‐releasing peptide. In small and large intestine, concentrations of BLI peptides are consistently higher in muscularis externa (ME) than in mucosal‐submucosal (M‐S) layer, with highest mean concentration of intestinal BLI peptides in muscularis externa of ileum.



Figure 9.

Regional distribution of endocrine peptides in pancreas and in mucosa of gastrointestinal tract. There are distinct regional differences in concentrations of different endocrine peptides. GIP, gastric inhibitory peptide; GLI, glucagon‐like immunoreactivity; HPP, human pancreatic polypeptide; CCK, cholecystokinin.



Figure 10.

Mucosal concentrations of gastrin, gastric inhibitory peptide (GIP), and neurotensin in canine gut (n = 10; mean ± SE). Highest mean concentration of gastrin is in gastric antrum, and highest mean concentration of neurotensin is in ileum. High concentrations of GIP are present throughout small intestine. L. of Treitz, ligament of Treitz; IC junction, ileocolic junction.

References
 1. Adrian, T. E., G.‐L., Ferri, A. J. Bacarese‐Hamilton, H. S. Fuessl, J. M. Polak, and S. R. Bloom. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89: 1070–1077, 1985.
 2. Ahren, B., J., Alumets, M. Ericsson, J. Fahrenkrug, L. Fahrenkrug, R. Håkanson, P. Hedner, I. Loren, A. Melander, C. Rerup, and F. Sundler. VIP occurs in intrathyroidal nerves and stimulates thyroid hormone secretion. Nature Land. 287: 343–345, 1980.
 3. Ahren, B., T., Grunditz, R. Ekman, R. Håkanson, F. Sundler, and R. Uddman. Neuropeptides in the thyroid gland: distribution of substance P and gastrin/cholecystokinin and their effects on the secretion of iodothyronine and calcitonin. Endocrinology 113: 379–384, 1983.
 4. Angel, F., V. L. W., Go, P. F. Schmaltz, and J. H. Szurszewski. Vasoactive intestinal polypeptide: a putative transmitter in the canine gastric muscularis mucosa. J. Physiol. Lond. 341: 641–654, 1983.
 5. Angel, F., V. L. W., Go, and J. H. Szurszewski. Innervation of the muscularis mucosae of canine proximal colon. J. Physiol. Lond. 357: 93–108, 1984.
 6. Baldissera, F. G. A., and J. J. Holst. Glucagon‐related peptides in the human gastrointestinal mucosa. Diabetologia. 26: 223–228, 1984.
 7. Baldissera, F. G. A., J. J., Holst, S. L. Jensen, and T. Krarup. Distribution and molecular forms of peptides containing somatostatin immunodeterminants in extracts from the entire gastrointestinal tract of man and pig. Biochim. Biophys. Acta 838: 132–143, 1985.
 8. Bauer, F. E., T. E., Adrian, N. D. Christofides, G.‐L. Ferri, N. Yanaihara, J. M. Polak, and S. R. Bloom. Distribution and molecular heterogeneity of galanin in human, pig, guinea pig, and rat gastrointestinal tracts. Gastroenterology 91: 877–883, 1986.
 9. Berson, S. A., and R. S. Yalow. Nature of immunoreactive gastrin extracted from tissues of the gastrointestinal tract. Gastroenterology 60: 215–222, 1971.
 10. Bloom, S. R. Progress report: radioimmunoassay of intestinal hormones. Gut 15: 502–510, 1974.
 11. Brownstein, M., E. A., Mroz, J. S. Kruger, M. Palkovits, and S. E. Leeman. Regional distribution of substance P in the brain of the rat. Brain Res. 116: 299–305, 1976.
 12. Brum, J. M., A. A., Bove, Q. Sufan, W. Reilly, and V. L. W. Go. Action and localization of vasoactive intestinal peptide in the coronary circulation: evidence for nonadrenergic, noncholinergic coronary regulation. J. Am. Coll. Cardiol. 7: 406–413, 1986.
 13. Brum, J. M., V. L. W., Go, Q. Sufan, G. Lane, W. Reilly, and A. A. Bove. Substance P distribution and effects in the canine epicardial coronary arteries. Regul. Pept. 14: 41–55, 1986.
 14. Carlquist, M., T. J., Mcdonald, V. L. W. Go, D. Bataille, C. Johansson, and V. Mutt. Isolation and amino acid composition of human vasoactive intestinal polypeptide (VIP). Horm. Metab. Res. 14: 28–29, 1982.
 15. Christofides, N. D., M. G., Bryant, M. A. Ghatei, S. Kishimoto, A. M. J. Buchan, J. M. Polak, and S. R. Bloom. Molecular forms of motilin in the mammalian and human gut and human plasma. Gastroenterology 80: 292–300, 1981.
