Comprehensive Physiology Wiley Online Library

Liver Receptors for Regulatory Peptides

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Methodology of Receptor Studies in Liver
1.1 Receptor‐Binding Assay
1.2 Functional Liver Preparation for Receptor Studies
1.3 Isolated Liver Cells
2 Hepatocyte Plasmalemma
2.1 Cell Surface Receptors
2.2 Lipid‐Receptor Interaction in Liver Plasmalemma
2.3 Surface‐to‐Cell and Cell‐to‐Cell Interactions in Hepatocytes
3 Liver Receptors Coupled to Cyclic Amp Stimulation
3.1 Adenylate Cyclase System
3.2 Identities and Specificities of Ns Protein
3.3 Specificities of Rs in Liver
4 Insulin and Growth Factor Receptors in Liver
4.1 General Characteristics
4.2 Receptors for Insulin
4.3 Receptors for Insulin‐Like Growth Factor I
4.4 Receptors for Insulin‐Like Growth Factor II
4.5 Receptors for Epidermal Growth Factor
4.6 Phosphokinasic Properties of Insulin and Polypeptide Growth Factor Receptors
5 Growth Hormone and Prolactin Receptors in Liver
6 Receptors to α1‐Agonists in Liver
6.1 General Characteristics
6.2 Receptors for Vasopressin
6.3 Receptors for Angiotensin II
6.4 Liver Receptors and Phosphoinositide‐Generated Second Messengers
7 Regulatory Role of Receptors for Gut Peptides in Liver
7.1 Degradation of Regulatory Peptides
7.2 Receptor‐Mediated Desensitization and Potentialization
7.3 General Characteristics of Receptor‐Mediated Processes Inside Hepatocytes
7.4 Disposal of Ligand and Binding Sites
7.5 Multiple Sites for Peptide Action in Hepatocytes
7.6 Multihormonal Regulation of Hepatocyte Function
8 Conclusion
Figure 1. Figure 1.

A: morphology of isolated hepatocytes. Left: phasecontrast microscopy; right: ultrastructural aspect. B: primary monolayer culture of hepatocytes within 4 h of plating. Ruthenium red intensely stains cell coat covering plasma membranes and penetrates narrow intercellular space between adjacent cells. × 7,000.

A from Rosselin et al. 313); B from Wanson et al. 377
Figure 2. Figure 2.

Schematic comparison of insulin (right) and epidermal growth factor (left) receptors. Hatched boxes, regions of high cysteine‐residue concentration; filled boxes, transmembrane domains; filled circles, single cysteine residues, possibly involved in formation of the α2β2 insulin receptor complex.

From Ullrich et al. 365). Reprinted by permission from Nature, copyright 1985, Macmillan Journals Limited
Figure 3. Figure 3.

A: relationship between ability of glucagon to stimulate cAMP production and corresponding fractional occupancy of glucagon receptor. Cyclic AMP levels and binding of glucagon were measured in the same experiment at 37°C in presence of 10 mM theophylline and different concentrations of glucagon (0‐2 × 10−8 M). In binding experiment, glucagon was supplemented with 10−10 M monoiodinated glucagon. B: relationship between relative activities of glucagon (•) and dehistidine glucagon (○) in inhibiting [14C]fructose flux into glycogen (expressed as percent of control) at selected peptide concentrations and corresponding fractional occupancies of high‐affinity hepatocyte glucagon receptor.

A from Rosselin 314); B from Bonnevie‐Nielsen and Tager 37
Figure 4. Figure 4.

Association of 125I‐labeled glucagon with solubilized glucagon receptors that bind (•) and do not bind (○) to wheat germ lectin as a function of glucagon concentration.—, Theoretical curves corresponding to dissociation constants for high‐affinity (left) and low‐affinity (right) binding as derived by mathematical modeling; each corresponds to a single binding equilibrium.

From Mason and Tager 244
Figure 5. Figure 5.

Specificity of vasoactive intestinal polypeptide (VIP) binding in liver. A: effect of unlabeled porcine VIP, synthetic secretin, peptide histidine isoleucine (PHI), and glucagon on the binding of 125I‐labeled VIP to rat liver membranes. Data are expressed as percent of initial binding of labeled VIP, that is, binding observed in absence of unlabeled peptide. Data are corrected for nonspecific binding, that is, binding observed in presence of an excess (10−6 M) of unlabeled porcine VIP. [Adapted from Bataille et al. 11,12.] B: inhibition of 125I‐VIP binding by increasing concentrations of unlabeled VIP, helodermin, secretin, and human pancreatic growth hormone‐releasing factor (hp GRF1–29‐NH2).

From Robberecht et al. 303
Figure 6. Figure 6.

Hepatic disappearance curves for somatostatin‐14 (S‐14), S‐28, and S‐25. The recognition of the R149 antibody resides in the COOH‐terminal part of somatostatin‐14 and somatostatin‐28, whereas that of R22 antibody is only present in the NH2‐terminal part of the somatostatin‐28. RIA, radioimmunoassay.

From Ruggere and Patel 318
Figure 7. Figure 7.

Homologous and heterologous desensitization. Left, kinetics of monolayer desensitization to glucagon. Cyclic AMP levels (filled triangles) after a first and second exposure to glucagon. Hepatocytes (15‐day‐old rat) were grown for 4 days with 10 μM cortisol. At day 4, 10 nM glucagon and 1 mM caffeine were added at time zero. Cultures were rapidly frozen at the time indicated on abscissa and analyzed for cAMP content by radioimmunoassay (A). Same experiment was repeated on cultures that had received a first dose of glucagon (10 nM) 4 h before (B). Control cultures that were grown in the absence of glucagon are represented by • and ○. Open symbols, cultures that have been incubated with 1 mM caffeine alone added at time zero. Middle, concentration dependence of homologous and heterologous desensitization to glucagon. Desensitization of cAMP accumulation in cultured hepatocytes as function of glucagon concentration during treatment. After treatment of cells for 12 h with 0.5 μM glucagon at the various concentrations indicated, cAMP accumulations stimulated by 0.5 μM glucagon (•) and 10 μM isoproterenol (○) were determined. Values are expressed as percentages of cAMP accumulation in untreated cells stimulated by glucagon and isoproterenol (550 and 438 pmol/mg of protein/5 min), respectively. Right, heterologous nature of desensitization by vasopressin. First, cells were desensitized by addition of increasing doses of vasopressin for 20 min. Residual phosphorylase A activities (○) were near basal level. Then control (0 concentration) or desensitized cells were stimulated for 90 s with maximally active doses of 1 nM vasopressin (•), 2 nM angiotensin (▵), 10 μM phenylephrine (□), or 5 nM glucagon (▵). Effect of vasopressin, angiotensin, and phenylephrine decreases with increasing doses of vasopressin.

Left from Plas and Nunez 284); middle from Noda et al. 269); right from Bréant et al. 41
Figure 8. Figure 8.

Nutritional relevance of the liver human growth hormone (hGH)‐binding sites. A: hGH binding in liver cells isolated from dwarf mice (•—•). After 30 days of 3,5,3‐triiodothyronine (T3) treatment, liver cells were isolated and binding of hGH was performed (•—•). Insert, treatment of hGH‐binding data according to the Scatchard method. B/F, ratio of bound to free hGH. The dw/dw mice exhibit a lack of both endogenous hGH and thyrotropic hormone. In those animals, lack of hGH‐binding sites could explain the low effect of hGH in promoting growth. Treatment with T3 increased the number of hGH‐binding sites and growth in hGH‐treated dw/dw mice. B: Correlation between plasma somatomedin‐C concentrations and liver bovine GH sites in control (•) and malnourished (○) rats. Linear correlation between plasma somatomedin‐C‐ and liver GH‐binding capacities is significant until day 28 (data shown between ordinate and —). Reduction of number of somatogenic‐binding sites in malnourished rats was associated with impaired production and/or release of somatomedin‐C in rats 14–28 days old.

A from Fouchereau‐Péron et al. 120); B from Maes et al. 234


Figure 1.

A: morphology of isolated hepatocytes. Left: phasecontrast microscopy; right: ultrastructural aspect. B: primary monolayer culture of hepatocytes within 4 h of plating. Ruthenium red intensely stains cell coat covering plasma membranes and penetrates narrow intercellular space between adjacent cells. × 7,000.

A from Rosselin et al. 313); B from Wanson et al. 377


Figure 2.

Schematic comparison of insulin (right) and epidermal growth factor (left) receptors. Hatched boxes, regions of high cysteine‐residue concentration; filled boxes, transmembrane domains; filled circles, single cysteine residues, possibly involved in formation of the α2β2 insulin receptor complex.

From Ullrich et al. 365). Reprinted by permission from Nature, copyright 1985, Macmillan Journals Limited


Figure 3.

A: relationship between ability of glucagon to stimulate cAMP production and corresponding fractional occupancy of glucagon receptor. Cyclic AMP levels and binding of glucagon were measured in the same experiment at 37°C in presence of 10 mM theophylline and different concentrations of glucagon (0‐2 × 10−8 M). In binding experiment, glucagon was supplemented with 10−10 M monoiodinated glucagon. B: relationship between relative activities of glucagon (•) and dehistidine glucagon (○) in inhibiting [14C]fructose flux into glycogen (expressed as percent of control) at selected peptide concentrations and corresponding fractional occupancies of high‐affinity hepatocyte glucagon receptor.

A from Rosselin 314); B from Bonnevie‐Nielsen and Tager 37


Figure 4.

Association of 125I‐labeled glucagon with solubilized glucagon receptors that bind (•) and do not bind (○) to wheat germ lectin as a function of glucagon concentration.—, Theoretical curves corresponding to dissociation constants for high‐affinity (left) and low‐affinity (right) binding as derived by mathematical modeling; each corresponds to a single binding equilibrium.

From Mason and Tager 244


Figure 5.

Specificity of vasoactive intestinal polypeptide (VIP) binding in liver. A: effect of unlabeled porcine VIP, synthetic secretin, peptide histidine isoleucine (PHI), and glucagon on the binding of 125I‐labeled VIP to rat liver membranes. Data are expressed as percent of initial binding of labeled VIP, that is, binding observed in absence of unlabeled peptide. Data are corrected for nonspecific binding, that is, binding observed in presence of an excess (10−6 M) of unlabeled porcine VIP. [Adapted from Bataille et al. 11,12.] B: inhibition of 125I‐VIP binding by increasing concentrations of unlabeled VIP, helodermin, secretin, and human pancreatic growth hormone‐releasing factor (hp GRF1–29‐NH2).

From Robberecht et al. 303


Figure 6.

Hepatic disappearance curves for somatostatin‐14 (S‐14), S‐28, and S‐25. The recognition of the R149 antibody resides in the COOH‐terminal part of somatostatin‐14 and somatostatin‐28, whereas that of R22 antibody is only present in the NH2‐terminal part of the somatostatin‐28. RIA, radioimmunoassay.

From Ruggere and Patel 318


Figure 7.

Homologous and heterologous desensitization. Left, kinetics of monolayer desensitization to glucagon. Cyclic AMP levels (filled triangles) after a first and second exposure to glucagon. Hepatocytes (15‐day‐old rat) were grown for 4 days with 10 μM cortisol. At day 4, 10 nM glucagon and 1 mM caffeine were added at time zero. Cultures were rapidly frozen at the time indicated on abscissa and analyzed for cAMP content by radioimmunoassay (A). Same experiment was repeated on cultures that had received a first dose of glucagon (10 nM) 4 h before (B). Control cultures that were grown in the absence of glucagon are represented by • and ○. Open symbols, cultures that have been incubated with 1 mM caffeine alone added at time zero. Middle, concentration dependence of homologous and heterologous desensitization to glucagon. Desensitization of cAMP accumulation in cultured hepatocytes as function of glucagon concentration during treatment. After treatment of cells for 12 h with 0.5 μM glucagon at the various concentrations indicated, cAMP accumulations stimulated by 0.5 μM glucagon (•) and 10 μM isoproterenol (○) were determined. Values are expressed as percentages of cAMP accumulation in untreated cells stimulated by glucagon and isoproterenol (550 and 438 pmol/mg of protein/5 min), respectively. Right, heterologous nature of desensitization by vasopressin. First, cells were desensitized by addition of increasing doses of vasopressin for 20 min. Residual phosphorylase A activities (○) were near basal level. Then control (0 concentration) or desensitized cells were stimulated for 90 s with maximally active doses of 1 nM vasopressin (•), 2 nM angiotensin (▵), 10 μM phenylephrine (□), or 5 nM glucagon (▵). Effect of vasopressin, angiotensin, and phenylephrine decreases with increasing doses of vasopressin.

Left from Plas and Nunez 284); middle from Noda et al. 269); right from Bréant et al. 41


Figure 8.

Nutritional relevance of the liver human growth hormone (hGH)‐binding sites. A: hGH binding in liver cells isolated from dwarf mice (•—•). After 30 days of 3,5,3‐triiodothyronine (T3) treatment, liver cells were isolated and binding of hGH was performed (•—•). Insert, treatment of hGH‐binding data according to the Scatchard method. B/F, ratio of bound to free hGH. The dw/dw mice exhibit a lack of both endogenous hGH and thyrotropic hormone. In those animals, lack of hGH‐binding sites could explain the low effect of hGH in promoting growth. Treatment with T3 increased the number of hGH‐binding sites and growth in hGH‐treated dw/dw mice. B: Correlation between plasma somatomedin‐C concentrations and liver bovine GH sites in control (•) and malnourished (○) rats. Linear correlation between plasma somatomedin‐C‐ and liver GH‐binding capacities is significant until day 28 (data shown between ordinate and —). Reduction of number of somatogenic‐binding sites in malnourished rats was associated with impaired production and/or release of somatomedin‐C in rats 14–28 days old.

