Comprehensive Physiology Wiley Online Library

Comparative Neuroendocrinology of Gut Peptides

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 General and Comparative Aspects of Organization
1.1 Cellular Origins
1.2 Molecular Aspects
1.3 Target Tissues
2 Experimental Approaches
3 Gastrin‐CCK
3.1 Sequences and Genes
3.2 Distribution
3.3 Biological Properties
4 VIP/Secretin Family
4.1 Sequences and Genes
4.2 VIP and PHI
4.3 Glucagon
4.4 Secretin
4.5 GIP
4.6 GH‐RF
4.7 Helodermin and Helospectins
4.8 Distribution
4.9 Biological Actions
5 Bombesins
5.1 Sequences and Genes
5.2 Distribution
5.3 Biological Properties
6 Tachykinins
6.1 Sequences and Genes
6.2 Distribution
6.3 Biological Properties
7 Pancreatic Polypeptide Family
7.1 Sequences and Genes
7.2 Distribution
7.3 Biological Properties
8 Opioid Peptides
8.1 Sequences and Genes
8.2 Distribution
8.3 Biological Properties
9 Neurotensin
9.1 Sequences
9.2 Distribution and Actions
10 Somatostatin
10.1 Sequences and Genes
10.2 Distribution
10.3 Biological Properties
11 Invertebrate Peptides
11.1 Hydra Head Activator Peptide
11.2 FMRF‐Amide
11.3 Other Molluscan Cardioactive Peptides: SCP and LCP
11.4 Proctolin
11.5 Adipokinetic Hormone
12 Overview
Figure 1. Figure 1.

Schematic representation of biosynthetic precursors of cholecystokinin (CCK), gastrin, and caerulein as deduced from cDNA sequencing. Crosshatched area indicates common pentapeptide sequence (Gly‐Trp‐Met‐Asp‐Phe); note 2 copies in preprocaerulein and 1 each in preprogastrin and preproCCK. Stippled areas indicate signal peptides; only a partial sequence is available for preprocaerulein, and signal region is thus far unidentified. Arrows indicate likely sites of cleavage in posttranslational processing; these are at pairs of basic residues in preprogastrin and preprocaerulein and at single arginine residues in proCCK; the additional action of dipeptidyl aminopeptidase is needed to generate caerulein.

Figure 2. Figure 2.

Amino acid sequences of regions of progastrin, proCCK, and procaerulein giving rise to COOH terminus of biologically active peptides. Cleavage occurs at pairs of Arg, and the adjacent Gly is a substrate for generation of Phe‐amide. Note the conserved tripeptide Ser‐Ala‐Glu in progastrin and proCCK, which forms the NH2‐terminal sequence of flanking peptide liberated by cleavage. Elsewhere there are other similarities between progastrin and proCCK but little similarity with procaerulein. The progastrin sequence is common to human and pig, and proCCK sequence is common to rat, mouse, pig, and human. Procaerulein is from Xenopus.

Figure 3. Figure 3.

Inhibition of acid secretion in the cod Gadus morhua by G‐17, given intramuscularly in doses of 1 and 5 μg · kg−1 · h−1. Sulfated G‐17, CCK‐8, and caerulein also inhibit acid secretion, but pentagastrin stimulated acid secretion.

From Holstein 172
Figure 4. Figure 4.

Protein secretion in gut lumen in protochordate Styela clava in response to sulfated (○) and unsulfated (•) CCK‐8 infused into vascular supply. Both peptides increase protein secretion into lumen and were approximately equipotent. Effects of CCK were inhibited by antagonist dibutyryl GMP. Structurally unrelated peptides, physalaemin and bombesin, also stimulate protein secretion in this preparation.

From Thorndyke and Bevis 354
Figure 5. Figure 5.

Inhibition of binding of 125I‐labeled CCK‐33 to membrane preparations of bullfrog pancreas and brain in vitro (22°C, 3 h). Sulfated G‐17 was ˜10 times less potent than sulfated CCK‐8 in both tissues, but unsulfated peptides were 100–1,000 times less active than their sulfated counterparts. There was no difference in rank order of potency in sulfated and unsulfated forms of gastrin and CCK in frog brain and pancreas. In contrast, in mammals the pancreatic receptors discriminate much more than do brain receptors for sulfated CCK‐8 compared with sulfated G‐17.

From Williams et al. 383
Figure 6. Figure 6.

Schematic representation of organization of precursor for human and rat vasoactive intestinal polypeptide (VIP)/PHI; hamster, bovine, and human glucagon; and anglerfish glucagon. Note additional glucagon‐like peptide in anglerfish and 2 in mammalian precursors.

Figure 7. Figure 7.

Amino acid sequences, aligned from NH2 terminus, of representatives of VIP‐secretin family in single‐letter notation. Sequence of porcine VIP is shown; dash indicates residue identical to that in porcine VIP. Similar sequences have been found for human, bovine, and rat VIP; guinea pig has Leu5, Thr9, Met19, and Val21. Sequence of porcine PHI shown here differs from human, which has Lys12 and Met28, and rat (Tyr10, He17). Porcine and bovine secretin have sequence shown here, but human is Glu15Gly16. Porcine glucagon is shown; similar sequences have been found in all other mammals studied except guinea pig (Glu21, Leu23, Lys24, Leu27, and Val19). Partial sequences (1–29) are shown of human growth hormone‐releasing factor (GH‐RF) (44 residues), hamster glucagon‐like peptide (GLP)‐I (37 residues), hamster GLP‐II (35 residues), porcine glucose‐dependent insulinotropic peptide (GIP) (42 residues), helospectin (35 residues), helodermin (38 residues), and anglerfish GLP (31 residues). Human GIP differs in His18 and Asn24, and bovine GIP has He37. Human GH‐RF differs from rat in 14 positions. Asterisk indicates that there are 6 residues to NH2 terminus of hamster GLP‐I that are not shown (His‐Asp‐Glu‐Phe‐Glu‐Arg). Bovine and human GLP are identical to hamster GLP‐I; bovine and human GLP‐II differ in 3 and 2 residues, respectively, from corresponding hamster peptide. Avian peptides are all of chicken origin. Duck glucagon has Thr for Ser at 16 and Ser for Asn at 28; turkey glucagon also has Ser for Asn at 28. The anglerfish glucagon I is shown; glucagon II in anglerfish differs at Thr16, Arg18, Asp21, Glu24, Lys27, and Ser29. Catfish glucagon is identical to anglerfish glucagon II. Anglerfish GLP from proglucagon I is shown. Corresponding peptide from proglucagon II differs in 7 positions. Catfish GLP differs in 7 residues from anglerfish I.

Figure 8. Figure 8.

Stimulation of flow of juice and protein output from pancreas in the urethane‐anesthetized turkey in response to intravenous injections of chicken VIP, chicken secretin, and porcine secretin. Note greater potency of VIP in stimulating flow of juice. Chicken and porcine VIP are of similar potencies. Porcine secretin is a weak stimulant of avian pancreas but strong stimulant in mammals. Chicken secretin is a weak stimulant in both birds and mammals. None of the peptides strongly stimulates protein output.

From Dimaline and Dockray 79
Figure 9. Figure 9.

Inhibition of acid secretion in cod by VIP and stimulation by bombesin.

From Holstein and Humphrey 175
Figure 10. Figure 10.

Amino acid sequence of bombesin/GRP group of peptides. In both mammals and amphibians 2 subgroups can be identified, depending on residue in penultimate position: either Leu (bombesin or GRP) or Phe (litorin and neuromedin B).

Figure 11. Figure 11.

Amino acid sequence of tachykinins from mammals, amphibian skin and gut, and salivary gland of octopus. In mammals there are 3 peptides, 2 of which (substance P and substance K) share common precursor. Substance K is also known as neuromedin L and neurokinin‐α; neurokinin B is also known as neuromedin K. Sequence Phe‐X‐Gly‐Leu‐Met‐NH2 is common to all except enterohylambatin, which has penultimate Met.

Figure 12. Figure 12.

Action of substance P (SP) in contracting trout stomach. Response is blocked by tetrodotoxin (TTX) (A) but resistant to atropine (ATR) and phentolamine (PHENT) (S); serotonin (5‐HT) also contracts stomach (C). Serotonin antagonist methysergide (METH) blocked action of both serotonin and substance P, suggesting the latter acts through serotonin release. There is also direct evidence that substance P releases serotonin from perfused trout stomach.

From Holmgren et al. 166), © 1985, with permission from Pergamon Press, Ltd
Figure 13. Figure 13.

Pancreatic polypeptide (PP) family in single‐letter notation. All the peptides are 36 residues and COOH‐terminally amidated except anglerfish PP, which is 37 and COOH‐terminal Gly. This would normally be a substrate for conversion to COOH‐terminal amide. There are 3 members in mammals (PP, NPY, and PYY). Note NPY resembles anglerfish APY and avian PP more closely than mammalian PP. Porcine NPY has Leu in place of Met at position 17. Following residues are common to all peptides: Pro5, Pro8, Gly9, Ala12, Glu15, Tyr27, Arg23, Arg35.

Figure 14. Figure 14.

Amino acid sequences of neurotensin family in single‐letter notation. In birds and mammals, there are 2 peptides, tridecepeptide and hexapeptide, that share a COOH‐terminal tetrapeptide sequence. Two peptides also occur in chicken.

Figure 15. Figure 15.

Somatostatin‐related peptides. Tetradecapeptide somatostatin‐14 corresponds to COOH‐terminus of somatostatin‐28. It is strongly conserved and occurs in identical form in teleosts, elasmobranchs, birds, and mammals. In addition, in teleosts there are several related peptides, including the urotensins II, 22‐residue somatostatin, and 28‐residue somatostatin. Angler‐fish somatostatin II is shown; asterisk indicates Hyl at position 6 from COOH terminus. In anglerfish somatostatin I, COOH‐terminal tetradecapeptide is identical to mammalian sequence, but there are 6 substitutions in first 14 positions. Sequence shown for somatostatin‐22 is that reported by Andrews et al. 12) and agrees with that deduced from cDNA sequencing 239); it differs from that reported by Oyama et al. 283) in Thr for Arg at position 5 and Arg for Ser at position 19. Several teleost urotensins II are known, including 3 in carp. Hexapeptide C‐F‐W‐K‐Y‐C is common to all of them. In all members of family, Cys residues are joined by disulfide bridge.

Figure 16. Figure 16.

Contraction of cockroach protodeum in response to serotonin (5‐HT), stomodermal nerve stimulation, and proctolin. Glutamate was only weakly active. Tetrodotoxin blocked effect of nerve stimulation but not proctolin or serotonin. However, serotonin antagonists were shown to block effect of serotonin but not proctolin or nerve stimulation, suggesting that proctolin might be neurotransmitter in this system.

From Brown 40), © 1975, with permission from Pergamon Press, Ltd


Figure 1.

Schematic representation of biosynthetic precursors of cholecystokinin (CCK), gastrin, and caerulein as deduced from cDNA sequencing. Crosshatched area indicates common pentapeptide sequence (Gly‐Trp‐Met‐Asp‐Phe); note 2 copies in preprocaerulein and 1 each in preprogastrin and preproCCK. Stippled areas indicate signal peptides; only a partial sequence is available for preprocaerulein, and signal region is thus far unidentified. Arrows indicate likely sites of cleavage in posttranslational processing; these are at pairs of basic residues in preprogastrin and preprocaerulein and at single arginine residues in proCCK; the additional action of dipeptidyl aminopeptidase is needed to generate caerulein.



Figure 2.

Amino acid sequences of regions of progastrin, proCCK, and procaerulein giving rise to COOH terminus of biologically active peptides. Cleavage occurs at pairs of Arg, and the adjacent Gly is a substrate for generation of Phe‐amide. Note the conserved tripeptide Ser‐Ala‐Glu in progastrin and proCCK, which forms the NH2‐terminal sequence of flanking peptide liberated by cleavage. Elsewhere there are other similarities between progastrin and proCCK but little similarity with procaerulein. The progastrin sequence is common to human and pig, and proCCK sequence is common to rat, mouse, pig, and human. Procaerulein is from Xenopus.



Figure 3.

Inhibition of acid secretion in the cod Gadus morhua by G‐17, given intramuscularly in doses of 1 and 5 μg · kg−1 · h−1. Sulfated G‐17, CCK‐8, and caerulein also inhibit acid secretion, but pentagastrin stimulated acid secretion.

From Holstein 172


Figure 4.

Protein secretion in gut lumen in protochordate Styela clava in response to sulfated (○) and unsulfated (•) CCK‐8 infused into vascular supply. Both peptides increase protein secretion into lumen and were approximately equipotent. Effects of CCK were inhibited by antagonist dibutyryl GMP. Structurally unrelated peptides, physalaemin and bombesin, also stimulate protein secretion in this preparation.

From Thorndyke and Bevis 354


Figure 5.

Inhibition of binding of 125I‐labeled CCK‐33 to membrane preparations of bullfrog pancreas and brain in vitro (22°C, 3 h). Sulfated G‐17 was ˜10 times less potent than sulfated CCK‐8 in both tissues, but unsulfated peptides were 100–1,000 times less active than their sulfated counterparts. There was no difference in rank order of potency in sulfated and unsulfated forms of gastrin and CCK in frog brain and pancreas. In contrast, in mammals the pancreatic receptors discriminate much more than do brain receptors for sulfated CCK‐8 compared with sulfated G‐17.

From Williams et al. 383


Figure 6.

Schematic representation of organization of precursor for human and rat vasoactive intestinal polypeptide (VIP)/PHI; hamster, bovine, and human glucagon; and anglerfish glucagon. Note additional glucagon‐like peptide in anglerfish and 2 in mammalian precursors.



Figure 7.