 16. Clague, J. R., C., Sternini, and N. C. Brecha. Localization of calcitonin gene‐related peptide‐like immunoreactivity in neurons of the rat gastrointestinal tract. Neurosci. Lett. 56: 63–68, 1985.
 17. Fahrenkrug, J., T., Bek, J. M. Lundber, and T. Hökfelt. VIP and PHI in cat neurons: co‐localization but variable tissue content possible due to differential processing. Regul. Pept. 12: 21–34, 1985.
 18. Furness, J. B., R. E., Papka, N. G. Della, M. Costa, and R. L. Eskay. Substance P‐like immunoreactivity in nerves associated with the vascular system of guinea‐pigs. Neuroscience 7: 447–459, 1982.
 19. Go, V. L. W., G. Johnson, F. Angel, and J. H. Szurszewski. Quantitative distribution of substance P and met‐enkephalin in canine gut (Abstract). Gastroenterology 82: 1069, 1982.
 20. Harty, R. F., D. G., Maico, and J. E. Mcguigan. Postreceptor inhibition of antral gastrin release by somatostatin. Gastroenterology 88: 675–680, 1985.
 21. Hökfelt, T., B., Pernow, G. Nilsson, L. Wetterberg, M. Goldstein, and S. L. Jeffcoate. Dense plexus of substance P immunoreactive nerve terminals in aminentia medialis of the primate hypothalamus. Proc. Natl. Acad. Sci. USA 75: 1013–1015, 1978.
 22. Holst, J. J. Evidence that enteroglucagon (II) is identical with the C‐terminal sequence (residues 33–69) of glicentin. Biochem. J. 207: 381–388, 1982.
 23. Hunter, J. C., J. E., Maggio, and P. W. Mantyh. Evidence for vasoactive intestinal polypeptide as a neurotransmitter in smooth muscle of the urogenital tract. Brain Res. 305: 221–229, 1984.
 24. Innes, R., F. M., Correa, G. Uhl, B. Schneider, and S. H. Snyder. Cholecystokinin octapeptide‐like immunoreactivity. Histochemical localization in rat brain. Proc. Natl. Acad. Sci. USA 76: 521–525, 1979.
 25. Itakura, T., T., Okuno, K. Nakakita, I. Kamei, Y. Naka, K. Nakai, H. Imai, N. Komai, H. Kimura, and T. Maeda. A light and electron microscopic immunohistochemical study of vasoactive intestinal polypeptide‐ and substance P‐containing nerve fibers along the cerebral blood vessels: comparison with aminergic and cholinergic nerve fibers. J. Cereb. Blood Flow Metab. 4: 407–414, 1984.
 26. Itoh, N., K.‐I., Obata, N. Yanaihara, and H. Okamoto. Human preprovasoactive intestinal polypeptide contains a novel PHI‐27‐like peptide, PHM‐27. Nature Lond. 304: 547–549, 1983.
 27. Iverson, L. L., S. D., Iverson, F. Bloom, C. Douglas, M. Brown, and W. Vale. Calcium dependent release of somatostatin and neurotensin from rat brain in vitro. Nature Lond. 273: 161–163, 1978.
 28. Jarhult, J., J., Fahrenkrug, P. Hellstrand, and R. Uddman. VIP (vasoactive intestinal polypeptide)‐immunoreactive innervation of the portal vein. Cell Tissue Res. 221: 617–624, 1982.
 29. Jorpes, E., and V. Mutt. On the biological activity and amino acid composition of secretin. Acta Chem. Scand. 15: 1790–1791, 1961.
 30. Kahn, D., G. M., Abrams, E. A. Zimmerman, R. Carraway, and S. E. Leeman. Neurotensin neurons in the rat hypothalamus: an immunohistochemical study. Endocrinology 107: 47–54, 1980.
 31. Kataoka, K., N., Mizuno, and L. A. Frohman. Regional distribution of immunoreactive neurotensin in monkey brain. Brain Res. Bull. 4: 57–60, 1979.
 32. Kaufman, B. H., T. R., Koch, J. H. Szurszewski, and V. L. W. Go. Distribution and quantitation of immunoreactive gut neuropeptides in piebald mice and their normal littermates. J. Surg. Res. 38: 479–483, 1985.
 33. Koch, T. R., J. A., Carney, and V. L. W. Go. Distribution and quantitation of gut neuropeptides in normal intestine and the inflammatory bowel diseases. Dig. Dis. Sci. 32: 369–376, 1987.
 34. Koch, T. R., S. R., Michener, J. A. Carney, and V. L. W. Go. Decreased colonic peptide histidine‐methionine in the idiopathic inflammatory bowel diseases. Dig. Dis. Sci. 33: 423–428, 1988.
 35. Ljungdahl, A., T., Hökfelt, and G. Nilsson. Distribution of substance P‐like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals. Neuroscience 3: 861–943, 1978.