A from Fouchereau‐Péron et al. 120); B from Maes et al. 234
References
 1. Abita, J. P., H., Chamras, F. Rey, and G. Rosselin. Hormonal control of phenylalanine hydroxylase activity in isolated rat hepatocytes. Biochem. Biophys. Res. Commun. 92: 912–918, 1980.
 2. Aggerbeck, M., G., Guellaen, and J. Hanoune. The alpha adrenergic mediated effect in rat liver. Correlation between [3H]‐dihydroergocryptine binding to plasma membranes and glycogen phosphorylase activation in isolated hepatocytes. Biochem. Pharmacol. 29: 1653–1662, 1980.
 3. Akatsuha, A., T. J., Singh, H. Nakabayashi, M. C. Lin, and K. P. Huang. Glucaton‐stimulated phosphorylation of rat liver glycogen synthetase in isolated hepatocytes. J. Biol. Chem. 260: 3239–3242, 1985.
 4. Amiranoff, B., and G. Rosselin. VIP receptors and control of cyclic AMP production. In: Vasoactive Intestinal Peptide, edited by S. A. Said. New York: Raven, 1982, p. 307–322.
 5. Amit, T., R. J., Barkey, M. Gavish, and B. H. Youdim. Induction of prolactin (PRL) in the rat lung and liver. Demonstration and characterization of a soluble receptor. Endocrinology 114: 545–552, 1984.
 6. Assimacopoulos‐Jeannet, F. D., P. F., Blackmore, and J. H. Exton. Studies on α‐adrenergic activation of hepatic glucose output. J. Biol. Chem. 252: 2662–2669, 1977.
 7. Aten, R. F., R. B., Dickson, and A. J. Eisenfeld. Estrogen receptor in adult male rat liver. Endocrinology 103: 1629–1635, 1978.
 8. Barazzone, P., P., Gorden, J. L. Carpentier, and L. Orci. Binding, internalization and lysososmal association of 125I‐glucagon in isolated rat hepatocytes. A quantitative electron microscope autoradiographic study. J. Clin. Invest. 66: 1081–1093, 1980.
 9. Bartles, J. R., L. T., Braiterman, and A. L. Hubbard. Endogenous and exogenous domain markers of the rat hepatocyte plasma membrane. J. Cell Biol. 100: 1126–1138, 1985.
 10. Bassett, M., G. D., Smith, R. Pease, and T. J. Peters. Uptake and processing of prolactin by alternative pathways in rat liver. Biochim. Biophys. Acta 769: 79–84, 1984.
 11. Bataille, D., P., Freychet, and G. Rosselin. Interactions of glucagon, gut glucagon, vasoactive intestinal polypeptide and secretin with liver and fat cell plasma membranes: binding to specific sites and stimulation of adenylate cyclase. Endocrinology 95: 713–721, 1974.
 12. Bataille, D., C., Gespach, M. Laburthe, B. Amiranoff, K. Tatemoto, N. Vauclin, V. Mutt, and G. Rosselin. Porcine peptide having N‐terminal histidine and C‐terminal isoleucine amide (PHI). FEBS Lett. 114: 240–242, 1980.
 13. Bataille, D., C., Gespach, K. Tatemoto, J. C. Marie, A. M. Coudray, G. Rosselin, and V. Mutt. Bioactive enteroglucagon (oxyntomodulin): present knowledge on its chemical structure and its biological activities. Peptides Fayetteville 2: 41–44, 1981.
 14. Bataille, D., G., Rosselin, and P. Freychet. Interactions of glucagon, gut glucagon, vasoactive intestinal polypeptide and secretin with their membrane receptors. Isr. J. Med. Sci. 11: 687–692, 1975.
 15. Baxter, R., J., Bryson, and J. Turtle. Somatogenic receptors of rat liver: regulation by insulin. Endocrinology 107: 1176–1181, 1980.
 16. Beckner, S. K., T., Reilly, A. Martinez, and M. Blecher. Alterations of cAMP metabolism and hormone responsiveness of cloned differentiated rat liver cells (RL‐PR‐C) upon spontaneous transformation. Exp. Cell Res. 128: 151–158, 1980.
 17. Begley, P. J., and J. A. Craft. Evidence for protein phosphorylation as a regulatory mechanism for hepatic microsomal glucose‐6‐phosphatase. Biochem. Biophys. Res. Commun. 103: 1029–1034, 1981.
 18. Begum, N., H. M. Tepperman, and, J. Tepperman. Effect of high fat and high carbohydrate diets on liver pyruvate dehydrogenase and its activation by a chemical mediator released from insulin‐treated liver particulate fractions. Effect of neuraminidase treatment on the chemical mediator activity. Endocrinology 112: 50–58, 1983.
 19. Bergeron, J. J. M., J., Cruz, M. N. Kahn, and B. I. Posner. Uptake of insulin and other ligands into receptor‐rich endocytic components of target cells: the endosomal apparatus. Annu. Rev. Physiol. 47: 383–403, 1985.
 20. Bergeron, J. J. M., G., Levine, R. Sikstrom, D. O'Shaughnessy, B. Kopriwa, N. J. Nadler, and B. I. Posner. Polypeptide hormone binding sites in vivo: initial localization of 125I‐labeled insulin in hepatocytes plasmalemma as visualized by electron microscope radioautography. Proc. Natl. Acad. Sci. USA 74: 5051–5055, 1977.
 21. Bergsma, J., M. K., Boelen, A. M. Duursma, W. G. Schutter, J. M. W. Bouma, and M. Gruber. Complexes of rat α‐1 macroglobulin and subtilisin are endocytosed by parenchymal liver cells. Biochem. J. 226: 75–84, 1985.
 22. Berson, S. A., R. S., Yalow, A. Bauman, M. A. Rothschild, and K. Newerly. Insulin‐I131 metabolism in human subjects: demonstration of insulin binding globulin in the circulation of insulin‐treated subjects. J. Clin. Invest. 35: 170–190, 1956.
 23. Berson, S. A., R. S., Yalow, S. S. Schreiber, and J. Post. Tracer experiments with I131‐labeled human serum albumin: distribution and degradation studies. J. Clin. Invest. 32: 746–768, 1953.
 24. Berson, S. A., R. S., Yalow, and B. W. Volk. In vivo and in vitro metabolism of insulin‐I131 and glucagon‐I131 in normal and cortisone‐treated rabbits. J. Lab. Clin. Med. 49: 337–342, 1957.
 25. Bianchi, F. B., G., Biagini, G. Ballardini, G. Cenacchi, A. Faccani, E. Pisi, R. Lashi, L. Liotta, and S. Garbisa. Basement production by hepatocytes in chronic liver diseases. Hepatology Baltimore 4: 1167–1172, 1984.
 26. Binoux, M., P., Hossenlopp, S. Hardouin, D. Seurin, C. Lassare, and M. Gourmelin. Somatomedin (insulin‐like growth factors)‐binding proteins. Molecular forms and regulations. Horm. Res. Basel 24: 141–151, 1986.
 27. Birnbaumer, L., J., Codina, R. Mattera, R. A. Cerione, J. D. Hildebrandt, T. Synyer, F. J. Rojas, M. G. Caron, R. J. Lefkowitz, and R. Iyengar. Regulation of hormone receptors and adenylyl cyclase by guanine nucleotide binding N proteins. Recent Prog. Horm. Res. 41: 41–99, 1985.
 28. Blackard, W. G., P. S., Guzelian, and M. E. Small. Down regulation of insulin receptors in primary cultures of adult rat hepatocytes in monolayer. Endocrinology 103: 548–553, 1978.
 29. Blackmore, P. F., F., Assimacopoulos‐Jeannet, T. M. Chen, and J. H. Exton. Studies on α‐adrenergic activation of hepatic glucose output. J. Biol. Chem. 254: 2828–2834, 1979.
 30. Blackmore, P. F., L. E., Wynik, G. E. Blackman, W. Graham, and R. S. Sherry. α‐ and β‐Adrenergic stimulation of parenchymal cell Ca2+ influx. Influence of extracellular pH. J. Biol. Chem. 259: 11322–11325, 1984.
 31. Blazquez, E., B., Rubalcava, R. Montesano, L. Orci, and R. Unger. Development of insulin and glucagon binding and the adenylate cyclase response in liver membranes of the prenatal, postnatal and adult rat: evidence of glucagon resistance. Endocrinology 98: 1014–1023, 1976.
 32. Blecher, M., N. A., Giorgio, and C. B. Johnson. Hormone receptors. III. Properties of glucagon‐binding proteins isolated from liver plasma membranes. J. Biol. Chem. 249: 428–437, 1974.
 33. Blitzer, B. L., and J. L. Boyer. Localization of Na+, K+‐ATPase on the hepatocyte plasma membrane. Gastroenterology 87: 1206–1210, 1984.
 34. Blouin, A., R. P., Bolender, and E. R. Weibell. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J. Cell Biol. 72: 441–455, 1977.
 35. Blundell, T. L., G. G., Dodson, D. C. Hodgkin, and D. Mercola. Insulin: the structure in the crystal and its reflection in chemistry and biology. Adv. Protein Chem. 26: 279–402, 1972.
 36. Bodanszky, M. Synthetic analogues in the study of hormone receptor interactions. In: Hormone Receptors in Digestion and Nutrition, edited by G. Rosselin, P. Fromageot, and S. Bonfils. Amsterdam: Elsevier/North‐Holland, 1979, p. 15–24.
 37. Bonnevie‐Nielsen, V., and H. S. Tager. Glucagon receptors on isolated hepatocytes and hepatocyte membranes vesicles. Discrete populations with ligand and environment‐dependent affinities. J. Biol. Chem. 258: 11313–11320, 1983.
 38. Bouboulias, M., M. M., Wolfe, M. S. Kilberg, R. I. Misbin, and J. E. Mcguigan. Cholecystokinin binding by isolated rat liver cells (Abstract). Gastroenterology 88: 1712, 1985.
 39. Boutin, J. M., C., Jolicoeur, M. Okamura, J. Gagnon, M. Edery, M. Shirota, D. Banville, I. Dusanter‐Fourt, G. Djiane, and P. A. Kelly. Cloning and expression of the rat prolactin receptor, a member of the growth hormone prolactin gene family. Cell 53: 69–77, 1988.
 40. Brandt, D. R., T., Asano, S. E. Pedersen, and D. M. Ross. Reconstitution of catecholamine‐stimulated guanosine triphosphate. Biochemistry 22: 4357–4362, 1983.
 41. Bréant, B., S., Keppens, and H. Dewulf. Heterologous desensitization of the cylic AMP‐dependent glycogenolytic response in rat liver cells. Biochem. J. 200: 509–514, 1981.
 42. Broadus, A. E., N. I., Kaminsky, R. C. Northchutt, J. G. Hardman, E. W. Sutherland, and G. W. Liddle. Effects of glucagon on adenosine 3',5'‐monophosphate and guanosine 3',5'‐monophosphate in human plasma and urine. J. Clin. Invest. 49: 2237–2241, 1970.
 43. Broer, Y., P., Freychet, and G. Rosselin. Insulin and glucagon‐receptor interaction in the genetically obese Zucker rat: studies of hormone binding and glucagon‐stimulated cyclic AMP levels in isolated hepatocytes. Endocrinology 101: 236–249, 1977.
 44. Brown, J. W., P. J., Lad, H. Skelly, K. Koch, M. Lin, and H. Leffert. Expression of differentiated function by hepatocytes in primary culture: variable effects of glucagon and insulin on gluconeogenesis during cell growth. Differentiation 25: 176–184, 1983.
 45. Burgess, G. M., P. P., Godfrey, J. S. Mckinney, M. J. Berridge, R. F. Irvine, and J. W. Putney, JR. The second messenger linking receptor activation to internal Ca release in liver. Nature Lond. 309: 63–68, 1984.
 46. Camacho, J., and B. Rubalcava. Lipid composition of liver plasma membranes from rats intoxicated with carbon tetrachloride. Biochim. Biophys. Acta 776: 97–104, 1984.
 47. Campanile, C. P., J. K., Crane, M. J. Peach, and J. C. Garrison. The hepatic angiotensin II receptor. I. Characterization of the membrane‐binding site and correlation with physiological response in hepatocytes. J. Biol. Chem. 257: 4951–4958, 1982.
 48. Cantau, B., S., Keppens, H. Dewulf, and S. Jard. 3H‐vasopressin binding to isolated rat hepatocytes and liver membranes: regulation by GTP and relation to glucagon phosphorylase activation. J. Recept. Res. 1: 137–168, 1980.
 49. Canterbury, J. M., G., Levy, E. Ruiz, and E. Reiss. Parathyroid hormone activation of adenylate cyclase in liver. Proc. Soc. Exp. Biol. Med. 147: 366–370, 1974.
 50. Caro, J. F., and J. M. Amatruda. The regulation of lipid synthesis in freshly isolated and primary cultures of hepatocytes from fasted rats: the primary role of insulin. Metabolism 31: 14–18, 1982.
 51. Caro, J. F., F., Cecchin, and M. K. Sinha. Is glycosylation in the liver needed for insulin binding, processing and action? Evidence for heterogeneity. J. Biol. Chem. 259: 12810–12816, 1984.
 52. Caro, J. F., F., Folli, F. Cecchin, and M. K. Silva. Chemical mediator of insulin action stimulates lipid synthesis and down regulates the insulin receptors in primary cultures of rat hepatocytes. Biochem. Biophys. Res. Commun. 115: 375–382, 1983.
 53. Caro, J. F., G., Muller, and J. A. Glennon. Insulin processing by the liver. J. Biol. Chem. 257: 8459–8466, 1982.
 54. Carpenter, G. Receptors for epidermal growth factor and other polypeptide mitogens. Annu. Rev. Biochem. 56: 881–914, 1987.
