Comprehensive Physiology Wiley Online Library

Receptors for Gut Peptides and Other Secretagogues on Pancreatic Acinar Cells

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Receptors for Secretagogues that Mobilize Cellular Calcium
1.1 Receptors for Cholecystokinin and Structurally Related Peptides
1.2 Receptors for Bombesin and Structurally Related Peptides
1.3 Receptors for Muscarinic‐Cholinergic Agents
1.4 Receptors for Physalaemin and Structurally Related Peptides
2 Receptors for Secretagogues that Increase Cellular Camp
2.1 Receptors for Vasoactive Intestinal Peptide and Secretin
2.2 Receptors for Cholera Toxin
2.3 Receptors for Calcitonin Gene‐Related Peptide
2.4 Receptors for Natural Glucagon Contaminant
Figure 1. Figure 1.

Ability of CCK(CCK‐8) to increase amylase release and Ca2+ outflux and to inhibit binding of 125I‐CCK in dispersed acini from guinea pig pancreas. Results are expressed as the percentage of maximal effect of CCK‐26–33.

From Jensen et al. 63
Figure 2. Figure 2.

Structure of N2,O2'‐dibutyryl cGMP (Bt2cGMP), D,L‐4‐benzamido‐N,N‐dipropylglutaramic acid (proglumide), Np‐chlorobenzoyl‐L‐tryptophan (benzotript), and COOH‐terminal octapeptide of cholecystokinin (CCK‐8 or CCK‐26–33).

Figure 3. Figure 3.

Effects of Bt2cGMP, O2'BtcGMP, and N2BtcGMP on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel).

From Barlas et al. 5) and Jensen et al. 63
Figure 4. Figure 4.

Effects of proglumide and benzotript on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel).

From Hahne et al. 44
Figure 5. Figure 5.

Structure of L‐tryptophan and various N‐acyl derivatives of L‐tryptophan.

Figure 6. Figure 6.

Effects of L‐tryptophan and various N‐acyl derivatives of L‐tryptophan on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel). For abbreviations, see legend to Fig. 5.

From Jensen et al. 61
Figure 7. Figure 7.

Effects of L‐ and D‐tryptophan and their Boc and Ac derivatives on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel). Open symbols represent results obtained with compounds containing D‐tryptophan, and closed symbols represent results obtained with compounds containing L‐tryptophan. For abbreviations, see legend to Fig. 5.

From Jensen et al. 61
Figure 8. Figure 8.

Relationship between the ability of a Cbz‐amino acid to inhibit binding of 125I‐CCK and the hydrophobicity of the amino acid side chain. Logarithm of the concentration of Cbz‐amino acid that inhibited binding of 125I‐CCK by 20% (IC 20) obtained from measurements of binding of 125I‐CCK. Hydrophobicity of the amino acid side chain (R group) was obtained from Rekker 102). Open symbols, amino acid derivatives with aromatic side chains; closed symbols, amino acid derivatives with aliphatic side chains. Single letter next to each symbol is one‐letter notation for amino acids; N‐V and N‐L, norvaline and norleucine, respectively.

From Maton et al. 80
Figure 9. Figure 9.

Effect of proglumide analogue 10 on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel).

From Jensen et al. 68
Figure 10. Figure 10.

Effects of CCK‐32–33, CCK‐31–33, and their Boc derivatives on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel).

From Jensen et al. 60
Figure 11. Figure 11.

Effect of CCK‐27–32‐NH2 on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel).

From Spanarkel et al. 115
Figure 12. Figure 12.

Effect of various derivatives ofCCK‐26–32 on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel).

From Gardner et al. 38
Figure 13. Figure 13.

Effect of various NH2‐terminal fragments of CCK‐26–33 (CCK‐8) on amylase release stimulated by CCK‐26–33 (left panel) and on binding of 125I‐CCK (right panel).

From Gardner et al. 37
Figure 14. Figure 14.

Structure of asperlicin and L‐364, 718.

Figure 15. Figure 15.

Effect of asperlicin on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel) in guinea pig pancreatic acini. Results are means from 5 separate experiments.

Methods from Jensen et al. 63
Figure 16. Figure 16.

Effect of L‐364, 718 on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel) in guinea pig pancreatic acini. Results are means from at least 6 separate experiments.

Methods from Jensen et al. 63
Figure 17. Figure 17.

Ability of bombesin to increase amylase secretion and Ca2+ outflux and its ability to inhibit binding of 125I‐[Tyr4]bombesin in dispersed acini from guinea pig pancreas. Results are expressed as percentage of maximal effect caused by bombesin.

From Jensen et al. 65) and Uhlemann et al. 118
Figure 18. Figure 18.

Effect of [D‐Arg1,D‐Pro2,D‐Trp7,9,Leu11]substance P on binding of 125I‐[Tyr4]bombesin (left panel) and on amylase release stimulated by bombesin (right panel).

From Jensen et al. 59
Figure 19. Figure 19.

Effect of [D‐Phe12]bombesin on bombesin‐stimulated amylase release (left panel) and on binding of 125I‐[Tyr4]bombesin (right panel).

From Heinz‐Erian et al. 46
Figure 20. Figure 20.

Ability of carbachol to increase amylase secretion and Ca2+ outflux and to inhibit binding of [3H]N‐methyl scopolamine in dispersed acini from guinea pig pancreas. Results are expressed as the percentage of the maximal effect produced by carbachol.

From Jensen and Gardner 58) and McArthur et al. 82
Figure 21. Figure 21.

Ability of physalaemin to increase amylase secretion and Ca2+ outflux and to inhibit binding of 125I‐physalaemin in dispersed acini from guinea pig pancreas. Results are expressed as percentage of maximal effect caused by physalaemin.