Amino acid sequences, aligned from NH2 terminus, of representatives of VIP‐secretin family in single‐letter notation. Sequence of porcine VIP is shown; dash indicates residue identical to that in porcine VIP. Similar sequences have been found for human, bovine, and rat VIP; guinea pig has Leu5, Thr9, Met19, and Val21. Sequence of porcine PHI shown here differs from human, which has Lys12 and Met28, and rat (Tyr10, He17). Porcine and bovine secretin have sequence shown here, but human is Glu15Gly16. Porcine glucagon is shown; similar sequences have been found in all other mammals studied except guinea pig (Glu21, Leu23, Lys24, Leu27, and Val19). Partial sequences (1–29) are shown of human growth hormone‐releasing factor (GH‐RF) (44 residues), hamster glucagon‐like peptide (GLP)‐I (37 residues), hamster GLP‐II (35 residues), porcine glucose‐dependent insulinotropic peptide (GIP) (42 residues), helospectin (35 residues), helodermin (38 residues), and anglerfish GLP (31 residues). Human GIP differs in His18 and Asn24, and bovine GIP has He37. Human GH‐RF differs from rat in 14 positions. Asterisk indicates that there are 6 residues to NH2 terminus of hamster GLP‐I that are not shown (His‐Asp‐Glu‐Phe‐Glu‐Arg). Bovine and human GLP are identical to hamster GLP‐I; bovine and human GLP‐II differ in 3 and 2 residues, respectively, from corresponding hamster peptide. Avian peptides are all of chicken origin. Duck glucagon has Thr for Ser at 16 and Ser for Asn at 28; turkey glucagon also has Ser for Asn at 28. The anglerfish glucagon I is shown; glucagon II in anglerfish differs at Thr16, Arg18, Asp21, Glu24, Lys27, and Ser29. Catfish glucagon is identical to anglerfish glucagon II. Anglerfish GLP from proglucagon I is shown. Corresponding peptide from proglucagon II differs in 7 positions. Catfish GLP differs in 7 residues from anglerfish I.



Figure 8.

Stimulation of flow of juice and protein output from pancreas in the urethane‐anesthetized turkey in response to intravenous injections of chicken VIP, chicken secretin, and porcine secretin. Note greater potency of VIP in stimulating flow of juice. Chicken and porcine VIP are of similar potencies. Porcine secretin is a weak stimulant of avian pancreas but strong stimulant in mammals. Chicken secretin is a weak stimulant in both birds and mammals. None of the peptides strongly stimulates protein output.

From Dimaline and Dockray 79


Figure 9.

Inhibition of acid secretion in cod by VIP and stimulation by bombesin.

From Holstein and Humphrey 175


Figure 10.

Amino acid sequence of bombesin/GRP group of peptides. In both mammals and amphibians 2 subgroups can be identified, depending on residue in penultimate position: either Leu (bombesin or GRP) or Phe (litorin and neuromedin B).



Figure 11.

Amino acid sequence of tachykinins from mammals, amphibian skin and gut, and salivary gland of octopus. In mammals there are 3 peptides, 2 of which (substance P and substance K) share common precursor. Substance K is also known as neuromedin L and neurokinin‐α; neurokinin B is also known as neuromedin K. Sequence Phe‐X‐Gly‐Leu‐Met‐NH2 is common to all except enterohylambatin, which has penultimate Met.



Figure 12.

Action of substance P (SP) in contracting trout stomach. Response is blocked by tetrodotoxin (TTX) (A) but resistant to atropine (ATR) and phentolamine (PHENT) (S); serotonin (5‐HT) also contracts stomach (C). Serotonin antagonist methysergide (METH) blocked action of both serotonin and substance P, suggesting the latter acts through serotonin release. There is also direct evidence that substance P releases serotonin from perfused trout stomach.

From Holmgren et al. 166), © 1985, with permission from Pergamon Press, Ltd


Figure 13.

Pancreatic polypeptide (PP) family in single‐letter notation. All the peptides are 36 residues and COOH‐terminally amidated except anglerfish PP, which is 37 and COOH‐terminal Gly. This would normally be a substrate for conversion to COOH‐terminal amide. There are 3 members in mammals (PP, NPY, and PYY). Note NPY resembles anglerfish APY and avian PP more closely than mammalian PP. Porcine NPY has Leu in place of Met at position 17. Following residues are common to all peptides: Pro5, Pro8, Gly9, Ala12, Glu15, Tyr27, Arg23, Arg35.



Figure 14.

Amino acid sequences of neurotensin family in single‐letter notation. In birds and mammals, there are 2 peptides, tridecepeptide and hexapeptide, that share a COOH‐terminal tetrapeptide sequence. Two peptides also occur in chicken.



Figure 15.

Somatostatin‐related peptides. Tetradecapeptide somatostatin‐14 corresponds to COOH‐terminus of somatostatin‐28. It is strongly conserved and occurs in identical form in teleosts, elasmobranchs, birds, and mammals. In addition, in teleosts there are several related peptides, including the urotensins II, 22‐residue somatostatin, and 28‐residue somatostatin. Angler‐fish somatostatin II is shown; asterisk indicates Hyl at position 6 from COOH terminus. In anglerfish somatostatin I, COOH‐terminal tetradecapeptide is identical to mammalian sequence, but there are 6 substitutions in first 14 positions. Sequence shown for somatostatin‐22 is that reported by Andrews et al. 12) and agrees with that deduced from cDNA sequencing 239); it differs from that reported by Oyama et al. 283) in Thr for Arg at position 5 and Arg for Ser at position 19. Several teleost urotensins II are known, including 3 in carp. Hexapeptide C‐F‐W‐K‐Y‐C is common to all of them. In all members of family, Cys residues are joined by disulfide bridge.



Figure 16.

Contraction of cockroach protodeum in response to serotonin (5‐HT), stomodermal nerve stimulation, and proctolin. Glutamate was only weakly active. Tetrodotoxin blocked effect of nerve stimulation but not proctolin or serotonin. However, serotonin antagonists were shown to block effect of serotonin but not proctolin or nerve stimulation, suggesting that proctolin might be neurotransmitter in this system.