 55. Carpenter, G., and S. Cohen. 125I‐labeled human epidermal growth factor: binding, internalization and degradation in human fibroblasts. J. Cell Biol. 71: 159–171, 1975.
 56. Carpenter, G., L. King, JR., and S. Cohen. Rapid enhancement of protein phosphorylation in A‐431 cell membrane preparations by epidermal growth factor. J. Biol. Chem. 254: 4834–4842, 1979.
 57. Carpentier, J. L., P., Gorden, R. G. W. Anderson, J. L. Goldstein, M. S. Brown, S. Cohen, and L. Orci. Co‐localization of 125I‐epidermal growth factor and ferritin‐low density lipoprotein in coated pits: quantitative electron microscopic study in normal and mutant human fibroblasts. J. Cell Biol. 95: 73–77, 1982.
 58. Carpentier, J. L., P., Gorden, P. Barazzone, P. Freychet, A. Le Cam, and L. Orci. Intracellular localization of 125I‐labeled insulin in hepatocytes from intact rat liver. Proc. Natl. Acad. Sci. USA 76: 2803–2807, 1979.
 59. Castagna, M., Y., Takai, K. Kaibuchi, K. Sano, U. Kikkawa, and Y. Nishizuka. Direct activation of calcium‐activated, phospholipid‐dependent protein kinase by tumor‐promoting phorbol esters. J. Biol. Chem. 257: 7847–7851, 1982.
 60. Cerione, R. A., C., Staniszewski, J. L. Bernovic, R. J. Lefkowitz, M. G. Caron, P. Gierschik, R. Somers, A. M. Spiegel, J. Codina, and L. Birnbaumer. Specificity of the functional interactions of the β‐adrenergic receptor and rhodopsin with guanine nucleotide regulatory proteins reconstituted in phospholipids vesicles. J. Biol. Chem. 260: 1493–1500, 1985.
 61. Chamras, H., M., Fouchereau‐Peron, and G. Rosselin. The effect of streptozotocin‐induced diabetes in the early steps of glucagon action in isolated rat liver cells. Diabetologia 19: 74–80, 1980.
 62. Charest, R., V., Prpic, J. H. Exton, and P. F. Blackmore. Stimulation of inositol trisphosphate formation in hepatocytes by vasopressin, adrenaline and angiotensin II and its relationship to changes in cytosolic free Ca2+. Biochem. J. 227: 79–90, 1985.
 63. Chastre, E., S., Emami, G. Rosselin, and C. Gespach. Ontogenic development of vasoactive intestinal peptide receptors in rat intestinal cells and liver. Endocrinology 121: 2211–2221, 1987.
 64. Cheng, K., and J. Larner. Intracellular mediators of insulin action. Annu. Rev. Physiol. 47: 405–424, 1985.
 65. Chernausek, S. D., S., Jacobs, and J. J. Van Wyk. Structural similarities between human receptors for somatomedin C and insulin: analysis by affinity labelling. Biochemistry 20: 7345–7350, 1981.
 66. Cherqui, G., M., Caron, J. Capeau, and J. Picard. Further evidence for the involvement of a membrane proteolytic step on insulin action. Biochem. J. 227: 137–147, 1985.
 67. Christiansen, L. A., S., Keidings, and K. Winkler. Hepatic elimination of endogenous gastrin in pigs. Scand. J. Gastroenterol. 17: 113–210, 1982.
 68. Chvatko, Y., E. Van, Obberghen, and M. Fehlmann. Internalization and recycling of insulin receptors in hepatoma cells. Absence of regulation by receptor occupancy. Biochem. J. 222: 111–117, 1984.
 69. Ciccia‐Torres, G. N., and J. M. Dellacha. Influence of divalent cations on the detection of somatogenic and lactogenic binding sites in mouse liver cells. Biochem. J. 228: 761–764, 1985.
 70. Cochet, C., G. M., Gill, J. Meisenhelder, J. A. Cooper, and T. Hunter. C‐kinase phosphorylates the epidermal growth factor receptor and reduces its epidermal growth factor stimulated tyrosine protein kinase activity. J. Biol. Chem. 259: 2553–2558, 1984.
 71. Cohen, D. M., J. B., Jaspan, K. S. Polonsky, and E. G. Lever. Pancreatic hormone profiles and metabolism posthepatectomy in the dog. Evidence for a hepatrophic role of insulin, glucagon and pancreatic polypeptide. Gastroenterology 87: 679–687, 1984.
 72. Cooper, R. H., K. E., Coll, and J. R. Williamson. Differential effects of phorbolester on phenylephrine and vasopressin‐induced Ca2+ mobilization in isolated hepatocytes. J. Biol. Chem. 260: 3281–3288, 1985.
 73. Corbin, J. D., J. S., Beebe, and P. F. Blackmore. cAMP‐dependent protein kinase activation lowers hepatocyte cAMP. J. Biol. Chem. 260: 8731–8735, 1985.
 74. Corin, R. E., and D. B. Donner. Insulin receptors convert to a higher affinity state subsequent to hormone binding. A two‐state model for the insulin receptor. J. Biol. Chem. 257: 104–110, 1982.
 75. Corin, R. E., P., Perriola, and D. B. Donner. Hepatic glucagon‐receptor complexes lose sensitivity to the dissociating effect of GTP. J. Biol. Chem. 257: 1626–1631, 1982.
 76. Corvera, S., and J. A. Garcia‐Sainz. Phorbol‐ester inhibits alpha1‐adrenergic stimulation of glycogenolysis in isolated rat hepatocytes. Biochem. Biophys. Res. Commun. 119: 1128–1133, 1984.
 77. Cote, G. J., and J. F. Chiu. The expression of oncogenes and liver‐specific genes in Morris hepatomas. Biochem. Biophys. Res. Commun. 143: 624–629, 1987.
 78. Courtoy, P. J., T. J., Quintar, and P. Baudhuin. Shift of equilibrium density induced by 3,3'‐diaminobenzidine cytochemistry: a new procedure for the analysis and purification of peroxidase‐containing organelles. J. Cell Biol. 98: 870–876, 1984.
 79. Couvineau, A., and M. Laburthe. The rat liver vasoactive intestinal peptide binding site. Molecular characterization by covalent cross‐linking and evidence for differences from the intestinal receptor. Biochem. J. 225: 473–479, 1985.
 80. Crane, J. K., C. P., Campanile, and J. C. Garrison. The hepatic angiotensin II receptor. J. Biol. Chem. 257: 4959–4965, 1982.
 81. Crettaz, M., I., Jialal, M. Kasuga, and R. Kahn. Insulin receptor regulation and desentization in rat hepatoma cells. The loss of the oligomeric forms of the receptor correlates with the change in receptor affinity. J. Biol. Chem. 259: 11543–11549, 1984.
 82. Cuatrecasas, P., B., Desbuquois, and F. Krug. Insulin‐receptor interactions in liver cell membranes. Biochem. Biophys. Res. Commun. 247: 1980–1991, 1972.
 83. Czech, M. P. The nature and regulation of the insulin receptor: structure and function. Annu. Rev. Physiol. 47: 357–381, 1985.
 84. Dautry‐Varsat, A., A., Ciechanover, and H. F. Lodish. pH and the recycling of transferrin receptor‐mediated endocytosis. Proc. Natl. Acad. Sci. USA 80: 2258–2262, 1983.
 85. Dave, J. R., R. J. Krieg, JR., and R. J. Witorsh. Modulation of prolactin binding site in vitro by membrane fluidizers. Effects on male prostatic and female hepatic membranes in alcohol‐fed rat. Biochim. Biophys. Acta 816: 313–320, 1985.
 86. Davis, C. G., J. L., Goldstein, T. C. Sudhof, R. G. W. Anderson, D. W. Russel, and M. S. Brown. Acid‐dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature Lond. 326: 760–765, 1987.
 87. De Meyts, P., A. R. Bianco, and J. Roth. Site‐site interactions among insulin receptors. Characterization of the negative cooperativity. J. Biol. Chem. 251: 1877–1888, 1976.
 88. De Meyts, P., E. Van Obberghen, J. Roth, A. Wollmer, and D. Brandenburg. Mapping of the residues responsible for the negative cooperativity of the receptor‐binding region of insulin. Nature Lond. 273: 504–509, 1978.
 89. Demoliou‐Mason, C., and R. M. Epand. Identification of the glucagon receptor by covalent labeling with a radiolabeled photoreactive glucagon analogue. Biochemistry 21: 1996–2004, 1982.
 90. Desbuquois, B. The interaction of vasoactive intestinal polypeptide and secretin with liver cell membranes. Eur. J. Biochem. 46: 439–450, 1974.
 91. Desbuquois, B. Glucagon receptors and glucagon‐sensitive adenylate cyclase. In: Polypeptide Hormone Receptors, edited by B. I. Posner. New York: Dekker, 1985, p. 345–417.
 92. Desbuquois, B. Receptors for gastrointestinal polypeptides. In: Polypeptide Hormone Receptors, edited by B. I. Posner. New York: Dekker, 1985, p. 419–479.
 93. Desbuquois, B., S., Lopez, and M. Burlet. Ligand‐induced translocation of insulin receptors in intact rat liver. J. Biol. Chem. 257: 10852–10860, 1982.
 94. De Wulf, H., S. Keppens, J. R. Vandenheede, F. Haustraete, C. Proost, and H. Carton. Cyclic AMP‐independent regulation of liver glycogenolysis. In: Hormones and Cell Regulation, edited by J. Dumont and J. Nuñez. Amsterdam: Elsevier/North‐Holland, 1984, p. 47–71.
 95. Dhanireddy, R., and R. E. Ullane. Prolactin binding in the developing rat fetal liver. Life Sci. 35: 733–740, 1984.
 96. Dillman, W. H., and J. H. Oppenheimer. Glucagon influences the expression of thyroid hormone action: discrepancy between nuclear triiodothyronine receptor number and enzyme responses. Endocrinology 105: 74–79, 1979.
 97. Dipple, I., L. M., Gordon, and M. D. Houslay. The activity of 5'‐nucleotidase in liver plasma membranes is affected by the increase in bilayer fluidity achieved by anionic drugs but not by cationic drugs. J. Biol. Chem. 257: 1811–1815, 1982.
 98. Dipple, I., and M. D. Houslay. Developmental changes in the form of the Arrhenius plots of rat liver plasma membrane adenylate cyclase and 5'‐nucleotidase activities. Biochem. Biophys. Res. Commun. 105: 259–263, 1982.
 99. Doyle, J. W., M. M., Wolfe, and J. E. Mcguigan. Hepatic clearance of gastrin and cholecystokinin peptides. Gastroenterology 87: 60–68, 1984.
 100. Draznin, B., M., Trowbridge, and L. Ferguson. Quantitative studies of the rate of insulin internalization in isolated rat hepatocytes. Biochem. J. 218: 307–312, 1984.
 101. Drickamer, K., J. F., Mamon, G. Buinns, and J. O. Leung. Primary structure of the rat liver asialoglycoprotein receptor. Structural evidence for multiple polypeptide species. J. Biol. Chem. 259: 770–778, 1984.
 102. Earp, H. S., and E. J. O'Keefe. Epidermal growth factor receptor number decreases during rat liver regeneration. J. Clin. Invest. 67: 1580–1583, 1981.
 103. Ebina, Y., L., Ellis, K. Jarnagin, M. Edery, L. Graf, E. Clauser, J. H. Ou, F. Masiarz, Y. W. Kan, I. D. Goldfine, R. J. Roth, and J. W. Rutter. The human insulin receptor cDNA: the structural basis for hormone‐activated transmembrane signalling. Cell 40: 747–758, 1985.
 104. Enberg, G., M., Carlquist, H. Jörnvall, and K. Hall. The characterization of somatomedin A, isolated by microcomputer‐controlled chromatography, reveals an apparent identity to insulin‐like growth factor 1. Eur. J. Biochem. 143: 117–124, 1984.
 105. Enrich, C., and C. G. Gahmberg. Characterization of plasma membrane glycoproteins from functional domains of the rat hepatocyte. Biochem. J. 227: 565–572, 1985.
 106. Epand, R. M., G., Rosselin, D. Hui Bon Hoa, T. Cote, and M. Laburthe. Structural requirements for glucagon receptor binding and activation of adenylate cyclase in liver. J. Biol. Chem. 259: 770–778, 1984.
 107. Esch, F., A., Baird, N. Ling, N. Ueno, F. Hill, L. Denoroy, R. Klepper, D. Gospodarowicz, P. Böhlen, and R. Guillemin. Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino‐terminal sequence of bovine brain acidic FGF. Proc. Natl. Acad. Sci. USA 85: 6507–6511, 1985.
 108. Evans, N., and N. Flint. Subfraction of hepatic endosomes in Nycodenz gradients and by free‐flow electrophoresis. Separation of ligand‐transporting and receptor‐enriched membranes. Biochem. J. 232: 25–32, 1985.
 109. Evans, W. H. Membrane traffic at the hepatocytes sinusoidal and canalicular surface domains. Hepatology Baltimore 1: 452–457, 1981.
 110. Exton, J. H. Analysis of hormone effects on carbohydrate metabolism by use of metabolic crossover plots. Methods Enzymol. 37: 277–294, 1975.
 111. Fahrenkrug, J., S., Gammeltoft, P. Staun‐Olsen, B. Ottesen, and A. Sjoquist. Multiplicity of receptors for vasoactive intestinal polypeptide (VIP): differential effects of apamin on binding in brain, uterus and liver. Peptides Fayetteville 4: 133–136, 1983.