From Jensen and Gardner 57) and Uhlemann et al. 118
Figure 22. Figure 22.

Effect of 3 analogues of substance P on binding of 125I‐physalaemin (left panel) and on amylase release stimulated by physalaemin (right panel). The 3 analogues tested were [D‐Arg1,D‐Pro2,D‐Trp7,9,Leu11]substance P (analogue A), [D‐Pro2,D‐Trp7,9]substance P (analogue B), and [D‐Pro2,D‐Phe7, D‐Trp9]substance P (analogue C).

From Jensen et al. 62
Figure 23. Figure 23.

Ability of VIP to interact with VIP‐preferring receptors to increase amylase secretion and cAMP and to inhibit binding of 125I‐VIP in dispersed acini from guinea pig pancreas. Results are expressed as percentage of maximal effect caused by VIP.

From Jensen and Gardner 58
Figure 24. Figure 24.

Ability of secretin to interact with secretin‐preferring receptors to increase cAMP and to inhibit binding of 125I‐secretin in dispersed acini from guinea pig pancreas. Results are expressed as percentage of maximal effect caused by secretin.

From Jensen et al. 56
Figure 25. Figure 25.

Ability of cholera toxin to increase amylase secretion and cAMP and to inhibit binding of 125I‐cholera toxin in dispersed acini from guinea pig pancreas. Results are expressed as percentage of maximal effect caused by cholera toxin.

From Gardner and Rottman 40
Figure 26. Figure 26.

Ability of calcitonin gene‐related peptide (CGRP) to increase amylase secretion and cAMP and to inhibit binding of 125I‐CGRP in dispersed acini from guinea pig pancreas. Results are expressed as percentage of maximal effect caused by CGRP.

From Zhou et al. 124


Figure 1.

Ability of CCK(CCK‐8) to increase amylase release and Ca2+ outflux and to inhibit binding of 125I‐CCK in dispersed acini from guinea pig pancreas. Results are expressed as the percentage of maximal effect of CCK‐26–33.

From Jensen et al. 63


Figure 2.

Structure of N2,O2'‐dibutyryl cGMP (Bt2cGMP), D,L‐4‐benzamido‐N,N‐dipropylglutaramic acid (proglumide), Np‐chlorobenzoyl‐L‐tryptophan (benzotript), and COOH‐terminal octapeptide of cholecystokinin (CCK‐8 or CCK‐26–33).



Figure 3.

Effects of Bt2cGMP, O2'BtcGMP, and N2BtcGMP on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel).

From Barlas et al. 5) and Jensen et al. 63


Figure 4.

Effects of proglumide and benzotript on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel).

From Hahne et al. 44


Figure 5.

Structure of L‐tryptophan and various N‐acyl derivatives of L‐tryptophan.



Figure 6.

Effects of L‐tryptophan and various N‐acyl derivatives of L‐tryptophan on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel). For abbreviations, see legend to Fig. 5.

From Jensen et al. 61


Figure 7.

Effects of L‐ and D‐tryptophan and their Boc and Ac derivatives on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel). Open symbols represent results obtained with compounds containing D‐tryptophan, and closed symbols represent results obtained with compounds containing L‐tryptophan. For abbreviations, see legend to Fig. 5.

From Jensen et al. 61


Figure 8.

Relationship between the ability of a Cbz‐amino acid to inhibit binding of 125I‐CCK and the hydrophobicity of the amino acid side chain. Logarithm of the concentration of Cbz‐amino acid that inhibited binding of 125I‐CCK by 20% (IC 20) obtained from measurements of binding of 125I‐CCK. Hydrophobicity of the amino acid side chain (R group) was obtained from Rekker 102). Open symbols, amino acid derivatives with aromatic side chains; closed symbols, amino acid derivatives with aliphatic side chains. Single letter next to each symbol is one‐letter notation for amino acids; N‐V and N‐L, norvaline and norleucine, respectively.

From Maton et al. 80


Figure 9.

Effect of proglumide analogue 10 on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel).

From Jensen et al. 68


Figure 10.

Effects of CCK‐32–33, CCK‐31–33, and their Boc derivatives on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel).

From Jensen et al. 60


Figure 11.

Effect of CCK‐27–32‐NH2 on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel).

From Spanarkel et al. 115


Figure 12.

Effect of various derivatives ofCCK‐26–32 on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel).

From Gardner et al. 38


Figure 13.

Effect of various NH2‐terminal fragments of CCK‐26–33 (CCK‐8) on amylase release stimulated by CCK‐26–33 (left panel) and on binding of 125I‐CCK (right panel).

From Gardner et al. 37


Figure 14.

Structure of asperlicin and L‐364, 718.



Figure 15.

Effect of asperlicin on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel) in guinea pig pancreatic acini. Results are means from 5 separate experiments.

Methods from Jensen et al. 63


Figure 16.

Effect of L‐364, 718 on amylase release stimulated by CCK‐26–33 (CCK‐8) (left panel) and on binding of 125I‐CCK (right panel) in guinea pig pancreatic acini. Results are means from at least 6 separate experiments.

Methods from Jensen et al. 63


Figure 17.

Ability of bombesin to increase amylase secretion and Ca2+ outflux and its ability to inhibit binding of 125I‐[Tyr4]bombesin in dispersed acini from guinea pig pancreas. Results are expressed as percentage of maximal effect caused by bombesin.

From Jensen et al. 65) and Uhlemann et al. 118


Figure 18.

Effect of [D‐Arg1,D‐Pro2,D‐Trp7,9,Leu11]substance P on binding of 125I‐[Tyr4]bombesin (left panel) and on amylase release stimulated by bombesin (right panel).

From Jensen et al. 59


Figure 19.

Effect of [D‐Phe12]bombesin on bombesin‐stimulated amylase release (left panel) and on binding of 125I‐[Tyr4]bombesin (right panel).

