Comprehensive Physiology Wiley Online Library

Cholecystokinin

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Definition of Cholecystokinin
2 History of Cholecystokinin
2.1 Digestive Juice Era
2.2 Peptide Chemistry Era
2.3 Immunochemistry Era
2.4 Nucleotide Chemistry Era
3 Molecular Biology of Cholecystokinin
3.1 Cholecystokinin Gene and mRNA
3.2 Primary Translation Product, Prepro CCK
3.3 Posttranslational Processing
3.4 Structure of Bioactive Cholecystokinins
3.5 Homology With Other Hormones
4 Cellular Distribution of Cholecystokinin
4.1 Endocrine Cells in the Gut
4.2 Endocrine Cells Outside the Gut
4.3 Cholecystokinin Neurons in the Gut
4.4 Cholecystokinin Neurons Outside the Gut
5 Secretion of Cholecystokinin
5.1 Release From Endocrine Cells
5.2 Release from Neurons
6 Cholecystokinin in Plasma
6.1 Plasma Assays
6.2 Molecular Forms in Plasma
6.3 Concentrations in Basal and Stimulated State
7 Effect of Cholecystokinin
7.1 Cholecystokinin Receptors
7.2 Gallbladder Emptying and Bile Release
7.3 Pancreatic Exocrine Secretion
7.4 Pancreatic Endocrine Secretion
7.5 Pancreatic Growth
7.6 Gastrointestinal Motility
7.7 Intestinal Blood Flow
7.8 Satiety
8 Clinical Aspects of Cholecystokinin
8.1 Diagnostic Use
8.2 Therapeutic Use
8.3 Abnormalities
9 Conclusion
Figure 1. Figure 1.

Schematic illustration of overall structure of the CCK gene, CCK‐mRNA, and its primary translation product, preproCCK. Boxes 1–3 on the gene are the exons separated by introns, of which the first has a size of 1 kilobase (kb) and the second a size of 5 kb. The mRNA has a size of 750 bases, of which 345 are protein coding. Location of the sequence for the first isolated CCK peptide (CCK‐33) in preproCCK is shown.

Data from Deschenes et al. 55
Figure 2. Figure 2.

Primary structures of preproCCK and known preproCCK fragments from different mammals. First NH2‐terminal 20 amino acids constitute the signal peptide. Following spacer sequence of ˜25 amino acids has a considerable number of substitutions between species examined so far. Next sequence of 58 amino acids corresponds to largest molecular form of CCK sequences so far. From this region all known biological active forms of CCK originate (cf. Fig. 3). The COOH‐terminal 12—amino acid peptide contains the important amidation signal, Gly‐Arg‐Arg. Function of remaining part is unknown. Vertical arrows, onset and termination of sequenced dog, cow, and guinea pig peptides.

Figure 3. Figure 3.

Presumed posttranslational processing of preproCCK in intestinal I cells. Mono‐ and dibasic cleavage sites are indicated on porcine preproCCK molecule. Fragments framed in bold lines are biological active forms containing COOH‐terminal carboxyamidated tetrapeptide, Trp‐Met‐Asp‐Phe‐NH2, and O‐sulfated tyrosyl96 (SO3H). Broken arrow, occurrence of several intermediate forms during processing.

Figure 4. Figure 4.

Primary structure of human CCK‐58, the largest molecular form of CCK sequenced so far. Basic amino acid residues in bold circles indicate cleavage sites for smaller molecular forms.

Figure 5. Figure 5.

Homologous bioactive sequences of porcine CCK, porcine gastrin, caerulein, phyllocaerulein, and [Arg6, Phe7]Met‐enkephalin.

Figure 6. Figure 6.

CCK‐synthesizing I cells in porcine jejunum demonstrated by immunocytochemistry (peroxidase‐antiperoxidase method) using the CCK‐specific antiserum 1561 see ref. 223.

Courtesy of S. Knuthsen
Figure 7. Figure 7.

CCK nerve terminals (black‐beaded strings) around endocrine islet cells in cat pancreas as demonstrated by immunocytochemistry (peroxidase‐antiperoxidase method) using antiserum 4562 specific for COOH‐terminus of bioactive CCK peptides 227).

Courtesy of L.‐I. Larsson
Figure 8. Figure 8.

CCK nerve terminals in superior mesenteric ganglion of guinea pig, as demonstrated by indirect immunofluorescence using antiserum 4562 specific for COOH‐terminus of bioactive CCK peptides 155).

Courtesy of L.‐I. Larsson
Figure 9. Figure 9.

Molecular forms of CCK in human plasma during a meal as demonstrated by gel chromatography monitored by a CCK‐specific radioimmunoassay using antiserum G‐160 39.

Courtesy of P. Cantor
Figure 10. Figure 10.

Plasma CCK concentrations and gallbladder volume during a meal in 8 normal human subjects.

Data from Cantor et al. 37
Figure 11. Figure 11.

Plasma CCK concentrations and gallbladder volume during infusion of CCK‐8 in 8 normal human subjects.

Data from Cantor et al. 37
Figure 12. Figure 12.

Plasma CCK concentrations and pancreatic amylase output during infusion of physiological dose of CCK‐8 in 6 normal human subjects.

Courtesy of O. Olsen, P. Cantor, and O. Schaffalitzky de Muckadell
Figure 13. Figure 13.

Pancreatic bicarbonate output during infusion of physiological dose of CCK‐8, physiological dose of secretin, or physiological doses of secretin plus CCK‐8 in 6 normal human subjects.

Courtesy of O. Olsen, P. Cantor, and O. Schaffalitzky de Muckadell


Figure 1.

Schematic illustration of overall structure of the CCK gene, CCK‐mRNA, and its primary translation product, preproCCK. Boxes 1–3 on the gene are the exons separated by introns, of which the first has a size of 1 kilobase (kb) and the second a size of 5 kb. The mRNA has a size of 750 bases, of which 345 are protein coding. Location of the sequence for the first isolated CCK peptide (CCK‐33) in preproCCK is shown.

Data from Deschenes et al. 55


Figure 2.

Primary structures of preproCCK and known preproCCK fragments from different mammals. First NH2‐terminal 20 amino acids constitute the signal peptide. Following spacer sequence of ˜25 amino acids has a considerable number of substitutions between species examined so far. Next sequence of 58 amino acids corresponds to largest molecular form of CCK sequences so far. From this region all known biological active forms of CCK originate (cf. Fig. 3). The COOH‐terminal 12—amino acid peptide contains the important amidation signal, Gly‐Arg‐Arg. Function of remaining part is unknown. Vertical arrows, onset and termination of sequenced dog, cow, and guinea pig peptides.



Figure 3.

Presumed posttranslational processing of preproCCK in intestinal I cells. Mono‐ and dibasic cleavage sites are indicated on porcine preproCCK molecule. Fragments framed in bold lines are biological active forms containing COOH‐terminal carboxyamidated tetrapeptide, Trp‐Met‐Asp‐Phe‐NH2, and O‐sulfated tyrosyl96 (SO3H). Broken arrow, occurrence of several intermediate forms during processing.



Figure 4.

Primary structure of human CCK‐58, the largest molecular form of CCK sequenced so far. Basic amino acid residues in bold circles indicate cleavage sites for smaller molecular forms.



Figure 5.

Homologous bioactive sequences of porcine CCK, porcine gastrin, caerulein, phyllocaerulein, and [Arg6, Phe7]Met‐enkephalin.



Figure 6.

CCK‐synthesizing I cells in porcine jejunum demonstrated by immunocytochemistry (peroxidase‐antiperoxidase method) using the CCK‐specific antiserum 1561 see ref. 223.

Courtesy of S. Knuthsen


Figure 7.

CCK nerve terminals (black‐beaded strings) around endocrine islet cells in cat pancreas as demonstrated by immunocytochemistry (peroxidase‐antiperoxidase method) using antiserum 4562 specific for COOH‐terminus of bioactive CCK peptides 227).

Courtesy of L.‐I. Larsson


Figure 8.

CCK nerve terminals in superior mesenteric ganglion of guinea pig, as demonstrated by indirect immunofluorescence using antiserum 4562 specific for COOH‐terminus of bioactive CCK peptides 155).

Courtesy of L.‐I. Larsson


Figure 9.

Molecular forms of CCK in human plasma during a meal as demonstrated by gel chromatography monitored by a CCK‐specific radioimmunoassay using antiserum G‐160 39.

Courtesy of P. Cantor


Figure 10.

Plasma CCK concentrations and gallbladder volume during a meal in 8 normal human subjects.

Data from Cantor et al. 37


Figure 11.

Plasma CCK concentrations and gallbladder volume during infusion of CCK‐8 in 8 normal human subjects.

Data from Cantor et al. 37


Figure 12.

Plasma CCK concentrations and pancreatic amylase output during infusion of physiological dose of CCK‐8 in 6 normal human subjects.

Courtesy of O. Olsen, P. Cantor, and O. Schaffalitzky de Muckadell


Figure 13.

Pancreatic bicarbonate output during infusion of physiological dose of CCK‐8, physiological dose of secretin, or physiological doses of secretin plus CCK‐8 in 6 normal human subjects.