 36. Lundberg, J. M., T., Hökfelt, J. Kewenter, G. Pettersson, H. Ahlman, R. Edin, A. Dahlström, G. Nilsson, L. Terenius, K. Uvnäs‐Wallensten, and S. Said. Substance P‐, VIP‐, and enkephalin‐like immunoreactivity in the human vagus nerve. Gastroenterology 77: 468–471, 1979.
 37. Lygren, I., A., Revhaug, P. G. Burhol, K.‐E. Giercksky, and T. G. Jenssen. Vasoactive intestinal polypeptide and somatostatin in leucocytes. Scand. J. Clin. Lab. Invest. 44: 347–351, 1984.
 38. Maeda, K., and L. A. Frohman. Neurotensin release by rat hypothalamic fragments in vitro. Brain Res. 210: 261–269, 1981.
 39. Marco, J., J. A., Hedo, and M. L. Villanueva. Inhibitory effect of somatostatin on human pancreatic polypeptide secretion. Life Sci. 21: 789–792, 1977.
 40. Masson, M. P. La glande endocrinaire de l'intestin chez l'homme. C. R. Acad. Sci. Paris 158: 59–61, 1914.
 41. Melander, L., T., Höfkelt, A. Rökaeus, J. Fahrenkrug, K. Tatemoto, and V. Mutt. Distribution of galanin‐like immunoreactivity in the gastro‐intestinal tract of several mammalian species. Cell Tissue Res. 239: 253–270, 1985.
 42. Mendelsohn, G., J. C., Eggleston, J. L. Olson, S. I. Said, and S. B. Baylin. Vasoactive intestinal peptide and its relationship to ganglion cell differentiation in neuroblastic tumors. Lab. Invest. 41: 144–149, 1979.
 43. Michener, S., G., Harty, D. Lucas, D. Roddy, V. Go, and T. Yaksh. Comparative identification of neuropeptides in the spinal cord of dog, cat, monkey, and sloth (Abstract). Soc. Neurosci. Abstr. 11: 348, 1985.
 44. Miller, L. J., I., Jardine, E. Weissman, V. L. W. Go, and D. Speicher. Characterization of cholecystokinin from the human brain. J. Neurochem. 43: 835–840, 1984.
 45. Moody, A. J., L., Thim, and I. Valverde. The isolation and sequencing of human gastric inhibitory peptide (GIP). FEBS Lett. 172: 142–148, 1984.
 46. Muller, J. E., E., Straus, and R. S. Yalow. Cholecystokinin and its COOH‐terminal octapeptide in the pig brain. Proc. Natl. Acad. Sci. USA 74: 3035–3037, 1977.
 47. Nilsson, G., K., Dahlberg, E. Brodin, F. Sundler, and K. Strandberg. Distribution and constrictor effects of substance P in guinea‐pig tracheobronchial tissue. In: Substance P, edited by U. S. Von Euler and B. Pernow. New York: Raven, 1977, p. 57–81. (Nobel Symp. Ser. no. 37.)
 48. Ohhashi, T., J. A., Olschowka, and D. M. Jacobowitz. Vasoactive intestinal peptide inhibitory innervation in bovine mesenteric lymphatics. Circ. Res. 53: 535–538, 1983.
 49. Pappas, T. N., H. T., Debas, A. M. Chang, and I. L. Taylor. Peptide YY release by fatty acids is sufficient to inhibit gastric emptying in dogs. Gastroenterology 91: 1386–1389, 1986.
 50. Polak, J. M., S., Bloom, I. Coulling, and A. G. E. Pearse. Immunofluorescent localisation of secretin in the canine duodenum. Gut 12: 605–610, 1971.
 51. Polak, J. M., L., Grimelius, A. G. E. Pearse, S. R. Bloom, and A. Arimura. Growth‐hormone releasing‐inhibitory hormone in gastro‐intestinal and pancreatic D cells. Lancet 1: 1220–1222, 1975.
 52. Reeve, J. R., JR., J. H. Walsh, P. Chew, B. Clark, D. Hawke, and J. E. Shively. Amino acid sequences of three bombesin‐like peptides from canine intestine extracts. J. Biol. Chem. 258: 5582–5588, 1983.
 53. Rosenfeld, M. G., J.‐J., Mermod, S. G. Amara, L. W. Swanson, P. E. Sawchenko, J. Rivier, W. W. Vale, and R. M. Evans. Production of a novel neuropeptide encoded by the calcitonin gene via tissue‐specific RNA processing. Nature Lond. 304: 129–135, 1983.
 54. Schultzberg, M., T., Hökfelt, G. Nilsson, L. Terenius, J. F. Rehfeld, M. Brown, R. Elde, M. Goldstein, and S. Said. Distribution of peptide‐ and catecholamine‐containing neurons in the gastro‐intestinal tract of rat and guinea‐pig: immunohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin, and dopamine B‐hydroxylase. Neuroscience 5: 689–744, 1980.