From Brown 40), © 1975, with permission from Pergamon Press, Ltd
References
 1. Acher, R. Principles of evolution: the neural hierarchy model. In: Brain Peptides, edited by D. T. Krieger, M. J. Brownstein and J. B. Martin. New York: Wiley, 1983, p. 135–163.
 2. Adams, M. E., and M. O'Shea. Peptide cotransmitter at a neuromuscular junction. Science Wash. DC 221: 286–289, 1983.
 3. Adelson, J. W. Enterosecretory proteins. Nature Lond. 229: 321–325, 1971.
 4. Alumets, J., R., Håkanson, F. Sundler, and J. Thorell. Neuronal localisation of immunoreactive enkephalin and β‐endorphin in the earthworm. Nature Lond. 279: 805–806, 1979.
 5. Anastasi, A., G. Bertaccini, J. M. Cei, G. De Caro, V. Erspamer, M. Impicciatore, and M. Roseghini. Presence of caerulein in extracts of the skin of Leptodactylus pendactylus labyrinthicus and of Xenopus laevis. Br. J. Pharmacol. 38: 221–228, 1970.
 6. Anastasi, A., V., Erspamer, and M. Bucci. Isolation and structure of bombesin and alytesin, two analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia Basel 27: 166–167, 1971.
 7. Anastasi, A., V., Erspamer, and R. Endean. Isolation and structure of caerulein, an active decapeptide from the skin of Hyla caerulea. Experientia Basel 23: 699–670, 1967.
 8. Anastasi, A., V., Erspamer, and R. Endean. Aminoacid composition and sequence of litorin, a bombesin‐like nonapeptide from the skin of the Australian leptodactylid frog Litoria aurea. Experientia Basel 31: 510–511, 1975.
 9. Andrews, P. C., and J. F. Dixon. Isolation and structure of a peptide hormone predicted from a mRNA sequence: a second somatostatin from the catfish. J. Biol. Chem. 256: 8267–8270, 1981.
 10. Andrews, P. C., D., Hawke, J. E. Shively, and J. E. Dixon. Anglerfish preprosomatostatin II is processed to somatostatin 28 and contains hydroxylysine at residue 23. J. Biol. Chem. 259: 15021–15024, 1984.
 11. Andrews, P. C., D., Hawke, J. E. Shively, and J. E. Dixon. A nonamidated peptide homologous to porcine peptide YY and neuropeptide YY. Endocrinology 116: 2677–2681, 1985.
 12. Andrews, P. C., M. H., Pubols, M. A. Hermodson, B. T. Sheares, and J. E. Dixon. Structure of the 22‐residue somatostatin from catfish. An O‐glycosylated peptide having multiple forms. J. Biol. Chem. 259: 13267–13272, 1984.
 13. Andrews, P. C., and P. Ronner. Isolation and structures of glucagon and glucagon‐like peptide from catfish pancreas. J. Biol. Chem. 260: 3910–3914, 1985.
 14. Andries, J. C., and G. Tramu. Ultrastructural and immunohistochemical study of endocrine cells in the midgut of cockroach Blaberus craniifer (Insecta, Dictyoptera). Cell Tissue Res. 240: 323–332, 1985.
 15. Angelucci, L., M., Baldieri, and G. Linari. The action of caerulein on pancreatic and biliary secretions of the chicken. Eur. J. Pharmacol. 11: 217–232, 1970.
 16. Angelucci, L., and G. Linari. The action of caerulein on gastric secretion of the chicken. Eur. J. Pharmacol. 11: 204–216, 1970.
 17. Araki, K., S., Tachibana, M. Uchiyama, T. Nakajima, and T. Yasuhara. Isolation and structure of a new active peptide xenopsin on rat stomach strip and some biogenic amines in the skin of Xenopus laevis. Chem. Pharm. Bull. Tokyo 23: 3132–3140, 1975.
 18. Austin, T., S., Weiss, and K. Lukowiak. FMRFamide effects of spontaneous and induced contractions of the anterior gizzard in Aplysia. Can. J. Physiol. Pharmacol. 61: 949–953, 1983.
 19. Ayalon, A., R., Yazigi, P. G. Devitt, P. L. Rayford, and J. C. Thompson. Direct effect of bombesin on isolated gastric mucosa. Biochem. Biophys. Res. Commun. 99: 1390–1397, 1981.
 20. Babkin, B. P. Studies on the pancreatic secretion in skates. Biol. Bull. Woods Hole 57: 272–291, 1929.
 21. Barnard, C. S., and G. J. Dockray. Increase in arterial blood pressure in the rat in response to a new vertebrate neuropeptide, LPLRF amide, and a related molluscan peptide, FMRF amide. Regul. Pept. 8: 209–215, 1984.
 22. Barrington, E. J. W. Gastric digestion in the lower vertebrates. Biol. Rev. Camb. Philos. Soc. 17, 1–27, 1942.
 23. Barrington, E. J. W. Evolution of hormones. In: Biochemical Evolution and the Origin of Life, edited by E. Schoffeniels. Amsterdam: Elsevier, 1971, p. 174–190.
 24. Barrington, E. J. W., and G. J. Dockray. The effect of intestinal extracts of lamprey (Lampetra fluviatilis and Petromyzon marinus) on pancreatic secretion in the rat. Gen. Comp. Endocrinol. 14: 170–177, 1970.
 25. Barrington, E. J. W., and G. J. Dockray. Cholecystokinin‐pancreozymin‐like activity in the eel. (Anguilla anguilla L.). Gen. Comp. Endocrinol. 19: 80–87, 1972.
 26. Bayliss, W. M., and E. Starling. Mechanism of pancreatic secretion. J. Physiol. Lond. 28: 325–353, 1902.
 27. Bayliss, W. M., and E. Starling. On the uniformity of the pancreatic mechanism in vertebrata. J. Physiol. Lond. 29: 174–180, 1903.
 28. Bell, G. I., R., Sanchez‐Pescador, P. J. Laybourn, and R. C. Najarian. Exon duplication and divergence in the human preproglucagon gene. Nature Lond. 304: 368–371, 1983.
 29. Bell, G. I., R. F., Santerre, and G. T. Mullenbach. Hamster preproglucagon contains the sequence of two related peptides. Nature Lond. 302: 716–718, 1983.
 30. Bertaccini, G., V., Erspamer, P. Melchiorri, and N. Sopranzi. Gastrin release by bombesin in the dog. Br. J. Pharmacol. 52: 219–255, 1974.
 31. Bevis, P. J. R., and M. C. Thorndyke. A cytochemical and immunofluorescence study of endocrine cells in the gut of the ascidian Styela clava. Cell Tissue Res. 199: 139–144, 1979.
 32. Bevis, P. J. R., and M. C. Thorndyke. Stimulation of gastric enzyme secretion by porcine cholecystokinin in the ascidian Styela clava. Gen. Comp. Endocrinol. 45: 458–464, 1981.
 33. Bodenmüller, H., and H. C. Schaller. Conserved amino acid sequence of a neuropeptide, the head activator, from coelenterates to humans. Nature Lond. 293: 597–580, 1981.
 34. Boel, E., T. W., Schwartz, K. E. Norms, and N. P. Fiil. A cDNA encoding a small common precursor for human pancreatic polypeptide and pancreatic icosapeptide. EMBO J. 3: 909–912, 1984.
 35. Boel, E., J., Vuust, F. Norms, K. Norris, A. Wind, J. F. Rehfeld, and K. A. Marcker. Molecular coloning of human gastrin cDNA: evidence for evolution of gastrin by gene duplication. Proc. Natl. Acad. Sci. USA 80: 2866–2869, 1983.
 36. Boer, H. H., L. P. C., Schot, J. A. Veenstra, and D. Reichelt. Immunocytochemical identification of neural elements in the central nervous systems of a snail, some insects, a fish, and a mammal with an antiserum to the molluscan cardio‐excitatory tetrapeptide FMRF amide. Cell Tissue Res. 213: 21–27, 1980.
 37. Bonato, C., J., Eng, Y.‐C. E. Pan, M. Chang, J. D. Hulmes, and R. S. Yalow. Guinea pig little gastrin is a hexadecapeptide (Abstract). Gastroenterology 88: 1330, 1985.
 38. Bosman, F. T., C., Van Assche, A. C. N. Kruseman, S. Jackson, and P. J. Lowry. Growth hormone releasing factor (GRF) immunoreactivity in human and rat gastrointestinal tract and pancreas. J. Histochem. Cytochem. 11: 1139–1144, 1984.
 39. Brazeau, P., W., Vale, R. Burgus, N. Ling, M. Butcher, J. Rivier, and R. Guillemin. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science Wash. DC 179: 77–79, 1973.
 40. Brown, B. E. Proctolin: a peptide transmitter candidate in insects. Life Sci. 17: 1241–1251, 1975.
 41. Buchan, A. M. J., J. M., Polak, M. G. Bryant, S. R. Bloom, and A. G. E. Pearse. Vasoactive intestinal polypeptide (VIP)‐like immunoreactivity in anuran intestine. Cell Tissue Res. 216: 413–422, 1981.
 42. Buchan, A. M. J., J. M., Polak, and A. G. E. Pearse. Gut hormones in Salamandra salamandra: an immunocytochemical and electron microscopic investigation. Cell Tissue Res. 211: 331–343, 1980.
 43. Buck, S. H., E., Burcher, C. W. Shults, W. Lovenberg, and T. L. O'Donohue. Novel pharmacology of substance K binding sites: a third type of tachykinin receptor. Science Wash. DC 226: 987–989, 1984.
 44. Buffa, R., E., Solcia, E. Magnoni, G. Rindi, L. Negm, and P. Melchiorri. Immunohistochemical demonstration of a dermorphin‐like peptide in the rat brain. Histochemistry 76: 273–276, 1982.
 45. Buffa, R., I., Solovieva, R. Fiocca, S. Giorgino, G. Rindi, E. Solcia, T. Mochizuchi, C. Yanaihara, and N. Yanaihara. Localization of bombesin and GRP (gastrin releasing peptide) sequences in gut nerves or endocrine cells. Histochemistry 76: 457–467, 1982.
 46. Bunnett, N. W., J. R. Reeve, JR., R. Dimaline, J. E. Shively, D. Hawke, and J. H. Walsh. The isolation and sequence analysis of vasoactive intestinal peptide from a ganglioneu‐roblastoma. J. Clin. Endocrinol. Metab. 59: 1133–1137, 1984.
 47. Burhol, P. G. Gastric secretory relationship between H+ and pepsin in fistula chickens. Scand. J. Gastroenterol. 8: 283–288, 1973.
 48. Burhol, P. G. Gastric stimulation by intravenous injection of cholecystokinin and secretin in fistula chickens. Scand. J. Gastroenterol. 9: 49–53, 1974.
 49. Burhol, P. G., and B. I. Hirschowitz. Single subcutaneous doses of histamine and pentagastrin in gastric fistula chickens. Am. J. Physiol. 218: 1671–1675, 1970.
 50. Camus, M. L. Sur quelques conditions de production et d'action de la secretine. C. R. Soc. Biol. 54: 442–444, 1902.
 51. Cahlquist, M., H., Jörnvall, W.‐G. Forssman, L. Thulin, C. Johansson, and V. Mutt. Human secretin is not identical to the porcine/bovine hormone. IRCS Med. Sci. Libr. Compend. 13: 217–218, 1985.
 52. Carlquist, M., H., Jörnvall, and V. Mutt. Isolation and amino acid sequence of bovine secretion. FEBS Lett. 127: 71–74, 1981.
 53. Carlquist, M., R. Kaiser, K. Tatemoto, H. Jörnvall, and V. Mutt. A novel form of the polypeptide PHI isolated in high yield from bovine upper intestine. Relationships to other peptides of the glucagon‐secretin family. Eur. J. Biochem. 144: 243–247, 1984.
 54. Carlquist, M., M., Maletti, H. Jörnvall, and V. Mutt. A novel form of gastric inhibitory polypeptide (GIP) isolated from bovine intestine using a radioreceptor assay. Eur. J. Biochem. 145: 573–577, 1984.
 55. Carlquist, M., V., Mutt, and H. Jörnvall. Isolation and characterization of bovine vasoactive intestinal peptide (VIP). FEBS Lett. 108: 457–460, 1979.
 56. Carraway, R., and Y. M. Bhatnagar. Isolation, structure and biologic activity of chicken intestinal neurotensin. Peptides Fayetteville 1: 167–174, 1980.
 57. Carraway, R. E., and C. F. Ferris. Isolation, biological and chemical characterization, and synthesis of a neurotensin‐related hexapeptide from chicken intestine. J. Biol. Chem. 258: 2475–2479, 1985.
 58. Carraway, R., and S. E. Leeman. The amino acid sequence of a hypothalamic peptide, neurotensin. J. Biol. Chem. 250: 1907–1911, 1975.
 59. Carraway, R., S. E. Ruane, G. E. Feurle, and S. Taylor. Amphibian neurotensin (NT) is not xenopsin (XP): dual presence of NT‐like and XP‐like peptides in various Amphibia. Endocrinology 110: 1094–1101, 1982.
 60. Carraway, R., S. E., Ruane, and H. R. Kim. Distribution and immunochemical character of neurotensin‐like material in representative vertebrates and invertebrates: apparent conservation of the COOH‐terminal region during evolution. Peptides Fayetteville 3: 115–123, 1982.
 61. Carraway, R. E., S. E., Ruane, and R. S. Ritsema. Radioimmunoassay for Lys8, Asn9, neurotensin 8–13: tissue and subcellular distribution of immunoreactivity in chickens. Peptides Fayetteville 4: 111–116, 1983.
 62. Chan, D. K. O., R., Gunther, and H. A. Bern. The isolated trout rectum bioassay for urotensin II: assessment for specificity and precision. Gen. Comp. Endocrinol. 34: 347–359, 1978.
 63. Comb, M., P. H., Seeburg, J. Adelman, L. Eiden, and E. Herbert. Primary structure of the human Met‐ and Leu‐enkephalin precursor and its mRNA. Nature Lond. 295: 663–666, 1982.
 64. Cone, R. I., and A. Goldstein. A dynorphin‐like opioid in the central nervous system of an amphibian. Proc. Natl. Acad. Sci. USA 79: 3345–3349, 1982.
 65. Conlon, J. M., D. V., Agoston, and L. Thim. An elasmobranchian somatostatin: primary structure and tissue distribution in Torpedo marmorata. Gen. Comp. Endocrinol. 60: 406–413, 1985.
 66. Conlon, J. M., M., Ballmann, and R. Lamberts. Regulatory peptides (glucagon, somatostatin, substance P and VIP) in brain and gastrointestinal tract of Ambystoma mexicanum. Gen. Comp. Endocrinol. 58: 150–158, 1985.
 67. Conlon, J. M., C. F. Deacon, L. O'Toole, and L. Thim. Scyliorhinin I and II: two novel tachykinins from dogfish gut. FEBS Lett. 200: 111–116, 1986.
 68. Conlon, J. M., H. F., Hansen, and T. W. Schwartz. Primary structure of glucagon and a partial sequence of oxynto modulin (glucagon 37) from the guinea pig. Regul. Pept. 11: 309–320, 1985.
 69. Conlon, J. M., H. F., Hansen, and T. W. Schwartz. A truncated glucagon‐like peptide I from Torpedo pancreas. Regul. Pept. 13: 94, 1985.
 70. Conlon, J. M., L. O'Toole, and L. Thim. Primary structure of glucagon from the gut of the common dogfish (Scyliorhinus canicula). FEBS Lett. 214: 50–56, 1987.
 71. Conlon, J. M., and L. Thim. Primary structure of glucagon from an elasmobranch fish, Torpedo marmorata. Gen. Comp. Endocrinol. 60: 398–405, 1985.