Courtesy of O. Olsen, P. Cantor, and O. Schaffalitzky de Muckadell
References
 1. Adelson, J. W., and P. E. Miller. Pancreatic secretion by nonparallel exocytosis: potential resolution of a long controversy. Science Wash. DC 228: 993–996, 1985.
 2. Agosti, A., G., Bertaccini, R. Paulucci, and E. Zanella. Caerulein treatment for paralytic ileus (Letter to the editor). Lancet 1: 395, 1971.
 3. Amer, M. S. Studies with cholecystokinin. II. Cholecystokinetic potency of porcine gastrins I and II and related peptides in three systems. Endocrinology 84: 1277–1281, 1969.
 4. Anagnostides, A. A., V. S., Chadwick, A. C. Selden, J. Barr, and P. N. Maton. Human pancreatic and biliary responses to physiological concentrations of cholecystokinin octapeptide. Clin. Sci. Mol. Med. 69: 259–263, 1985.
 5. Anastasi, A., G., Bertaccini, J. M. Cei, G. Decaro, V. Ersparter, and M. Impicciatore. Structure and pharmacological actions of phylocaerulein, a caerulein‐like nonapeptide. Its occurrence in extracts of the skin of Phyllomedusa sauvagei and related Phyllomedusa species. Br. J. Pharmacol. 37: 198–206, 1969.
 6. Anastasi, A., G., Bertaccini, J. M. Cei, G. Decaro, V. Erspamer, M. Impicciatore, and M. Roseghini. Presence of caerulein in extracts of the skin of Leptodactylus pentadactylus labyrinthicus and of Xenopus laevis. Br. J. Pharmacol. 38: 221–228, 1970.
 7. Anastasi, A., V., Erspamer, and R. Endean. Isolation and structure of caerulein, an active decapeptide from the skin of Hyla caerulea. Experientia Basel 23: 699–700, 1967.
 8. Anastasi, A., V., Erspamer, and R. Endean. Isolation and amino acid sequence of caerulein, the active decapeptide of the skin of Hyla caerulea. Arch. Biochem. Biophys. 125: 57–68, 1968.
 9. Andersen, B. N., L. De Magistris, and J. F. Rehfeld. Radioimmunochemical quantitation of sulphated and non‐sulphated gastrins in biological fluids. Clin. Chim. Acta 127: 29–39, 1983.
 10. Anuras, S., A. R., Cooke, and J. Christensen. An inhibitory innervation of the gastroduodenal junction. J. Clin. Invest. 54: 529–535, 1974.
 11. Barbezat, G. O., and M. I. Grossman. Release of cholecystokinin by acid. Proc. Soc. Exp. Biol. Med. 148: 463–467, 1975.
 12. Barrowman, J. A., and P. D. Mayston. The trophic influence of cholecystokinin on the rat pancreas. J. Physiol. Lond. 238: 73P–75P, 1974.
 13. Bayliss, W. M., and E. H. Starling. On the causation of the so‐called “peripheral reflex secretion” of the pancreas. Proc. R. Soc. Land. 69: 352–353, 1902.
 14. Becker, H. D., M., Werner, and A. Schafmayer. Release of radioimmunologic cholecystokinin in human subjects. Am. J. Surg. 147: 124–128, 1984.
 15. Behar, J., P., Biancani, and M. P. Zabinski. Characterization of feline gastroduodenal junction by neural and hormonal stimulation. Am. J. Physiol. 236 (Endocrinol. Metab. Gastrointest. Physiol. 5): E45–E51, 1979.
 16. Bernard, C. Leçons Physiol. Exp. 2: 429, 1856.
 17. Berry, H., and R. J. Flower. The assay of endogenous cholecystokinin and factors influencing its release in the dog and cat. Gastroenterology 60: 409–420, 1971.
 18. Bertaccini, G., G. De Caro, R. Endean, V. Erspamer, and M. Impicciatore. The action of caerulein on pancreatic secretion of the dog and biliary secretion of the dog and the rat. Br. J. Pharmacol. 37: 185–197, 1969.
 19. Besterman, H. S., S. R., Bloom, D. L. Sarson, A. M. Blackburn, D. I. Johnston, H. R. Patel, J. S. Stewart, R. Modigliani, S. Guerin, and C. N. Mallinson. Gut hormone profile in coeliac disease. Lancet 1: 785–788, 1978.
 20. Blair, E. L., E. R., Grund, P. K. Lund, and D. J. Sanders. A possible origin of circulating gastrin component IV in cats. J. Physiol. Lond. 273: 561–572, 1977.
 21. Bloom, D. M., N. P. V., Nair, and G. Schwartz. CCK‐8 in the treatment of chronic schizophrenia. Psychopharmacol. Bull. 19: 361–363, 1983.
 22. Boel, E., J., Vuust, K. Norris, F. Norris, A. Wind, J. F. Rehfeld, and K. A. Marcker. Molecular cloning of human gastrin cDNA: evidence for evolution of gastrin by gene duplication. Proc. Natl. Acad. Sci. USA 80: 2866–2869, 1983.
 23. Bondar, Z. A., and S. A. Thuzilin. The diagnostic significance of excretory pancreatic tests. Am. J. Gastroenterol. 62: 469–488, 1974.
 24. Brand, S. J., B. N., Andersen, and J. F. Rehfeld. Complete tyrosine‐O‐sulphation of gastrin in neonatal rat pancreas. Nature Lond. 309: 456–458, 1984.
 25. Brants, F., and J. Morriset. Trophic effect of cholecystokinin‐pancreozymin on pancreatic acinar cells from rats of different ages. Proc. Soc. Exp. Biol. Med. 153: 523–527, 1976.
 26. Brown, J. C., and S. C. Otte. GIP and the entero‐insular axis. Clin. Endocrinol. Metab. 8: 365–377, 1979.
 27. Bruno, G., S., Ruggieri, K. Barker, T. N. Chase, and C. A. Tamminga. Caerulein treatment of Parkinson's disease. Clin. Neuropharmacol. 8: 266–270, 1985.
 28. Buchan, A. M. J., J. M., Polak, E. Solcia, C. Capella, D. Hudston, and A. G. E. Pearse. Electron immunocytochemical evidence for the human intestinal I cell as the source of CCK. Gut 19: 403–407, 1978.
 29. Buffa, R., E., Solcia, and V. L. W. Go. Immunohistochemical identification of the cholecystokinin cell in the intestinal mucosa. Gastroenterology 70: 528–532, 1976.
 30. Burnham, D. B., and J. A. Williams. Effect of carbachol, cholecystokinin, and insulin on protein phosphorylation in isolated pancreatic acini, J. Biol. Chem. 257: 10523–10528, 1982.
 31. Burnham, D. B., and J. A. Williams. Activation of protein kinase activity in pancreatic acini by calcium and cAMP. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G500–G508, 1984.
 32. Burton, P., D. G., Evans, A. A. Harper, H. T. Howat, S. Olesky, J. E. Scott, and H. Varley. A test of pancreatic function in man based on the analysis of duodenal contents after administration of secretin and pancreozymin. Gut 1: 111–124, 1960.
 33. Byrnes, D. J., L., Henderson, T. Borody, and J. F. Rehfeld. Radioimmunoassay of cholecystokinin in human plasma. Clin. Chim. Acta 111: 81–89, 1981.
 34. Calam, J., A., Ellis, and G. J. Dockray. Identification and measurement of molecular variants of cholecystokinin in duodenal mucosa and plasma. J. Clin. Invest. 69: 218–225, 1982.
 35. Cameron, A. J., S. F., Phillips, and W. H. J. Summerskill. Effect of cholecystokinin, gastrin, secretin, and glucagon on human gallbladder muscle in vitro. Proc. Soc. Exp. Biol. Med. 131: 149–154, 1969.
 36. Cantor, P., J. J., Holst, S. Knuthsen, and J. F. Rehfeld. Effect of neuroactive agents on cholecystokinin release from the isolated, perfused porcine duodenum. Acta Physiol. Scand. 130: 627–632, 1987.
 37. Cantor, P., L., Petronuevic, J. F. Pedersen, and H. Worning. The cholecystokinetic and pancreozymic effects of O‐sulfated gastrin compared to non‐sulfated gastrin and cholecystokinin. Gastroenterology 91: 1154–1163, 1986.
 38. Cantor, P., and J. F. Rehfeld. The molecular nature of cholecystokinin in the feline pancreas and related nervous structures. Regul. Pept. 8: 199–208, 1984.
 39. Cantor, P., and J. F. Rehfeld. The molecular nature of cholecystokinin in human plasma. Clin. Chim. Acta 168: 153–158, 1987.
 40. Carlsöo, B., and Å. Danielsson. Effects of cholecystokinin‐pancreozymin on amylase synthesis and secretion in the mouse pancreas. Acta Hepato‐Gastroenterol. 26: 37–42, 1978.
 41. Carratu, R., G., Arcangeli, and F. Pallone. Effect of caerulein on the human biliary tract. Rend. Gastroenterol. 3: 28–33, 1971.
 42. Carruthers, B., D., Dawbarn, M. Dequidt, P. C. Emson, J. Hunter, and G. P. Reynolds. Changes in neuropeptide content of amygdala in schizophrenia. Br. J. Pharmacol. 81: 190P, 1984.
 43. Chang, T.‐M., and W. Y. Chey. Radioimmunoassay of cholecystokinin. Dig. Dis. Sci. 28: 456–468, 1983.