 55. Sjölund, K., M., Ekelund, R. Håkanson, A. J. Moody, and F. Sundler. Gastric inhibitory peptide‐like immunoreactivity in glucagon and glicentin cells: properties and origin. J. Histochem. Cytochem. 31: 811–817, 1983.
 56. Stange, E. F., A., Schneider, V. Schusdziarra, and H. Ditschuneit. Inhibitory effects of somatostatin on growth and differentiation in cultured intestinal mucosa. Horm. Metab. Res. 16: 74–78, 1984.
 57. Straus, E., and R. S. Yalow. Species specificity of cholecystokinin in gut and brain of several mammalian species. Proc. Natl. Acad. Sci. USA 75: 486–489, 1978.
 58. Sundler, F., R., Håkanson, R. A. Hammer, J. Alumets, R. Carraway, S. E. Leeman, and E. A. Zimmerman. Immunohistochemical localization of neurotensin in endocrine cells of the gut. Cell. Tissue Res. 178: 313–321, 1977.
 59. Sundler, F., E., Moghimzadeh, R. Håkanson, M. Ekelund, and P. Emson. Nerve fibers in the gut and pancreas of the rat displaying neuropeptide‐Y immunoreactivity. Cell. Tissue Res. 230: 487–493, 1983.
 60. Tafuri, W. L. Auerbach's plexus in the guinea‐pig. I. A quantitative study of the ganglia and nerve cells in the ileum, caecum and colon. Acta Anat. 31: 522–530, 1957.
 61. Tafuri, W. L., and F. Campos. Der auerbachsche plexus bei der maus. Z. Naturforsch. Teil B (Tubingen) 13: 816–819, 1958.
 62. Tatemoto, K., H., Jörnvall, T. J. Mcdonald, M. Carlquist, V. L. W. Go, C. Johansson, and V. Mutt. Isolation and primary structure of human PHI (peptide HI). FEBS Lett. 174: 258–261, 1984.
 63. Taylor, I. L. Distribution and release of peptide YY in dog measured by specific radioimmunoassay. Gastroenterology 88: 731–737, 1985.
 64. Uddman, R., J., Alumets, O. Densert, R. Håkanson, and F. Sundler. Occurence and distribution of VIP nerves in the nasal mucosa and tracheo‐bronchial wall. Acta Oto‐Laryngol. 86: 443–448, 1978.
 65. Uhl, G. R., and S. H. Snyder. Regional and subcellular distributions of brain neurotensin. Life Sci. 19: 1827–1832, 1976.
 66. Vanderhaeghen, J. J., F., Lostra, J. De May, and C. Giles. Immunohistochemical localization of cholecystokinin‐ and gastrin‐like peptides in the brain and hypophysis of the rat. Proc. Natl. Acad. Sci. USA 77: 1190–1194, 1979.
 67. Vijayen, E., and S. M. Mccann. In vivo and in vitro effects of substance P and neurotensin on gonadotropin and prolactin release. Endocrinology 105: 64–68, 1979.
 68. Vijayen, E., and S. M. Mccann. Effects of substance P and neurotensin on growth hormone and thyrotropin release in vivo and in vitro. Life Sci. 26: 321–327, 1980.
 69. Wang, J.‐Y., T. L., Yaksh, and V. L. W. Go. In vivo studies on the basal and evoked release of cholecystokinin and vasoactive intestinal polypeptide from cat cerebral cortex and periventricular structures. Brain Res. 280: 105–117, 1983.
 70. Yaksh, T. L., E. O., Abay, II, and V. L. W. Go. Studies on the localization and release of cholecystokinin and vasoactive intestinal peptide in rat and cat spinal cord. Brain Res. 242: 279–290, 1982.
 71. Yaksh, T. L., C., Schmauss, P. E. Micevych, E. O. Abay II, and V. L. W. Go. Pharmacological studies on the application, disposition, and release of neurotensin in the spinal cord. Ann. NY Acad. Sci. 400: 228–243, 1982.
 72. Yiangou, Y., N. D., Christofides, M. A. Blank, N. Yanaihara, K. Tatemoto, A. E. Bishop, J. M. Polak, and S. R. Bloom. Molecular forms of peptide histidine isoleucine‐like immunoreactivity in the gastrointestinal tract. Gastroenterology 89: 516–524, 1985.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Vay Liang W. Go, Timothy R. Koch. Distribution of Gut Peptides. Compr Physiol 2011, Supplement 17: Handbook of Physiology, The Gastrointestinal System, Neural and Endocrine Biology: 111-122. First published in print 1989. doi: 10.1002/cphy.cp060206