 112. Fehlman, M., J. L., Carpentier, E. Van Obberghen, P. Freychet, P. Thamm, D. Saunders, and D. Brandenburg. Internalized insulin receptors are recycled to the cell surface in rat hepatocytes. Proc. Natl. Acad. Sci. USA 79: 5921–5925, 1982.
 113. Fehlman, M., Y. Le, Marchand‐Brustel, E. Van Obberghen, D. Brandenburg, and P. Freychet. Photoaffinity labelling of the insulin receptor in intact rat hepatocytes, mouse soleus muscle, and cultured human lymphocytes. Diabetologia 23: 440–444, 1982.
 114. Fehlman, M., O., Morin, P. Kitabgi, and P. Freychet. Insulin and glucagon receptors of isolated rat hepatocytes: comparison between hormone binding and amino acid transport stimulation. Endocrinology 109: 253–261, 1981.
 115. Feliu, J. E., M., Mojena, R. A. Silvestre, L. Monge, and J. Marco. Stimulatory effects of vasoactive intestinal peptide on glycogenosis and gluconeogenesis in isolated rat hepatocytes: antagonism by insulin. Endocrinology 112: 2120–2127, 1983.
 116. Ferrannini, E., J., Wahren, O. K. Faber, P. Felig, C. Binder, and R. A. Defronzo. Splanchnic and renal metabolism of insulin in human subjects: a dose‐response study. Am. J. Physiol. 244 (Endocrinol. Metab. 7): E517–E527, 1983.
 117. Fishman, J. B., B. F., Dickey, N. L. R. Bucher, and R. E. Fine. Vasopressin receptor trafficking in hepatocytes (Abstract). J. Cell. Biol. 101: 427a, 1985.
 118. Fishman, J. B., B. F., Dickey, and R. E. Fine. Crosslinking of vasopressin to its hepatocytes receptor (Abstract). J. Cell Biol. 101: 427a, 1985.
 119. Fouchereau‐Péron, M., Y., Broer, and G. Rosselin. Growth hormone and insulin binding to isolated hepatocytes in the gentically dwarf mouse. Biochim. Biophys. Acta 631: 451–462, 1980.
 120. Fouchereau‐Péron, M., S., Duran‐Garcia, and G. Rosselin. Growth hormone receptors in dwarfism. Colloq. Inserm Neuroendocrinol. 7: 157–166, 1976.
 121. Fouchereau‐Péron, M., F., Ranncon, P. Freychet, and G. Rosselin. Effect of feeding and fasting on the early steps of glucagon action in isolated rat liver cells. Endocrinology 98: 755–760, 1976.
 122. Francis, M. J. O., and D. J. Hill. Prolactin‐stimulated production of somatomedin by rat liver. Nature Lond. 255: 167–168, 1975.
 123. Frandsen, E. K., L., Thim, A. J. Moody, and J. Markussen. Structure‐function relationships in glucagon. Re‐evaluation of glucagon‐(1–21). J. Biol. Chem. 260: 7581–7584, 1985.
 124. Freychet, P., R., Kahn, J. Roth, and D. M. Neville, JR. Insulin interactions with liver plasma membranes. Independence of binding of the hormone and its degradation. J. Biol. Chem. 247: 3953–3961, 1972.
 125. Freychet, P., G., Rosselin, F. Rancon, M. Fouchereau, and Y. Broer. Interactions of insulin and glucagon with isolated rat liver cells. I. Binding of the hormone to specific receptors. Horm. Metab. Res. 5: 72–78, 1974.
 126. Freychet, P., J., Roth, and D. M. Neville, JR. Insulin receptors in liver: specific binding of 125I‐insulin to the plasma membrane and its relation to insulin bioactivity. Proc. Natl. Acad. Sci. USA 68: 1833–1837, 1971.
 127. Froesch, E. R., C., Schmid, J. Schwander, and J. Zaff. Actions of insulin‐like growth factors. Annu. Rev. Physiol. 47: 433–467, 1985.
 128. Gammeltoft, S. Insulin receptors: binding kinetics and structure‐function relationship of insulin. Physiol. Rev. 64: 1321–1378, 1984.
 129. Gammeltoft, S., P., Staun‐Olsen, B. Ottesen, and J. Fahrenkrug. VIP receptors in liver cells: binding characteristics and role in degradation. Peptides Fayetteville 5: 367–370, 1984.
 130. Gammeltoft, S., and E. Van Obberghen. Protein kinase of the insulin receptor. Biochem. J. 235: 1–11, 1986.
 131. García‐Sáinz, J. A., and S. M. L. Hernández‐Sotomayor. Adrenergic regulation of gluconeogenesis: possible involvement of two mechanisms of signal transduction in α1‐adrenergic action. Proc. Natl. Acad. Sci. USA 82: 6727–6730, 1985.
 132. Gardner, D. F., M. S., Kilberg, M. M. Wolfe, J. E. Mcguigan, and R. I. Misbin. Preferential binding of vasoactive intestinal peptide to hepatic nonparenchymal cells. Am. J. Physiol. 248 (Gastrointest. Liver Physiol. 11): G663–G669, 1985.
 133. Garrison, J. C., M. K., Borland, V. A. Florio, and D. A. Twible. The role of calcium as a mediator of the effects of angiotensin II, catecholamines and vasopressin on the phosphorylation and activity of enzymes in isolated hepatocytes. J. Biol. Chem. 254: 7147–7156, 1979.
 134. Gavin, J. R., III, J. Roth, D. M. Neville, JR., P. De Meyts, and D. N. Buell. Insulin‐dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc. Natl. Acad. Sci. USA 71: 84–88, 1974.
 135. Gawler, D., G., Milligan, A. M. Spiegel, C. G. Unson, and M. D. Houslay. Abolition of the expression of inhibitory guanine nucleotide regulatory protein Gi activity in diabetes. Nature Lond. 327: 229–232, 1987.
 136. Gelehrter, T. D., P. D., Shereve, and V. M. Dilworth. Insulin regulation of Na+/K+ pump activity in rat hepatoma cells. Diabetes 33: 428–434, 1984.
 137. Geuze, H. J., J. W., Slot, G. J. Strous, J. Peppard, K. VON Figura, A. Hasilik, and A. L. Schwartz. Intracellular receptor sorting during endocytosis: comparative immuno‐electron microscopy of multiple receptors in rat liver. Cell 37: 195–204, 1984.
 138. Gilman, A. G. G proteins: transducers of receptor‐generated signals. Annu. Rev. Biochem. 56: 615–649, 1987.
 139. Glass, C., R. C., Pittman, M. Civen, and D. Steinberg. Uptake of high‐density lipoprotein‐associated apoprotein A‐I and cholesterol esters by 16 tissues of the rat in vivo and by adrenal cells and hepatocytes in vitro. J. Biol. Chem. 260: 744–750, 1985.
 140. Goldfine, I. D., A. L., Jones, G. T. Hradek, and K. Y. Wong. Electron microscope autoradiographic analysis of 125I‐iodoinsulin entry into adult rat hepatocytes of hormone localization. Endocrinology 108: 1821–1828, 1981.
 141. Goldstein, J. L., and M. S. Brown. The low density lipoprotein pathway and its relation to atherosclerosis. Annu. Rev. Biochem. 46: 897–930, 1977.
 142. Goldstein, J. L., G. Y., Brunschede, and M. S. Brown. Inhibition of the proteolytic degradation of low density lipoprotein in human fibroblasts by chloroquin, concanavalin A, and Triton WR 1339. J. Biol. Chem. 250: 7854–7862, 1975.
 143. Gorden, P. H., J. L., Carpentier, P. Freychet, and L. Orci. Internalization of polypeptide hormones: mechanism, intracellular localization and significance. Diabetologia 18: 263–274, 1980.
 144. Goresky, C. A., and C. P. Rose. Blood‐tissue exchange in liver and heart: the influence of heterogeneity of capillary transit times. Federation Proc. 26: 2629–2634, 1977.
 145. Griffen, S. C., S. M., Russel, L. S. Katz, and C. S. Nicoll. Insulin exerts metabolic and growth‐promoting effects by a direct action on the liver in vivo: clarification of the functional significance of the portal vascular link between the beta cells of the pancreratic islets and the liver. Proc. Natl. Acad. Sci. USA 84: 7300–7304, 1987.
 146. Guellaen, G., M., Goodhart, R. Barouki, and J. Hanoune. Subunit structure of rat liver alpha1‐adrenergic receptor. J. Biochem. Pharmacol. 31: 2817–2820, 1982.
 147. Guillouzo, A., P., Oudea, Y. Le Guilly, M. C. Oudea, P. Lenoir, and M. Bourel. An ultrastructural study of primary cultures of adult human liver tissue. Exp. Mol. Path. 16: 1–15, 1972.
 148. Gunther, S. Characterization of angiotensin II receptor subtypes in rat liver. J. Biol. Chem. 259: 7622–7629, 1984.
 149. Hagopian, W., E. G., Liver, D. Cohen, K. Emmanouel, K. S. Polonsky, W. Push, A. Mossa, and J. B. Jaspan. Predominance of renal and absence of hepatic metabolism of pancreatic polypeptide in the dog. Am. J. Physiol. 245 (Endocrinol. Metab. 8): E171–E177, 1983.
 150. Hagopian, W. A., and H. S. Tager. Receptor binding and cell‐mediated metabolism of [125I]‐monogiodoglucagon by isolated canine hepatocytes. J. Biol. Chem. 259: 8986–8993, 1984.
 151. Handgloten, M. A., and M. S. Kilberg. Induction and decay of amino acid transport in the liver. Turnover of transport activity in isolated hepatocytes after stimulation by diabetes of glucagon. J. Biol. Chem. 259: 3519–3525, 1984.
 152. Haspel, H. C., M. J., Birnbaumer, E. W. Wilk, and O. M. Rosen. Biosynthetic precursors and in vitro translation products of the glucose transporter of human hepatocarcinoma cells, human fibroblasts and murine preadipocytes. J. Biol. Chem. 260: 7219–7225, 1985.
 153. Hasselbacher, G. K., R. E., Humbel, and G. Thomas. Insulin‐like growth factor: insulin or serum increase phosphorylation of ribosomal protein S6 during transition of stationary chick embryo fibroblasts into early G1 phase of the cell cycle. FEBS Lett. 100: 185–190, 1979.
 154. Haynes, F. J., and C. C. Yip. Photoaffinity labelling of hepatic plasma membranes suggests two classes of hepatic insulin receptor. Diabetologia 28: 786–792, 1985.
 155. Heaton, J. H., N. L., Krett, J. M. Lavarez, T. D. Gelehrter, J. A. Romanus, and M. M. Rechler. Insulin regulation of insulin‐like growth factor action in rat hepatoma cells. J. Biol. Chem. 259: 2396–2402, 1984.
 156. Hedo, J. A., and I. A. Simpson. Biosynthesis of the insulin receptor in rat adipose cells. Intracellular processing of the Mr‐190000 pro‐receptor. Biochem. J. 232: 71–78, 1985.
 157. Hefford, M. A., R. M., Evans, G. Oda, and H. Kaplan. Unusual chemical properties of N‐terminal histidine residues of glucagon and vasoactive intestinal peptide. Biochemistry 24: 867–897, 1985.
 158. Heidenreich, K. A., N. R., Zahniser, P. Berhanu, D. Brandenburg, and J. M. Olefsky. Structural differences between insulin receptors in the brain and peripheral target tissues. J. Biol. Chem. 258: 8527–8530, 1983.
 159. Herberg, J. T., J., Codina, K. A. Rich, F. J. Rojas, and R. Iyengar. The hepatic glucagon receptor, solubilization, characterization and development of an affinity adsorption assay for the soluble receptor. J. Biol. Chem. 259: 9285–9294, 1984.
 160. Herington, A. C., D., Harrison, and J. Graystone. Hepatic binding of human and bovine growth hormones and ovine prolactin in the dwarf “little” mouse. Endocrinology 112: 2032–2038, 1983.
 161. Heyworth, C. M., A. V., Wallace, and M. D. Houslay. Insulin and binding regulate the activation of two distinct membrane‐bound cyclic AMP phosphodiesterases in hepatocytes. Biochem. J. 214: 99–100, 1983.
 162. Heyworth, C. M., A. D., Whetton, S. Wong, B. R. Martin, and M. D. Houslay. Insulin inhibits the cholera‐toxin‐catalysed riboxylation of a Mr‐25000 protein in rat liver plasma membranes. Biochem. J. 228: 593–603, 1985.
 163. Higgins, S. J., G. G., Rousseau, J. D. Baxter, and G. M. Tomkins. Early events in glucocorticoid action. Activation of the steroid receptor and its subsequent specific nuclear binding studied in a cell‐free system. J. Biol. Chem. 248: 5866–5872, 1973.
 164. Hokin, L. E. Receptors and phosphoinositide‐generated second messengers. Annu. Rev. Biochem. 54: 205–235, 1985.
 165. Holst, J. J. Radioreceptor assays for glucagon. In: Glucagon, edited by P. J. Lefebvre. Berlin: Springer‐Verlag, 1983, p. 245–261.
 166. Honnegger, A. M., T. J., Dull, S. Felder, E. Van Obberghen, F. Bellot, D. Szapary, A. Schmidt, A. Ullrich, and J. Schlessinger. Point mutation at the ATP binding site of EGF receptor abolishes protein‐tyrosine kinase activity and alters cellular routing. Cell 51: 199–209, 1987.