 44. Chey, W. Y., S., Hitanant, J. Hendricks, and S. H. Lorber. Effects of secretin and cholecystokinin on gastric emptying and gastric secretion in man. Gastroenterology 58: 820–827, 1970.
 45. Chowdhury, J. H., J. M., Berkowitz, M. Praissman, and J. W. Fara. Effect of sulfated and non‐sulfated gastrin and octapeptide‐cholecystokinin on cat gallbladder in vitro. Experientia Basel 32: 1173–1175, 1976.
 46. Collins, S. M., S., Abdelmoumene, R. T. Jensen, and J. D. Gardner. Cholecystokinin‐induced persistent stimulation of enzyme secretion from pancreatic acini. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G459–G465, 1981.
 47. Crawley, J. N. Comparative distribution of cholecystokinin and other neuropeptides. Why is this peptide different from all other peptides? Ann. NY Acad. Sci. 448: 1–8, 1985.
 48. Crick, J., A. A., Harper, and H. S. Raper. On the preparation of secretin and pancreozymin. J. Physiol. Lond. 110: 367–376, 1949.
 49. Dahlgren, S. Cholecystokinin: pharmacology and clinical use. Acta Chir. Scand. 357: 256–260, 1966.
 50. Debas, H. T., O., Farooq, and M. I. Grossman. Inhibition of gastric emptying is a physiologic action of cholecystokinin. Gastroenterology 68: 1211–1217, 1975.
 51. Debas, H. T., and M. I. Grossman. Pure cholecystokinin: pancreatic protein and bicarbonate response. Digestion 9: 469–481, 1978.
 52. Della‐Fera, M. A., and C. A. Baille. Cholecystokinin octapeptide: continuous picomole injections into the cerebral ventricles of sheep suppress feeding. Science Wash. DC 206: 471–473, 1979.
 53. Della‐Fera, M. A., C. A., Baile, B. M. Schneider, and J. A. Grinker. Cholecystokinin antibody injected in cerebral ventricles stimulates feeding in sheep. Science Wash. DC 212: 687–689, 1981.
 54. Denbow, D. M., and R. D. Myers. Eating, drinking and temperature responses to intracerebroventricular cholecystokinin in the chick. Peptides Fayetteville 3: 739–743, 1982.
 55. Deschenes, R. J., R. S., Haun, C. L. Funckes, and J. E. Dixon. A gene encoding rat cholecystokinin: isolation, nucleotide sequence, and promotor activity. J. Biol. Chem. 260: 1280–1286, 1985.
 56. Deschenes, R. J., L., Lorenz, R. Haun, B. Roos, K. Collier, and J. E. Dixon. Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin. Proc. Natl. Acad. Sci. USA 81: 726–730, 1984.
 57. Deschenes, R. J., S. V. L., Narayana, P. Argos, and J. E. Dixon. Primary structural comparison of the preprohor‐mones for cholecystokinin and gastrin. FEBS Lett. 182: 135–138, 1985.
 58. Dimagno, E. P., V. L. W., Go, and W. H. J. Summerskill. Impaired cholecystokinin‐pancreozymin secretion, intraluminal dilution and maldigestion of fat in sprue. Gastroenterology 63: 25–32, 1972.
 59. Dinoso, V. P., JR., H. Meshkinpour, S. H. Lorber, and W. Y. Chey. Motor responses of the sigmoid colon and rectum to exogenous cholecystokinin and secretin. Gastroenterology 65: 438–444, 1973.
 60. Dockray, G. J. The action of gastrin and cholecystokinin‐related peptides on pancreatic secretion in the rat. Q. J. Exp. Physiol. Cogn. Med. Sci. 58: 163–169, 1973.
 61. Dockray, G. J. Immunochemical evidence of cholecystokinin‐like peptides in brain. Nature Lond. 264: 568–570, 1976.
 62. Dockray, G. J. Immunoreactive component resembling cholecystokinin octapeptide in intestine. Nature Lond. 270: 359–361, 1977.
 63. Dockray, G. J., R. A., Gregory, J. B. Hutchison, J. I. Harris, and M. J. Runswick. Isolation, structure, and biological activity of two cholecystokinin octapeptides from sheep brain. Nature Lond. 274: 711–713, 1978.
 64. Dockray, G. J., R. A., Gregory, H. J. Tracy, and W.‐Y. Zhou. Transport of cholecystokinin‐octapeptide‐like immunoreactivity toward the gut in afferent vagal fibers in cat and dog. J. Physiol. Lond. 314: 501–511, 1981.
 65. Dockray, G. J., and C. R. Hopkins. Caerulein secretion by dermal glands by Xenopus laevis. J. Cell. Biol. 64: 724–733, 1975.
 66. Dodd, J., and J. S. Kelly. The actions of cholecystokinin and related peptides on pyramidal neurones of the mammalian hippocampus. Brain Res. 205: 337–350, 1981.
 67. Dodd, P. R., J. A., Edwardson, and G. J. Dockray. The depolarisation‐induced release of cholecystokinin C‐terminal octapeptide (CCK‐8) from rat synaptosomes and brain slices. Regul. Pept. 1: 17–29, 1980.
 68. Dupré, J. An intestinal hormone affecting glucose disposal in man. Lancet 2: 672–673, 1964.
 69. Dupré, J., S. A., Ross, D. Watson, and J. C. Brown. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J. Clin. Endocrinol. Metab. 37: 826–828, 1973.
 70. Dyck, W. P., D., Bonnet, J. Lasater, C. Stinson, and F. F. Hall. Hormonal stimulation of intestinal disaccharidase release in the dog. Gastroenterology 66: 533–538, 1974.
 71. Dyck, W. P., F. F., Hall, and C. R. Ratliff. Hormonal control of intestinal alkaline phosphatase secretion in the dog. Gastroenterology 65: 445–450, 1973.
 72. Dyck, W. P., G. A., Martin, and C. R. Ratliff. Influence of secretin and cholecystokinin on intestinal alkaline phosphatase secretion. Gastroenterology 64: 599–602, 1973.
 73. Edwards, G. L., and R. C. Ritter. Ablation of area postrema causes exaggerated consumption of preferred foods in the rat. Brain Res. 216: 265–276, 1981.
 74. Emson, P. C., C. M., Lee, and J. F. Rehfeld. Cholecystokinin octapeptide, vesicular localization and calcium dependent release from rat brain in vitro. Life Sci. 26: 2157–2163, 1980.
 75. Emson, P. C., J. F., Rehfeld, H. Langevin, and M. Rossor. Reduction in cholecystokinin‐like immunoreactivity in the basal ganglia in Huntington's disease. Brain Res. 198: 497–500, 1980.
 76. Eng, J., B.‐H., Du, Y.‐C. E. Pan, M. Chang, J. D. Hulmes, and R. S. Yalow. Purification and sequencing of a rat intestinal 22 amino acid C‐terminal CCK fragment. Peptides Fayetteville 5: 1203–1206, 1984.
 77. Eng, J., Y., Shiina, Y. E. Pan, R. Blacher, M. Chang, S. Stein, and R. S. Yalow. Pig brain contains cholecystokinin octapeptide and several cholecystokinin desoctapeptides. Proc. Natl. Acad. Sci. USA 80: 6381–6385, 1983.
 78. Eysselein, V. E., J. R. Reeve, JR., J. E. Shively, D. Hawke, and J. H. Walsh. Partial structure of a large canine cholecystokinin (CCK58): amino acid sequence. Peptides Fayetteville 3: 687–691, 1982.
 79. Eysselein, V. E., J. R. Reeve, JR., J. E. Shively, C. Miller, and J. H. Walsh. Isolation of a large cholecystokinin precursor from canine brain. Proc. Natl. Acad. Sci. USA 81: 6565–6568, 1984.
 80. Fahrenkrug, J., and O. B. Schaffalitzky Demuckadell. Plasma secretin concentrations in man: effect of intraduodenal glucose, fat, amino acids, ethanol, HCl or ingestion of a meal. Eur. J. Clin. Invest. 7: 201–203, 1977.
 81. Fallon, J. H., and K. B. Seroogy. The distribution and some connections of cholecystokinin neurons in the rat brain. Ann. NY Acad. Sci. 448: 121–132, 1985.
 82. Ferrier, I. N., T. J., Crow, S. M. Farmery, G. W. Roberts, F. Owen, T. E. Adrian, and S. R. Bloom. Reduced cholecystokinin levels in the limbic lobe in schizophrenia. Ann. NY Acad. Sci. 448: 495–506, 1985.
 83. Fisher, R. S., W., Lipshuls, and S. Cohen. The hormonal regulation of pyloric sphincter function. J. Clin. Invest. 52: 1289–1296, 1973.
 84. Fölsch, U. R., H., Wilms, P. Cantor, A. Schafmayer, H. D. Becker, and W. Creutzfeldt. The role of cholecystokinin as regulator of the feedback control of pancreatic enzyme secretion in conscious rats. Gastroenterology 92: 449–458, 1987.
 85. Fölsch, U. R., K., Winckler, and K. G. Wormsley. Influence of repeated administration of cholecystokinin and secretin on the pancreas of the rat. Scand. J. Gastroenterol. 13: 663–671, 1978.