 72. Costa, M., J. B., Furness, N. Yanaihara, C. Yanaihara, and T. W. Moody. Distribution and projections of neurons with immunoreactivity for both gastrin‐releasing peptide and bombesin in the guinea‐pig small intestine. Cell Tissue Res. 235: 285–293, 1984.
 73. Cutz, E., W., Chan, and N. S. Track. Bombesin, calcitonin and Leu‐enkephalin immunoreactivity in endocrine cells of human lung. Experientia Basel 37: 765–767, 1981.
 74. De Haën, C., E. Swanson, and D. C. Teller. The evolutionary origin of proinsulin. Amino acid sequence homology with the trypsin‐related serine proteases detected and evaluated by new statistical methods. J. Mol. Biol. 106: 639–661, 1976.
 75. Denuce, J. M. Do crustaceans react to mammalian gastrointestinal hormones? Preliminary experiments with cholecystokinin‐pancreozymin (CCK‐PZ) and secretin. Arch. Int. Physiol. Biochim. 90: B20–B21, 1982.
 76. Deschenes, R. J., L. J., Lorenz, R. S. Haun, B. A. Roos, K. J. Collier, and J. E. Dixon. Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin. Proc. Natl. Acad. Sci. USA 81: 726–730, 1984.
 77. Deschenes, R. J., S. V. L., Narayana, P. Argos, and J. E. Dixon. Primary structural comparison of the preprohormones cholecystokinin and gastrin. FEBS Lett. 182: 135–138, 1985.
 78. Dhainaut‐Courtois, N., M.‐P., Dubois, G. Tramu, and M. Masson. Occurrence and coexistence in Nereis diversicolor O. F. Müller (Annelida Polychaeta) of substances immunologically related to vertebrate neuropeptides. Cell Tissue Res. 242: 97–108, 1985.
 79. Dhainaut‐Courtois, N., G., Tramu, R. Marcel, J. Malecha, M. Verger‐Bocquet, J. C. Andries, M. Masson, L. Selloum, G. Belemtougri, and J. C. Beauvillain. Cholecystokinin in the nervous systems of invertebrates and protochordates: immunohistochemical localization of a cholecystokinin‐8‐like substance in annelids and insects. Ann. NY Acad. Sci. 448: 167–187, 1985.
 80. Dimaline, R. Is caerulein amphibian CCK? Peptides Fayetteville 4: 457–462, 1983.
 81. Dimaline, R. Isolation and characterization of gastrin related peptides from the chicken. Dig. Dis. Sci. 29, Suppl: 22S, 1984.
 82. Dimaline, R., and G. J. Dockray. Potent stimulation of the avian exocrine pancreas by porcine and chicken vasoactive intestinal peptide. J. Physiol. Lond. 294: 153–163, 1979.
 83. Dimaline, R., and G. J. Dockray. Actions of a new peptide from porcine intestine (PHI) on pancreatic secretion in the rat and turkey. Life Sci. 27: 1947–1951, 1980.
 84. Dimaline, R., B. B., Rawdon, S. Brandes, A. Andrew, and J. P. Loveridge. Biologically active gastrin/CCK‐related peptides in the stomach of a reptile, Crocodylus niloticus; identified and characterized by immunochemical methods. Peptides Fayetteville 3: 977–984, 1982.
 85. Dimaline, R., J. R. Reeve, JR., J. E. Shively, and D. Hawke. Isolation and characterization of rat vasoactive intestinal peptide. Peptides Fayetteville 5: 183–187, 1984.
 86. Dimaline, R., J., Young, and H. Gregory. Isolation from chicken antrum, and primary amino acid sequence of a novel 36–residue peptide of the gastrin/CCK family. FEBS Lett. 205: 318–322, 1986.
 87. Dimaline, R., J. Young, D. Thwaites, C. M. Lee, T. J. Shuttleworth, and M. C. Thorndyke. A novel VIP‐like peptide from elasmobranch intestine has full affinity for mammalian pancreatic VIP receptors. Biochim. Biophys. Acta. 930: 97–100, 1987.
 88. Doble, K. E., and M. J. Greenberg. The clam rectum is sensitive to FMRF amide, the enkephalins and their common analogs. Neuropeptides 2: 157–167, 1982.
 89. Dockray, G. J. The action of secretin, cholecystokinin‐pan‐creozymin and caerulein on pancreatic secretion in the rat. J. Physiol. Lond. 225: 679–692, 1972.
 90. Dockray, G. J. Vasoactive intestinal peptide: secretin‐like action on the avian pancreas. Experientia Basel 29: 1510–1511, 1973.
 91. Dockray, G. J. Extraction of a secretin‐like factor from the intestines of pike (Esox lucius). Gen. Comp. Endocrinol. 23: 340–347, 1974.
 92. Dockray, G. J. Comparison of the actions of porcine secretin and extracts of chicken duodenum on pancreatic exocrine secretion in the cat and turkey. J. Physiol. Lond. 244: 625–637, 1975.
 93. Dockray, G. J. Molecular evolution of gut hormones: application of comparative studies on the regulation of digestion. Gastroenterology 72: 344–358, 1977.
 94. Dockray, G. J. Cholecystokinin‐like peptides in avian brain and gut. Experientia Basel 35: 628–629, 1979.
 95. Dockray, G. J. Comparative biochemistry and physiology of gut hormones. Annu. Rev. Physiol. 41: 83–95, 1979.
 96. Dockray, G. J. Physiology of enteric neuropeptides. In: Physiology of the Gastrointestinal Tract (2nd ed.), edited by L. R. Johnson. New York: Raven, 1987, vol. 1, p. 41–66.
 97. Dockray, G. J., H., Duve, and A. Thorpe. Immunochemical characterization of gastrin/cholecystokinin‐like peptides in the brain of the blowfly, Calliphora vomitoria. Gen. Comp. Endocrinol. 45: 491–496, 1981.
 98. Dockray, G. J., R. A., Gregory, J. B. Hutchison, J. I. Harris, and M. R. Runswick. Isolation, structure and biological activity of two cholecystokinin octapeptides from sheep brain. Nature Lond. 274: 711–713, 1978.
 99. Dockray, G. J., and C. R. Hopkins. Caerulein secretion by dermal glands in Xenopus laevis. J. Cell Biol. 64: 724–733, 1975.
 100. Dockray, G. J., J. R. Reeve, JR., J. Shively, R. J. Gayton, and C. S. Barnard. A novel active pentapeptide from chicken brain identified by antibodies to FMRF amide. Nature Lond. 305: 328–330, 1983.
 101. Dockray, G. J., C., Vaillant, and J. H. Walsh. The neuronal origin of bombesin‐like immunoreactivity in the rat gastrointestinal tract. Neuroscience 4: 1561–1568, 1979.
 102. Dockray, G. J., C., Vaillant, and R. G. Williams. New vertebrate brain‐gut peptide related to a molluscan neuropeptide and an opioid peptide. Nature Lond. 293: 656–657, 1981.
 103. Doolittle, R. F. Similar amino acid sequences: chance or common ancestry? Science Wash. DC 214: 149–159, 1981.
 104. Du, B.‐H., J., Eng, J. D. Hulmes, M. Chang, Y.‐C. E. Pan, and R. S. Yalow. Guinea pig has a unique mammalian VIP. Biochem. Biophys. Res. Commun. 128: 1093–1098, 1985.
 105. Duve, H., and A. Thorpe. Gastrin/cholecystokinin (CCK)‐like immunoreactive neurons in the brain of the blowfly, Calliphora erythrocephala (Diptera). Gen. Comp. Endocrinol. 43: 381–391, 1981.
 106. Duve, H., and A. Thorpe. The distribution of pancreatic polypeptide in the nervous system and gut of the blowfly, Calliphora vomitoria (Diptera). Cell Tissue Res. 227: 67–77, 1982.
 107. Duve, H., and A. Thorpe. Immunocytochemical mapping of gastrin/CCK‐like peptides in the neuroendocrine system of the blowfly Calliphora vomitoria (Diptera). Cell Tissue Res. 237: 309–320, 1984.
 108. Duve, H., A., Thorpe, N. R. Lazarus, and P. J. Lowry. A neuropeptide of the blowfly Calliphora vomitoria with an amino acid composition homologous with vertebrate pancreatic polypeptide. Biochem. J. 201: 429–432, 1982.
 109. Duve, H., A., Thorpe, and N. J. Strausfeld. Cobalt‐immunocytochemical identification of peptidergic neurons in Calliphora innervating central and peripheral targets. J. Neurocytol. 12: 847–861, 1983.
 110. Eckert, M., H., Agricola, and H. Penzlin. Immunocytochemical identification of proctolin‐like immunoreactivity in the terminal glanglion and hindgut of the cockroach Periplaneta americana (L.). Cell Tissue Res. 217: 633–645, 1981.
 111. El‐Salhy, M. Immunocytochemical investigation of the gastroenteropancreatic (GEP) neurohormonal peptides in the pancreas and gastrointestinal tract of the dogfish Squalus acanthias. Histochemistry 80: 193–205, 1984.
 112. El‐Sahly, M., R., Abou‐El‐Ela, S. Falkmer, L. Grimelius, and E. Wilander. Immunohistochemical evidence of gastro‐entero‐pancreatic neurohormonal peptides of vertebrate type in the nervous system of the larva of a dipteran insect, the hoverfly, Eristalis aeneus. Regul. Pept. 1: 187–204, 1980.
 113. El‐Sahly, M., and L. Grimelius. The endocrine cells of the gastrointestinal mucosa of a squamate reptile, the grass lizard (Mabuya quinquetaeniata). A histological and immunohistochemical study. Biomed. Res. 2: 639–658, 1981.
 114. El‐Salhy, M., L., Grimelius, J. M. Lundberg, K. Tatemoto, and L. Terenius. Immunocytochemical evidence for the occurrence of PYY, a newly isolated gut polypeptide, in endocrine cells in the gut of amphibians and reptiles. Biomed. Res. 3: 303–306, 1982.
 115. El‐Salhy, M., L., Grimelius, E. Wilander, G. Abu‐Sinna, and G. Lundqvist. Histological and immunohistochemical studies of endocrine cells of the gastrointestinal mucosa of the toad (Bufo regularis). Histochemistry 71: 53–65, 1981.
 116. El‐Salhy, M., E., Wilander, L. Grimelius, L. Terenius, J. M. Lundberg, and K. Tatemoto. The distribution of polypeptide YY (PYY)‐ and pancreatic polypeptide (PP)‐immunoreactive cells in the domestic fowl. Histochemistry 75: 25–30, 1982.
 117. Endo, Y., T., Iwanaga, T. Fujita, and J. Nishiitsutsuji‐Uwo. Localization of pancreatic polypeptide (PP)‐like immunoreactivity in the central and visceral nervous systems of the cockroach Periplaneta. Cell Tissue Res. 227: 1–9, 1982.
 118. Engelhardt, R.‐P., N., Dhainaut‐Courtois, and G. Tramu. Immunohistochemical demonstration of a CCK‐like peptide in the nervous system of a marine annelid worm, Nereis diversicolor O. F. Müller. Cell Tissue Res. 227: 401–411, 1982.
 119. Erspamer, V. Amphibian skin peptides in mammals—looking ahead. Trends Neurosci. 6: 200–201, 1983.
 120. Erspamer, G. F., V., Erspamer, and D. Piccinelli. Parallel‐bioassay of physalaemin and kassinin, a tachykinin dodecapeptide from the skin of the African frog Kassina senegalensis. Naunyn‐Schmiedeberg's Arch. Pharmacol. 311: 61–65, 1980.
 121. Erspamer, V., and A. Anastasi. Structure and pharmacological actions of eledoisin, the active endecapeptide of the posterior salivary glands of Eledone. Experientia Basel 18: 58–59, 1962.
 122. Erspamer, V., A., Anastasi, G. Bertaccini, and J. M. Cei. Structure and pharmacological actions of physalaemin, the main active polypeptide of the skin of Physalaemus fuscu‐maculatus. Experientia Basel 20: 489–490, 1964.
 123. Von Euler, U. S., and E. ÖStlund. Occurrence of a substance P‐like polypeptide in fish intestine and brain. Br. J. Pharmacol. 11: 323–325, 1956.
 124. Eysselein, V. E., J. R. Reeve, JR., J. E. Shively, C. Miller, and J. H. Walsh. Isolation of a large cholecystokinin precursor from canine brain. Proc. Natl. Acad. Sci. USA 81: 6565–6568, 1984.
 125. Fahrenkrug, J., T., Bek, J. M. Lundberg, and T. Hökfelt. VIP and PHI in cat neurons: co‐localization but variable tissue content possible due to differential processing. Regul. Pept. 12: 21–34, 1985.
 126. Fahrenkrug, J., O. B. De Schaffalitzky, Muckadell, J. J. Holst, and S. Lindkaer Jensen. Vasoactive intestinal polypeptide in vagally mediated pancreatic secretion of fluid and HCO3. Am. J. Physiol. 237 (Endocrinol. Metab. Gastrointest. Physiol. 6): E535–E540, 1979.
 127. Falkmer, S., R., Ebert, R. Arnold, and W. Creutzfeldt. Some phylogenetic aspects on the enteroinsular axis with particular regard to the appearance of the gastric inhibitory polypeptide. Front. Horm. Res. 7: 1–6, 1980.
 128. Falkmer, S., R. P., Elde, C. Hellerström, and B. Petersson. Phylogenetic aspects of somatostatin in the gastroentero‐pancreatic (GEP) endocrine system. Metabolism 272: 1193–1196, 1978.
 129. Falkmer, S., M., El‐Salhy, and M. Titlbach. Evolution of the neuroendocrine system in vertebrates: a review with particular reference to the phylogeny and postnatal maturation of the islet parenchyma. In: Evolution and Tumour Pathology of the Neuroendocrine System, edited by S. Falkmer, R. Håkanson and F. Sundler. Amsterdam: Elsevier, 1984, p. 59–87.
 130. Falkmer, S., J., Fahrenkrug, J. Alumets, R. Hakanson, and F. Sundler. Vasoactive intestinal polypeptide (VIP) in epithelial cells of the gut mucosa of an elasmobranchian cartilaginous fish, the Ray. Endocrinol. Jpn. 1: 31–35, 1980.
 131. Falkmer, S., R. Håkanson and F. Sundler (editors). Evolution and Tumour Pathology of the Neuroendocrine System Amsterdam: Elsevier, 1984.
 132. Falkmer, S., and S. Van Noorden. Ontogeny and phylogeny of the glucagon cell. In: Handbook of Experimental Pharmacology. Glucagon I, edited by P. Lefebvre. New York: Springer‐Verlag, 1983, vol. 66, pt. 1, p. 81–119.
 133. Feurle, G. E., H., Bodenmuller, and I. Baca. The neuropeptide head activator stimulates amylase release from rat pancreas in vitro. Neurosci. Lett. 38: 287–289, 1983.
 134. Feurle, G. E., R. E., Carraway, E. Rix, and W. Knauf. Evidence for the presence of xenopsin‐related peptide(s) in the gastric mucosa of mammals. J. Clin. Invest. 76: 156–162, 1985.
 135. Fletcher, D. J., D. F., Trent, and G. C. Weir. Catfish somatostatin is unique to piscine tissues. Regul. Pept. 5: 181–187, 1983.
 136. Fouchereau‐Peron, M., M., Laburthe, J. Besson, G. Rosselin, and Y. Le Gal. Characterization of the vasoactive intestinal polypeptide (VIP) in the gut of fishes. Comp. Biochem. Physiol. A Comp. Physiol. 65: 489–492, 1981.