 167. Hornick, C. A., A. L., Jones, G. Renaud, G. Hradek, and R. J. Havel. Effect of chloroquine on low‐density lipoprotein catabolic pathway in rat hepatocytes. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G187–G194, 1984.
 168. Horuk, R., S., Beckner, M. Lin, D. E. Wright, and A. Chraback. Purification of the photoaffinity labelled glucagon receptor by gel electrophoretic methods. Biochemistry 14: 99–121, 1984.
 169. Horvat, A. Stimulation of RNA synthesis in isolated nuclei by an insulin‐induced factor in liver. Nature Lond. 286: 906–908, 1980.
 170. Horwitz, E. M., W. T., Jenkins, N. M. Hossein, and R. S. Gurd. Kinetic identification of a two‐state glucagon receptor system in isolated hepatocytes. Interconversion of homogenous receptors. J. Biol. Chem. 260: 9307–9315, 1985.
 171. Hossein, N. M., and R. S. Gurd. Human glucagon‐like peptides 1 and 2 activate rat brain adenylate cyclase. FEBS Lett. 178: 83–86, 1984.
 172. Hubbard, A. L., J. R., Bartles, and H. T. Braiterman. Identification of rat hepatocyte plasma membrane proteins using monoclonal antibodies. J. Cell. Biol. 100: 1115–1125, 1985.
 173. Hughes, J. P., and H. G. Friesen. The nature and regulation of the receptors for pituitary growth hormone. Annu. Rev. Physiol. 47: 469–482, 1985.
 174. Husman, B., G., Anderson, G. Norstedt, and J. A. Gustafsson. Characterization and subcellular distribution of the somatogenic receptor in rat liver. Endocrinology 116: 2605–2611, 1985.
 175. Hylemon, P. B., E. C., Gurley, W. M. Kubaska, T. R. Whitehead, P. S. Guzelian, and Z. R. Vlahcevic. Suitability of primary monolayer cultures of adult rat hepatocytes for studies of cholesterol and bile acid metabolism. J. Biol. Chem. 260: 1015–1018, 1985.
 176. Inoue, M., R., Kinne, and T. Tran. Rat liver canalicular membrane vesicles: isolation and topological characterization. J. Biol. Chem. 258: 5183–5188, 1983.
 177. Irving, H. G., F. J., Roll, S. Huang, and D. H. Bissel. Characterization and culture of sinusoidal endothelium from normal rat liver: lipoprotein uptake and collagen phenotype. Gastroenterology 87: 1233–1247, 1984.
 178. Itoh, N., K. I., Obata, N. Yanihara, and H. Okamato. Human preprovasoactive intestinal polypeptide contains a novel PHI‐27‐like peptide, PHM‐27. Nature Lond. 304: 547–549, 1983.
 179. Jacobs, S., and P. Cuatrecasas. Disulfide reduction converts the insulin receptor of human placenta to a low density form. J. Clin. Invest. 66: 1424–1427, 1980.
 180. Jacobs, S., F. C. Kull, JR., and P. Cuatrecasas. Monensin blocks the maturation of receptors for insulin and somatostatin C: identification of receptor precursors. Proc. Natl. Acad. Sci. USA 80: 1228–1231, 1983.
 181. Jacobs, S., N. E., Sahyoun, N. E. Saltiel, and A. R. Cuatrecasas. Phorbol esters stimulate the phosphorylation of receptors for insulin and somatomedin C. Proc. Natl. Acad. Sci. USA 80: 6211–6213, 1983.
 182. Jakobs, K. H., K., Aktories, P. Lasch, W. Saur, and G. Schultz. Hormonal inhibition of adenylate cyclase. In: Hormones and Cell Regulation, edited by J. Dumont and J. Nuñez. Amsterdam: Elsevier/North‐Holland, 1980, vol. 4, p. 89–106.
 183. James, R. Polypeptide growth factors. Annu. Rev. Biochem. 53: 259–292, 1984.
 184. Jard, S., B., Cantau, and K. H. Jakobs. Angiotensin II and α‐adrenergic agonists inhibit rat liver adenylate cyclase. J. Biol. Chem. 256: 2603–2606, 1981.
 185. Johansson, S. Demonstration of high affinity fibronectin receptors on rat hepatocytes in suspension. J. Biol. Chem. 260: 1557–1561, 1985.
 186. Johansson, S., E., Forsberg, and B. Lundgren. Comparison of fibronectin receptors from rat hepatocytes and fibroblasts. J. Biol. Chem. 262: 7819–7824, 1987.
 187. Johnson, G. L., V. I. Macandrew, JR., and P. F. Pilch. Identification of the glucagon receptor in rat liver membranes by photoaffinity crosslinking. Proc. Natl. Acad. Sci. USA 78: 875–878, 1981.
 188. Jones, A. L., G. T., Hradek, C. Hornick, G. Renaud, E. E. T. Windler, and R. J. Havel. Uptake and processing of remnants of chylomicrons and very low density lipoproteins by rat liver. J. Lipid Res. 25: 1151–1158, 1984.
 189. Jones, E. A., J. M., Vierlin, C. J. Steer, and J. Reichen. Cell surface receptors in the liver. Prog. Liver Dis. 6: 43–80, 1979.
 190. Kadowaki, T., Y., Fujita‐Yamaguchi, E. Nishida, F. Takaku, T. Akiyama, S. Kathuria, Y. Akanuma, and M. Kasuga. Phosphorylation of tubulin and microtubule‐associated proteins by the purified insulin receptor kinase. J. Biol. Chem. 260: 4016–4020, 1985.
 191. Kahn, M. N., B. I., Posner, R. J. Khan, and J. J. M. Bergeron. Internalization of insulin into rat liver Golgi elements. J. Biol. Chem. 257: 5969–5976, 1982.
 192. Kaiser, E. T., and F. J. Kezdy. Amphiphilic secondary structures: design of peptide hormones. Science Wash. DC 223: 249–255, 1983.
 193. Kalant, N., S., Ozaki, H. Maekubo, B. Mitmaker, and M. Cohen‐Khallas. Down‐regulation of insulin binding by human and rat hepatocytes in primary culture: the possible role of insulin internalization and degradation. Endocrinology 114: 37–45, 1984.
 194. Kasuga, M., F. A., Karlsson, and C. R. Kahn. Insulin stimulates the phosphorylation of the 95,000‐dalton subunit of its own receptor. Science Wash. DC 215: 185–187, 1982.
 195. Kasuga, M., N., Sasaki, C. R. Kahn, S. P. Nissley, and M. M. Rechler. Antireceptor antibodies as probe of insulinlike growth factor receptor structure. J. Clin. Invest. 72: 1459–1469, 1983.
 196. Kasuga, M., E. Van, Obberghen, S. P. Nissley, and M. M. Rechler. Demonstration of two subtypes of insulin‐like growth factor receptors by affinity cross‐linking. J. Biol. Chem. 256: 5305–5308, 1981.
 197. Kasuga, M., Y., Zick, D. L. Blithe, M. Crettaz, and C. R. Kahn. Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell‐free system. Nature Lond. 298: 667–669, 1982.
 198. Katada, T., K., Kasukabe, M. Oinuma, and M. Ui. A novel mechanism for the inhibition of adenylate cyclase via inhibitory GTP‐binding proteins. J. Biol. Chem. 262: 11897–11900, 1987.
 199. Kelly, P. A., J., Djiane, M. Kotoh, L. H. Ferland, L. M. Houdebine, B. Teyssot, and I. Dusanter‐Fourt. The interaction of prolactin with its receptors in target tissues and its mechanism of action. Horm. Res. Basel 40: 379–439, 1984.
 200. Kirk, C. J., M. M., Billah, L. M. Jones, and R. H. Michell. The role of stimulated phosphatidylinositol metabolism in hepatic responses to Ca2+‐mobilising hormones. In: Hormones and Cell Regulation, edited by J. Dumont and J. Nuñez. Amsterdam: Elsevier/North‐Holland, 1980, vol. 4, p. 73–88.
 201. Klapper, D. G., M. E., Svoboda, and J. J. Van Wik. Sequence analysis of somatomedin C: confirmation of identity with insulin‐like growth factor. Endocrinology 112: 2215–2217, 1983.
 202. Koch, K. S., P., Shapiro, H. Skelly, and H. L. Leffert. Rat hepatocyte proliferation is stimulated by insulin‐like peptides in defined medium. Biochem. Biophys. Res. Commun. 109: 1054–1060, 1982.
 203. Koontz, J. W., and S. Goodman. Phorbol ester inhibition of hormonal induction of tyrosine aminotransferase. Biochem. Biophys. Res. Commun. 131: 815–820, 1985.
 204. Koontz, J. W., and M. Iwahashi. Insulin as a potent specific growth factor in a rat hepatoma cell line. Science Wash. DC 211: 947–949, 1981.
 205. Korn, A. P., and F. P. Ottensmeyer. A model for the three‐dimensional structure of glucagon. J. Theor. Biol. 105: 403–425, 1983.
 206. Kraus‐Friedmann, N. Hormonal regulation of hepatic gluconeogenesis. Physiol. Rev. 64: 170–259, 1984.
 207. Kull, F. C., S., Jacobs, Y. F. Su, M. E. Svoboda, J. J. Van Wyk, and P. Cuatrecasas. Monoclonal antibodies to receptors for insulin and somatomedin‐C. J. Biol. Chem. 258: 6561–6566, 1983.
 208. Kunos, G., W. H., Kan, R. Greguski, and J. C. Venter. Selective affinity labelling and molecular characterization of hepatic α1‐adrenergic receptors with [3H]‐phenoxybenzamine. J. Biol. Chem. 258: 326–332, 1983.
 209. Lad, P. J., E., Blazquez, M. Lin, and H. L. Leffert. Changes in adenylate cyclase and phosphodiesterase activities during the growth cycle of adult rat hepatocytes in primary culture. Arch. Biochem. Biophys. 232: 679–684, 1984.
 210. Lad, P. M., M. S., Preston, A. F. Welton, T. B. Nielsen, and M. Rodbell. Effects of phospholipase A2 and filipin on the activation of adenylate cyclase activity. Biochim. Biophys. Acta 551: 368–381, 1979.
 211. Lafontaine, J. J., M. P., Nivez, and R. Ardaillou. Hepatic binding sites for angiotensin II in the rat. Clin. Sci. 56: 33–40, 1979.
 212. Le Cam, A., and P. Freychet. Effect of insulin on amino acid transport in isolated rat hepatocytes. Diabetologia 15: 117–123, 1978.
 213. L Cam, A., F. Maxfield, M. Willingham, and I. Pastan. Insulin stimulation of amino acid transport in isolated rat hepatocytes is independent of hormone internalization. Biochem. Biophys. Res. Commun. 88: 873–881, 1979.
 214. Lee, D. C., T. M., Rose, N. R. Webb, and G. J. Todaro. Cloning and sequence analysis of a cDNA for rat transforming growth factor‐α. Nature Lond. 313: 489–492, 1985.
 215. Lee, K. C., and R. E. Miller. The hepatic vagus nerve and the neural regulation of insulin secretion. Endocrinology 117: 307–314, 1985.
 216. Leeb‐Lundberg, L. M. F., K. E. J., Dickinson, S. L. Hearl, J. E. S. Wikberg, P. O. Hagen, J. F. Debernardis, M. Winn, D. H. Arendsen, R. J. Lefkowitz, and M. Carron. Photoaffinity labeling of mammalian α1‐adrenergic receptors. Identification of the ligand binding subunit with a high affinity radioiodinated probe. J. Biol. Chem 259: 2579–2587, 1984.
 217. Leffert, H. L., and K. S. Koch. Regulation of growth of hepatocytes by sodium ions. Prog. Liver Dis. 6: 123–151, 1979.
 218. Lefkowitz, R. J., and M. G. Caron. Molecular and regulatory properties of adrenergic receptors. Recent Prog. Horm. Res. 43: 469–497, 1987.
 219. Levitzki, A. β‐Adrenergic receptors and their mode of coupling to adenylate cyclase. Physiol. Rev. 66: 819–854, 1986.
 220. Lin, P., C., Lin, M. S. Tsao, and J. W. Grisham. Inhibition of proliferation of cultured rat liver epithelial cells at specific cell cycle stages by transforming growth factor‐β. Biochem. Biophys. Res. Commun. 143: 26–30, 1987.
 221. Lin, S. H. The rat liver plasma membrane high affinity (Ca2‐Mg2+) ATPase is not a calcium pump. Comparison with ATP‐dependent calcium receptor. J. Biol. Chem. 260: 10976–10980, 1985.
 222. Lin, Q., J., Blaisdell, E. O'Keefe, and H. S. Earp. Insulin inhibits the glucocorticoid mediated increase in hepatocyte EGF binding. J. Cell. Physiol. 119: 267–272, 1984.
 223. Linde, S., B., Hansen, O. Sonne, J. J. Hobirt, and J. Gliemann. Tyrosine A14 125I‐monoiodoinsulin. Preparation biologic properties and long‐term stability. Diabetes 30: 1–8, 1981.
 224. Livingston, J. N., K., Einarsson, L. Backman, S. Ewerth, and P. Arner. Glucagon receptor of human liver studies of its molecular weight and binding properties and its ability to activate hepatic adenylyl cyclase of non‐obese and obese subjets. J. Clin. Invest. 75: 397–403, 1985.
 225. Lochrie, M. A., J. B., Hurley, and M. I. Simon. Sequence of the alpha subunit of photoreceptor G protein: homologies between transducin, ras and elongation factors. Science Wash. DC 228: 96–99, 1985.
 226. Lopez, S., and B. Desbuquois. Changes in the subcellular distribution of insulin receptors in rat liver induced by acute endogenous hyperinsulinemia. Endocrinology 113: 783–789, 1983.
 227. Loten, E. G., F. D., Assimacopoulos‐Jeannet, J. H. Exton, and C. R. Park. Stimulation of a low Km phosphodiesterase from liver by insulin and glucagon. J. Biol. Chem. 253: 746–757, 1978.