 86. Frame, C. M., M. B., Davidson, and R. A. C. Sturdevant. Effect of the octapeptide of cholecystokinin on insulin and glucagon secretion in the dog. Endocrinology 97: 549–553, 1975.
 87. Frenkel, L. D., N. B., Javitt, and C. K. Mcsherry. Cholecystadenoma and the use of cholecystokinin. J. Pediatr. 79: 468–470, 1971.
 88. Fritz, M. E., and F. P. Brooks. Control of bile flow in the cholecystectomized dog. Am. J. Physiol. 204: 824–828, 1963.
 89. Fujita, T., Y., Matsunari, Y. Koga, K. Sato, and M. Hayashi. Trophic effects of endogenous and exogenous pancreozymin upon the exocrine and endocrine pancreas. Adv. Exp. Med. Biol. 106: 147–150, 1978.
 90. Fuxe, K., L. F., Agnati, F. Benfenati, M. Cimmino, S. Algeri, T. Hökfelt, and V. Mutt. Modulation by cholecystokinin of [3H]spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. Acta Physiol. Scand. 113: 567–569, 1981.
 91. Gardiner, B. N., C., Conaway, and D. M. Small. Effects of secretin and cholecystokinin on relative composition of hepatic bile in rhesus monkeys. Surg. Forum 26: 437–439, 1975.
 92. Gardner, J. D., and R. T. Jensen. Cholecystokinin receptor antagonists. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G471–G476, 1984.
 93. Gerner, T. Pressure responses to OP‐CCK compared to CCK‐PZ in the antrum and fundus of isolated guinea‐pig stomachs. Scand. J. Gastroenterol. 14: 73–77, 1979.
 94. Gerner, T., J. F. W., Haffner, and J. Norstein. The effects of mepyramine and cimetidine on the motor responses to histamine, cholecystokinin, and gastrin in the fundus and antrum of isolated guinea pig stomachs. Scand. J. Gastroenterol. 145: 65–72, 1979.
 95. Gibbs, J., J. D., Falasco, and P. R. Mchugh. Cholecystokinin‐decreased food intake in rhesus monkeys. Am. J. Physiol. 230: 15–18, 1976.
 96. Gibbs, J., D. J., Fauser, E. A. Rowe, B. J. Rolls, and S. P. Maddison. Bombesin suppresses feeding in rats. Nature Lond. 282: 208–210, 1979.
 97. Gibbs, J., R. C., Young, and G. P. Smith. Cholecystokinin decreases food intake in rats. J. Comp. Physiol. Psychol. 84: 488–495, 1973.
 98. Gibbs, J., R. C., Young, and G. P. Smith. Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature Lond. 245: 323–325, 1973.
 99. Goldstein, F., R., Grunt, and M. Margulies. Cholecystokinin cholecystography in the differential diagnosis of acalculous gallbladder disease. Am. J. Dig. Dis. 19: 835–849, 1974.
 100. Goltermann, N., J. F., Rehfeld, and H. R. Petersen. In vivo biosynthesis of cholecystokinin in rat cerebral cortex. J. Biol. Chem. 255: 6181–6185, 1980.
 101. Götze, H., J., Götze, and J. W. Adelson. Studies on intestinal enzyme secretion: the action of cholecystokinin‐pancreozymin, pentagastrin, and bile. Res. Exp. Med. 173: 17–25, 1978.
 102. Gregory, H., P. M., Hardy, D. S. Jones, G. W. Kenner, and R. C. Sheppard. The antral hormone gastrin. Nature Lond. 204: 931–933, 1964.
 103. Gregory, R. A., and H. J. Tracy. The constitution and properties of two gastrins extracted from hog antral mucosa. Gut 5: 103–117, 1964.
 104. Grossman, M. I. Proposal: use the term cholecystokinin in place of cholecystokinin‐pancreozymin. Gastroenterology 58: 128, 1970.
 105. Gubler, U., A. O., Chua, B. J. Hoffman, K. J. Collier, and J. Eng. Cloned cDNA to cholecystokinin mRNA predicts an identical preprocholecystokinin in pig brain and gut. Proc. Natl. Acad. Sci. USA 81: 4307–4310, 1984.
 106. Günther, G. R., and J. D. Jamieson. Increased intracellular cyclic GMP does not correlate with protein discharge from pancreatic acinar cells. Nature Lond. 280: 318–320, 1979.
 107. Gutierrez, J. G., W. Y., Chey, and V. P. Dinoso. Actions of cholecystokinin and secretin on the motor activity of the small intestine in man. Gastroenterology 67: 35–41, 1974.
 108. Habener, J. F., J. T., Potts, and A. Rich. Pre‐proparathyroid hormone: evidence for an early biosynthetic precursor of pro‐parathyroid hormone: J. Biol. Chem. 251: 3893–3899, 1976.
 109. Harper, A. A., and H. S. Raper. Pancreozymin, a stimulant of the secretion of pancreatic enzymes in extracts of the small intestine. J. Physiol. Lond. 102: 115–125, 1943.
 110. Hayes, S. E., M. C., Beinfeld, R. T. Jensen, F. K. Goodwin, and S. M. Paul. Demonstration of a putative receptor site for cholecystokinin in rat brain. Neuropeptides 1: 53–62, 1980.
 111. Heatley, N. G. The assay of pancreozymin, and of secretin and pancreozymin simultaneously in the rat. J. Endocrinol. 42: 549–557, 1968.
 112. Hedner, P., H., Persson, and G. Rorsman. Effect of cholecystokinin on small intestine. Acta Physiol. Scand. 70: 250–254, 1967.
 113. Hedner, P., G., Persson, and D. Ursing. Insulin release in fasting man induced by impure but not by pure preparations of cholecystokinin. Acta Med. Scand. 197: 109–112, 1975.
 114. Hedner, P., and G. Rorsman. Structures essential for the effect of cholecystokinin on the guinea pig small intestine in vitro. Acta Physiol. Scand. 74: 58–68, 1968.
 115. Hendry, S. H. C., E. G., Jones, and M. C. Beinfeld. Cholecystokinin‐immunoreactive neurons in rat and monkey cerebral cortex make symmetric synapses and have intimate associations with blood vessels. Proc. Natl. Acad. Sci. USA 80: 2400–2404, 1983.
 116. Henriksen, F. W., and H. Worning. The interaction of secretin and pancreozymin on the exocrine pancreatic secretion in dogs. Acta Physiol. Scand. 70: 241–249, 1967.
 117. Henriksen, F. W., and H. Worning. The mutual influence of gastrin and secretin on the exocrine pancreatic secretion in dogs. Acta Physiol. Scand. 76: 67–72, 1969.
 118. Hermansen, K. Effects of cholecystokinin (CCK)‐4, non‐sulfated CCK‐8, and sulfated CCK‐8 on pancreatic somatostatin, insulin, and glucagon secretion in the dog: studies in vitro. Endocrinology 114: 1770–1778, 1984.
 119. Himenos, S., S., Tarui, S. Kanayama, T. Kuroshima, Y. Shinomura, C. Hayashi, K. Tateishi, K. Imagawa, E. Hashimura, and T. Hamaoka. Plasma cholecystokinin responses after ingestion of liquid meal and intraduodenal infusion of fat, amino acids, or hydrochloric acid in man: analysis with region specific radioimmunoassay. Am. J. Gastroenterol. 78: 703–707, 1983.
 120. Hökfelt, T., J. F., Rehfeld, L. Skirboll, B. Ivemark, M. Goldstein, and K. Markey. Evidence for co‐existence of dopamine and CCK in mesolimbic neurons. Nature Lond. 285: 476–478, 1980.
 121. Hökfelt, T., L., Skirboll, J. F. Rehfeld, M. Goldstein, K. Markey, and O. Dann. A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin‐like peptide: evidence from immunohistochemistry combined with retrograde tracing. Neuroscience 5: 2093–2124, 1980.
 122. Hokin, L. E., and M. R. Hokin. The actions of pancreozymin in pancreas slices and the role of phospholipids in enzyme secretion. J. Physiol. Lond. 132: 442–453, 1956.
 123. Hommer, D. W., D., Pickar, A. Roy, P. Ninan, J. Boronow, and S. M. Paul. The effects of ceruletide in schizophrenia. Arch. Gen. Psychiatry 41: 617–619, 1984.
 124. Horness, P. J., C., Kühl, J. J. Holst, K. B. Lauritsen, J. F. Rehfeld, and T. W. Schwartz. Simultaneous recording of the gastroentero‐pancreatic hormone response to food in man. Metabolism 29: 777–779, 1980.
 125. Houpt, T. R., S. M., Anika, and N. C. Wolff. Satiety effects of cholecystokinin and caerulein in rabbits. Am. J. Physiol. 235 (Regulatory Integrative Comp. Physiol. 4): R23–R28, 1978.
 126. Huttner, W. B. Tyrosine‐O‐sulphation of secretory proteins. Nature Lond. 299: 273–276, 1982.
 127. Ihse, I., B., Arnesjö, and I. Lundquist. Effects on exocrine and endocrine rat pancreas of long‐term administration of CCK‐PZ (cholecystokinin‐pancreozymin) or synthetic octapeptide CCK‐PZ. Scand. J. Gastroenterol. 11: 529–535, 1976.
 128. Innis, R. B., and S. H. Snyder. Distinct cholecystokinin receptors in brain and pancreas. Proc. Natl. Acad. Sci. USA 77: 6917–6921, 1980.