 137. Fritsch, H. A. R., S., Van Noorden, and A. G. E. Pearse. Localisation of somatostatin‐ and gastrin‐like immunoreactivity in the gastrointestinal tract of Ciona intestinalis L. Cell Tissue Res. 186: 181–185, 1978.
 138. Fritsch, H. A. R., S., Van Noorden, and A. G. E. Pearse. Gastrointestinal and neurohormonal peptides in the alimentary tract and cerebral complex of Ciona intestinalis (Ascidiaceae). Cell Tissue Res. 223: 369–402, 1982.
 139. Fujita, T., R., Yui, T. Iwanaga, J. Nishiitsutsuji‐Uwo, Y. Endo, and N. Yanaihara. Evolutionary aspects of “brain‐gut peptides”: an immunohistochemical study. Peptides Fayetteville 2, Suppl. 2: 123–131, 1981.
 140. Gafvelin, G., M., Carlquist, and V. Mutt. A proform of secretin with high secretin‐like bioactivity. FEBS Lett. 184: 347–352, 1985.
 141. Gater, S., and M. Balls. Amphibian pancreas function in long term organ culture. Gen. Comp. Endocrinol. 33: 82–93, 1977.
 142. Gayton, R. J. Mammalian neuronal actions of FMRFamide and the structurally related opioid Met‐enkephalin‐Arg6Phe7. Nature Lond. 298: 275–276, 1982.
 143. Gesser, B. P., and L.‐I. Larsson. Changes from enkephalin‐like to gastrin/cholecystokinin‐like immunoreactivity in snail neurons. J. Neurosci. 5: 1412–1417, 1985.
 144. Glover, I. D., D. J., Barlow, J. E. Pitts, S. P. Wood, I. J. Tickle, T. L. Blundell, K. Tatemoto, J. R. Kimmel, A. Wollmer, W. Strassburger, and Y.‐S. Zhang. Conformational studies on the pancreatic polypeptide hormone family. Eur. J. Biochem. 142: 379–385, 1985.
 145. Goodman, R. H., J. W., Jacobs, W. W. Chin, P. K. Lund, P. C. Dee, and J. F. Habener. Nucleotide sequence of a cloned structural gene coding for a precursor of pancreatic somatostatin. Proc. Natl. Acad. Sci. USA 77: 5869–5873, 1980.
 146. Goodman, R. H., J. W., Jacobs, P. C. Dee, and J. F. Habener. Somatostatin‐28 encoded in a cloned cDNA obtained from a rat medullary thyroid carcinoma. J. Biol. Chem. 257: 1156–1159, 1982.
 147. Greenberg, M. J., and D. A. Price. Invertebrate neuropeptides: native and naturalized. Annu. Rev. Physiol. 45: 271–88, 1983.
 148. Greenberg, M. J., D. A., Price, and H. K. Lehman. FMRFamide‐like peptides of molluscs and vertebrates: distribution and evidence of function. In: Neurosecretion and the Biology of Neuropeptides, edited by H. Kobayashi, H. A. Bern and A. Urano. New York: Springer‐Verlag, 1985, p. 370–376.
 149. Grimmelikhuijzen, C. J. P. Peptides in the nervous system of coelenterates. In: Evolution and Tumour Pathology of the Neuroendocrine System, edited by S. Falkmer, R. Håkanson and F. Sundler. Amsterdam: Elsevier, 1984, p. 39–58.
 150. Grimmelikhuijzen, C. J. P. Antisera to the sequence Arg‐Phe‐amide visualize neuronal centralization in hydroid polyps. Cell Tissue Res. 241: 171–182, 1985.
 151. Grimmelikhuijzen, C. J. P., G. J., Dockray, and L. P. C. Schot. FMRFamide‐like immunoreactivity in the nervous system of Hydra. Histochemistry 73: 499–508, 1982.
 152. Grimmelikhuijzen, C. J. P., G. J., Dockray, and N. Yanaihara. Bombesin‐like immunoreactivity in the nervous system of Hydra. Histochemistry 73: 171–180, 1981.
 153. Grimmelikhuijzen, C. J. P., F., Sundler, and J. F. Rehfeld. Gastrin/CCK‐like immunoreactivity in the nervous system of coelenterates. Histochemistry 69: 61–68, 1980.
 154. Gubler, U., A. O., Chua, B. J. Hoffman, K. J. Collier, and J. Eng. Cloned cDNA to cholecystokinin mRNA predicts an identical preprocholecystokinin in pig brain and gut. Proc. Natl. Acad. Sci. USA 81: 4307–4310, 1984.
 155. Gubler, U., P., Seeburg, B. J. Hoffman, L. P. Gage, and S. Udenfriend. Molecular cloning establishes proenkephalin as a precursor of enkephalin‐containing peptides. Nature Lond. 295: 206–208, 1982.
 156. Guillemin, R., P., Brazeau, P. Bohlen, F. Esch, N. Ling, and W. B. Wehrenberg. Growth hormone‐releasing factor from a human pancreatic tumor that caused acromegaly. Science Wash. DC 218: 585–587, 1982.
 157. Gustafsson, M. K. S., M. C., Wikgren, T. J. Karhi, and L. P. C. Schot. Immunocytochemical demonstration of neuropeptides and serotonin in the tapeworm Diphyllobothrium dendriticum. Cell Tissue Res. 240: 255–260, 1985.
 158. Hales, C. N. Proteolysis and the evolutionary origin of polypeptide hormones. FEBS Lett. 94: 10–16, 1978.
 159. Hales, C. N. Lysosomes and prohormone activation. Nature Lond. 314: 20, 1985.
 160. Hansen, B. L., G. N., Hansen, and B. Scharrer. Immunoreactive material resembling vertebrate neuropeptides in the corpus cardiacum and corpus allatum of the insect Leucophaea maderae. Cell Tissue Res. 225: 319–329, 1982.
 161. Hansen, D. Evidence of a gastrin‐like substance in Rhinobatus productus. Comp. Biochem. Physiol. C. Comp. Pharmacol. 52: 61–63, 1975.
 162. Haslewood, G. A. D. Evolution and bile salts. In: Handbook of Physiology. The Alimentary Canal, edited by C. Code. Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. V, chapt. III, p. 2375–2390.
 163. Hazelwood, R. L., S. D., Turner, J. R. Kimmel, and H. G. Pollock. Spectrum effects of a new polypeptide (third hormone?) isolated from the chicken pancreas. Gen. Comp. Endocrinol. 21: 485–497, 1973.
 164. Hobart, P., R., Crawford, L.‐P. Shen, R. Pictet, and W. J. Rutter. Cloning and sequence analysis of cDNAs encoding two distinct somatostatin precursors found in the endocrine pancreas of anglerfish. Nature Lond. 288: 137–141, 1980.
 165. Hoffmann, W., T. C., Bach, H. Seliger, and G. Kreil. Biosynthesis of caerulein in the skin of Xenopus laevis: partial sequences of precursors as deduced from cDNA clones. EMBO J. 2: 111–114, 1983.
 166. Hoffmann, W., K., Richter, A. Hutticher, and G. Kreil. Biosynthesis of peptides in amphibian skin. In: Biochemical and Clinical Aspects of Neuropeptides: Synthesis, Processing, and Gene Structure, edited by G. Koch and D. Richter. London: Academic, 1983, p. 175–183.
 167. Hogben, C. A. M. Response of the isolated dogfish gastric mucosa to histamine. Proc. Soc. Exp. Biol. Med. 124: 890–893, 1966.
 168. Holmgren, S. The effects of putative non‐adrenergic, non‐cholinergic autonomic transmitters on isolated strips from the stomach of the rainbow trout, Salmo gairdneri. Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol. 74: 229–238, 1983.
 169. Holmgren, S. Substance P in the gastrointestinal tract of Squalus acanthias. Mol. Physiol. 8: 119–130, 1985.
 170. Holmgren, S., D. J., Grove, and S. Nilsson. Substance P acts by releasing 5‐hydroxytryptamine from enteric neurons in the stomach of the rainbow trout, Salmo gairdneri. Neuroscience 14: 683–693, 1985.
 171. Holmgren, S., J., Jensen, A.‐C. Jönsson, K. Lundin, and S. Nilsson. Neuropeptides in the gastrointestinal canal of Necturus maculosus: distribution and effects on motility. Cell Tissue Res. 241: 565–580, 1985.
 172. Holmgren, S., and S. Nilsson. Bombesin‐, gastrin/CCK‐, 5‐hydroxytryptamine‐, neurotensin‐, somatostatin‐, and VIP‐like immunoreactivity and catecholamine fluorescence in the gut of the elasmobranch, Squalus acanthias. Cell Tissue Res. 234: 595–618, 1983.
 173. Holmgren, S., and S. Nilsson. VIP‐, bombesin‐, and neurotensin‐like immunoreactivity in neurons of the gut of ho‐lostean fish, Lepisosteus platyrhincus. Acta Zool. Stockh. 64: 25–32, 1983.
 174. Holmgren, S., C., Vaillant, and R. Dimaline. VIP‐, substance P‐, gastrin/CCK‐, bombesin‐, somatostatin‐, and glucagon‐like immunoreactivities in the gut of the rainbow trout, Salmo gairdneri. Cell Tissue Res. 223: 141–153, 1982.
 175. Holmquist, A. L., G. J., Dockray, G. L. Rosenquist, and J. H. Walsh. Immunochemical characterization of cholecystokinin‐like peptides in lamprey gut and brain. Gen. Comp. Endocrinol. 37: 474–481, 1979.
 176. Holstein, B. Inhibition of gastric acid secretion in the Atlantic cod, Gadus morhua, by sulphated and desulphated gastrin, caerulein, and CCK‐octapeptide. Acta Physiol. Scand. 114: 453–459, 1982.
 177. Holstein, B. Effect of vasoactive intestinal polypeptide on gastric acid secretion and mucosal blood flow in the Atlantic cod, Gadus morhua. Gen. Comp. Endocrinol. 52: 471–473, 1983.
 178. Holstein, B., and C. Cederberg. Effects of tachykinins on gastric acid and pepsin secretion and on gastric outflow in the Atlantic cod, Gadus morhua. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G309–G315, 1986.
 179. Holstein, B., and C. S. Humphrey. Stimulation of gastric acid secretion and suppression of VIP‐like immunoreactivity by bombesin in the Atlantic codfish, Gadus morhua. Acta Physiol. Scand. 109: 217–223, 1980.
 180. Hooper, S. L., and E. Marder. Modulation of a central pattern generator by two neuropeptides, proctolin and FMRF amide. Brain Res. 305: 186–191, 1984.
 181. Hoshino, M., C., Yanaihara, Y.‐M. Hong, S. Kishida, Y. Katsumaru, A. Vandermeers, M.‐C. Vandermeers‐Piret, P. Robberecht, J. Christophe, and N. Yanaihara. Primary structure of helodermin, a VIP‐secretin‐like peptide isolated from Gila monster venom. FEBS Lett. 178: 233–239, 1984.
 182. Howells, R. D., D. L., Kilpatrick, R. Bhatt, J. J. Monahan, M. Poonian, and S. Udenfriend. Molecular cloning and sequence determination of rat preproenkephalin cDNA: sensitive probe for studying transcriptional changes in rat tissues. Proc. Natl. Acad. Sci. USA 81: 7651–7655, 1984.
 183. Hughes, J., T. W., Smith, H. W. Kosterlitz, L. A. Fothergill, B. A. Morgan, and H. R. Morris. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature Lond. 258: 577–579, 1975.
 184. Hunkapiller, M., S., Kent, M. Caruthers, W. Dreyer, J. Firca, C. Giffin, S. Horvath, T. Hunkapiller, P. Tempst, and L. Hood. A microchemical facility for the analysis and synthesis of genes and proteins. Nature Lond. 310: 105–111, 1984.
 185. Ichikawa, T. The chemistry of urotensins: present status. In: Neurosecretion and the Biology of Neuropeptides, edited by H. Kobayashi, H. A. Bern and A. Urano. New York: Springer‐Verlag, 1985, p. 445–450.
 186. Ito, R., K., Sato, T. Helmer, G. Jay, and K. Agarwal. Structural analysis of the gene encoding human gastrin: the large intron contains an Alu sequence. Proc. Natl. Acad. Sci. USA 81: 4662–4666, 1984.
 187. Itoh, N., K., Obata, N. Yanaihara, and H. Okamoto. Human preprovasoactive intestinal polypeptide contains a novel PHI‐27‐like peptide, PHM‐27. Nature Lond. 304: 547–549, 1983.
 188. Iwanaga, T., T., Fujita, J. Nishiitsutsuji‐Uwo, and Y. Endo. Immunohistochemical demonstration of PP—, somatostatin‐, enteroglucagon‐ and VIP‐like immunoreactivities in the cockroach midgut. Biomed. Res. 2: 202–207, 1981.
 189. Jensen, J., and S. Holmgren. Neurotransmitters in the intestine of the Atlantic cod, Gadus morhua. Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol. 82: 81–89, 1985.
 190. Jensen, R. T., T., Moody, C. Pert, J. E. Rivier, and J. D. Gardner. Interaction of bombesin and litroin with specific membrane receptors on pancreatic acinar cells. Proc. Natl. Acad. Sci. USA 75: 6139–6148, 1978.
 191. Jonsson, A.‐C., S., Holmgren, and B. Holstein. Gastrin/CCK‐like peptides and their effects on gut motility in the Atlantic cod, Gadus morhua (Abstract). Regul. Pept. 13: 77, 1985.
 192. Jörnvall, H., M., Carlquist, S. Kwauk, S. C. Otte, C. H. S. Mcintosh, J. C. Brown, and V. Mutt. Amino acid sequence and heterogeneity of gastric inhibitory polypeptide (GIP). FEBS Lett. 123: 205–210, 1981.
 193. Kaback, D. B. Hormone receptor‐effector complex evolution. Nature Lond. 316: 490, 1985.
 194. Kakidani, H., Y., Furutani, H. Takahashi, M. Noda, Y. Morimoto, T. Hirose, M. Asai, S. Inayama, S. Nakanishi, and S. Numa. Cloning and sequence analysis of cDNA for porcine B neoendorphin/dynorphin precursor. Nature Lond. 298: 245–249, 1982.
 195. Kangawa, K., N., Minamino, A. Fukudo, and H. Mtsuo. Neuromedin K: a novel mammalian tachykinin identified in porcine spinal cord. Biochem. Biophys. Res. Commun. 114: 533–540, 1983.
 196. Kato, K., Y., Hayashizaki, Y. Takahashi, S. Himeno, and K. Matsubara. Molecular cloning of the human gastrin gene. Nucleic Acids Res. 11: 8197–8203, 1983.
 197. Kawauchi, H., M., Tsubokawa, A. Kanezawa, and H. Kitagawa. Occurrence of two different endorphins in the salmon pituitary. Biochem. Biophys. Res. Commun. 92: 1278–1288, 1980.
 198. Keeton, R. W., F. C., Koch, and A. B. Luckhardt. Gastrin studies. III. The response of the stomach mucosa of various animals to gastrin bodies. Am. J. Physiol. 51: 454–468, 1920.
 199. Kilpatrick, D. L., R. D., Howells, H.‐W. Lahm, and S. Udenfriend. Evidence for a proenkephalin‐like precursor in amphibian brain. Proc. Natl. Acad. Sci. USA 80: 5772–5775, 1983.
 200. Kimmel, J. R., L. J., Hayden, and H. G. Pollock. Isolation and characterization of a new pancreatic polypeptide hormone. J. Biol. Chem. 250: 9369–9376, 1975.
 201. Kimmel, J. R., and H. G. Pollock. Target organs for avian pancreatic polypeptide. Endocrinology 109: 1693–1699, 1981.
 202. Kimmel, J. R., H. G., Pollock, R. E. Chance, M. G. Johnson, J. R. Reeve, JR., I. L. Taylor, C. Miller, and J. E. Shively. Pancreatic polypeptide from rat pancreas. Endocrinology 114: 1725–1731, 1984.