 228. Lotersztajn, S., A., Mallat, C. Pavoine, and F. Pecker. The inhibitor of liver plasma membrane (Ca2+‐Mg2+)‐ATPase. Purification and identification as a mediator of glucagon action. J. Biol. Chem. 260: 9692–9698, 1985.
 229. Lowe, P. J., K. S., Kan, S. G. Barnwell, R. K. Sharma, and R. Coleman. Transcytosis and paracellular movements of horseradish peroxidase across liver parenchymal tissue from blood to bile. Effects of α‐naphthylisothiocyanate and colchicine. Biochem. J. 229: 529–537, 1985.
 230. Luly, P., and M. Shinitzky. Gross structural changes in isolated liver cell plasma membranes upon binding of insulin. Biochemistry 18: 445–450, 1979.
 231. Lynch, C. J., R., Charest, P. F. Blackmore, and J. H. Exton. Studies on the hepatic α1‐adrenergic receptor. Modulation of guanine nucleotide effects by calcium, temperature and age. J. Biol. Chem. 260: 1593–1600, 1985.
 232. Lynch, C. J., R., Charest, S. B. Bocckino, J. H. Exton, and P. F. Blackmore. Inhibition of hepatic α1‐adrenergic effects and binding by phorbol myristate acetate. J. Biol. Chem. 260: 2844–2851, 1985.
 233. Macdonald, R. G., and M. P. Czech. Biosynthesis and processing of the type II insulin‐like growth factor receptor in H‐35 hepatoma cells. J. Biol. Chem. 260: 11357–11365, 1985.
 234. Maes, M., L. E., Underwood, G. Gerard, and J. M. Ketelslegers. Relationship between plasma somatomedin‐C and liver somatogenic binding sites in neonatal rats during malnutrition and after short and long term refeeding. Endocrinology 115: 786–792, 1984.
 235. Magistretti, P. J., P. H., Morrison, W. J. Shoemaker, V. Sapin, and F. E. Bloom. Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc. Natl. Acad. Sci. USA 78: 6535–6539, 1981.
 236. Makhlouf, J. H. Role of vasoactive intestinal peptide in the function of the gut. In: Vasoactive Intestinal Peptide, edited by S. I. Said. New York: Raven, 1982, p. 425–448.
 237. Malbon, C. C., and M. L. Greenberg. 3,3',5‐Triiodothyronine administration in vivo modulates the hormone‐sensitive adenylate cyclase system of rat hepatocytes. J. Clin. Invest. 69: 414–426, 1982.
 238. Maletti, M., B., Portha, M. Carlquist, M. Kergoat, M. Laburthe, J. C. Marie, and G. Rosselin. Evidence for and characterization of specific high affinity binding sites for the gastric inhibitory polypeptide in pancreatic beta cells. Endocrinology 115: 1324–1331, 1984.
 239. Mallat, A., C., Pavoine, M. Dufour, S. Lotersztajn, D. Bataille, and F. Pecker. A glucagon fragment is responsible for the inhibition of the liver Ca2+ pump by glucagon. Nature Lond. 325: 620–622, 1987.
 240. Marchmont, R. J., and M. D. Houslay. Characterization of the phosphorylated form of the insulin‐stimulated cyclic AMP phosphodiesterase from rat liver plasma membranes. Biochem. J. 195: 653–660, 1981.
 241. Marie, J. C., D. Hui Bon, Hoa, R. Jackson, G. Hejblum, and G. Rosselin. The biological relevance of HPLC purified vasoactive intestinal polypeptide monoidinated at tyrosine 22. Peptides Fayetteville 12: 113–123, 1985.
 242. Marquardt, H., G. J., Todaro, L. E. Henderson, and S. Oroszlan. Purification and primary structure of a polypeptide with multiplication stimulation from rat liver cell culture. J. Biol. Chem. 226: 6859–6865, 1981.
 243. Martin, B. R., J. M., Stein, E. L. Kennedy, and C. A. Doberska. The effect of fluoride on the state of aggregation of adenylate cyclase in rat liver plasma membranes. Biochem. J. 188: 136–140, 1980.
 244. Mason, J. C., and H. S. Tager. Identification of distinct receptor complexes that account for high‐ and low‐affinity glucagon binding to hepatic plasma membranes. Proc. Natl. Acad. Sci. USA 82: 6835–6839, 1985.
 245. Massagué, J., L., Binderman, and M. P. Czech. The high‐affinity insulin receptor mediates growth stimulation in rat hepatoma cells. J. Biol. Chem. 257: 13958–13963, 1982.
 246. Massagué, J., and M. P. Czech. The subunit structures of two distinct receptors for insulin‐like growth factor I and II and their relationship to the insulin receptor. J. Biol. Chem. 257: 5038–5045, 1982.
 247. Massagué, J., and B. Like. Cellular receptors for type β transforming growth factor. Ligand binding and affinity labelling in human and rodent cell lines. J. Biol. Chem. 260: 2636–2645, 1985.
 248. Massagué, J., P. F., Pilch, and M. P. Czech. Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries. Proc. Natl. Acad. Sci. USA 77: 7137–7141, 1980.
 249. Mauger, J. P., J., Poggioli, F. Guesdon, and H. Claret. Noradrenaline, vasopressin and angiotensin increase Ca2+ channels in isolated rat liver cells. Biochem. J. 221: 121–127, 1984.
 250. Meier, P. J., E. S., Sztul, A. Reuhen, and J. L. Boyer. Structural and functional polarity of canalicular and basolateral plasma membrane vesicles isolated in high yield from rat liver. J. Cell Biol. 98: 991–1000, 1984.
 251. Menuelle, P., and C. Plas. Relationship between insulin binding and glycogenolysis in cultured fetal hepatocytes. Diabetologia 20: 647–653, 1981.
 252. Merimee, T. J., J., Zapf, and E. R. Froesch. Insulin‐like growth factors in the fed and fasted states. J. Clin. Endocrinol. Metab. 55: 999–1002, 1982.
 253. Minuk, G. Y., J., Vergalla, P. Ferenci, and E. A. Jones. Identification of an acceptor system for gamma‐aminobutyric acid on isolated rat hepatocytes. Hepatology Baltimore 4: 180–185, 1984.
 254. Misbin, R. I., and E. C. Almira. The fate of insulin in rat hepatocytes. Evidence for the release of an immunologically active fragment. Diabetes 33: 356–361, 1984.
 255. Misbin, R. I., M. M., Wolfe, P. Morris, S. J. Buynitzky, and J. E. Mcguigan. Uptake of vasoactive intestinal peptide by rat liver. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G103–G111, 1982.
 256. Morgan, D. O., J. C., Edman, D. N. Standring, V. A. Fried, M. C. Smith, R. A. Roth, and W. J. Rutter. Insulin‐like growth factor II receptor as a multifunctional binding protein. Nature Lond. 329: 301–307, 1987.
 257. Morgan, N. G., R., Charest, P. F. Blackmore, and J. H. Exton. Potentiation of α1‐adrenergic responses in rat liver by a cAMP‐dependent mechanism. Proc. Natl. Acad. Sci. USA 81: 4208–4212, 1984.
 258. Moriarty, D. M., and C. R. Savage, JR. Interaction of epidermal growth α1‐adrenergic factor with adult rat liver parenchymal cells in primary culture. Arch. Biochem. Biophys. 203: 506–518, 1980.
 259. Morin, O., H., Fehlmann, and P. Freychet. Binding and action of insulin and glucagon in monolayer cultures and fresh suspension of rat hepatocytes. Mol. Cell. Endocrinol. 25: 339–352, 1982.
 260. Mortimore, G. E. Effect of insulin on potassium transfer in isolated rat liver. Am. J. Physiol. 200: 1315–1319, 1961.
 261. Munck, A., A., Kervan, J. C. Marie, D. Bataille, and G. Rosselin. Glucagon‐37 (oxyntomodulin) and glucagon‐29 (pancreatic glucagon) in human bowel: analysis by HPLC and radioreceptor assay. Peptides Fayetteville 5: 553–561, 1984.
 262. Munnich, A., J., Marie, G. Reach, S. Vaulont, M. P. Simon, and A. Kahn. In vivo hormonal control of L‐type pyruvate kinase gene expression. J. Biol. Chem. 259: 1028–10231, 1984.
 263. Murphy, E., K., Coll, T. Rich, and J. R. Williamson. Hormonal effects on calcium homeotasis in isolated hepatocytes. J. Biol. Chem. 255: 6600–6608, 1980.
 264. Murphy, L. J., G. I., Bell, and H. G. Friesen. Growth hormone stimulates sequential induction of c‐myc and insulinlike growth factor I expression in vivo. Endocrinology 120: 1806–1812, 1987.
 265. Neufeld, G., S., Steiner, H. Korner, and H. Schramm. Trapping of the β‐adrenergic receptor in the hormone‐induced state. Proc. Natl. Acad. Sci. USA 80: 6441–6445, 1983.
 266. Neville, D. M., JR. Isolation of an organ specific protein antigen from cell‐surface membrane of rat liver. Biochim. Biophys. Acta 154: 540–552, 1968.
 267. Nguyen, T. D., J. A., Williams, and G. M. Gray. Liver vasoactive intestinal peptide (VIP) receptor is a membrane glycoprotein (Abstract). Gastroenterology 88: 1518, 1985.
 268. Nicoll, S., T. R., Anderson, N. J. Hebert, and S. M. Russell. Comparative aspects of the growth‐promoting actions of prolactin on its target organs: evidence for synergism with an insulin‐like growth factor. In: Prolactin: Basic and Clinical Correlates, edited by R. M. MacLeod, M. O. Thorner, and U. Scapagnini. New York: Springer‐Verlag, 1985, p. 393–410.
 269. Noda, C., F., Shinjyo, A. Tomomura, S. Kato, T. Nakamura, and A. Ichihara. Mechanism of heterologous desensitization of the adenylate cyclase system by glucagon in primary cultures of adult rat hepatocytes. J. Biol. Chem. 259: 7747–7754, 1984.
 270. Norstedt, G., G., Andersson, and J. A. Gustafsson. Growth hormone induction of lactogenic receptors at intracellular sites in male rat liver. Endocrinology 115: 672–680, 1984.
 271. Nyfeler, F., D., Fasel, and P. Walter. Short‐term stimulation of net glucose production by insulin in rat hepatocytes. Biochim. Biophys. Acta 675: 17–23, 1981.
 272. O'Keefe, E., M. D., Hollenberg, and P. Cuatrecasas. Epidermal growth factor. Characteristics of specific binding in membranes from liver, placenta and other target tissues. Arch. Biochem. Biophys. 164: 518–526, 1974.
 273. Oppenheimer, J. H., H. L., Schwartz, and M. I. Surks. Tissue differences in the concentration of triiodothyronine nuclear binding sites in the rat: liver, kidney, pituitary, heart, brain, spleen and testis. Endocrinology 95: 897–903, 1974.
 274. Palcheimo, M., J., Linkola, M. Lempinen, and M. Folke. Time‐courses of hepatocellular hyperpolarization and cyclic adenosine 3',5'‐monophosphate accumulation after partial hepatectomy in the rat. Effects of fasting for 43 hours and intravenous injection of glucose. Gastroenterology 87: 639–646, 1984.
 275. Parkes, J. L., and G. Grieninger. Insulin, not glucose, controls hepatocellular glycogen deposition. A re‐evaluation of the role of both agents in cultured liver cells. J. Biol. Chem. 260: 8090–8097, 1985.
 276. Parkes, J. L., G., Haselbacher, and G. Grieninger. Insulinlike growth factors (IGF I and IGF II) mimic the effect of insulin on plasma protein synthesis and glycogen deposition in cultured hepatocytes, polypeptide hormones and growth factors (Abstract). J. Cell Biol. 101: 114a, 1985.
 277. Patel, Y. C., H. H., Zingg, D. Fitz‐Patrick, and C. B. Srikant. Somatostatin: some aspects of its physiology and pathophysiology. In: Gut Hormones, edited by J. M. Bloom and J. M. Polak. Edinburgh: Churchill Livingstone, 1981, p. 39–49.
 278. Pauwels, S., G. J., Dockray, R. Walker, and S. Marcus. Metabolism of heptadecapeptide gastrin in humans studied by region‐specific antisera. J. Clin. Invest. 75: 2006–2013, 1985.
 279. Pease, R. J., G. D., Smith, and T. J. Peters. Degradation of endocytosed insulin in rat liver is mediated by low‐density vesicles. Biochem. J. 228: 137–146, 1985.
 280. Pennington, S. R. G proteins and diabetes. Nature Lond. 327: 188–189, 1987.
 281. Petkovich, M., N. J., Brand, A. Krust, and P. Chambon. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature Lond. 330: 44–450, 1987.
 282. Picard, F., and M. C. Postel‐Vinay. Hypophysectomy and growth hormone receptors in liver membranes of male rats. Endocrinology 114: 1328–1333, 1984.
 283. Pierson, R. W. JR, and H. M. Temin. The partial purification from calf serum of a fraction with multiplication‐stimulating activity for chicken fibroblasts in cell culture and with nonsuppressible insulin‐like activity. J. Cell. Physiol. 79: 319–330, 1972.