 129. Isenberg, J. I., and A. Csendes. Effect of octapeptide of cholecystokinin on canine pyloric pressure. Am. J. Physiol. 222: 428–431, 1972.
 130. Ivy, A. C., G. E., Drewyer, and B. H. Orndorff. Effect of cholecystokinin on human gallbladder. Endocrinology 14: 343–348, 1930.
 131. Ivy, A. C., and H. M. Janecek. Assay of Jorpes‐Mutt secretin and cholecystokinin. Acta Physiol. Scand. 45: 220–230, 1959.
 132. Ivy, A. C., and E. Oldberg. A hormone mechanism for gallbladder contraction and evacuation. Am. J. Physiol. 86: 599–613, 1928.
 133. Izzo, R. S., W. R., Brugge, and M. Praissman. Immunoreactive cholecystokinin in human and rat plasma: correlation of pancreatic secretion in response to CCK. Regul. Pept. 9: 21–34, 1984.
 134. Jansen, J.B.M.J., and C.B.H.W. Lamers. Molecular forms of cholecystokinin in human plasma during infusion of bombesin. Life Sci. 33: 2197–2205, 1983.
 135. Jansen, J.B.M.J., and C.B.H.W. Lamers. Radioimmunoassay of cholecystokinin in human tissue and plasma. Clin. Chim. Acta 131: 305–316, 1983.
 136. Jensen, R. T., G. F., Lemp, and J. D. Gardner. Interaction of cholecystokinin with specific membrane receptors on pancreatic acinar cells. Proc. Natl. Acad. Sci. USA 77: 2079–2083, 1980.
 137. Jensen, S. L., J. F., Rehfeld, J. J. Holst, J. Fahrenkrug, O. V. Nielsen, and O. B. Schaffalitzky Demuckadell. Secretory effects of gastrins on isolated perfused porcine pancreas. Am. J. Physiol. 238 (Endocrinol. Metab. 1): E186–E192, 1980.
 138. Jensen, S. L., J. F., Rehfeld, J. J. Holst, O. V. Nielsen, J. Fahrenkrug, and O. B. Schaffalitzky Demuckadell. Secretory effects of cholecystokinins on the isolated perfused porcine pancreas. Acta Physiol. Scand. 111: 225–231, 1981.
 139. Johnson, A. G., C. E., Marshall, and I. A. I. Wilson. Effects of some drugs and peptide hormones on the responsiveness of the rabbit isolated gallbladder to cholecystokinin. J. Physiol. Lond. 332: 415–425, 1982.
 140. Johnson, L. R., and P. D. Guthrie. Effect of cholecystokinin and 16,16‐dimethyl prostaglandin E2 on RNA and DNA of gastric and duodenal mucosa. Gastroenterology 70: 59–65, 1976.
 141. Johnson, L. R., G. F., Stening, and M. I. Grossman. Effect of sulfation on the gastrointestinal actions of caerulein. Gastroenterology 58: 208–216, 1970.
 142. Jones, R. S., and M. I. Grossman. Choleretic effects of cholecystokinin, gastrin II, and caerulein in the dog. Am. J. Physiol. 219: 1014–1018, 1970.
 143. Jorpes, E., and V. Mutt. Cholecystokinin and pancreozymin, one single hormone? Acta Physiol. Scand. 66: 196–202, 1966.
 144. Jorpes, J. E., AND V. Mutt (editors). Handbook of Experimental Pharmacology. Secretin, Cholecystokinin, Pancreozymin, and Gastrin New York: Springer‐Verlag, 1973, vol. 34.
 145. Jung, F. T., and H. Greengard. Response of the isolated gallbladder to cholecystokinin. Am. J. Physiol. 103: 275–278, 1933.
 146. Kaneto, A., Y., Tasaka, K. Kosaka, and K. Nakao. Stimulation of insulin secretion by the C‐terminal tetrapeptide amide of gastrin. Endocrinology 84: 1098–1106, 1969.
 147. Kerstens, P. J. S. M., C. B. H. W., Lamers, J. B. M. J. Jansen, A. J. L. Dejong, M. Hessels, and J. C. M. Hafkenscheid. Physiological plasma concentrations of cholecystokinin stimulate pancreatic enzyme secretion and gallbladder contraction in man. Life Sci. 36: 565–569, 1985.
 148. Kissileff, H. R., F. X., Pi‐Sunyer, J. Thornton, and G. P. Smith. C‐terminal octapeptide of cholecystokinin decreases food intake in man. Am. J. Clin. Nutr. 34: 154–160, 1981.
 149. Kothary, P. C., A. I., Vinik, C. Owyang, and R. G. Fiddian‐Green. Immunochemical studies of the molecular heterogeneity of cholecystokinin in duodenal perfusates and plasma in humans. J. Biol. Chem. 252: 2856–2863, 1983.
 150. Kotler, D. P., and G. M. Levine. Reversible gastric and pancreatic hyposecretion after long‐term total parenteral nutrition. N. Engl. J. Med. 300: 241–242, 1978.
 151. Kovács, G. L., G., Szabó, B. Penke, and G. Telegdy. Effects of cholecystokinin octapeptide on striatal dopamine metabolism and on apomorphine induced stereotyped cage‐climbing in mice. Eur. J. Pharmacol. 69: 313–319, 1981.
 152. Larsson, L.‐I., N., Goltermann, L. Demagistris, J. F. Rehfeld, and T. W. Schwartz. Somatostatin cell processes as pathway for paracrine secretion. Science Wash. DC 205: 1391–1394, 1979.
 153. Larsson, L.‐I., and J. F. Rehfeld. Evidence for a common evolutionary origin of gastrin and cholecystokinin. Nature Lond. 269: 335–338, 1977.
 154. Larsson, L.‐I., and J. F. Rehfeld. Distribution of gastrin and CCK cells in the rat gastrointestinal tract. Histochemistry 58: 23–31, 1978.
 155. Larsson, L.‐I., and J. F. Rehfeld. Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res. 165: 201–218, 1979.
 156. Larsson, L.‐I., and J. F. Rehfeld. Peptidergic and adrenergic innervation of pancreatic ganglia. Scand. J. Gastroenterol. 14: 433–437, 1979.
 157. Lee, P. C. Effect of CCK‐octapeptide and secretin on amylase secretion in isolated rat pancreatic acinar cells. Digestion 19: 6–14, 1979.
 158. Lenti, G., and G. Emanuelli. Klinische Bedeutung verschiedener Tests für die Diagnose chronischer Pankreaser‐krankungen. Muench. Med. Wochenschr. 118: 405–408, 1963.
 159. Leroy, J., J. A., Morisset, and P. D. Webster. Dose‐related response of pancreatic synthesis and secretion to cholecystokinin‐pancreozymin. J. Lab. Clin. Med. 78: 149–157, 1971.
 160. Liddle, R. A., I. D., Goldfine, M. S. Rosen, R. A. Taplitz, and J. A. Williams. Cholecystokinin bioactivity in human plasma: molecular forms, responses to feeding, and relationship to gallbladder contraction. J. Clin. Invest. 75: 1144–1152, 1985.
 161. Liddle, R. A., I. D., Goldfine, and J. A. Williams. Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor, and alcohol. Gastroenterology 87: 542–549, 1984.
 162. Lorenz, D. N., and S. A. Goldman. Vagal mediation of the cholecystokinin satiety effect in rats. Physiol. Behav. 29: 599–604, 1982.
 163. Lotstra, F., P., Verbanck, J. Mendlewicz, and J.‐J. Vanderhaeghen. No evidence of antipsychotic effect of caerulein in schizophrenic patients free of neuroleptics: a double‐blind cross‐over study. Biol. Psychiatry 19: 877–882, 1984.
 164. Lund, T., A. H. M. G., Kessel, R. S. Haun, and J. E. Dixon. The genes for human gastrin and cholecystokinin are located on different chromosomes. Hum. Genet. 73: 77–80, 1986.
 165. Lundberg, J. M., T., Hökfelt, G. Nilsson, L. Terenius, J. F. Rehfeld, R. Elde, and S. Said. Peptide neurons in the vagus, splanchnic and sciatic nerves. Acta Physiol. Scand. 104: 499–501, 1978.
 166. Mainz, D. L., O., Black, and P. D. Webster. Hormonal control of pancreatic growth. J. Clin. Invest. 52: 2300–2304, 1973.
 167. Marley, P. D., S. L., Lightman, M. L. Forsling, K. Todd, M. Goedert, J. F. Rehfeld, and P. C. Emson. Localization and action of cholecystokinin peptides in the rat pituitary neurointermediate lobe. Endocrinology 114: 1902–1911, 1984.
 168. Marshall, C. E., E. H., Egberts, and A. G. Johnson. An improved method for estimating cholecystokinin in human serum. J. Endocrinol. 79: 17–27, 1978.
 169. Maruyama, Y., and O. H. Petersen. Single channel currents in isolated patches of plasma membranes from basal surface of pancreatic acini. Nature Lond. 299: 159–161, 1982.
 170. Maruyama, Y., and O. H. Petersen. Cholecystokinin activation of single‐channel currents is mediated by internal messenger in pancreatic acinar cells. Nature Lond. 300: 61–63, 1982.
 171. Maton, P. N., A. C., Selden, and V. S. Chadwick. Large and small forms of cholecystokinin in human plasma: measurement using high pressure liquid chromatography and radioimmunoassay. Regul. Pept. 4: 251–260, 1982.