From Heinz‐Erian et al. 46


Figure 20.

Ability of carbachol to increase amylase secretion and Ca2+ outflux and to inhibit binding of [3H]N‐methyl scopolamine in dispersed acini from guinea pig pancreas. Results are expressed as the percentage of the maximal effect produced by carbachol.

From Jensen and Gardner 58) and McArthur et al. 82


Figure 21.

Ability of physalaemin to increase amylase secretion and Ca2+ outflux and to inhibit binding of 125I‐physalaemin in dispersed acini from guinea pig pancreas. Results are expressed as percentage of maximal effect caused by physalaemin.

From Jensen and Gardner 57) and Uhlemann et al. 118


Figure 22.

Effect of 3 analogues of substance P on binding of 125I‐physalaemin (left panel) and on amylase release stimulated by physalaemin (right panel). The 3 analogues tested were [D‐Arg1,D‐Pro2,D‐Trp7,9,Leu11]substance P (analogue A), [D‐Pro2,D‐Trp7,9]substance P (analogue B), and [D‐Pro2,D‐Phe7, D‐Trp9]substance P (analogue C).

From Jensen et al. 62


Figure 23.

Ability of VIP to interact with VIP‐preferring receptors to increase amylase secretion and cAMP and to inhibit binding of 125I‐VIP in dispersed acini from guinea pig pancreas. Results are expressed as percentage of maximal effect caused by VIP.

From Jensen and Gardner 58


Figure 24.

Ability of secretin to interact with secretin‐preferring receptors to increase cAMP and to inhibit binding of 125I‐secretin in dispersed acini from guinea pig pancreas. Results are expressed as percentage of maximal effect caused by secretin.

From Jensen et al. 56


Figure 25.

Ability of cholera toxin to increase amylase secretion and cAMP and to inhibit binding of 125I‐cholera toxin in dispersed acini from guinea pig pancreas. Results are expressed as percentage of maximal effect caused by cholera toxin.

From Gardner and Rottman 40


Figure 26.

Ability of calcitonin gene‐related peptide (CGRP) to increase amylase secretion and cAMP and to inhibit binding of 125I‐CGRP in dispersed acini from guinea pig pancreas. Results are expressed as percentage of maximal effect caused by CGRP.