 203. Kimura, S., M., Okado, Y. Sugata, I. Kanagawa, and E. Manekata. Novel neuropeptides, neurokinin alpha and beta, isolated from porcine spinal cord. Proc. Jpn. Acad. 59, Suppl. 13: 101–104, 1983.
 204. King, J. A., and R. P. Millar. Phylogenetic and anatomical distribution of somatostatin in vertebrates. Endocrinology 105: 1322–1329, 1979.
 205. Kitabgi, P., R. Carra, Way, and S. E. Leeman. Isolation of a tridecapeptide from bovine intestinal tissue and its partial characterization as neurotensin. J. Biol. Chem. 251: 7053–7058, 1976.
 206. Kokue, E., and T. Hayama. The endogenous secretin in chicken: minor physiological role in exocrine pancreatic secretion. Jpn. J. Physiol. 26: 1–8, 1976.
 207. Koschtojanz, C. S., I., Iwanoff, W. Mujeeff, P. Korjuieff, and S. Otschakowskaja. Zur Frage der Spezifitat des Sekretins. Vergleichend‐physiologische Untersuchung. Z. Vgl. Physiol. 18: 112–115, 1933.
 208. Kosterlitz, H. W., and S. J. Paterson. Types of opioid receptors: relation to antinociception. Philos. Trans. R. Soc. Lond. Biol. Sci. 308: 291–297, 1985.
 209. Kramer, K. J., R. D., Speirs, and C. N. Childs. Immunochemical evidence for a gastrin‐like peptide in insect neuroendocrine system. Gen. Comp. Endocrinol. 32: 423–426, 1977.
 210. Kramer, K. J., H. S., Tager, and C. N. Childs. Insulin‐like and glucagon‐like peptides in insect hemolymph. Insect Biochem. 10: 179–182, 1980.
 211. Kuwano, R., K., Araki, H. Usui, T. Fukui, E. Ohtsuka, M. Ikehara, and Y. Takahashi. Molecular cloning and nucleotide sequence of cDNA coding for rat brain cholecystokinin precursor. J. Biochem. 96: 923–926, 1984.
 212. Lance, V., J. W., Hamilton, J. B. Rouse, J. R. Kimmel, and H. G. Pollock. Isolation and characterization of reptilian insulin, glucagon, and pancreatic polypeptide: complete amino acid sequence of alligator (Alligator mississippiensis) insulin and pancreatic polypeptide. Gen. Comp. Endocrinol. 55: 112–124, 1984.
 213. Langer, M., S., Van Noorden, J. M. Polak, and A. G. E. Pearse. Peptide hormone‐like immunoreactivity in the gastrointestinal tract and endocrine pancreas of eleven teleost species. Cell Tissue Res. 199: 493–508, 1979.
 214. Langslow, D. R., J. R., Kimmel, and H. G. Pollock. Studies of the distribution of a new avian pancreatic polypeptide and insulin among birds, reptiles, amphibians and mammals. Endocrinology 93: 558–566, 1973.
 215. Larson, B. A., and S. R. Vigna. Gastrin/cholecystokinin‐like immunoreactive peptides in the Dungness crab, Cancer magister (Dana): immunochemical and biological characterization. Regul. Pept. 7: 155–170, 1983.
 216. Larson, B. A., and S. R. Vigna. Species and tissue distribution of cholecystokinin/gastrin‐like substances in some invertebrates. Gen. Comp. Endocrinol. 50: 469–475, 1983.
 217. Larsson, L.‐I. Adrenocorticotropin‐like and melanotropin‐like peptides in a subpopulation of human gastrin cell granules: bioassay, immunoassay, and immunocytochemical evidence. Proc. Natl. Acad. Sci. USA 78: 2990–2994, 1981.
 218. Larsson, L.‐L, J. M., Polak, R. Buffa, F. Sundler, and E. Solcia. On the immunocytochemical localization of the vasoactive intestinal polypeptide. J. Histochem. Cytochem. 27: 936–938, 1979.
 219. Larsson, L.‐L, and J. R. Rehfeld. Evidence for a common evolutionary origin of gastrin and cholecystokinin. Nature Lond. 269: 335–338, 1977.
 220. Larsson, L.‐L, and K. Stengaard‐Pedersen. Enkephalin/endorphin‐related peptides in antropyloric gastrin cells. J. Histochem. Cytochem. 29: 1088–1098, 1981.
 221. Larsson, L.‐L, F., Sundler, R. Hakanson, J. F. Rehfeld, and F. Stadil. Distribution and properties of gastrin cells in the gastrointestinal tract of chicken. Cell Tissue Res. 154: 409–421, 1974.
 222. Laurentz, D. A., and R. L. Hazelwood. Does the third pancreatic hormone (APP) play a trophic role in the growth of the embryonic chick proventriculus? Proc. Soc. Exp. Biol. Med. 160: 144–149, 1979.
 223. Lazarus, L. H., R. I., Linnoila, O. Hernandez, and R. P. Diaugustine. A neuropeptide in mammalian tissue with physalaemin‐like immunoreactivity. Nature Lond. 287: 555–558, 1980.
 224. Lechago, J., B. G., Crawford, and J. H. Walsh. Bombesin(like)‐containing cells in bullfrog gastric mucosa: immunoelectronmicroscopic characterization. Gen. Comp. Endocrinol. 45: 1–6, 1981.
 225. Lechago, J., A. L., Holmquist, G. L. Rosenquist, and J. H. Walsh. Localization of bombesin‐like peptides in frog gastric mucosa. Gen. Comp. Endocrinol. 36: 553–558, 1978.
 226. Ledrut, J., and G. Alechinsky. Absence de spécificité des sécrétines de raie et de porc. Arch. Int. Physiol. 37: 329–336, 1933.
 227. Lee, C. M., L. L., Iverson, M. R. Hanley, and B. E. B. Sandberg. The possible existence of multiple receptors for substance P. Naunyn‐Schmiedeberg's Arch. Pharmacol. 318: 281–287, 1982.
 228. Leroith, D., and J. Roth. Evolutionary origins of messenger peptides: materials in microbes that resemble vertebrate hormones. In: Evolution and Tumour Pathology of the Neuroendocrine System, edited by S. Falkmer, R. Håkanson and F. Sundler. Amsterdam: Elsevier, 1984, p. 147–164.
 229. Leroith, D., J., Shiloach, and J. Roth. Is there an earlier phylogenetic precursor that is common to both the nervous and endocrine systems? Peptides Fayetteville 3: 211–215, 1982.
 230. Leung, M. K., and G. B. Stefano. Isolation and identification of enkephalins in pedal ganglia of Mytilus edulis (Mollusca). Proc. Natl. Acad. Sci. USA 81: 955–958, 1984.
 231. L'Hermite, A., R., Ferrand, M. P. Dubois, and A. C. Andersen. Detection of endocrine cells by immunofluorescence method in the gastroenteropancreatic system of the adult eel, glass‐eel, and leptocephalic larva (Anguilla anguilla L.). Gen. Comp. Endocrinol. 58: 347–359, 1985.
 232. Lin, T. M., and R. E. Chance. Gastrointestinal actions of a new bovine pancreatic peptide (BPP). In: Endocrinology of the Gut, edited by W. Y. Chey and F. P. Brooks. Thorofare, NJ: Slack, 1974, p. 143–145.
 233. Linari, G., and M. B. Linari. Effect of bombesin on pancreatic secretion and gall bladder motility of the chicken. Eur. J. Pharmacol. 34: 305–310, 1975.
 234. Linari, G., and M. B. Linari. On the mechanism of action of bombesin on gastric and pancreatic secretion of the chicken. Arch. Int. Pharmacodyn Ther. 224: 283–290, 1976.
 235. Lloyd, P. E. Cardioactive neuropeptides in gastropods. Federation Proc. 41: 2948–2952, 1982.
 236. Lopez, L. C., M. L., Frazier, C.‐J. Su, A. Kumar, and G. F. Saunders. Mammalian pancreatic preproglucagon contains three glucagon‐related peptides. Proc. Natl. Acad. Sci. USA 80: 5485–5489, 1983.
 237. Loretz, C. A., R. W., Freel, and H. A. Bern. Specificity of response of intestinal ion transport systems to a pair of natural peptide hormone analogs: somatostatin and urotensin II. Gen. Comp. Endocrinol. 52: 198–206, 1983.
 238. Lund, P. K., R. H., Goodman, P. C. Dee, and J. F. Habener. Pancreatic preproglucagon cDNA contains two glucagon‐related coding sequences arranged in tandem. Proc. Natl. Acad. Sci. USA 79: 345–349, 1982.
 239. Lund, P. K., R. H., Goodman, M. R. Montminy, P. C. Dee, and J. F. Habener. Anglerfish islet pre‐proglucagon II. Nucleotide and corresponding amino acid sequence of the cDNA. J. Biol. Chem. 258: 3280–3284, 1983.
 240. Magazin, M., C. D., Minth, C. L. Funckes, R. Deschenes, M. A. Tavianini, and J. E. Dixon. Sequence of a cDNA encoding pancreatic preprosomatostatin 22. Proc. Natl. Acad. Sci. USA 79: 5152–5156, 1982.
 241. Maggio, J. E., and J. C. Hunter. Regional distribution of kassinin‐like immunoreactivity in rat central and peripheral tissues and effect of capsaicin. Brain Res. 307: 370–373, 1984.
 242. Mahon, A. C., P. E., Lloyd, K. R. Weiss, I. Kupfermann, and R. H. Scheller. The small cardioactive peptides A and B of Aplysia are derived from a common precursor molecule. Proc. Natl. Acad. Sci. USA 82: 3925–3929, 1985.
 243. Mainoya, J. R., and H. A. Bern. Influence of vasoactive intestinal peptide and urotensin II on the absorption of water and NaCl by the anterior intestine of the tilapia, Sarotherodon mossambicus. Zool. Sci. 1: 100–105, 1984.
 244. Martens, G. J. M., and E. Herbert. Polymorphism and absence of Leu‐enkephalin sequences in proenkephalin genes in Xenopus laevis. Nature Lond. 310: 251–254, 1984.
 245. Martin, G., and M. P. Dubois. A somatostatin‐like antigen in the nervous system of an isopod Porcellio dilatatus Brandt. Gen. Comp. Endocrinol. 45: 125–130, 1981.
 246. Martin, R., D., Frosch, E. Weber, and K. H. Voigt. Met‐enkephalin‐like immunoreactivity in a cephalopod neurohemal organ. Neurosci. Lett. 15: 253–257, 1979.
 247. Mcdonald, T. J., H., Jörnvall, M. Ghatei, S. R. Bloom, and V. Mutt. Characterization of an avian gastric (proventricular) peptide having sequence homology with the porcine gastrin‐releasing peptide and the amphibian peptides, bombesin and alytesin. FEBS Lett. 122: 45–48, 1980.
 248. Mcdonald, T. J., H., Jörnvall, G. Nilsson, M. Vagne, M. Ghatei, S. R. Bloom, and V. Mutt. Characterization of a gastrin releasing peptide from porcine non‐antral gastric tissue. Biochem. Biophys. Res. Commun. 90: 227–233, 1979.
 249. Mcdonald, T. J., G., Nilsson, M. Vagne, M. Ghatei, S. R. Bloom, and V. Mutt. A gastrin releasing peptide from the porcine non‐antral gastric tissue. Gut 19: 767–774, 1978.
 250. Melchiorri, P. Non‐mammalian peptides. Peptides Fayetteville 6, Suppl. 3: 1985.
 251. Melchiorri, P., and L. Negri. Evolutionary aspects of amphibian peptides. In: Evolution and Tumour Pathology of the Neuroendocrine System, edited by S. Falkmer, R. Håkanson and F. Sundler. Amsterdam: Elsevier, 1984, p. 231–244.
 252. Minamino, N., K., Kangawa, A. Fukuda, and H. Matsuo. Neuromedin L: a novel mammalian tachykinin identified in porcine spinal cord. Neuropeptides 4: 157–166, 1984.
 253. Minamino, N., K., Kangawa, and H. Matsuo. Neuromedin B: a novel bombesin‐like peptide identified in porcine spinal cord. Biochem. Biophys. Res. Commun. 114: 541–548, 1983.
 254. Minamino, N., K., Kangawa, and H. Matsuo. Neuromedin C: a bombesin‐like peptide identified in porcine spinal cord. Biochem. Biophys. Res. Commun. 119: 14–20, 1984.
 255. Minamino, N., K., Kangawa, and H. Matsuo. Neuromedin N: a novel neurotensin‐like peptide identified in porcine spinal cord. Biochem. Biophys. Res. Commun. 122: 542–549, 1984.
 256. Minth, C. D., S. R., Bloom, J. M. Polak, and J. E. Dixon. Cloning, characterization, and DNA sequence of a human cDNA encoding neuropeptide tyrosine. Proc. Natl. Acad. Sci. USA 81: 4577–4581, 1984.
 257. Minth, C. D., W. L., Taylor, M. Magazin, M. A. Tavianini, K. Collier, H. L. Weith, and J. E. Dixon. The structure of cloned DNA complementary to catfish pancreatic somato‐statin‐14 messenger RNA. J. Biol. Chem. 257: 10372–10377, 1982.
 258. Montecucchi, P. C., R., De Castizlione, S. Piani, L. Gozzini, and V. Erspamer. Amino acid composition and sequence of dermorphin, a novel opiate‐like peptide from the skin of Phyllomedusa sauvagi. Int. J. Pept. Protein Res. 17: 275–283, 1981.
 259. Montecucchi, P., G. F., Erspamer, and J. Visser. Occurrence of Asn2, Leu5‐caerulein in the skin of the African frog Hylambates maculatus. Experienta Basel 33: 1138–1139, 1977.
 260. Moody, A. J., L., Thim, and I. Valverde. The isolation and sequencing of human gastric inhibitory peptide (GIP). FEBS Lett. 172: 142–148, 1984.
 261. Moody, T. W., C. B., Pert, A. F. Gazdar, D. N. Carney, and J. D. Minna. High levels of intracellular bombesin characterize human small‐cell lung carcinoma. Science Wash. DC 214: 1246–1248, 1981.
 262. Morel, A., P., Gluschankof, S. Gomez, V. Fafeur, and P. Cohen. Characterization of a somatostatin‐28 containing the (Tyr‐7, Gly‐10) derivative of somatostatin‐14: a terminal active product of prosomatostatin II processing in anglerfish pancreatic islets. Proc. Natl. Acad. Sci. USA 81: 7003–7006, 1984.
 263. Morris, H. R., M., Panico, A. Karplus, P. E. Lloyd, and B. Riniker. Elucidation by FAB‐MS of the structure of a new cardioactive peptide from Aplysia. Nature Lond. 300: 643–645, 1982.
 264. Mues, G., I., Fuchs, E. T. Wei, E. Weber, C. J. Evans, J. D. Barchas, and J.‐K. Chang. Blood pressure elevation in rats by peripheral administration of Tyr‐Gly‐Gly‐Phe‐Met‐Arg‐Phe and the invertebrate neuropeptide, Phe‐Met‐Arg‐Phe‐NH2. Life Sci. 31: 2555–2561, 1982.
 265. Mutt, V., and S. I. Said. Structure of the porcine vasoactive intestinal octacosapeptide. The amino‐acid sequence. Use of kallikrein in its determination. Eur. J. Biochem. 42: 581–589, 1974.
 266. Nachman, R. J., G. M. Holman, B. J. Cook, W. F. Haddon, and N. Ling. Leucosulfakinin‐II, a blocked sulfated insect neuropeptide with homology to cholecystokinin and gastrin. Biochem. Biophys. Res. Commun. 140: 357–364, 1986.
 267. Nachman, R. J., G. M. Holman, W. F. Haddon, and N. Ling. Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Science Wash. DC 234: 71–73, 1986.
 268. Nakajima, T., T., Tanimura, and J. J. Pisano. Isolation and structure of a new vasocative polypeptide (Abstract). Federation Proc. 29: 282, 1970.