 172. Maton, P. N., A. C., Selden, and V. S. Chadwick. Differential distribution of molecular forms of cholecystokinin in human and porcine small intestinal mucosa. Regul. Pept. 8: 9–19, 1984.
 173. Mcintyre, N., C. D., Holdsworth, and D. S. Turner. New interpretation of oral glucose tolerance. Lancet 2: 20–21, 1964.
 174. Meltzer, H. Y., and S. M. Stahl. The dopamine hypothesis of schizophrenia: a review. Schizophr. Bull. 2: 19–76, 1976.
 175. Meyer, D. K., and Z. Protopapas. Studies on cholecystokinin‐containing neuronal pathways in rat cerebral cortex and striatum. Ann. NY Acad. Sci. 448: 133–143, 1985.
 176. Meyer, J. H., and M. I. Grossman. Comparison of D‐ and L‐phenylalanine as pancreatic stimulants. Am. J. Physiol. 222: 1058–1063, 1972.
 177. Meyer, J. H., and R. S. Jones. Canine pancreatic responses to intestinally perfused fat and products of fat digestion. Am. J. Physiol. 226: 1178–1187, 1974.
 178. Miceli, M. O., and C. W. Malsbury. Feeding and drinking responses in the golden hamster following treatment with cholecystokinin and angiotensin II. Peptides Fayetteville 4: 103–106, 1983.
 179. Miller, L. J., I., Jardine, E. Weissman, V. L. W. Go, and D. Speicher. Characterization of cholecystokinin from the human brain. J. Neurochem. 43: 835–840, 1984.
 180. Morgan, K. G., P. F., Schmalz, V. L. W. Go, and J. H. Szurszewski. Electrical and mechanical effects of molecular variants of CCK on antral smooth muscle. Am. J. Physiol. 235 (Endocrinol. Metab. Gastrointest. Physiol. 4): E324–E329, 1978.
 181. Morley, J. E., A. S., Levine, T. J. Bartness, S. E. Nizielski, M. S. Shaw, and J. J. Hughes. Species differences in the response to cholecystokinin. Ann. NY Acad. Sci. 448: 413–416, 1985.
 182. Moroji, T., N., Watanabe, N. Aoki, and S. Itoh. Antipsychotic effects of caerulein on chronic schizophrenia. Arch. Gen. Psychiatry 39: 485–486, 1982.
 183. Moss, S., R. W., Lobley, and R. Holmes. Enterokinase in human duodenal juice following secretin and pancreozymin. Arch. Fr. Mal. Appar. Dig. 61: 214c, 1972.
 184. Müller, J. E., E., Straus, and R. S. Yalow. Cholecystokinin and its COOH‐terminal octapeptide in the pig brain. Proc. Natl. Acad. Sci. USA 74: 3035–3037, 1977.
 185. Mutt, V. On the preparation of secretin. Ark. Kemi 15: 75–95, 1959.
 186. Mutt, V. Behaviour of secretin, cholecystokinin, and pancreozymin to oxidation with hydrogen peroxide. Acta Chem. Scand. 18: 2185–2186, 1964.
 187. Mutt, V. Further investigations on intestinal hormonal polypeptides. Clin. Endocrinol. Suppl. 6: 175S–183S, 1976.
 188. Mutt, V. Cholecystokinin: isolation, structure, and functions. In: Gastrointestinal Hormones, edited by G. B. J. Glass. New York: Raven, 1980, p. 169–221.
 189. Mutt, V., and J. E. Jorpes. Structure of porcine cholecystokinin‐pancreozymin. Eur. J. Biochem. 6: 156–162, 1968.
 190. Mutt, V., and E. Jorpes. Hormonal polypeptides of the upper intestine. Biochem. J. 125: 57P‐58P, 1971.
 191. Nakajima, S., Y., Toda, T. Hayakawa, T. Suzuki, and A. Noda. Secretory characteristics of pancreatic γ‐glutamyl transpeptide. Pfluegers Arch. 345: 271–279, 1973.
 192. Nathan, M. H., A., Newman, D. J. Murray, and R. Camponovo. Cholecystokinin cholecystography. A four year evaluation. Am. J. Roentgenol. Radium Ther. Nucl. Med. 110: 240–251, 1970.
 193. Nijima, A. Glucose‐sensitive afferent nerve fibers in the liver and their role in food intake and blood‐glucose regulation. In: Vagal Nerve Function: Behavioral and Methodological Considerations, edited by J. G. Kral, T. L. Powley, and C. M. C. Brooks. New York: Elsevier, 1983, p. 207–220.
 194. Nora, P. F., W., Mccarthy, and N. Sanez. Proceedings: cholecystokinin cholecystography in acalculous gallbladder disease. Arch. Surg. 108: 507–511, 1974.
 195. Ohgawara, H., Y., Mizuno, Y. Tasaka, and K. Kosaka. Effect of the C‐terminal tetrapeptide amide of gastrin in man. J. Clin. Endocrinol. Metab. 29: 1261–1263, 1969.
 196. Okada, S. On the secretion of bile. J. Physiol. Lond. 49: 457–482, 1914.
 197. Oldendorf, W. H. Blood‐brain barrier permeability to peptides: pitfalls in measurement. Peptides Fayetteville 2: 109–111, 1981.
 198. Ondetti, M. A., B., Rubin, S. L. Engel, I. Pluscec, and J. T. Sheehan. Cholecystokinin‐pancreozymin: recent developments. Am. J. Dig. Dis. 15: 149–156, 1970.
 199. Otsuki, M., C., Sakamoto, H. Yuu, M. Maeda, S. Morita, A. Ohki, N. Kobayashi, K. Terashi, K. Okano, and S. Baba. Discrepancies between the doses of cholecystokinin or caerulein‐stimulating exocrine and endocrine responses in perfused isolated rat pancreas. J. Clin. Invest. 63: 478–484, 1979.
 200. Paintal, A. S. Vagal sensory receptors and their reflex effects. Physiol. Rev. 53: 159–227, 1973.
 201. Palade, G. E. Intracellular aspects of the process of protein synthesis. Science Wash. DC 1889: 347–350, 1975.
 202. Pap, A., Z., Berger, and V. Varró. Trophic effect of cholecystokinin‐octapeptide in man—a new way in the treatment of chronic pancreatitis? Digestion 21: 163–168, 1981.
 203. Parker, J. C., and T. C. Beneventano. Acceleration of small bowel contrast by cholecystokinin. Gastroenterology 58: 679–684, 1976.
 204. Parrott, R. F., and B. A. Baldwin. Operant feeding and drinking in pigs following intracerebroventricular injection of synthetic cholecystokinin octapeptide. Physiol. Behav. 26: 419–422, 1981.
 205. Pelletier, M. J., J. A. P., Chayviall, and Y. Minaire. Uneven and transient secretin release after a liquid test meal. Gastroenterology 75: 1124–1132, 1978.
 206. Persson, C. G. A., and M. Ekman. Effect of morphine, cholecystokinin, and sympathomimetics on the sphincter of Oddi and intramural pressure in cat duodenum. Scand. J. Gastroenterol. 7: 345–351, 1972.
 207. Peters, A., M., Miller, and L. M. Kimerer. Cholecystokinin‐like immunoreactive neurons in rat cerebral cortex. Neuroscience 8: 431–448, 1983.
 208. Petersen, H., T., Solomon, and M. I. Grossman. Effect of chronic pentagastrin, cholecystokinin, and secretin on pancreas of rats. Am. J. Physiol. 234 (Endocrinol. Metab. Gastrointest. Physiol. 3): E286–E293, 1978.
 209. Petersen, H., T., Solomon, and M. I. Grossman. Pancreatic secretion in rats after chronic treatment with secretin plus caerulein. Gastroenterology 76: 790–794, 1979.
 210. Pinget, M., E., Straus, and R. S. Yalow. Release of cholecystokinin peptides from a synaptosome‐enriched fraction of rat cerebral cortex. Life Sci. 25: 339–342, 1979.
 211. Polak, J. M., A. G. E., Pearse, S. R. Bloom, A. M. J. Buchanan, P. L. Rayford, and J. C. Thompson. Identification of cholecystokinin‐secretin cells. Lancet 2: 1016–1017, 1975.
 212. Reggio, H., H., Cailla‐Deckmyn, and G. Marchis‐Mouren. Effect of pancreozymin on rat pancreatic enzyme biosynthesis. J. Cell. Biol. 50: 333–343, 1971.
 213. Rehfeld, J. F. Effect of gastrin and its C‐terminal tetrapeptide amide on insulin secretion in man. Acta Endocrinol. 66: 169–176, 1971.
 214. Rehfeld, J. F. Immunochemical studies on cholecystokinin. I. Development of sequence‐specific radioimmunoassays for porcine triacontatriapeptide cholecystokinin. J. Biol. Chem. 253: 4016–4021, 1978.
 215. Rehfeld, J. F. Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J. Biol. Chem. 253: 4022–4030, 1978.
 216. Rehfeld, J. F. Cholecystokinin. Clin. Gastroenterol. 9: 593–607, 1980.
 217. Rehfeld, J. F. The heterogeneity of gastrointestinal hormones. In: Gastrointestinal Hormones, edited by G. B. J. Glass. New York: Raven, 1980, p. 433–449.
 218. Rehfeld, J. F. Historical background. In: Gut Hormones (2nd ed.), edited by S. R. Bloom and J. M. Polak. Edinburgh: Churchill Livingstone, 1981, p. 10–16.