From Zhou et al. 124
References
 1. Abdelmoumene, S., and J. D. Gardner. Cholecystokinin‐induced desensitization in dispersed acini from guinea pig pancreas. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G272–G279, 1980.
 2. Anastasi, A., V., Erspamer, and R. Endean. Isolation and amino acid sequence of caerulein, the active decapeptide of the skin of Hyla caerulea. Arch. Biochem. Biophys. 125: 57–68, 1968.
 3. Appert, H. E., T. H., Chiu, G. C. Budd, A. J. Leonardi, and J. M. Howard. 3H‐methyl scopolamine binding to dispersed pancreatic acini. Cell Tissue Res. 220: 673–684, 1981.
 4. Asselin, J., L., Larose, and J. Morisset. Short‐term cholinergic desensitization of rat pancreatic secretory response. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G392–G397, 1987.
 5. Barlas, N., R. T., Jensen, M. C. Beinfeld, and J. D. Gardner. Cyclic nucleotide antagonists of cholecystokinin: structural requirements for interaction with the cholecystokinin receptor. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G161–G167, 1982.
 6. Bissonnette, B. M., M. J., Collen, H. Adachi, R. T. Jensen, and J. D. Gardner. Receptors for vasoactive intestinal peptide and secretin on rat pancreatic acini. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G710–G717, 1984.
 7. Bitar, K. N., and G. M. Makhlouf. Receptors on smooth muscle cells: characterization by contraction and specific antagonists. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G400–G407, 1982.
 8. Bolton, A. E., and W. M. Hunter. The labelling of proteins to high specific radioactivities by conjugation to a 125‐containing acylating agent. Biochem. J. 133: 529–539, 1973.
 9. Chang, R. S. L., and V. J. Lotti. Biochemical and pharmacological characterization of an extremely potent and selective nonpeptide cholecystokinin antagonist. Proc. Natl. Acad. Sci. USA 83: 4923–4926, 1986.
 10. Chang, R. S. L., V. J., Lotti, and T. B. Chen. Characterization of [3H]‐(±)‐L‐364, 718 binding to solubilized cholecystokinin (CCK) receptors of rat pancreas. Biochem. Pharmacol. 36: 1709–1714, 1987.
 11. Chang, R. S. L., V. J., Lotti, T. B. Chen, and K. A. Kunkel. Characterization of the binding of [3H]‐(±)‐L‐364, 718: a new potent, nonpeptide cholecystokinin antagonist radioligand selective for peripheral receptors. Mol. Pharmacol. 30: 212–217, 1987.
 12. Chang, R. S. L., V. J., Lotti, R. L. Monaghan, J. Birnbaum, E. O. Stapley, M. A. Goetz, G. Albers‐Schönberg, A. A. Patchett, J. M. Liesch, O. D. Hensens, and J. P. Springer. A potent nonpeptide cholecystokinin antagonist selective for peripheral tissues isolated from Aspergillus alliaceus. Science Wash. DC 230: 177–179, 1985.
 13. Chiodo, L. A., and B. S. Bunney. Proglumide: selective antagonism of excitatory effects of cholecystokinin in central nervous system. Science Wash. DC 219: 1449–1450, 1983.
 14. Christophe, J. P., T. P., Conlon, and J. D. Gardner. Interaction of porcine vasoactive intestinal peptide with dispersed pancreatic acinar cells from the guinea pig. Binding of radioiodinated peptide. J. Biol. Chem. 251: 4629–4634, 1976.
 15. Christophe, J. P., P., De Neef, M. Deschodt‐Lanckman, and P. Robberecht. The interaction of caerulein with the rat pancreas. 2. Specific binding of [3H]caerulein on dispersed acinar cells. Eur. J. Biochem. 91: 31–78, 1978.
 16. Christophe, J. P., E. K., Frandsen, T. P. Conlon, G. Krishna, and J. D. Gardner. Action of cholecystokinin, cholinergic agents and A23187 on accumulation of guanosine 3',5'‐monophosphate in dispersed guinea pig pancreatic acinar cells. J. Biol. Chem. 251: 4640–4645, 1976.
 17. Collins, S. M., S., Abdelmoumene, R. T. Jensen, and J. D. Gardner. Cholecystokinin‐induced persistent stimulation of enzyme secretion from pancreatic acini. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G459–G465, 1981.
 18. Collins, S. M., S., Abdelmoumene, R. T. Jensen, and J. D. Gardner. Reversal of cholecystokinin‐induced persistent stimulation of pancreatic enzyme secretion by dibutyryl cyclic GMP. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G466–G471, 1981.
 19. Collins, S. M., and J. D. Gardner. Cholecystokinin‐induced contraction of dispersed smooth muscle cells. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G497–G504, 1982.
 20. Collins, S., D., Walker, P. Forsyth, and L. Belbeck. The effects of proglumide on cholecystokinin‐, bombesin‐, and glucagon‐induced satiety in the rat. Life Sci. 32: 2223–2229, 1983.
 21. Davison, J. S., and A. Najafi‐Farashah. Dibutyryl cyclic GMP, a competitive inhibitor of cholecystokinin/pancreozymin and related peptides in the gallbladder and ileum. Can. J. Physiol. Pharmacol. 59: 1100–1104, 1981.
 22. Davison, J. S., and A. Najafi‐Farashah. The effect of dibutyryl cyclic guanosine monophosphate, a competitive antagonist to cholecystokinin‐pancreozymin, on gastric acid secretion in the isolated mouse stomach. Life Sci. 31: 355–361, 1982.
 23. Davison, J. S., and A. Najafi‐Farashah. Antagonism of the actions of cholecystokinin‐pancreozymin (CCK‐PZ) and related peptides by proglumide in the guinea pig ileum and gallbladder. J. Physiol. Lond. 325: 39P–40P, 1982.
 24. Dehaye, J.‐P., J., Winand, C. Damien, F. Gomez, P. Poloczek, P. Robberecht, A. Vandermeers, M.‐C. Vandermeerspiret, M. Stievenart, and J. Christophe. Receptors involved in helodermin action on rat pancreatic acini. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14): G602–G610, 1986.
 25. Dehaye, J.‐P., J., Winand, P. Poloczek, and J. Christophe. Inhibitory effects of pirenzepine on muscarinic stimulation of rat pancreas. Eur. J. Pharmacol. 92: 259–264, 1983.