 269. Nakanishi, S., A., Inoue, T. Kita, M. Nakamura, A. C. Y. Chang, S. N. Cohen, and S. Numa. Nucleotide sequence of cloned cDNA for bovine corticotropin‐β‐lipotropin precursor. Nature Lond. 278: 423–427, 1979.
 270. Nawa, H., H., Kotani, and S. Nakanishi. Tissue specific generation of two preprotachykinin mRNA's from one gene by alternative RNA splicing. Nature Lond. 312: 729–736, 1984.
 271. Negri, L., and V. Erspamer. Action of caerulein and caerulein‐like peptides on “short‐circuit current” and acid secretion in the isolated gastric mucosa of amphibians. Naunyn‐Schmiedeberg's Arch. Pharmacol. 277: 401–412, 1973.
 272. Nilsson, A. Gastrointestinal hormones in the holocephalian fish Chimaera monstrosa (L.). Comp. Biochem. Physiol. 32: 387–390, 1970.
 273. Nilsson, A. Secretin‐like and cholecystokinin‐like activity in Myxine glutinosa L. Acta Regiae Soc. Sci. Litt. Gothob. Zool. 8: 30–32, 1973.
 274. Nilsson, A. Structure of the vasoactive intestinal octacosapeptide from chicken intestine. The amino acid sequence. FEBS Lett. 60: 322–326, 1975.
 275. Nilsson, A., M., Carlquist, H. Jörnvall, and V. Mutt. Isolation and characterization of chicken secretin. Eur. J. Biochem. 112: 383–388, 1980.
 276. Nilsson, S. Autonomic Nerve Function in the Vertebrates New York: Springer‐Verlag, 1983.
 277. Nishizawa, M., Y., Hayakawa, N. Yanaihara, and H. Okamoto. Nucleotide sequence divergence and functional constraint in VIP precursor mRNA evolution between human and rat. FEBS Lett. 183: 55–59, 1985.
 278. Noaillac‐Depeyre, J., and E. Hollande. Evidence for somatostatin, gastrin and pancreatic polypeptide‐like substances in the mucosa cells of the gut in fishes with and without stomach. Cell Tissue Res. 216: 193–203, 1981.
 279. Noda, M., Y., Furutani, H. Takahashi, M. Toyosato, T. Hirose, S. Inayama, S. Nakanishi, and S. Numa. Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature Lond. 295: 202–206, 1982.
 280. Noe, B. D., J., Spiess, J. E. Rivier, and W. Vale. Isolation and characterization of somatostatin from anglerfish pancreatic islet. Endocrinology 105: 1410–1415, 1979.
 281. Numa, S. Neuropeptide precursors and acetylcholine receptor: molecular structures and gene expression. In: Proc. IUPHAR 9th Int. Congr. Pharmacol., edited by W. Paton, J. Mitchell and P. Turner. London: Macmillan, 1984, p. 273–288.
 282. O'Donohue, T. L., J. F., Bishop, B. M. Chronwall, J. Groome, and W. H. Watson. Characterization and distribution of FMRFamide immunoreactivity in the rat central nervous system. Peptides Fayetteville 5: 563–568, 1984.
 283. Orloff, M. S., J. R. Reeve, JR., C. M. Ben‐Avram, J. E. Shively, and J. H. Walsh. Isolation and sequence analysis of human bombesin‐like peptides. Peptides Fayetteville 5: 865–870, 1984.
 284. Osborne, N. N., A. C., Cuello, and G. J. Dockray. Substance P and cholecystokinin‐like peptides in Helix neurons and cholecystokinin and serotonin in a giant neuron. Science Wash. DC 216: 409–411, 1982.
 285. Osborne, N. N., and G. J. Dockray. Bombesin‐like immunoreactivity in specific neurones of the snail Helix aspersa and an example of the coexistence of substance P and serotonin in an invertebrate neurone. Neurochem. Int. 4: 175–180, 1982.
 286. Osborne, N. N., S., Patel, and G. J. Dockray. Immunohistochemical demonstration of peptides, serotonin and dopamine B‐hydroxylase‐like material in the nervous system of the leech Hirudo medicinalis. Histochemistry 75: 573–583, 1982.
 287. O'Shea, M., and M. Schaffer. Neuropeptide function: the invertebrate contribution. Annu. Rev. Neurosci. 8: 171–198, 1985.
 288. Ostberg, Y., S., Van Noorden, A. G. E. Pearse, and N. W. Thomas. Cytochemical, immunofluorescence, and ultra‐structural investigations on polypeptide hormone containing cells in the intestinal mucosa of a cyclostome, Myxine glutinosa. Gen. Comp. Endocrinol. 28: 213–227, 1976.
 289. Oyama, H., R. A., Bradshaw, O. J. Bates, and A. Permutt. Amino acid sequence of catfish pancreatic somatostatin I. J. Biol. Chem. 255: 2251–2254, 1980.
 290. Oyama, H., J., Martin, K. Sussman, G. C. Weir, and A. Permutt. The biological activity of catfish pancreatic somatostatin. Regul. Pept. 1: 387–396, 1981.
 291. Oyebola, D. D. O., and R. A. Elegbe. Gastrin activity in the stomach extracts of Bufo regularis (the common African toad). Comp. Biochem. Physiol. A Comp. Physiol. 52: 209–211, 1975.
 292. Pandol, S. J., H., Seifert, M. W. Thomas, J. Rivier, and W. Vale. Growth‐hormone‐releasing factor stimulates pancreatic enzyme secretion. Science Wash. DC 225: 326–328, 1984.
 293. Parker, D. S., J.‐P., Raufman, T. L. O'Donohue, M. Bledsoe, H. Yoshida, and J. J. Pisano. Amino acid sequences of helospectins, new members of the glucagon superfamily, found in Gila monster venom. J. Biol. Chem. 259: 11751–11755, 1984.
 294. Pearson, D., J. E., Shively, B. R. Clark, I. I. Geschwind, M. Barkley, R. S. Nishioka, and H. A. Bern. Urotensin II: a somatostatin‐like peptide in the caudal neurosecretory system of fishes. Proc. Natl. Acad. Sci. USA 77: 5021–5024, 1980.
 295. Penzlin, H., H., Agricola, M. Eckert, and T. Kusch. Distribution of proctolin in the sixth abdominal ganglion of Periplaneta americana L. and the effect of proctolin on the ileum of mammals. In: Advances in Physiological Sciences, edited by K. S. Rozsa. Oxford, UK: Pergamon, 1981, vol. 22, p. 525–535.
 296. Pestarino, M. Occurrence of different secretin‐like cells in the digestive tract of the ascidian, Styela plicata (Urochor‐data, Ascidiacea). Cell Tissue Res. 226: 231–235, 1982.
 297. Piccoli, R., D., Melck, A. Spagnuolo, S. Vescia, and L. Zanetti. Endogenous opioids in marine invertebrates. Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol. 80: 237–240, 1985.
 298. Pradayrol, L., H., Jörnvall, V. Mutt, and A. Ribet. N‐terminally extended somatostatin: the primary structure of somatostatin 28. FEBS Lett. 109: 55–58, 1980.
 299. Price, D. A., G. A., Cottrell, K. E. Doble, M. J. Greenberg, W. Jorenby, L. K. Lehman, and J. P. Riehm. A novel FMRFamide‐related peptide in Helix: pQDPFLRFamide. Biol. Bull. Woods Hole 169: 256–266, 1985.
 300. Price, D. A., and M. J. Greenberg. Structure of a molluscan cardioexcitatory neuropeptide. Science Wash. DC 197: 670–671, 1977.
 301. Reeve, J. R., JR., R. Dimaline, J. E. Shively, D. Hawke, P. Chew, and J. H. Walsh. Unique amino terminal structure of rat little gastrin. Peptides Fayetteville 2: 453–458, 1981.
 302. Reeve, J. R., JR., J. H. Walsh, P. Chew, B. Clark, D. Hawke, and J. E. Shively. Amino acid sequences of three bombesin‐like peptides from canine intestine extracts. J. Biol. Chem. 258: 5582–5588, 1983.
 303. Reinecke, M. Immunohistochemical localization of polypeptide hormones in endocrine cells of the digestive tract of Branchiostoma lanceolatum. Cell Tissue Res. 219: 445–456, 1981.
 304. Reinecke, M., R. E., Carraway, S. Falkmer, G. E. Feurle, and W. G. Forssmann. Occurrence of neurotensin‐immunoreactive cells in the digestive tract of lower vertebrates and deuterostomian invertebrates. Cell Tissue Res. 212: 173–183, 1980.
 305. Reinecke, M., P., Schlüter, N. Yanaihara, and W. G. Forssmann. VIP immunoreactivity in enteric nerves and endocrine cells of the vertebrate gut. Peptides Fayetteville 2: 149–156, 1981.
 306. Reuter, M., T., Karhi, and L. P. C. Schot. Immunocytochemical demonstration of peptidergic neurons in the central and peripheral nervous systems of the flatworm Microstomum lineare with antiserum to FMRF amide. Cell Tissue Res. 238: 431–436, 1984.
 307. Rivier, J., J., Spiess, M. Thorner, and W. Vale. Characterization of a growth hormone‐releasing factor from a human pancreatic islet tumour. Nature Lond. 300: 276–278, 1982.
 308. Robberecht, P., J., De Graef, M.‐C. Woussen, M.‐C. Vandermeers‐Piret, A. Vandermeers, P. De Neef, A. Cauvin, C. Yanaihara, N. Yanaihara, and J. Christophe. Immunoreactive helodermin‐like peptides in rat: a new class of mammalian neuropeptides related to secretin and VIP. Biochem. Biophys. Res. Commun. 130: 333–342, 1985.
 309. Rombout, J. H. W. M., and J. J. Taverne‐Thiele. An immunocytochemical and electron‐microscopical study of endocrine cells in the gut and pancreas of stomachless teleost fish, Barbus conchonius (Cyprinidae). Cell Tissue Res. 227: 577–593, 1982.
 310. Rosen, H., J., Douglass, and E. Herbert. Isolation and characterization of the rat proenkephalin gene. J. Biol. Chem. 259: 14309–14313, 1984.
 311. Roth, J., D., Leroith, J. Shiloach, J. L. Rosenzweig, M. A. Lesniak, and J. Havrankova. The evolutionary origins of hormones, neurotransmitters, and other extracellular chemical messengers. N. Engl. J. Med. 306: 523–527, 1982.
 312. Rutter, W. J., J., Scott, M. Selby, R. J. Crawford, L.‐P. Shen, P. Hobart, R. Sanchez‐Pescador, and G. I. Bell. Structure of precursors derived from the sequences of cloned cDNAs. In: Biochemical and Clinical Aspects of Neuropeptides: Synthesis, Processing, and Gene Structure, edited by G. Koch and D. Richter. London: Academic, 1983, p. 293–308.
 313. Rzasa, P., K. V., Kaloustian, and E. K. Prokop. Immunochemical evidence for a gastrin‐like peptide in the intestinal tissues of the earthworm Lumbricus terrestris. Comp. Biochem. Physiol. A Comp. Physiol. 71: 631–634, 1982.
 314. Rzasa, P., K. V., Kaloustian, and E. K. Prokop. Immunochemical evidence for Met‐enkephalin‐like peptides in tissues of the earthworm, Lumbricus terestois. Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol. 77: 345–350, 1984.
 315. Sasek, C. A., P. A., Schueler, W. S. Herman, and R. P. Elde. An antiserum to locust adipokinetic hormone reveals a novel peptidergic system in the rat central nervous system. Brain Res. 343: 172–175, 1985.
 316. Scalise, F. W., B. A., Larson, and S. R. Vigna. Localization of a peptide identified by antibodies to gastrin/CCK in the gut of Cancer magister. Cell Tissue Res. 238: 113–119, 1984.
 317. Scarborough, R. M., G. C., Jamieson, F. Kalish, S. J. Kramer, G. A. Mcenroe, C. A. Miller, and D. A. Schooley. Isolation and primary structure of two peptides with cardioacceleratory and hyperglycemic activity from the corpora cardiaca of Periplaneta americana. Proc. Natl. Acad. Sci. USA 81: 5575–5579, 1984.
 318. Schaefer, M., M. R., Picciotto, T. Kreiner, R.‐R. Kaldany, R. Taussig, and R. H. Scheller. Aplysia neurons express a gene encoding multiple FMRFamide neuropeptides. Cell 41: 457–467, 1985.
 319. Schaller, H. C., and H. Bodenmuller. Isolation and amino acid sequence of a morphogenetic peptide from hydra. Proc. Natl. Acad. Sci. USA 78: 7000–7004, 1981.
 320. Scheller, R. H., R.‐R., Kaldany, T. Kreiner, A. C. Mahon, J. R. Nambu, M. Schaefer, and R. Taussig. Neuropeptides: mediators of behavior in Aplysia. Science Wash. DC 225: 1300–1308, 1984.
 321. Schilt, J., J. P., Richoux, and M. P. Dubois. Demonstration of peptides immunologically related to vertebrate neurohormones in Dugesia lugubris (Turbellaria, Tricladida). Gen. Comp. Endocrinol. 43: 331–335, 1981.
 322. Schot, L. P. C., H. H., Boer, D. F. Swaab, and S. Van Noorden. Immunocytochemical demonstration of peptidergic neurons in the central nervous system of the pond snail Lymnaea stagnalis with antisera raised to biologically active peptides of vertebrates. Cell Tissue Res. 216: 273–291, 1981.
 323. Schwartz, T. W., H. F., Hansen, R. Hakanson, F. Sundler, and H. S. Tager. Human pancreatic icosapeptide: isolation, sequence, and immunocytochemical localization of the COOH‐terminal fragment of the pancreatic polypeptide precursor. Proc. Natl. Acad. Sci. USA 81: 708–712, 1984.
 324. Schwartz, T. W., and H. S. Tager. Isolation and biogenesis of a new peptide from pancreatic islets. Nature Lond. 294: 589–591, 1981.
 325. Seino, Y., D. Porte, JR., and P. H. Smith. Immunohistochemical localization of somatostatin‐containing cells in the intestinal tract: a comparative study. Gen. Comp. Endocrinol. 38: 229–233, 1979.
 326. Sewing, K. F., and H. J. Ruoff. Control of gastric acid secretion in chickens. Acta Hepato‐Gastroenterol. 19: 296–300, 1972.
 327. Shen, L.‐P., R. L., Pictet, and W. J. Rutter. Human somatostatin I: sequence of the cDNA. Proc. Natl. Acad. Sci. USA 79: 4575–4579, 1982.
 328. Shulkes, A., D., Stephens, and K. J. Hardy. Distribution of vasoactive intestinal peptide, bombesin and gastrin‐chole‐cystokinin‐like peptides in the avian intestinal tract and brain. Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol. 76: 345–349, 1983.
 329. Shuttleworth, T. J., and M. C. Thorndyke. An endogenous peptide stimulates secretory activity in the elasmobranch rectal gland. Science Wash. DC 225: 319–321, 1984.
 330. Simantov, R., R., Goodman, D. Aposhian, and S. H. Snyder. Phylogenetic distribution of a morphine‐like peptide “enkephalin.” Brain Res. 111: 204–211, 1976.
 331. Spiess, J., and B. D. Noe. Processing of an anglerfish somatostatin precursor to a hydroxylysine‐containing somatostatin 28. Proc. Natl. Acad. Sci. USA 82: 277–281, 1985.