 219. Rehfeld, J. F. How to measure cholecystokinin in plasma. Gastroenterology 87: 434–438, 1984.
 220. Rehfeld, J. F. Neuronal cholecystokinin: one or multiple transmitters? J. Neurochem. 44: 1–10, 1985.
 221. Rehfeld, J. F. Accumulation of nonamidated preprogastrin and preprocholecystokinin products in the porcine pituitary corticotrophs: evidence of post‐translational control of cell differentiation. J. Biol. Chem. 261: 5841–5847, 1986.
 222. Rehfeld, J. F. Radioimmunoassay problems for gut hormones in the eighties. In: Advances in Metabolic Disorders. The Gastrointestinal Hormones, edited by V. Mutt. New York: Academic, 1988, p. 45–67.
 223. Rehfeld, J. F., and H. F. Hansen. Characterization of preprocholecystokinin products in the porcine cerebral cortex: evidence of different neuronal processing pathways. J. Biol. Chem. 261: 5832–5840, 1986.
 224. Rehfeld, J. F., H. F., Hansen, L.‐I. Larsson, K. Stengaard‐Pedersen, and N. A. Thorn. Gastrin and cholecystokinin in pituitary neurons. Proc. Natl. Acad. Sci. USA 81: 1902–1905, 1984.
 225. Rehfeld, J. F., J. J., Holst, and S. L. Jensen. The molecular nature of vascularly released cholecystokinin from the isolated perfused porcine duodenum. Regul. Pept. 3: 15–28, 1982.
 226. Rehfeld, J. F., and S. L. Jensen. The effect of gastrin and cholecystokinin on the endocrine pancreas. Front. Horm. Res. 7: 107–118, 1980.
 227. Rehfeld, J. F., L.‐I., Larsson, N. R. Goltermann, T. W. Schwartz, J. J. Holst, S. L. Jensen, and J. S. Morley. Neural regulation of pancreatic hormone secretion by the C‐terminal tetrapeptide of CCK. Nature Lond. 284: 33–38, 1980.
 228. Rehfeld, J. F., and J. Lundberg. Cholecystokinin in feline vagal and sciatic nerves: concentration, molecular form, and transport velocity. Brain Res. 275: 341–347, 1983.
 229. Rehfeld, J. F., and K. Uvnäs‐Wallensten. Gastrins in cat and dog. Evidence for a biosynthetic relationship between the large molecular forms of gastrin and heptadecapeptide gastrin. J. Physiol. Lond. 283: 379–396, 1978.
 230. Reid, D. R. K., I. M., Rogers, and J. F. Calder. The cholecystokinin test: an assessment. Br. J. Surg. 62: 317–319, 1975.
 231. Rosenfeld, M. G., I. B., Abrass, and B. Chang. Hormonal stimulation of α‐amylase synthesis in porcine pancreatic minces. Endocrinology 99: 611–618, 1976.
 232. Rosenqvist, H. Cholecystokinin as an adjuvant in biliary surgery. Opusc. Med. 9: 108–112, 1964.
 233. Rosenzweig, S. A., L. J., Miller, and J. D. Jamieson. Identification and localization of cholecystokinin binding sites on rat pancreatic plasma membranes and acinar cells: a biochemical and autoradiographic study. J. Cell. Biol. 96: 1288–1297, 1983.
 234. Rothman, S. S. Protein transport by the pancreas. The current paradigm is analyzed and an alternative hypothesis is proposed. Science Wash. DC 190: 747–753, 1975.
 235. Rothman, S. S. The digestive enzymes of the pancreas: a mixture of inconstant proportions. Annu. Rev. Physiol. 39: 373–389, 1977.
 236. Rothman, S. S., and H. Wells. Enhancement of pancreatic enzyme synthesis by pancreozymin. Am. J. Physiol. 213: 215–218, 1967.
 237. Saito, A., H., Sankaran, I. D. Goldfine, and J. A. Williams. Cholecystokinin receptors in the brain: characterization and distribution. Science Wash. DC 208: 1155–1156, 1980.
 238. Sakamoto, C., I. D., Goldfine, and J. A. Williams. Characterization of cholecystokinin subunits on pancreatic plasma membranes. J. Biol. Chem. 258: 12707–12711, 1983.
 239. Sakamato, C., I. D., Goldfine, and J. A. Williams. Pancreatic CCK receptors: characterization of covalently labeled subunits. Biochem. Biophys. Res. Commun. 118: 623–628, 1984.
 240. Sandblom, P. Function of human gallbladder studied in connection with blood transfusions and after stomach operations. Acta Radiol. 14: 249–258, 1933.
 241. Sankaran, H., I. D., Goldfine, A. Bailey, V. Licko, and J. A. Williams. Relationship of cholecystokinin receptor binding to regulation of biological functions in pancreatic acini. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G250–G257, 1982.
 242. Sankaran, H., I. D., Goldfine, C. W. Deveney, K.‐Y. Wong, and J. A. Williams. Binding of cholecystokinin to high affinity receptors on isolated rat pancreatic acini. J. Biol. Chem. 255: 1849–1853, 1980.
 243. Sarles, J. C., J. M., Bidart, M. A. Devaux, C. Echinard, and A. Castagnini. Action of cholecystokinin and caerulein on the rabbit sphincter of Oddi. Digestion 14: 415–428, 1976.
 244. Schaffalitzky De Muckadell, C. B., and J. Fahrenkrug. Secretion pattern of secretin in man: regulation by gastric acid. Gut 19: 812–818, 1978.
 245. Schafmayer, A., M., Werner, and H.‐D. Becker. Radioim‐munological determination of cholecystokinin in tissue extracts. Digestion 24: 146–154, 1982.
 246. Schiller, P. W., A., Lipton, D. F. Horrobin, and M. Bodanszky. Unsulfated C‐terminal 7‐peptide of cholecystokinin: a new ligand of the opiate receptor. Biochem. Biophys. Res. Commun. 85: 1332–1338, 1978.
 247. Schultzberg, M., T., Hökfelt, G. Nilsson, L. Terenius, J. F. Rehfeld, M. Brown, R. Elde, M. Goldstein, and S. Said. Distribution of peptide‐ and catecholamine‐containing neurons in the gastrointestinal tract of rat and guinea‐pig: immunohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin, and dopamine β‐hydroxylase. Neuroscience 5: 689–744, 1980.
 248. Schwartz, T. W., R. L., Gingerich, and H. S. Tager. Biosynthesis of pancreatic polypeptide. Identification of a precursor and a co‐synthesized product. J. Biol. Chem. 255: 11494–11498, 1980.
 249. Shaw, R. A., and R. S. Jones. The choleretic action of cholecystokinin and cholecystokinin octapeptide in dogs. Surgery St. Louis 84: 622–625, 1978.
 250. Skirboll, L. R., A. A., Grace, D. W. Hommer, J. F. Rehfeld, M. Goldstein, T. Hökfelt, and B. S. Bunney. Peptide‐monoamine coexistence: studies of the actions of cholecystokinin‐like peptide on the electrical activity of midbrain dopamine neurons. Neuroscience 6: 2111–2124, 1981.
 251. Smith, G. P., and J. Gibbs. The satiety effect of cholecystokinin. Recent progress and current problems. Ann. NY Acad. Sci. 448: 417–423, 1985.
 252. Smith, G. P., C., Jerome, B. J. Cushin, R. Eterno, and K. J. Simansky. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science Wash. DC 213: 1036–1037, 1981.
 253. Smith, G. T., T. H., Moran, J. T. Coyle, M. J. Kuhar, T. L. O'Donahue, and P. R. Mchugh. Anatomic localization of cholecystokin receptors to the pyloric sphincter. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 15): R127–R130, 1984.
 254. Solcia, E., A. G. E., Pearse, D. Grube, S. Kobayashi, G. Bussolati, W. Creutzfeldt, and W. Gepts. Revised Wiesbaden classification of gut endocrine cells. Rend. Gastroenterol. 5: 13–16, 1973.
 255. Solomon, T. E., T., Yamada, J. Elashoff, J. Wood, and C. Beglinger. Bioactivity of cholecystokinin analogues: CCK‐8 is not more potent than CCK‐33. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G105–G111, 1984.
 256. Stacher, G., H. H., Steinringer, G. Schmierer, C. Schneider, and S. Winklehner. Cholecystokinin octapeptide decreases intake of solid food in man. Peptides Fayetteville 3: 133–136, 1982.
 257. Stadil, F., and J. F. Rehfeld. Determination of gastrin in serum. An evaluation of the reliability of a radioimmunoassay. Scand. J. Gastroenterol. 8: 101–112, 1973.
 258. Steigerwalt, R. W., I. R., Goldfine, and J. A. Williams. Characterization of cholecystokinin receptors on bovine gallbladder membranes. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G709–G714, 1984.
 259. Steigerwalt, R. W., and J. A. Williams. Characterization of cholecystokinin receptors on rat pancreatic membranes. Endocrinology 109: 1745–1753, 1981.