 26. Dehaye, J.‐P., J., Winand, P. Poloczek, and J. Christophe. Characterization of muscarinic cholinergic receptors on rat pancreatic acini by N‐[3H]methylscopolamine binding. J. Biol. Chem. 259: 294–300, 1984.
 27. Deschodt‐Lanckman, M., P., Robberecht, J. C. Camus, and J. Christophe. Wheat germ agglutinin inhibits basal‐ and stimulated‐adenylate cyclase activity as well as the binding of [3H] caerulein to rat pancreatic plasma membranes. J. Cyclic Nucleotide Res. 3: 177–187, 1977.
 28. Deschodt‐Lanckman, M., P., Robberecht, J. Camus, and J. Christophe. The interaction of caerulein with the rat pancreas. 1. Specific binding of [3H]caerulein on plasma membranes and evidence for negative cooperativity. Eur. J. Biochem. 91: 21–29, 1978.
 29. Deschodt‐Lanckman, M., P., Robberecht, P. De Neef, M. Lammens, and J. Christophe. In vitro action of bombesin and bombesin‐like peptides on amylase secretion, calcium efflux and adenylate cyclase activity in the rat pancreas. J. Clin. Invest. 58: 891–898, 1976.
 30. Deschodt‐Lanckman, M., M., Svoboda, J. Camus, and P. Robberecht. Regulation of the dissociation of [3H]caerulein from its pancreatic receptors: evidence for negative cooperativity. In: Hormonal Receptors in Digestive Tract Physiology, edited by S. Bonfils, P. Fromageot and G. Rosselin. Amsterdam: Elsevier/North‐Holland, 1977, p. 325–326.
 31. Erspamer, V., G. Falconieri, Erspamer, M. Inselvini, and L. Negri. Occurrence of bombesin and alytesin in extracts of the skin of three European discoglossid frogs and pharmacological actions of bombesin on extravascular smooth muscle. Br. J. Pharmacol. 45: 333–348, 1972.
 32. Erspamer, V., and P. Melchiorri. Active polypeptides of the amphibian skin and their synthetic analogs. Pure Appl. Chem. 35: 463–494, 1973.
 33. Erspamer, V., and P. Melchiorri. Actions of bombesin on secretions and motility of the gastrointestinal tract. In: Gastrointestinal Hormones, edited by J. C. Thompson. Austin, Texas: Univ. of Texas Press, 1975, p. 575–589.
 34. Evans, B. E., M. G., Brock, K. E. Rittle, R. M. Di Pardo, W. L. Whittier, D. F. Veber, P. S. Anderson, and R. M. Freidinger. Design of potent, orally effective, nonpeptidal antagonists of the peptide hormone cholecystokinin. Proc. Natl. Acad. Sci. USA 83: 4918–4922, 1986.
 35. Gardner, J. D. Mechanism by which dibutyryl cyclic guanosine monophosphate antagonizes the action of cholecystokinin. Gastroenterology 85: 1619–1621, 1983.
 36. Gardner, J. D., and R. T. Jensen. Regulation of pancreatic enzyme secretion in vitro. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson. New York: Raven, 1981, p. 831–871.
 37. Gardner, J. D., M., Knight, V. E. Sutliff, and R. T. Jensen. N‐terminal fragments of CCK‐(26–33) as cholecystokinin receptor antagonists in guinea pig pancreatic acini. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G98–G102, 1985.
 38. Gardner, J. D., M., Knight, V. E. Sutliff, C. A. Tamminga, and R. T. Jensen. Derivatives of CCK‐(26–32) as cholecystokinin receptor antagonists in guinea pig pancreatic acini. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G292–G295, 1984.
 39. Gardner, J. D., L., Korman, M. Walker, and V. E. Sutliff. Effects of inhibitors of cyclic nucleotide phosphodiesterase on the actions of vasoactive intestinal peptide and secretin on pancreatic acini. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G547–G551, 1982.
 40. Gardner, J. D., and A. J. Rottman. Action of cholera toxin on dispersed acini from guinea pig pancreas. Biochim. Biophys. Acta 585: 250–265, 1979.
 41. Gardner, J. D., A. J., Rottman, S. Natarajan, and M. Dobanszky. Interaction of secretin5–27 and its analogues with hormone receptors on pancreatic acini. Biochim. Biophys. Acta 583: 491–503, 1979.
 42. Gardner, J. D., V. E., Sutliff, M. D. Walker, and R. T. Jensen. Effects of inhibitors of cyclic nucleotide phosphodiesterase on actions of cholecystokinin, bombesin and carbachol on pancreatic acini. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G676–G680, 1983.
 43. Gill, D. M. Mechanism of action of cholera toxin. In: Advances in Cyclic Nucleotide Research, edited by P. Greengard and G. A. Robison. New York: Raven, 1977, vol. 8, p. 85–118.
 44. Hahne, W. F., R. T., Jensen, G. F. Lemp, and J. D. Gardner. Proglumide and benzotript: members of a different class of cholecystokinin receptor antagonists. Proc. Natl. Acad. Sci. USA 78: 6304–6308, 1981.
 45. Hansch, C. Quantitative structure‐activity relationships in drug design. In: Drug Design, edited by E. J. Ariens. New York: Academic, 1971, vol. 1, p. 271–342.
 46. Heinz‐Erian, P., P. H., Coy, M. Tamura, S. W. Jones, J. D. Gardner, and R. T. Jensen. [D‐Phe12] bombesin analogues: a new class of bombesin receptor antagonists. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G439–G442, 1987.
 47. Hersey, S. J., D., May, and D. Schyberg. Stimulation of pepsinogen release from isolated gastric glands by cholecystokinin‐like peptides. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G192–G197, 1983.
 48. Hootman, S. R., M. E., Brown, J. A. Williams, and C. D. Logsdon. Regulation of muscarinic acetylcholine receptors in cultured guinea pig pancreatic acini. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14): G75–G83, 1986.
 49. Hootman, S. R., S. A., Ernst, and J. A. Williams. Secretagogue regulation of Na+‐K+ pump activity in pancreatic acinar cells. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G339–G346, 1983.
 50. Hootman, S. R., and T.M. Picado‐Leonard. Effect of proteolytic cleavage on functional properties of muscarinic acetylcholine receptors in rat pancreatic and parotid acinar cells. Biochem. J. 231: 617–622, 1985.