 332. Spiess, J., J. E., Rivier, J. A. Rodkey, C. D. Bennett, and W. Vale. Isolation and characterization of somatostatin from pigeon pancreas. Proc. Natl. Acad. Sci. USA 76: 2974–2978, 1979.
 333. Spiess, J., J., Rivier, and W. Vale. Characterization of rat hypothalamic growth hormone‐releasing factor. Nature Lond. 303: 532–535, 1983.
 334. Spindel, E. R., W. W., Chin, J. Price, L. H. Rees, G. M. Besser, and J. F. Habener. Cloning and characterization of cDNAs encoding human gastrin‐releasing peptide. Proc. Natl. Acad. Sci. USA 81: 5699–5703, 1984.
 335. Starratt, A. N., and B. E. Brown. Structure of the pentapeptide proctolin, a proposed neurotransmitter in insects. Life Sci. 17: 1253–1256, 1975.
 336. Stefano, G. B., R. M., Kream, and R. S. Zukin. Demonstration of stereospecific opiate binding in the nervous tissue of the marine mollusc, Mytilus edulis. Brain Res. 181: 440–445, 1980.
 337. Stefano, G. B., B., Scharrer, and P. Assanah. Demonstration, characterization and localization of opioid binding sites in the midgut of the insect, Leucophaea maderae (Blattaria). Brain Res. 253: 205–212, 1982.
 338. Steiner, D. F., S. J., Chan, K. Docherty, S. O. Emdin, G. G. Dodson, and S. Falkmer. Evolution of polypeptide hormones and their precursor processing mechanisms. In: Evolution and Tumour Pathology of the Neuroendocrine System, edited by S. Falkmer, R. Håkanson and F. Sundler. Amsterdam: Elsevier, 1984, p. 203–223.
 339. Stewart, J. K., C. J., Goodner, D. J. Koerker, A. Gorbman, J. Ensinck, and M. Kaufman. Evidence for a biological role of somatostatin in the Pacific hagfish, Eptatretus stouti. Gen. Comp. Endocrinol. 36: 408–414, 1978.
 340. Stoff, J. S., R., Rosa, R. Hallac, P. Silva, and F. H. Epstein. Hormonal regulation of active chloride transport in the dogfish rectal gland. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F138–F144, 1979.
 341. Straus, E., R. S., Yalow, and H. Gainer. Molluscan gastrin: concentration and molecular forms. Science Wash. DC 190: 687–689, 1975.
 342. Sundby, F. Species variation in the primary structure of glucagon. Metabolism 25, Suppl. 1: 1319–1321, 1976.
 343. Sures, I., and M. Crippa. Xenopsin: the neurotensin‐like octapeptide from Xenopus skin at the carboxyl terminus of its precursor. Proc. Natl. Acad. Sci. USA 81: 380–384, 1984.
 344. Tachibana, S., K., Araki, S. Ohya, and S. Yoshida. Isolation and structure of dynorphin an opioid peptide from porcine duodenum. Nature Lond. 295: 339–340, 1982.
 345. Tager, H. S. Glucagon‐containing and glucagon‐related peptides: evolutionary, structural and biosynthetic considerations. In: Evolution and Tumour Pathology of the Neuroendocrine System, edited by S. Falkmer, R. Håkanson and F. Sundler. Amsterdam: Elsevier, 1984, p. 285–311.
 346. Tager, H. S., and K. J. Kramer. Insect glucagon‐like peptides: evidence for a high molecular weight form in midgut from Manducta sexta (L.) Insect Biochem. 10: 617–619, 1980.
 347. Tagliafierro, G., G., Faraldi, and R. Bandelloni. Distribution, histochemistry and ultrastructure of somatostatin‐like immunoreactive cells in the gastroenteric tract of the cartilaginous fish, Scyliorhinus stellaris L. Histochem. J. 17: 1033–1041, 1985.
 348. Takahashi, Y., K., Kato, Y. Hayashizaki, T. Wakabayashi, E. Ohtsuka, S. Matsuki, M. Ikehara, and K. Matsubara. Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyinosine. Proc. Natl. Acad. Sci. USA 82: 1931–1935, 1985.
 349. Takeuchi, T., and T. Yamada. Isolation of a cDNA clone encoding pancreatic polypeptide. Proc. Natl. Acad. Sci. USA 82: 1536–1539, 1985.
 350. Tatemoto, K. Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc. Natl. Acad. Sci. USA 79: 5485–5489, 1982.
 351. Tatemoto, K., H., Jörnvall, S. Siimesmaa, G. Hallden, and V. Mutt. Isolation and characterisation of cholecystokinin 58 (CCK‐58) from porcine brain. FEBS Lett. 174: 289–293, 1984.
 352. Tatemoto, K., and V. Mutt. Chemical determination of polypeptide hormones. Proc. Natl. Acad. Sci. USA 75: 4115–4119, 1978.
 353. Tatemoto, K., and V. Mutt. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature Lond. 285: 417–418, 1980.
 354. Tatemoto, K., and V. Mutt. Isolation and characterization of the intestinal peptide porcine PHI (PHI‐27), a new member of the glucagon‐secretin family. Proc. Natl. Acad. Sci. USA 78: 6603–6607, 1981.
 355. Tatemoto, K., A., Rökaeus, H. Jörnvall, T. J. Mcdonald, and V. Mutt. Galanin—a novel biologically active peptide from porcine intestine. FEBS Lett. 164: 124–128, 1983.
 356. Taylor, I. L., and C. R. Vaillant. Pancreatic polypeptide‐like material in nerves and endocrine cells of the rat. Peptides Fayetteville 4: 245–253, 1983.
 357. Thim, L., and A. J. Moody. The primary structure of porcine glicentin (proglucagon). Regul. Pept. 2: 139–150, 1981.
 358. Thorndyke, M. C. Cholecystokinin (CCK)/gastrin‐like immunoreactive neurones in the cerebral ganglion of the protochordate ascidians Styela clava and Ascidiella aspersa. Regul. Pept. 3: 281–288, 1982.
 359. Thorndyke, M. C., and P. J. R. Bevis. CCK‐like and secretin/VIP‐like activity in protochordate gut extracts. Regul. Pept. Suppl. 2: S147, 1983.
 360. Thorndyke, M. C., and P. J. R. Bevis. Comparative studies on the effects of cholecystokinins, caerulein, bombesin 6–14 nonapeptide, and physalaemin on gastric secretion in the ascidian Styela clava. Gen. Comp. Endocrinol. 55: 251–259, 1984.
 361. Thorndyke, M. C., and P. J. R. Bevis. Peptide systems in protochordates. In: Current Trends in Comparative Endocrinology, edited by B. Lofts and W. N. Holmes. Hong Kong: Hong Kong Univ. Press, 1985, p. 1041–1045.
 362. Thorndyke, M. and G. J. Dockray. Identification and localization of material with gastrin‐like immunoreactivity in the neural ganglion of a protochordate, Ciona intestinalis. Regul. Pept. 16: 269–279, 1986.
 363. Thorndyke, M., S., Holmgren, S. Nilsson, and S. Falkmer. Bombesin potentiation of the acetylcholine response in isolated strips of fish stomach (Abstract). Regul. Pept. 9: 350, 1984.
 364. Thorndyke, M. C., and T. J. Shuttleworth. Biochemical and physiological studies on peptides from the elasmobranch gut. Peptides Fayetteville 6, Suppl. 3: 369–372, 1985.
 365. Timson, C. M., J. M., Polak, J. Wharton, M. A. Ghatei, S. R. Bloom, L. Usellini, C. Capella, E. Solcia, M. R. Brown, and A. G. E. Pearse. Bombesin‐like immunoreactivity in the avian gut and its localization to a distinct cell type. Histochemistry 61: 213–221, 1979.
 366. Tsuo, K., F.‐S., Wang, S.‐H. Wang, and Y.‐Q. Tang. Dermorphin‐like immunoreactivity in guinea pig and rat stomach. Neuropeptides 5: 449–452, 1985.
 367. Turner, S. D., and R. L. Hazelwood. Does histamine play a role in the secretagogic effect of avian pancreatic “gastrin”? Proc. Soc. Exp. Biol. Med. 144: 852–856, 1973.
 368. Vaillant, C., R., Dimaline, and G. J. Dockray. The distribution and cellular origin of vasoactive intestinal polypeptide in the avian gastrointestinal tract and pancreas. Cell Tissue Res. 211: 511–523, 1980.
 369. Vaillant, C., G. J., Dockray, and J. H. Walsh. The avian proventriculus is an abundant source of endocrine cells with bombesin‐like immunoreactivity. Histochemistry 64: 307–314, 1979.
 370. Vaillant, C., and I. L. Taylor. Demonstration of carboxyl‐terminal PP‐like peptides in endocrine cells and nerves. Peptides Fayetteville 2: 31–35, 1981.
 371. Van Noorden, S. The neuroendocrine system in protostomian and deuterostomian invertebrates and lower vertebrates. In: Evolution and Tumour Pathology of the Neuroendocrine System, edited by S. Falkmer, R. Håkanson and F. Sundler. Amsterdam: Elsevier, 1984, p. 7–38.
 372. Van Noorden, S., and S. Falkmer. Gut‐islet endocrinology—some evolutionary aspects. Invest. Cell Pathol. 3: 21–35, 1980.
 373. Van Noorden, S., and G. J. Patent. Vasoactive intestinal polypeptide‐like immunoreactivity in nerves of the pancreatic islet of the teleost fish, Gillichthys mirabilis. Cell Tissue Res. 212: 139–146, 1980.
 374. Van Noorden, S., and A. G. E. Pearse. Immunoreactive polypeptide hormones in the pancreas and gut of the lamprey. Gen. Comp. Endocrinol. 23: 311–324, 1974.
 375. Van Noorden, S., and A. G. E. Pearse. The localization of immunoreactivity to insulin, glucagon and gastrin in the gut of Amphioxus (Branchiostoma) lanceolatus. In: The Evolution of Pancreatic Islets, edited by T. A. I. Grillo, L. Leibson and A. Epple. Oxford, UK: Pergamon, 1976, p. 163–178.
 376. Veenstra, J. A., and N. Yanaihara. Immunocytochemical localization of gastrin‐releasing peptide/bombesin‐like immunoreactive neurons in insects. Histochemistry 81: 133–138, 1984.
 377. Venturini, G., A., Carolei, G. Palladini, V. Margotta, and M. G. Lauro. Radioimmunological and immunocytochemical demonstration of Met‐enkephalin in planaria. Comp. Biochem. Physiol. C. Comp. Physiol. Toxicol. 74: 23–25, 1983.
 378. Vigna, S. R. Distinction between cholecystokinin‐like and gastrin‐like biological activities extracted from gastrointestinal tissues of some lower vertebrates. Gen. Comp. Endocrinol. 39: 512–520, 1979.
 379. Vigna, S. R. Radioreceptor and biological characterization of cholecystokinin and gastrin in the chicken. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G296–G304, 1984.
 380. Vigna, S. R., B. L., Fischer, J. L. M. Morgan, and G. L. Rosenquist. Distribution and molecular heterogeneity of cholecystokinin‐like immunoreactive peptides in the brain and gut of the rainbow trout, Salmo gairdneri. Comp. Biochem. Physiol. C. Comp. Physiol. Toxicol. 82: 143–146, 1985.
 381. Vigna, S. R., and A. Gorbman. Effects of cholecystokinin, gastrin, and related peptides on coho salmon gallbladder contraction in vitro. Am. J. Physiol. 232 (Endocrinol. Metab. Gastrointest. Physiol. 1): E485–E491, 1977.
 382. Vigna, S. R., and A. Gorbman. Stimulation of intestinal lipase secretion by porcine cholecystokinin in the hagfish, Eptatretus stouti. Gen. Comp. Endocrinol. 38: 356–359, 1979.
 383. Vigna, S. R., J. L. M., Morgan, and T. M. Thomas. Localization and characterization of gastrin/cholecystokinin‐like immunoreactivity in the central nervous system of Aplysia californica. J. Neurosci. 4: 1370–1377, 1984.
 384. Vigna, S. R., R. W., Steigerwalt, and J. A. Williams. Characterization of cholecystokinin receptors in bullfrog (Rana catesbeiana) brain and pancreas. Regul. Pept. 9: 199–212, 1984.
 385. Vigna, S. R., M. C., Thorndyke, and J. A. Williams. Evidence for a common evolutionary origin of brain and pancreas choelcystokinin receptors. Proc. Natl. Acad. Sci. USA 83: 4355–4359, 1986.
 386. Waelbroeck, M., P., Robberecht, D. H. Coy, J.‐C. Camus, P. De Neef, and J. Christophe. Interaction of growth hormone‐releasing factor (GRF) and 14 GRF analogs with vasoactive intestinal peptide (VIP) receptors of rat pancreas. Discovery of (N‐Ac‐Tyr1,D‐Phe2)‐GRF(1–29)‐NH2 as a VIP antagonist. Endocrinology 116: 2643–2649, 1985.
 387. Walsh, J. H., J., Lechago, H. C. Wong, and G. L. Rosenquist. Presence of ranatensin‐like and bombesin‐like peptides in amphibian brains. Regul. Pept. 3: 1–13, 1982.
 388. Weber, E., C. J., Evans, S. J. Samuelsson, and J. D. Barchas. Novel peptide neuronal system in rat brain and pituitary. Science Wash. DC 214: 1248–1251, 1981.
 389. Weinstein, B. A generalized homology correlation for various hormones and proteins. Experientia Basel 28: 1517–1522, 1972.
 390. Williams, J. A., S. R., Vigna, C. Sakamoto, and I. D. Goldfine. Brain cholecystokinin receptors. Binding characteristics, covalent cross‐linking, and evolutionary aspects. Ann. NY Acad. Sci. 448: 220–230, 1985.
 391. Witten, J. L., M. H., Schaffer, M. O'Shea, J. C. Cook, M. E. Hemling, and K. L. Rinehart, JR., Structures of two cockroach neuropeptides assigned by fast atom bombardment mass spectrometry. Biochem. Biophys. Res. Commun. 124: 350–358, 1984.
 392. Yoo, O. J., C. T., Powell, and K. L. Agarwal. Molecular cloning and nucleotide sequence of full‐length cDNA coding for porcine gastrin. Proc. Natl. Acad. Sci. USA 79: 1049–1053, 1982.
 393. Yoshida, K., T., Iwanaga, and T. Fujita. Gastro‐entero‐pancreatic (GEP) endocrine system of the flatfish Paralichtys olivaceus: an immunocytochemical study. Arch. Histol. Jpn. 46: 259–266, 1983.
 394. Yoshikawa, K., C., Williams, and S. L. Sabol. Rat brain preproenkephalin mRNA: cDNA cloning, primary structure, and distribution in the central nervous system. J. Biol. Chem. 259: 14301–14308, 1984.
 395. Zhou, Z.‐Z., J., Eng, Y.‐C. E. Pan, M. Chang, J. D. Hulmes, J.‐P. Raufman, and R. S. Yalow. Unique cholecystokinin peptides isolated from guinea pig intestine. Peptides Fayetteville 6: 337–341, 1985.
 396. Zipser, B. Identification of specific leech neurones immunoreactive to enkephalin. Nature Lond. 283: 857–858, 1980.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

G. J. Dockray. Comparative Neuroendocrinology of Gut Peptides. Compr Physiol 2011, Supplement 17: Handbook of Physiology, The Gastrointestinal System, Neural and Endocrine Biology: 133-170. First published in print 1989. doi: 10.1002/cphy.cp060208