 284. Plas, C., and J. Nunez. Glycogenolytic response to glucagon of cultured fetal hepatoytes. Refractoriness following prior exposure to glucagon. J. Biol. Chem. 250: 5304–5311, 1975.
 285. Podlecki, D. A., B. H., Frank, M. Kao, H. Horikoshi, G. Freidenberg, S. Marshall, T. Ciaraldi, and J. M. Olefsky. Characterization of the receptor binding properties of monoiodoinsulin isomers and the identification of different insulin receptor specificities in hepatic and extrahepatic tissues. Diabetes 32: 697–704, 1983.
 286. Poggioli, J., J. P., Mauger, F. Guesdon, and M. Claret. A regulatory calcium‐binding site for calcium channel in isolated rat hepatocytes. J. Biol. Chem. 260: 3289–3294, 1985.
 287. Polonsky, K., J., Jaspan, N. Berelowitz, W. Pugh, A. Moossa, and N. Ling. The in vivo metabolism of somatostatin‐28: a possible relationship between diminished metabolism and enhanced biological activity. Endocrinology 111: 1698–1703, 1982.
 288. Polonsky, K., J. B., Jaspan, D. Emmanouel, K. Holmes, and A. R. Moussa. Differences in the hepatic and renal extraction of insulin and glucagon in the dog: evidence for saturability of insulin metabolism. Acta Endocrinol. 102: 420–427, 1983.
 289. Polonsky, K., J. B., Jaspan, and W. Pugh. The metabolism of C‐peptide in the dog. In vivo demonstration of the absence of hepatic metabolism. J. Clin. Invest. 72: 1114–1123, 1983.
 290. Posner, B., Z., Josefsberg, and J. J. M. Bergerson. Intracellular polypeptide hormone receptors. Characterization and induction of lactogen receptors in the Golgi apparatus of rat liver. J. Biol. Chem. 254: 12494–12499, 1979.
 291. Postel‐Vinay, M. C., C., Kayser, and B. Desbuquois. Fate of injected human growth hormone in the female rat liver in vivo. Endocrinology 111: 244–251, 1982.
 292. Poupon, R. E., and W. H. Evans. Biochemical evidence that Na+, K+‐ATPase is located at the lateral region of the hepatocyte surface membrane. FEBS Lett. 108: 374–378, 1979.
 293. Price, B. A., B. M., Jaffe, and M. J. Zinner. Effect of exogenous somatostatin infusion on gastrointestinal blood flow and hormones in the conscious dog. Gastroenterology 88: 80–90, 1985.
 294. Quintart, J., P. J., Courtoy, and P. Baudhuin. Receptor‐mediated endocytosis in rat liver: purification and enzymic characterization of low density organelles involved in uptake of galactose‐exposing proteins. J. Cell Biol. 98: 877–884, 1984.
 295. Rechler, M. M. The nature and regulation of the receptors for insulin‐like growth factors. Annu. Rev. Physiol. 47: 425–442, 1985.
 296. Rechler, M. M., J., Zapf, S. P. Nissley, E. R. Froesch, A. C. Moses, J. M. Polonsky, E. E. Shilling, and R. E. Humbel. Interactions of insulin‐like growth factors I and II and multiplication‐stimulating activity with receptors and serum carrier proteins. Endocrinology 107: 1451–1459, 1980.
 297. Rees‐Jones, R. W., and S. I. Taylor. An endogenous substrate for the insulin receptor‐associated tyrosine kinase. J. Biol. Chem. 260: 4461–4467, 1985.
 298. Reilly, F. D., P. A., Mccusky, and R. S. Mccusky. Intrahepatic distribution of nerves in the rat. Anat. Recep. 191: 55–68, 1978.
 299. Renston, R. H., D. G. M., Lonzey, A. L. Jones, G. T. Hradek, K. Y. Wong, and I. D. Goldfine. Bile secretory apparatus: evidence for a vesicular transport mechanism for proteins in the rat using horseradish peroxidase and 125I‐insulin. Gastroenterology 78: 1373–1388, 1980.
 300. Rinderknecht, E., and R. E. Humbel. Primary structure of human insulin‐like growth factor II. FEBS Lett. 89: 283–286, 1978.
 301. Rinderknecht, E., and R. E. Humbel. The amino acid sequence of human insulin‐like growth factor I and its structural homology with proinsulin. J. Biol. Chem. 253: 2769–2776, 1978.
 302. Robberecht, P., M., Waelbroeck, J. C. Camus, P. Deneef, D. Coy, and J. Christophe. Effects of His1 modification on the ability of vasoactive intestinal peptide to stimulate adenylate cyclase from rat and human tissues. Peptides Fayetteville 5: 877–881, 1984.
 303. Robberecht, P., M., Waelvbroeck, P. Deneef, J. C. Camus, A. Vandermeers, M. C. Vandermeers‐Piret, and J. Christophe. Specific labelling by 125I‐helodermin of high‐affinity VIP receptors in rat liver membranes. FEBS Lett. 172: 55–58, 1984.
 304. Robertson, R. P., K. W., Westcott, D. R. Storm, and M. G. Rice. Down‐regulation in vivo of PGE receptors and adenylate cyclase stimulation. Am. J. Physiol. 239 (Endocrinol. Metab. 2): E75–E80, 1980.
 305. Rodbard, D. Lessons from the computerization of radioimmunoassays: an introduction to the basic principles of modeling. In: Computers in Endocrinology, edited by G. F. Rodbard and G. F. Forti. New York: Raven, 1984, p. 75–100.
 306. Rodbell, M. The role of hormone receptors and GTP‐regulatory proteins in membrane transduction. Nature Lond. 284: 17–22, 1980.
 307. Rodbell, M. The action of glucagon as its receptor: regulation of adenylate cyclase. In: Glucagon, edited by P. J. Lefebvre. Berlin: Springer‐Verlag, 1983, p. 263–290.
 308. Rodbell, M., H. H. J., Krans, L. Pohl, and L. Birnbaumer. The glucagon‐sensitive adenyl cyclase system in plasma membranes of rat liver. J. Biol. Chem. 246: 1872–1876, 1971.
 309. Rojas, F. J., and L. Birnbaumer. Regulation of glucagon receptor binding. Lack of effect of Mg and preferential role for GDP. J. Biol. Chem. 260: 7829–7837, 1985.
 310. Ross, M. H. Aging, nutrition and hepatic enzyme activity patterns in the rat. J. Nutr. 97: 565–602, 1969.
 311. Rosselin, G. The receptors of the VIP family peptides (VIP), secretin, GRF, PHI, PHM, GIP, glucagon and oxyntomodulin. Specificities and identity. Peptides Fayetteville 7: 89–100, 1986.
 312. Rosselin, G., and P. Freychet. Basal and hormone‐stimulated adenylate cyclase in liver plasma membranes: measurement by radioimmunoassay of cyclic AMP. Biochim. Biophys. Acta 304: 541–551, 1973.
 313. Rosselin, G., P., Freychet, D. Bataille, M. Fouchereau, F. Rancon, and Y. Broer. Aspects récents des interactions hormonales au niveau des membranes plasmiques des tissus digestifs et du foie. Biol. Gastro‐Enterol. 7: 5–18, 1974.
 314. Rosselin, G., P., Freychet, M. Fouchereau, F. Rancon, and Y. Broer. Interactions of insulin and glucagon with isolated rat liver cells. II. Dynamic changes in the cyclic AMP induced by hormones. Horm. Metab. Res. 5, Suppl.: 78–86, 1974.
 315. Rosselin, G., M., Laburthe, D. Bataille, J. C. Prieto, C. Dupont, B. Amiranoff, J. P. Broyart, and J. Besson. Receptors and effectors of vasoactive intestinal peptide in cell function and differentiation. In: Hormones and Cell Regulation, edited by J. Dumont and J. Nuñez. Amsterdam: Elsevier/North‐Holland, 1980, p. 311–330.
 316. Rotwein, P. Two insulin‐like growth factor I messenger RNAs are expressed in human liver. Proc. Natl. Acad. Sci. USA 83: 77–81, 1986.
 317. Rubalcava, B., M. O., Grajales, J. Cerbon, and J. A. Pliego. The role of surface charge and hydrophobic interaction in the activation of rat liver adenylate cyclase. Biochim. Biophys. Acta 759: 243–249, 1983.
 318. Ruggere, M. D., and Y. C. Patel. Hepatic metabolism of somatostatin‐14 and somatostatin‐28. Immunochemical characterization of the metabolic fragments and comparison of cleavage sites. Endocrinology 117: 88–96, 1985.
 319. Russel, D. S., R., Gherzi, E. L. Johnson, C. K. Chou, and O. M. Rosen. The protein‐tyrosine kinase activity of the insulin receptor is necessary for insulin‐mediated inhibitors down‐regulation. J. Biol. Chem. 262: 11833–11840, 1987.
 320. Russell, D. W., W. J., Schneider, T. Yamamoto, K. L. Luskey, M. S. Brown, and J. L. Goldstein. Domain map of the LDL receptor: sequence homology with the epidermal growth factor precursor. Cell 37: 577–585, 1984.
 321. Sachs, E., J. D., Jamieson, and S. A. Rosenweig. Molecular analysis of the vasoactive intestinal peptide (VIP) receptor (Abstract). J. Cell Biol. 101: 430a, 1985.
 322. Sacks, H., and L. C. Terry. Clearance of immunoreactive somatostatin by perfused rat liver. J. Clin. Invest. 67: 419–429, 1981.
 323. Sahagian, G. G., and C. J. Steer. Transmembrane orientation of the mannose‐6‐phosphate receptor in isolated clathrin‐coated vesicles. J. Biol. Chem. 260: 9838–9842, 1985.
 324. Sahyoun, N., R. A., Hock, and M. D. Hollenberg. Insulin and epidermal growth factor‐urogastrone: affinity crosslinking to specific binding sites in rat liver membranes. Proc. Natl. Acad. Sci. USA 75: 1675–1679, 1978.
 325. Sakamoto, T., M., Fujimura, J. Newman, X. G. Zhu, G. H. Greeley, and J. C. Thompson. Comparison of hepatic elimination of different forms of cholecystokinin in dogs. Bioassay and radioimmunoassay comparisons of cholecystokinin‐8‐sulfate and ‐33‐sulfate. J. Clin. Invest. 75: 280–285, 1985.
 326. Saltiel, A. R., and P. Cuatrecasas. Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc. Natl. Acad. Sci. USA 83: 5793–5797, 1986.
 327. Saltiel, A. R., A., Doble, S. Jacobs, and P. Cuatrecasas. Putative mediators of insulin action regulate hepatic acetyl CoA carboxilase activity. Biochem. Biophys. Res. Commun. 110: 789–795, 1983.
 328. Saltiel, A., S., Jacobs, M. Siegel, and P. Cuatrecasas. Insulin stimulates the release from liver plasma membranes of a chemical molulator of pyruvate dehydrogenase. Biochem. Biophys. Res. Commun. 102: 1041–1047, 1981.
 329. Sasaki, N., R. W., Rees‐Jones, Y. Zick, S. P. Nissley, and M. M. Rechler. Characterization of insulin‐like growth factor I‐stimulated tyrosine kinase activity associated with the β‐subunit of type I insulin‐like growth factor receptors of rat liver cells. J. Biol. Chem. 260: 9793–9804, 1985.
 330. Sasaki, Y., T., Kamada, N. Hayashi, N. Sato, A. Kasahara, H. Fusamoto, S. Shiosaka, M. Tohyama, and Y. Shiotani. Immunohistochemical distribution of glucagon, substance P and vasoactive intestinal polypeptide in hepatic vasculature of the rat. Hepatology Baltimore 4: 1184–1189, 1984.
 331. Scatchard, G. The attractions of proteins for small molecules and ions. Ann. NY Acad. Sci. 51: 660–672, 1949.
 332. Schachter, D. Fluidity and function of hepatocyte plasma membranes. Hepatology Baltimore 4: 140–151, 1984.
 333. Schepper, J. M., E. F., Hughes, M. C. Postel‐Vinay, and J. P. Hughes. Cleavage of growth hormone by rabbit liver plasmalemma enhances binding. J. Biol. Chem. 259: 12945–12948, 1984.
 334. Schlegel, W., E. S., Kempner, and M. Rodbell. Activation of adenylate cyclase in hepatic membranes involves interactions of the catalytic unit with multimeric complexes of regulatory proteins. J. Biol. Chem. 254: 5163–5176, 1979.
 335. Schneider, C., M. J., Owen, D. Banville, and J. G. Williams. Primary structure of human transferrin receptor deduced from mRNA sequence. Nature Lond. 311: 675–678, 1984.
 336. Scott, C. D., J. L., Martin, and R. C. Baxter. Rat hepatocyte insulin‐like growth factor I and binding protein: effect of growth hormone in vitro and in vivo. Endocrinology 116: 1102–1107, 1985.
 337. Semple, P. F. The effect of hemorrhage and sodium depletion on plasma concentrations of angiotensin II and [des‐Asp1]‐angiotensin II in the rat. Endocrinology 107: 771–773, 1980.
 338. Shaw, P. A., and S. Gluecksohn‐Waelsch. Epidermal growth factor and glucagon receptors in mice homozygous for a lethal chromosomal deletion. Proc. Natl. Acad. Sci. USA 80: 5379–5382, 1983.
 339. Sibley, D., and R. Lefkowitz. Molecular mechanisms of receptor desentization using the β‐adrenergic receptor‐coupled adenylate cyclase system as a model. Nature Lond. 317: 124–129, 1985.
 340. Simon, J., P., Freychet, and G. Rosselin. A study of insulin binding sites in the chicken tissues. Diabetologia 13: 219–228, 1977.