 51. Hootman, S. R., T. M., Picado‐Leonard, and D. B. Burnham. Muscarinic acetylcholine receptor structure in acinar cells of mammalian exocrine glands. J. Biol. Chem. 260: 4186–4194, 1985.
 52. Howard, J. M., R. T., Jensen, and J. D. Gardner. Bombesin‐induced residual stimulation of amylase release from mouse pancreatic acini. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G196–G199, 1985.
 53. Hutchinson, J. B., and G. F. Dockray. Inhibition of the action of cholecystokinin octapeptide on the guinea pig ileum myenteric plexus by dibutyryl cyclic guanosine monophosphate. Brain Res. 202: 501–505, 1980.
 54. Iwamoto, Y., and J. A. Williams. Inhibition of pancreatic α‐aminoisobutyric acid update by cholecystokinin and other secretagogues. Am. J. Physiol 238 (Gastrointest. Liver Physiol. 1): G440–G444, 1980.
 55. Iwamoto, Y., R., Yamamoto, and T. Kuzuya. CR‐1409: a potent inhibitor of cholecystokinin‐stimulated amylase release and cholecystokinin binding in rat pancreatic acini. Pancreas 2: 85–90, 1987.
 56. Jensen, R. T., C. G., Charlton, H. Adachi, S. W. Jones, T. L. O'Donohue, and J. D. Gardner. Use of 125I‐secretin to identify and characterize high‐affinity secretin receptors on pancreatic acini. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G186–G195, 1983.
 57. Jensen, R. T., and J. D. Gardner. Interaction of physalaemin, substance P and eledoisin with specific membrane receptors on pancreatic acinar cells. Proc. Natl. Acad. Sci. USA 76: 5679–5683, 1979.
 58. Jensen, R. T., and J. D. Gardner. Identification and characterization of receptors for secretagogues on pancreatic acinar cells. Federation Proc. 40: 2486–2496, 1981.
 59. Jensen, R. T., S. W., Jones, K. Folkers, and J. D. Gardner. A synthetic peptide that is a bombesin receptor antagonist. Nature Lond. 309: 61–63, 1984.
 60. Jensen, R. T., S. W., Jones, and J. D. Gardner. COOH‐terminal fragments of cholecystokinin: a new class of cholecystokinin receptor antagonists. Biochim. Biophys. Acta 757: 250–258, 1983.
 61. Jensen, R. T., S. W., Jones, and J. D. Gardner. Structure‐function studies of N‐acyl derivatives of tryptophan that function as specific cholecystokinin receptor antagonists. Biochim. Biophys. Acta 761: 269–277, 1983.
 62. Jensen, R. T., S. W., Jones, Y‐A. Lu, J‐C. Xu, K. Folkers, and J. D. Gardner. Interaction of substance P antagonists with substance P receptors on dispersed pancreatic acini. Biochim. Biophys. Acta 804: 181–191, 1984.
 63. Jensen, R. T., G. F., Lemp, and J. D. Gardner. Interaction of cholecystokinin with specific membrane receptors on pancreatic acinar cells. Proc. Natl. Acad. Sci. USA 77: 2079–2083, 1980.
 64. Jensen, R. T., G. F., Lemp, and J. D. Gardner. Interactions of COOH‐terminal fragments of cholecystokinin with receptors on dispersed acini from guinea pig pancreas. J. Biol. Chem. 257: 5554–5559, 1982.
 65. Jensen, R. T., T., Moody, C. Pert, J. E. Rivier, and J. D. Gardner. Interaction of bombesin and litorin with specific membrane receptors on pancreatic acinar cells. Proc. Natl. Acad. Sci. USA 75: 6139–6143, 1978.
 66. Jensen, R. T., R. B., Murphy, M. Trampota, L. H. Schneider, S. W. Jones, J. M. Howard, and J. D. Gardner. Proglumide analogues: potent cholecystokinin receptor antagonists. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G214–G220, 1985.
 67. Jensen, R.T., K., Tatemoto, V. Mutt, G. F. Lemp, and J. D. Gardner. Actions of a newly isolated intestinal peptide, PHI, on dispersed acini from guinea pig pancreas. Am. J. Physiol. 241 (Gastrointest. Liver Physiol. 4): G498–G502, 1981.
 68. Jensen, R. T., Z.‐C., Zhou, R. B. Murphy, S. W. Jones, I. Setnikar, L. A. Rovati, and J. D. Gardner. Structural features of various proglumide‐related cholecystokinin receptor antagonists. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14): G839–G846, 1986.
 69. Kasbekar, D. K., R. T., Jensen, and J. D. Gardner. Pepsinogen secretion from dispersed glands from rabbit stomach. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G392–G396, 1983.
 70. Korc, M., J. A., Williams, and I. D. Goldfine. Stimulation of the glucose transport system in isolated mouse pancreatic acini by cholecystokinin and analogues. J. Biol. Chem. 254: 7624–7629, 1979.
 71. Lamers, C. B. H. W., and J. B. M. J. Jansen. The effect of a gastrin‐receptor antagonist on gastric acid secretion and serum gastrin in the Zollinger‐Ellison syndrome. J. Clin. Gastroenterol. 5: 21–24, 1983.
 72. Larose, L., Y., Dumont, J. Asselin, J. Morisset, and G. G. Poirier. Muscarinic receptor of rat pancreatic acini: [3H]QNB binding and amylase secretion. Eur. J. Pharmacol. 76: 247–254, 1981.
 73. Lee, P. C., R. T., Jensen, and J. D. Gardner. Bombesin‐induced desensitization of enzyme secretion in dispersed acini from guinea pig pancreas. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G213–G218, 1980.
 74. Lotti, V. J., R. G., Pendleton, R. J. Gould, H. M. Hanson, R. S. L. Chang, and B. V. Clineschmidt. In vivo pharmacology of L‐364, 718, a new potent nonpeptide peripheral cholecystokinin antagonist. J. Pharmacol. Exp. Ther. 241: 103–109, 1987.
 75. Louie, D. S., and C. Owyang. Muscarinic receptor subtypes on rat pancreatic acini: secretion and binding sites. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14): G275–G279, 1986.
 76. Madison, L. D., S. A., Rosenzweig, and J. D. Jamieson. Use of the heterobifunctional cross‐linker m‐maleimidobenzoyl N‐hydroxysuccinimide ester to affinity label cholecystokinin binding proteins on rat pancreatic plasma membranes. J. Biol. Chem. 259: 14818–14823, 1984.