 260. Steigerwalt, R. W., and J. A. Williams. Binding specificity of the mouse cerebral cortex receptor for small cholecystokinin peptides. Regul. Pept. 8: 51–59, 1984.
 261. Steiner, D. F., and P. E. Oyer. The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proc. Natl. Acad. Sci. USA 57: 473–480, 1967.
 262. Steinitz, H., and B. Tallis. Amebae in the human biliary tract. Harefuah 80: 77–80, 1971.
 263. Stengaard‐Petersen, K., L.‐I., Larsson, K. Fredens, and J. F. Rehfeld. Modulation of cholecystokinin concentrations in rat hippocampus by chelation with heavy metals. Proc. Natl. Acad. Sci. USA 81: 5867–5880, 1984.
 264. Stening, G. F., and M. I. Grossman. Gastrin‐related peptides as stimulants of pancreatic and gastric secretion. Am. J. Physiol. 217: 262–266, 1969.
 265. Stevens, J. An anatomy of schizophrenia. Arch. Gen. Psychiatry 29: 177–189, 1973.
 266. Studler, J. M., F., Javoy‐Agid, F. Cesselin, J. C. Legrand, and Y. Agid. CCK‐8 immunoreactivity distribution in human brain: selective decrease in the substantia nigra from parkinsonian patients. Brain Res. 243: 176–179, 1982.
 267. Sun, D. C. H., and H. Shay. Pancreozymin‐secretin test: the combined study of serum enzymes and duodenal contents in the diagnosis of pancreatic disease. Gastroenterology 38: 570–581, 1960.
 268. Svoboda, M., M., Lambert, J. Furnelle, and J. Christophe. Specific photoaffinity crosslinking of 125I‐cholecystokinin to pancreatic plasma membranes. Evidence for a disulphide‐linked Mr 76,000 peptide in cholecystokinin receptors. Regul. Pept. 4: 163–172, 1982.
 269. Tacca, M. D., G., Soldani, and A. Crema. Experiments on the mechanism of action of caerulein at the level of the guinea pig ileum and colon. Agents Actions 14: 176–182, 1970.
 270. Takahashi, Y., K., Kato, Y. Hayashizaki, T. Wakabayashi, E. Ohtsuka, S. Matsuki, M. Ikehara, and K. Matsubara. Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyinosine. Proc. Natl. Acad. Sci. USA 82: 1931–1935, 1985.
 271. Tatemoto, K., H., Jörnvall, S. Siimesmaa, G. Hallden, and V. Mutt. Isolation and characterization of cholecystokinin‐58 (CCK‐58) from porcine brain. FEBS Lett. 174: 289–293, 1984.
 272. Thulin, L., and H. Sannegård. Circulatory effects of gastrointestinal hormones and related peptides. Acta Chir. Scand. 482: 73–74, 1978.
 273. Toouli, J., and J. M. Watts. Actions of cholecystokinin‐pancreozymin, secretin, and gastrin on extra‐hepatic biliary tract motility in vitro. Ann. Surg. 175: 439–447, 1972.
 274. Unsworth, C. D., J., Hughes, and J. S. Morley. O‐sulphated Leu‐enkephalin in brain. Nature Lond. 259: 519–522, 1982.
 275. Uvnäs‐Wallensten, K., and J. F. Rehfeld. Molecular forms of gastrin in antral mucosa, plasma and gastric juice during vagal stimulation of anaesthetized cats. Acta Physiol. Scand. 98: 217–226, 1976.
 276. Vagne, M., and M. I. Grossman. Cholecystokinetic potency of gastrointestinal hormones and related peptides. Am. J. Physiol. 215: 811–884, 1968.
 277. Valenzuela, J. E. Effect of intestinal hormones and peptides on intragastric pressure in dogs. Gastroenterology 71: 766–769, 1976.
 278. Valenzuela, J. E., J. H., Walsh, and J. I. Isenberg. Effect of gastrin on pancreatic enzyme secretion and gallbladder emptying in man. Gastroenterology 71: 409–411, 1976.
 279. Vanderhaeghen, J.‐J., and J. N. Crawley (editors). Neuronal cholecystokinin. Ann. NY Acad. Sci. 448: 1–697, 1985.
 280. Vanderhaeghen, J.‐J., J. C., Signeau, and W. Gepts. New peptide in the vertebrate CNS reacting with gastrin antibodies. Nature Lond. 257: 604–605, 1975.
 281. Van Der Kooy, D. Area postrema: site where cholecystokinin acts to decrease food intake. Brain Res. 295: 345–347, 1984.
 282. Vandermeers‐Piret, M. C., A., Vandermeers, J. Rathe, J. Christophe, R. Van Der Hoeden, P. Wettendorff, and A. Delcourt. A comparison of enzyme activities in duodenal aspirate following injection of secretin, caerulein, and cholecystokinin. Digestion 10: 191–204, 1974.
 283. Vizi, S. E., G., Bertaccini, M. Impicciatore, and J. Knoll. Evidence that acetylcholine released by gastrin and related peptides contributes to their effect on gastrointestinal motility. Gastroenterology 64: 268–277, 1973.
 284. Walsh, J. H., and S. K. Lam. Physiology and pathology of gastrin. Clin. Gastroenterol. 9: 567–591, 1980.
 285. Walsh, J. H., C. B., Lamers, and J. E. Valenzuela. Cholecystokinin‐octapeptide immunoreactivity in human plasma. Gastroenterology 82: 432–444, 1982.
 286. Wang, C. C., and M. I. Grossman. Physiological determination of release of secretin and pancreozymin from intestine of dogs with transplanted pancreas. Am. J. Physiol. 164: 527–545, 1951.
 287. Warnes, T. W., P., Hine, and G. Kay. The action of secretin and pancreozymin on small‐intestinal alkaline phosphatase. Gut 15: 39–47, 1974.
 288. Wennogle, L., D., Steel, and B. Petrack. Characterization of cholecystokinin recognition sites in mouse cerebral cortex using a radiolabeled octapeptide. Ann. NY Acad. Sci. 448: 678–681, 1985.
 289. Wertheimer, E. De l'action des acides et du chloral sur la sécrétion biliare. C. R. Seances Soc. Biol. Fil. 55: 286–287, 1903.
 290. Wiborg, O., L., Berglund, E. Boel, F. Norris, K. Norris, J. F. Rehfeld, K. A. Marcker, and J. Vuust. The structure of a human gastrin gene. Proc. Natl. Acad. Sci. USA 81: 1067–1069, 1984.
 291. Williams, J. A. Regulatory mechanisms in pancreas and salivary acini. Annu. Rev. Physiol. 46: 361–375, 1984.
 292. Williams, J. A., S. R., Vigna, C. Sakamoto, and I. R. Goldfine. Brain cholecystokinin receptors. Binding characteristics, covalent cross‐linking and evolutionary aspects. Ann. NY Acad. Sci. 448: 220–230, 1985.
 293. Wormsley, K. G. A comparison of the response to secretin, pancreozymin and a combination of these hormones in man. Scand. J. Gastroenterol. 4: 413–417, 1969.
 294. Wrenn, R. W., N., Katoh, and J. F. Kuo. Stimulation by phospholipid of calcium‐dependent phosphorylation of endogenous proteins from mammalian tissues. Biochim. Biophys. Acta 676: 255–260, 1981.
 295. Yamagishi, T., and H. T. Debas. Cholecystokinin inhibits gastric emptying by acting on both proximal stomach and pylorus. Am. J. Physiol. 234 (Endocrinol. Metab. Gastrointest. Physiol. 3): E375–E378, 1978.
 296. Yau, W. M., G. M., Makhlouf, L. E. Edwards, and J. T. Farrar. The action of cholecystokinin and related peptides on guinea pig small intestine. Can. J. Physiol. Pharmacol. 52: 298–303, 1974.
 297. Yoo, O. J., C. T., Powell, and K. L. Agarwal. Molecular cloning and nucleotide sequence of full‐length cDNA coding for porcine gastrin. Proc. Natl. Acad. Sci. USA 79: 1049–1053, 1984.
 298. Zarbin, M. R., R. B., Innis, J. K. Wamsley, S. H. Snyder, and M. J. Kuhar. Autoradiographic localization of cholecystokinin receptors in rodent brain. J. Neurosci. 3: 877–906, 1983.
 299. Zarbin, M. A., J. K., Wamsley, R. B. Innis, and M. J. Kuhar. Cholecystokinin receptors: presence and axonal flow in the rat vagus nerve. Life Sci. 29: 697–705, 1981.
 300. Zhou, Z.‐Z., J., Eng, Y.‐C. E. Pan, M. Chang, J. D. Hulmes, J.‐P. Raufman, and R. S. Yalow. Unique cholecystokinin peptides isolated from guinea pig intestine. Peptides Fayetteville 6: 337–341, 1985.
 301. Zunz, E., and J. La Barre. Contributions a l'etude des variations physiologiques de la secrétion interne du pancréas. Relations entre les secrétions externe et interne du pancréas. Arch. Int. Physiol. Biochim. 31: 20–44, 1929.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jens F. Rehfeld. Cholecystokinin. Compr Physiol 2011, Supplement 17: Handbook of Physiology, The Gastrointestinal System, Neural and Endocrine Biology: 337-358. First published in print 1989. doi: 10.1002/cphy.cp060216