 341. Singer, S. J., and G. L. Nicolson. The fluid mosaic model of the structure of cell membranes. Science Wash. DC 175: 720–731, 1972.
 342. Smith, G. M. Increased ouabain‐sensitive 86rubidium+ uptake after mitogenic stimulation of quiescent chicken embryo fibroblasts with purified multiplication‐stimulating activity. J. Cell Biol. 73: 761–767, 1977.
 343. Sodoyez, J. C., F., Sodoyez‐Goffaux, M. Guillaume, and G. Mereline. [125]I‐insulin metabolism in normal rats and humans: external detection by a scintillation camera. Science Wash. DC 219: 865–867, 1983.
 344. Sonne, O., T., Berg, and T. Christoffersen. Binding of 125Ilabeled glucagon and glucagon‐stimulated accumulation of adenosine 3'5'‐monophosphate in isolated intact rat hepatocytes. J. Biol. Chem. 253: 3203–3210, 1978.
 345. Sonnenberg, G. E., U., Keller, A. Perruchoud, D. Burckhard, and K. Gyr. Effect of somatostatin on splanchnic hemodynamics in patients with cirrhosis of the liver and in normal subjects. Gastroenterology 80: 526–532, 1981.
 346. Spence, J. T., and A. P. Koudeka. Pathway of glycogen synthesis from glucose in hepatocytes maintained in primary culture. J. Biol. Chem. 260: 1521–1526, 1985.
 347. Spiess, M., A. L., Schwartz, and H. F. Lodish. Sequence of human asialoglycoprotein receptor cDNA. An internal signal sequence for membrane insertion. J. Biol. Chem. 260: 1979–1982, 1985.
 348. Stadtmauer, L. A., and O. M. Rosen. Phosphorylation of exogenous substracts by the insulin receptor‐associated protein kinase. J. Biol. Chem. 258: 6682–6685, 1983.
 349. Steinman, R. M., I. S., Mellman, W. A. Muller, and Z. A. Cohn. Endocytosis and the recycling of plasma membrane. J. Cell Biol. 96: 1–27, 1983.
 350. Stiles, G. L., M. G., Caron, and R. J. Lefkowitz. β‐Adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol. Rev. 64: 661–743, 1984.
 351. Stow, J. L., L., Kjellen, E. Unger, M. Hook, and M. G. Farqhar. Heparan sulfate proteoglycans are concentrated on the sinusoidal plasmalemmal domain and in intracellular organelles of hepatocytes. J. Cell Biol. 100: 975–980, 1985.
 352. Strange, R. C. Hepatic bile flow. Physiol. Rev. 64: 1055–1102, 1984.
 353. Strunz, U. T., M. R., Thompson, J. Elashoff, and M. I. Grossman. Hepatic inactivation of gastrins of various chain lengths in dogs. Gastroenterology 74: 550–553, 1978.
 354. Sutherland, E. W., and C. Deduve. Origin and distribution of the hyperglycemic‐glycogenolytic factor of the pancreas. J. Biol. Chem. 175: 663–679, 1948.
 355. Sutherland, E. W., T. W., Rall, and T. Menon. Adenyl cyclase. I. Distribution, preparation, and properties. J. Biol. Chem. 237: 1220–1227, 1962.
 356. Sutherland, E. W., and A. Robinson. Banting Memorial Lecture 1969. The role of cyclic AMP in control of carbohydrate metabolism. Diabetes 18: 797–819, 1969.
 357. Swenson, T. L., and J. W. Porters. Mechanism of glucagon inhibition of liver acetyl‐CoA carboxylase. Interrelationship of the effects of phosphorylation, polymer‐protomer transition, and citrate on enzyme activity. J. Biol. Chem. 260: 3791–3797, 1985.
 358. Takayama, S., M. F., White, V. Lauris, and C. R. Kahn. Phorbol esters modulate insulin receptor phosphorylation and insulin action in cultured hepatoma cells. Proc. Natl. Acad. Sci. USA 81: 7797–7801, 1984.
 359. Taylor, D., R. J., Uhing, P. F. Blackmore, V. Prpic, and J. H. Exton. Insulin and epidermal growth factor do not affect phosphoinositide metabolism in rat liver plasma membranes and hepatocytes. J. Biol. Chem. 260: 2011–2014, 1985.
 360. Terris, S., and D. F. Steiner. Retention and degradation of 125I‐insulin by perfused livers from diabetic rats. J. Clin. Invest. 57: 885–896, 1976.
 361. Thomas, A. P., J. S., Marks, K. E. Coll, and J. R. Williamson. Quantification and early kinetics of inositol lipid changes induced by vasopressin in isolated and cultured hepatocytes. J. Biol. Chem. 258: 5716–5525, 1983.
 362. Thomsen, O. O., and J. A. Larsen. Interaction of insulin, glucagon and DBcAMP on bile acid‐independent bile production in the rat. Scand. J. Gastroenterol. 17: 687–693, 1982.
 363. Toh, H., M., Hayashida, R. Kikuno, T. Yasunaga, and T. Miyata. Sequence similarity between EGF receptor and α‐1‐acid glycoprotein. Nature Lond. 314: 199, 1985.
 364. Trevillyan, J. M., O., Perisic, J. A. Traugh, and C. Byus. Insulin and phorbol ester stimulated phosphorylation of ribosomal protein 56. J. Biol. Chem. 260: 3041–3044, 1985.
 365. Ullrich, A., J. R., Bell, E. Y. Chen, R. Herrera, L. M. Petuzzelli, T. J. Dul, A. Gray, L. Coussens, Y. C. Liao, M. Tsybokawa, A. Mason, P. H. Seeburg, C. Grunfeld, O. M. Rosen, and J. Ramachandram. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature Lond. 313: 756–761, 1985.
 366. Ullrich, A., L., Coussens, J. S. Hayflick, T. J. Dull, A. Gray, A. W. Tarn, J. Lee, Y. Yarden, T. A. Libermann, J. Schlessinger, J. Downard, E. L. V. Mayez, N. Whittle, M. D. Waterfield, and P. H. Seeberg. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature Lond. 309: 418–425, 1984.
 367. Ullrich, A., A., Gray, A. W. Tam, T. Yang‐Feng, M. Tsubokawa, C. Collins, W. Henzel, T. Le Bon, S. Kathuria, T. Chen, S. Jacobs, U. Francke, J. Raniachandran, and Y. Fujita‐Yamaguchi. Insulin‐like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 5: 2503–2512, 1986.
 368. Valleron, A. J. Méthodes statistiques en radio‐immunologie. In: Méthodes Radio‐Immunologiques Paris, France: INSERM, 1972, p. 149–172.
 369. Van De Werve, G., J. Proietto, and B. Jeanrenaud. Control of glycogen phosphorylase interconversion by phorbol esters, diacylglycerols, Ca2+ and hormones in isolated rat hepatocytes. Biochem. J. 231: 511–516, 1985.
 370. Van Obberghen, E., and A. Kowalski. Phosphorylation of the hepatic insulin receptor. Stimulating effect of insulin on intact cells and in a cell‐free system. FEBS Lett. 143: 179–182, 1982.
 371. Van Obberghen, E., B. Rossi, A. Kowalski, H. Gazzano, and G. Ponzio. Receptor‐mediated phosphorylation of the hepatic insulin receptor: evidence that the Mr 95,000 receptor subunit is its own kinase. Proc. Natl. Acad. Sci. USA 80: 945–949, 1983.
 372. Vaulont, S., A., Munnich, J. Marie, G. Reach, A. L. Pichard, M. P. Simon, C. Besmond, P. Barbry, and A. Kahn. Cyclic AMP as a transcriptional inhibitor of upper eukaryotic gene transcription. Biochem. Biophys. Res. Commun. 125: 135–141, 1984.
 373. Villar‐Palasi, C., and J. Larner. Insulin‐mediated effect on the activity of UDPG‐glucagon transglucosylase of muscle. Biochim. Biophys. Acta 39: 171–173, 1960.
 374. Wakai, K., T., Tsushima, O. Isozaki, Y. Sab, and K. Sato. Processing of human growth hormone by rat hepatocytes in monolayer culture. Endocrinology 114: 1475–1482, 1984.
 375. Wakelam, M. J. O., G. J., Murphy, V. J. Hruby, and M. D. Houslay. Activation of two signal‐transduction systems in hepatocytes by glucagon. Nature Lond. 323: 68–71, 1986.
 376. Walsh, M., and J. C. Dunbar. Glucagon binding to liver membranes of Mt‐T‐W15 tumor‐bearing and hypophysectomized rats. A possible role for insulin and growth hormone. Diabetes 33: 978–983, 1984.
 377. Wanson, J. C., D., Bernaaert, and C. May. Morphology and functional properties of isolated and cultured hepatocytes. Prog. Liver Dis. 6: 1–22, 1979.
 378. Warren, R., and D. Doyle. Turnover of the surface proteins and the receptor for serum asialoglycoproteins in primary cultures of rat hepatocytes. J. Biol. Chem. 256: 1346–1355, 1981.
 379. Wasner, H. K. Biosynthesis of cyclic AMP antagonist in hepatocytes from rats after adrenalin‐ or insulin‐stimulation. Isolation, purification, and prostaglandin E‐requirement for its synthesis. FEBS Lett. 133: 260–264, 1981.
 380. Wetsel, W. C., and A. Y. Rogers. Hepatic prolactin binding in female Sprague‐Dawley rats fed a diet high in corn oil. J. Natl. Cancer Inst. 73: 531–536, 1984.
 381. Wileman, T., C., Harding, and P. Stahl. Receptor‐mediated endocytosis. Biochem. J. 232: 1–14, 1985.
 382. Willingham, M. C., H. T., Haigler, D. Fitzgerald, M. G. Gallo, A. V. Rutherford, and I. H. Pastan. Morphological pathway of binding and internalization of epidermal growth factor in cultured cells. Exp. Cell Res. 146: 163–175, 1983.
 383. Wisher, M. H., and W. H. Evans. Functional polarity of rat hepatocyte surface membranes. Isolation and characterization of plasma‐membrane subfractions from blood‐sinusoidal bile‐Canalicular and contiguous surfaces of the hepatocyte. J. Biochem. 146: 375–388, 1975.
 384. Wisher, M. H., and W. H. Evans. Preparation of plasma membrane subfractions from isolated rat hepatocytes. Biochem. J. 22: 415–422, 1977.
 385. Wisse, E., and D. L. Knook. The investigation of sinusoidal cells: a new approach to the study of liver function. Prog. Liver Dis. 6: 153–171, 1979.
 386. Wood, C. L., and J. J. Blum. Effect of vasoactive intestinal polypeptide on glycogen metabolism in rat hepatocytes. Am. J. Physiol. 242 (Endocrinol. Metab. 5): E262–E272, 1982.
 387. Yamada, K., and D. B. Donner. Structures of the somatotropin receptor and prolactin receptor on rat hepatocytes characterized by affinity labelling. Biochem. J. 220: 361–369, 1984.
 388. Yamada, K., and D. B. Donner. Evidence that non‐covalent forces, thiol and disulphide groups affect the structure and binding properties of the prolactin receptor on hepatocytes from pregnant rats. Biochem. J. 228: 383–390, 1985.
 389. Yamada, S., and C. S. Lieber. Decrease in microviscosity and cholesterol content of rat liver plasma membranes after chronic ethanol feeding. J. Clin. Invest 74: 2285–2289, 1984.
 390. Yamaguchi, M., and M. Ito. Specific binding of calcitonin to rat liver plasma membranes. Endocrinol. Jpn. 31: 327–333, 1984.
 391. Yamamoto, T., C. G., Davis, M. S. Brown, W. J. Schneider, M. L. Casey, J. L. Goldstein, and D. W. Russell. The human LDL receptor: a cysteine‐rich protein with multiple Alu sequences in its mRNA. Cell 39: 27–38, 1984.
 392. Yeo, K. T., J. B., Parent, T. K. Yeo, and K. Olden. Variability in transport rates of secretory glycoproteins through the endoplamsic reticulum and Golgi in human hepatoma cells. J. Biol. Chem. 260: 7896–7902, 1985.
 393. Yoshimasa, T., S. R., Sibley, R. J. Bouvier, J. Lefkowitz, and M. G. Caron. Cross‐talk between cellular signalling pathways suggested by phorbol‐ester‐induced adenylate cyclase phosphorylation. Nature Lond. 327: 67–70, 1987.
 394. Yu, K. T., D. K. Werth, I. H. Pastan, and M. P. Czech. src Kinase catalyzes the phosphorylation and activation of the insulin receptor kinase. J. Biol. Chem. 260: 5838–5846, 1985.
 395. Zapf, J., E., Schoenle, G. Jagars, I. Sand, J. Grunwald, and E. R. Froesch. Inhibition of the action of nonsuppressible insulin‐like activity on isolated rat fat cells by binding to its carrier protein. J. Clin. Invest. 63: 1077–1084, 1979.
 396. Zhang, X. K., D. P., Huang, D. K. Chiu, and J. F. Chiu. The expression of oncogenes in human developing liver and hepatomas. Biochem. Biophys. Res. Commun. 142: 932–938, 1987.
 397. Zick, Y., N., Sasaki, R. W. Rees‐Jones, G. Grunberger, S. P. Nissley, and M. M. Rechler. Insulin‐like growth factor‐I (IGF‐I) stimulates tyrosine kinase activity in purified receptors from a rat liver cell line. Biochem. Biophys. Res. Commun. 119: 6–13, 1984.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Gabriel Rosselin. Liver Receptors for Regulatory Peptides. Compr Physiol 2011, Supplement 17: Handbook of Physiology, The Gastrointestinal System, Neural and Endocrine Biology: 245-280. First published in print 1989. doi: 10.1002/cphy.cp060212