 77. Makovec, F., M., Bani, R. Christe, L. Revel, L. C. Rovati, and L. A. Rovati. Differentiation of central and peripheral cholecystokinin receptors by new glutaramic acid derivatives with cholecystokinin‐antagonistic activity. Arzneim‐Forsch. 36: 98–101, 1986.
 78. Makovec, F., R., Christe, M. Bani, M. A. Pacini, I. Setnikar, and L. A. Rovati. New glutaramic acid derivatives with potent competitive and specific cholecystokinin‐antagonistic activity. Arzneim‐Forsch. 35: 1048–1051, 1985.
 79. Makovec, F., R., Christe, M. Bani, L. Revel, I. Setnikar, and A. L. Rovati. New glutaramic and aspartic derivatives with potent CCK‐antagonistic activity. Eur. J. Med. Chem. 21: 9–20, 1986.
 80. Maton, P. N., V. E., Sutliff, R. T. Jensen, and J. D. Gardner. Carbobenzoxy amino acids: structural requirements for cholecystokinin receptor antagonist activity. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G479–G484, 1985.
 81. May, R. J., T. P., Conlon, V. Erspamer, and J. D. Gardner. Actions of peptides isolated from amphibian skin on pancreatic acinar cells. Am. J. Physiol. 235 (Endocrinol. Metab. Gastrointest. Physiol. 4): E112–E118, 1978.
 82. Mcarthur, K. E., R. T., Jensen, and J. D. Gardner. The actions of tetraethylammonium on dispersed acini from guinea pig pancreas. Biochim. Biophys. Acta 762: 373–377, 1983.
 83. Mcarthur, K. E., C. L., Wood, M. S. O'Dorisio, Z.‐C. Zhou, J. D. Gardner, and R. T. Jensen. Characterization of receptors for VIP on pancreatic acinar cell plasma membranes using covalent cross‐linking. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G404–G412, 1987
 84. Michell, R. H. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415: 81–147, 1975.
 85. Miller, L. J., W. M., Reilly, S. A. Rosenzweig, J. D. Jamieson, and V. L. W. Go. A soluble interaction between dibutyryl cyclic guanosine 3':5'‐monophosphate and cholecystokinin: a possible mechanism for the inhibition of cholecystokinin activity. Gastroenterology 84: 1505–1511, 1983.
 86. Miller, L. J., S. A., Rosenzweig, and J. D. Jamieson. Preparation and characterization of a probe for the cholecystokinin octapeptide receptor, Nα(125I‐desaminotyrosyl)CCK‐8, and its interactions with pancreatic acini. J. Biol. Chem. 256: 12417–12423, 1981.
 87. Niederau, C., M., Niederau, J. A. Williams, and J. H. Grendell. New proglumide‐analogue CCK receptor antagonists: very potent and selective for peripheral tissues. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14): G856–G860, 1986.
 88. Otsuki, M., Y., Okabayashi, T. Oka, T. Nakamura, M. Fujii, and S. Baba. Pirenzepine inhibits pancreatic exocrine secretion in the rat. Pancreas 1: 443–448, 1986.
 89. Pandol, S. J., K., Dharmsathaphorn, M. S. Schoeffield, W. Vale, and J. Rivier. Vasoactive intestinal peptide receptor antagonist [4Cl‐D‐Phe6,Leu17]VIP. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G553–G557, 1986
 90. Pandol, S. J., R. T., Jensen, and J. D. Gardner. Mechanism of [Tyr4] bombesin‐induced desensitization in dispersed acini from guinea pig pancreas. J. Biol. Chem. 257: 12024–12029, 1984.
 91. Pandol, S. J., H., Seifert, M. W. Thomas, J. Rivier, and W. Vale. Growth hormone‐releasing factor stimulates pancreatic enzyme secretion. Science Wash. DC 225: 326–328, 1984.
 92. Pandol, S. J., V. E., Sutliff, S. W. Jones, C. G. Charlton, T. L. O'Donohue, J. D. Gardner, and R. T. Jensen. Action of natural glucagon on pancreatic acini: due to contamination by previously undescribed secretagogues. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G703–G710, 1983.
 93. Parker, D. S., J.‐P., Raufman, T. L. O'Donohue, M. Bledsoe, H. Yoshida, and J. J. Pisano. Amino acid sequences of helospectins, new members of the glucagon superfamily, found in Gila monster venom. J. Biol. Chem. 259: 11751–11755, 1984.
 94. Pearson, R. K., and L. J. Miller. Affinity labeling of a novel cholecystokinin‐binding protein in rat pancreatic plasma‐lemma using new short probes for the receptor. J. Biol. Chem. 262: 869–876, 1987.
 95. Peikin, S. R., C. L., Costenbader, and J. D. Gardner. Actions of derivatives of cyclic nucleotides on dispersed acini from guinea pig pancreas: discovery of a competitive antagonist of the action of cholecystokinin. J. Biol. Chem. 254: 5321–5327, 1979.
 96. Petersen, O. H. Electrophysiology of mammalian gland cells. Physiol. Rev. 56: 535–577, 1976.
 97. Petersen, O. H. Electrophysiology of exocrine gland cells. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson. New York: Raven, 1981, p. 749–772.
 98. Philpott, H. E., and O. H. Petersen. Separate activation sites for cholecystokinin and bombesin on pancreatic acini. Pfluegers Arch. 382: 263–267, 1979.
 99. Poitras, P., D., Iacino, and J. H. Walsh. Dibutyryl cGMP: Inhibitor of the effect of cholecystokinin and gastrin on the guinea pig gallbladder in vitro. Biochem. Biophys. Res. Commun. 96: 476–482, 1980.
 100. Praissman, M., P. A., Martinez, C. F. Saladino, J. M. Berkowitz, A. W. Steggles, and J. A. Finkelstein. Characterization of cholecystokinin binding sites in rat cerebral cortex using a 125I‐CCK‐8 probe resistant to degradation. J. Neurochem. 40: 1406–1413, 1983.
 101. Raufman, J.‐P., R. T., Jensen, V. E. Sutliff, J. J. Pisano, and J. D. Gardner. Actions of Gila monster venom on dispersed acini from guinea pig pancreas. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G470–G474, 1982.
 102. Rekker, R. F. The Hydrophobic Fragmental Constant, Its Derivation and Application: A Means of Characterising Membrane Systems Amsterdam: Elsevier, 1977.
 103. Robberecht, P., T. P., Conlon, and J. D. Gardner. Interaction of porcine vasoactive intestinal peptide with dispersed acinar cells from the guinea pig: structural requirements for effects of VIP and secretin on cellular cyclic AMP. J. Biol. Chem. 251: 4635–4639, 1976.
 104. Robberecht, P., M., Deschodt‐Lanckman, J. Camus, and J. Christophe. Specific binding and mode of action of caerulein on plasma membranes of rat pancreas. In: Hormonal Receptors in Digestive Tract Physiology, edited by S. Bonfils, P. Fromageot and G. Rosselin. Amsterdam: Elsevier/North‐Holland, 1977, p. 261–274.
 105. Robberecht, P., M., Deschodt‐Lanckman, J. L. Morgat, and J. Christophe. The interaction of caerulein with rat pancreas. 3. Structural requirements for in vitro binding of caerulein‐like peptides and its relationship to increased calcium outflux, adenylate cyclase activation and secretion. Eur. J. Biochem. 91: 39–48, 1978.
 106. Robberecht, P., M., Deschodt‐Lanckman, M.‐C. Woussen‐Collé, P. De Neef, J. C. Camus, and J. Christophe. Butyryl derivatives of cyclic GMP interfere with the biological and immunological properties of the pancreozymin‐gastrin family of peptides. Mol. Pharmacol. 17: 268–274, 1980.
 107. Robberecht, P., M., Waelbroeck, J.‐P. Dehaye, J. Winand, A. Vandermeers, M.‐C. Vandermeers‐Piret, and J. Christophe. Evidence that helodermin, a newly extracted peptide from Gila monster venom, is a member of the secretin/VIP/PHI family of peptides with an original pattern of biological properties. FEBS Lett. 166: 277–282, 1984.
 108. Rosenzweig, S. A., L. J., Miller, and J. D. Jamieson. Identification and localization of cholecystokinin‐binding sites on rat pancreatic plasma membranes and acinar cells: a biochemical and autoradiographic study. J. Cell Biol. 96: 1288–1297, 1983.
 109. Sakamoto, C., I. D., Goldfine, and J. A. Williams. Characterization of cholecystokinin receptor subunits on pancreatic plasma membrane. J. Biol. Chem. 258: 12707–12711, 1983.
 110. Sakamoto, C., J. A., Williams, K. Y. Wong. and I. D. Gold‐Fine. The CCK receptor on pancreatic plasma membranes: binding characteristics and covalent cross‐linking. FEBS Lett. 151: 63–66, 1983.
 111. Sankaran, H., C. W., Deveney, I. D. Goldfine, and J. A. Williams. Preparation of biologically active radioiodinated cholecystokinin for radioreceptor assay and radioimmunoassay. J. Biol. Chem. 254: 9349–9351, 1979.
 112. Sankaran, H., I. D., Goldfine, H. Bailey, V. Licko, and J. A. Williams. Relationship of cholecystokinin receptor binding to regulation of biological functions in pancreatic acini. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G250–G257, 1982.
 113. Sankaran, H., I. D., Goldfine, C. W. Deveney, K.‐Y. Wong, and J. A. Williams. Binding of cholecystokinin to high affinity receptors on isolated rat pancreatic acini. J. Biol. Chem. 255: 1849–1853, 1980.
 114. Seifert, H., P., Sawchenko, J. Chesnut, J. Rivier, W. Vale, and S. J. Pandol. Receptor for calcitonin gene‐related peptide: binding to exocrine pancreas mediates biological actions. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G147–G151, 1985.
 115. Spanarkel, M., J., Martinez, C. Briet, R. T. Jensen, and J. D. Gardner. Cholecystokinin‐27–32‐amide. A member of a new class of cholecystokinin receptor antagonists. J. Biol. Chem. 258: 6746–6749, 1983.
 116. Svoboda, M., M. Lambert, J. Furnelle, and J. Christophe Specific photoaffinity cross linking of [125I]cholecystokinin to pancreatic plasma membrane. Regul. Pept. 4: 163–172, 1982.
 117. Szecowka, J., I. D., Goldfine, and J. A. Williams. Solubilization and characterization of CCK receptors from mouse pancreas. Regul. Pept. 10: 71–83, 1985.
 118. Uhlemann, E. R., A. J., Rottman, and J. D. Gardner. Actions of peptides isolated from amphibian skin on amylase release from dispersed pancreatic acini. Am. J. Physiol. 236 (Endocrinol. Metab. Gastrointest. Physiol. 5): E571–E576, 1979.
 119. Villanueva, M. L., S. M., Collins, R. T. Jensen, and J. D. Gardner. Structural requirements for action of cholecystokinin on enzyme secretion from pancreatic acini. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G416–G422, 1982.
 120. Waelbroeck, M., P., Robberecht, D. H. Coy, J.‐C. Camus, P. De Neef, and J. Christophe. Interaction of growth hormone‐releasing factor (GRF) and 14 GRF analogues with vasoactive intestinal peptide (VIP) receptors of rat pancreas. Discovery of (N‐Ac‐Tyr1,D‐Phe2)‐GRF(1–29)NH2 as a VIP antagonist. Endocrinology 116: 2643–2649, 1985.
 121. Walsh, J. H. Gastrointestinal peptide hormones and other biologically active peptides. In: Gastrointestinal Disease, edited by M. H. Sleisenger and J. S. Fordtran. Philadelphia, PA: Saunders, 1978, p. 107–157.
 122. Williams, J. A., H., Sankaran, E. Roach, and I. D. Goldfine. Quantitative electron microscopy autoradiographs of 125I‐cholecystokinin in pancreatic acini. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 5): G291–G296, 1982.
 123. Zahidi, A., D., Fourmy, J.‐M. Darbon, L. Pradayrol, J.‐L. Scemama, and A. Ribet. Molecular properties of solubilized CCK receptor from guinea pig pancreas. Regul. Pept. 15: 25–36, 1986.
 124. Zhou, Z.‐C, M. L., Villanueva, M. Noguchi, S. W. Jones, J. D. Gardner, and R. T. Jensen. Mechanism of action of calcitonin gene‐related peptide in stimulating pancreatic enzyme secretion. Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14): G391–G397, 1986.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jerry D. Gardner, Robert T. Jensen. Receptors for Gut Peptides and Other Secretagogues on Pancreatic Acinar Cells. Compr Physiol 2011, Supplement 17: Handbook of Physiology, The Gastrointestinal System, Neural and Endocrine Biology: 171-192. First published in print 1989. doi: 10.1002/cphy.cp060209